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Abstract

In the literature, a number of syntheses of carbon materials under extreme

condition exhibit the presence of a carbon phase, called n-diamond, whose

crystal structure remains unclear. Several crystallographic arrangements

have been proposed, which are critically assessed in this work with regards to

dynamical stability. It is shown that tetragonal carbon (glitter) is the only

structure that satisfies this criterion. Glitter is a metallic 3-, 4-connected

allotrope containing 1,4-cyclohexadieneoid units, giving a high energy meta-

stable phase. Applying a fully first principles approach, which couples den-

sity functional theory (DFT) calculations and Ising-like parameterisation,

the possibility of stabilising the structure with nitrogen, boron and silicon

substitutions has been investigated, finding that there are arrangements with

negative formation energy. These novel arrangements have been tested for

vibrational stability, whereby it has been proven that they are dynamically

stable. Moreover a bandgap opens, leading to semiconductor bulk materials

based on Si, C, B and N.

Graphene, a carbon allotrope having the so-called chicken-net structure,

is a zero-bandgap semiconductor, which make it promising for nano-electronic

applications. However tuning and modifying the bandgap would expand the

range of possible applications, in particular for post-silicon transistors. The

effect of B substitutions in the graphene lattice has been studied, in terms

of stability and electronic structure. The doping at low B concentration

has been studied with a direct DFT approach while the effect at higher

concentration has been studied with the above-mentioned coupled approach.

Novel arrangements, that have semiconductor behaviour, have been proven

to be dynamically stable at 0 K. The effect of a second B-C layer has also

been investigated, finding that is effective on bandgap tuning.

x



Chapter 1

Introduction

In computational materials science, first principles methods allow the cal-

culation of physical properties of materials without the aid of experimental

inputs [1]. The advances in algorithms, increased computational power and

improvements in the fundamental understanding of condensed-matter physics

have made computing based on first principles a powerful tool for crystal

structure prediction [2]. The lack of connection with any specific experiment

is the intrinsic strength of this approach, which guaranties flexibility and

generality in its applications.

Advances in materials science are severely limited by the available ma-

terials. Design, synthesis and mass-production of a novel material can be a

costly and lengthy process. Identifying the appropriate material for a specific

purpose and finding the synthesis route are usually the bottleneck of this pro-

cess. Computational materials science can help, both in driving the search

and in gaining a better understanding on how materials form and react.

In an excellent review, Ceder showed the contribution of in silico methods

to the design of Li battery materials [3], indicating in the scalability the main

advantage of first principles approach. The study of many other systems

has been positively affected by the impact of computational methods where

predictions have been confirmed experimentally, for instance high pressure

phases of Si [4], oxygen ordering in YBa2Cu3O6+x [5], surface ordering of

III-IV semiconductors [6].

The work presented in this thesis is an attempt to predict the stability

1



1. Introduction

and properties of metastable carbon phases and substituted carbon nets. The

theoretical foundations of this work lie in parametrisation of the Hamiltonian

employed for structural prediction and on lattice dynamics, as a theoretical

tool to test structural stability.

1.1 Carbon-based nets

Carbon is at the cutting edge of technological innovation, driven by its

propensity to form different allotropes and to form compounds with many

elements.

At ambient conditions, graphite and diamond have comparable formation

energies: hexagonal graphite is more stable by ∼ 0.03 eV/atom. Having the

capability to form various types of chemical bonds with comparable formation

energies, carbon can potentially form various allotropes.

The two best-known allotropes, diamond and graphite, have bulk mechan-

ical and electrical properties that could hardly be more different: diamond

is the hardest known natural material and is an electrical insulator (or wide

band gap semiconductor depending on the crystallographic defects) whilst

graphite is an important dry lubricant exhibiting metallic behaviour.

Diamond and graphite are distinguished by the electron hybridisation

of carbon atoms: sp3 and sp2, respectively. If carbon is hybridised sp1,

it is suggested to form linear acetylenic carbon, also called carbyne, whose

existence is still controversial [7].

The discovery and synthesis of fullerenes [8], nanotubes [9] and graphene

[10] have revolutionised the material science of carbon. Back in 1947, Wal-

lace predicted that graphene would have extraordinary electronic properties,

if isolated [11]. Graphene is a carbon allotrope having atoms arranged in a

2-dimensional honeycomb lattice. For years, graphene was considered an aca-

demic oddity that existed only in theory and presumed not to exist as a free

standing material. Since Novoselov et al. reported the effect of an electric

field on synthesised samples of graphene [12], a wide range of opportunities

2



1. Introduction

opened up for novel applications in nano-electronics and photovoltaics. In

2010, “for groundbreaking experiments regarding the two-dimensional mate-

rial graphene” Andre Geim and Konstantin Novoselov of the University of

Manchester were awarded the Nobel Prize in Physics [13].

Several works focus on the properties of new possible carbon forms with

co-existing sp2 and sp3 hybridisation, including fullerene polymers, nanotube

assemblies, diamond-like crystallites, vacancies in graphite, nanofoams and

diamond-graphite hybrids [14, 15, 16, 17, 18, 19, 20]. These novel struc-

tural arrangements are reported to be kinetically stabilised and, thus, may

have the possibility to be formed experimentally as metastable phases; if

this is the case, they are predicted to show a range of interesting proper-

ties, both from scientific and technological perspectives. To the author’s

knowledge, only nano-forms of diamond-graphite hybrids, namely diamond-

graphite nanowires [21] and diamond-graphite nanoflakes [22, 23] have been

reported, both forms existing as composite structures with a clear phase

separation of the diamond-like and graphite-like regions.

In 1994 Bucknum and Hoffmann [24] proposed “glitter” as a potential

allotrope of carbon on the basis of chemical intuition. The carbon network

is a graphite-diamond hybrid in terms of connectivity and density. Bucknum

et al. [25] proposed that glitter is consistent with n-diamond, a phase related

to carbon under extreme conditions [26]. To this day, the crystal structure

of n-diamond remains unclear.

Instead of modifying the topology of carbon materials, an alternative ap-

proach for tuning and modifying the extreme properties of carbon allotropes

is alloying carbon nets with heteroatoms with no changes in the topology of

the original system. The term “heteroatom” is borrowed from organic chem-

istry, indicating non-carbon (or hydrogen) atoms that have replaced carbon

in a molecular structure; the term “alloying” is improperly but widely used

in this field [27].

Because of their affinity to carbon and their richness of chemistry, boron,

nitrogen and silicon are the ideal elements with which to form alloys; as

3



1. Introduction

such, they form the main focus in the present work. In these systems, the

stable stoichiometric compounds of boron carbide [28], silicon carbide [29]

and carbon nitride [30] are known.

1.2 Aim of this work

This work is focused on investigating the effect of substitutions on two car-

bon nets, namely glitter and graphene, using a fully first principles approach.

The effect of substitutions are investigated with regards to structural stabil-

ity and modification of the electronic properties in order to improve the

understanding of carbon-based semiconductors.

The stability of pure carbon glitter has also been compared with the other

structures that have been proposed in the literature to describe n-diamond.

1.3 Overview of the thesis

In Chapter 2, a brief introduction regarding the materials that have been

studied and the possible applications is reported. Chapter 3 contains an

explanation of the theoretical methods that are used in the thesis.

Results are presented and discussed in the following Chapters:

• Chapter 4 - Glitter: a possible metastable carbon phase. The

stability of the atomic arrangements proposed for explaining the crys-

tallography of n-diamond are studied in term of dynamics at 0 K.

• Chapter 5 - Boron, nitrogen and silicon substituted glitter.

Novel structures of substituted glitter are proposed with a view to

stabilising the glitter structure and opening a bandgap.

• Chapter 6 - Boron-substituted graphene. Boron substitution in

graphene is investigated with a view to finding novel configuration hav-

ing semiconducting behaviour.

4



1. Introduction

A general discussion and overall conclusions followed by a review of the

open questions and the proposed future work are contained in Chapter 7.

A compact disk, with supplementary material in electronic form, is also

included.

5



Chapter 2

Carbon-based materials

Doping and substitution of heteroatoms in carbon nets have provided a num-

ber of fruitful routes for tuning and modifying material properties, with a

number of materials having been proposed and synthesised [31, 32, 33, 34, 35].

Due to the contiguity in the Periodic Table, boron, nitrogen and silicon

have some similarities with carbon, that make them interesting for substitu-

tions in carbon nets: C, Si, B− and N+ are isoelectronic in the valence shell.

I would like to underline that, despite some similarities, the variety of the

bonding of carbon is unique.

The literature regarding carbon based materials with heteroatom substi-

tutions is extensive, however in the next sections, just the key-points relevant

for this work are presented:

• carbon substitutions with heteroatoms, Section 2.1;

• the tantalising case of n-diamond and glitter, along with the idea of

stabilising the glitter structure with heteroatom substitutions, Section

2.2;

• graphene allotrope and the technological theme of opening a bandgap

in the electronic structure, Section 2.3.

6



2. Carbon-based materials

2.1 Heteroatom substitutions on selected nets

Boron. Boron substitutions in carbon materials, have been proven to form

metastable phases. Diamond can be contaminated by very few types of im-

purities, due to the rigidity of its lattice. Boron can be found as a substitu-

tional impurity (up to 1 ppm) in natural diamond [36]. By means of chemical

vapour deposition (CVD) and high-pressure high-temperature (HPHT) syn-

thesis, boron was incorporated in diamond films up to 1 at.% for electrode

applications [37]. Stoichiometric inclusion of boron in the diamond lattice

has been shown to be possible by Solozhenko et al. [38], reporting the syn-

thesis of a diamond-like BC5 compound. X-ray characterisation showed that

boron atoms are randomly distributed throughout the lattice [38]. Zinin et al.

[39] reported the synthesis of hetero-nano-diamond, cubic BC3, at a pressure

of 39 GPa and temperature of 2200 K in a laser-heated diamond anvil cell.

High-resolution transmission electron microscopy imaging of c-BC3, recorded

at ambient conditions, shows that it is a nano-crystalline single phase.

The maximum thermodynamic solubility of B in graphite is 2.35 at.% at

∼ 2600 K [40]. Way et al. deposited thin graphite-like films of BxC1−x, with

x up to 0.17 [41]. Kouvetakis et al. [42] reported that interaction of benzene

with boron trichloride at ∼ 1100 K yields a graphite-like metallic material

of composition BC3. B atoms are ordered in the graphite-like layers, where

carbon benzene-like units are surrounded by the substitutional element [43].

The properties of carbon nanotubes are sensitive to the diameter and the

chirality of the tube, which is difficult to control in mass production. Alter-

natively, electronic properties can be tuned chemically by including boron

in the nano-structure. In boron doped nanotubes, the Fermi level is shifted

downwards due to the missing π-electrons from the boron atoms while the

valence-band structure remains otherwise unaltered. When nanotubes form

in a carbon arc, the presence of boron results in long boron-doped carbon

nanotubes that are generated as dominant zigzags. A metallic behaviour is

observed, in contrast to carbon nanotubes, which are semi-conducting [44].

Highly boron-substituted (up to 15 at.%) single-wall carbon nanotubes have

7



2. Carbon-based materials

been reported [45]. Core-level electron energy-loss spectroscopy reveals that

boron incorporates into the lattice structure of the tubes. The charge transfer

and the calculated Fermi-energy shift in the doped nanotubes offer evidence

that charge localisation and doping induced band structure changes play an

important role at high boron concentration.

Nitrogen. Nitrogen is the most common impurity in natural diamond

[46]. Many different typologies of inclusions are present in diamond, involving

both single atom and molecular nitrogen incorporation [47]. Investigating

inclusion of nitrogen in diamond nano-particles, expected to be important

for use in nano-devices, Barnard and Sternberg [48] predicted with density

functional tight binding simulations that nitrogen is likely to be positioned

at the nano-diamond surface. Kanda et al. grew diamond on boron nitride

with high nitrogen concentrations [49], finding that 1200 to 1900 atomic ppm

of nitrogen atoms are incorporated in the crystals. Lian et al. [50] and Yu

et al. [51] succeeded in synthesising diamond crystals with 1600-2400 ppm

of nitrogen using NaN3 or Ba(N3)2 as a dopant.

The composition and structure of nitrogen-substituted graphite films pro-

duced by CVD were studied by Matsui et al. [52]. X-ray diffraction indicated

that the structure of the films is similar to that of graphite. The atomic frac-

tion of incorporated nitrogen was found to be a maximum of 12.4 at.%.

Ghosh et al. [53] reported the highest N-doping level achieved for carbon

nitride nanotubes, up to 25.7 at%. The precursor imidazole was used as a

dual supplier of carbon and nitrogen in the presence of ferrocene catalyst. It

was observed that the abundance of N-substituted graphitic units enhances

the electrical conductivity of individual nanotubes by donating additional

electrons to the network.

Silicon. Silicon and carbon at 1:1 stoichiometry form silicon carbide

(SiC), which exists in about 250 crystalline forms [54]. The beta modifica-

tion of silicon carbide, β-SiC, is formed at temperatures below 2000 K. This

polymorph has the zincblende crystal structure, closely related to diamond

[55].

8



2. Carbon-based materials

It is still a matter of debate whether alloys with off-1:1 stoichiometry can

be formed [56]. Duby and Durand [57] proposed that the solubility of C in

silicon is ∼ 9 ppm. Low concentrations of metastable C defects in Si have

been created experimentally using molecular beam epitaxy [58, 59] and CVD

[60].

Under ambient conditions, Si strongly prefers sp3 hybridisation and tetra-

coordination, while carbon can form bonds based on both sp3 and sp2 hy-

bridisation. The reasons for the apparent immiscibility is centred on the

bond lengths: the bond length of C is about 2/3 that of Si. The presence of

Si-Si, C-C and Si-C bonds in the same structure would result in large strains,

due to the bond length mismatch.

2.2 n-Diamond

Hirai and Kondo in 1991 [26] identified a new possible allotrope of carbon

in materials produced by rapid cooling of shock-compressed graphite. The

novel form of carbon was called n-diamond (new diamond). Electron diffrac-

tion (ED) patterns of n-diamond matched with that of cubic diamond apart

from the presence of additional reflections at indices {2,0,0}, {2,2,2}, {4,2,0},
which can be indicative of an fcc structure. This feature has been observed

in a number of other experiments involving carbon allotrope synthesis under

extreme conditions.

Palatnik et al. [61] earlier reported the observation of a metastable carbon

allotrope in low temperature annealed carbon films bombarded with argon

ions during growth. Konyashin et al. [62] observed a metallic modification

of carbon formed by transformation of a diamond surface during treatment

in hydrogen plasma. Yamada et al. characterised, by scanning electron

microscopy (SEM), nano-clusters of n-diamond and i-carbon (a metastable

phase of carbon related to diamond [63]) found as remnants of detonation

of trimethylenetrinitramine and graphite in steel chambers [64]. Fine crys-

tals of n-diamond were produced by Frenklach et al. using plasma CVD [65].

9



2. Carbon-based materials

Cowley et al. also obtained n-diamond by CVD on platinum wires in the pres-

ence of H2 [66]. Wen et al. synthesised n-diamond in macroscopic amounts

from Fe-catalysed carbon black under atmospheric pressure at high temper-

ature [67]. Thin films have been produced by ion-beam deposition [68] and

by radio-frequency plasma decomposition of hydrocarbon gases [69]. Many

other methods have been successfully utilised for synthesising n-diamond; for

a complete overview see Wen et al. [70].

Interestingly, some “natural” occurrences of n-diamond have been re-

ported, both in in crude oil [71] and stratum [72]. The phase has been found

in solid asphaltenes precipitated from crude oil of the Sureste basin, Yu-

catan peninsula, Mexico. The Sureste Basin is located near the Chicxulub

crater, formed from the meteoric impact widely believed to have caused the

Cretaceous-Paleogene extinction event some 66 Million years ago. Whilst

the origin of the n-diamond remains contentious, an intriguing hypothesis

is that the meteoric impact, which occurred in the same geological time-

frame as the formation of the Sureste basin oil fields, provided the extreme

conditions required for the formation of n-diamond. Sediments abundant

with nano-diamonds are also present in North America. They are dated

to ∼ 10000 years ago. Electron diffraction reveals the presence of two di-

amond allotropes, namely cubic diamond and n-diamond; the formation of

both requires extraordinary conditions, outside the range of Earth’s typical

superficial processes but common to cosmic impacts. These findings pro-

vide strong evidence for Earth’s collision with a rare swarm of carbonaceous

chondrites or comets.

Despite the ability to synthesise n-diamond in many different ways and

the natural occurrences, the crystal structure of n-diamond is still unclear.

In part, this is due to the fact that it is usually produced in small amounts

and in a nanoscopic form that does not facilitate the structural identifica-

tion. Up to now, several models have been proposed for n-diamond, most of

which are based on modification of the cubic-diamond structure. In a recent

publication, Baldissin and Bull [73], studying the dynamical stability of the
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2. Carbon-based materials

Figure 2.1: Representation of 1,4-cyclohexadiene: carbon (grey), hydrogen

(white). The carbon backbone is the building block of the glitter structure.

structures proposed in the literature to describe n-diamond, ruled out the

various models based on cubic diamond because of their dynamical instabil-

ity at 0 K. A further structure, glitter, based on a tetragonal lattice, has been

shown to be the only structure that is dynamically stable.

2.2.1 Glitter

Glitter has a tetragonal unit cell with space group P42/mmc (No. 131) con-

taining 1,4-cyclohexadieneoid unit rings [24], Figure 2.1. Glitter contains

both trigonal (3-coordinated) and tetragonal (4-coordinated) C atoms, Fig-

ure 2.2. The carbon network can be thought of as a graphite-diamond hybrid

in terms of connectivity and density. However according to Well’s topological

classification [74], it is not strictly a diamond-graphite hybrid. The structure

is stabilised by extensive spiroconjugation resonance mechanisms in three

dimensions [25, 75].

According to ab initio calculations, glitter is less stable than graphite

by ∼ 0.5 eV/atom [76]. It must be stressed that many widespread carbon

forms have high formation energy. For example, Buckminsterfullerenes lie

0.3 eV/atom above the energy level of graphite [63]; this energy deficit does

not preclude their existence. Decomposition of graphite and diamond has
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Figure 2.2: Glitter structure: 4-coordinated carbon atoms with sp3 hybridi-

sation (dark grey) in tetragonal positions and 3-coordinated carbon atoms

with sp2 hybridisation (light grey) in trigonal positions [24].

high activation barrier due to the reconstructive nature of this process in a

system characterized by covalent bonding. Similarly, glitter decomposition

must be unfavourable because the same kind of interactions is involved. If

created, the glitter allotrope would persist, as was argued by Bucknum et al.

[25].

Bucknum et al. [25] in 2005 proposed that glitter is consistent with

n-diamond on the basis of comparing the experimental diffraction pattern

of n-diamond and the simulated diffraction pattern of glitter optimised by

density functional theory calculations. In addition to the diffraction evidence,

the calculated band structure of glitter [24] shows metallic behaviour, which

agrees with the observed electrical behaviour of n-diamond. Glitter can be

rationalised as a three-dimensional structure containing ethylenes stacked at

a separation of ∼ 2.5 Å, while the interlayer spacing in graphite is ∼ 3.3 Å.

Figure 2.3 shows an extended view of the glitter structure.

Recently, Bucknum and Castro revised the consistency of the glitter

12
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Figure 2.3: Glitter 4× 4× 3 supercell: bond order is not considered so as to

allow a clearer representation.

model with kinetically stabilised forms of Carbon, stating that tetragonal

carbon is a reasonable explanation for both n-diamond and i-carbon [77].

Alloying carbon glitter with heteroatoms, such as boron, nitrogen and

silicon, can be of particular interest. Substitution could have effects on the

stability and could be used to modulate the properties of the resulting mate-

rial. However, there is a dearth of information about substituted glitter.

