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Personal motivation 

The first motivation for this research was born because of some discrepancies found when 

doing some reverberation time (RT) measurements. At the time, I was comparing data 

measured against RT calculations done with ray-tracing acoustic software called Odeon.  

It was clear that the measurement results presented in my M.Sc. dissertation back in 2007 

were inaccurate; consequently, I wanted to understand how to attain good acoustic 

measurements.  First question asked myself was: how can I contribute to the study of 

small spaces, which do not have a diffuse field?  I remembered I was intrigued with the 

question of existence of a measure for diffuseness and how to use it on room acoustics.  

The literature review found on that topic was scarce.  At the end of my M.Sc. Audio 

Acoustics at the University of Salford, I found myself dissatisfied with the level of 

knowledge that I grasped during my courses.  I needed to continue further because I was 

pursuing deeper understanding of acoustics.  I remember reading the Ph.D. thesis of Dr 

Bruno Fazenda who later became my main supervisor.  Reviewing all the subjects studied 

in the M.Sc., I was totally into room acoustics.  Amongst all the Ph.D. theses that I read 

during my M.Sc. in Salford, the one authored by Dr. Fazenda was my favourite because it 

combined the critical listening spaces and low-frequency characterisation.  

Coincidentally, when I was finishing my dissertation, he was in search of supervision of a 

Ph.D. student.  Better yet, the topic of research was very interesting and challenging 

because it was mixing small rooms and the other part was not touched in his thesis, i.e. 

the effect of mid and high frequencies.  We had a mutual supervisor named Dr. William J. 

Davies, who recommended me to Dr. Fazenda to obtain that position through a fee waiver  

at the University of Huddersfield.  The idea to combine the study of small room acoustics 

and the characterisation of reflected energy attracted my attention because nowadays, the 

majority of the designs that can be done practically are small spaces.  The common 

practice to characterise small rooms using a single omni-directional microphone lacks any 

directional information.  Therefore, this topic was a perfect continuation of the studies of 

non-diffuse spaces, which was the subject of my M.Sc. Audio Acoustics dissertation.  It 
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was a great area to explore because of the scarce information found on the topic and my 

ultimate goal, which was to focus on critical listening spaces. 
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Nomenclature  

a) Abbreviations: 

This list identifies some of the Abbreviations that are not necessarily defined every time 

they appear in the text. 

 CAD   computer-aided design. 

 CAM   computer-aided manufacturing. 

 CNC   computer numerical control. 

 DAW   digital audio workstation software (i.e. Pro Tools, Logic Pro, 

Adobe Audition). 

 DirAC  Directional Audio Coding. 

 DOA   direction of arrival.  { 
} 

 DSP   digital signal processing. 

 EDM   electro-discharge machine. 

 EDT   early decay time.  {s} 

 ERB   equivalent rectangular band.  {adimensional} 

  equivalent rectangular bandwidth of the rectangular filters. {adimensional} 

 ETC   energy time curve. 

 dB   decibel (1/10 of a bel, i.e. 1B = 10 dB).  {dB}  

 ERBN
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 dBFS   full scale decibel reference to the maximum value of the signal s.  {dBFS} 

 FIR   finite impulse response (Type of Filter). 

 FFT   fast Fourier transform. 

 Hz   Hertz  {Hz = cycles/s}. 

 IFFT   inverse fast Fourier transform. 

 IID   interaural intensity difference.  {dB} 

 ITD   interaural time differences (time delay).  {ms} 

 JND    just noticeable difference. 

 LTI   linear time invariant filter. 

 MAA   minimum audible angle. 

 number of points of the fast Fourier transform.  {adimensional} 

 SPL   sound pressure level.  {dB} 

 rms   root mean square value of a signal (s). 

 IR   impulse response.  {Pa or dB} 

 IRx   impulse response in x-axis.  {Pa or dB} 

 
IRy   impulse response in y-axis.  {Pa or dB} 

 IRz   impulse response in z-axis.  {Pa or dB} 

RIR   room impulse response.  {Pa or dB} 

 RT   reverberation time.  {s} 

 STFT   short-time Fourier transform. 

 NFFT
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 SIRR   spatial impulse response rendering. 

 SNR   signal-to-noise-ratio .  {dB} 

 SRP   steered response power. 

 TD   time domain. 

 TDOA   time difference of arrival.  {ms} 

 TOA   time of arrival.  {ms} 

 TDE   time delay estimation.  {ms} 

 TOF   time of flight, also known as TOA.  {ms} 

 VMC   vertical machine center. 

 1-D   one-dimensional. 

 2-D   two-dimensional. 

 3-D   three-dimensional. 

  3-D IR  three-dimensional impulse response. 
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b)  Symbols: 

This list identifies some of the symbols that are not necessarily defined every time they 
appear in the text. 

  AT    transpose operator T for matrix or vector  A . 

   A = x, y, z⎡⎣ ⎤⎦   3-D vector. 

  

A =
x
y
z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  transposed 3-D vector. 

  
A = a b

c d
⎡

⎣
⎢

⎤

⎦
⎥  matrix in expanded notation. 

 B    bel (unused unit of logarithmic scale). 

 c    speed of sound as a function of temperature ( T ). {m/s} 

  c0   speed of sound propagation in air @  T = 20º C.  {  c0  = 343.4 m/s}.  

 C
∗   complex conjugate operator applied to a complex number  C . 

 d   distance between the microphones of the p-p intensity probe. {m}. 

 Δti   time delay of the  ith  position.  {ms} 

 
Δtdir−ref  time difference from direct to first reflection.  {ms} 

 Δti→i+n   time difference of adjacent position.  {ms} 

 

∂ f x( )
∂x

  partial derivative of a function of  x . 
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 E   acoustic energy density.  {J/m3 or (W s)/m3 or kg/(m s2) or Pa} 

 
Epot   potential acoustic energy.  {J/m3 or (W s)/m3 or kg/(m s2) or Pa} 

 Ekin   kinetic acoustic energy.  {J/m3 or (W s)/m3 or kg/(m s2) or Pa} 

εε   overall mean error. 

ε   mean error. 

 ε%   percentage error. {%}  

 ε%   mean absolute percentage error ( MAPE ). {%} 

 
εε%

  overall mean absolute percentage error ( OMAPE ). {%} 

 e   exponential base, approximately 2.71828182 (Matlab function exp). 

 f x( )   function of independent variable  x . 

 fft   fast Fourier transform function from Matlab. 

 fc    Critical frequency. {Hz} 

  fcut-off    Cut-off frequency, corner frequency or break frequency. {Hz} 

 fs    Schroeder frequency. {Hz} 

φ   diameter of microphone capsules.  {mm} 

  ϕ̂ i    sound source  ith arrival estimated angle.  { º } 

 ϕ i   sound source  ith  arrival real angle.  { º } 

η   pressure velocity correlation coefficient or radiation index. {adimensional} 
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ψ   diffuseness estimate proposed by Merimaa (2006).  {adimensional} 

 ψ̂   diffuseness estimate proposed by Ahonen (2009).  {adimensional} 

 h t( )   room impulse response function in time domain.  {Pa or dB} 

   h3D t( )   three-dimensional impulse response in time domain. {Pa or dB}  

 H ω( )   transfer function in frequency domain. {Pa or dB} 

 
H s t( )⎡⎣ ⎤⎦  Hilbert operator (real signal). 

 hm   microphone height.  {m} 

 hs   source height.  {m} 

  h4   Four channel orthogonal impulse response vector. 

 
f x( )dx∫  integral of function of  x  respect to variable  x . 

  ̂i     x-axis component unity vector. 

  

i   sound intensity in time domain (real signal).  { W/m2 } 

  

ia   active instantaneous intensity in time domain (real signal).  { W/m2 }  

  

icomplex   complex instantaneous intensity in time domain (complex signal).{ W/m2 } 

  


iactive

complex

   active complex instantaneous intensity  time domain (real signal) { W/m2 } 

  

icomplex   envelope of complex instantaneous intensity.   

 i   envelope of intensity in time domain. (real signal) { W/m2 } 
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 ix   envelope of intensity in   x-axis  (real signal).  { W/m2 } 

 
iy   envelope of intensity in   y-axis  (real signal).  { W/m2 }  

 iz   envelope of intensity in   z-axis  (real signal).  { W/m2 } 

  

iinst   instantaneous intensity in time domain (real signal).  { W/m2 } 

  

ireactive   reactive intensity in time domain (imaginary part of 

  

icomplex ).  { W/m2 } 

  

i eθ   sound intensity vector with amplitude and phase (Phasorial). { W/m2 } 

  

Ia   active instantaneous intensity in frequency domain (real signal).  { W/m2 } 

  

Icomplex   complex intensity in frequency domain (complex signal).  { W/m2 } 

  

Iinst   instantaneous intensity in frequency domain (real signal). { W/m2 } 

  

Ireactive   reactive intensity in frequency domain (real signal). { W/m2 } 

 imag   imaginary part function in Matlab. 

 ifft   inverse fast Fourier transform function in Matlab. 

 j   complex operator also known as  i , equal to   −1 = 0+ j( )  { adimensional} 

  ĵ      y-axis  component unity vector. 

 k   a) discrete frequency index in a short Fourier transform.  {Hz} 

b) wave number, angular wave number (Phase Coefficient) or  

propagation constant.  {rad/m} 
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  k̂     z-axis  component unity vector. 

 lMFP   mean free path.  {m} 

 Lx    length of a room in x-axis. {m} 

 
Ly    length of a room in y-axis. {m} 

 Lz    length of a room in z-axis. {m} 

λ   wavelength.  {m} 

 m   length of time window on a spectrogram.  {samples} 

 max    maximum value function of a signal  s  in Matlab. 

 ms   milliseconds, i.e.  1×10−3s   {ms} 

 n   discrete time index in a fast Fourier transform.  {s} 

 N   number of points.  {adimensional} 

 p   acoustic pressure (real signal).  {Pa} 

  p1    pressure of the microphone 1 of the p-p intensity probe (real signal).  {Pa} 

  p2   pressure of the microphone 2 of the p-p intensity probe (real signal).  {Pa} 

  
p   analytic pressure signal (complex signal).  {Pa} 

 p+   a travelling wave in the forward direction (Positive axis).  {Pa} 

 p−    a travelling wave in the backward direction (Negative axis).  {Pa} 

 pinst    instantaneous average pressure between 2 microphones.  {Pa} 
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 p    complex acoustic pressure.  {Pa} 

 Pn    nth  receiver position. {m} 

  P4   Quadraphonic momentum.  

π   Pi, an irrational number approximately 3.141592  {adimensional} 

 Re    real part of a complex signal (real signal). 

 s   signal in time domain (real signal). 

 s    envelope of a signal (real signal). 

  s   complex signal in time domain (complex signal). 

  S   complex signal in frequency domain (complex signal). 

 S   modulus, absolute value or magnitude of signal (real signal). 

  ŝ   Hilbert transform of a signal (s). 

  
s   analytic signal (s). 

 sreal   real part of a signal (s). 

 
simag   imaginary part of a signal (s). 

σ   standard deviation  of a sample. 

σε   standard deviation error. 

σε   mean of standard deviation error. 

 
σε%

 weighted average of standard deviation of mean absolute percentage error. 

{%} 
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θ   Circular mean { 
} 

 
θm i

   ith  angle of arrival of first reflection. ( ith  microphone position).  { 
} 

 
θsi

    ith  angle of arrival of direct sound ( ith  source position).  { 
}  

 
θ xy   angle sustained in   x-y  plane.  { 

} 

 θ xz   angle sustained in   x-z  plane.   { 
}  

 
ridirect

   ith  distance travelled from the source to the receiver.  {m} 

 ρ0   air density @ T = 20º C.  {1.21 kg/m3} 

 T   period. {s} 

 TCelsius   temperature in Celcius degrees.  {º C} 

 ti    ith time delay of direct sound.  {ms} 

tmix   mixing time.  {s} 

 ts   centre time {s} 

  
u   particle velocity vector (real signal).  {m/s}. 

  
u   analytic particle velocity (complex signal).  {m/s}. 

 u   complex particle velocity.  {m/s} 

û0   peak value of amplitude of complex particle velocity.  {m/s} 

V   volume.  { m3 } 



 

Nomenclature: Symbols 
 

 

xxxvii 

ω   angular frequency.  {rad/s}. 

 w   B-Format  w   signal in time domain (scalar).  {Pa}. 

 wHann   Hann window. 

 W   B-Format  W  signal in frequency domain (scalar).  {Pa} 

 
Wpower   acoustic power. {Acoustic Watts = W} 

  
x   B-Format  x  signal in time domain (vector).  {m/s} 

  

X   B-Format  X signal in frequency domain (vector).  {m/s} 

 X ω( )   input spectrum of a measurement system (stimulus).  {m/s} 

 xi    ith  microphone position distance in the   x-axis .  {m} 

 xr   resultant sum of Cartesian components x-axis for an angle  θ i . 

  
y   B-Format  y  signal in time domain (vector).  {m/s} 

  

Y   B-Format  Y signal in frequency domain (vector).  {m/s} 

 Y ω( )   Output spectrum of a system (recorded signal).  {m/s} 

 yr   resultant sum of Cartesian components y-axis for an angle ( θ i ). 

  
z   B-Format  z  signal in time domain. (vector).  {m/s} 

  

Z   B-Format  Z  signal in frequency domain. (vector).  {m/s} 

  absolute value or magnitude or modulus of a complex or vector quantity. 

  norm of a vector (Euclidean length of a matrix or vector). 
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  time averaging. 

{ }    unit’s separator or mathematical bracket. 

  1   angular degree. 
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Abstract 

The sound field in rooms of small dimensions used for music reproduction is 

characteristically different from that found in larger rooms for music performance such as 

auditoria.  Key differences between small critical listening spaces and large auditoria are 

the vastly different ranges of energy decay, 100 ms for the former and up to 8 s for the 

latter, and its directional behaviour, typically non-diffuse for the former and 

approximating a diffuse field for the latter.  Despite these substantial differences, most of 

the metrics developed to describe the sound field in large spaces are evoked to quantify 

the performance of small rooms.  This project focuses on developing measurement 

methods to characterise temporal and spatial qualities of sound in small rooms. 

A number of methods based on currently available acoustic probes have been developed. 

The implementation requisites and accuracy for each method has been quantified.  

Factors such as direction, time of arrival and strength of reflections have been extracted 

using signal analysis techniques based on the active instantaneous intensity and short-

time Fourier transform.  These factors are subsequently mapped to allow a description of 

their evolution through the energy decay in the room for a given measurement location.  

The best performing system, based on the use of one-dimensional p-p intensity probe 

mounted in a custom cradle, achieves a minimum overall mean error of 0.226 degrees and 

2.971 degrees for the direct sound and first reflection respectively, which is near or below 

the measured human minimum audible angle (MAA).  The method developed has direct 

applications in the quantification of small room acoustic sound fields for critical listening 

purposes.  
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Chapter 1 : Introduction 

The characterisation of the early reflected energy is a topic that has been studied to 

improve the acoustic quality of spaces (Hyde, 1998).  In the past decades, it has not been 

completely achieved by cause of the limitations of the measurement techniques and the 

measurement equipment available.  However, in the last two decades, the development of 

powerful personal computers has helped to directly apply digital signal processing (DSP) 

techniques to obtain accurate impulse responses (IR) of the enclosures, which in the past 

were only implemented with dedicated analogue and digital measurement laboratory 

equipment.  A complete characterisation of a sound field requires simultaneously 

quantifying the particle velocity (  
u ) in each Cartesian axis (

   
ux , uy , uz ) and the acoustic 

pressure ( p ).  The development of reliable intensity probes has helped to improve this 

research because of its capability to map three-dimensional sound fields. Presently, there 

are still very few attempts to describe the capabilities of measurement systems to 

determine directionality of transient reflected energy for small rooms.  Accordingly, that 

fact motivates this research (Toole, 2006, Toole, 2008). 

The expression ‘sound intensity’ (  

i ) has been used in many fields of acoustics, such as 

the determination of sound power emission on steady state sources, characterisation of 

sound sources, sound fields, source location, source characterisation, measurement of 

sound absorption, acoustic impedance, sound power transmission through partitions, 

radiation efficiency of vibrating sources, active noise control of sources, acoustic 

holography, measurement of flow in non steady ducts and transient noise sources (Fahy, 

1995). 

The characterisation of early reflection fields has not been fully explored in terms of the 

effects of scattering and diffraction created in small rooms, since there is not a better 

angular resolution than ±3º using the three-dimensional p-p intensity probe.  Accordingly, 

those mean errors (ε ) on the angle of early reflection arrivals (
 
θmi

)  are usually omitted 

for the sake of commercial strategy.  Nevertheless, using a two-dimensional field 
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intensity probe consisting of four phase-matched measurement omni-directional 

microphones spaced on a cross shape, Elko reports that it may have an error less than 2 

degrees when the source is a spherical wave and is emitting a single frequency of 1 kHz, 

also known as monochromatic frequency (Elko, 1984). 

Despite the early attempts to characterise the directionality of direct sound and reflections 

in rooms, it was found that the characterisation of reflections is a challenge because of the 

limited number of separate early reflections, which can be safely analysed before the 

mixing time ( tmix ) of the impulse response (IR).  After passing the mixing time ( tmix ), the 

high density of reflections overlaps during the reverberation stage and creates a difficult 

analysis for any reflection extraction.  The diminishing signal-to-noise-ratio  ( SNR ) of 

subsequent reflections is another issue related to the sensitivity of measurement using 

intensity probes.  The motivation to carry on this work was determined under this present 

stage of insufficient spatial characterisation of early reflections in small rooms.  

Presently, there are many of acoustic models to assess an acoustic project, however, the 

options to characterise reflections in rooms using physical measurements is still not 

standardised. 

1.1 The small room context 

In the field of room acoustics, the enclosures are classified as two main types: large 

rooms and small rooms.  This classification is mainly based on the room’s volume and 

the behaviour of the room resonances across the spectrum.  Several authors have tried to 

define the frontier between the two by using mathematical models (Schroeder and 

Kuttruff, 1962, Kuttruff, 1998, Skålevik, 2011).  It was discovered that the relevant 

variables were the reverberation time ( RT ) and the room’s volume ( V ).  The objective is 

to determine the frequency where the statistical limit within a given sample of room 

resonances might be treated as a distribution.  One of the most accepted models is the 

Schroeder frequency ( fs ) limit formula (Schroeder and Kuttruff, 1962, Kuttruff, 2000), 

which was improved in accuracy later on in (Schroeder, 1987).  Recently, Skålevik 
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Magne introduced another proposal, which still needs to be tested as a frequency 

transition crossover range between large and small rooms (Skålevik, 2011). 

These big spaces are characterized by the critical frequency ( fc ) also known as the 

Schroeder frequency limit ( fs ), which imposes a minimum volume limit of 7,079 m3 for 

a very wide range of music and 9,914 m3 for speech (Davis and Patronis, 2006).  

Conversely, according to BS ISO 3382-2 (2008), the criteria for a small room stands at V 

< 300 m3.  According to Bolt and Roop, a typical example of small rooms have V < 70 m3 

(Bolt and Roop, 1950).  Consequently, a room’s volume is still a controversial parameter 

for defining a small room, due to the fact that there is not a contrasting boundary between 

small and big rooms, however, there is a smooth transition that complicates its 

classification. 

A small room, in technical terms, can be defined by its volume size ( V ), additionally, in 

a more detailed analysis, may be defined by its density of reflections and duration of the 

sound decay.  The principal characteristic is that their room impulse response ( RIR ) 

presents a sound field, which is dominated by the direct sound and early reflections, since 

its reverberation time ( RT ) is typically low at mid and high frequencies, even though it 

usually shows higher values at low frequencies.  These small room dimensions tend to 

have a very low ceiling height in relation to its length and width.  Accordingly, the main 

problem is that these spaces are non-diffuse and exhibit conditions where one of the 

planes has dissimilar distribution of reflections.  This is independent of the type of 

acoustic treatment of the room.  Another characteristic of small rooms is that they may 

have considerable absorption in some of the boundaries.  The contents of the room can be 

objects that affect the scattering and absorption of sound, because in proportion, they 

represent a large area relative to the room.  Its longest dimension is comparable to the 

wavelength (λ ) of the lowest audible frequency i.e. 20 Hz (room dimension L < 17.17 

m).  One of its characteristics is that the sound field is not diffuse, since the lack of 

enough reflections coming from all directions, which is the lack of an isotropic sound 

field and lack of homogenous sound throughout the spatial coordinates (  x, y, z ).  

