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We present a numerical study of the giant Goos–Hänchen shifts (GHSs) obtained from an Airy beam impinging on a
nonlinear interface. To avoid any angular restriction associated with the paraxial approximation, the analysis is
based on the nonlinear Helmholtz equation. We report the existence of nonstandard nonlinear GHSs displaying
an extreme sensitivity to the input intensity and the existence of multiple critical values. These intermittent
and oscillatory regimes can be explained in terms of competition between critical coupling to a surface mode
and soliton emission from the refracted beam component and how this interplay varies with localization of the
initial Airy beam. © 2014 Optical Society of America
OCIS codes: (190.0190) Nonlinear optics; (190.3270) Kerr effect; (190.4350) Nonlinear optics at surfaces; (190.6135)

Spatial solitons.
http://dx.doi.org/10.1364/OL.39.001378

Airy beams [1] have remarkable properties, such as their
self-healing capabilities [2], that make them very attrac-
tive for applications ranging from linear optical commu-
nications [3] to those of the high-intensity nonlinear
optical regime [4]. Ideal nondiffracting self-bending
optical Airy beams have infinite energy, and some sort of
truncation is required to obtain solutions that can be
used in practice. Finite energy Airy beams keep the main
properties of their ideal counterparts only for a limited
propagation distance. Among the various alternatives
that have been put forward as finite energy Airy beams,
we will use in this work the exponential apodization of
the initial beam profile proposed in [5].
The refraction and reflection of Airy beams at linear

interfaces were addressed in [6]. Here, we study the
behavior of finite energy Airy beams at a linear-nonlinear
interface close to the critical angle for total internal
reflection. In this setup, an enhancement of the Goos–
Hänchen shift (GHS) [7] can be obtained due to the
coupling to nonlinear surface modes. This giant or non-
linear GHS was first described in [8] for Gaussian beams
and later studied analytically, for nonlinear interfaces, us-
ing an equivalent-particle description of optical solitons
[9]. Recent experiments using nematic liquid crystals
[10,11] demonstrated the controllable nonlinear refrac-
tion of optical solitons. The use of a Helmholtz theory
for optical solitons [12–14] permitted interface studies
without the angular restrictions imposed by the paraxial
approximation and revealed new related phenom-
ena [15].
When a Gaussian beam impinges on a nonlinear inter-

face at a fixed angle of incidence [8], the dependence of
the total internal reflection angle on the nonlinear refrac-
tive index results in the existence of a critical intensity
for the coupling to a surface mode. The giant GHS is de-
fined at intensities smaller and close to this critical value
that corresponds to the position of a vertical asymptote.

The same behavior is found for the interaction of a
soliton with a nonlinear interface [9,15].

However, the Airy initial condition has richer phase
and amplitude structures, when compared with a
Gaussian or a soliton beam, that are intimately related
to its self-bending nature. We report that the coupling
of the incident Airy beam to the surface mode can exhibit
multiple critical values and wide variations in the giant
GHS from relatively small changes in the incident beam
intensity, producing oscillatory or even intermittent giant
GHS regimes. This extreme sensitivity to the field
intensity could be used for sensing applications. At larger
intensities, we find the simultaneous generation of re-
fracted soliton beams and a reflected component that
is subject to the same type of complex interactions with
the interface.

We consider a plane boundary separating two media,
l � 1, 2, with refractive indices n2

l � n2
0;l � n2

NL;l and
n2
NL;l � γljEj2. The nonlinear Helmholtz equation describ-

ing the evolution of a TE polarized optical field E�x; z� �
E0u�x; z� exp�jkn0z� can be written, in terms of its
complex envelope u�x; z�, as [12,13]

κ
∂2u
∂ζ2

� j
∂u
∂ζ

� 1
2
∂2u
∂ξ2

−

Δl

4κ
u� αljuj2u � 0; (1)

where Δl � 1 − �n0l∕n0�2, n0 is an arbitrary reference re-
fractive index, and 4καl � γlE2

0∕n
2
o is the ratio of the non-

linear and linear refractive indices [16]. The transverse
and longitudinal scalings in ξ � x∕X0 and ζ � z∕Z0 are
chosen such that Z0 � kn0X2

0 is the Rayleigh range of
a hypothetical input Gaussian beam of width X0. κ �
X2