Silicon substitutions have been theoretically investigated by Bucknum et

al. [78] and more recently by Andrew et al. [56]. Stamatin et al. pro-

posed in 2004 the synthesis of silicon dicarbide, SiC2, in a matrix of novolac

phenol-formaldehyde resin with silicon powder [79]. SiC2 is a possible off-

1:1 stoichiometry silicon carbon compound. Glitter nets, formed by boron

and nitrogen substitutions in trigonal positions, have been investigated by

Bucknum and Hoffmann [24]. To the author’s knowledge, theoretical papers
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Figure 2.4: Graphical representation of graphene.

on substituted glitter take into account just a few configurations based on

chemical intuition; the configurational space has never been extensively in-

vestigated. Moreover, the effect of substitutions with more than one type of

element has not been considered. Substituted glitter could open a new range

of applications as hard light-weight materials in electronics.

2.3 Graphene

Graphene is an allotrope of carbon whose structure is a single planar sheet

of sp2-bonded carbon atoms. It can be rationalised as an indefinitely large

aromatic molecule, the limiting case of the flat polycyclic aromatic hydrocar-

bons, Figure 2.4. The peculiar atomic arrangement is reflected in its unique

electronic structure. Large-area graphene is a zero-bandgap semiconductor

presenting massless Dirac-fermion behaviour: conical valence and conduction

bands meet at a single point in momentum space [10, 80, 81, 82], see Figure

2.5.

The high carrier mobility at room temperature is one of the main advan-
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Figure 2.5: Band structure around the k point of (a) large-area graphene,

(b) unbiased bilayer graphene, (c) graphene nanoribbons, and (d) bilayer

graphene with an applied perpendicular field.

tages ascribed to the application of graphene in electronic devices [83, 84, 85].

The high mobility of large-area graphene [86] comes along with a lack of

bandgap at the Fermi level. It is well-known that the mobility decreases for

increasing bandgap, as has been shown for related materials, namely car-

bon nanotubes [87, 88]. However, a bandgap is essential for allowing two

important applications:

• the switching on/off processes of transistors for logic application [89];

• the efficient energy conversion in solar cell applications [90].

2.3.1 Opening a bandgap

Regarding graphene-related materials, several approaches have been devel-

oped to open a bandgap at the Fermi level:

• lateral confinement forming graphene nanoribbons [91];
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• biasing bilayer graphene [92];

• applying strain to graphene [93];

• chemical functionalisation of graphene, [94];

• substitution of graphitic carbon with heteroatoms, in particular B and

N [95, 27].

Yang et al. predicted that armchair and zigzag nanoribbons have band-

gaps that are approximately inversely-proportional to the nanoribbon width

[91]. While theoretical calculations are based on well-defined models, real

nanoribbons have rough edges and widths that are not constant along their

length [96]. To open a bandgap useful for conventional devices, very narrow

nanoribbons with well-defined edges are needed. Unzipping carbon nan-

otubes [97] seems to be the most promising method of producing nanorib-

bons that are uniform in width and have reduced edge roughness. Edge

geometry, edge functionalisation and doping can also affect the bandgap of

C-nanoribbons [96, 98].

If an electric field is applied perpendicular to bilayer graphene, a band-

gap opens, showing the so-called Mexican-hat shape in the band structure

diagram [92, 99], Figure 2.5. The size of the bandgap can be tuned by modu-

lation of the strength of the field. Modest gaps, ∼ 250 meV, can be achieved

only by applying intense fields, ∼ 3× 107 V cm1 [92, 100].

The effect of uni-axial strain on large-area graphene for opening a band-

gap at the Fermi level has been simulated [93]. However the required de-

formation that is needed to obtain an useful bandgap would be difficult to

achieve in practice. To author’s knowledge, the effect of biaxial and local

strain has never been investigated in detail.

Chemical functionalisation of the graphene surface is a way to manipu-

late electronic properties of graphene-related materials. The hydrogenation

[101, 102, 103, 104] and oxidation [105, 106, 107] of graphene surfaces have

been extensively studied, along with other kinds of functionalisations, such

16



2. Carbon-based materials

as fluorination and chlorination [108, 109]. The main advantage is that the

functionalisation reaction can occur on the graphene substrate, which has re-

cently seen significant advances for mass production [110]. Unfortunately, for

covalent functionalisation, a phase separation is likely to take place sponta-

neously due to the strain associated with the presence of sp2 and sp3 carbon

atoms in the same layer [104]. The sp2 hybridisation state is associated with

in-plane bonds while covalent functionalisation demands sp3 hybridisation

and therefore tetrahedral coordination.

Alternatively, in-plane substitutions of carbon atoms with heteroatoms,

namely B and N, have been proven effective for modifying the electronic

structure [95, 27]. The main advantage of in-plane substitution is that the

final materials do not exhibit strain effects due to the co-existence of atoms

with different coordination in the graphitic layer.

Wang et al. reported the functionalisation of graphene nanoribbons with

nitrogen species through high-power electrical joule heating in ammonia gas,

leading to n-type electronic doping [111]. Zhao et al. incorporated nitrogen as

graphitic dopants in monolayer graphene grown on a copper substrate [112].

Deng et al. [113] developed a novel method for one-pot direct synthesis of N-

doped graphene via the reaction of tetrachloromethane with lithium nitride.

Nitrogen species can be incorporated into graphene structures with contents

in the range 4.5−16.4%. X-ray photoelectron measurements revealed that

N-substitutions prevalently occur in the graphitic plane [114]. Using first

principles calculation based on Ising-like parametrisation of the Hamiltonian,

Xiang et al. [27] found two stable semiconducting structures, C3N and C12N;

C12N is a direct semiconductor with 0.98 eV bandgap. The formation of

ordered structures is reported to be driven by the repulsive electrostatic

interactions between nitrogen atoms.

DFT calculations showed that the electronic properties of triangular graph-

ene with nitrogen and boron substitutions depend on the dopants’ positions

[115].
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Boron doped graphene has been produced by CVD, using different sources

of carbon and boron. Cattelan et al. [116] used methane and diborane. Wang

et al. used phenylboronic acid as a common source [117]. A BC3 honeycomb

sheet was grown over an NbB2 (0001) surface [118]. According to first princi-

ples calculations, the mono-layer is an indirect bandgap semiconductor [43].

Luo et al. [95] with a Particle Swan Optimization approach reported that

BC3 is the only semiconducting configuration, a so-called “magic” case, while

other compounds at different stoichiometry are metallic.
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Chapter 3

Theoretical background

First principles methods assist the understanding of structural, electronic

and dynamical properties of materials, allowing quantitative predictions of

physical quantities at both microscopic and macroscopic levels. The pre-

diction ability is of fundamental importance for explorative investigations,

when direct experimental measurements are time-consuming, costly, tech-

nically challenging or not feasible. An elegant example is represented by

the works of Pickard and Needs on phases under extreme pressure (order of

terapascal) [119, 120].

Much of the information presented in this Chapter is standard knowl-

edge among experts, but as a consequence is rarely discussed. The following

sections focus on a few fundamental elements:

• the modelling of the electronics of atomic systems within the framework

of the density functional theory (DFT), Section 3.1;

• the Ising-like parametrisation of interatomic energy, that allows one to

deal with substitutional systems, Section 3.2;

• the relation between lattice dynamics and structural stability, Section

3.3.

A comprehensive overview of these topics is beyond the scope of this

work. The interested reader is referred to a number of excellent publications

for DFT [121, 122], for Hamiltonian parametrisation [123, 124, 125], and for

lattice dynamics [126, 127].

19



3. Theoretical background

Year Number of publications a year

2012 11065

2011 10002

2010 7874

2009 7323

2008 7065

Table 3.1: For the query “Density Functional Theory” the bibliographic

database SciVerse Scopus [130] provides ∼ 90000 results. The number of

publications are increasing in recent years.

3.1 Density functional theory

In computational materials science, the energy and other properties of an

arrangement of atoms (bulk solids, molecules, surfaces and so on) can be cal-

culated by solving the quantum many-body problem of electrons and nuclei.

The number of involved particles is often vast and the interaction between

electrons are quantum-mechanically correlated, rendering an analytical solu-

tion impossible.

Many approaches have been attempted to solve this challenge. One of the

most successful is the DFT, for which Walter Kohn was awarded the Nobel

prize for chemistry in 1998 [128] along with John A. Pople, who shared the

award for the development of computational methods. I would like to under-

line that DFT is not necessarily the best method for any problem involving

electrons and nuclei, but its efficiency, accuracy and proficiency are suitable

for most purposes. The size of the community of users is convincing evidence

of its importance, along with the number of papers published each year, see

Table 3.1. Moreover it is among the few quantum mechanical methods that

are used in industry, see for instance Wolveton [129].

In principle, solving the Schrödinger equation [131] allows one to under-

stand the properties of materials without using any empirical parameter or
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approximation.

In a non-relativistic treatment within the Born-Oppenheimer approxima-

tion, which allows the decoupling of the electronic and nuclear degrees of

freedom [132], the N -electron Schrödinger equation is written as:

HΨ(r1, σ1; . . . rN , σN ) = εΨ(r1, σ1; . . . rN , σN), (3.1)

whereH is the Hamiltonian, Ψ the many-electron wave function, ri and σi the

spatial and spin coordinates relative to the ith electron and ε an eigenvalue.

Although spin-polarization is relevant in this work, the spin coordinates are

now omitted to simplify the notation and focus on other important features.

The electronic Hamiltonian, H , is the sum of a one-body term and a two-

body term, which contains the electron-electron interactions:

H =

N
∑

i=1

[

− h̄2

2m
∇2

i + Vext(ri)
]

+
∑

i>j

e2

|ri − rj |
, (3.2)

where h̄ is the reduced Plank constant, m and e are the electronic mass and

charge, Vext is the external potential. In condensed-matter physics the exter-

nal potential is due to the interaction with the atomic nuclei. In principle,

there is a straightforward method to find the ground state wavefunction: the

application of the variational principle. One has to minimise the expectation

value 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉. However, the time-scales involved are so large as to

render this approach unfeasible, even for simple molecules.

To overcome this limitation, in most of cases the problem is reformulated

as one where the interactions are represented by an effective potential acting

on independent electrons, resulting in a set of one-electron Schrödinger-like

equations:

Hψn =
(

− h̄2

2m
∇2 + Vext + Veff

)

ψn = εiψn, (3.3)

ψn is a set of n one-electron wavefunctions, Veff the effective potential (where

the electron-electron interaction is usually written in a mean-field manner)

and εi are the energy eigenvalues.
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Hartree developed an early approach, setting Veff to the average of the

Coulomb potential between one electron and all the others [133], neglect-

ing two main features of the physical system: electron-electron interactions

depend on the position; fermions, as electrons are, obey the Pauli exclu-

sion principle and, hence, Fermi-Dirac statistics. The Hartee-Fock approach

treats the exchange interaction exactly, but it does not include correlation

[134].

3.1.1 Electron density

Hohenberg and Kohn showed that the electron density, n(r), is the corner-

stone of an exact theory for the solution of the many-body problem [135]:

the electron density is the central quantity that allows a description of the

complexity of electron interactions.

Knowing the n-electron wavefunction, Ψ(r1, . . . rn), the electron density,

n(r) can be obtained by integration:

n(r) = 〈Ψ|
N
∑

i=1

δ(r− ri)|Ψ〉 = N

∫

d3r2 . . .

∫

d3N |Ψ(r, r2, . . . , rN)|2, (3.4)

where δ(r) is the Dirac delta function. In principle, given the external po-

tential one can determine the electron density through the previous determi-

nation of the N -electron wavefunction. There is one-to-one relation from the

potential to the electron density.

From the Kato theorem [136] one can, in principle, read off all information

necessary for determining the Hamiltonian directly from the density distri-

bution of electrons interacting with nuclei. The coordinates of the nuclei,

R, are the coordinates of the cusp singularities of the electron density. The

nuclear charge, Z, can be determined by the density derivatives close to the

cusps:

Z = −
[ a0
2n0(r)

∂n

∂r

]

r→|R|
(3.5)

where a0 is the Bohr radius. The external potential is therefore fully defined.

Integrating the electron density over space gives the number of electrons,
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N . Thus the electronic Hamiltonian is fully defined. There is a one-to-one

relation from the electron density to the external potential.

The generalisation of the previous result to a system with a fixed number

of electrons, N , and for any arbitrary external potentials was formally given

by Hohemberg and Kohn in form of two powerful theorems [135].

Within an additive constant, the electron density determines

the external potential. If the statement is true then it immediately follows

that the electron density uniquely determines the Hamiltonian operator. This

follows as the Hamiltonian is specified by the external potential and the total

number of electrons, N , which can be computed from the density simply

by integration over all space. Because the Hamiltonian fully describes the

system, an additional consequence is that every property of the system is

determined by the electron density. This was generalised to include systems

with degenerate states by Levy [137]. The energy is a functional of the

electron density, E[n(r)].

The density that minimises the energy is the exact ground state

density. There exists a universal functional for the energy, which can be

uniquely defined, given the external potential. The density that minimises

this functional is the ground state density and the energy at the minimum,

the ground state energy.

The problem is redefined into a problem that depends only on the elec-

tronic density, n(r), rather than the many-body wave function. This is a

tremendous advantage since n(r) only depends on one three-dimensional po-

sition.

However, whilst Hohenberg-Kohn theorems are extremely important, they

do not offer a computational route to calculate the ground-state density of

a system. One year later, Kohn and Sham [138] developed a simple method

for carrying-out DFT calculations.
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3.1.2 Kohn-Sham equations

Kohn and Sham [138] devised a one-electron approach within the framework

of the DFT. They showed that the ground-state density of a system, R,

of interacting electrons can be calculated as the ground-state density of an

auxiliary system, A, of non-interacting electrons.

Let us write the relation between the exact kinetic energy of the real

system, T [n], and the kinetic energy of A, Ts[n]:

T [n] = Ts[n] + Tc[n], (3.6)

where Tc[n] is the remainder. If Tc[n] is small, the exact kinetic energy, T [n],

is well approximated by Ts[n]. Similarly the exact Coulomb functional, U [n],

can be written as a sum of a Hartree term, EH [n], plus a term that takes

into account the quantum nature of the interacting electrons ∆U [n]:

U [n] = EH [n] + ∆U [n]. (3.7)

The exact energy functional can be written as:

E[n] = Ts[n] +

∫

d3rVext(r)n(r) + EH [n] + Exc[n], (3.8)

where Exc[n] = Tc[n] + ∆U [n]. This term is called the exchange-correlation

energy functional. Variationally, equation 3.8 is as follows:

δE[n]

δn(r)
=
δTs[n]

δn(r)
+ Vext(r) + e2

∫

d3r′
n(r′)

|r− r′| +
δExc[n]

δn(r)
. (3.9)

Let us now consider the auxiliary system, A, of non-interacting electrons:

δE[n]

δn(r)
=
δTA[n]

δn(r)
+ VA(r). (3.10)

The energy is expressed in terms of the kinetic energy of non interacting

electrons and a potential VA(r).

Equations 3.9 and 3.10 are identical if the potential VA(r) satisfies:

VA(r) = Vext(r) + e2
∫

d3r′
n(r′)

|r− r′| + Vxc(r; [n]), (3.11)
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where Vxc(r; [n]) is the functional derivative of the exchange-correlation en-

ergy, the so-called exchange-correlation potential, which is also a functional

of the electronic density. Equation 3.11 is the condition for the existence of

the virtual system A. If it is satisfied, equations 3.9 and 3.10 must have an

identical solution. The N -electron Schrödinger equation can be solved for A:

[

− h̄

2m
∇2 + VA(r)

]

ψi(r) = εiψi(r), (3.12)

the electron density nA(r) of A can be calculated by summing the square

moduli of the occupied orbitals:

nA(r) =
∑

i

fi|ψi(r)|2, (3.13)

where fi is the occupation factor. If Equation 3.11 is satisfied, the electron

densities of R and A are the same: nR(r) = nA(r).

Equations 3.12 and 3.13 must be solved iteratively to self-consistency

starting from a trial density. This is the well-known set of equations called

Kohn-Sham equations. Equation 3.12 is written here in extended form:

[

− h̄2

2m
∇2 + Vext(r) + e2

∫

d3r′
n(r′)

|r− r′| + Vxc(r
′; [n])

]

ψi(r) = εiψi(r). (3.14)

The problem is not linear because the third and fourth terms depend on the

electron density, which depends on ψi, which depends in turn on the effective

potential VA.

3.1.3 Exchange-correlation functional

The success of the Kohn-Sham approach relies on mapping the real system

into a system of fictitious non-interacting electrons with the same electron

density as the real system. This approach has the advantage that the aux-

iliary system can be calculated at a relatively low computational cost. The

flip-side is that the exchange and correlation functional, introduced in Equa-

tion 3.8, hides the difficult part of the physics involved. The complexity of

E[n] is displaced to Exc[n] and it is not surprising that the exact form is
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unknown. This term takes into account all the quantum effects and, in some

cases, the spurious electron self interaction. It does not depend on the ex-

ternal potential so, if it were known in its exact form, it would, in principle,

work for any system.

Exc[n] is usually split into the exchange, Ex[n], and the correlation part,

Ec[n] . The exact mathematical form for the exchange is known but leads

to expensive computation, especially for solids. Regarding the correlation,

no exact form exists that can be practically used in standard calculations.

There are however some specialised calculations, see for instance [139].

Because electrons are fermions, the many-electron wave function is an-

tisymmetric under the exchange of pairs of electrons. The antisymmetry

produces a spatial separation of electrons in the same quantum state, which

includes the spin state; this is the manifestation of the Pauli exclusion prin-

ciple. The separation itself decreases the Coulomb energy of the system, the

reduction is called the exchange energy. Moreover, electrons are dynamically

correlated.

The probability of finding an electron in r′ when another is in r gets much

smaller than 1 when r′ → r. Along its trajectory the electron sees around

itself a depression of density.

The problem of finding effective approximation of Exc is central in DFT.

Presently, there are many different kind of exchange-correlation term; they

are not based on exact theory, therefore they are validated a posteriori.

The standard functionals for molecular system are, so-called, hybrid func-

tionals [140]. For solids they do not constitute the standard choice because

they require the evaluation of the Hartree term, which significantly increases

the computational cost. For periodic solids, the local density approxima-

tion (LDA) and generalised gradient approximation (GGA) are the most

frequently used in the solid-state community for total-energy calculations.
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Local density approximation and generalised gradient approxima-

tion

The simplest approximation for the exchange-correlation functional is the

local density approximation (LDA) [138]: Exc is constructed by assuming

that the exchange-correlation energy at a point r per electron in the electron

gas, ǫxc(r), is equal to the exchange correlation energy per electron in a

homogeneous electron gas that has the same electron density, n(r):

ELDA
xc [n(r)] =

∫

ǫHOM
xc [n(r)]n(r)dr. (3.15)

The exchange-correlation energy functional is assumed purely local. Despite

its simplicity, the LDA works well for solid systems. This approximation

is valid for n(r) varying very slowly in space; it fails in situations where

the electronic density undergoes rapid changes, especially in molecules and

surfaces. It is characterised by over-binding effects, tending to overestimate

the bond strength in solids.

Conversely the GGA has the tendency to over-correct the over-binding

inherent in LDA. The GGA introduces a dependence on the local gradient

of the electron density, ∇n(r), in an attempt to include the effects of inho-

mogeneities. The functional can be written as:

EGGA
xc [n(r)] =

∫

n(r)ǫHOM
xc [n(r)]Fxc[n(r),∇n(r)]dr, (3.16)

where Fxc[n(r),∇n(r)] is the enhancement factor.