Typically, the propagation of a single wave may exhibit no more than 4 to 6 reflections 

before they reach inaudible levels.  This is a result of the high absorption proportion 
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located in small rooms.  The build up of room modes is noticeable at low frequencies; it 

generates an uneven sound decay, which concentrates energy in the low spectrum by 

repeated reflections in certain orientations, which create a non-diffuse sound field at the 

modal region.  These Eigen frequencies tend to be sparse in the spectrum, creating large 

peaks and valleys with level differences up to 20 dB, which are perceived as coloration of 

sound in temporal decay and in certain frequencies (Bolt, 1939, Bolt and Roop, 1950).  

These room resonances, which are a function of frequency ( f ) and the room´s 

dimensions (  
Lx , Ly , Lz ), reinforce and cancel each other at certain coordinates of space, 

creating nodes and antinodes.  Antinodes present longer sound decay at some particular 

resonant frequencies, whereas nodes depict positions where certain frequencies cannot be 

heard thanks to its shorter decay.  Small rooms tend to be very sensitive to their boundary 

conditions dictated by their acoustic impedance.  Room boundaries tend to be reactive, 

therefore only the high frequencies are easily absorbed.  There is a strong tendency to 

focus on the remaining low-frequency energy in the plane where the walls of the room 

exhibit less absorption.  Small rooms do not exhibit a true reverberant field, since the 

reflection patterns do not have enough reflections to create the reverberant tail (Geddes, 

1998) and this limitation on sample size prevents the use of statistical treatment such as a 

sample distribution.  This is more noticeable at low frequencies, because small rooms 

with volumes less than 30 m3 reveal several frequency spaced dominant axial, tangential 

and oblique modes, which are reinforced by the case of similar dimensions on length, 

width and height that lie in the same third octave band (Hopkins, 2007).  Therefore, they 

are noticeably below the human perception limits, where the critical bands can be 

accurately approximated by third octave bands and the differences between two low 

frequencies below 500 Hz can be detected within a resolution of 1 Hz as a just noticeable 

difference ( JND ) (Fastl and Zwicker, 2007).  Conversely, at low frequencies, the spatial 

perception is not accurate, as it is at mid frequencies.  This is owing to the nature of 

perception of low frequencies, which is dominated by interaural time differences ( ITD ), 

while the perception of direction of mid and high frequencies is based on interaural 

intensity differences ( IID ) (Howard and Angus, 2001, Geddes and Lee, 2003a).  The 

reverberation time ( RT ) in small rooms usually needs to be measured with a limited 

signal-to-noise-ratio ( SNR ) of 20 or 30 dB (RT20 or RT30).  This is by virtue of the fact 
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that sound decay is faster in a small room than in an acoustic large room.  The sound 

energy is dissipated quicker and the perception of the room response and the reproduced 

sound cannot be separated as a result of the fact that the speaker’s temporal response 

(ringing) may be in the same range of first reflections arrivals (Nelson, 1992).  Therefore, 

in common small rooms it is very difficult to perceive a clear direct sound, which means 

absence of perception of an uncoloured direct sound component, unless the acoustic 

treatment approximates to an anechoic space (Geddes and Lee, 2003b).  The critical 

distance is not a good descriptor because sources and receivers are so close that they are 

in a transitional field, which is located in between the acoustic nearfield and the 

reverberant field (Toole, 2008). 

In order to make a difference between the characteristics of large rooms and small rooms, 

it is useful to describe the diffuse field theory.  According to Davis (Davis and Patronis, 

2006), if a room is big enough, it will present a high density of modes, even at low 

frequencies, since the space can be described by a statistical model also known as diffuse 

field.  During the sound decay in the room, in these spaces there is an equal probability of 

sound waves arriving in any direction at any coordinate, by virtue of the fact that all the 

boundaries of the room have similar sound absorption coefficients (Barron, 1973).  It 

relies on two assumptions: the sound energy is uniform in the field and the sound 

intensity (  

i ), which represents the flow of sound energy across time, is the same for all 

directions.  The result is that there is no mean energy flow (  

ia ) at any point in the room, 

because their directions are completely random.  Consequently, the global effect of 

summing different sound intensity vectors (  

i ) cancel out.  Since there is no noticeable 

concentration of sound pressure or any absence, the overall level is constant.  Therefore, a 

diffuse field does not promote sound energy flow (  

i ) during the temporal decay, owing 

to pressure differences ( Δp ).  The room boundaries within an idealised diffuse field 

should be perfectly reflecting.  According to Kuttruff, the energy density ( E ) depicts the 

same value for all the possible coordinates of the room under steady state conditions 

(Kuttruff, 2000).  Therefore, it is impossible to predict the directions of the sound 

particles by the diffuse wall reflections or by particles scattered by obstacles during their 
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free propagation.  In mathematical terms, the time and ensemble averaging converges and 

are interchangeable.  These are the characteristics of an ergodic process. 

The energy density ( E ) of small rooms deploys a fast decay across time, i.e. its overall 

energy per unit volume vanishes before it can create modal activity.  There is a lack of 

dense field reflections caused by absorption of mid and high frequencies and a poor or 

absence of dampening in the low frequencies.  There is no mixing time ( tmix ) to create a 

diffuse decay tail because the number of reflections is too small.  Consequently, the 

sound field is neither homogeneous, nor statistical.  Instead, there is a series of discrete 

early-reflected energy and an absence of a noticeable reverberation tail.  Hence, the 

statistical theory, in which the Sabine equation is based, is not valid for small rooms 

(D'Antonio and Eger, 1986, Geddes, 1998, Kuttruff, 1998, Toole, 2008).  The parameter 

called Schroeder frequency is still a useful descriptor for limiting a modal region in a 

room, regardless of its size (Davis and Patronis, 2006).  Sound fields in small rooms are 

strongly influenced by the wave effects such as diffraction and interference at low 

frequencies, and there is no proper mixing of reverberation energy with the direct sound.  

The modal region shows separated resonances and reveals the small room size.  The 

reverberation time (RT) is not a meaningful descriptor for small rooms, considering the 

fact that low frequencies, behave independently from mid and high frequencies and 

cannot be determined with statistical theory, nor with geometrical acoustics, on behalf of 

evidence of wave interference effects (Kuttruff, 1998). 

Recalling the fact that small rooms do not have a valid application of the Sabine equation 

for reverberation time ( RT ); some reasons are mentioned:  The low audible frequencies 

resonances are related to the phenomenon of matching wavelengths (λ ) with any of the 

room dimensions (  
Lx , Ly , Lz ).  When a wavelength has half of the size of one dimension 

of these enclosures (  L = λ 2 ), the first harmonic of a room mode appears by mixing the 

repeating reflections that build an axial mode, which is mentioned here because it is the 

strongest resonance in a room.  Room modes may have nth harmonics, but the most 

problematic appear below 250 Hz, because they are more spaced in the spectrum than the 

ones occurring at higher frequencies.  The addition and cancelation of the consecutive 
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reflections in space are the components for the development of standing waves.  The 

creation of standing waves promotes a longer decay of sound at the low resonating 

frequencies, and a progressively shorter decay of sound at mid and high frequencies, 

which do not sustain any room resonance.  The assumptions of the applicability of the 

Sabine theory are based on the existence of a diffuse field.  It is clear that small rooms 

cannot be diffuse because the contents of the room occupy a considerable volume of the 

room, interfere with the waves, and tend to diffract them.  The density of reflections is 

smaller than in large rooms because of the considerable high frequency absorption effect, 

which is prominent in small rooms.  It would be difficult to observe the diffuse decay tail 

in an impulse response (IR) due to its short nature.  It tends to just show the direct sound 

and some early reflections.  After that, the absorption of the small room dominates, and 

there is less chance to sustain a high density of reflections.  Because of their small room 

size, they exhibit a short mean free path ( lMFP ), which means that the sound waves will 

bounce more frequently, and consequently, will be attenuated by the absorption of the 

room boundaries in a faster way than in a large enclosure.  Notwithstanding, the 

absorption in a large room is not an important factor because absorption is a limited 

resource for applying in such large areas.  The increasing density of reflections creates a 

diffuse decay with several overlapping reflections, which tend to decay with an 

exponential tail. 

1.2 Motivation 

Recording studios have been typically implemented in acoustical terms in small rooms; 

the control rooms always have been its smallest working space among the recording 

spaces (Walker, 1996).  To make this situation more extreme, commercial studios are 

becoming smaller because of the high cost of real estate properties and lack of 

opportunities to do big projects.  These affordable digital audio workstations (DAW) 

record to any computer’s hard disk and emulate hardware such as analogue music 

instruments and effect processors.  They replace the expensive analogue recording 

equipment such as big consoles, effect processors and tape machines recorders.  This 

paradigm change in the recording industry has introduced many problems concerning the 
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quality of the products that are recorded, mixed and mastered inside these poor acoustic 

spaces. 

Additionally, there is an explosion of home music production activities such as recording, 

mixing and mastering, which usually take place in small enclosures, and are not ideal for 

such tasks.  Small rooms usually have poor dampening at low frequencies, especially in 

the case of hard wall construction structures.  This facilitates the formation of standing 

waves and non-diffuse sound decays.  This condition decreases the immersion sense and 

the realism of the program to be critically assessed.  Furthermore, the quality of sound is 

affected by the sound field interference caused by the relatively large size of the furniture 

and equipment in relation to the dimensions of the room (da Silva Vieira de Melo, 2002). 

Coloration of sound perceived as a change of timbre, rhythm sensation and signal pitch is 

the main problem encountered in reproduced music within these spaces (Ando and 

Alrutz, 1984, Nelson, 1992, Halmrast, 2000, Toole, 2008).  It appears in a complicated 

way, as it depends on temporal and spatial variables, which ultimately affect its frequency 

content in the form of comb filtering.  In order to minimize these problems, acoustic 

treatment needs to be carefully applied to ameliorate the noticeable effects of strong 

modal activity and lack of precise stereo image.  This common problem occurs because of 

improper treatment of early reflections at the sweet spot (Mäkivirta and Anet, 2001).  The 

traditional ways for measuring rooms have not taken into account the importance of 

measuring the directionality of the sound energy flow (  

i ) and their effects in terms of 

perception of a precise stereo image.  Therefore, a small room is only characterised 

completely when it is possible to assess the influence on the perception of early 

reflections, the sense of spaciousness, and ultimately, how the characteristics of neutral 

rooms are perceived (Geddes, 2009, Newell, 2012). 

1.3 Objectives 

This thesis focuses on the development of an accurate method to detect reflected energy 

using intensity in the framework of small rooms, where the accurate characterisation of 

early reflected energy becomes crucial to determine the proper room treatment for critical 
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listening spaces.  Conversely, the acoustics of large rooms is appreciated as a mixture of 

its late reverberant field, and the directional and temporal distribution of early reflections, 

although the characterisation of early reflections is taken into account for the two cases.  

A different approach is taken in the design of both spaces.  The large room designer’s 

interest is focused on maximising the perception of clarity, intimacy, envelopment and 

loudness, (Cavanaugh et al., 2009, Griesinger, 2009).  Conversely, in small rooms, the 

room designer tries to avoid cluttered early reflections that fuse perceptually with the 

direct sound and tend to blur the stereo image quality.  The small room designs take 

advantage of the precedence effect while selecting proper acoustic treatment (Madsen, 

1970, Haas, 1972, Walker, 1995, Hoeg et al., 1997, Begault et al., 2001, Geddes and Lee, 

2003b, Begault et al., 2004). 

The development of new measurement standards for acquiring three-dimensional impulse 

responses (  3-D IR ) is suggested.  By combining multiple impulse responses (IR) in each 

Cartesian axis (IRx, IRy and IRz,), it is possible to characterise them in a more complete 

way than using just a single room’s impulse response ( RIR ).  This is because the acoustic 

pressure signal ( p ) lacks directional information, as it is a scalar unit.  Conversely, the 

direction of sound may be determined by measuring the particle velocity (  
u ), and more 

precisely, by deriving the sound intensity (  

i ), which is obtained by combining acoustic 

pressure ( p ), a scalar quantity and the particle velocity (  
u ), a vectorial quantity.  A 

suggested objective metric of acoustic quality in small spaces can be derived from it, and 

can be combined with the latest perceptual knowledge.  Major emphasis is given to 

investigate whether using intensity probes could be plausible to obtain an angle resolution 

similar to or below the human minimum audible angle ( MMA), or if it is needed to use 

more elaborated techniques.  One of those techniques could be beamforming with its 

commercial solution such as the Eigenmike1, which has been tested in detection of 

reflections in halls and in the cabin of a car in (Binelli et al., 2011, Farina et al., 2011).  

Another alternative technique may be higher-order spherical harmonics ( HOSF ) 

microphones (Daniel, 2003, Cotterell, 2009), spherical microphone arrays for capturing 

3-D sound fields (Elko and Pong, 1997, Elko, 2000, Meyer and Elko, 2002, Huang and 
                                                
1 http://www.mhacoustics.com/mh_acoustics/Eigenmike_microphone_array.html  
[Online accessed May 19th 2013] 
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Benesty, 2004),  or a different transducer method based on an optical three-dimensional 

intensity probe (Cazzolato et al., 2005).  The ultimate goal is to present a simple method 

that can be feasible to adapt it to current methods used in the field.  The aims of this 

research are: 

• To devise a system for characterisation of the acoustics of small rooms based on 

sound intensity probes. 

• To test different types of intensity probes and compare them using objective 

metrics taken from room impulse responses ( RIR ) in order to characterise the 

acoustic quality of reflected energy based on its temporal behaviour and the shape 

of its spectrum. 

The interim objectives to achieve this are set as: 

• To implement and test two acoustic particle velocity (  
u ) probe systems, namely 

first order Ambisonic B-Format (Soundfield microphone) and the one-dimensional 

sound intensity face-to-face p-p probe mounted on custom developed cradle. 

• To develop signal post-processing algorithms to be able to extract direction of 

arrival ( DOA), signal strength and time of arrival ( TOA ) for reflection energy in 

small rooms using sound intensity (  

i ). 

• To investigate objective acoustic measures for small room acoustic sound fields 

based on spatial measurements. 

 Post-processing and analysis 1.3.1 

The project has been focused on the use of different types of intensity probes to acquire a 

three-dimensional impulse response (  3-D IR ) measured in small enclosures.  The couple 

of probe types tested are: a) the Soundfield microphone, b) the face-to-face p-p intensity 

probe.  The measurement of the acoustic energy arriving at the probe is detected as 
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instantaneous intensity vectors (  

iinst ) that can show the evolution of the flow of reflected 

energy at any given time. 

The information obtained can be used to extract temporal, spatial, and spectral 

information of the sound decay inside a room.  The analysis is performed in the time 

domain ( TD ) and frequency domain ( STFT ) using instantaneous values of sound 

intensity (  

iinst ) and energy density ( E ), which are used to compute the diffuseness 

estimate (ψ ). 

In the post-processing stage, several methods for measuring sound intensity (  

i ) are 

tested: the equations used to calculate the sound intensity compute the active complex 

instantaneous intensity (
  


iactive

complex

) and in parallel the instantaneous active intensity (  

ia ).  The 

calculation of the sound intensity changes slightly depending on the type of probe used. 

In the case B-Format signals acquired with the Soundfield microphone, the instantaneous 

intensity (  

iinst ) is calculated with the product of the acoustic pressure ( W ) and the particle 

velocity (    
u = X ⋅ î +Y ⋅ ĵ+ Z ⋅ k̂ ). 

In the case of the one dimension p-p intensity probe rotated on each orthogonal axis, the 

instantaneous intensity vector (  

iinst ) is found by calculating the instantaneous particle 

velocity (  
uinst ), which is approximated by using the finite differences equation derived 

from the Euler equation (Fahy, 1995), (also known as momentum equation).  

Subsequently, by multiplying the calculated instantaneous particle velocity by the average 

instantaneous pressure ( pinst ) between the two microphones (for details please refer to 

page 41).  From the analysis of these signals, a complete characterisation of the room 

response can be obtained to study such parameters. 

The inputs to calculate the direction and time of arrival ( DOA  and  TOA ) of the early 

reflections are taken from these three simultaneous acquired room impulse responses (

 RIR ).  Another explored approach employs the time domain method ( TD ) by using the 

complex instantaneous intensity (
  

icomplex ).  By breaking the sound decay in variable time 
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window portions, it is possible to analyse the temporal evolution of the decay of the 

impulse response ( IR ).  Afterwards, the active instantaneous intensity (  

ia ), the complex 

instantaneous intensity (
  

icomplex ) and the envelope of intensity are obtained ( i ).  Finally, 

relations among the correct detection of the direction of the early reflections and its 

perception as one of the factors considered in acoustical quality are investigated.  

 Measurement method description 1.3.2 

A method based on using instantaneous active sound intensity (  

iact ) obtained from B-

format signals is adapted to capture the transient sound decay of small rooms.  It attempts 

to map the spatial and temporal distribution of sound energy flow (  

i ) and the diffuseness 

estimate (ψ ) in three dimensions and analyse the frequency content of early reflections 

to resemble the human capability to perceive them as echoes, image shift, tone coloration 

or cues to locate direction of the sound source (Ballou, 1991, Barron, 2009). 

The arriving sound intensity at the receiver is carefully acquired with the highest temporal 

detail in order to preserve the impulse response of the room.  The acoustic source used is 

the existing monitoring system of the control room under analysis.  If the rooms to be 

measured do not have existing sound sources, then it is desirable to use an omni-

directional one-point-source to simulate the natural sound propagation of real sound 

sources.  These will address all the room modes and reflections that can be perceived 

when all the surfaces of the room are completely covered by the acoustic radiation of the 

omni-directional source.  However, more importantly, it will simplify the determination 

of the directionality of reflections, since the source can be treated as a simple point in 

space instead of a distributed point source, which is complicated to characterise on any 

multi-driver monitor speaker. 

An acoustic measurement system is implemented to generate a three-dimensional impulse 

response (  3-D IR ).  The data is processed in order to calculate the direction and time of 

arrival ( DOA  and  TOA ) of the early reflections.  Subsequently, the information obtained 

is further analysed in frequency bands by using the short-time Fourier transform method (
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 STFT ) and the scale of the frequency is calculated with equivalent rectangular bands (

 ERB ).   

This analysis is motivated because of the circumstance that in practice, the direction of 

arrival ( DOA) tends to differ across frequency by virtue of physical limitations of the 

microphone arrays limiting their accuracy within a certain frequency range.  Moreover, 

the frequency content of early reflections varies depending on the level of dampening and 

its location in the room.  It usually retains mid and low frequencies since high frequencies 

may be easily absorbed.   

Conversely, the time of arrival ( TOA ) does not vary across frequency, because the front 

wave of a single reflection arrives at the same time for all the frequencies.  Rooms usually 

exhibit steady state conditions, such as constant temperature ( T ) and no net flow, which 

guarantee a spherical sound propagation and a propagation of sound at a constant speed 

of sound  (  c0 ).  These conditions prevent refraction of the front waves.  Another acoustic 

phenomena that can be taken into account is diffraction, which is sensitive to the size and 

contents of the room, and may affect the direction of arrival ( DOA) of some of the early 

reflections depending on the position of the source and the receiver. 

  Defining objective characterisation for small room’s acoustic 1.3.3 
fields 

The characterisation of rooms needs to take into account that sound changes as a function 

of space and time and frequency.  A room can be fully characterised by measuring the 

impulse response ( IR ).  In the past, only one omni-directional measurement was enough 

for characterisation of the temporal response of a room, by the use of a pressure 

transducer.  With the advent of the Fast Fourier transform ( FFT ) it was possible to 

analyse the frequency content of that room.  In simple terms, an enclosure can be thought 

of as a linear time invariant ( LTI ) filter.  A filter has a dual-domain property, because it 

can be treated as a custom frequency response with its custom phase response, and can be 

treated as a temporal decay characterised by its impulse response ( IR ) 
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Depending on the geometry of the room and the materials of its boundaries, the acoustic 

impedance of the boundaries may change the energy and the phase of the acoustic quality 

of the sound decay.  The main characteristic of a real room is that its impulse response 

acts as a transient response.  That is a combination of the arrival of the direct sound, the 

reflections that occur after it, and the late part comprises a complex blend of the 

exponential growth of reflections, which determine the reverberant part of the decay 

(Barron, 2009).  This complex mixture of reflections varying in time and strength may 

determine the evolution and shape of the frequency content of the decay of sound, from 

the early reflections through the reverberant part. 