0∕�2Z2
0� keeps the information about the scalings used

and permits rewriting any particular solution of the
normalized equation back in terms of the laboratory
coordinates. This nonparaxiality parameter [12]
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κ � ��λ0∕n0�∕X0�2∕�8π2� will be very small for paraxial
propagation situations. The paraxial approximation
amounts to neglecting the first term in Eq. (1), whereby
a nonlinear Schrödinger (NLS) equation describes the
evolution of the optical beam. Once the nonparaxiality
parameter κ is fixed, we adjust the nonlinear refractive
index mismatch by varying a single parameter α. This
could correspond to a change of either the input beam
intensity or the nonlinearity of the medium.
We assume the l � 1 incidence medium to be linear,

and we set its refractive index as the reference value
for the whole study. Therefore, we useΔ1 � 0 and α1 � 0
in Eq. (1). The refraction of the incident beam takes place
at the planar boundary with a focusing Kerr nonlinear
medium α2 � α > 0, such that the discontinuity in the
linear refractive indices should correspond to (linear) in-
ternal refraction Δ2 � Δ > 0.
We consider an input beam propagating on axis, with

an initial transverse profile

u�ξ; ζ � 0� � Ai�ξ� ξp� exp�a�ξ� ξp�� (2)

that corresponds to the initial condition of a finite energy
accelerating Airy beam [5]. The angular spectrum of this
beam has a width of order 1∕

������

2a
p

(that, as it has been
noted in [17], decreases as its localization at the launch
point increases). Therefore, a paraxial description of the
initial propagation of the input beam launched along the
optical axis in the incidence medium is adequate
provided that a ≫ κ since the maximum transverse wave-
number in the normalized frame [12] is 1∕

�����

2κ
p

. The
asymptotic paraxial evolution from Eq. (2) can be accu-
rately approximated by a Gaussian-like term [17] and,
therefore, a behavior similar to the corresponding inci-
dent Gaussian mode could be expected in this regime.
The intrinsic curvature of the input beam hinders a

precise definition of the angle of incidence itself. We base
our analysis on the Helmholtz equation [14] and, in order
to adjust the incidence conditions, we exploit the asso-
ciated angular freedom to rotate the interface by an
inclination angle θ around a pivoting point at �ξ0; ζ0�
while the input condition is kept fixed. The use of the full
Helmholtz framework also permits one to unambigu-
ously map a transverse shift V in the normalized frame
to a physical angle through the nonparaxial parameter
κ, using θ � arctan�

�����

2κ
p

V� [12]. For each set of �a; ζ0; θ�,
α is varied starting from α � 0; this corresponds, in an
associated experimental setup, to a progressive increase
of the input beam power. We consider a value ofΔ � 0.01
and κ � 0.001 that amounts to an FWHM of six optical
wavelengths. This value has been extensively used in
previous analyses and provides a guarantee of the valid-
ity of the scalar approximation [12–16].
Perfectly collimated nonlinear waves with planar

phase fronts, such as soliton beams or nonlinear plane
waves, admit a precisely defined critical angle that can
be calculated through a nonlinear Snell’s law obtained
by phase matching of the solution on each side of the in-
terface [8,9,13]. On the contrary, the complex phase
structure of an input Airy condition, linked to its bending
nature, imposes the requirement of a numerical approach
for the identification of the critical input conditions.

A preliminary broad numerical survey permitted identifi-
cation of the relevant parameter regions that were later
studied in a systematic way. The values chosen for a are
0.1, 0.2, 0.3, 0.4, and 0.6. The input beam is defined with
ξp � 3, two values are considered for the interface incli-
nation, θ � 1° and θ � 2°, ζ0 takes values from 0 to 12,
always with ξ0 � 0, and propagation over a total normal-
ized length of ζ � 30 is considered in all cases.

The value of the localization parameter a is central for
the behavior of the Airy beam at the interface. The
numerical results suggest the existence of a minimum
value of a for the observation of a GHS. Even for a � 0.1,
a nonlinear GHS is found only at the smallest tilt angle
θ � 1° and when the interface is very close to the launch
plane. For this parameter range (a � 0.1, θ � 1°) two
distinct scenarios can be clearly identified: for ζ0 � 0
[Figs. 1(a)–1(c)], as α increases toward a critical value,
the interaction with the nonlinear interface is very similar
to that of Gaussian [8] or soliton beams [9,15] experienc-
ing a giant GHS. When this critical α is exceeded, a re-
fracted soliton is generated in the second medium.
If the interface is moved farther to ζ0 � 4 [Figs. 1(d)
and 1(e)] the refracted beam component results in the
eventual emission of a soliton in the second medium,
in a very similar fashion to that found for the propagation
of an Airy beam in a homogeneous nonlinear
medium [18].