There are several different flavours of GGA functional. The PW91 func-

tional, due to Perdew and Wang [141] has been constructed using Quan-

tum Monte Carlo for the uniform electron gas and exact properties of the

exchange-correlation hole. The Perdue-Burke-Ernzerhof (PBE) functional

[142] is nowadays the most commonly used functional for solid-state calcu-

lations. It was designed to satisfy several conditions that are obeyed by the

exact functional and it contains no empirical parameters. In most cases, PBE

gives similar results as PW91 [143, 144], but it has a simpler analytical form.
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In a few cases, the LDA has better agreement with experiment than

GGA, for example in layered materials, such as graphite and hexagonal boron

nitride, or molecular crystals where binding is based on weak interactions

[145]. The improved performance is a mere artifact due to inherent over-

binding and not a better description of the physical system. For this reason,

LDA functionals have been excluded for the systems treated in the present

thesis, in particular for the layered ones. In this work, GGA functionals

have been used for evaluating the energy of the systems based on tetragonal

carbon and on graphene, PW91 and PBE respectively.

It is worth highlighting that Luo et al. [95] and Xiang et al. [27] used

the LDA approach for B and N substituted graphene respectively. It is

well established that the GGA approximation describes more consistently

the electronic phenomena of surfaces and molecules, as graphene layered

materials should be considered. This choice is supported by Sluiter and

Kawazoe [104] and Pujari et al. [146], who used the GGA approximation for

the study of graphene hydrogenation.

Hybrid functionals

It is widely accepted that the LDA and GGA functionals are not appropri-

ate for bandgap calculations [147, 148, 149]. An emblematic case is that

of La2CuO4, an important material for high temperature superconductors:

despite having a 2 eV bandgap, it is predicted to be metallic by LDA, PBE

and PW91 functionals [150].

Hybrid functionals, which are characterised by mixing non-local Hartree

Fock exchange with semi-local exchange in certain proportions, have been

shown to improve the calculation of bandgaps [151, 152, 153, 154]. This is

done because the two different approaches (local and non-local) sometimes

have complementary deficiencies that in some way tend cancel one another

[147].

The most popular hybrid functional is the B3LYP [155]:

EB3LY P
xc = 0.8ELDA

x +0.2EHF
x +0.72∆EB88

x +0.19EVWN
c +0.81ELY P

c , (3.17)
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where ELDA
x is the LDA exchange, EHF

x the Hartree Fock exchange, ∆EB88
x

Becke’s correction [156], EVWN
c Vosko-Wilk-Nusair correlation functional

[157] and ELY P
c Lee-Yang-Par correlation [158]. The mixing coefficients have

been determined by a fitting on a set of molecules.

Under periodic boundary conditions, calculation of the HF exchange is

computationally taxing because of the slow decay of the exchange interaction

with distance.

Heyd et al. [159] overcame this problem, proposing to screen the Coulom-

bic potential. This is accomplished by splitting the exchange contribution

(Ex) into short-range (SR) and long-range (LR) parts:

EHSE
xc = αEHF,SR

x (µ) + (1− α)EPBE,SR
x (µ) + EPBE,LR

x (µ) + EPBE
c , (3.18)

the mixing coefficient α is set to 1/4, the screening parameter, µ, is typically

used in the range 0.2-0.3 Å
−1
. The HSE06 functional, used in this work, has

µ = 0.2Å
−1

[160]. The truncation of the long-range part has little impact on

the calculated properties of finite system [161], however it has the undeniable

advantage of lowering the computational cost.

Barone et al. revised the quantitative accuracy of bandgap calculation of

low dimensional graphene derivatives using screened hybrid functionals [162].

They have been also used to study doped nanotubes [163] and N-substitued

graphene [27].

3.1.4 Spin-dependent DFT

Isolated atoms are usually magnetic, however most solid state systems are

non-magnetic. Magnetism arises by the competition between exchange and

kinetic energy effects: the gain in exchange energy is connected to the loss in

kinetic energy, that is related to delocalisation of the valence electrons (in a

solid). If valence electrons are sufficiently localised, magnetism occurs. Iron

is a typical example [164].

In low-dimensional systems (surfaces and interfaces, single- and multi-

layers, ultra-thin films and wires, deposited clusters and so on), the tendency
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toward magnetism is considerably enhanced.

In standard Kohn-Sham theory (Section 3.1.2) there is no spin compo-

nent, therefore magnetic systems cannot be described. Spin-dependent DFT

is a generalisation of the standard Kohn-Sham formalism that allows one

to deal more realistically with systems characterised by spin polarisation.

The term that contains the quantum nature of the electron interaction is the

exchange-correlation functional. Therefore, this is the term from which spin

polarisation emerges. The LDA, for instance, must be extended to the local

spin density approximation (LSDA) [165].

Complex forms of magnetism, such the non-collinear magnetism, are not

relevant to the present work.

3.1.5 Plane-waves, pseudopotentials, and projector aug-

mented waves

When modelling an arrangement of atoms, it is convenient to impose periodic

boundary conditions, even if the system does not have a three-dimensional

periodicity. The main advantage of this approach is that in a periodic system

the electronic wave function can be written as a product of a cell-periodic

part and a wavelike part [166]. Symbolically written as:

ψi(r) = exp[ik · r]fi(r). (3.19)

The cell-periodic part, fi(r), can be expanded using a convenient discrete

basis set consisting of plane waves. Therefore the electronic wave function

can be written as a sum of plane waves:

ψi(r) =
∑

G

ci,k+Gexp[i(k +G) · r], (3.20)

where G are the reciprocal lattice vectors, defined by G · l = 2πm for all l

lattice vector of the crystal, and m is an integer. The coefficient ci,k+G for

plane waves with small kinetic energy are more important than those with

large kinetic energy, allowing truncation of the basis set of plane waves at

some particular cutoff.
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Among the many advantages of using a plane-wave basis set, it is worth

mentioning that the basis set is spatially unbiased and complete; it does

not depend on atomic positions. Moreover plane waves and their derivatives

in k-space have simple mathematical expressions. The drawback is that an

additional approximation must be introduced: “the pseudopotential approx-

imation”.

Pseudopotentials

In general, plane waves are a very poor basis set to expand electronic wave

functions because a very large number are needed to expand core orbitals

and to replicate the rapid oscillations of the wave function in the core region.

Fortunately, chemical properties depend on the valence electrons much more

than on core ones. Core electrons, tend to be chemically inert, while valence

electrons are available for bonding. For many elements, valence electrons

can only occupy the outermost electron shell. A simple example is that of

methane molecules (CH4), comprising 4 C-H covalent bonds, each formed

by atoms sharing a pair of electrons. The two electrons in the inner shell

of carbon are so tightly bound that they do not directly participate in the

bonds.

When modelling atomic systems, a good approximation is replacing the

core region with an effective potential, called a pseudopotential. This ap-

proximation helps in reducing the number of electrons that must be taken

into account for the solution of the quantum many-body problem, but more

importantly it allows the complicated effects related to the motion of elec-

trons close to the nucleus, to be hidden into the overall pseudopotential effect.

Figure 3.1 shows a graphical representation of the pseudopotential concept.

The corresponding pseudo-wavefunctions are identical to the real wavefunc-

tions outside the core region, but are smoother and node-less within the core

region [167]. Thus, they can be expanded using a much smaller basis set of

plane waves.

Although accuracy and smoothness have improved over the years [168],
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0

r

rc

ΨP

Ψ 

VP

V

Figure 3.1: Schematic illustration of

the pseudopotential idea. The dashed

lines show the all-electron wavefunc-

tion, Ψ, and ionic potential, V ; the

solid lines show the corresponding

pseudo-wavefunction, ΨP , given by

the pseudopotential, VP . All quanti-

ties are shown as a function of dis-

tance, r, from the atomic nucleus.

All-electron wavefunction and pseudo-

wavefunction are identical beyond the

cutoff radius rc.
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the norm-conversation constraints, typical of the so-called norm-conserving

pseudopotential [169, 170], prevent localised electronic orbitals from being

represented by very smooth pseudo wavefunctions. For first row elements and

transition metals, characterised by strongly localised 2p and 3d orbitals, the

resulting pseudopotentials require a large plane-wave basis set. To overcome

this limitation the cut-off radius could be increased, but this adversely affects

transferability.

In order to obtain maximally smooth pseudo wavefunctions, Vander-

bit [171] introduced ultrasoft psuedopotentials (USPP), relaxing the norm-

conservation constraint. As with norm-conserving approach, the all-electron

and pseudo wave functions are required to be equal outside the cutoff radius

rc, but inside rc they are allowed to be as soft as possible. The consequence

is that the pseudo wave functions are not normalised inside rc, resulting in

a charge deficit. This problem can be overcome by introducing localised

atom-centered augmentation charges.

USPPs allow multiple references states for each angular momentum chan-

nel leading to an improved transferability over an extended region of energy

[172]. Consequently the construction of pseudopotentials is rather difficult

due to the fact that many parameters must be considered.

The ab initio code CASTEP [173] implements density functional theory us-

ing plane wave basis sets and the pseudopotential approximation. It plays a

central role in this work, having been employed to perform most of the calcu-

lations presented. The ab initio code VASP, which also uses plane wave basis

sets, implements, in addition to pseudopotentials, the projector augmented

wave (PAW) method. This has been employed in a limited number of cases.

The background theory is briefly introduced in the following section.

Projector augmented wave

The drawback of the plane wave pseudopotential method is that all infor-

mation on the full wave function close to the nuclei is lost. Blöchl [174]

introduced the projector augmented wave method that allows calculations
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to be performed with great computational efficiency whilst working directly

with the all-electron valence wave function and all-electron valence poten-

tials.

The projector augmented wave method [174] combines the versatility of

the linear augmented-plane-wave (LAPW) [175] method and the formal sim-

plicity of the plane wave pseudopotential approach. The plane-waves have

the flexibility to describe the bonding and tail regions of the wave functions.

Atomic orbitals can, on the other hand, describe correctly the nodal structure

of the wave function near the nucleus.

The PAW method proves full access to the wave function, dividing it into

two parts: partial wave expansions in a sphere around the atom (augmenta-

tion region) and envelope functions outside the spheres (interstitial region).

The envelope functions and partial wave expansions are then matched at the

sphere radius of the augmentation region.

The method is based on a linear transformation of the pseudo wave func-

tion, Ψ̃, to the all-electron wave function Ψ:

|Ψ〉 = T |Ψ̃〉, (3.21)

Ψ̃ and Ψ differ near the ion core region, thus the linear transformation is

assumed to be a sum of non-overlapping atom-centred contributions:

T = 1 +
∑

R

T̂R, (3.22)

T̂R is localised to sphere denoted ΩR that encloses the atom R. Within ΩR,

it can be expanded into convenient functions such spherical harmonics:

|Ψ̃〉 =
∑

i

|φ̃i〉ci. (3.23)

Despite the complex formalism [176], the expression for the total energy,

forces and stress are closely related to the ultrasoft approach, differing in the

choice of the auxiliary functions and technical aspects.
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3.2 Cluster Expansion Hamiltonian: an Ising-

like parametrisation

In this section, the basic concepts that have been applied for studying the

energetics of substitutional systems in this work are outlined. It is often con-

venient to map substitutional systems onto an Ising-like model [177] where

atoms can be identified on the basis of the occupation of well-defined topo-

logical positions on an underlying lattice [125]. The Hamiltonian can be

parametrised as a function of the configurational variables using a Cluster

Expansion (CE) approach [178, 179].

When combined with ab initio total energy calculations, usually based on

DFT, the CE method relies completely on first principles. The accuracy is

affected only by the truncation of the expansion and by the approximations

of the ab initio method.

In particular the cluster expansion (CE) method [178, 179] has been suc-

cessfully used to describe configurational properties of stable and metastable

phases of alloys, intermetallics, semiconductors and ceramics [123, 124, 180,

181, 182, 183]. Applications to graphene have also been presented in the

literature [104, 27].

The main advantage of the cluster expansion method is that the energy

can generally be written as a rapidly converging sum over cluster contri-

butions, where interactions of larger clusters become negligible. A practical

example of this idea is common in organic chemistry: the formation enthalpy

of a molecule can be expressed as a sum of nearest neighbour contributions,

namely bonds. Contributions from longer-range interactions usually provide

only minor corrections. This is the essence of the Ising model.

An approach based on systematic total energy calculations would treat

each configuration independently, failing to take advantage of any similari-

ties. Conversely, the CE approach uses a parametrisation built on a relatively

small set of structural energies to predict the total energy of different con-

figurations. This approach allows one to investigate a wide portion of the
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configurational space at a relatively low computational cost.

I do not hesitate to underline the importance of this powerful idea, which

allows a treatment of substitutional systems from first principles.

The works of Ising [177] and of Connolly and Williams [178] are briefly

described to set the framework of the problem.

3.2.1 The Ising model

Ising, in his doctoral thesis [177], proposed a model for handling configu-

rational properties of ferromagnetic systems that involve phase transition

related to ordering/disordering phenomena. The model was actually sug-

gested by the physicist Lenz, supervisor of Ising, but it was named after the

student, who provided its solution.

Whilst it is striking in its simplicity, the Ising model remains one of the

most successful models in statistical mechanics. It shows two main advan-

tages: firstly, the problem is formulated into a general probabilistic setting

and, secondly, it allows one to relate local properties, which depend on lo-

cal configurations and on system topology, to the properties of the extended

system.

The first formulation can be described as follows: consider a linear ar-

rangement of n + 1 atoms, each interacting only with the two neighbouring

atoms in the atomic chain; consider a local property that is associated with

any atom; the property is described by a discrete variable, called spin, that

at any instant, can be in one of the two states, either up or down.

Let us now consider a sequence, ω, of atoms:

ω = (ω0, ω1, . . . , ωn), (3.24)

where ωj represents the discrete variable describing the local status, namely

spin up, ↑, or a spin down, ↓. Let us define a spin function, σj :

σj =

{

−1 for ωj =↓
1 for ωj =↑

(3.25)
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It is possible to calculate the energy, U , associated with the configuration

ω using the following:

U(ω) = −J
∑

i,j

σi(ω)σj(ω)−mHm

∑

i

σi(ω). (3.26)

The first sum represents the energy due to the spin interactions; it runs over

the pair i, j of nearest neighbours; J is the interaction parameter (for J > 0,

the interaction tends to keep the spins aligned, for J < 0, spins have opposite

orientations), the second term represents the effect of an external magnetic

field of intensity Hm, the positive constant m is a property of the material.

The contribution to the energy is minimum when all spin are in the same

direction as the external field.

In the canonical ensemble, the probability of occurrence, P of a configu-

ration, ω can be defined as follow:

P (ω) =
e−βU(ω)

Z
(3.27)

where β is the thermodynamic factor and Z is the canonical partition func-

tion:

Z =
∑

ω

e−βU(ω). (3.28)

Let us define an energy Ui associated with each point i, as:

Ui(w) = −J
2

∑

|j−i|=1

σi(ω)σj(ω)− nHσi(ω). (3.29)

The relative probability of a configuration is simply obtained by taking a

product over all the points using the energy at each point to determine the

statistical weight. The one dimensional Ising model, which shows no phase

transition, was solved by Ising himself [184].

The model is easily extended to more dimensions. The square lattice

Ising model was given an analytic description by Onsager in 1944 [185].

Remarkably, the latter is one of the simplest statistical models to show a

phase transition. The Ising model has been incredibly successful, having
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been applied to a broad range of physical and non-physical problems. For

an example of the latter, the reader is referred to the model proposed by

Weidlich on social polarisation [186].

3.2.2 Lattice gas model

In computational materials science, disordered condensed-matter systems are

among the most difficult to treat. There are many degrees of complexity of

ordering/disordering phenomena. It is, however, possible to identify two

distinct classes of system:

• structurally disordered systems, where atomic positions cannot be asso-

ciated with any underlying lattice, for instance, amorphous and liquid

systems;

• configurationally disordered systems, where atomic positions are topo-

logically fixed by the underlying lattice, but the distribution of atoms

in the lattice can have many different degrees of ordering.

The second class, which can be treated with Ising-like parametrisation meth-

ods, is the one of interest here. It must be noted that the atoms can exhibit

atomic displacements from the ideal lattice positions, either due to lattice

vibrations or local atomic relaxations. The key point is that they have to

possess topological translational symmetry and they can be mapped accord-

ing to the geometry of the underlying lattice. The ideal underlying lattice is

called the parent lattice. Figure 3.2 shows on the left side a particular con-

figuration of a binary system on an underlying 2-dimensional square lattice

while on the right side there is a representation of the relaxed lattice. In

the relaxed lattice atoms move from the ideal position however they can be

mapped univocally onto the parent lattice. Having n atoms in the lattice, a

full description can be achieved using n positional vectors.

A usual way to describe the atomic configuration on the lattice is using

the so-called pseudospin, σi, which is a discrete variable. The variable is

named after the original work of Ising, but in general they are not related
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Figure 3.2: Representation of a binary substitutional system, the two differ-

ent elements are distinguished by different colour (black and white). On the

left is shown a particular configuration on an underlying parent lattice, 5×5,

while the right side represents the relaxed system. The lattice gas model al-

lows a description of the system with a vector of occupational variable with

25 elements.

with any magnetic property. For binary systems, the variable usually takes

the values +1 or −1, depending on whether atom A or B occupies site i. If

there are N sites in the system, the configuration is uniquely specified by a

N -dimensional vector σ = {σ1, σ2 . . . , σN}.
It is reasonable that the local relaxation strongly depends on the local

environment and finally just from the local distribution of atoms. Mapping

the real system into a lattice gas model is a convenient way to reduce the

number of variables without losing too much information about the system.

I would like to stress again that the association of an atom with a lat-

tice site in any given atomic configuration is merely topological, without

prescribing its exact position.

3.2.3 Original Connolly-Williams method

Connolly and Williams [178] calculated interaction energies using an expan-

sion of the total energy obtained by ab initio calculations of an alloy system

mapped onto a lattice gas model. The technique was used to predict energies

39



3. Theoretical background

of random alloys of 4d transition metals.

The idea is representing the energy, E(σ), of an arbitrary configuration,

σ, on a given underlying lattice as a sum of interaction energies of geometric

figures (cluster figures). The energy of each configuration can be expressed

by an Ising-like expansion:

E(σ) = J0 +
∑

i

Jiσi +
∑

j<i

Jijσiσj +
∑

k<j<i

Jijkσiσjσk + · · · . (3.30)

where the J is an interaction energy. The first two terms on the right, Equa-

tion (3.30), define the energy of the random alloy with no mutual interac-

tions, the third term contains all pair interactions, the fourth all three-body

interactions, and so on.

Equation (3.30) can be written in a compact form by introducing a cor-

relation function ξF for each class of symmetrically equivalent figures F :

ξF (σ) =
1

NDF

∑

f

σi1σi2 · · ·σim , (3.31)

DF represents the number of figures of class F per site and N the number

of sites in the structure. The index f runs over the NDF figures in class F

and m denotes the number of sites of figure f . Equation (3.30) becomes:

E(σ) = N
∑

F

DF ξF (σ)JF . (3.32)

The original application of Connolly and Williams for AxB(1−x) system

can be described as follow: choosing arbitrarily 5 different configuration on

an underlying fcc lattice (fcc A, L12 A3B, L10 AB, L12 AB3 and fcc B) and 5

cluster figures, see Figure 3.3, it is possible to calculate 5 distinct expansion

coefficients, namely J = {J0, J1, J2, J3, J4}, from the calculated total energies

of the 5 different chosen configurations, Es = {E0, E1, E2, E3, E4}.
A cluster figure (or simply cluster), α, is described by a vector of elements

αi of discrete variables.
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(a) (b) (c)

Figure 3.3: Cluster figures on an fcc lattice: (a) pair clusters (first and

second nearest neighbour); (b) first nearest neighbour triangular cluster; (c)

first nearest neighbour tetragonal cluster.

Let us write explicitly the energies in terms of effective Hamiltonian:

E0 = ξ0(σ0)J0 + ξ1(σ0)J1 + · · ·+ ξ4(σ0)J4,

E1 = ξ0(σ1)J0 + ξ1(σ1)J1 + · · ·+ ξ4(σ1)J4,
...