1.3.3.1 Suggest objective metric of quality 

Once a correct description of the sound decay is obtained, it is possible to continue with 

further studies on the perceptual effect of early reflection regarding the time and direction 

of arrival, strength, transient nature, and spectral characteristics.  Any incoming sound is 

heard with different comb filters, which vary depending on where the location of the 

source was.  Our brain analyses these comb filter differences, combining them with more 

information, such as the time of arrival ( TOA ), relative levels and directional filtering and 

with our personal shape of pinnae to discriminate the source direction of any incoming 

sound (Madsen, 1970, Ballou, 1991, Rubak and Johansen, 2003, Gentner et al., 2007).  

The effect of early reflections in our hearing system is subjective.  One of its 

consequences is the increase of the spatial sensation, which can be explained under the 

Haas effect (Haas, 1972, Wallach et al., 1973, Barron and Marshall, 1981).  Then it is 

possible to combine the objective spatial information with the state of art of 

psychoacoustic knowledge on early reflection perception to assess the acoustic quality of 

the measured rooms (Barron, 1971, Salomons, 1995).  This knowledge states the 

conditions where some early reflections may be perceptually important or not relevant at 

any instant on the decay of the impulse response ( IR ).   

The direction of the early reflections is an important factor in critical listening spaces, 

which are a special case of small rooms, given that location, direction and distances of 

objects are easier to distinguish than in larger rooms.  This is because of the strong level 
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on direct sound relative to the closest attenuated early reflections that follow the direct 

sound.  Early reflections bounce multiple times by traveling relatively short distances.  

Each time the sound decay encounters a boundary in the room, their initial level is 

progressively absorbed, and therefore it has a faster decay than in a big room.  

Additionally, a small room compared to a big room exhibits a shorter mean free path (

 lMFP ).  There is a debate whether if the Hass effect is not relevant in these small rooms 

(Walker, 1995, Voetmann, 2007, Toole, 2008), because the majority of the sound field is 

held in the transitional field, not in the reverberant field.  By cause of the typical sound 

absorption of rooms, the reflections tend to diminish the high frequency content and 

preserve the mid and low frequency content (Olive and Toole, 1989, Bech, 1995, Bech, 

1996).  If the early reflections arrive close enough to the direct sound, they are perceived 

as part of the direct sound with the aid of reinforcing their signal strength (Rettinger, 

1968).  If the early reflections possess the same phase, the reflection is coherent with the 

direct sound and the Haas effect may be working, however, in several cases the 

absorption of the room changes the coherence of the early reflections, which is 

detrimental on the quality of the perceived (Noxon, 1992). 

1.4 Novel contributions  

The two main contributions from the author of this thesis are: 

1.- A measuring system using complex instantaneous intensity (
  

icomplex ) for characterising 

the reflections in time domain ( TD ) method, and also applying it to the short-time 

Fourier transform ( STFT ) method for accurate measurement of reflected energy in small 

rooms. 

2.- The design of a novel apparatus that enables spatial sound measurements, which uses 

a combination of concurrent laser-cross pointing technology.  It enables accurate and 

consistent orthogonal axis rotation of a one-dimensional face-to-face p-p intensity probe. 
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1.5 Report layout 

The report is organised as follows: This thesis is divided into nine chapters.  Each one 

focuses on specific areas of the measurement system proposed. 

Chapter 1 introduces the reader to the particularities of small rooms and their relevant 

features.  It discuses the need of novel objective measures to describe these spaces.  The 

motivation to accomplish this research is focused on small rooms and its directional and 

temporal attributes to improve the acoustics of critical listening rooms, such as control 

rooms.  The objectives of the project are described focusing on the use of sound intensity 

(  

i ) and three-dimensional impulse responses (  3-D IR ) to characterise the temporal, 

spatial and spectral information of the decay of sound.  Subsequently, a brief explanation 

of the post-processing and analysis of the data is presented, followed by the measurement 

system description.  The objective measurements are described and linked to the 

suggestion of a subjective perception of reflections.  The novel contributions are outlined 

at the end of the chapter. 

Chapter 2 provides a literature review on areas such as temporal characterisation of sound 

decay by objective metrics, such as the ones based on the ratio of impulse response upon 

the signal integration.  Subsequently, it mentions a review of the three-dimensional 

impulse response (  3-D IR ) techniques used for detection of reflections.  The selected 

technique for this project is intensimetry applied to transient signals using instantaneous 

values of sound intensity (  

iinst ) (Alfredson, 1980, Heyser, 1986a, Fahy, 1995).  The next 

part focuses on early reflection measurements.  Subsequently, measurements with 

Soundfield microphone, spaced-microphone arrays and p-p intensity probe are covered.  

A method using a rotated one-dimensional p-p intensity probe and a single microphone 

rotated in orthogonal axis is selected for experiments.  The Microflown p-u probe is 

reviewed.  At the end of the chapter, a table shows a comparison of the angular resolution 

of several measurement systems and the calculation method in chronological order. 

Chapter 3 covers the applied theory and the calculation methods for the two probes 

chosen, (i.e. face-to-face p-p probe and Soundfield microphone).  The concept of the four-
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channel orthogonal impulse responses     P4
r ,t( )  is the opening topic.  In order to explain 

the basics for the advanced intensity quantities, an explanation of the following concepts 

is covered: the Hilbert transform 
 
H s t( )⎡⎣ ⎤⎦ , the analytic signal (  

s ), and the envelope of 

the signal ( s ) (Heyser, 1986a, Kuttruff, 2000, Johansson, 2008). Following this, the 

sound intensity theory is introduced.  It is comprised of explanations of instantaneous 

intensity (  

iinst ), active instantaneous intensity (  


ia ) in time and frequency domain, complex 

intensity (
  

icomplex ) and active complex instantaneous intensity (

  


iactive

complex

).  Lastly, the concept 

of diffuseness estimate (ψ ) and equivalent rectangular bands ( ERB ) is explained.  The 

use of complex intensity in time domain is a novel idea proposed by the author in order to 

improve the accuracy of estimation of incoming direction of early reflections.  There are 

different approaches taken to calculate these quantities depending on the type of probe 

chosen, and the equations are depicted for each case.  The next topic covered is the 

statistical treatment for the sample of angular measurement, which is comprised of the 

techniques used to minimise the uncertainty of the results.  The parameters used are linear 

errors (ε ) such as: the mean error (ε ), mean of standard deviation error (σε ), the mean 

absolute percentage error  ε%  and the standard deviation of the mean absolute percentage 

error 
 
σε%

.  Finally, the directional statistic parameters are defined.  They consist of 

circular mean (θ ) circular standard deviation ( σ o ) and circular variance ( σ o
2 ). 

Chapter 4 covers the acoustic measurement system by describing the probes-acquisition 

configuration on the two experiments undertaken, and secondly the description of the 

processing involved in the analysis of the data.  The first topic talks about implementing 

the physical measurement system. The next section covers the early reflection real values 

calculation method used to obtain the angles of arrival of direct sound (
 
θsi

) and the angle 

of arrival of first reflections (
 
θmi

), which constitute the input and output variables used to 

perform a comparison with the measured ones.  Subsequently, the time of flight ( TOF ) 

procedure is described.  Thereafter, the Farina’s exponential sine sweep method used to 

create a stimulus for room measurements is introduced (Farina, 2000).  The following 



 

Chapter 1: Introduction 
 

 

18 

topic is the extraction of the impulse response by direct deconvolution in the frequency 

domain.  The probe configurations are the one-dimensional p-p probe with the custom-

made cradle system and the Soundfield microphone used as an intensity probe. The 

accurate results presented in this thesis are achieved by using the custom-made cradle.  

Therefore, its design details are mentioned.  The other custom aligner device is the one 

designed for the Microflown p-u probe.  Subsequently, the Soundfield microphone used as 

an intensity probe is described.  The next section is the processing and analysis of data 

where the time domain ( TD ) algorithm, the short-time Fourier transform ( STFT ), the 

peak detection algorithm and the envelope of a signal ( s ) are explained.  

Chapter 5 contains details of the Acoustic probe configurations, covering the 

measurement conditions and the repetitions needed to validate the accuracy of the 

method.  The next section covered is the description of the measurement environment, 

which is comprised of: semi-anechoic chamber, monitor speaker influence, damping 

vibration on source and receiver, and the laser cross system to define spatial coordinates. 

It describes the laboratory test for single reflection measurements in the semi-anechoic 

chamber using the p-p probe and the Soundfield microphone.  Afterwards, the single 

microphone multiple positions is mentioned.  The next topic covered is the applications 

for the measurements in a control room where the application of a cheaper and more 

versatile Soundfield microphone for the measurement of a real room response with 

multiple reflections. 

Chapter 6 describes the results of the measurements made in a laboratory test to quantify 

the accuracy of the estimation of direct sound and first reflections using the proposed 

system. The quantification is made by comparison of mean error estimations ( ε ) and 

mean standard deviation of the mean errors (σε ) among the different techniques tested, 

such as mean absolute percentage error  ε%  ( MAPE ) or overall mean of a set many 

positions of samples  Pi  such as 
 
εε%

.  The graphs showing the characterisation of the 

reflections are presented.  The results of the angles of arrival of direct sound (
 
θsi

) and 

first reflection (
 
θmi

) are compared with a geometrical model.  A couple of tables of 
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results are presented in order to compare results of different probes.  Single reflection 

estimation graphs of the Soundfield microphone and the p-p intensity probe are presented.  

The following results presented are time domain ( TD ) method graphs.  Afterwards, the 

results of estimation with instantaneous intensity (  

iinst ) are compared with complex 

instantaneous intensity (
  

icomplex ).  Finally, the short-time Fourier transform method ( STFT

) results and the diffuseness estimate (ψ ) graph are presented (Merimaa, 2006). 

Chapter 7 presents the results of the applications of this system to a real room using the 

Soundfield microphone.  A sketch of the room measured uses the right monitor speaker of 

a 5.1 channel control room.  The short-time Fourier transform method is used to analyse 

the early reflections and the diffuseness estimate.  Application of the measurement system 

is mainly to evaluate as feasibility study to demonstrate the measurement system can be 

applied (Romero-Pérez and Fazenda, 2009, Romero-Perez et al., 2009). 

Chapter 8 contains the discussion of the experiments done in the laboratory test, and the 

results of the application to a real room. The accuracy and feasibility of these methods 

used is also discussed. The Soundfield microphone is suggested for practical 

measurements in real rooms because the p-p probe it is not practical and affordable for 

the common practitioner.  

Chapter 9 presents a summary, the conclusions and further work derived from the 

previous chapters presented. 
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Figure 1.1: Schematic diagram of the approach taken in this research project. 

1.6 Summary 

This thesis aims to investigate the extraction and analysis of temporal and spatial 

distribution of early sound decay.  A method based on using instantaneous active sound 

intensity (  

ia ) obtained from B-format signals and a one-dimensional face-to-face p-p 

probe is adapted to measure small rooms.  It attempts to map the spatial and temporal 

distribution of sound energy flow   

i t( )  and diffuseness (ψ ) acquiring a three-

dimensional impulse response (  3-D IR ), and by performing an analysis of the frequency 

content of sound reflections.  Special care was taken to obtain a measurement system with 

enough accuracy mapping the direction of reflections (
 
θmi

) in order to resemble the 

human capability.  Once the data is collected it is possible to extract the information in 

time and frequency domain and use it to infer issues of perception based on 

psychoacoustic models.  The ultimate objective is to define useful descriptors to 

characterise the acoustic quality in critical listening rooms. 
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Chapter 2 : Literature review 

The temporal characterization of sound decay is based on ratios of impulse response upon 

the total signal integration (Toole, 2006).  Examples of these metrics are clarity index or 

early-to-late sound index (C80), Definition or Deutlichkeit (  D50 ), early decay time ( EDT

), centre time ( ts ), total sound level or strength (G).  The early lateral energy fraction 

(LEF) uses a combination of an omni-directional and a figure-of-eight microphone 

(Barron and Marshall, 1981).  The interaural cross-correlation coefficient (Damaske and 

Ando, 1972) IACC uses a binaural dummy head microphone in order to compare two 

pressure signals.  The listener envelopment LEV measures the perception of the level of 

surround of the sound that is coming from the reverberant field (Beranek, 2004). 

It is now becoming more apparent that the total energy of the decay may be the key to 

achieve a sense of envelopment in small rooms (Beranek, 2008).  The sound fields in 

small rooms need to be characterized with more detail in terms of lateral reflections and 

level of diffuseness, otherwise the results that may emerge from the mentioned measures 

still do not show clearly, which can be a desirable acoustic quality standard (Cox et al., 

1993).  The reason may be that they do not take into account such a fast process of sound 

decay and its spatial and temporal reflection’s distribution. 

The analysis of directionality of reflections is not new.  The principal attempts have been 

made in controlled acoustic environments such as anechoic chambers but not for critical 

listening rooms, which usually are non-diffuse spaces because of their non-uniform 

absorption distribution.  Microphone arrays have been used for mapping the energy using 

time delay differences instead of the coincident approach (Gover et al., 2004).  Some 

developments to preserve the acoustical fingerprint of concert halls have been done using 

B-Format (Farina and Ayalon, 2003), which was an extension of a method proposed by 

Gerzon (Gerzon, 1975b).  This method focuses on making complete characterisation of 

impulse responses. This approach may be the basis for developing further attempts to 

extract directional behaviour of decay. 
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Thiele and Meyer were probably the first to characterize directionality of reflections 

(Thiele, 1953, Thiele and Meyer, 1956).  Yamazaki and Itow (Yamasaki and Itow, 1989), 

Sekiguchi, Kimura and Hanyuu (Sekiguchi et al., 1992), Okubo et al. (Okubo et al., 2001) 

and Gover, Ryan and Stinson (Gover et al., 2002) achieved the same outcome, but by 

using a time difference approach, which involves the use of omni-directional microphone 

arrays. 

2.1 Measurement of early reflections using different 
probes 

The simplest way to measure early reflections is to use a single pressure microphone.  

This approach has the advantage of being the most economical in terms of 

implementation.  The downside is that it cannot give any spatial information about the 

reflections.  It still can deliver some time of arrival ( TOA ) information and sound 

pressure level ( SPL ).  Among all the research done in this way, it is worth noting that 

Moschioni (Moschioni, 2002) proposed correlation methods mixed with the envelope of 

intensity to detect the reflections by using a single pressure microphone, which delivers a 

one-dimensional impulse response. 

In order to be able to completely measure early reflections, it is important to use a device 

that can map three-dimensional impulse responses of the rooms.  There are three basic 

types of directional sound microphone techniques: a) separate microphone arrays, using 

discrete microphone arrays where the phase relationship of signals is not preserved 

correctly, b) coincident microphone arrays, which minimize the distance between the 

capsules in order to converge to a point in the space, and c) intensity probe configurations 

(face-to-face p-p intensity probe), which use a pair of measurement-grade pressure 

calibrated capsules placed at fixed distances (Fahy, 1995).  The signals are processed to 

obtain the sound intensity vector (  

i ) along the axis where the probe is aligned to measure 

the estimations of direction of arrival ( DOA) by calculation of the angle of arrival of 

direct sound (
 
θsi

) and its first reflections  (
 
θmi

) (Abdou, 1994). 
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 Soundfield microphone  2.1.1 

Coincident microphones have been used to capture the sound field at a single point in 

space to preserve the same phase and level arriving at the capsules.  This ensures a 

coherent mixture of the incoming signals, which are free from phase cancellations.  In 

practice, there is a constraint of a minimum distance achievable between both microphone 

capsules directly related to its size.  In 1933, Blumlein (Blumlein, 1933) proposed a 

stereo recording technique known as XY configuration by using a pair of ribbon 

microphones also known as velocity microphones.  Each microphone had a figure-of-

eight directivity.  This array was designed to capture an accurate stereo image, which 

usually is aligned to a single plane in space (i.e. x-y plane). 

In 1975, Gerzon published for the first time the design details of a new three-dimensional 

microphone array consisting of a tetrahedral array of microphone capsules and described 

a spacing compensation performed by electronic circuits to ensure successful coincidence 

of all outputs at high frequencies where diffraction effects degrade the localisation of 

sources (Gerzon).  By 1977, a patent of this device was published by Craven & Gerzon 

(Craven and Gerzon, 1977).  They explain that they developed a generalization of the 

Blumlein pair and developed a three-dimensional, sound-capturing microphone.  

Nowadays, it is known as the Soundfield microphone.  It captures four signals from 

closely spaced capsules located on the edges of the faces of a tetrahedron.  The raw data 

signals are taken from studio grade capsules, which have sub-cardioid directivities.  In 

order to obtain a coincident microphone, some mathematical manipulation is applied to 

the four signals.  The purpose is to create a virtual microphone, which consists of three 

virtual figure-of-eight directivity patterns that are overlapped at the origin, and are 

aligned on each orthogonal axis (x, y, z). 

 On the other hand, the accuracy of the localization of sound is compromised by physical 

and engineering limitations.  The minimum distance between the capsules in a tetrahedral 

array still depends on the chosen diameter of the microphone capsules. Consequently, this 

determines the size of the array.  It limits the safer frequency region to work without 

distortion of the sound field.  This effect is caused by diffraction, which happens when 
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the wavelength (λ ) of the sound has similar dimensions as the diameter of the capsules (

φ ).  The size of the capsules also implies an inevitable variation of the directivity patterns 

across frequency, which is later compensated with some filtering.  In the beginning, it 

was implemented with analogue electronic solutions.  Currently, it is performed with 

digital filters implemented in a dedicated hardware, and recently, the filtering may be 

prepared offline with software. 

At the University of Salford, the available commercial solution that can be used for the 

objective of detection of reflections is the Soundfield ST350 microphone.  This portable 

version claims that the B-format signal is derived at ‘single point’, which lies inside the 

tetrahedral array.  The accuracy of this microphone comes from the concept that its four 

signals are completely phase coherent.  This is achieved by applying some analogue 

corrective equalisation to the spectrum of four signals created by a tetrahedral array of 

sub-cardioid capsules. 

Humphrey did a study in 2006 of the angular accuracy of the direct sound using a source 

speaker and the original Soundfield microphone(Humphrey, 2006).  A company called 

Calrec originally developed this microphone.  Afterwards, the Soundfield company took 

over its manufacturing and distribution.  The Calrec microphone model used in this study 

is the CM4050.  It was used to calculate the estimation of the angle of the direct sound (

 
θsi

) using the estimated particle velocities (  X ,Y ,Z ) obtained from the recorded B-Format 

signals.  Humphrey reports a horizontal plane angular accuracy of ±1º, for the direct 

sound.  He did not report any measurements for any early reflections, since the nature of 

his research was focused on location of sound sources only. 

Essert (Essert, 1997) developed a method based on the Soundfield microphone to measure 

the proposed lateral energy fraction ( LEF ), the instantaneous lateral fraction( LEFinst ), 

and the directional fraction ( DF ) to describe the evolution of the sound field for hall 

design.  However, since the use of the Soundfield microphone is not totally accepted as a 

measurement-grade device because of the high variability on the figure-of-eight 

directivity pattern, which tends to vary across frequency specifically above 5 kHz and 

also across the angle of incoming sound because of the combination of the distorted 



 

Chapter 2: Literature review 
 

 

25 

figure-of-eight directivity patterns involved in the spatial measurement.  This may be the 

technical reason why this method has not been popularised at least using the Soundfield 

microphone. 

Dimoulas et al. (Dimoulas et al., 2007) (Dimoulas et al., 2009) utilised a B-Format hybrid 

approach to estimate the exact location of a source by using two Soundfield microphones.  

This was achieved with a combination of coincident microphones and the delay 

difference technique of triangulation of the source.  However, this approach was used 

only for direct sound, not for early reflections.  The most recent study of the location of 

sources using the Soundfield ST 350 microphone and intensimetry is found in Wierzbicki 

et al. (Wierzbicki et al., 2013).  He makes a detailed study of the usable frequency range 

for the determination of direction, which is reported to be from 125 Hz up to 4 kHz.  The 

preference for using a Soundfield microphone over any intensity probe because is user-

friendly, practical and more cost-efficient than any p-p or p-u intensity probe. 

A more complete study using the Soundfield microphone for detection of direct sound and 

early reflections was presented by Günel et al. (Günel et al., 2005) (Günel et al., 2007).  

She tried to implement the Soundfield microphone with a higher resolution.  The B-

Format was processed performing a wavelet packet decomposition method across a 

horizontal x-y plane with 360º.  She shows that the range of biggest errors in the 

azimuthal plane was between angles of 135º and 240º, where errors have values between 

10º and 25º.  The mean error ( ε ) reported for the estimation of source direction is 

  ε = ±7 ; it implies that the same resolution for the early reflections must be the same as 

the resolution of the estimation of the direct sound. 