In Fig. 2 we use the GHS, defined as the distance
traveled by the peak of the beam in the second medium,
versus the nonlinear mismatch α to analyze the results.

Fig. 1. (a)–(c) Typical sequence in the critical coupling to a
surface mode and giant GHS. (d)–(f) Typical soliton shedding
sequence as α increases. In both cases a � 0.1.
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ThemaximumGHS shown is limited by the total length of
the computation window. The oscillation in the GHS
curves displayed in Fig. 2(a) for ζ0 � 2 can be interpreted
as the result of the competition between the two effects:
the coupling to a surface mode (giant GHS) and the
soliton emission from the refracted beam component.
The effect is far more pronounced when a is increased

to 0.2 and 0.3 [Figs. 2(b)–2(f)] where the oscillations in
the GHS (Fig. 3) can turn into intermittency regions
(Fig. 4), in which the giant GHS effect appears and dis-
appears as α is varied. This multiplicity of critical values
resembles the coupling to Tamm waves at an interface
with a structured material [19]. While there is a boundary
separating two media, each is homogeneous; it is then
that the unique oscillatory profile of the Airy beam
combined with the nonlinear property of the dielectric
to the right of the interface induces both the excitement
of a surface wave and the Tamm-like effect.
As a is further increased, the oscillations of the Airy

beams are largely diminished and the solutions become
closer to their asymptotic Gaussian beam even at small
distances to the launch plane, and a behavior close to
that of Gaussian input [8] is found for most cases.
Figures 2(b)–2(d) show the results corresponding to

a � 0.2 at θ � 1°. Intermittency is then clearly observed
in all the cases with ζ0 ≤ 8, whereas oscillatory results
are found for larger values. When a � 0.2 and θ � 2°
[Fig. 2(e)], oscillatory GHS is found for values of ζ0 up

to 5 and the oscillations cease at ζ0 � 6. The soliton shed-
ding process dominates at larger values.

Figure 2(f) shows the giant GHS for a � 0.3 and θ � 1°:
different intermittency bands are found for all values of
ζ0. When θ � 2°, intermittent GHS is found for ζ0 � 0
and 1 and giant GHS with oscillations with α for ζ0 rang-
ing from 2 to 5. If ζ0 is further increased, after an oscil-
latory region the critical coupling to a surface mode is
superseded by soliton shedding phenomena.

When a � 0.4 giant GHS with intermittency is ob-
served when θ � 1° for all values of ζ0. For a � 0.4
and θ � 2°, intermittent giant GHS is found when ζ0 is
smaller or equal to 5 and oscillatory GHS at ζ0 � 6.
For larger values, the behavior is similar to that of
a � 0.3 and θ � 2° at the largest values of ζ0.

In general, one can observe how the decrease of the
peak intensity of the finite energy input Airy beams
due to diffraction tends to shift the critical coupling

Fig. 2. GHS for different values of ζ0 and (a) a � 0.1 θ � 1°,
(b)–(d) a � 0.2 θ � 1°, (e) a � 0.2 θ � 2°, and (f) a � 0.3
θ � 1°.

Fig. 3. Oscillations of giant GHS at θ � 2°, a � 0.2, and ζ0 � 5.

Fig. 4. Setup of an intermittent GHS at a � 0.3, θ � 1°, and
ζ0 � 6.
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features to larger values of α as the interface is moved to
larger ζ0. Even though the results for larger values of a
typically resemble those corresponding to an input
Gaussian condition, quite remarkably, intermittency is
also found for a � 0.6, θ � 2°, and ζ0 ≥ 8 at very large
values of α.
At larger values of α, one can find the emission of a

second soliton in the nonlinear medium and its compet-
ing critical coupling to a surface mode that produces the
previously described type of oscillatory and/or intermit-
tent GHS with the simultaneous emission of the primary
soliton, as shown in Fig. 5.
Some of the results presented involve large values of α.

We have performed similar analyses at these values of α
and analogous input intensities using input Gaussian
beams without observing any intermittent or oscillatory
GHS. The accuracy of the numerical results has been
checked by reducing the propagation and transverse dis-
cretization steps by a factor of 4 for a number of cases
at particularly large values of α, without observing
any change in the results. We have also studied some

parameter ranges using the paraxial NLS equation ob-
tained when the first term in Eq. (1) is neglected, with
the result that the same qualitative behavior is observed
but with significant quantitative differences.

This work has been funded by the Spanish MICINN,
project number TEC2012-21303-C04-04, and Junta de
Castilla y León, project number VA300A12-1.
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