...
...

E5 = ξ0(σ5)J0 + ξ1(σ5)J1 + · · ·+ ξ4(σ5)J4.

(3.33)

In matrix form:

Es = ξJ. (3.34)

The determination of the vector of the expansion parameters, J, is reduced

to a matrix inversion task:

J = ξ−1Es. (3.35)

Considering a binary substitutional system with an fcc parent lattice, cluster

functions are shown in Table 3.2. This is a system of 5 equations having 5

variables, that can be solved analytically. In the Connolly-Willimas method a

systematic inversion of the expansion is performed determining explicitly the

parameters of the effective Hamiltonin. The number of calculated structural

energies is exactly the same as the expansion parameters to be determined

in the expansion.

Given any particular configuration, the energy of the configuration itself

can be calculated within the accuracy of the method, using the expansion
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Formula Structure ξ0 ξ1 ξ2 ξ3 ξ4

A fcc 1 1 1 1 1

A3B L12 1 0.5 0 -0.5 -1

AB L10 1 0 -1/3 0 1

AB3 L12 1 -0.5 0 0.5 -1

B fcc 1 -1 1 -1 1

Table 3.2: Cluster correlation functions for the 5 configurations on an fcc

parent lattice [178].

parameters that have been calculated analytically.

For sake of clarity, correlation functions related to single and pair clusters

for fcc A, L12 A3B, L10 AB are here explicitly calculated. In the conventional

representation, Figure 3.3, the fcc-based structures has 4 atoms in the unit

cell, each atom having 12 near neighbors, leading to 4 single clusters and 48

pair clusters. Atomic species A and B are represented by the occupational

variables (+1) and (−1) respectively. Considering the fcc A structure, the

correlation functions for the single-atom and pair clusters of fcc A, ξA1 and

ξA2 , are as follow:

ξA1 =
1

4
[4(+1)] = 1; (3.36)

ξA2 =
1

48
[48(+1)(+1)] = 1; (3.37)

for the fcc B structure the occupational variables invert. The correlation

functions of L12 A3B are calculated as follow:

ξA3B
1 =

1

4
[3(+1) + (−1)] = 0.5; (3.38)

ξA3B
2 =

1

48
[24(+1)(+1) + 24(+1)(−1)] = 1; (3.39)

for L12 AB3, occupational variables invert. At composition 1:1 A:B, the

correlation functions of L10 are:

ξAB
1 =

1

4
[2(+1) + 2(−1)] = 0; (3.40)
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ξAB
2 =

1

48
[8(+1)(+1) + 32(+1)(−1) + 8(−1)(−1)] = −1

3
. (3.41)

Regarding the understanding of correlation functions related to clusters

having more complex geometry (triplets and quartets), the interested reader

is advised to refer to relevant literature [178, 187].

3.2.4 Cluster Expansion ansatz for multicomponent mul-

tisublattice systems

According to the lattice gas model, a configuration, σ, can be represented by

a vector of discrete variables, σi, called pseudospin, which indicates the type

of element occupying site i. A scalar intensive quantity, q, can be expressed

as a function of σ using as a basis set the cluster figures. Usually, the property

that is expanded is the total energy, E. Multicomponent systems, namely

alloys, have been covered since the first applications of the cluster expansion.

Tepech et al. extended the multisublattice system approach from alloys to

ionic systems [188]. In the general form of multicomponent multisublattice

systems, the cluster expansion is formalised as follows:

E(σ) =
∑

α

mαJα〈ξα′(σ)〉, (3.42)

where the symbols have the following definitions:

• α is a cluster figure (or cluster), see section 3.2.3;

• the sum runs over the clusters α that are not equivalent by symmetry

operations of the space group of the parent lattice and it is averaged

over all clusters α
′

that are equivalent to α by symmetry;

• mα is the multiplicity of the cluster, α, which represents a set of sites

in the parent lattice;

• ξα′ are the cluster functions, which depend on the particular configu-

ration;
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• Jα are the expansion coefficients, also known as effective cluster inter-

actions (ECIs).

The ECIs are determined by fitting to the calculated energies of a set

of structures, where the number of ECIs is less than the number of struc-

tural energies. This method is generally referred as the Structure Inversion

Method.

3.2.5 Validating the Cluster Expansion

In essence the Structure Inversion Method (SIM) is nothing more than a

fitting method. The main complication is that the number of unknown pa-

rameters is, in principle, infinite. A finite number of ECIs related to a discrete

number of cluster figures cannot provide an exact description of any substi-

tutional system. For practical applications, total energy calculations can be

performed only on a limited set of crystal structures, implying that an ex-

act expansion can never be achieved, since there is the need to truncate the

expansion at some point. Determining the optimal number of fitting terms

along with the best set of cluster figures is the central problem. This process

is carried out according to the criterion of maximising the forecasting pro-

ficiency. The main conditions to do so are presented here: minimisation of

the Cross Validation (CV) score, which measures the predictive power of the

parametrisation, and identification of the correct ground states.

Cross validation score

In structural prediction, a model is judged by its ability to reproduce the

data on which it is based and more importantly by its predictive power. The

predictive power of the CE is usually estimated by the cross validation (CV)

score [189]. This is analogous to the root mean square error, except that it

is specifically designed to estimate the error made in predicting the energy
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for structures not included in the fit:

(CV )2 = n−1
n

∑

s=1

(

Es − Ê(s)

)2

, (3.43)

where Es is the calculated energy of the structure, s, by ab initio methods,

while Ê(s) is the predicted value from fitting (n-1) other structural energies

[190, 191]. The CV score is a statistic tool, whose formal proof was reported

by Li [192].

The strongest feature is that the predictive power of a CE is estimated

simply removing one point at time. This property relies on the assumption

that the errors in the calculated energies are statistically independent. The

CV score gives a measure of the predictive power of the fit obtained with all

structures included [189, 192].

Ground states

For binary systems, plotting the formation energy of the structures as a

function of the molar concentration, χ, is a convenient way to display the

results, Figure 3.4. A particular structure contributes to the ground-state line

if its formation energy is lower than the linear interpolation of the energies of

the two ground state structures that bracket it. Using the example in Figure

3.4, the three structures S0, S1 and S2 with χ(S0) < χ(S1) < χ(S2) are the

lowest in energy at their individual concentrations, the structure S1 has to

fulfill the condition:

∆Ef (S1) <
χ(S1) − χ(S2)

χ(S0) − χ(S2)
∆Ef (S0) +

χ(S1) − χ(S0)

χ(S2) − χ(S0)
∆Ef (S2) (3.44)

to be a ground state at χ(S1). If Equation 3.44 holds, a mixture of the phases

S0 and S2 would be higher in energy than the structure S1. When the

ground-state line is constructed, it is possible to check for structures that lie

on or very close to it, the so called configurationally excited states.

The most important criterion that must be satisfied in validating the

accuracy of a CE is the prediction of the correct ground states. The CV
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 0  0.25  0.5  0.75  1

∆E
f

χA

Figure 3.4: Schematic ground state representation of a binary system

AxB1−x. Besides the pure elemental crystals, the ground state line is formed

by three structure at concentration χA = 0.25, 0.50, 0.75, namely S0, S1 and

S2.
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score criterion is focused on the optimisation of the absolute energy value.

The ground states are determined by ranking of energies at constant concen-

tration. A low CV score does not necessarily lead to the prediction of the

correct ground state. The CE algorithm gives absolute preference to the set

of clusters for the expansion that predicts the ground states according to the

calculated energies. If no set of clusters predict the correct ground states for

the set of structural energies provided, the common praxis is adding an extra

weight, w, to chosen structures in order to predict the correct ground states.

The weighted cross validation score is defined as follow:

(WCV )2 = n−1

n
∑

s=1

(

wi(Es − Ê(s))
)2

. (3.45)

3.2.6 Implementations

Among the many implementations of the configurational thermodynamics

packages, based on CE approach, there are some codes freely available, such

the UNniversal CLuster Expansion (UNCLE) [193] and the Alloy Theoretical

Automated Toolkit (ATAT) [194, 190, 191]. The author’s choice fell on the

maps code of the ATAT package because of its recent application on related

substituted-carbon system, namely N-graphene [27].

The CE algorithm usually starts by computing the energies of a small

set of structures. A convenient initial set is usually formed by structures

with small unit cells, which make the calculation rapid. For the initial set

of structural information and related energies, it is possible to calculate the

ECIs, and then to use them for exploration of the configurational space to

predict new ground states. The total energy of the newly predicted ground

states are computed. Again the fitting process is performed and the process is

repeated until the convergence criteria are satisfied. Any new cycle includes a

new structural energy. As a consequence the expansion becomes progressively

more accurate. An alternative approach is to start from a wide database of

selected structures. In both cases the CE code needs to be interfaced to the

code that performs the total energy calculations.
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The MIT Ab-initio Phase Stability (maps) code included in the ATAT

package implements a fitting process of ECIs to a set of structural energies.

It is interfaced with many codes for total energy calculation, either based on

first principles (VASP [147] and ABINIT [195]) or on semi-empirical approaches

(GULP [196]). Chakraborty et al. [197] devised the interface between the all-

electron density functional theory code WIEN2k [198] and the maps code.

Among the outputs of the work contributing to this thesis is the extension

of the maps code to the use with CASTEP, described in the next section.

Interfacing MAPS with CASTEP

The input parameters for the maps code describe the geometry of the parent

lattice. Lattice parameters, atomic topological positions and occupancies are

defined in the input file lat.in. maps automatically computes all the other

pieces of information needed for the fitting. The parametrisation is an iter-

ative process that gradually increases the number of structural energies in

the fit and the accuracy of the fit itself. The algorithm of maps automat-

ically determines the most appropriate structure and cluster to add to the

fit, the structural information of which is written to the file str.out and

subsequently used to generate the input for the total energy calculation.

In this work a script, named runstruct Castep, has been developed. The

script, by reading the file str.out, creates the appropriate input files for the

CASTEP code and runs the calculation. In the case that the calculation is

successful, it extracts the total energy to a file called energy. If not, an error

message is written and provided to the user.

Two files are needed by the interface: cell.wrap and param.wrap. These

files follow the syntax of the .cell and .param input files of CASTEP, respec-

tively. The cell.wrap file contains cell constraints and pseudopotentials

whilst the param.wrap file contains the parameters for the calculations. In

addition to the existing CASTEP keyword, the file cell.wrap can contain

two extra ones: KPPRA and ASE-SYM. The former defines the number of k-

points per reciprocal atom. A utility enables the automatic construction of

48



3. Theoretical background

k-point meshes from this single parameter defining the k-point density. If

the ASE-SYM keyword is active, a Python script based on the ASE [199] pack-

age determines the space group of the initial structure; this is written into a

file called spacegroup and a Crystallographic Information File (CIF) [200]

is created inside the same folder where the calculation runs. The Python

extension for ASE is required, namely the spglib module, which implements

the space-group search algorithm of Grosse-Kunstleve [201]. The structural

information (lattice parameters and atomic positions) must not be included

directly in cell.wrap as the interface extrapolates this information from the

str.out file to create a .cell file for CASTEP.
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3.3 Lattice dynamics and structural stability

A significant part of the work presented in this thesis is based in the ab initio

calculation of lattice dynamics. In general, phonon modes are calculated from

first principles as a means to obtain other physical properties of a material,

such as the thermodynamics of solids, or to compare with the spectroscopic

measurements from Raman or neutron scattering. In this work, however,

attention is focused on the phonon modes themselves as an indicator of the

dynamic stability of particular arrangements of atoms. Material properties,

either spectroscopic or thermodynamic, are outside the scope of this work

and, therefore, are not taken into consideration.

3.3.1 The harmonic approximation

In the harmonic approximation, phonon modes are calculated under the fun-

damental assumption that atoms vibrate in a harmonic potential. The ampli-

tude of atomic displacement is small compared to the interatomic spacings.

Within the theory of lattice dynamics, the potential energy of a crystal, E,

is assumed to be a function of the atomic positions.

Within the Born-Oppenheimer approximation [132], electrons are always

in their ground state for any particular arrangement of atoms. Therefore

the energy of the crystal can be expressed as a Taylor expansion of atomic

displacements from equilibrium:

E = E0 +
∑

lκα

E
′

α(lκ)uα(lκ) +
1

2

∑

lκα

∑

l′κ′α′

E
′′

αβ(lκ; l
′κ′)uα(lκ)uβ(l

′κ′)

+
1

6

∑

lκα

∑

l′κ′α′

∑

l′′κ′′α′′

E
′′′

αβγ(lκ; l
′κ′; l′′κ′′)uα(lκ)uβ(l

′κ′)uγ(l
′′κ′′) + · · · ,

(3.46)

E0 is the energy at equilibrium; uα(lκ) the displacement of atom κ in the l’th

unit cell in the direction α; E
′

α(lκ), E
′′

αβ(lκ; l
′κ′) and E

′′′

αβγ(lκ; l
′κ′; l′′κ′′) are

the derivative of the energy with respect to atomic displacement evaluated

at equilibrium. When the expansion of Equation 3.46 is truncated at second
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order, it is called the harmonic approximation. The first derivative is zero

for the equilibrium condition, where the net force on the atoms is zero:

E
′

α(lκ) =
∂E

∂u(lκ)

∣

∣

∣

0
= 0. (3.47)

The second order derivatives are commonly known as the interatomic force

constants:

E
′′

αβ(lκ; l
′κ′) =

∂2E

∂u(lκ)∂u(l′κ′)

∣

∣

∣

0
. (3.48)

It is a measure of the negative force in the α direction on atom l per unit

length, when atom l′ is moved in the β direction, and all other atoms are at

equilibrium positions.

The harmonic approximation is used to obtain information about the

phonon modes of a crystal. The accuracy is sufficient to describe most of the

lattice dynamical effect of interest. However, further terms in the summation

are required if anharmonic terms play a dominant role. This is often the case

at elevated temperatures, manifest most notably in the lattice expansion.

The equations of motion for the lattice can be derived by calculating the

forces on each atom within the harmonic approximation, then substituting

those forces into Newton’s second law:

Fα(lκ) = mlk

∂2uα(lk)

∂t2
= −

∑

αβγ

E
′′

αβ(lκ; l
′κ′)uβ(l

′κ′). (3.49)

Assuming Born-von Kármán periodic boundary conditions [126] and,

hence, a periodic plane-wave solution:

uα(lκ) =
1√
mk

eα(κ)e
[i(q·r−ωt)]. (3.50)

That leads to:

ω2eα(q; κ) =
∑

α,β

Dα,β(q; κκ
′)eβ(q; κ

′) (3.51)

eα(q; κ) represents the eigenvectors, which describe the relative motion of

atom κ in a phonon with wavevector q .
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The dynamical matrix is the mass-reduced Fourier transform of the force

constant matrix:

Dα,β(q; κκ
′) =

1√
mκmκ′

∑

l′

Eαβ(lκ; l
′κ′)e[iq·x(l

′)] (3.52)

The sum runs over l′ only, because the force constant matrix depends on the

difference between cell indices and not on each cell index individually.

3.3.2 Implementations of lattice dynamics

In the harmonic approximation, the central problem is obtaining the second

derivatives of the energy that represents the interatomic force constants.

There are a number of methods for achieving this. Within first principles

energy models, the two most widely used are the linear response [202] and

the, so called, finite-displacement supercell method [203].

The linear response method allows one to evaluates the derivatives of the

energy in relation to a perturbation, namely atomic displacement. First-order

derivatives of the wavefunction and charge density are directly calculated.

According to the “2n+1 theorem”, the knowledge of the derivatives of the

wave functions up to order n allows one to calculate the derivatives of the

energy up to order 2n+1. In this context, its usefulness derives from the

fact that the second-order derivatives of the total energy can be obtained

directly from the first-order derivatives of the wave functions. In principle,

the third order derivatives can also be calculated, in the case that anharmonic

effects are of interest. One of the most significant advantages of the linear

response method is that responses to perturbations of different wavelengths

are decoupled. This allows the calculation of normal-mode frequencies at

arbitrary wave vectors, thus avoiding the use of supercells.

In the supercell method, the frequencies of selected phonon modes can

be calculated from the forces acting on atoms produced by finite, periodic,

displacements of a few atoms in an otherwise perfect crystal at equilibrium.

The supercell method is based on the direct evaluation of Equations 3.48

and 3.49. By considering many such displacements, one creates a linear set
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of equations in unknown force constants and atomic forces. The force acting

on an atom is related to the displacement of all other atoms. The values of

the force constant matrices are obtained through a least-squares Born-von

Kármán fit [126].

The linear response method is more accurate than the supercell method

for pointwise calculations of phonon dispersion curves. Performing pointwise

phonon calculations with the linear response method, the dynamical matrix

is calculated directly without missing any force constants. In contrast, the

supercell method always truncate the force constant range.

The supercell method can include spurious anharmonic terms and mirror

image effects that introduce errors into force constant fitting. However, the

main advantage of the supercell method is its relative simplicity; it can be

straightforwardly implemented within any total energy method that calcu-

lates forces on atoms. This enables the use of ultrasoft pseudopotentials,

which are of fundamental importance for the systems that are studied in the

present work. By contrast, the linear response method, as implemented in

CASTEP, is currently limited to the use of norm-conserving pseudopotentials.

Despite its drawbacks, the supercell method has been proven to give

accurate results. Furthermore, phonon calculations based on both the lin-

ear response and supercell methods have often been demonstrated to give

a similar quality of result [204]. In the literature, the vibrational modes of

carbon-based materials have, by-and-large, been investigated with the super-

cell method, see for instance [95, 27].

3.3.3 Structural stability

In this section, strategies for obtaining information about the structural sta-

bility of crystalline materials within the theory of computational lattice dy-

namics is reviewed. The subject is introduced with the well-known case of

static equilibrium in classical mechanics, which is determined, for a given

system of particles, by the condition that the net force on each particle is

permanently zero.
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Figure 3.5: Graphical representation of stable (top), unstable (center), indif-

ferent (bottom) equilibrium of a ball on a surface.

Conservative forces, F, can be expressed as the gradient of a scalar func-

tion, called potential energy. At equilibrium, the first derivative of the poten-

tial energy along any direction must be zero, indicating that no net force is

present. Further information on the equilibrium stability can be determined

by examining the second derivatives. For a mono-dimensional system, the

following three cases can be distinguished:

• positive second derivative: the equilibrium is defined “stable”; for a

small perturbation, the system restores the equilibrium;

• null second derivative: the equilibrium is “indifferent”; if perturbed,

the system will stay in the new state that is characterized by constant

energy;

• negative second derivative: “unstable” equilibrium; if the system is

perturbed, the resulting forces cause it to move even farther away from

equilibrium.

For 2- or 3-dimensional systems, different directions can have different deriva-
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Figure 3.6: Illustration of stable, metastable and unstable states of equi-

librium using energy against atomic arrangement. ∆Ea is the activation

barrier.

tive of the potential energy, for instance the so-called saddle-point can be

present.

Metastability

Many phenomena, common in life, are characterised by metastability, which

is the behaviour of certain physical systems that can exist in long lived states

that are not the system’s most stable state in term of energy. Typical ex-

amples are avalanches and sparkling water. In materials science, diamond

and the Martensitic phase of steel [205] are probably the most famous cases.

The metastable state must be characterised by local stable equilibrium for

the long-lived state to be allowed.

From the atomistic point of view, the equilibrium state of an arrangement

of atoms (bulk solids, surfaces, nano-forms, molecules) have typologies similar

to the classical mechanic case.
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Atomistic calculations: equilibrium stability

Within the remit of atomistic calculations, a crystal structure can be consid-

ered to be in equilibrium when the net force on each atom is negligible.