However, experience of the author performing measurements of early reflections 

indicates that this is not a correct assumption.  Measurements of error on reflection 

estimation have to be treated separately, considering the degree of scattering effect that 

happens in any reflection.  This introduces some uncorrelated reflections with the direct 

sound, which makes the analysis of reflections difficult to achieve without prior 

knowledge of the direction of such reflection.  Additionally, the use of a directional sound 

source with more than one drive also creates different arrival times of the reflections 
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because of the difference of time response of the different drivers (Romero-Perez, 2010).  

Fazenda and Romero-Perez (Fazenda and Romero-Perez, 2008) used B-Format signals to 

extract directionality of sources using particle velocity (  
u ) only.  However, poor 

localization was found at angles near 45º when the instantaneous particle velocity vector 

was calculated in the time domain.  Consequently, some of the results of this research 

were not included in the body of this thesis (see Figure 7.3).  Following Merimaa’s 

proposal using the spatial impulse response rendering ( SIRR ) (Merimaa and Pulkki, 

2005), Romero-Perez and Fazenda explored the sound intensity method applied to the 

Soundfield microphone applied to small rooms, by applying it to a control room (see 

Figure 5.13 and Figure 7.1 ) (Romero-Pérez and Fazenda, 2009, Romero-Perez et al., 

2009). 

 It should also be noted that Farina (Farina, 2007), Faller (Faller and Kolundzija, 2009), 

Spenceley, and Wiggins (Spenceley and Wiggins, 2009) reported a limitation of the 

Soundfield microphone for accurate estimation of reflections with deviations up to 10º.  

This is because of the lack of uniform first order polar-patterns across the entire audible 

range.  The asymmetries and distortion of the original directivity patterns are present 

since the there is a minimum distance between the microphone capsules.  Above 12 kHz 

phase errors are present, the polar directivity of the figure-of-eight and the omni-

directional patterns are distorted as a result of the first order spherical harmonic 

resolution, and also because of the limitation of the correction filters first developed by 

Gerzon (Gerzon) and later implemented by the company Calrec, which finally were 

improved by the Soundfield company.  Recently, Heller and Benjamin tried a new 

philosophy for the design of the filters.  They have determined the diffuse field as the best 

solution to calibrate a Soundfield microphone with flat diffuse field target (Heller and 

Benjamin, 2012), this will improve the future of this device as a potential measurement-

grade microphone. 

Recently, a new technique to display the reflection’s pattern by using a Soundfield 

microphone as a three-dimensional hedgehog shape was presented by Bassuet (Bassuet, 

2010).  He proposes new spatial indicators that analyse the direction of the sound energy.  

Specifically, the spatial decomposition metrics are: LH (ratio of Low lateral and High 
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lateral energy) and FR (ratio of Front lateral versus Rear lateral energy).  These 

parameters need to be quantified with higher accuracy than the spatial resolution of the 

Soundfield microphone in order to be assessed perceptually without biases. 

On the development of a better spatial resolution, Craven et al. (Craven et al., 2010) have 

patented several sets of higher-order Ambisonic tangential array of microphones.  Since 

the new proposed arrays are more compact than the current Soundfield microphone, they 

seem to be a good option, which have better directivity patterns at higher frequencies than 

the current Soundfield microphone.  Benjamin (Benjamin) has tested some of these 

proposals with real prototypes.  One major concern is that more capsules are needed to 

cover the higher-order spherical harmonics.  Currently, there are not commercial 

solutions available for higher-order ambisonic microphones.  However, there are other 

patents interested in creating a better version of the original Soundfield microphone by 

introducing a higher-order version called “Sound Field microphone” proposed for the 

AKG Acoustics GmbH company (Friedrich, 2012).  It will request an increased number 

of channels, and calibration of the capsules will be crucial to obtain a good result from it.  

In general, this solution is more expensive in terms of resources and materials.  Recently, 

another way to measure sound intensity (  

i ) using optical sensors was proposed by 

Cazzolato (Cazzolato et al., 2005), and may be useful for some fields of research of 

transient sound decays. 

 Spaced microphone beamforming and directional arrays  2.1.2 

Several researchers have used different geometries of spaced-microphone arrays to locate 

the direction of the incoming sound.  The majority of them are only interested in the 

location of the direct sound.  The geometric model is usually assumed.  The sound 

propagation inside a room is treated as rays and the virtual sources are modelled to create 

the reflections.  This assumption is valid when the wavelength (λ ) of the sound is smaller 

than the dimensions of the reflecting wall.  Yamasaki and Itow (Yamasaki and Itow, 

1989) used a four-omni-directional microphone array using a single microphone located 

at the origin of the three-dimensional axis and later it has been reviewed in (Havelock et 

al., 2008, Kuttruff, 2009).  The remaining three microphones were located on each axis at 
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a close distance of 3-5 cm.  The method of analysis was cross-correlation and intensity.  

Roberts reviewed the tetrahedral array and compared time of arrival ( TOA ) and 

beamforming methods also using an octagon microphone array (Roberts, 2009).  Later, 

Sekiguchi used four-omni-directional microphone array located at each of the four apexes 

found in a regular tetrahedral geometry.  The Japanese company Ono Sokki has 

developed a 3-D intensity probe measurement system Model MI-6420 "Tetra-phone" 

based on this idea2.  By extracting the impulse response ( IR ) from each microphone 

position, the analysis was carried on in time domain (Sekiguchi et al., 1992).  Choi et al. 

improved Sekiguchi’s tetrahedral array by adding an additional centre microphone in 

order to have a common time of arrival reference ( TOA ) for the unlikely case of 

simultaneously arriving impulses.  This solution improves the comparison between 5 

microphones to solve the problem of equal time impulse arrivals (Choi et al., Choi et al., 

2003).  Later Rechenberger tested this configuration and implemented minimum phase 

compensation, a TOA algorithm and up-sampling method to claim an astonishing 2º 

angular accuracy.  Nevertheless, this is theoretical, because the practical limitations of 

sample frequency and positioning accuracy of the microphone array were addressed and 

there was no reported method for measuring the accuracy of the system (Rechenberger, 

2009).  Cazzolato measured the energy density with a 3-D microphone array consisting of 

4 microphones in a tetrahedral array and also measured the 6 and 7 microphone 

configuration analysing the error thoroughly, and concluding that the 4 microphone array 

is enough for measuring energy density (Cazzolato, 1999).  However, Miah (Miah, 2009) 

(Miah and Hixon, 2010) has done the most complete design project of a three-

dimensional broadband intensity probe, comprising 7 microphones arranged in a two 

concentric array along three axis, which are  120º apart.  His new design of intensity 

probe can simultaneously cover two frequency ranges at the same time 200 Hz – 1 kHz 

with the low-frequency array and 1 kHz - 6.5 kHz.  The angular accuracy reported was 4º 

± 3º using a finite difference intensity method. 

Another more powerful method used for location of reflected energy is beamforming.  

Gover used this approach after finding that the latter approaches lack of capability to 

resolve the arrival of simultaneous reflections (Gover, 2001).  He developed an acoustical 
                                                
2 http://www.onosokki.co.jp/English/hp_e/products/keisoku/s_v/mi6420.html [Online accessed on May 22nd 2013] 
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transparent array with 32 microphones.  By using beamforming techniques, a spatial 

resolution of 22º was successfully achieved.  This technique is useful for differentiating 

simultaneous arrival of reflections because it can focus the beam in different directions 

independently of time of arrival ( TOA ).  Ideally, this technique is the most robust for 

determining early reflections and simultaneous reflections, which occur in the reverberant 

tail.  The downside is that in order to obtain a reasonable finer angular resolution, the 

number of microphones needs to be considerably larger.  Hence, the measurement system 

needs to be more expensive in terms of equipment and computational power. 

The work of Merimaa (Merimaa et al., 2001), Peltonen (Peltonen et al., 2001) and 

Merimaa’s thesis (Merimaa, 2006) set the standards of extraction of directional impulse 

responses for the characterisation of reflections.  It was achieved by displaying time, 

frequency and diffuseness in a single graph based on a spectrogram.  Its measurement 

system consisted of two microphone arrays: a Soundfield microphone, and a custom-

made 3-D p-p intensity probe denoted as the TKK-3-D microphone array, which has two 

concentric three-dimensional intensity probes.  The inner one uses six electrets 

microphones in a configuration of three orthogonal microphones pairs with a distance of 

10 mm between each microphone aligned in each orthogonal axis.  The outer one uses a 

similar configuration with a distance between the microphones of 100 mm. 

 p-p type probe 2.1.3 

Probably one of the first attempts to measure sound intensity on noise sources using a pair 

of phase-matched microphones is documented in a B.Sc. Thesis made by Sague (Sage, 

1975) and supervised by Fahy in 1975 from the University of Southampton U.K. 

According to (Fahy, 1977, Chung, 1978, Fahy, 1995) it was not until 1976, when the 

introduction of the p-p probe intensity measurements combined with an FFT analyser was 

practically adapted to real measurements of sound intensity (  

i ) as it is known in its 

modern formulation.  The use of a single dimension p-p intensity probe for   3-D IR  

assumes time invariance is made, where the superposition of the ideal directivities is 

performed with different directivity of microphones located in the same position at 
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different times.  A review of relevant works on numerical implementation of the intensity 

using different microphone techniques follows. 

The first investigation of the transient intensity was performed by Alfredson (Alfredson, 

1980).  He employed two face-to-face condenser microphones without a spacer to 

measure impact noise by applying the instantaneous intensity formula in the time domain, 

and comparing it with the intensity calculated for plane waves.  Modern techniques for 

measuring intensity with p-p intensity probe use the face-to-face configuration and a 

plastic solid spacer to avoid undesirable diffraction effects, and increase the usable 

frequency range an octave above the finite difference error (Fahy, 1995, Jacobsen et al., 

1996). 

2.1.3.1 One-dimensional p-p intensity probe rotated on orthogonal axis 

The nature of sound decay, inherently, is a transient signal.  For its proper analysis, 

Abdou (Abdou, 1994) recommends the measurement of active instantaneous intensity (  

ia

) (Fahy, 1995) to locate the direction and strength of the direct sound and the subsequent 

reflections.  This is accomplished by using a one-dimensional face-to-face p-p intensity 

probe rotated on an orthogonal axis. 

2.1.3.2  Single microphone rotated on orthogonal axis 

Omoto (Omoto and Uchida, 2004) and Fukushima (Fukushima et al., 2006) used a single 

microphone for measuring intensity in a way that the limitations of phase matching 

between the microphone pair is not an issue.  The downside is that the procedure of 

measuring is too time consuming.  All the measurements need to be done individually, 

and time variance is a real concern.  Another problem can be the errors in spatial position 

induced by the use of this technique. 

Omoto and Uchida (Omoto and Uchida, 2004) used the active instantaneous intensity (  

ia ) 

approach, although calculated the envelope of the instantaneous intensity ( iinst ) to detect 
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the direction of the reflection as the combination of these peaks of envelopes in 

orthogonal axis. 

Fukushima et al. (Fukushima et al., 2006) implemented a measurement system of sound 

intensity using a single microphone.  The microphone was measured in four different 

positions of an array of microphones similar to the Yamasaki and Itow (Yamasaki and 

Itow, 1989) approach.  The sound intensity (  

i ) was measured by taking subsequent 

measurements, changing the position of a single microphone to the places where the array 

had a microphone.  This approach makes it possible to overcome the problem of phase 

matching, which adversely affects the accuracy of the reflection’s angle (
 
θmi

) and its 

strength using a p-p intensity probe.  The downside is that it requires discrete 

measurements, which may not be time invariant.  Another downside is that is very time 

consuming to take a single compound measurement, which relies on the accuracy of 

placement of several positions of the microphone. 

2.2 Other methods  

 Microflown p-u probe 2.2.1 

Further advances have been reported with a new approach based on hot wire transducers, 

which are sensitive to temperature changes. These are known as particle velocity 

transducers (Fahy, 1995), which are related to the fluctuations of value of particle 

velocity at that given coordinate.  The p-u intensity probe was invented in 1996 by Hans 

Elias de Bree in (de Bree, 1997) and later commercialised in (de Bree, 2003).  The 

company that manufactures this probe is called Microflown Technologies and is based in 

The Netherlands.  This solution drastically minimizes the distance between the 

transducers, and is therefore, likely the smaller coincident array, showing the full 

bandwidth across frequency with a single probe.  Owing to its small size, it is also 

possible to use the p-u intensity probe in smaller places than the p-p intensity probe 

(Druyvesteyn and de Bree, 1998). 
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In 2002, an American company named Meyer Sound3 created the first measurement 

system for measuring 3-Dimensional impulse responses of rooms using a custom p-u 

microphone array.  It consisted of one pressure microphone and three orthogonal particle 

velocities probes from Microflown (model PU regular one-dimensional) and custom 

hardware and software.  The acoustical parameters such as RT, EDT, etc., were calculated 

using the Euclidean norm value of the instantaneous sound intensity (  

iinst ) instead of the 

squared acoustic pressure (  p
2 ).  This process delivers lower floor noise than using only 

acoustic pressure, since the acoustic pressure ( p ) and particle velocity (  
u ) are 

uncorrelated signals and each transducer type senses them separately.  When both are 

multiplied, the net effect is to obtain a cleaner signal.  It has passed through a kind of 

filter, which removes unwanted noise by making it smaller after multiplying two small 

noise signals.  Identification of the source of reflections is possible by analysing the 

polarity of each of the Cartesian axis of each early reflection by plotting them as a 

traditional Reflectogram, where the squared of the pressure signal (  p
2 ) is converted to a 

dBA level (2002). 

According to Raangs, the three-dimensional Microflown p-u intensity probe model USP 

(Ultimate Sound Probe) was introduced to the market (Raangs, 2005), with its signal 

conditioner model MFSC-4.  It is reported that it has an accuracy of 7º in the estimation 

of the particle velocity (  
u ) when using steady state noise sources (Yntema et al., 2006).  

Nevertheless, the accuracy for detection of early reflections has yet to be fully reported.  

The aim of this project is to select a measurement-grade instrument that can surpass the 

minimum audible angle resolution of the human hearing system.  Yntema, in his Ph.D. 

thesis, (Yntema, 2008) still finds inherent problems on the self-noise of a p-u Microflown 

intensity probe and on the angular accuracy achieved, but stresses the advantage of using 

only particle velocity sensors in order to overcome the discrepancies on signal-to-noise-

ratio  ( SNR ) found using pressure and particle velocities together.  There was a low-

frequency accuracy problem in the probe given that there is thermal noise in the hot wires 

addressed by J. W. van Honschoten in (van Honschoten, 2004).  A new Microflown probe 

                                                
3 http://www.microflown.com/files/media/library/Applicationnotes/meyersound_3dp.pdf  
[Online accessed on April 10th 2013] 
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has been proposed with four pairs of wires instead of two.  It exhibits a lower inner noise 

level because of an increased sensitivity than the one found in a previous two-wire design 

(Yntema and van Honschoten, 2010).  Nevertheless, the application of the Microflown 

probe for measuring early-reflected energy is challenging because the requirements for 

analysis of transient noise sources are more demanding than the requirements of steady 

state noise sources. 

Author Year Measurement System Angular 
resolution Calculation method 

Elko (Elko, 1984). 1984 2-D p-p intensity probe. 2º @ 1 kHz Finite differences intensity 
method. 

Sekiguchi (Sekiguchi 
et al., 1992). 
 

1992 
4 omni-directional 
microphones tetrahedral 
array. 

3º Deconvolution technique with 
tone burst stimuli. 

Abdou (Abdou, 1994). 1994 1-D p-p intensity probe 
rotated. 3º@ 250 Hz 

Instantaneous intensity        (

  

iinst ) in time domain. 

Van Lancker (van 
Lancker, 2000). 2000 

8 omni-directional 
microphones in the 
corners of a cube.  

1º or 2º  TDE method. 

Gover (Gover, 2001). 2001 
32 omni-directional 
microphones spherical 
array. 

22º Beamforming. 

Günel (Günel et al., 
2005, Günel et al., 
2007). 

2007 Soundfield microphone. 7º 
Wavelet packet 
Decomposition. 
 

Yntema (Yntema et al., 
2006, Basten et al., 
2009). 

2006 
2009 

3-D Microflown   p-u 
probe. 

a) 7º 
b) 10º with 
no 
correction 
& 3.5º 
corrected 

a) particle velocity   (  
u ) only. 

b) instantaneous intensity    (

  

iinst ) method . 

Rechenberger 
(Rechenberger, 2009). 2009 

5 omni-directional 
microphones tetrahedral 
array. 

2º 
TOA algorithm with up-
sampling and minimum phase 
IR. 

Miah (Miah, 2009) 
(Miah and Hixon, 
2010). 

2009 7 omni-directional 
microphone array. 4º ± 3º Finite Differences Intensity 

method. 

Tervo (Tervo, 2010, 
Tervo, 2012). 2012 

3-D G.R.A.S. p-p 
intensity probe and TKK 
3-D probe. 

1º  SRP method combining TOA 
and TDOA algorithm. 

Romero-Perez 
(Romero-Perez, 2011, 
Romero-Pérez, 2011). 

2013 
1-D p-p intensity probe 
rotated with custom 
cradle. 

2.971º 
±0.226º 

STFT method using 

instantaneous intensity    (  

Iact

) and Circular statistics 
Table 2.1: Comparison of early reflections measurement systems, which reported 

quantifiable data. 
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2.3 Summary 

After the survey on measurement of early reflections, it was found that a formal 

investigation on the accuracy of estimation of reflections was needed.  In order to 

improve the B-Format angle estimation a new approach was taken.  Therefore, the 

motivation of using active instantaneous intensity (  

ia ), complex instantaneous intensity  (

  

icomplex ), envelope of intensity ( i ) and short-time Fourier transform ( STFT ) approach 

was implemented in the present work. 
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Chapter 3 : Applied Theory 

The implementation of a measurement system is based in intensimetry.  The concepts 

covered are the acoustic energetic quantities used for the diffuseness estimate, envelope 

and analytic function used to obtain the peak detector in the post-processing analysis, and 

several topics covering sound intensity such as the Euler equation to approximate the 

particle velocity (  
uinst ), instantaneous intensity (  


iinst ) and active instantaneous intensity (

  

ia ). 

The second part covers the post-processing equations used, such as the Exponential sine 

sweep, the deconvolution equation to obtain the impulse response of an acoustic 

measurement, and the application of the single vector/matrix that represents the four-

channel orthogonal impulse responses. 

3.1 Sound Energy analysis 

 Four channel orthogonal impulse responses 3.1.1 

The propagation of an acoustic wave in air is best described with a single function 

(potential) that depends on the spatial coordinates x, y and z and the temporal variable t 

(Heyser, 1986a) and (Stanzial and Prodi, 1997).  This idea has been patented in (Stanzial 

et al., 2005).  The main treatment of energetic analysis used for calculation of sound 

intensity (  

i ) is based in a generalisation of quadraphonic impulse responses.  According 

to the acoustic quadraphony theory, it is possible to completely characterise a sound field 

using the following definition of quadraphonic momentum (  P4 ) and the 3-D space vector 

(  
r ) (Stanzial et al., 2000, Stanzial et al., 2002, Stanzial et al., 2005, Bonsi et al., 2007): 

    
P4(r ,t) = p r ,t( )

c
ρ0
ux

r ,t( ) ρ0
uy

r ,t( ) ρ0
uz

r ,t( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

      (3.1) 
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Where    
r x, y, z( )  is the 3-D Euclidian space vector. 

In the case of B-Format signals, there is a similar analogy for implementation of vector 

that represents a four-channel orthogonal impulse response, which can describe the sound 

field at any fixed coordinate by the dual-domain short-time Fourier transform method: 

    
h4 ω ,t( ) = W ω ,t( )


X
2

ω ,t( )

Y
2

ω ,t( )

Z
2

ω ,t( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

     (3.2) 

The B-Format    W ,  

X ,  

Y  and 


Z  signals are obtained by extracting the impulse response 

respectively (please refer to section 4.2.4 ).  For a non B-Format signal, just use the 

following not scaled expression: 

    
h4 ω ,t( ) = p ω ,t( ) ux ω ,t( ) uy ω ,t( ) uz ω ,t( )⎡

⎣⎢
⎤
⎦⎥

     (3.3) 

 Hilbert transform 
 
H s t( )⎡⎣ ⎤⎦  3.1.2 

It is widely known as a mathematic transform, however in reality it is just a mathematic 

operator (Thrane et al., 1984, Heyser, 1986a, Kuttruff, 2000, Johansson, 2008) defined as: 

       (3.4) 

The Hilbert transform, in practice, acts as a 90º shifter to the signal and the operator 

generates a real function. 