Further information on the local potential energy landscape (therefore on

the nature of the stability of the equilibrium structure) can be obtained by

calculating the phonon dispersion spectrum. Essentially, this involves calcu-

lating the dynamical matrix, diagonalisation of which yields the eigenvalues,

the square-roots of which are the mode frequencies. An imaginary frequency

is indicative of an unstable equilibrium. If phonon modes have positive eigen-

values, the equilibrium is stable: the structure lies on a local minimum of

the potential energy and therefore the structure can be considered a possible

metastable phase, regardless of the magnitude of the formation energy.

Conventionally the imaginary frequencies are plotted as a negative num-

ber (of equal modulus) in the phonon dispersion spectrum. This number

gives the rate of exponential growth of the instability [126].

An additional application of the phonon approach that must be men-

tioned, in spite of it not being employed in this thesis, is the ab initio deter-

mination of transition states [206]. A stable or metastable atomic system lies

on a local minimum, meaning that the energy increases as atoms are displaced

from their equilibrium positions; a transition state lies at a saddle-point in

the energy landscape, therefore all vibrational frequency are positive except

for the vibrational normal mode that corresponds to the reaction coordinate.

In summary, phonon mode calculations are an invaluable method for eval-

uating locally the potential energy. The criterion that is applied in this work

for phase stability is the absolute absence of phonon modes with negative

eigenvalues.
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Chapter 4

Glitter: a possible metastable

carbon phase

Despite the ability to synthesise n-diamond in many different ways (Section

2.2), the crystal structure of n-diamond remains unclear. The structural

identification has been challenging, because usually small amounts of nano-

forms are produced. Nanoclusters and films are the most common form of

n-diamond. The only synthesis known to produce n-diamond in macroscopic

amounts is a solid state synthesis involving solid catalysts [67]. Until now,

several models have been proposed for the structure of n-diamond, but none

is completely convincing.

The work reported in this Chapter focuses on the comparison of the dy-

namical stability of tetragonal carbon, known as glitter, with other structures

that have been proposed in the literature for n-diamond. The results reported

are mainly based on recent article by Baldissin and Bull [73].

The investigation of the dynamical stability of the crystallographic ar-

rangements proposed for n-diamond have been performed in the pressure

range 0-30 GPa. A number of authors have investigated the stability of

proposed n-diamond structures in terms of mechanical stability [207, 208],

expressed in terms of violation of Born conditions [209]. Mechanical instabil-

ity represents a long wavelength limit of the more general instability related

to the occurrence of phonon modes with negative eigenvalues [210]. Whilst

the mechanical stability has largely been calculated at ambient pressures,

57



4. Glitter: a possible metastable carbon phase

in this work wide a range of pressure has been taken into account. Not

limiting the investigation to standard pressure is important because many

diamond-like materials are synthesised under high pressure conditions [64].

It is important to underline that pressure can have a dramatic effect on the

vibrational properties of a crystal structure.

Many other 3-dimensional carbon allotropes have been theoretically pre-

dicted in the last decades. Bucknum and co-workers proposed other 3,4-

connected carbon nets, namely isoglitter [211], hexanogite [212] and trigo-

hexagonite [213]. Although these structures are not directly related to n-

diamond, a study of their dynamical stability at P = 0 GPa is presented in

this work.

The aim of the current Chapter is to shed some light on the stability of

the structures that have been proposed in the literature and, therefore, the

possibility of them existing as free-standing materials.

4.1 Computational details

The stability of the proposed structures has been evaluated in relation to

both atomic forces and phonon eigenvalues, calculated using the ab initio

code CASTEP [173], as described in Section 3.3.3. The exchange-correlation

functional of Perdew andWang (PW91) with generalized-gradient corrections

is employed [141].

The electron-ion interactions are described using ultrasoft psuedopoten-

tials [171]. The pseudo-wave functions are expanded on a plane wave basis

set using a 500 eV kinetic energy cut-off. The Brillouin zone is sampled by

Monkhorst-Pack k-point grids [214] assuring 0.04 1/Å
−1

k-point separation

in the Brillouin zone. A BFGS algorithm [215] is used to optimise atomic

positions and lattice parameters simultaneously until the ab initio forces and

stresses, calculated by the Hellmann-Feynman theorem [216], become negligi-

ble (forces are below 0.001 eV/Å and stresses below 0.01 eV/Å3). Geometry

optimisations are performed at 0 K for a given pressure. Phonon dispersion
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Figure 4.1: Conventional representation of cubic diamond: atoms in sublat-

tice P0 (0,0,0) are represented by dark grey spheres, atoms in position P1

(1/4,1/4,1/4) are represented by light grey spheres. Most of the crystallographic

models, that have been proposed, include a modified sublattice, P1, retaining

pristine sublattice P0.

is calculated using the supercell method [203, 217].

4.2 Instability of c-diamond-based structures

The main source of structural information for n-diamond in the literature

is from X-ray or electron diffraction. The patterns that have been recorded

match with the one of cubic diamond apart from the presence of additional

reflections, see Section 2.2. In an attempt to match the Bragg reflections

of cubic diamond and the otherwise forbidden reflections, crystallographic

arrangements based on modifications of the cubic diamond structure have

been proposed.

The cubic diamond structure can be rationalised as being formed by two

distinct sublattices. Figure 4.1 shows the two sublattices, here called P1 and

P0. The modifications that have been proposed include either a translation

of sublattice P1 away from high symmetry positions (Section 4.2.1), or the

introduction of vacancies (Section 4.2.2), or hydrogen substitutions (Section
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4.2.3). A further model based on cubic diamond but having a modification

of both sublattices [218] is also included. This stratagem allows the overall

cubic symmetry to be maintained whilst introducing the extra reflections

that are the fingerprint of n-diamond.

It is demonstrated that, on the basis of the current methodology, all these

models are dynamically unstable and, therefore, must be ruled out as possible

metastable phases.

4.2.1 Models based on translation of the sublattice P1

to general position

On the basis of transmission electron microscopy (TEM) patterns, Hirai

and Kondo [26], proposed that n-diamond is a modified form of cubic di-

amond composed by distorted hexagonal-ring-planes. Three rhombohedral

structures in space group R3, have been proposed with lattice parameter

a = 3.57 Å, γ = 90◦ and internal coordinates of (0,0,0), (0.5,0.5,0), (x,x,x),

(0.5+x, 0.5+x, x), with x={0.333, 0.4, 0.416}. The three rhombohedral

structures are called here H1, H2 and H3. On the basis of Hirai’s mod-

els, Wen et al. [67] proposed a further model with x=0.355. This new

arrangement was suggested because it produced a better match with the

experimental data from X-ray diffraction (XRD). According to this model,

n-diamond would have an interlayer distance between hexagonal ring planes

of 2.07 Å. These models are all variations of the cubic diamond structure

where a C sublattice has been rigidly translated to general position. In these

models, the crystal cell is forced to be cubic to match the diffraction pattern

of n-diamond.

In the present work, for hydrostatic pressures in the range 0-100 GPa, the

degree of freedom has been relaxed to find the minimum energy geometry

and atomic forces. Figure 4.2 shows the absolute value of the atomic force as

a function of pressure. It can be seen that increasing the pressure does not

stabilise the structures. For pressures higher than 15 GPa, Wen’s structure
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Figure 4.2: Atomic force modulus calculated in the present work for Wen’s

model (crosses) [67], and for Hirai’s models, H1 (open circles), H2 (open

squares), H3 (solid squares) [26].

has atomic forces with smaller moduli than Hirai’s models. Nevertheless,

it can not be considered as a possible metastable phase, because forces are

far from being negligible indicating the tendency of atoms to move from

the assigned position to a lower energy configuration. For symmetry, atomic

forces have the same modulus and lie in the same direction, pushing the atoms

of the translated sublattice (P1) back to the cubic diamond arrangements.

4.2.2 Models with vacancies

In order to produce the extra reflections to the diffraction pattern of cubic

diamond, models with the P1 sublattice completely (fcc model) or partially

(defective diamond model) substituted by vacancies, have been proposed.
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fcc-carbon

The fcc-carbon model was proposed by Jarkov et al. [219], who observed

the consistency with Bragg reflections from transmission electron microscopy

(TEM). This model was also proposed by Konyashin et al. [220], compar-

ing the lattice parameter of the fcc carbon computed by linear combination

of atomic orbitals (LCAO) with those measured by TEM of the new car-

bon modification found while treating the surface of diamond in a hydrogen

plasma. The fcc model is derived from the cubic diamond structure by in-

troducing vacancies in the P1 sublattice whist retaining atoms in the P0

sublattice. Using density functional theory calculations, however, Pickard et

al. [76] showed that the calculated lattice parameter is not consistent with

the experimentally measured one at ambient pressure.

According to phonon calculations reported here, for the fcc model there

are phonon modes whose calculated frequencies have negative eigenvalues at

P = 0, 10, 20, and 30 GPa, clearly indicating that the structure is unstable

at any pressure that has been considered. One can conclude that this model

represents an unstable arrangement of atoms and therefore does not represent

a possible local minimum in the energy landscape. Figure 4.3 shows the

phonon dispersion from the fcc model at 0 GPa.

Defective diamond

The defective diamond model was proposed to explain the ageing of n-

diamond samples synthetised according to Wen et al. [67]. The proposed

structure can be derived from cubic diamond by imposing a fractional occu-

pancy, χ, on C atoms in the P1 sublattice ( 0 < χC(P1)
≤ 0.25) [221]. During

ageing (up to 180 days), the observed XRD intensities of all the peaks as-

sociated with n-diamond significantly weakened, indicating that n-diamond

is a metastable phase. According to this model, the structure of n-diamond

is suggested to change from fcc-like to diamond-like through an increase of

carbon occupancy in P1.
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Figure 4.3: Phonon dispersion of fcc model (on the left) and defective dia-

mond with SG P-43M (on the right) at 0 GPa: modes with negative eigen-

values clearly indicate the structure instability.

This model is not represented by an ordered structure, as in the previous

case; instead it is characterised by substitutional disorder. For the investiga-

tion of vibrational properties in such systems, a common approach is to map

the disordered system onto a supercell with a similar stoichiometric compo-

sition. Using as a parent lattice the 2×2×2 supercell of the primitive cell of

cubic diamond, an arrangement was built to maximize both the symmetry

and the distance between carbon atoms in the P1 sublattice. For the calcu-

lation reported here, the possible configurations have been generated using a

structure enumeration algorithm [222] and the resulting symmetry has been

calculated using the tools of the ASE package [199] with a space-group search

algorithm extension [201]. The structure displayed in Figure 4.4 represents

the one in which the vibrational investigation has been performed. Accord-

ing to the calculations presented in the present work, the defective diamond

model is unstable at any considered pressure. Figure 4.3 shows the phonon
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Figure 4.4: The defective diamond model used for phonon calculations (SG P-

43M): C in P0 (grey), C in P1 (black), vacancy in P1 (white). Concentration

of C atoms in P1 is 25 at.% as the upper limit suggested in Ref. [221].

dispersion calculated at 0 GPa. Phonon modes whose calculated frequencies

have negative eigenvalues are present.

4.2.3 Models with hydrogen inclusions

To generate the extra reflections characteristic of the n-diamond structure, an

alternative way to vacancy inclusion is hydrogen inclusion. Due to the small

scattering cross-section relative to heavier elements, hydrogen is generally un-

detectable with conventional X-ray diffraction techniques [223]. Therefore,

its effect on diffraction patterns would be similar to the inclusion of vacan-

cies. To this end, two models have been proposed: a hydrogen-doped cubic

diamond model [218] and a carbon-hydrogen zincblende compound [66].

Hydrogen-doped cubic diamond

Wen et al. [218] proposed that hydrogen can substitute carbon in both the

P0 and P1 positions. DFT calculations based on the virtual crystal approx-

imation (VCA) [224] were compared with the experimental XRD pattern of

Fe-catalysed n-diamond [67]. According to Wen et al. [218], at H concen-

trations less than 19 at.%, H-doped diamond is mechanically stable and at
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4 at.% the optimised XRD pattern matches the experimental data.

This model is characterised by substitutional disorder, therefore the same

approach as in Section 4.2.2 has been employed. Using as a parent lattice

the 2×2×2 supercell of the primitive cell of cubic diamond, an arrangement

at concentration χH=0.0625 was built to maximize both the symmetry and

the distance between defects, see Figure 4.5. The model presents hydrogen

substitution in the (0,0,0) position. This model has 15 carbon atoms and

one hydrogen atom in the unit cell. The 4×4×4 supercell at χH=1/128 has

also been investigated, in which there are 127 carbon and 1 hydrogen atom.

The dimension of this model makes phonon calculations computationally

expensive, therefore the investigation has been limited to pressures of 0 and

40 GPa.

In the present work no phonon calculations without negative eigenvalues

have been found. Figure 4.6 displays the Phonon PDOS of the 2×2×2 and

4×4×4 supercells. It is clearly shown that instability is mainly due to hydro-

gen atoms. At the lower H concentration (4×4×4 supercell) the backbone

of carbon atoms is stable; conversely at χH=0.0625 it is unstable. For the

4×4×4 supercell the presence of populated states related to unstable phonon

modes which involve carbon atoms is minimal.

It is well-known that diamond films produced by chemical vapour depo-

sition (CVD) techniques in a hydrogen-rich atmosphere have both a high

hydrogen content and lattice vacancies [225]. In addition, natural Argyle

diamonds have high a hydrogen content [226]. In hydrogen-doped diamond,

much of the hydrogen is located at the boundaries between diamond grains,

or in non-diamond carbon inclusions, although within the diamond lattice

itself, hydrogen-vacancy complexes are present, whereby a hydrogen atom is

bonded to one of the carbon atoms in the vicinity of the vacancy [225, 227].

It is concluded here that, if there are hydrogen inclusions in the diamond

structure, dopant atoms do not occupy carbon positions.

Some words must be spent on the possible application of the Virtual

Crystal Approximation (VCA) to carbon-hydrogen system as an alternative
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Figure 4.5: Structure used for phonon calculations in hydrogen-doped carbon:

C (gray), H (white); the model is based on a 2×2×2 supercell of c-diamond

(SG F-43M), χH=1/16. A further model based on a 4×4×4 supercell of c-

diamond (SG F-43M) has also been employed, χH=1/128.

to the approach adopted here. The VCA allows one to handle configura-

tionally disordered systems at relatively low computational cost [228]. The

potentials, which represent atoms of two or more elements, are averaged into

a composite atomic potential, having the advantage that a single configura-

tion with a small unit cell represents the disordered system. However some

properties that depend on the local environment cannot be reproduced. The

VCA ignores any possible local distortion and assumes that on each poten-

tially disordered site there is a virtual atom that interpolates between the

behaviour of the actual components. This approach cannot be expected to

reproduce the finer details of the disordered structures.

In hydrogen-substituted carbon systems, the size mismatch between car-

bon and hydrogen causes local distortions that cannot be captured by the

VCA approach, as an averaged potential is applied. By contrast, the insta-

bility due to the local environment is evidenced by the approach applied in

this work, coupling symmetry analysis and phonon calculations.

Carbon-hydrogen zincblende compound

Studying the intensity ratio of forbidden and allowed diamond reflections in

XRD patterns of n-diamond produced by CVD, Cowley at. al. [66] proposed

that n-diamond includes hydrogen atoms in the P1 sublattice. Experimental

observations were supported by total energy calculations performed within
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Figure 4.6: Phonon partial density of states (PDOS) of H-diamond: carbon

atoms (continuous line), hydrogen atoms (short dashes): on the left, model

with χH=1/16; on the right, model with χH=1/128. For both computational

models, it is clearly shown that modes with negative eigenvalues are mainly

related to hydrogen. For the model at lower hydrogen concentration the

carbon backbone is much more stable.

the projector augmented wave (PAW) method in the framework of DFT.

This model can be considered a limiting case of the previous one where one

carbon sublattice is completely substituted by hydrogen.

According to the present work, this model has phonon modes with nega-

tive eigenvalues at any considered pressure, denoting structural instability.
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4. Glitter: a possible metastable carbon phase

4.2.4 Summary of c-diamond-based structures: coor-

dination and hybridisation

The consistency of coordination and hybridisation plays an important role

for a proper overlap of the atomic orbitals; this concept is central in both

organic and inorganic chemistry. A proper overlap allows the formation of

strong bonds, leading to stable structures.

Interestingly, this feature is lacking for any structure derived from modi-

fication of cubic diamond. Excluding a priori Hirai’s and Wen’s models that

are not equilibrium structures, the proposed models considered up to this

point are characterised by exotic coordination numbers: in fcc carbon C is

12-coordinated, in defective diamond many sp3 carbon are not 4-coordinated;

in hydrogen-doped and H-zincblende model hydrogen is 4-coordinated.

These models are clearly built-up to satisfy the matching of the simulated

diffraction pattern with the experimental ones. However they do not take

into account a key-point in condensed matter physics and chemistry: the

chemical bonding.

4.3 Dynamical stability of glitter

Bucknum and Hoffman proposed a 3,4-connected hybrid structure [24], that

respects the consistency between hybridisation and coordination, as discussed

in Section 2.2.

In this work, the phonon modes have been calculated at pressures of 0, 10,

20 and 30 GPa. For all but the highest pressure, the eigenvalues have positive

values throughout the Brillouin zone, giving real frequencies and indicating

the dynamical stability. Figure 4.7 display the phonon dispersion of glitter

at 0 GPa. At 30 GPa, negative eigenvalues are observed, resulting in the

frequency of one of the acoustic bands becoming imaginary. Examination

of the modes indicates that both the sp2 and sp3 atoms are involved in the

instability.

The stability of glitter lies in the fact that the structure does not have
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Figure 4.7: Phonon dispersion of glitter at 0 GPa: it is clearly shown that

modes with negative eigenvalues are not present.

exotic coordinations: atoms having a geometry due to sp3 hybridisation are

tetra-coordinated and those having a geometry due to sp2 hybridisation have

triple coordination. However glitter presents high formation energies: Table

4.1 lists the formation energy of the glitter structure with zero point energy

(ZPE) corrections. They are broadly in agreement with previously reported

values based on LDA functional with no ZPE corrections [76].

A high formation energy is usually an indicator of internal stress. Al-

though the glitter unit cell is not very distorted under isotropic compression

(at P = 0 GPa, c/a = 2.301, and at P = 30 GPa c/a = 2.336, Table 4.1),

distortion affects the chemical bonding: at 30 GPa, the tetragonal-trigonal-

tetragonal angle is compressed to 114.54◦, very far from the ideal sp2 geome-
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4. Glitter: a possible metastable carbon phase

Table 4.1: Carbon glitter: lattice parameters, vibrational corrections, for-

mation energy and resume of dynamical stability. Formation energy include

vibrational corrections. The reference state is cubic diamond (SG Fd-3m).

The vibrational energy contribution, ∆Evib, has a positive effect on stabiliz-

ing the structure with respect to c-diamond.

Pressure

0 Gpa 10 GPa 20 GPa 30 GPa

a [Å] 2.6025 2.5710 2.5436 2.5194

c [Å] 5.9872 5.9507 5.9172 5.8863

Dynamics Stable Stable Stable Unstable

∆Evib [eV/atom] -0.021 -0.022 -0.023 —

∆Ef [eV/atom] 0.432 0.433 0.438 —

try, which implies an angle of 120◦. It is likely that the extra bond strain due

to high pressure, forces the atomic arrangement beyond its breaking-point.

4.4 Metallic nature of glitter

Bucknum and Hoffman calculated the electronic structure of glitter using the

extended Hückel method [24]. The interaction of the π-orbital of carbon in

trigonal positions separated by ∼ 2.5 Å leads to a substantial dispersion of

the highest occupied and the lowest unoccupied band. In the present work,

the electronic band structure has been calculated with the modern B3LYP

exchange correlation functional [155] and norm-conserving PPs [229]. The

system is metallic, exhibiting band overlap at the Fermi level, see Figure 4.8.

The PDOS highlights that states at the Fermi level are due to the p orbitals

of trigonal carbon atoms, confirming the metallic nature of the structure due

to overlap of stacking ethylene units [230].
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Figure 4.8: Electronic structure of glitter calculated with B3LYP functional:

band structure on the left and electronic DOS on the right. The states of p

orbitals of trigonal carbon atoms are displayed with a continuous line, the

full DOS by short dashes line.

4.5 Bulk modulus of glitter

In order to compute the bulk modulus of glitter, total energies were calculated

using the PAW [231, 232] method as implemented in the VASP code [147]

and parameterised in terms of the equation-of-state proposed by Alchagirov

et al. [233], as implemented in the Atomic Simulation Environment (ASE)

[199].

According to the calculations presented here, glitter would be a a me-

chanically stiff material: the fitted bulk modulus is 350 GPa, see Figure 4.9.

Although the bulk modulus does not necessarily correspond to the practi-

cal hardness of the material, it reflects the ideal stiffness near equilibrium

positions under isotropic compression. According to Cohen semi-empirical
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theory, glitter was expected to surpass cubic diamond in its intrinsic strength

[24]. It is however counter-intuitive that a structure containing ethylene

unites stacked at a separation of ∼ 2.5 Å would be stiffer than diamond that

has all atoms tetra-coordinated.
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Figure 4.9: Comparison of compressibility of diamond (open squares) and

glitter (solid circles): the fitted bulk modulus is 431 GPa for diamond and

350 GPa for glitter. The plot has as reference the equilibrium volume and

equilibrium energy of the relative structure: Vr=V-Veq and Er=E-Eeq, where

Veq and Eeq are respectively the volume and the energy at equilibrium.

4.6 Isoglitter, hexagonite and trigohexagonite

Among the many possible novel carbon arrangements that have been the-

oretically predicted in the last decades, three other structures in particular

attracted author’s attention. Bucknum and co-workers proposed three car-

bon structures having 3-connected and 4-connected carbon atoms: isoglitter

[211], hexanogite [212] and trigohexagonite [213], Figure 4.10.

72



4. Glitter: a possible metastable carbon phase

(a) (b) (c)

Figure 4.10: (a) Isoglitter; (b) Exagonite; (c) Trigoexagonite.

Isoglitter is a structural relative of tetragonal glitter, built upon the 1,4-

cyclohexadieneoid motif. Building blocks are coordinated in a parallel fash-

ion, while in glitter they are coordinated orthogonally to each other.

Hexagonite was proposed as a hypothetical organic zeolite. This struc-

ture presents hexagonal channels of ∼ 5 Å. The structure was produced by

elaborating the molecule bicyclo[2.2.2]-2,5,7-octatriene (barrelene) in three

dimensions.

Trigohexagonite is a complex structure having cyclopropane-like substruc-

tures of the lattice, arranged in a triad, and 1,3,5-trimethylene-cyclohexane-

like and trimethylene-methane-like units.

For a detailed description these structures, the reader is referred to the

relevant literature [211, 212, 213].

In this work the three structure have been investigated, testing the vibra-

tional stability at 0 K and 0 GPa. As shown in Figure 4.11, they can not be

considered possible carbon allotrope because of the presence of modes with

negative eigenvalues.
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Figure 4.11: Phonon density of states (DOS) of isoglitter (on the left), hexag-

onite (center), trigohexagonite (on the right) at 0 GPa: modes with negative

eigenvalues are present for each proposed crystallographic arrangement.
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4.7 Chapter conclusions

Among the arrangements proposed for n-diamond, glitter is the only one that

is stable with regards to the dynamics at 0, 10 and 20 GPa, whereby phonon

modes with negative eigenvalues are not present.

Moreover glitter presents the following three characteristics:

• it is metallic;

• it is a stiff material;

• its diffraction pattern is consistent with the experimental one of n-

diamond [77].

Glitter seems to be the ideal candidate for n-diamond. However, it has

high formation energy, Table 4.1, and there has been much speculation on

its kinetic stability [25].

Wen et al [67] reported that n-diamond synthesised from Fe-catalysed

carbon black gradually transformed to other structural phases during the

ageing process (90-180 days), implying that n-diamond is a metastable phase.

Supposing that n-diamond has the glitter structure, it is possible that in the

presence of defects or poorly crystallised grains, it will gradually decompose

to more stable phases.

It must be underlined that many structures that have been proposed in

the literature until now for carbon phases are deficient in terms of stability:

the structures based on cubic-diamond and other 3-,4-connected structure

proposed by Bucknum and co-workers are not stable. In the author’s opinion,

an extended investigation on the stability of the structures proposed in the

carbon literature would lead to ruling-out many arrangements that have been

suggested purely on the basis of chemical intuition. This would be not just

an exercise of application of theoretical tools but would guide experimental

researchers toward the synthesis of novel carbon allotropes, with novel and

exciting properties.
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Chapter 5

Boron, nitrogen, silicon

substituted glitter

In Chapter 4, it was argued that the tetragonal glitter structure is the most

likely candidate for the interpretation of n-diamond, given that structures

based on c-diamond were shown to be dynamically unstable. The calcula-

tions indicate that glitter has a relatively high formation energy with respect

to diamond, which would make its synthesis difficult under moderate condi-

tions. It is therefore of interest to examine the effect of alloying carbon-glitter

with boron, nitrogen and silicon. Whilst the main objective is to gain an in-

sight into the effects of substitution on the material’s stability, determining

whether there are any significant changes to the metallic nature of the basic

glitter structure is also of interest.

Three compounds with heteroatom inclusions have been proposed in the

literature, on the basis of chemical intuition, first principles calculation and

synthetic methods SiC2 [79, 78, 56, 234], and B2C and CN2 [24].

To the author’s knowledge, inclusion of more than one type of element

in the glitter structure has not been investigated. The aim of the work

presented is to find the most stable structures of B, N, Si-substituted glitter

by performing a ground state search based purely on first principles. The

most technologically relevant structures are analysed and discussed in detail.

The Chapter is outlined as follow:

• computational details in Section 5.1;
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5. Boron, nitrogen, silicon substituted glitter

• investigations on binary systems in Section 5.2;

• multi-element systems in Section 5.3;

• conclusions of the Chapter in Section 5.4.

5.1 Computational details

The MIT Ab-initio Phase Stability (maps) code of the Alloy Theoretic Au-

tomated Toolkit (ATAT) [194, 190, 191] was employed to parametrise the

Hamiltonian. DFT [138, 135] total energy calculations were performed us-

ing the projector augmented wave (PAW) [231, 232] method as implemented

in the VASP code [147]. The Perdew-Wang-91 (PW91) generalized gradient

approximation has been employed for the exchange-correlation functional

[141]. The tetrahedron method with Blöchls corrections has been used for

accurate calculation of total energies [235]. The Brillouin zone was sampled

by Monkhorst-Pack k-point grids [214]. The cut-off energy for plane wave

basis set is set to 520 eV. This guarantees that the absolute energies are

converged to 1 meV/atom.

The following reference states have been used for the calculation of the

formation energy: diatomic nitrogen molecule in a 10× 10× 10 Å box; cubic

diamond; cubic silicon; α-boron.

Some properties, namely vibrational end electronic, of ground states were

calculated using CASTEP [173]. Details of these calculations are provided

along the text.

5.2 Binary systems: C-B, C-N and C-Si glit-

ter

This section focusses on the effect of substitution of carbon-glitter with a

single atomic species; the substitutional binary systems of C-B glitter, C-N

glitter and C-Si glitter are considered. As discussed previously, the crystal
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5. Boron, nitrogen, silicon substituted glitter

structure of carbon glitter presents distinct crystallographic positions with

distinct local chemical environments: the tetragonally coordinated sites with

sp3 hybridisation and the trigonally coordinated sites with sp2 hybridisation.

The naming convention adopted here for the these two sites is T for tetragonal

and t for trigonal.

In the present work, the configurational space of substituted binary glit-

ter was investigated up to 12 atoms per unit cell. The six positions (2 T

and 4 t) in the parent lattice can be occupied either by C or X, where X is

alternatively boron, nitrogen or silicon. Considering permutations and sym-

metry, there are 2466 possible combinations for any considered C-X system.

I wish to underline that 2466 structures are a daunting number for a direct

DFT investigation because each structure must be structurally optimised.

Figure 5.1 summarises the main results of the calculations on the binary

systems, where the formation energy of the ground states is plotted as a

function of the molar fraction of C, χC .

In the heteroatom rich part of the configurational space, structures are

characterised by a large relaxation and distortion because of forcing many B,

N atoms into tetragonal positions, or Si into trigonal positions. In order to

avoiding these situations, the CE calculation for the C-B glitter system has

been performed in the range χC ≥ 1/3, for the C-N glitter system χC ≥ 0.5 and

for the C-Si glitter system χC ≥ 0.5. The resulting set of fitting parameters

(ECIs) have been used to predict the energy of structures at lower carbon

concentrations, extrapolating outside of its true range of validity; this affords

a reasonable indication of the trends in the formation energies.
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Figure 5.1: Formation energy per atom for C-N glitter (circle), C-Si glitter

(square), and C-B glitter (triangle). Solid symbols represent ground states

calculated within the range of concentration adopted in the CE calculation;

open symbols are either end-compounds or points extrapolated at low C

concentration. Carbon atoms are represented by dark grey spheres, silicon

by light grey, nitrogen by white and boron by black ones. For the B-C system

the structure with minimun formation energy is B2C [24], for the Si-C system

is SiC2 [56], for the N-C system a structure with formula unit C5N.
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C-B system. Starting from the end-compound, pure C glitter, the sub-

stitution of carbon by boron stabilises the intermediate structures as long

the substitution can occur in the trigonal positions. The minimum in the

formation energy is reached for the compound B2C, where all the trigonal

positions are occupied by boron. As chemical intuition suggests, forcing B

to the tetragonal positions, leads to an increase of the formation energy.

C-Si system. The C-Si system shows the opposite behaviour: Si substi-

tution is preferred in T. The formation energy minimum occurs with tetrag-

onal silicon dicarbide (silicon atoms in T and carbon atoms in t). If silicon

is forced into trigonal position, the formation energy increases.

C-N system. From the point of view of the chemical bonding, the case

of the C-N system is the most interesting. At low nitrogen concentration, the

substitution of opposite trigonal C with N in the 1,4-cyclohexadieneoid unit

ring stabilises the system. This is probably due to the formation of a ring

sharing 6 electrons in an aromatic-like fashion, see the C-N glitter compound

in Figure 5.1. Substitution of carbon with nitrogen in the glitter structure

generally leads to a destabilisation of the structure. For the configuration

with coupled nitrogen atoms in the trigonal positions and a N in the clos-

est tetragonal position, the distance between nearest neighbours trigonal-N

gets closer to a triple N-N bond, showing a strong tendency to decompose

the glitter arrangement, forming N2. Additional selection rules of the novel

structures to introduce in the CE calculation, implemented with a csh script,

has been added to avoid these configurations.

The forecasting reliability of a CE calculation is tested with a CV score

(usually less than 15 meV/atom for metal alloy systems). Here, the CV

scores are high, particular for Si-C glitter: CV = 0.013 eV for the C-B

system, CV = 0.066 eV for the C-N system and CV = 0.100 eV for the Si-C

system. In the case of covalent bonding involving carbon, the bond energy is

much higher than the those typically involved in ordering of alloys, which are

typically in the range 0.10-0.01 eV/atom. The difference in formation energy

between different configurations at the same concentration is much higher
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and consequently, in the author’s opinion, it is possible to accept higher CV

scores in predicting the formation energy itself. In light of this, the CE

value is “acceptable” for B-system, while for N and Si, they are still on the

high side. In these cases, the CE calculation shows just an indication of the

possible relevant configurations, and they must be interpreted with care.

The dynamical stability of the structures having the minimum forma-

tion energy for the three systems (B2C, SiC2, C5N), along with CN2 early

proposed by Bucknum et al. [24], have been investigated with the tool of

ab initio lattice dynamics. Structures with B and N substitution are found

to be dynamically unstable. SiC2 is found to be stable, in agreement with

Andrew et al. [56].

Summarising, boron and nitrogen preferentially substitute carbon in trig-

onal positions while silicon in the tetragonal, in accordance with chemical

intuition. The tendency of nitrogen to adopt a pyramidal rather than trig-

onal configuration leads generally to a destabilization of the structures. By

considering up to 12 atoms per unit cell, no configurations have been identi-

fied that energetically stabilise the structures with respect to the elemental

reference states. Binary substitutions are likely to make the glitter structure

dynamically unstable, with the exception of the particular case of SiC2.

5.3 Ground states of multi-substitutional sys-

tem

Studying the configurational space of a multi-substitutional systems is a very

challenging task: considering 4 different atomic species sharing any crystal-

lographic position in the glitter parent lattice is hard even using Ising-like

parametrisation methods. Observations from the respective binary systems,

Section 5.2, lead to simplified models, whereby tetragonal positions are oc-

cupied by C or Si and trigonal positions are shared by C, N, B.

Three computational models, based on three different parent lattices,

have been designed:
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Figure 5.2: Parent lattices for multi-substitutional systems: on the left side

the topology of the parent lattice used in Model-A and Model-B, black

spheres represent the tetragonal position T, while grey ones the trigonal po-

sition t; on the right side the topology used in Model-C, tetragonal position

are distinguished in T(1), black spheres, and T(2), white spheres.

• Model-A: C in T and C,N,B in t;

• Model-B: Si in T and C,N,B in t;

• Model-C: C in T(1) Si in T(2) and C,N,B in t;

Figure 5.2 shows the topology of the Models. Model-C is the simplest model

having C and Si sharing tetragonal position.

Considering crystallographic cells of up to 12 atoms per unit cell, the

systems based on Model-A and Model-B includes 3933 different structures,

that based on Model-C includes 7569 different structures. The increased

number of structures for Model-C is an effect of populating the T(1) and T(2)

position with different elements, leading generally to symmetry lowering.

According to CE terminology, in each of these models, atoms in the tetrag-

onal positions act as spectator atoms while those occupying the t sites are

considered as active atoms. The former do not explicitly enter the expression

of CE because the configuration of the respective sublattice can not change.

However, the total energy includes the contribution of the spectator species
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so that the ECIs coupling two sites also includes the indirect interaction

between these sites mediated through the spectator species [188].

Parametrisation has been performed with the condition that the concen-

trations of B and N in t are above a certain limit (χX(t) ≥ 1/12, where X=B,N)

to restrict the field of the investigation and to avoid structures already in-

vestigated as binary systems. For each Model ∼ 200 structures have been

employed in the fitting process, giving CV scores in the range 44-53 meV.

Remarkably ground states with negative formation energy are found.

The representation of the formation energy of multicomponent system is

graphically complex: results are therefore reported in tabular form, Table

5.1. Moreover the focus of this work is on the identification of structures

with low formation energy and it is not to give a detailed representation of

the configurational space of these system.

Model-A. At a composition B:C:N 1:1:1, a ground state with the lowest

formation energy has been found. It shows a negative formation energy,

∆Hf = −0.133 eV/atom. Views of the tetragonal representation of the

CBN ground state are displayed in Figure 5.3. The structures lies within the

space group I4122. It is interesting to note that boron and nitrogen couple

in trigonal position with complete substitution of C. B-N groups are located

in the structure to minimise electrostatic interaction.

At the same composition, the expansion algorithm suggested a possible

competitive structure, belonging to the space group Pnna. The structure is

6 meV higher in energy than the CBN ground state. The arrangement of

B-N groups in the carbon framework, is similar to the one of the CBN ground

state, but with a lower symmetry .

Model-B. For Model-B, the structures having the lower energies are sim-

ilar to those ones found for Model-A. The ground state structure at compo-

sition Si:C:N 1:1:1 belongs to the space group I4122 having formation energy

∆Hf = −0.322 eV/atom. The structure with the successively higher forma-

tion energy belongs to the space group Pnna, ∆Hf − 0.315 eV/atom. They

are the homologous of the structures found for Model-A, having Si instead
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Table 5.1: Formation energies of ground states of substituted glitter having

negative values: Model-A having C in the tetragonal sublattice and C,B,N

sharing the trigonal sublattice; Model-B having Si in the tetragonal sublattice

and C,B,N sharing the trigonal sublattice; Model-C having C in T(1), Si in

T(2) and C,B,N sharing the trigonal sublattice; Structures, that combine

boron and nitrogen in trigonal position, have low formation energies.

Formula χC(T) χC(t) χSi χB χN ∆Ef [eV/atom]

Model-A

CBN 1/3 0 0 1/3 1/3 -0.133

Model-B

C4Si4BN3 0 1/3 1/3 1/12 1/4 -0.037

CSi2BN2 0 1/6 1/3 1/6 1/3 -0.210

Si2BN3 0 0 1/3 1/6 1/2 -0.218

SiBN 0 0 1/3 1/3 1/3 -0.322

Model-C

C3SiBN 1/6 1/3 1/6 1/6 1/6 -0.039

CSiBN3
1/6 0 1/6 1/6 1/2 -0.041

C5Si2B1N4
1/6 1/4 1/6 1/12 1/3 -0.105

C5Si2B3N2
1/6 1/4 1/6 1/4 1/6 -0.150

C3Si2BN6
1/6 1/12 1/6 1/12 1/2 -0.441

CSiB2N2
1/6 0 1/6 1/3 1/3 -0.598

84



5. Boron, nitrogen, silicon substituted glitter

(a) (b) (c)

Figure 5.3: Tetragonal representation of CBN ground state: boron (black

spheres), nitrogen (white) and carbon (dark gray).

of C in tetragonal position.

Model-C. A structure with very low formation energy, ∆Hf = − 0.598

eV/atom, has been predicted by the CE algorithm and verified by DFT

calculation. The structure exhibits coupling of N and B in trigonal position,

Figure 5.4. While in the CBN and SiBN structures, the substitutional groups

are placed in order to minimize electrostatic interactions, in the SiCN2B2

ground state the B-N are placed in order to favour the strongest bonds, Si-N

and C-B.

Vibrational analysis, performed with the ab initio code CASTEP, shows

that all the structures reported here are dynamically stable. Systems are

characterised by strong optic modes, due to the vibration of B-N group, at

high frequency, ∼ 1200 − 1400 cm−1. Figure 5.5 on Page 89, Figure 5.6 on

Page 90 and Figure 5.7 on Page 91 display the phonon dispersion of CBN,

SiBN and CSiB2N2, respectively.

Table 5.2 and Table 5.3 report the lattice parameters of low-energy struc-

tures.
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Table 5.2: Cell parameters (a,b,c) and distance between ethilene-like units (d)

of low energy glitter-like structures. A ground state compound is indicated

by “g.s.”, a first excited configurational state by “f.e.c.s”

Compound Space Group a [Å] b [Å] c [Å] d [Å]

CBN g.s. I4122 (No. 98) 3.668 3.668 12.430 2.595

CBN f.e.c.s Pnna (No. 52) 6.220 3.660 3.676 2.596

SiBN g.s. I4122 (No. 98) 4.516 4.516 14.120 3.210

SiBN f.e.c.s Pnna (No. 52) 7.062 4.525 4.512 3.212

CSiB2N2 P − 4m2 (No. 115) 2.856 2.856 6.467 2.856

Table 5.3: Fractional atomic positions (x, y, z) in CBN, SiBN and CSiB2N2.

Element Wyckoff Position x y z

CBN: a=b=3.668 Å, c=12.430 Å

C 8f 0.2658 0.2500 0.6250

B 8c 0.0000 0.0000 0.6974

N 8c 0.0000 0.0000 0.8111

SiBN: a=b=4.516 Å , c=14.120 Å

Si 8f 0.2632 0.2500 0.6250

B 8c 0.0000 0.0000 0.7113

N 8c 0.0000 0.0000 0.8117

CSiB2N2: a=b=2.856 Å, c=6.467 Å

C 1d 0.0000 0.0000 0.0000

Si 1a 0.0000 0.0000 0.0000

B 2g 0.0000 0.5000 0.6261

N 2g 0.0000 0.5000 0.8482
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5. Boron, nitrogen, silicon substituted glitter

(a) (b)

Figure 5.4: SiCN2B2 ground state: boron (black spheres), nitrogen (white),

silicon (light gray) and carbon (dark gray).