 Analytic function (  s ) 3.1.3 

An analytic signal  is a concept used in continuous time signal processing.  It is 

comprised of a complex time series with real and imaginary parts. Additionally, it has a 

  
ŝ t( ) = H s t( )⎡⎣ ⎤⎦ =

1
π

s t − t '( )
t

⎛

⎝
⎜

⎞

⎠
⎟ dt '

−∞

+∞

∫

  
s n⎡⎣ ⎤⎦
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Fourier transform that vanishes for negative frequencies (Oppenheim, 1989, Johansson, 

2008). 

        (3.5) 

The term analytic can be extended to the z-transforms, while the discrete points that they 

describe in the Argand plane lie inside the unit circle (Oppenheim, 1989) (Leis, 2003). 

The analytic signal  is defined as the sum of the real part of the signal plus the 

imaginary part, which is obtained from applying the Hilbert transform   ŝ t( )  to the signal 

(Kuttruff, 2000).  

       (3.6) 

 Envelope of a signal ( s ) 3.1.4 

The use for the Hilbert transform is to help create the envelope of a signal  s t( )  by taking 

the magnitude of the analytic signal (Kuttruff, 2000). 

  
s t( ) = s t( )( )2

+ H s t( )⎡⎣ ⎤⎦( )2
= s t( )( )2

+ ŝ t( )( )2

 
     (3.7) 

 

Applying the envelope to the components of the instantaneous intensity (  

iinst ) is a good 

option to locate early reflections, because an envelope of a signal acts like a filter of 

trivial information without obliterating the vital information (Kuttruff, 2000). 

  
ix t( ) = ix t( )( )2

+ H ix t( )⎡⎣ ⎤⎦( )2
= ix t( )( )2

+ îx t( )( )2
      (3.8) 

  
s n⎡⎣ ⎤⎦ = sreal n⎡⎣ ⎤⎦ + jsimag n⎡⎣ ⎤⎦

  
s t( )

   
s t( ) = s t( ) + jH s t( )⎡⎣ ⎤⎦ = s t( ) + jŝ t( )
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iy t( ) = iy t( )( )2

+ H iy t( )⎡⎣ ⎤⎦( )2
= iy t( )( )2

+ îy t( )( )2
     (3.9) 

  
iz t( ) = iz t( )( )2

+ H iz t( )⎡⎣ ⎤⎦( )2
= iz t( )( )2

+ îz t( )( )2
      (3.10) 

The effect on this signal is to smooth the transients of the instantaneous intensity (  

iinst ) to 

make it easier to locate the reflections. 

The estimation of the angle of the incoming reflected energy 
 
θ ixz

 may be calculated with 

simple trigonometry with the envelope of intensity components: 

  
θ ixz

= tan−1 iz t( )
ix t( )

⎛

⎝
⎜

⎞

⎠
⎟

 

          (3.11) 

Therefore, the magnitude of the envelope 
 
ixz t( )  is calculated with the Pythagoras 

relation: 

  
ixz t( ) = ix t( )( )2

+ iz t( )( )2
         (3.12) 

In the case of the B-Format signals, Omoto (Omoto and Uchida, 2004) followed the 

approach of Abdou in (Abdou, 1994).  This approach is essentially the same definition of 

the complex instantaneous intensity defined by Heyser (Heyser, 1986a), but lacking the 

1/2 factor that is implying some harmonic averaging.  The following expressions 

generalise the envelope of intensity in orthogonal Cartesian components with the product 

of the analytic signal taken from the acoustic pressure, multiplied by the conjugate of the 

associated analytic signal taken from the particle velocity: 

   (3.13) 
  
ix t( ) = p t( )⎡⎣ ⎤⎦

ux t( )⎡⎣ ⎤⎦
∗
= p t( ) + jH p t( )⎡⎣ ⎤⎦( ) ux t( ) − jH ux t( )⎡⎣ ⎤⎦( )



 

Chapter 3: Applied Theory 
 

 

39 

   (3.14) 

   (3.15) 

Where: 

 = analytic acoustic pressure signal. 

 = analytic particle velocity vector in x-axis. 

= analytic particle velocity vector in y-axis. 

= analytic particle velocity vector in z-axis. 

∗  = complex conjugate of a complex signal. 

The magnitude of the instantaneous intensity (  

iinst ) is transformed to logarithmic scale for 

the polar plot by introducing a threshold on the signal at -30 dBFS below the direct sound 

in the range of 15-30 ms after the direct sound (Begault et al., 2001, Begault et al., 2004, 

Merimaa and Pulkki, 2005). 

 Sound intensity (  

i ) 3.1.5 

Sound intensity is an objective acoustic measure that characterises the direction and 

strength of the rate of flow of energy passing through a unit area per unit time and its 

measurement unit is {W/m2}.  Sound intensity (  

i ) is also known as the sound power flux 

density (Fahy, 1995, Fahy, 2005).  In mathematical terms, it is defined as the vector that 

results after applying the product of the sound pressure ( p ) and the associated fluid 

particle velocity vector (  
u ) (Fahy, 1995).  

         
(3.16) 

  
iy t( ) = p t( )⎡⎣ ⎤⎦

uy t( )⎡⎣ ⎤⎦
∗
= p t( ) + jH p t( )⎡⎣ ⎤⎦( ) uy t( ) − jH uy t( )⎡⎣ ⎤⎦( )

  
iz t( ) = p t( )⎡⎣ ⎤⎦

uz t( )⎡⎣ ⎤⎦
∗
= p t( ) + jH p t( )⎡⎣ ⎤⎦( ) uz t( ) − jH uz t( )⎡⎣ ⎤⎦( )

  
p

  

ux

  
uy

  
uz

  

i t( ) = p t( ) u t( )
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The measurement of sound intensity (  

i ) may be done using three different intensity 

probes principles.  a) the p-p probe, b) the Soundfield microphone  c) the p-u probe  

(Microflown probe).  In this thesis, only the face-to-face p-p probe and the Soundfield 

microphone were used.  The idea is to capture both the strength and direction of flow as a 

vector quantity   

i eθ .  A single conventional measurement microphone can only measure 

a scalar quantity called acoustic sound pressure ( p ) with units of Pascal {Pa}. This non-

directional quantity is useful to approximate the sound intensity at a specific position ( P ) 

in space, which represents point with coordinates   P x, y, z( ) .   

3.1.5.1 Instantaneous intensity (  

iinst ) 

It is an instantaneous vector quantity formed by the product of the instantaneous acoustic 

pressure and the instantaneous particle velocity vector at any instant on the known 

factors. 

   


iinst t( ) = pinst t( )⎡⎣ ⎤⎦

uinst t( )⎡⎣ ⎤⎦                         W
m2

⎧
⎨
⎩

⎫
⎬
⎭

       (3.17) 

For the calculation of the intensity using the p-p intensity probe, some assumptions are 

used.  It is assumed that the intensity is calculated at the geometric centre of the two 

microphones, which are set in a face-to-face configuration.  Therefore, the instantaneous 

acoustic pressure at the middle point ( pinst ) is just the averaged pressure of the two 

sensors:  

  
pinst t( ) ≈ p1 t( ) + p2 t( )

2
                       N

m2 = Pa
⎧
⎨
⎩

⎫
⎬
⎭      

(3.18) 

The Euler equation is used to calculate the instantaneous particle velocity (  
uinst ) in face-

to-face p-p probe configuration. It is estimated using a finite difference approximation to 

the local spatial gradient of sound pressure following expression: 
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uinst t( ) = − 1
ρ0

∂p t( )
∂x

⎛

⎝
⎜

⎞

⎠
⎟∫ dt ≈ − 1

ρ0

p1 τ( )− p2 τ( )
Δx

⎛

⎝
⎜

⎞

⎠
⎟

−∞

t

∫ dτ                m
s

⎧
⎨
⎩

⎫
⎬
⎭

  (3.19) 

While the distance ( Δx ) is kept constant, it is denoted as the distance ( d ) between the 

two pressure sensors so the equation takes the form (Fahy, 1995): 

   

uinst t( ) ≈ − 1
ρ0d

p1 τ( )− p2 τ( )⎡⎣ ⎤⎦
−∞

t

∫ dτ                                             m
s

⎧
⎨
⎩

⎫
⎬
⎭

  (3.20) 

Formerly, the instantaneous intensity component is approximated using the finite 

difference method by multiplying the estimated instantaneous average pressure ( pinst ) by 

the estimated instantaneous particle velocity (  
uinst ): 

   


iinst t( ) ≈ 1

2ρ0d
p1 t( ) + p2 t( )⎡⎣ ⎤⎦ p1 τ( )− p2 τ( )⎡⎣ ⎤⎦

−∞

t

∫ dτ                             W
m2

⎧
⎨
⎩

⎫
⎬
⎭

  (3.21) 

In order to measure the instantaneous direction of flow of sound energy flow (  

iinst ), at 

least one pair of phase-matched measurement-grade microphones is needed, as it is 

defined in the BS EN 61043:1994, IEC 1043:1993 (1994).  This may be achieved using 

more than one pressure sensitive microphone in a probe to measure the sound energy 

flow (  

i ) across a single Cartesian axis. 

A pair of microphones in a face-to face p-p probe configuration usually measures a 

couple of acoustic pressures, namely   p1  and   p2 .  If these two scalar quantities are used to 

measure the components of the intensity which is co-linear to a single axis, i.e. x-axis, the 

p-p probe needs to be aligned with the line that joins both microphones, and the centre 

point between the microphones also needs to be aligned with the origin of the Cartesian 

axis as it is depicted in the left part of Figure 3.1. 

This creates the first intensity component ( ix ).  Subsequent measurements of sound 

intensity along the y-axis can be made by rotating the probe 90º from its acoustic centre to 
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measure acoustic pressures  p3  and  p4 .  Please refer to Figure 3.1 to visualise the rotation 

of the 1-D p-p probe in face-to-face configuration.  This procedure creates the second 

intensity component ( 
iy ).  In such a way, it is possible to generate the intensity vector in a 

plane to create a two-dimensional ( 2-D ) intensity vector (  

ixz or 

  

ixy ) i.e. xz-plane or xy-

plane).  If a three-dimensional ( 3-D ) intensity vector it is needed, the probe is rotated 90º 

orthogonal to such plane, to be aligned with the remainder z-axis for creating the third 

component.  In that case, acoustic pressures  p5  and   p6  are used to calculate the third 

intensity component (  

iz ) as is shown in Figure 3.1. 

 
Figure 3.1: Superposition of acoustic intensity (  


i ) measured with a p-p probe aligned on 

each Cartesian axis results in 3-D intensity    

i x, y, z( ) . 

The crucial assumption is that the sound field should be time invariant.  It basically 

means that there is not significant change in room temperature and there is no flow of air 

coming in or out of the room, consequently the general linear equations are valid and 

superposition of sound fields are summed without any non-linear effects.  Further 

information of theory of sound intensity (  

i ) implemented on this project is described 

below. 

The following equations are used in the case of calculation instantaneous intensity of a B-

Format signal, which is comprised of  w = w t( ) , and     
x = x t( ) î ,     

y = y t( ) ĵ  and     
z = z t( )k̂ , 

which constitute the 3-D particle velocity vector components: 

    


iinst t( ) = w t( )⎡⎣ ⎤⎦ x t( ) î + y t( ) ĵ+ z t( )k̂⎡⎣ ⎤⎦                    W

m2

⎧
⎨
⎩

⎫
⎬
⎭

    (3.22) 

x
p1

p2

y

z x
p4 p3y

z

p6

x

p5

y

z

+ +

p6

x

p5

p1

p2

p4 p3y

z

=
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3.1.5.2 Active instantaneous intensity (  

ia ) in time domain 

Active instantaneous intensity (  

ia ) is the time-averaged product of the acoustic pressure (

 p ) with the correspondent component of the particle velocity (  
u ), which has the same 

phase angle  of the acoustic pressure.  It represents effective propagation of mean energy 

flux (  

ia ) through space, because it represents the part of the sound intensity, which is not 

fluctuating in time.  It is an indicative figure that shows effective acoustical radiation of 

sound at a given point in space (Elko, 1984, Fahy, 1995).  The direction of the active 

intensity vector (  

ia ) is thus the average direction in which the net energy is flowing and it 

depends on the relative phase of pressure and particle velocity.  

   


ia t( ) = iinst t( ) = p t( ) u t( ) = lim

T→∞

1
2T

p t( ) u t( )⎡⎣ ⎤⎦dt
−T

T

∫     (3.23) 

Reactive intensity (  

ireactive ) is the time-averaged product of the pressure with the 

component of the particle velocity, which is 90 degrees apart from the pressure’s phase 

angle.  This quantity represents the acoustic power flux (  

i ) that does not radiate sound 

and is not transferring sound energy because the phase angle of the pressure ( p eθ ) and 

the particle velocity    
u e

θ+π
2

⎛
⎝⎜

⎞
⎠⎟  are 90 degrees apart.  In a phasor diagram, the reactive part 

is an imaginary term and the active part is the real term and both lie in quadrature (Fahy, 

1995). 

3.1.5.3 Active instantaneous intensity in frequency domain (  

Ia ) 

In the case of a face-to-face p-p probe embedded in a fixed monochromatic sound fields, 

the active intensity   

Ia ω( )  is associated with the components of the sound pressure and 

particle velocity that have the same phase angle as the following relationship (Fahy, 1995, 

Merimaa et al., 2001, Merimaa and Pulkki, 2005, Merimaa, 2006): 
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
Ia ω( ) = Re P ω( )⎡⎣ ⎤⎦

∗ 
U ω( )⎡⎣ ⎤⎦{ }                        W

m2

⎧
⎨
⎩

⎫
⎬
⎭

   (3.24) 

Merimaa implemented the case of the calculation of the active instantaneous intensity 

vector (  

Ia ) in the B-format context by using a scaling factor of   2 ρ0c0( ) (Merimaa, 

2006).  Under the short-time Fourier transform method ( STFT ), each time a window is 

depicted by two indexes: n denoting time frame and k denoting frequency frame. The 

active intensity (  

Ia ) is depicted by: 

    


Ia n,k( ) = 2

ρ0c0

Re W ∗ n,k( ) X n,k( ) î +Y n,k( ) ĵ+ Z n,k( )k̂⎡⎣ ⎤⎦{ }    (3.25) 

Where  is the air density and   c0  is the speed of the sound, the orthogonal component 

unit vectors are , ,  and * is the complex conjugate operator applied to the complex 

pressure signal in the B-Format notation ( W ).  The active intensity components are 

combined to create the three-dimensional active intensity vector: 

    


Ia n,k( ) = IaX

n,k( ) î + IaY
n,k( ) ĵ+ IaZ

n,k( )k̂⎡
⎣

⎤
⎦       (3.26) 

According to Ahonen (Ahonen et al., 2008), the direction of arrival of the active intensity 

(  

Ia ) is opposite to the direction of the particle velocity vector with STFT .  The 

formulas read: 

   


IaXY

n,k( ) = −

IaX

n,k( )( )2
+ −

IaY

n,k( )( )2
                                        W

m2

⎧
⎨
⎩

⎫
⎬
⎭

  (3.27) 

   
θ IaXY

n,k( ) = 180

π
⎛
⎝⎜

⎞
⎠⎟

tan−1
−

IaY

n,k( )
−

IaX

n,k( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                              { }   (3.28) 

 ρ0

  ̂i   ĵ   k̂

 

U n,k( )
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φ IaXZ
n,k( ) = 180

π
⎛
⎝⎜

⎞
⎠⎟

tan−1
IaZ

n,k( )
−

IaX

n,k( )( )2
+ −

IaY

n,k( )( )2
 

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

              { }   (3.29) 

3.1.5.4 Complex instantaneous intensity (
  

icomplex ) 

Heyser proposed the time delay spectrometry ( TDS ) theory in 1967 (Heyser, 1967).  It 

later evolved to include the concept of measurements of dynamic signals by using 

formulations of complex signals in time domain ( TD ).  The concept of complex 

instantaneous intensity (
  

icomplex ) in time domain was first introduced by Heyser in 1986 in 

(Heyser, 1986b) and (Heyser, 1986a) as a generalisation of acoustic time delay 

spectrometry ( TDS ) theory.  It has been supported by Jacobsen (Jacobsen, 1991), Fahy 

(Fahy, 1995) and Torres-Guijarro (Torres-Guijarro et al., 2011) as a good technique to 

analyse transient complex signals. 

Further analysis for the report involves the use of complex instantaneous intensity 

calculation according to Heyser’s formula (Heyser, 1986a): 

 (3.30) 

Where: 

= complex instantaneous intensity in time domain. 

= complex conjugate operator. 

= acoustic pressure. 

= particle velocity vector. 

= Hilbert transform of the particle velocity vector. 

 


icomplex t( ) = 1

2
pcomplex t( )⎡⎣ ⎤⎦

ucomplex t( )⎡⎣ ⎤⎦
∗
=
1
2
p t( ) + jH p t( )⎡⎣ ⎤⎦( ) u t( ) − jH u t( )⎡⎣ ⎤⎦( )

 

icomplex

*       

p t( )  

u t( )  

 H
u t( )⎡⎣ ⎤⎦  
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= Hilbert transform of the acoustic pressure. 

The analytic signal of the pressure (  
p ) and the particle velocity (  

u ) are formed by using 

the sum of the real part of the signal plus the imaginary part, which is formed by 

multiplying the Hilbert transform of the signal by the complex operator (j). 

        (3.31)

        (3.32) 

Active complex instantaneous intensity (
  


iactive

complex

) is defined as the real part of the complex 

instantaneous intensity :  

    (3.33) 

 Diffuseness estimate (ψ ) 3.1.6 

Merimaa, (Merimaa, 2006) proposed a measure called diffuseness estimate ( ), which 

was used to characterise the decay of sound as a ratio of the nearby restricted energy.  It 

was based on the proposed field indicator by Stanzial et al. called pressure velocity 

correlation coefficient (η ) (Stanzial et al., 1996, Stanzial et al., 2000), based on active 

instantaneous intensity (  

ia ) (Stanzial and Prodi, 1997).  This measure is used to compare 

performance of intensity probes reported as the radiation index (η ) by Cengarle 

(Cengarle, 2012). 

H p t( )⎡⎣ ⎤⎦  

  
u t( ) = u t( ) + jH u t( )⎡⎣ ⎤⎦

  
p t( ) = p t( ) + jH p t( )⎡⎣ ⎤⎦

 


iactivecomplex

t( ) = Re 1
2

pcomplex t( )⎡⎣ ⎤⎦
ucomplex t( )⎡⎣ ⎤⎦

∗⎧
⎨
⎩

⎫
⎬
⎭

             = Re 1
2

p t( ) + jp̂ t( )⎡⎣ ⎤⎦
u t( )− j ̂u t( )⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭

             =Re 1
2
p t( ) + jH p t( )⎡⎣ ⎤⎦( ) u t( )− jH u t( )⎡⎣ ⎤⎦( )⎧

⎨
⎩

⎫
⎬
⎭

ψ
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η =


Ia

cE
                     adimensional{ }        (3.34) 

The degree of diffuseness of a sound field is a scalar value, which measures the ratio 

between arriving directions of active intensity (  

Ia ) and acoustic energy density ( E ) at a 

given time window.  Pulkki (Pulkki, 2007) explains that diffuseness varies between 

values of 0, when the direction of the incoming reflections directions is clearly 

determined i.e. an isolated reflection and 1, when the direction of the incoming reflections 

is random (implying a diffuse field).  In Figure 6.57, the darker grey spot values 

correspond to higher values and the white values to lower values of diffuseness estimate (

ψ ). 

The Potential acoustic energy in frequency domain (
 
Epot ) is calculated using the 

following expression: 

  
Epot ω( ) = P ω( )⎡⎣ ⎤⎦

2

2ρ0c0
2                              kg

m s2 = Pa
⎧
⎨
⎩

⎫
⎬
⎭

     (3.35) 

The kinetic acoustic energy in frequency domain ( Ekin ) can be formulated as: 

   
Ekin ω( ) = 1

2
ρ0


U ω( ) 2

                         kg
m s2 = Pa

⎧
⎨
⎩

⎫
⎬
⎭

     (3.36) 

The acoustic energy density ( E ) is calculated with the sum of potential energy (
 
Epot ) and 

acoustic kinetic energy ( Ekin ), which in the frequency domain can be written as: 

    (3.37) 

   

E ω( ) = 1
2

P ω( )⎡⎣ ⎤⎦
2

ρ0c
2
0

+ ρ0


U ω( ) 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

             
kg

m s2 = Pa
⎧
⎨
⎩

⎫
⎬
⎭



 

Chapter 3: Applied Theory 
 

 

48 

According to Merimaa (Merimaa, 2006) the diffuseness estimate (ψ ) in a condensed 

form is obtained by applying the Euclidean norm (  ) to the averaged active 

instantaneous intensity using the STFT  (  

Ia ), and then  divided by the averaged product 

of the energy density ( E ) multiplied by the speed of sound ( c ).  This quotient is bonded 

between 0 (non-diffuse) and 1 (diffuse) by taking its complement.  This inverted scale is 

performed by subtraction of the mentioned quotient from a unity value. 