5.3.1 Mechanical and electronic properties

The bulk modulus, B, was computed using the equation of state proposed by

Alchagirov et al. [233] and implemented in Atomic Simulation Environment

(ASE) [199], see Section 4.5. The CBN ground state would be a stiff material:

the calculated bulk modulus is 310 GPa. For compounds with silicon sub-

stitutions, the bulk modulus decreases, Table 5.4. The calculated density, ρ,

shows that the compounds would be light weight materials, see Table 5.4.

The electronic band structures have been calculated both with PW91

and B3LYP functional, Table 5.5. The compounds are indirect bandgap

semiconductors, confirming the author’s hypothesis of the effectiveness of

heteroatom substitutions for tailoring the bandgap. Figure 5.8 on Page 92

displays the electronic band structure of CBN-glitter ground state calculated

with the GGA and B3LYP hybrid functionals. Despite the similar shape

of the calculated band structure, it is interesting to note the solid shift in

energy of the bands, due to the non-local Hartree-Fock contribution.
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Table 5.4: Calculated bulk moduli, B, and mass densities, ρ, for ground-state

substituted glitter compounds.

Bulk Modulus Density

Compound B [GPa] ρ [ g/cm3 ]

CNB 310 2.93

SiCN2B2 169 2.82

SiNB 250 2.44

Table 5.5: Bandgap energies, EBG, of substituted glitter ground states cal-

culated with the PW91 and B3LYP functionals.

PW91 B3LYP

Compound EBG/[eV] EBG/[eV]

CBN 2.20 3.70

SiCN2B2 0.38 1.40

SiBN 0.87 2.50
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Figure 5.5: Phonon dispersion of CBN ground state.
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Figure 5.6: Phonon dispersion of SiBN ground state.
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Figure 5.7: Phonon dispersion of SiCN2B2 ground state.
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Figure 5.8: Band structure of CBN ground state calculated with PW91 (on

the left) and B3LYP functional (on the right). The short dashes lines are

references to highlight the band shift.

92



5. Boron, nitrogen, silicon substituted glitter

5.4 Chapter conclusions

Substitution of carbon atoms in the glitter structure with a single atomic

species, namely boron, nitrogen or silicon, does not lead to strong stabilisa-

tion. However, several particular arrangements, deriving from multi-element

substitution, show a dramatic stabilisation effect. The configurational space

explored here is limited, so it is entirely possible that there are other struc-

tures with lower formation energies. For the models that have been taken

into account, structures with low formation energies exhibit coupling of B

and N in the trigonal positions. This result could have important implication

in finding a synthetic route to bulk glitter-like structures.

Regarding the comparison of the stability with other B-N, C-N, C-B

phases, similar comments to the ones about the stability of glitter can be

proposed. It is likely that a reaction path from glitter-like structures to more

thermodynamically stable phases would have high activation barriers due to

the reconstructive nature of this process in systems characterized mainly by

covalent bonding [25].

Many other metastable phases in the B-C-N system have been already

synthesized, such as the ternary graphite-like BCxN and ternary diamond-

like BCxN [236, 237]. Moreover Marwitz et al. [238] recently synthesised

the aromatic compound 1,2-dihydro-1,2-azaborine, presenting adjacent sp2

boron and sp2 nitrogen substituting carbon atoms in a benzene-like ring.

Interestingly, the calculated bandgaps span a wide range, some 2 eV. It

is likely that the bandgap could be modulated by controlling the concen-

tration in tetragonal positions of C ans Si, having an effect on the distance

of the ethylene-like unit, Table 5.2, and the orientation of the B-N groups.

A detailed understanding of these phases is essential for the design of novel

hard light-weight semiconductors with adjustable bandgap based on com-

mon, cheap and non-toxic elements.

Group theory analysis, performed with the software VIBRATE! [239], sug-

gests that some vibrational modes are Raman active, most notably some of

the high-energy optic modes. It is entirely possible that this could constitute
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5. Boron, nitrogen, silicon substituted glitter

a spectroscopic fingerprint of this class of compounds. Comparison of the

calculated Raman spectra with experimental ones could lead to the identifi-

cation of glitter-like structures. This is the subject of an on-going research

programme with Dr. Vladimir M. Vishnyakov (Dalton Research Institute,

Manchester Metropolitan University, Manchester, UK) for the possible iden-

tification of the structure of boron silicon carbo-nitride thin films, whose

crystal structure is still unclear [240].
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Chapter 6

Boron-substituted graphene

The main advantage of modifying the electronic properties of graphene-

related materials by the substitution of carbon atoms with heteroatoms,

namely B and N [95, 27], have been reviewed in Section 2.3.1: in-plane sub-

stitutions are not likely to lead to phase separation, because of the absence

of strain effects due to the presence of atoms with sp3 hybridisation in the

graphitic layer [104]. The B-C honeycomb system has been investigated by

Luo et al. [95] in the framework of first principles calculations, who predicted

two-dimensional boron-carbon nano-structures through a particle-swarm op-

timisation (PSO) algorithm [241]. Single-layer B-C honeycomb compounds

have been predicted at various boron concentrations, χB={1/6, 1/4, 1/3 }. Ac-
cording to band structure calculations, the predicted compounds were found

to be metallic, except for the ground state compound at composition BC3,

which is a semiconductor. The predicted metallic arrangements were mostly

characterised by isolated chains of boron atoms (as an example see Figure

6.3d on Page 103). The boron substructures were called 1D zigzag boron

chains. In the BC3 ground state compound, boron is uniformly distributed

in the plane: six-membered rings of carbon atoms are surrounded by 6 boron

atoms, leading to a structure with isolated carbon rings, see Figure 6.3e on

Page 103. For its particular structure and electronic behaviour, BC3 ground

state has been defined a “magic case” [95].

In the present Chapter, the effect of boron substitution in graphene is in-

vestigated in more detail than previously. As a result, some rather different
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6. Boron-substituted graphene

conclusions are arrived at compared to those presented by Luo et al. [95],

in particular the statement regarding the absence of semiconductor arrange-

ments other than BC3.

In the present work, doping at low concentration has been investigated

with systematic DFT calculations on different configurations having boron

dopants at increasing distance. The direct DFT approach is possible be-

cause of the limited number of possible combinations at low boron concentra-

tion. For stoichiometric compositions, the number of possible configurations

dramatically increases. Therefore, the cooperative effect of substitutions at

higher boron concentrations has been investigated with Cluster Expansion

[178, 179] coupled with ab initio calculations. The bi-layered system has

been also investigated, showing that interlayer interactions can affect the

electronic structure.

Computational details are reported in Section 6.1, conclusions of the

Chapter in Section 6.5. Results, along with the relevant discussion, are re-

ported in the following Sections:

• B-doping of graphene, Section 6.2;

• effect of boron substitution in single layer graphene, Section 6.3;

• effect of a second honeycomb layer, Section 6.4.

6.1 Computational details

Spin-polarized total-energy calculations were performed using the ab initio

code CASTEP [173], employing the Perdew−Burke−Ernzerhof (PBE) exchange-

correlation functional [142] and ultra-soft PPs [171]. The wave functions of

the valence electrons are expanded using a 650 eV (550 eV for CE structures

database) kinetic energy cut-off. For optimised structures, force magnitudes

are less than 0.02 eV/Å (0.04 eV/Å for CE structures database).

The package Alloy Theoretic Automated Toolkit (ATAT) was employed to

parametrise the Hamiltonian as a polynomial in the occupational variables
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[190, 191, 194]. Structure are built on the graphene primitive cell expanded

in the planar directions. The runstruct Castep script, written by the au-

thor, has been employed to interface the CE code with the ab initio code.

The vibrational stability of selected structures was investigated using the fi-

nite displacement method [203, 217]. Electronic band structures have been

calculated using both the B3LYP and HSE06 [242, 159] functionals with

norm-conserving PPs [229], for which an energy cut-off of 900 eV has been

employed.

6.2 Boron doping in the low concentration

limit

The interaction between two substitutional boron atoms and the carbon sub-

strate has been investigated using a cell based on 10×10 primitive cells of

graphene. The cell contains 198 C atoms and 2 dopant B atoms, giving a

boron concentration χB = 0.01. The DFT calculations are performed on a

3D periodic lattice. In order to mimic the 2D nature of graphene, a large

interlayer distance of 11 Å is used, which guaranties no contamination of

the electronics with spurious interlayer contributions. The volume of the

supercell is ∼ 5800 Å
3
.

In Figure 6.1, the total energy of the different configurations is displayed

as a function of the dopants’ distance. The reference state is the configuration

having the longest B-B pair distance.

For the first nearest neighbour (NN) substitution, the system has the

highest energy. This configuration is characterised by a direct B-B bond and

the lowest number of C-B bonds (4 C-B bonds while all the other configura-

tions have 6 C-B bonds).

An energy minimum occurs for the third NN substitution, which corre-

sponds to a 1,4-substitution in 6-membered ring, see insert in Figure 6.1.

According to this set of calculations, the boron-carbon honeycomb system

differs fundamentally from the nitrogen-carbon substituted system [27] and
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6. Boron-substituted graphene

Figure 6.1: Energy, E, of a cell containing 2 boron atoms in a lattice of 200

atoms as a function of distance, d, of boron substitutions. The reference state

is the configuration having dopants at the longest distance (14.24 Å). The

distance is merely a topological reference related to the unrelaxed structures,

while E is referred to relaxed structures. It is interesting to note the minima

at the 3rd, 7th and 11th NN. The insert shows a graphical representation of

1,4 substitution in a six-membered ring, corresponding to the 3rd NN. Boron

is represented by black spheres, carbon by grey ones.
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hydrogen/oxygen/fluorine functionalised systems [104, 106, 108]:

• in the nitrogen-carbon system, the repulsive interaction between in-

plane nitrogen atoms are dominant, forcing dopant atoms to spread

into the honeycomb layer; this effect prevents the phase separation in

the nitrogen-doped graphene into one region of undoped graphene and

a region of highly substituted graphene;

• in systems with covalent out-of plane functionalisation (typical cases

are hydrogenation, oxidation, fluorination), the groups involved in the

functionalisation tend to stay close to each other in order to decrease

the strain related to the coexistence of sp2 and sp3 carbon atoms in

the same layer; this phenomenon is likely to lead to phase separation

between fully functionalised and bare graphene;

• in boron-substituted graphene, boron atoms tend neither to cluster nor

stay isolated; ordering on the short-range seams to be favoured, at least

at low concentration.

This observation suggests that the structures with 1D zizgzag boron

chains, as identified by Luo et al. [95] are unlikely to be the lowest energy

configurations. In fact, configurations that do not have direct boron-boron

bonds are likely to be favoured, in accordance with the tendency of carbon

and boron to form stable compounds.

6.3 Graphene: stoichiometric boron substi-

tutions

6.3.1 Determination of the Cluster Expansion

As discussed above, the collective behaviour of stoichiometric substitutions

can not be realistically investigated by a direct DFT search, owing the size of

the configurational space. In the present work, structures up to 16 atoms per
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unit cell has been investigated in the concentration range 0 ≤ χB ≤ 0.5. The

system includes ∼ 104 possible configurations. A CE approach has therefore

been employed, for exploration of the configurational space at a relatively

low computational cost. The geometry and total energy of 74 structural

arrangements have been used as input to the CE algorithm. The cluster

expansion converged with a CV score of 35 meV using 11 pair interactions,

7 triple interactions and 4 quad-interactions.

Taking into account structures up to 16 atoms per unit cell,the CE ap-

proach allows the consideration of many different stoichiometries: χB = {
0.0000, 0.0625, 0.0714, 0.0833, 0.1000, 0.1250, 0.1429, 0.1667, 0.1875, 0.2000,

0.2143, 0.2500, 0.2857, 0.3000, 0.3125, 0.3333, 0.3571, 0.3750, 0.4000, 0.4167,

0.4286, 0.4375, 0.5000 }. However many of these stoichiometries do not lead

to structures close to the convex hull and therefore are not considered in the

following discussion. Arbitrarily, a limit of 50 meV/atom above the convex

hull has been used. This limit is a reasonable energy gap for evaluating

energetic competition among different arrangements, considering that it cor-

responds to a Boltzmann temperature of about 580 K. The reference states

for calculation of the formation energy are α-boron [243] and pure graphene.

Figure 6.2 shows the convex hull for 0.0 ≤ χB ≤ 0.5. Following the

notation of Luo et al. [95], the structure with the lowest formation energy

for a particular composition is denoted BmCn-I. Structures with successively

higher energies then have the suffix II, III etc. An important point is that

additional structures have been identified here to those presented in litera-

ture. Therefore, there is not necessarily a direct correspondence between the

structure names used herein and in the previous literature.

From Figure 6.2, it is clear that B substitutions increase the formation

energy. For χB = 0.4, corresponding to the stochiometry B2C3, the forma-

tion energy is ∼ 0.4 eV/atom. Structures for χB > 0.4 are not considered

in the following discussion because of the high formation energy. Moreover

pure boron mono-layers are not based on the honeycomb layered lattice,

but are suggested to adopt structures with trigonal and hexagonal motifs
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[244, 245, 246]. Luo et al. [95] found that other topologies, different from the

honeycomb lattice, are prevalent at high boron concentration. The cluster

expansion method works on a fixed topology and it does not allow the inves-

tigation of topological disorder, Section 3.2.2. Therefore it is not a suitable

method for investigation of the B-rich part of the configurational space.

According to the above-mentioned criteria, structures with formula unit

BC7, BC5, BC3, BC2 and B2C3 (corresponding to χB=0.125, 0.167, 0.250,

0.333 and 0.4, respectively) are found to be energetically favoured.

Description of low-energy structures

In the following discussion of the low-energy structures, the concentration

χB=0.250 is considered first, since it corresponds to the stoichiometry where

Luo et al. [95] identified the semiconducting configuration (BC3-I).

At χB = 0.250, the ground state BC3-I is found, Figure 6.3e, in agreement

with PSO method propoosed by Luo et al. [95] and early considerations

based on chemical intuition [43]. BC3-I is characterised by the presence of

isolated benzene-like units, which are defined by arrangements of the 1,4-B-

substituted 6-membered unit that was discussed in Section 6.2.

In this work, an entirely novel arrangement is found as the first excited

configurational state; BC3-II, shown in Figure 6.3f, is 10 meV lower in energy

than BC3-III, that was identified as the first excited configurational state by

Luo et al. [95]. The BC3-II compound presented here has a complex structure

with ethilene-like and naphthalene-like isolated units, which both contain the

1,4-B-substituted 6-membered rings. BC3-III (the same structure as Luo’s

BC3-II compund) is a 1D zigzag boron-chain structure, that does not contain

the 1,4-B-substituted 6-membered rings.
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Figure 6.2: Convex hull of B-C honeycomb layer, with χB ≤ 0.5: structures

predicted in the previous work (cross) [95], structures predicted in this work

(open square). The latter are associated with the relevant nomenclature.

For ease of reference, a dashed line lies 50 meV/atom above the convex-hull

(solid line). Formation energy, ∆Ef , is refereed to graphene and α-boron.
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(a) BC7-I (b) BC7-II

(c) BC5-I (d) BC5-II

(e) BC3-I (f) BC3-II

(g) BC2-I (h) BC2-II

(i) B2C3-I

Figure 6.3: Boron graphene: low energy structures; boron represented by

black spheres, carbon by grey ones.
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For low B concentration, novel structures with 1,4-B-substituted six-

membered units and aromatic-like carbon units have been found to be preva-

lent. At χB = 0.125, two novel arrangements, namely BC7-I (Figure 6.3a)

and BC7-II (Figure 6.3b) with relatively low formation energy have been

predicted. This concentration was not taken into account in Luo’s work.

For χB=1/6, BC5-I and BC5-II are shown in Figures 6.3c and 6.3d respec-

tively. BC5-II is characterized by 1D zigzag boron chains, while BC5-I is a

novel structure having naphthalene-like units that are not completely iso-

lated by boron atoms. The distance between carbon atoms connecting the

naphtaline-like units is the longest C-C distance (1.489 Å). The others are in

the range 1.400-1.451 Å. A longer distance denotes an improved single bond

character. BC5-II was predicted as the ground state at B:C 1:5 in Reference

[95]. However the novel configuration BC5-I is 12 eV lower in energy than

BC5-II.

At high B concentration, structures having 1D boron chains are preva-

lent. At χB=1/3, the CE approach predicts the same low energy structure

(BC2-I) as the PSO method. BC2-I is displayed in Figure 6.3g and presents

chains of boron and carbon atoms. However a relatively energetically close

structure, BC2-II, is predicted in this work (∆Ef=25 meV). BC2-II has 1,4-

B-substituted six-membered units, Figure 6.3h. Because of the stoichiometry

(high boron concentration), aromatic rings are not formed, however there is

the presence of polyethilene-like and ethilene-like units.

At χB = 0.4 a novel ground state is suggested, B2C3-I, Figure 6.3i, be-

longing to the family of structures having boron chain substructures. This

concentration was not investigated by Luo et al. [95].

Summarising, in the boron concentration range χB = {0.1250− 0.2500},
low energy configurations are prevalently formed by aromatic units sur-

rounded by boron atoms arranged in 1,4-substituted six-membered rings.

While at higher boron concentrations, χB = {0.3333 − 0.4000}, the typol-

ogy proposed by Luo et al. [95] seam to be the most relevant. For ease of

reference, results are reported in tabular form in Table 6.1.
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Table 6.1: Formation energies of low-energy structures of the B-graphene

system: ∆Ef is the formation energy referred to α-boron and graphene;

∆E(c.h.) is the energy gap above the convex hull; the last column indicates

the type of structure: “Z” 1D zigzag boron chain structure, “1,4-B” structure

with 1,4-B-substituted six-membered rings.

∆Ef ∆E(c.h.) type of

Compound χB [eV/atom] [eV/atom] configuration

BC7-I 1/8 0.144 0.027 1,4-B

BC7-II 1/8 0.164 0.046 1,4-B

BC5-I 1/6 0.174 0.019 1,4-B

BC5-II 1/6 0.186 0.031 Z

BC3-I 1/4 0.234 0.000 1,4-B

BC3-II 1/4 0.269 0.036 1,4-B

BC3-III 1/4 0.280 0.046 Z

BC2-I 1/3 0.363 0.023 Z

BC2-II 1/3 0.388 0.048 1,4-B

B2C3-I 2/5 0.425 0.000 Z
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Table 6.2: Bandgap calculated using HSE06 and B3LYP functionals of single-

layer and bi-layer B-graphene compounds.

HSE06 B3LYP

Compound χB B.G. [eV] B.G. [eV]

single layer

BC5-I 1/6 0.323 0.439

BC3-I 1/4 2.120 2.502

BC3-II 1/4 1.257 1.599

double layer

dl-BC3-I 1/4 1.623 1.999

It is important to spend some words discussing the fact that some struc-

tures are not ground states but lie at reasonable energy levels above the

convex-hull. While in metal alloy materials, such energy gaps could lead

to phase separation, systems characterised by strong covalent bonding are

difficult to re-arrange once they are formed. This is due to the reconstruc-

tive nature of the phase transformation process, that involves a high energy

barrier. This concept has been widely underlined in the study of metastable

carbon allotrope by Bucknum et al. [25]. Moreover low energy structures are

important because they can partially describe the main bonding character

at finite temperature, when some degree of disorder is added to the system.