   
ψ = 1−


Ia

cE
                        adimensional{ }      (3.38) 

Ahonen (Ahonen and Pulkki, 2009) recently proposed a new expression to evaluate 

diffuseness estimate ( ) by using only the instantaneous active intensity (  

ia ) in the time 

domain.  A comparison of diffuseness estimates was performed by De Galdo and Ahonen 

(Del Galdo et al., 2012), who recognise the need to perform spatial averaging to 

ameliorate the variance on these estimates.  However, both estimates show similar 

performance.  Before Merimaa (Merimaa, 2006), it was defined in terms of a quotient of 

the length of the active instantaneous intensity in frequency domain (  

Ia ) upon the energy 

density ( E ).  The process to calculate the proposed diffuseness estimate ( ψ̂ ) is dividing 

the length of averaged active instantaneous intensity vectors 
  

ia t( )  by the averaged 

length of the active instantaneous intensity 
  

ia t( )  and then taking its complement and 

performing the square root.  It is depicted in the following expression: 

   

ψ̂ t( ) = 1−


ia t( )

ia t( )

                           adimensional{ }     (3.39) 

The new proposed temporal-variation based diffuseness estimate ( ψ̂ ) apparently 

produces more reliable diffuseness estimation than the traditional method (ψ ) in one and 

two-dimensions, so it may help to locate reflections with more accuracy.  Pihlajamäki 

 ψ̂
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tested the new formulation for diffuseness estimate denoted as ( ψ̂ ) in (Pihlajamäki, 

2009). 

In order to apply the diffuseness estimate (ψ ) to the case of B-Format signals, the 

following approach is taken:  

The acoustic energy density ( E ) in the spectrum applied for B-Format signal has the 

following form: 

    (3.40) 

Further development from applying the analysis to B-Format signals led to an 

instantaneous function of diffuseness ( ψ inst ) in terms of short-time Fourier transform 

windows ( STFT ) in a room by applying the following expression (Enroth, 2007), 

(Merimaa, 2006): 

   

ψ inst n,k( ) = 1−
2 Re W ∗ n,k( ) U n,k( ){ }

W n,k( ) 2
+ 1

2
−

IaX

n,k( ) 2
+ −

IaY

n,k( ) 2
+ −

IaZ

n,k( ) 2⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

    (3.41) 

The instantaneous value of diffuseness ( ψ inst ) is calculated by applying the concept of the 

‘Directional Diffusion Index’ ( ) to the active instantaneous intensity in frequency 

domain (  

Ia ) orthogonal component vectors calculated from B-format signal. 

The Matlab’s ‘norm’ operation calculates the Euclidean length (  l2  norm) of a 3-D vector 

and is applied to the active intensity vector in the frequency domain (  

Ia ) in the following 

way: 

   


Ia n,k( ) =


IaX
( )2

+

IaY
( )2

+

IaZ
( )2

       
 (3.42) 

   
E ω( ) = 1

2
1

ρ0c
2 W ω( ) 2

+
1
2

X ω( ) î + Y ω( ) ĵ+ Z ω( )k̂ 2⎡

⎣
⎢

⎤

⎦
⎥

ψ
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To the ‘expected value’ of intensity 
   

Ia n,k( ) , which in practice is calculated with the 

recursive integration of the short-time Fourier transform ( STFT ) of the active 

instantaneous intensity vector    

Ia n,k( ) . 

 Equivalent rectangular bands ( ERB ) 3.1.7 

Anatomically speaking, the equivalent rectangular bands represents sections of length 

approximately of 1.3 mm, which imaginarily divide inside our basilar membrane.  The 

equivalent rectangular bands act as a filter bank consisting of a series of band pass filters, 

which are frequency dependent.  Inside a critical band our hearing system responses to 

frequency changes immediately and it is the responsible of masking sounds, which are 

outside each equivalent rectangular band (Vaseghi, 2007).  This filter banks are 

approximated by a rectangular shape, however in reality an accurate model is curved 

(Slaney, 1993).  In order to obtain the directions of the reflections, a short-time Fourier 

transform ( STFT ) analysis is made to the intensity vector in the horizontal plane.  The 

time window duration is chosen according to the sampling frequency and the mean free 

path ( lMFP ) of the room.  Octave band, 1/3 octave band, or equivalent rectangular band (

 ERB ) filtering can be used to smooth the time windows.  The best perceptual 

approximation is the ERB because it resembles human hearing resolution, whereas 1/3 

octave band approximates the critical band with less accuracy and octave band may be 

useful for engineering analysis.  The formula used to calculate the bandwidth of the 

rectangular filters ( ) is taken from Moore’s latest formulation (Moore, 2003): 

  
ERBN = 24.7 4.37 ×10−3 f +1( )                                   Hz{ }      (3.43) 

The variation of the critical band's bandwidth can be treated as a function of frequency 

(Vaseghi, 2007): 

  
BWc f( ) = 25+ 75 1+1.4 f ×10−3( )2⎡

⎣⎢
⎤
⎦⎥

0.69

                    Hz{ }      (3.44) 

 ERBN
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3.2 Statistical treatment for the sample of angular 
measurements 

 Uncertainties 3.2.1 

According to the “GUM: Guide to the Expression of Uncertainty in Measurement”, the 

definition of ‘uncertainty’ is related to the doubt about the validity of the result of the 

measurement (2008).  The definition of the ‘uncertainty of measurement’ is related to the 

result of a statistical measurement, which reports the dispersion of the values that could 

reasonably be attributed to the measured parameter.  It is usually reported as a standard 

deviation.  The confidence interval needs to be constructed according to the size of the 

sample. For small samples below 30 measures, the normal distribution may be 

approximated by the Student´s t-distribution (Navidi, 2006). 

Time invariance is a topic that can be measured with the standard deviation of a sample 

of measurements performed on the same position. 

The detection of the angle of arrival of direct sound (
 
θsi

) is trivial, but the detection of the 

angle of arrival of first reflection (
 
θmi

) is not so, and usually exhibits larger errors in its 

estimation.  Therefore, it is expected that the first reflection will exhibit larger error and 

variation of the positions, particularly as the reflection paths become longer.  Since the 

high sensitivity of the system to reflection angle and its natural tendency to increase 

errors in estimation, two measurement methods were used; the short-time Fourier 

transform ( STFT ) and the time domain methods ( TD ). 

 Linear Error (ε ) and linear standard deviation(σ ) 3.2.2 

Most of the graphs that were planned to be results in the report were done with simple 

error  (ε ) and its dispersion statistics (σε ).  It was applied as linear statistics and circular 

statistics depending on the case studied.  The input variables used were: a) spatial position 
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varied in a single dimension (x- axis) and b) time variance measured as the standard 

deviation of the error (σε ) found in the estimation and the  ith  measured angles of a 

sample (
 
θmi

 and 
 
θsi

).  In the case of the p-p intensity probe has become a problem to take 

into account when three different rotations of the probe are performed. 

According to Tashev (Tashev, 2009), the evaluation of sound localisers is done using the 

following parameters: mean error ( ) and the standard deviation error also known as 

mean squared value ( ): 

   
ε = 1

N
ϕ̂ i −ϕ i( )

i=1

N

∑                 { }        (3.45) 

The overall linear mean error can be computed by performing an arithmetic mean of the 

error (εε ) taken from the  ith  error samples, and takes the form: 

   
εε =

1
N

ε i
i=1

N

∑                 { }          (3.46) 

The unbiased standard deviation error of a sample is calculated when the sample size is 

below 30 measurements by using the following expression: 

   
σε =

1
N −1

⎛
⎝⎜

⎞
⎠⎟

(ϕ̂ i −ϕ i )
2

i=1

N

∑                       { }       (3.47) 

Where:  

εε  = overall mean error. { º }  

  = mean error { º }. 

 = number of samples {   }. 

 = sound source  ith  estimated angle { º }.

 

ε

σε

ε

 N

  ϕ̂ i
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= sound source  ith  real angle { º }. 

The application of the correction factor under the Student´s t-distribution uses the 

following formula (Abramowitz and Stegun, 1972): 

  
σεcorrected

= tN−1,α 2

σε

N

⎛
⎝⎜

⎞
⎠⎟

         (3.48) 

Where: 

  

σε = standard deviation of a unbiased sample of errors

N = sample size or degrees of freedom
tN−1,α 2 =  percentage points of Student's t-distribution

  

For a   N = 10 , if a confidence interval with 0.95 probability of being inside the 

probability distribution is chosen, then the value of   
tN−1,α 2 = 1.833. 

 Linear Percentage error ( ε% ) 3.2.3 

The definition of linear percentage error is the quotient of the error ( ε ) divided by the 

real value (ϕ ) expressed in percentage. 

According to Abramowitz and Stegun (Abramowitz and Stegun, 1972), the formula for 

percentage error adapted for this report is: 

ε% = Δx
x

⎛
⎝⎜

⎞
⎠⎟ ×100 = ε

ϕ
⎛
⎝⎜

⎞
⎠⎟
×100                       %{ }      (3.49) 

Where: 

 ε = ϕ̂ −ϕ  = error.  { º } 

ϕ  = real angle.  { º } 

 ϕ i
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 ε%  = percentage error.  {%} 

3.2.3.1 Absolute percentage error  ε%  

This parameter is used more treating linear errors, considering that errors need to be 

positive in order to compare them.  It is simply the absolute value of the percentage error 

( ε% ):  

 
ε% =  ε

ϕ
⎛
⎝⎜

⎞
⎠⎟
×100                   %{ }         (3.50) 

3.2.3.2 Mean Absolute Percentage Error  ε%  or ( MAPE ) 

The mean absolute percentage error ( MAPE )  ε%  also known as mean absolute 

deviation is used to analyse the behaviour of time series in financial reports as a forecast 

error (Hamilton, 1994).  For the generation of graphs in this report (see chapter 6), it is 

implemented by taken the linear mean of the  ith  samples of absolute percentage error  ε%

, and it takes the form: 

  
ε% = 1

N
ε% i

i=1

n

∑                        %{ }        (3.51) 

3.2.3.3 Weighted average of Standard deviation of mean absolute 
percentage error (

 
σε%

) 

The weighted average of standard deviation error of MAPE (
 
σε%

) is chosen when there 

are different uncertainties on each sample. It may be treated as having different statistical 

variables (Navidi, 2006).  The weighted average is calculated taken the sum of the  ith  

samples of variance of the error (
 
σε%

2 ) and then taking the square root of it and divide it 

by the number of samples ( N ): 
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The correspondent weighted standard deviation used for describing the uncertainty of a 

sample of measurements is adapted to use the mean absolute percentage error  ε%  using 

the following expression: 

  
σε%

= 1
N

σε%i
( )2

i=1

N

∑                %{ }        (3.52) 

This expression is a good option for rejection of any outliers in the measurements, 

because it reports a smaller value than the traditional mean of standard deviation (σ ).  In 

this particular case, the variance ( σ
2 ) is arithmetically averaged, then is converted to 

standard deviation (σ ) by taking the square root of the average of variances. 

3.2.3.4 Overall Mean Absolute Percentage Error ( OMAPE ) 
 
εε%

 

The overall mean absolute percentage error can be computed using linear statistics by 

performing an arithmetic mean of the error 
 
εε%

 taken from the  ith  error samples, and it 

takes the following expression: 

  
εε%

= 1
N

ε%i
i=1

N

∑                       %{ }        (3.53) 

 Directional statistic parameters 3.2.4 

In order to calculate the mean direction over a measured angle, the angle data in degrees 

need to be converted to radians prior to any calculation because the Matlab trigonometric 

functions calculate data in radians by multiplying by the factor   π  rad( ) 180 .  Let the 

sample of angles be   θ1,θ2 ,θ3,...,θN .  The resultant direction or mean direction (θ ) is 

calculated using the following formula proposed in (Trauth, 2010).  The values of cosine 

and sine are decomposed for each direction  θ i  to analyse it by its resultant sum of 
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Cartesian components (  xr , yr ) and are then used to calculate the resultant or mean 

direction (θ ) for the set of angular data. 

  
xr = cosθ i

i=1

N

∑                            adimensional{ }      (3.54) 

  
yr = sinθ i

i=1

N

∑                            adimensional{ }      (3.55) 

3.2.4.1 Circular mean (θ ) 

The resultant direction (θ ) of a sample is called circular mean and is calculated with the 

trigonometric relationship: 

  
θ = tan−1 yr

xr

⎛

⎝⎜
⎞

⎠⎟
                               rad{ }        (3.56) 

The length of the resultant ( R ) is computed with the Pythagoras relation applied to the  

  
R = xr( )2

+ yr( )2
                         adimensional{ }      (3.57) 

The length of the resultant ( R ) evidently varies with the dispersion of the sample.  

Applying the normalisation to the resultant length to the number of measurements 

produces the mean resultant length ( R ): 

  
R = R

N
                               adimensional{ }       (3.58) 

3.2.4.2 Circular variance ( σ o
2 ) 

The circular variance ( σ o
2 ) is calculated with the following expression: 
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  σ o
2 = 1− R                         rad{ }        (3.59) 

3.2.4.3 Circular standard deviation ( σ o ) 

The circular standard deviation is calculated by two different expressions the angular 

deviation (Berens, 2009): 

  σ = 2R                            rad{ }       (3.60) 

Which is bounded between 0 and  2  and the Mardia’s circular standard deviation 

formula (Fisher, 1971): 

  
σ o = −2log R( )                rad{ }       (3.61) 

Which is bounded between 0 and ∞ . In order to convert the circular data to degrees it is 

multiplied by the factor   180 π  rad( ) .  Both expressions deliver similar results, where the 

circular deviation tends to report slightly smaller values, therefore in this thesis the 

circular deviation is used ( σ o ) when angles of arrival (θ ) are analysed. 

3.3 Summary 

This chapter covers the applied intensimetry theory and the calculation methods for the 

two probes chosen, (i.e. face-to-face p-p probe and Soundfield microphone).  It also 

covers the statistical treatment for the measurements of angles.  The first topic explains 

the concept of the four-channel orthogonal impulse responses     P4
r ,t( ) .  In order to 

explain the basics to obtain the advanced intensity quantities, explanation of the following 

concepts are covered: the Hilbert transform 
 
H s t( )⎡⎣ ⎤⎦ , the analytic signal (  

s ), and the 

envelope of the signal  s t( )  (Heyser, 1986a, Kuttruff, 2000, Johansson, 2008).  The 

properties of the envelope help to locate early reflections with more accuracy.  
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Consequently, it is applied to the three-dimensional impulse response and direction of 

arrival ( DOA) and time of arrival ( TOA ) and strength is computed from it.  

Subsequently, the sound intensity theory is introduced.  It comprises of explanations of 

instantaneous intensity (  

iinst ), active instantaneous intensity (  


ia ), and Heyser’s complex 

intensity (
  

icomplex ) in time domain, which tends to improve the estimation of the reflections 

because of its properties of averaging the intensity.  The useful part of the complex part is 

called active complex instantaneous intensity (
  


iactive

complex

) and is the part used in the extraction 

of directional information.  There are different approaches taken to calculate this 

quantities depending on the type of probe chosen and the domain chosen.  The following 

topic to cover is the diffuseness estimate (ψ ) and finally the implementation of 

equivalent rectangular bands, which are used to resemble our spatial resolution of the 

hearing system.  The next section covered is the statistical treatment for the sample of 

angular measurement, which is comprised of uncertainties, linear errors ( ε ) and standard 

deviation (σ ), linear percentage error ( ε% ) and directional statistic parameters for 

angular quantities, which consist of circular mean (θ ), dispersion of the sample ( R ), 

circular variance ( σ o
2 ) and circular standard deviation ( σ o ). 
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Chapter 4 : Acoustic Measurement System 

The detection of direct sound has not been a problem for microphone arrays.  It is usually 

comprised of the simple task of finding where it shows its maximum level, with the 

exception of cases where there are strong echoes that can be detected in the measuring 

position in the room.  In these cases, it is possible to encounter an acoustically amplified 

reflection, which can exhibit a higher level than the level of the direct sound, because of 

the phenomena of focusing sound reflections, which may happen when sound encounter a 

concave surface (Ballou, 1991).  Depending on the size of the room, it usually has a 

certain time gap from early reflections.  Generally, the only concern for locating the 

direct sound is to be sure that the measurement system is sample accurate in all the 

channels, and that the microphone capsules are calibrated to have the same sensitivity.  

This sound localization task can be done either using the particle velocity estimates (  
u ) 

from the raw data signals, or by calculating the sound intensity (  

i ) from them.  The latter 

method is recommended, since sound intensity (  

i ) is proportional to the acoustic energy (

 E ), and can be used for the following analysis of early reflections without bias.  The 

particle velocity estimates have a disadvantage of not being able to show where the real 

flow of sound energy is.  This happens especially in reverberant environments (Jacobsen, 

1979), where there are strong and fast changes of sound energy flow (  

i ) (Jacobsen, 

2002), or in the case of measuring in non-diffuse spaces, where the pressure fluctuates in 

a dissimilar manner with respect to the sound intensity (  

i ).  The reason for this behaviour 

is because both signals are uncorrelated (Gade, 1985).  Despite this argument, care needs 

to be taken with the difference between uncorrelated and incoherent signals discussed by 

Jacobsen in (Jacobsen and Nielsen, 1987). 

The contributions of the author are in the design of the custom-made rotation cradle, and 

the post-processing and analysis of the measured data in order to use different types of 

sound intensities to characterise the strength, spatial and temporal attributes of the early 

reflections in small rooms. 
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4.1 Implementing the physical measurement system 

The core of this project was originally established to develop a measurement system 

aiming to measure the strength, temporal and spatial properties of early sound fields in 

small rooms with a spherical resolution similar to the minimum audible angle (MAA = ± 

2º at the front (Mills, 1958, Yost, 1974) ).   

It is also called localization blur (Blauert, 1997a).  Our ability to perceive spatial 

differences is not constant across the horizontal and vertical plane (see Figure 4.1).  For 

the horizontal plane, the minimum audible angle can be determined at the front with a 

maximum accuracy of 1 degree using white noise signals.  Localization blur fluctuates 

with different signals stimuli.  

 
Figure 4.1: Localisation blur in horizontal plane (after Blauert)  

These objectives are fulfilled by carrying out a number of experiments, which consist of 

obtaining a three-dimensional impulse response (3-D IR) of a reflection’s controlled 

environment.  The results of these measurements are post-processed to obtain energetic 
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acoustic quantities based in sound intensity (  

i ).  The results are compared with the 

known reference, which comprises geometrical information in order to perform accuracy 

and error analysis.  This is achieved by using carefully chosen advanced metrology 

techniques.  A comparison of a couple of acoustic probes was done against the 

geometrical reference.  Later, the post-processing data was also compared with two sound 

intensity (  

i ) analysis techniques based in time domain and frequency domain.  The 

probes used were the p-p intensity probe and the Soundfield microphone.  

The spatial measurement method is based on the use of precision optical solutions based 

on a couple of orthogonal positioned laser cross devices.  The physical alignment of the 

system is possible using this configuration and its function is to enhance the repeatability 

of the proposed method.  Initially, the accuracy of the positions measured was done using 

linear rulers and plumbs.  It soon, became necessary to improve the accuracy of the 

system by adding wheels to the triplay base of the mobile tripod that holds the acoustic 

probe.  Nevertheless, the achieved accuracy using these solutions was not state-of-the- art 

and it was planned to implement a system with higher repeatability and accuracy based 

on better equipment. 

Previous experience of the author working on the automation of a tube cutter machine 

and on the implementation of a vertical machine center ( VMC ) using servo-motors, 

provides the insight to find an appropriate solution for the accurate positioning.  The use 

of linear guide ways borrowed from the CNC machinery components4 can help to move 

the receiver with accuracy and repeatability for consistent positioning.  If additional 

accuracy is needed, the measuring method can use a servomotor for linear location of the 

source with the highest repeatability down to ±1 µm.  Unfortunately, this idea could not 

be implemented in the measurements performed for this report because of the 

unavailability of the linear guides during the measurements. 

The post-processing of the data acquired needs to be the key part of the innovation of the 

method’s aims.  The measurement method has tried to select the most economical choices 

in terms of number of channels by using new quantities of sound intensity borrowed from 

                                                
4 https://tech.thk.com/en/products/pdfs/en_a01_350.pdf [Online accessed on May 19th 2013] 
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Heyser’s time delay spectrometry ( TDS ) research (Heyser, 1967), where he first 

introduces the Energy Time Curve ( ETC ). Later, he proposes the use of complex 

instantaneous intensity (
  

icomplex ) (Heyser, 1986a).  A higher resolution in acquisition of 

data has been addressed in order to obtain the most detailed transient response in the time 

domain, which later can offer detail in the frequency domain analysis.  The aim of this 

proposed measurement method has borrowed the multidimensional display of frequency 

and directional information of early reflections in order to be able to find a good amount 

of orthogonal variables to present the analysis of the sound field as a 2-D plane 

description of the sound decay of a given room.  This method can be used in large rooms 

and small rooms by adjusting the time windows.  The portability of the equipment should 

be an important issue for the practitioners that may be interested to assess the 3-D 

transient behaviour of rooms, because a practical measurement system needs to be easy to 

use and manageable.  In the future, real-time analysis of early-reflected energy may be 

commercially implemented in products music such as the LMS SoundBrush5 or 

Eigenmike6 (Meyer and Elko, 2010).  It is particularly difficult to address the accuracy of 

the method for measuring the low-frequency content of the reflections that characterise 

small rooms, since the modal activity that distorts the sound field and creates a non-

diffuse sound field.  Nevertheless, the method needs to take into account limitations on 

low frequency and a combination of the more accurate results that can be achieved when 

mid and high frequencies are measured.  However, the p-p type sound intensity probe has 

a limited range of frequency applicability when using a single, solid, plastic size-spacer 

minimising shadow, and reflection effects.  Changing and aligning the acoustic centre is 

crucial to maintain directional accuracy and is time consuming.  It inherently limits the 

measurement system proposed by the compromise of using the adequate dimensions 

spacers.  The Microflown intensity probe can overcome these limitations because it is 

broadband, nevertheless has a limited dynamic range at high frequencies (Cengarle, 

2012), which is not as high as the p-p intensity probe’s dynamic range (Jacobsen and de 

Bree, 2005). 

                                                
5 http://www.lmssoundbrush.com/discover and http://www.lmssoundbrush.com/product/antenna 
[Online accessed on March 19th 2013] 
6 http://www.mhacoustics.com/mh_acoustics/Eigenmike_microphone_array.html  
[Online accessed May 23rd 2013] 
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4.2 Early reflection real values calculation method 

The initial aim was to measure five positions beginning with a calibration position, which 

was set at an arrival angle of direct sound at 45º. This value was convenient because for 

Soundfield and p-p probe has symmetric components in both x and y-axis.  It was 

assumed that the sound travels as a ray.  This assumption is valid only for wavelengths 

that are smaller than the surface where they are reflected.  In practice this happens just for 

mid and high frequencies. 

 Input data and output data calculation 4.2.1 

The  ith  angle of arrival of first reflection (
 
θmi

) is denoted with the sub-index m, which 

means arriving directly at the microphone   is selected arbitrarily by the angular step used 

in section 5.2.1 and its calculation is made with elemental trigonometry applied to the 

rectangular triangles presented in Figure 5.8 

       (4.1) 

 

In order to calculate the  ith  distances (xi) in the x-axis which create the desired angle of 

arrival first reflection at a given position ( Pi ),  the following equation was used:  

         (4.2) 

   
θmi

= tan−1 hm + hs

xi

⎛

⎝⎜
⎞

⎠⎟
             { }

   

where:

θmi
 = angle of arrival of first reflection at the mic { }

hm    = height of the microphone m{ }
hs     = height of the source (studio monitor) m{ }
 x1   = distance on the x axis m{ }

  

xi =
hm + hs( )

tan θmi
( )              m{ }
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The increments of distance along x-axis for the generation of the step angles are 

calculated by: 

  Δxi = xi−1 − xi                          m{ }        (4.3) 

These distance calculations have the maximum length for the set of measurements, which 

is possible within the dimensions of the semi-anechoic chamber of the Acoustic 

laboratory of the University of Salford. These inner dimensions are 

 4.170 m ×  3.270 m ×  2.950 m .  It covered a range of angles (
 
θsi

) from 45.000º down 

to 14.966º (please refer to Figure 5.10).  The computation of the  ith  angles of arrival of 

the direct sound (
 
θsi

), where the sub-index s means arriving from first reflection from the 

source, use the x-axis coordinate values by using the following formula: 

        (4.4) 

Where: 

 

The distance travelled of the direct sound from the source to the receiver is calculated 

with the rectangle triangle formula: 

  
    (4.5) 

   

Where:

xi = microphone position in x axis m{ }
hm =  microphone height m{ }
hs =  source height m{ }
θmi

= angle of the first reflection if the ith position { }

   
θsi

= tan−1 hs − hm

xi

⎛

⎝⎜
⎞

⎠⎟
             { }

θsi
= angle of the direct sound (source)

  
ridirect

= hs − hm( )2
+ xi( )2

             m{ }
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Now the time delay of the  ith  direct sound is calculated by the following formula: 

      (4.6) 

 Time of flight ( TOF ) 4.2.2 

The time difference (also known as time of flight or ( TOF )) from the first reflection to 

the direct sound is calculated as the measure to assess the reliability of the impulse 

responses. 

       (4.7) 

Where: 

 

Expanding the expression in terms of distances yield: 

   (4.8) 

  

Where:

ridirect
= distance of the direct sound in position ith   m{ }

hs = height of the source m{ }
hm = height of the source m{ }
xi =  distance from x axis from the source to the receiver m{ }

  
ti =

ridirect

c0

=
xi( )2

+ hs − hm( )2

c0

             s{ }

Δtidir−ref = tireflection −   tidirect              s{ }

Δti      =   Time Delay of ith  position of first reflection s{ }
tireflection  =   Time of flight of the first reflection              s{ }
tidirect     =   Time of flight of the direct sound                 s{ }

  
Δti−1 =

xi( )2
+ hm + hs( )2

− x1( )2
+ hs − hm( )2

c0

             s{ }
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It is important to note that the positions that are far from the source tend to have smaller 

differences of time, and its impulse response (IR) will show that compressed version 

between the direct sound and the first reflection. 

Calculating the difference of adjacent position’s time delay is possible to provide a 

measure for proper selection of the desired minimum time resolution.  It is well suited for 

measuring the changes of position: 

  Δti→i+n = Δti+n − Δti                             s{ }        (4.9) 

 Exponential sine sweep method 4.2.3 

The impulse response of the room represents the interaction of the speaker and the room 

at this particular position.  It is important to note that these impulse responses are not 

good to calculate any acoustic parameter, because studio monitors are not omni-

directional at all frequencies, as even a purpose-designed, omni-directional source is 

limited to mid frequencies (2012)7.  The stimulus signal chosen is logarithmic swept sine, 

given that the robustness against non-linear harmonic distortion from the drivers, suitable 

for applying it to quiet and unoccupied rooms and the possibility of obtaining good 

results without a careful calibration of the system (Stan et al., 2002).  It is created 

following Farina and Kite (Farina, 2000, Kite, 2004) recommendations: 

      (4.10) 

Where: 

= logarithmic sine sweep signal.  

                                                
7 http://www.bksv.com/doc/bp1689.pdf  [Online accessed on April 29th 2013] 

  

s t( )
Logchirp

= sin
2π f1T

ln
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⎛
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= initial frequency of the sweep. {Hz} 

= end frequency of the sweep. {Hz} 

= duration of the sweep (Total time). {s} 

 

A short gain ramp at the beginning and at the end of the signal is applied by multiplying 

the ramp and the generation of the sine sweep signal.  The reason behind this is to avoid 

any start and stop transients8.  This procedure avoids frequency artifacts caused when the 

sharp time transients are transformed to the frequency domain.  This phenomenon may 

occur when a signal does not begin or end with a zero value.  However, is recommended 

to design a sweep length as long as possible in order to obtain suitable resolution in low 

frequencies by having enough time to excite the room properly with the sound source. 

 Impulse response extraction method 4.2.4 

The method of deconvolution is implemented in the frequency domain with the following 

expression according to Müller and Massarani (Müller and Massarani, 2001) and 

standardised in (Havelock et al., 2008): 

  
H ω( ) = Y ω( )

X ω( )                        adimensional{ }      (4.11) 

Where: 

 

                                                
8 http://www.jezwells.org/Computer_music_tools.html [Online accessed on Feb 8th 2012] 

  f1

  f2

 T

 

X ω( ) = fft x t( )( )  Spectrum of Stimulus  equivalent to input of the system
Y ω( ) = fft y t( )( )  Recorded Spectrum of signal equivalent to the output of the system
H ω( ) = Transfer Function calculated in frequency domain



 

Chapter 4: Acoustic Measurement System 
 

 

68 

Therefore, the impulse response (IR) is found by applying the inverse fast Fourier 

transform (IFFT) to the transfer Function (H): 

   h t( ) =ifft H ω( )( )                      adimensional{ }      (4.12) 

The chirp modelled in Matlab has a frequency response from 50 Hz to the current 

Nyquist limit (for this case is up to 96 kHz) with a period T = 10 s.  These parameters are 

aimed to improve accuracy on the estimation of the impulse response at low frequencies 

where the source needs more time to build up the sound energy.  It is normalised at -0.3 

dBFS and then saved as a wav file.  The reason is to limit the excursion on the studio 

monitor at low frequencies and therefore avoid any distortion artifacts in the 

measurements.  It is then reproduced using Apple’s Logic Pro 9 (DAW software).  The 

sound card balanced output is connected to the monitor speaker.  Lastly, the recorded 

signals in the DAW were carefully calibrated to have at least headroom of 12 dB to avoid 

any chance of digital distortion on the recorded signals.  The following Figure 4.2 shows 

the practical acquisition of the data used to obtain the impulse responses outside of the 

semi-anechoic chamber, which is connected outside by the black box: 

 
Figure 4.2: The first attempts to measure early reflections were made with a Motu 

896HD sound card and the DAW software Logic Pro 9 running under a MacBook Pro 

laptop computer.  In the monitor is possible to see two recordings of the room´s response 

to the stimulus signal. 
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4.3 Probe Configurations 

The main goal of using sound-intensity techniques is to find an accurate and reliable 

method to measure early reflections, and it is crucial to get good estimations on a single 

point in space.  A review of the existing products offered by the main companies that 

manufacture intensity probes found that G.R.A.S. Sound and Vibration company and 

Brüel and Kjaer company offer the most advanced intensity probes measurement system 

and analysing software in the market.  Unfortunately, Brüel and Kjaer company does not 

offer a 3-D intensity probe in their catalogue anymore, just the one-dimensional version, 

the last 3-D version was found in (Fahy, 1995, de Bree et al., 1999).  On the other hand, 

G.R.A.S. has two sound intensity probe models: the X-Y-Z Sound-intensity Probe Type 

50VX9 (2005b), which has an automated rotator mechanical system for a one-

dimensional p-p probe.  The other is the expensive state-of-the-art intensity probe, which 

is the Vector Intensity Probe Type 50VI10 (2005a).  In order to use this device a single 

alignment is needed along the axes.  It does not need to rotate the probe anymore, because 

it has six phase-matched microphones.  This accurate device was used by Tervo in his 

research (Tervo, 2012).  For a high budget, this is the best option because it is practical 

and accurate.  Nevertheless, the G.R.A.S. company offers it without any post-processing 

software. 

 The evolution of the one-dimensional p-p probe with cradle 4.3.1 
system 

The core of an accurate measurement of intensity using a single p-p probe is to devise a 

method to accurately rotate the probe, maintaining its acoustic centre.  The first attempts 

were made without a cradle system and the results were impractical and not satisfactory 

see Figure 4.3. 

                                                
9  http://www.gras.dk/50vx-intensity-probe.html [Accessed on May 4th 2013]. 
10  http://www.gras.dk/media/docs/files/items/p/d/pd_50vi_ver_06_08_02.pdf  
[Accessed on Oct 21st 2013]. 
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Figure 4.3: The first attempts to measure a 2-D sound intensity vector using the face-to-

face configuration and the p-p probe with its existing holder.  

The design of the custom-made rotation cradle had three development phases. The first 

one was accomplished in the mechanical workshop of the University of Salford see 

Figure 4.4.  The original idea was to adapt the original holder provided by Brüel and 

Kjaer p-p intensity probe to a device that could rotate accurately 90º from its acoustic 

centre.  This device was unreliable for the task.  This fixture without a cradle was not 

accurate enough to obtain reliable results.  The procedure used the laser cross to maintain 

the geometric centre of the probe, however the orthogonal rotation of the probe was time 

consuming and unreliable because there were too many degrees of freedom to control.  In 

order to obtain better results, the use of CAD/CAM technology was needed. 
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Figure 4.4: The first rotation cradle prototype was made in the mechanical workshop at 

the University of Salford, however it was not accurate enough to perform orthogonal 

rotations and it needed a Manfrotto head to align it vertically. 

The design of the second prototype was done with the help of Minalum de México 

company. (Please refer to Figure 4.5Figure 4.5: Second prototype consisted on a “C” 

and a “L” shape machined in CNC Vertical Machine centre using high- grade hardened 

aluminium in Minalum de México company.  The work piece was machined first by the 

upper side and later by the downside in order to make a single piece prototype without 

any bending or soldering to achieve high accuracy.  The right photo of the same figure 

has a detail of the machining pieces “L” and “C” shape. The dark hole at the right is used 

to align the work piece after it is turned over by 180 degrees by accurately measuring its 

centre and align the x-axis.  The next step was to use the wire cut EDM machine to cut 

two octagon shaped holes on the “L” shaped piece.  The idea behind the octagons was to 

be able to rotate at 45º steps instead of 90º in order to resolve simultaneous arrivals.  The 

diameter of the “C” and “L” pieces was chosen to be  φ = 8.6 mm  in order to not disturb 

the acoustic field when the wavelength of the maximum audible frequency (
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  λ 2 < 8.6 mm @ f  = 20 kHz ) and it was planned to be round in order to create the same 

effect on all directions of incoming sound.  The shape of this design was based on the 

custom cradle designed by (Abdou, 1994), (please refer to Figure 4.6).  Unfortunately, 

this design did not comply with the required accuracy because the C and L shape were 

machined using two different procedures based on  CNC .  The octagonal components 

(male and female) were cut with a wire electro-discharge machine ( EDM ).  Hence, a 

subestimation in the design provided no guarantee of obtaining an accurate rotation with 

the geometrical centre of the device.  Additionally, the mounting system did not 

overlapped with the centre of the microphone base, which was a good option for locating 

the receiver when performing measurements at any given coordinate. 

 

    
Figure 4.5: Second prototype consisted on a “C” and a “L” shape machined in CNC 

Vertical Machine centre using high- grade hardened aluminium in Minalum de México 

company. 
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Figure 4.6: The second prototype for rotation cradle was tested for accuracy on the 

measurements of intensity.  Unfortunately, it had a design problem where its geometric 

centre was not accurate for rotation.  The best solution was to redesign a new prototype 

with an error proof rotation mechanism. 

4.3.1.1 Design details of p-p intensity probe’s custom-made rotation cradle 

It was later concluded that the best way to design a rotation cradle was by only using 

Delcam Power SHAPE and PowerMILL CAD-CAM software and  CNC  and a vertical 

machining centre ( VMC ) in the facilities of Minalum de México company.  The third 

attempt was done using only  CNC  machined parts, which were done with only one 

alignment on the piece to work.  That realization guaranteed the precision required by 

using small machining steps and slow rate of removing of material.  The third prototype 

introduced a number of new features that ensure accuracy on the setting rotation and 

repeatability on the measurements.  The “O” carcass first was planned to be round in 

order to provide uniform scattering of sound and superior rigidity to be deformed with 

accidental misuse.  In the last design, it ended as a squared shape to maximise the 

distance.  The diameter of the shapes became slightly smaller than in the second 

prototype and the joints were round accordingly to the best acoustic fixtures. 
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Figure 4.7: Detail of the assembly of the rotation cradle machined in CNC .  

 
Figure 4.8: Assembly parts used in the rotation cradle using Allen 1/8” diameter type 

screws. 

Octagonal 
profile

Octagonal 
profile

Allen 
Screws to 
tight the 

cover

1/4” diameter hole to hold the p-p 
probe



 

Chapter 4: Acoustic Measurement System 
 

 

75 

 
Figure 4.9: The third prototype of rotation cradle guaranteed the accuracy of the 

positioning of the face-to-face p-p probe configuration with the highest accuracy, the 

rotation of the p-p probe at 90 degrees. 

 
Figure 4.10: Custom rotation cradle aligned with its geometric centre with a laser cross 

and the plumb bob to align the vertical line with the laser to obtain an accuracy of about ± 

1 mm. 
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4.3.1.2 The p-u Microflown custom-made aligner device 

One of the problems encountered using a Microflown 3-D probe is how to measure the 

origin of the probe as a reference and how to assure that the device is accurately aligned 

to the measurement axis.  The inner transducers of this device are quite small and in its 

carcass only has some printed points on its body to locate the 3-D axis.  There is 

uncertainty of correct alignment and a custom-aligner is needed to ensure proper 

alignments.  This device can be used in conjunction with the laser cross device to align 

the Microflown p-u probe.  Since the company that manufactures the probe has not 

produced any alignment system, there was an opportunity to improve this measurement 

system.   

The next design that was manufactured in Minalum de México company consists of a 

custom alignment system (please refer to Figure 4.11).  This is a tool for the correct 

measurement of directional information when using the p-u Microflown USP intensity 

probe.  One of the required features when performing a precision measurement aligning 

the probe with the orthogonal axis is to be able measure the accuracy of the setup at the 

exact centre position of the anemometer wires.  This action is crucial because it 

determines the precise coordinate of the receiver.  This task can be done with the aid of 

the dual laser cross system described in section 5.1.5 .  This device helps to achieve the 

accurate position of the receiver with tolerances of ±1 mm.  More importantly, it helps to 

align the axis of the probe along the axis used externally in the measurement setup.  It 

works in the following manner:  

The lower component of the system attaches the probe to the stand and aligns the centre 

of the probe with the centre of the microphone stand.  The upper part of the system 

consists of a squared surface, which has a slit in the centre of it.  The purpose of the slit is 

to make visible the anemometer wires and the pressure microphone at the centre of them.  

By securing this upper component with the Allen screw to the probe, both pieces can 

rotate together against the lower component.  Doing this is possible to align the external 

axis along the external axis dictated by the laser cross system.  Once this alignment 

procedure is finished, the squared upper component needs to be removed in order to 
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perform accurate acoustic directional measurements.  It is crucial to avoid movement of 

the probe while performing this task to ensure that the coordinate measured with the laser 

cross is valid.  

  
Figure 4.11: Custom co-lineal probe holder and alignment system for the p-u Microflown 

USP intensity probe. 

 The Soundfield microphone as a intensity probe 4.3.2 

The Soundfield microphone is used to extract 3-D impulse responses (for details refer to 

(Craven et al., 2010)).  It has four hyper-cardioid capsules, which generate the A-Format 

signal (refer to Figure 4.12).  By applying a matrix algorithm within either a hardware 

unit or software implementation, it is possible to obtain the B-Format signal.  It consists 

of four simultaneous signals: an omni-directional polar response signal (w), which 

represents the acoustic pressure ( p ) with unity gain.  The other remaining three signals 

are orthogonal virtual figures of eight microphone polar responses centred at the origin.  

The Soundfield rack processor deliver the dipole Signals ( ) with a gain of  (+3 

dB) referenced to the omni-directional signal w.  This is standardised in order to give the 

same level as the signal w in free field conditions.  The reason is to maximize the signal-

 
x,  y, z 2
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to-noise-ratio ( SNR ) for analogue recordings (Merimaa, 2006).  In this analysis, the 

acoustic pressure ( p ) is taken from the value of the  w  channel i.e. ( p = w ).  For further 

analysis in Matlab, the dipole signals (
   
ux ,  uy ,  uz ), which represent particle velocity 

vectors ( ), are downscaled by dividing them by root of two 

(Farina and Ugolotti, 1998) as they were implemented in the post-processing. 

This type of measurement requires a calibrated Soundfield microphone and a reliable 

sample and phase accurate soundcard connected to a silent portable computer.  