6.3.2 Electronic properties

Using the hybrid functionals, HSE06 and B3LYP, described in Section 3.1.3,

the electronic band structures for the configurations identified in the pre-

vious section have been calculated. The majority of compositions have a

metallic band structure, in agreement with Luo et al. [95]. However, three

particular compositions exhibit a bandgap at the Fermi level, indicative of

semiconductors, namely BC3-I, BC3-II and BC5-I. The phonon dispersion for

these semiconducting structures has been calculated; no modes with nega-
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tive eigenvalues have been identified, implying they are dynamically stable

at 0 K [73]. Two of the semiconducting structures reported here, BC3-II and

BC5-I, are entirely novel; Figures 6.4 and 6.5 show the phonon dispersion

and electronic structure of these compounds.

The bandgaps for BC3-I, BC3-II and BC5-I, calculated with both the

HSE06 and B3LYP hybrid functionals are shown in Table 6.2. Note that

the bandgaps calculated with B3LYP are systematically higher than those

calculated with HSE06 functional, in agreement with the tendency of B3LYP

to predict higher bandgap than HSE06 for graphene derivatives [162].

As argued in Section 6.3.1, BC3-I and BC3-II structures are characterized

by the presence of aromatic-like and ethilene-like carbon units isolated by B

atoms; BC5-I by naphthalene-like units isolated by B atoms and C-C bonds

bridging the naphthalene-like units.

To have a better understanding of this system, in particular the C-C

bonding, a Mulliken population analysis [247] has been performed. The

average overlap population of C-C bonds, that belong to aromatic-like or

ethilene-like units, is 1.10 |e|, while the overlap population of C-C bond

connecting the naphtaline-like units in BC5-I is 1.00 |e|. The lowest overlap

population, along with the longest bond lenght discussed in Section 6.3.1,

indicates an enhanced single-bond character of the C-C bridging bonds in

BC5-I.

The calculated overlap population of B-C bonds is always lower than

0.98 |e|. The boron atoms have an associated charge of ∼ +0.56 |e|, show-
ing charge localization effect, as reported for related system (B-substituted

single-wall carbon nanotubes) by Fuentes et al. [45].

The boron atoms are sp2 hybridised with the three 2p electrons mainly

participating to the formation of B-C σ-bonds. In author’s opinion, the

semi-conducting behaviour is therefore believed to be due to isolation of

conducting carbon areas, prevalently aromatic, by bonds with partial single

character.
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It is important to underline that the absolute magnitude of bond popu-

lation and the atomic charges calculated by population analysis have little

physical meaning [248], because of the sensitivity to the atomic basis set.

However, relative values have been shown to give useful information in iden-

tifying trends [249].
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Figure 6.4: Phonon dispersion (left) and electronic band structure (right)

of BC3-II: no modes with negative eigenvalues are present, denoting a vi-

brationally stable structure. The band structure, calculated using B3LYP

functional, shows a indirect bandgap of 1.599 eV.
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Figure 6.5: Phonon dispersion (left) and electronic band structure (right)

of BC5-I: No modes with negative eigenvalues are present, denoting a vi-

brationally stable structure. The band structure, calculated using B3LYP

functional, shows a indirect bandgap of 0.439 eV.
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6.4 Double-layered boron-substituted graph-

ene

The electronic structure of pure graphene is affected by the local environment;

the presence of a second layer of graphene, Section 2.3.1, or a supporting

substrate [250] have both been shown to modify the electronics of the system.

Graphene epitaxially grown on SiC substrate has ∼ 0.26 eV bandgap due to

graphene-substrate interactions. On the basis of these considerations, and

the hypothesis that interlayer interactions will have an enhanced effect in

systems with a non-uniform charge distribution, the effect of a second layer

of B-C graphene is of particular interest; its investigation is the subject of

the present section.

The effect on the electronic band structure of boron substituted graphene

by addition of a second layer has been studied, using a simple model of two

honeycomb layers stacked in the same fashion as hexagonal graphite [251].

The supercell is 13 Å in the out-of-plane direction. A CE search has been

performed for 16 atoms per unit cell. Because of the complexity of the system,

mainly due to interlayer interactions, it is not possible to converge to a low

CV score. The best fit has a CV of 61 meV. Despite the high uncertainty the

main result is reported because it can be supported by considerations based

on chemical intuition.

A single ground state structure excluding the end-compounds, was iden-

tified. The structure has composition χB = 1/4, and it is related to the single

layered BC3-I arrangement. Figure 6.6 displays several views of the struc-

ture, named here dl-BC3-I (“dl” for double layer). The dynamical stability of

dl-BC3-I has been confirmed by calculation of the phonon mode dispersion,

shown in Figure 6.7 on Page 114.
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(a) (b)

(c)

Figure 6.6: Double layer B-graphene, dl-BC3-I, side view (a) and top view (b)

2×2 supercell view (c): for ease of comprehension, atoms lying at boundaries

of the cell are not repeated. Boron atoms (black) are not equivalent: there

are two different local environments: boron facing a benzene-like unit and

boron facing boron on the opposite layer. In (a), the latter are marked with

an asterisk.
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In dl-BC3-I, carbon atoms are crystallographically equivalent while boron

atoms are placed in one of two different local environments. Considering the

top layer, one subset of boron atoms, indicated with an asterisk in Figure

6.6a, is located directly above another boron atom in the bottom layer. The

remaining boron atoms are located on top of a ring formed by carbon atoms.

The calculated interlayer distance is 3.489 Å; the layers would be expected

to experience interaction. In a unit cell, Figure 6.6a, there are two attractive

interactions “B↔C-ring” and a repulsive interaction “B*↔B”. A Mulliken

population analysis [247] has been performed. The charge associated with

carbon atoms is −0.18 |e|. For of B* and B, the calculated charges are

+0.52 |e| and +0.55 |e|, respectively. This can be compared with the sin-

gle layer BC3 compound, where carbon atoms have an associated charge of

−0.19 |e| and the boron atoms, which are geometrically equivalent, have a

charge of +0.56 |e|. In double layer systems, therefore, charge transfer is

induced to compensate interlayer electrostatic interactions.

Comparing dl-BC3-I with BC3-I, the modified charge distribution infers

a different electronic structure. The band structure of dl-BC3-I calculated

with B3LYP functional is displayed in Figure 6.7 on Page 114. The bandgap

calculated with B3LYP and HSE06 functionals is 1.999 eV and 1.623 eV

respectively; these values are included in Table 6.2. Interlayer interactions,

due to presence of charged atoms distributed in ordered positions along the

layers, strongly affect the bandgap. The bandgap of dl-BC3-I is ∼ 0.5 eV

lower that the one of homologous single layer compound. This result is in

agreement with early calculations of Tomanek et al. [43], showing that the

metallic nature of BC3 bulk material is due to the interlayer interactions,

while a single layer of BC3 was predicted to be semiconductor.

The small energy difference between the direct and the indirect gap,

see Figure 6.7, should open the exciting possibility of producing light emit-

ting/adsorbing devices with reasonable quantum efficiencies. It is likely that

the bandgap could be tuned by changing the interlayer distance. This topic

is a subject of on-going research.
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Interestingly, dl-BC3-I is only 0.004 eV/atom less stable than BC3. This

can be indicative of a tendency to avoid the folding and buckling that is

typical of many 2-dimensional materials [252].
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Figure 6.7: Phonon dispersion (left) and electronic band structure (right)

of dl-BC3-I: no modes with negative eigenvalues are present, denoting a vi-

brationally stable structure. The band structure, calculated using B3LYP

functional, shows a indirect bandgap of 1.999 eV.
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6.5 Chapter conclusions

On the basis of the present studies, it is suggested that boron substitution is

an effective way to modify the bandgap of graphene related materials over a

wide range of values. Novel metastable B-C semiconductor compounds have

been identified at concentrations χB = 1/4 and χB = 1/6. The predominance

of the 1,4-substitution in 6-membered unit has been confirmed by both the

direct ab initio and the CE approaches. These structures have aromatic-like

units isolated by single bonds (prevalently C-B bonds). In agreement with

the important role of aromaticity in organic chemistry, structures having

aromatic-like carbon units are the most stable energetically in a wide range

of concentration. Fuentes et al. [45] reported a similar effect, related to band

structure modification induced by substitution, in highly boron-substituted

single-wall carbon nanotubes.

It would, perhaps, be counter-intuitive that the structures with 1D zigzag

boron chains would be the most stable, as proposed by Luo et al. [95] These

structures are, of course, prevalent at high boron concentration, when the

formation of carbon units would imply the formation of extended areas of

boron.

The effect of adding a second layer in modulating the bandgap has been

demonstrated: dl-BC3-I has a bandgap some 0.5 eV lower than the one of

the homologous single layered compound. This study strongly suggests that

the bandgap at the Fermi level can be modulated over a wide range of val-

ues by changing the boron concentration and the local environment. This

could be of fundamental importance for experimental researchers in success-

fully synthesising technologically useful semiconductor materials based on

the carbon honeycomb structure for nano-electronics and energy-conversion

applications.

The possibility of producing the structures proposed here is supported by

the fact that the BC3 honeycomb sheet has been grown epitaxially [118], and

the BC3 three-dimensional structure has already been synthesised [42]. It

is possible that single-layer or few-layer materials could be produced by the
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standard technique of exfoliation, widely used for producing graphene and

other layered materials [253].

In terms of the computational methodology, the CE-DFT approach has

been shown to find structures that have lower energies than the ones identified

in the PSO method [95]. The CE approach allows a configurational search

based on a particular parent lattice (topology) to be performed, while PSO

takes into account a wider number of possible arrangements where the topol-

ogy is changed. The PSO does not predict the correct ranking of structures,

failing to take into account the dramatically increased number of possible

combinations.

As a final point, it is perhaps worth mentioning that layered BC3 com-

pounds have been proposed as promising high-capacity Li inclusion com-

pounds for use in Li-ion batteries [254].
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Chapter 7

General discussion and

conclusions

The main conclusions of the thesis are briefly outlined here:

• the tetragonal carbon allotrope, called glitter, is the only structure that

is dynamically stable at 0 K among the ones that have been proposed

for n-diamond; because of its stability, along with its metallic band

structure and its consistency with the diffraction pattern of n-diamond

[77], it is likely to describe the n-diamond arrangement;

• B, N, and Si substitutions in glitter are effective both for decreasing

the formation energy and for opening a bandgap;

• boron substitutions in graphene are effective for opening a bandgap

at the Fermi level; a number of entirely novel stable structures, some

of them semiconducting, have been presented in this thesis: in the

range χB = {0.1250−0.2500}, the most stable configurations show two

features: boron are arranged in 1,4-boron-substituted six membered

ring, carbon prevalently forms isolated aromatic rings; at higher boron

concentration χB > 1/3, the structures with 1D zigzag boron chains,

that have been proposed by Luo et al. [95], are the most prevalent;

• an extra layer of boron substituted graphene is effective for modifying

the bandgap of the resulting material, giving a second way of modu-

lating the bandgap.
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7. General discussion and conclusions

7.1 On the methodology

On the side of the computational methods, there are two important consid-

erations:

• ab initio lattice dynamics is of fundamental importance for testing the

stability of novelly predicted phases;

• cluster expansion is a powerful tool to predict novel configurations of

carbon related materials, however the results must be carefully inter-

preted because is difficult to achieve high accuracy; in the case of car-

bon substituted nets, CE is useful to drive the search; however results

must be always confirmed by ab initio calculations and by a chemical

understanding of the system.

I would like to underline that it is unlikely that configurations as complex

as the ones reported in this work would be proposed on the basis of chemical

intuition alone. Some of these structures, especially the ones with relatively

large unit cell, are so complex that are difficult to be rationalised without

the aid of computational tools.

It is however important to say that, although the configurational space

has been investigated in a far wider region than in previous work, the config-

urational space that remains unexplored is vast. It is entirely possible that

structures with larger unit cells, which are not considered here, would be

relevant for a complete understanding of the systems. However, in my opin-

ion, this is currently beyond the possibility of the computational tools now

available, and remains the holy grail of computational materials research in

substitutionally disordered crystalline systems.

Although ab initio calculations of phonons spectra have been widely em-

ployed to investigate phase stability and phase transition [27, 95, 255], it

is well-known that several errors are introduced in the calculated force con-

stants [217]: computational rounding and interpolation errors, errors due

to the use of a finite basis set and a finite k-point set, errors in the finite
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convergence of the structural parameters and errors related to the degree

of anharmonicity. While the effects of the first three mentioned sources of

errors can be mitigated by an accurate computing, anharmonicity is strongly

dependent on the crystal structure. For instance, titanium and zirconium

presents anharmonicity effect of thermal lattice vibrations [256]: bcc phases

become unstable in the harmonic approximation [257, 258] revealing imagi-

nary phonon frequencies. However these phases appear as high temperature

phases, because they are stabilized by large vibrational and electronic entropy

[258, 259, 260].

In closing, it is important to employ computational approaches being

mindful of the limits of their validity in particular when predicting the sta-

bility novel structures in term of energy and dynamics.

7.2 Outlook

I would like to conclude by saying that working in the area of prediction of

carbon-based structures has provided an extremely fascinating journey where

I surely did not experience any lack of ideas for future investigations.

I am currently involved in writing additional publications to present fully

the work of this thesis and I am hopeful in attracting further funding to

answer the main open questions related to these fascinating systems:

Among the hypothetical carbon allotropes proposed in the literature, which

ones are dynamically stable?

Is it possibly to find any definitive experimental evidence for glitter-like

structures?

What is the effect of multi-element substitutions in graphene?

Are the novel structures stable at finite temperature?
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Molecular-Level Characterization of
Heterogeneous Catalytic Systems by

Algorithmic Time Dependent Monte Carlo

N. Armata, G. Baldissin, G. Barone, R. Cortese, V. D’Anna, F. Ferrante,

S. Giuffrida, G. Li Manni, A. Prestianni, T. Rubino, Zs. Varga, D. Duca

Topics in Catalysis, 52 (2009) 431

Monte Carlo algorithms and codes, used to study heterogeneous catalytic sys-

tems in the frame of the computational section of the NANOCAT project, are

presented along with some exemplifying applications and results. In particu-

lar, time dependent Monte Carlo methods supported by high level quantum

chemical information employed in the field of heterogeneous catalysis are fo-

cused. Technical details of the present algorithmic Monte Carlo development

as well as possible evolution aimed at a deeper interrelationship of quantum

and stochastic methods are discussed, pointing to two different aspects: the

thermal-effect involvement and the three-dimensional catalytic matrix simu-

lation. As topical applications, (i) the isothermal and isobaric adsorption of

CO on Group 10 metal surfaces, (ii) the hydrogenation on metal supported

catalysts of organic substrates in two-phase and three-phase reactors, and

(iii) the isomerization of but-2-ene species in three-dimensional supported

and unsupported zeolite models are presented.
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Structural and Kinetic DFT Characterization
of Materials to Rationalize Catalytic

Performance

N. Armata, G. Baldissin, G. Barone, R. Cortese, V. D’Anna, F. Ferrante,

S. Giuffrida, G. Li Manni, A. Prestianni, T. Rubino, D. Duca

Topics in Catalysis, 52 (2009) 444

This review shortly discusses recent results obtained by the application of

density functional theory for the calculations of the adsorption and diffusion

properties of small molecules and their reactivity on heterogenous catalytic

systems, in the ambit of the Nanocat project. Particular focus has been

devoted to palladium catalysts, either in atomic or small cluster form. Some

protocols have been tested to obtain efficient ways able to treat the electronic

and geometric influence of supports like zeolites and carbon nanotubes on the

catalytic properties of palladium. The hydroisomerization of cis-but-2-ene

is discussed as model reaction on supported and unsupported Pd clusters.

Some preliminary results on the structural investigation of systems formed

by a palladium clusters and block copolymers are also presented.
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In situ powder neutron diffraction study of
non-stoichiometric phase formation during

the hydrogenation of Li3N

D.J. Bull, N. Sorbie, G. Baldissin, D. Moser, M.T.F. Telling, R.I. Smith,

D.H. Gregory, D.K. Ross

Faraday Discussions, 151 (2011) 263

The hydrogenation of Li3N at low chemical potential has been studied in

situ by time-of-flight powder neutron diffraction and the formation of a non-

stoichiometric Li4−2xNH phase and Li4NH observed. The results are inter-

preted in terms of a model for the reaction pathway involving the production

of Li4NH and Li2NH, which subsequently react together to form Li4−2xNH.

Possible mechanisms for the production of Li4NH from the hydrogenation of

Li3N are discussed.
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The pressure-temperature phase diagram of
MgH2 and isotopic substitution

D. Moser, G. Baldissin, D.J. Bull, D.J. Riley, I. Morrison, D.K. Ross,

W.A. Oates, D. Norus

Journal of Physics: Condensed Matter, 23 (2011) 305403

Computational thermodynamics using density functional theory ab initio

codes is a powerful tool for calculating phase diagrams. The method is

usually applied at the standard pressure of p = 1 bar and where the Gibbs

energy is assumed to be equal to the Helmholtz energy. In this work, we have

calculated the Gibbs energy in order to study the release temperature and

phase modifications of MgH2 at high pressures up to 10 GPa (100 kbar). The

isotopic substitution of hydrogen with deuterium (or tritium) does not bring

about any strong effects on the phase diagram. These considerations are of

extreme importance for (i) the synthesis of novel substitutional magnesium

based materials at high pressure and (ii) the determination of the correct

reference states for the calculation of phase diagrams at high pressure. The

calculated results are compared with experimental data obtained with an in

situ neutron diffraction measurement.
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n-Diamond: Dynamical stability of proposed
structures

G. Baldissin, D.J. Bull

Diamond and Related Materials, 34 (2013) 60

A number of experimental works, mainly under extreme conditions, report a

carbon phase with the same reflections as diamond but showing additional re-

flections that are forbidden for diamond. The crystal structure of this phase,

called n-diamond by Hirai and Kondo (H. Hirai and K.-i. Kondo, Science 253

(1991) 772-774), remains unclear. By means of ab initio calculations based on

density functional perturbation theory, the dynamical stability of the struc-

tures proposed to be n-diamond has been investigated up to a pressure of

30 GPa. According to the calculations, a tetragonal carbon allotrope, called

glitter (M.J. Bucknum and R. Hoffman, J. Am. Chem. Soc. 116 (1994)

11456-11464), is the best candidate. The calculated electronic structure and

bulk modulus of glitter are critically discussed.
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Synthesis of Pure Lithium Amide
Nanoparticles

G. Baldissin, N.M. Boag, C.C. Tang, D.J. Bull

European Journal of Inorganic Chemistry, 2013 (2013) 1993

Deprotonation of ammonia with n-butyllithium offers a facile synthetic route

to produce pure lithium amide exhibiting fine granularity, which facilitates

the complete thermal decomposition to lithium imide at a relatively low

temperature of 600 K. Synthesised compounds were characterised by high-

resolution synchrotron X-ray diffraction, and the particle morphology of

lithium amide was studied by transmission electron microscopy. The pro-

posed methodology readily affords the production of pure lithium amide

nanoparticles at both bench-top and commercial scale.
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T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker,

D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini,

S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-

M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete,

G. Zerah, and J.W. Zwanziger. Computer Physics Communications,

180(12):2582, 2009.

[196] J. D. Gale. Journal of the Chemical Society, Faraday Transactions,

93(4):629, 1997.

[197] M. Chakraborty, J. Spitaler, P. Puschnig, and C. Ambrosch-Draxl.

Computer Physics Communications, 181(5):913, 2010.

[198] K. Schwarz and P. Blaha. Computational Materials Science, 28(2):259,

2003.

140



BIBLIOGRAPHY

[199] S. R. Bahn and K. W. Jacobsen. Computing in Science and Engineer-

ing, 4(3):56, 2002.

[200] I.D. Brown and B. McMahon. Acta Crystallographica. Section B,

58(1):317, 2002.

[201] R.W. Grosse-Kunstleve. Acta Crystallographica. Section A, 55(2):383,

1999.

[202] S. Baroni, P. Giannozzi, and A. Testa. Physical Review Letters,

58(18):1861, 1987.
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