Measurement software performs the extraction of the impulse response of the four B-

Format signals. (Refer to Figure 4.12).  Matlab is used for further analysis a list of scripts 

is covered : Matlab scripts.  The excitation source used is a Genelec 8030A studio 

monitor11, which has a frequency response from 58 Hz to 20 kHz ± 2 dB. 

 
Figure 4.12: Impulse response ( IR ) measurement system using the Soundfield 

microphone model ST 350. 

                                                
11 http://www.genelec.com/documents/datasheets/DS8030a.pdf  [Online accessed on April 30th 2013] 
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4.4 Processing and analysis of the data 

For a practical implementation in a Matlab script, the instantaneous intensity measured 

with a p-p probe in time domain (  

iinst ) needs to be implemented with a cumulative 

integration of the pressure, owing to the fact that the resulting integral must be a function 

of the time index (t) (Hanselman and Littlefield, 2005). 

 Time domain ( TD ) algorithm 4.4.1 

Time domain is divided in smaller angular regions.  By applying small time windows to 

the data, it is possible to analyse the early part of the decay, although not the late one.  

This is owing to the fact that reflections become too dense and are perceived as 

reverberation rather than isolated discrete reflections. Nevertheless, a statistical 

approach is still possible in the late decay zone using selective wider time windows to 

cover the entire reverberant tail.  The following procedure analyses three-dimensional 

impulse responses (  3-D IR ) in time domain ( TD ): 

1. Using non-overlapping windows, divide the array that represents the 3-D impulse 

response 
   
h3D t( ) = hx t( )  hy t( )  hz t( )⎡⎣ ⎤⎦  in time chunks of equal duration i.e. ( Δt  = 

6 ms.). Use non-overlapping windows on each orthogonal component. 

2. Convert the time series to orthogonal components. 

3. Convert the orthogonal components to dB scale normalizing with the maximum 

value of the 3-D impulse response (a time series array of size 3x1). 

4. Calculate the magnitude of the signal and the angle of arrival in radians. 

5. Plot the 2-D vectors of the active complex instantaneous intensity (
  


iactive

complex

) in polar 

coordinates. 

6. Make a history of the evolution of the sound decay with an animated movie. 
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 Data extraction algorithm 4.4.2 

For the post-processing of the data, a combination of Time domain ( TD ) and short-time 

Fourier transform ( STFT ) was implemented.  The m file named 

Extract_winMLS_signals_Corrected69LOG_BFormat_192kHz.m has the following 

parts: 

1. Initializing program. 

2. Constants. 

3. Create a Sine Swept signal. 

4. Reading raw data. 

5. Band pass Filter design at 192 kHz. 

6. Spectrogram for testing the quality of the signal before any processing. 

7. Adding zero padding prior deconvolution. 

8. Deconvolution done by spectrum division. 

9. Integration for Intensity probe. 

10. Scaling of the Intensity components in x and z-axis. 

11. Conditioning to find the indexes of the max and min of the Intensity. 

12. Logic to find the linear index of the maximum of the maximum and the minimum 

of the minimums. 

13. Conditioning (Linear scale). 

14. Logic for finding the abs maximum and its index without losing the original 

sample index. 
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15. Logic for finding the max_i and its index with 4 cases. 

16. Logic to find the first arrival assuming x_ir and z_ir have same index. 

17. Logic to find the beginning of the peak with the abs maximum peaks (Linear 

Scale). 

18. Logic to create the chopped signal Time Domain. 

19. Logic to create the chopped signal in log version. 

20. Envelope Intensity (From Omoto 'Visualization of Sound Intensity' 2004).  

21. Intensity by the Complex method of Heyser equations made with Heyser & 

Omoto 2002. 

22. Intensity by the Complex method with the Envelope Omoto made with the Hilbert 

function (2002) . 

23. Figures of the Complex intensity. 

24. Figures. 

25. Instantaneous Intensity of signal by finite differences method for the direct sound 

for the window 0-30 ms.  

26. STFT method (adaptation to be more versatile with Fs). 

27. Tic-toc measurement of time used to compute the program. 

 Short-time Fourier transform (Quiver plots and  ERB ) 4.4.3 

The instantaneous intensity in frequency domain (  

Iinst ) results from the multiplication of 

the instantaneous value of the average pressure ( pinst ), calculated by using equation 

(3.18) on page 40 by the cumulative integral of the finite difference of pressures between 

the two microphones (  
uinst ), and then apply the fast Fourier transform (fft) to it. 
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Merimaa applied the short-time Fourier transform ( STFT ) for analysing the directional 

impulse responses to characterise reflections (Merimaa et al., 2001, Peltonen et al., 2001, 

Merimaa and Pulkki, 2005, Merimaa, 2006).  The method incorporated perceptual issues 

applied to the frequency content on the signals by using ERB.  Later, Pulkki (Pulkki, 

2007) and Ahonen (Ahonen et al., 2008) expanded its uses to teleconferencing under the 

DirAC method, although neither of them reported the errors in localisation of direct sound 

nor on errors in reflection estimation accuracy, as these errors are not important in 

teleconferencing.  Enroth (Enroth, 2007) applied these techniques for auralisation of 

simulated acoustic impulse responses ( IR ) to be reproduced accurately in multiple 

channels using the Soundfield microphone, and combined the waveguide method to 

render synthetic signals. 

Following the recommendation of Musha (Musha and Kumazawa, 2008) the short-time 

Fourier transform ( STFT ) method was used as one of the most accurate measurements 

for sound intensity (  

iinst ) of transient signals.  The STFT analysis is used in the present 

work to obtain better estimation of reflection directionality than when it is computed in 

time domain ( TD ).  It also helps to visualize the data in two dimensions at the same time.  

The downside of this approach is that once the window time resolution is set, the 

frequency resolution depends on the number of samples contained in the time window.  

Longer time windows enhance frequency resolution, but at the same time make a poorer 

time resolution (Smith, 1999, Lyons, 2002, Shin and Hammond, 2008, Tohyama and 

Koike, 2008).  Using the highest sampling rate helps to minimise the frequency aliasing, 

this happens slightly at a low-frequency range, and becomes more noticeable at higher 

frequencies.  This restriction means that a fine resolution in both domains cannot be 

achieved at the same time, which is a problem for the visualization of the same data 

because only one variable can be focused on at a given time.  It is only with experience 

gained using these techniques that one can select the most suitable resolution. 

On the other hand, the development of better resolution of the short-time Fourier 

transform method has been continued by Pihlajamäki (Pihlajamäki, 2009) by applying a 

multi-resolution based on longer time windows for low frequencies and shorter time 

windows for high frequencies.  The more advanced transforms i.e. Wigner-Ville 
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transform, can help to overcome this limitation by offering better temporal and frequency 

resolution (Ville, 1948, Ferguson and Quinn, 1994, Tuncer and Friedlander, 2009).  

Currently, the most interesting approach found is called time-frequency reassignment 

(Flandrin et al., 2003).  It is known that short-time Fourier transform ( STFT ) is still an 

approach that does not create artifacts because it is a linear transformation, whereas the 

Wigner-Ville transform still needs to be carefully used, since it is not a linear 

transformation. 

This analysis involves two domains at the same instant.  By using the short-time Fourier 

transform ( STFT ), it can map the behaviour of a variable in time and frequency.  Prior to 

applying the windowing process, each complete component of the B-Format file (i.e. w, 

x, y, z) is conditioned by adding zeros with a length of N/2 samples before, and adding 

zeros with a length of N samples after the signal.  The reason for this action is because 

when the input is windowed, the first window can start at sample number one with its 

window’s maximum value located at sample N/2.  The next step is to divide each of the 

B-Format impulse responses by a chosen number of time windows of length m and 

applying the fast Fourier transform to the product of each of the B-Format signals with a 

Hann window ( ).  Each fast Fourier transform (fft) has a length of N points.  

Subsequently, the next window will start without any gain.  Hence, any information in the 

first N/2 samples prior to the real beginning of the signal will be attenuated according to 

the gain dictated by the shape of the first window.  Applying zero padding to the first 

sample of the real signal ensures that the signal will be not be attenuated by the first 

window.  In a similar manner, the next samples will always be located within two 

windows, which have a maximum gain and a minimum gain as a crossover point. 

The time windows need to overlap each other in order to create a smooth transition 

between each window.  Each time a window is zero-padded before and after it with half 

of the length of the time window (N).  This is done to obtain the first sample multiplied 

with a window, which is at the maximum value to avoid spectral aliasing.  The practical 

overlapping percentage applied to each Hann window is 50 %. (see figure Figure 1.1)   

wHann
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Figure 4.13: Example of a 50% Overlapping of Hann windows in time domain ( TD ).  

Note that the first window is zero-padded half a length of a window before and after the 

end of the train of overlapped windows with half of the length of the time window. 

In order to create each slice of time, successive fft are applied to each component: 
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W k( ) = FFT w n( ) ⋅wHann n( ){ }

 

X k( ) = FFT x n( ) ⋅wHann n( ){ }

 

Y k( ) = FFT y n( ) ⋅wHann n( ){ }

 

Z k( ) = FFT z n( ) ⋅wHann n( ){ }
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Where k is the frequency index calculated by the fft.  The three-dimensional particle 

velocity vector in the STFT domain is created by applying the short-time Fourier 

transform ( STFT ) to each orthogonal component by adding the three components: 

        (4.17) 

Where n is the time index for each slice of time. 

 
Figure 4.14: Diagram of the short-time Fourier transform ( STFT ) method applied to 

calculate instantaneous intensity (  

Iinst ) and diffuseness estimate (ψ ) after Merimaa. 

 Peak detection in time domain (polar plots) with Envelope of 4.4.4 
signal  s t( )  

After a validation of the measurement system is performed in simpler cases, it is possible 

to adapt the method to measure three-dimensional impulse responses (  3-D IR ) of real 

rooms.  Because of the complex patterns generated under these cases, a peak detector 

algorithm needs to be used with the complex instantaneous intensity (
  

icomplex ), or 

alternatively, apply the envelope of intensity ( i ) on each x, y and z-axis components. 

The best way to detect reflections is to use the envelope of the magnitude of the signal 

 s t( )  on each axis component, because the rapid oscillations of the decay of sound can be 

 

U n,k( ) = [X n,k( ) î +Y n,k( ) ĵ + Z n,k( ) k̂]
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removed in that way and the envelope can show the relevant information (Thrane et al., 

1997).  It is a good option for preserving the important reflections without removing 

important details on the impulse response (Kuttruff, 2000).  Alternatively, the detection of 

reflections using microphone arrays tends to add noise to the signal depending on the 

distance between the microphones.  Tervo has studied these cases in (Tervo, 2009) using 

an orthogonal array of 6 inner microphones and 6 outer microphones called the TKK-3-D 

microphone array, which is an open 3-D spherical microphone array (Tervo et al., 2011). 

The best algorithms for peak detection take into account the effect of noisy signals where 

the peaks and valleys need to be detected (Billauer, 2011).  The strategy defines a peak as 

the highest point between lower areas called "valleys.”  A condition to find a peak is to 

realise that there are lower points before and after the peak.  Since a sound wave usually 

has positive and negative excursions as a natural form of propagation of a wave in the air, 

it is useful to combine the peak detector with the envelope of the signal in order to detect 

only relevant information.  Then, select the relevant reflections and neglect the false 

peaks that are below a threshold determined by the perception of reflections, which is 

about a value of -30 dBFS relative to the direct sound, which is set to 0 dBFS (Begault et 

al., 2001, Begault et al., 2004, Schlemmer, 2006, Reed and Maher, 2009). The maximum 

value was set according to direct sound value, and it is very useful to compare it with 

reflections. 

4.5 Summary 

This section describes the methodology followed on the acoustic measurements with 

descriptions of the experiments undertaken.  Implementing the measuring system explains 

the use of three-dimensional impulse responses 3-D IR using the Soundfield microphone 

model 350, the p-p probe, digitalizing the data and post-processing it using sound 

intensity using time and frequency methods.  The first approach was to determine the 

accuracy of the measurement system by simplifying the scenario to only one reflection.  

Subsequently, the multiple reflection scenarios are described and introduce the 

simultaneous reflection problem and how it was tackled.  The discussion continues with 
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the techniques used to minimise the uncertainty of the results. The use of damping 

vibration devices and laser cross is discussed in order to ensure the accuracy of the 

positions measured.  The approach for determination of uncertainties of the data was 

obtained with a sample of 10 measurements to compute the uncertainty of the error.  The 

mean error (ε ) and weighted average of standard deviation mean error (σε ) were used to 

quantify the accuracy of the measurement system.  The percentage error ( ε% ) is also 

covered in order to make a decision of which parameters to report. 

The novel contributions of the author are in the design of the custom-made rotation 

cradle, and the post-processing and analysis of the measured data in order to use intensity 

to characterise the strength, spatial and temporal attributes of the early reflections in small 

rooms. 
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Chapter 5 : Acoustic probe configurations 

The details of the acoustic probe configurations used in the measurement environment are 

described in this section.  They are comprised of two main tasks: a) laboratory tests to 

validate the method and b) practical applications of this method for measuring a small 

room, which exhibits multiple reflections.  The details of the experiments are described in 

this section.  A description of the measurement conditions is followed.  It is comprised of 

the specifications of the semi-anechoic chamber, the measurement position calculation, 

the influence of the directivity of the sound source, the use of damping devices to 

minimize contamination by vibration in the measurements, the multiple laser cross 

system to ensure accuracy on positioning of receiver and source experiment designs 

useful for measuring early reflections.  The last section of the chapter covers the 

application of the theory used to measure the incoming sound in a single reflection 

scenario and the details of uncertainty treatment used in order to confirm which is the 

practical extent of this method.  

5.1 Description of measurement environment  

 Semi-anechoic chamber acoustic specifications 5.1.1 

In order to have less noise in the impulse response, the one-reflection case was 

implemented in the semi-anechoic room G-35 in the Acoustic Laboratory of the 

University of Salford.  The Background noise level is reported as low as 3.8 dBA, the 

inner working dimensions are 4.2 m ×  3.3 m ×  3.0 m and its cut-off frequency (  fcut-off ) 

is 250 Hz.  Therefore, for this experiment, the practical frequency working range is from 

250 Hz up to around 10 kHz, which is the limiting frequency using the p-p probe using a 

12 mm spacer and the Soundfield microphone. 
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 Measurement positions and angles (real values) 5.1.2 

For detailed information of the calculation’s procedure for the geometric model is 

referred in the following steps: 

a) For the determination of the real angles of arrival of direct sound (
 
θs i

) and for the 

distance over x-axis ( xi  which correspond to the  ith  position  Pi ), please refer to equation 

4.2 in page 63.  The results of this calculation are the input data and it is depicted in 

Table 5.1 and Table 5.2. 

b) For the calculation of the angles of arrival of first reflection (
 
θmi

), please refer to 4.4. 

in page 64, Table 5.3 and Figure 5.9. 

 Monitor speaker influence 5.1.3 

Tervo et al. (Tervo et al., 2009, Tervo, 2012) recommends the use of a highly directional 

loudspeaker for the detection of the early reflections, since this method approaches the 

ray tracing method and analyses only a discrete number of reflections depending on the 

orientation of the source.  The downside of this approach is that it is extremely time- 

consuming, because it requires performing several measurements rotating the highly 

directional speaker over the horizontal plane to cover steps of at least of 10º.  The same 

case occurs in the vertical plane, however the highly directional speaker is more difficult 

to rotate in that direction. 

In contrast, the same measurement can be done with one omni-directional or partially 

directional (source studio monitor) in only one measurement if a broadband monitor is 

used.  That approach was partially fulfilled by this study by using a near field monitor 

Genelec 8030A12.  It has a reasonably wide directivity in the horizontal plane (x-y) and a 

                                                
12 www.genelec.com/documents/datasheets/DS8030a.pdf [Online accessed on April 25th 2013] 
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very tight directivity in the vertical plane (x-z)13.  It has a waveguide in the tweeter to 

limit the spreading in the vertical plane to some extent.  Therefore, it may limit the SPL 

level in the vertical plane, as it tends to show a more uniform SPL in the horizontal plane 

regarding the angle sustained in the x-z plane.  The configuration used for the 

measurements was planed to cover a limit angle range constrained to the internal 

workable dimensions of the semi-anechoic chamber. 

However, the two-driver monitor is contributing to the difference path from the woofer 

and the tweeter, which is frequency dependent.  The active crossover divides the signal, 

and because the drivers are not concentric, there is a certain delay on the time of flight (

 TOF ), which additionally corresponds to a difference of direction of arrival ( DOA) for 

certain frequencies covered by a different driver.  Moreover, the transient response of 

both drivers is different because of the mass of each driver and the efficiency of the 

magnet and the power required to operate.  Therefore, the woofer tends to add another 

delay to the frequencies that it covers.  The result is that the measured impulse response 

of a room will present a phase difference, which is a function of the crossover frequency (

 fcrossover ).  One way to overcome this problem is to use the acoustic centre of the monitor 

for the estimation of the sound source real angle of arrival, but this will not be accurate 

for all frequencies (see Figure 5.1).  On the other hand, to improve localization of 

reflections, Rechenberger (Rechenberger, 2009) recommends using a minimum phase 

transformation applied to the impulse response ( IR ).  The non-flat frequency response of 

the speaker similarly can be filtered with an inverse counterpart and then multiplied to the 

spectrum of the impulse response (fft (IR)).  This process may be applied to acquire an 

ideal flat response from the speaker.  Conversely, these processes introduce delays to the 

signal, which may affect the time domain analysis to some extent.  For that reason, it was 

eluded in the post-processing of the analysis of reflections in this thesis. 

                                                
13 http://www.princeton.edu/3D3A/Publications//Speaker_Directivity_Data.pdf [Online accessed on April 
25th 2013] 
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Figure 5.1: Acoustic centre of the near field monitor Genelec 8030A used in the 

measurements located by the laser pointer located at tangent to the woofer at a height of 

19 cm from the Iso-Pod™ table stand of the monitor and valid from a distance larger than 

0.7 m (2007). 

A typical speaker has a frequency dependant directivity, which varies between omni-

directional and directional.  At low frequencies, it tends to show an omni-directional 

directivity, nevertheless the directivity increases with mid and becomes narrower at high 

frequencies.  Ideally, the best source directivity for measuring all the reflections in a room 

should be omni-directional.  One way to obtain that is to attach a cone to a speaker as 

shown in (Li, 1995, Miura et al., 2010).  Using it in this way can correct the deviations at 

low and high frequencies. The downside is that it needs to have a single cone for each 

driver to cover different frequency ranges, which means that the measurement of an 

impulse response ( IR ) needs to be carefully done in several stages if a single point source 

is needed.  An alternative way to manufacture a ‘point source’ is by using a wide band 

compressor driver coupled with a tube termination of a certain length.  Its frequency 

response is not flat because of the tube resonances impinged to the frequency response.  

However, the advantage is to be able to easily determine the acoustic centre of the source 

as it is located with the two laser cross system as can be seen in Figure 5.2.  

Unfortunately, the power radiated by this device is compromised with the distortion of 
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the driver and its inefficient acoustic radiation, because of the resonances of the coupled 

tube and the generated wave reflections by the sharp ending of the tube.  This idea was 

partially tested with a custom simple prototype, composed of a compressor driver and a 

pipe, which was not used for results in this thesis, although it is considered for future 

work (please refer to Figure 5.2 on the left side).  For professional results, the 

measurements should be done with the Brüel and Kjaer OmniSource Sound Source Type 

429514 to avoid the coloration of the sound by the resonances of the tube and to manage 

enough acoustic power to obtain good a signal-to-noise-ratio ( SNR ). 

  
Figure 5.2: Examples of two omni-directional sound sources.  The left one was a custom-

made at the University of Salford, and the one on the right is the Brüel and Kjaer 

OmniSource Sound Source Type 4295, which compensates the resonances of the tube by 

varying the diameter of the tube. 

 

                                                
14 http://www.bksv.com/doc/bp1689.pdf [Online accessed on May 25th 2013] 
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 Damping vibration on source and receiver  5.1.4 

The effects of random low-frequency noise introduced by surface borne vibrations were 

taken into account.  A vibration-dampening device decouples the source stand.  It consists 

of a rubber mat especially designed for decoupling speakers. 

The stand used to mount the microphone array was decoupled using the same approach.  

Care was taken to follow the recommendations of using microphone stands and 

microphones with angle of zero degree between them in order to minimise the sound field 

disturbance (Svend, 1985).  All experiments were conducted without intervention of a 

person inside the measurement room in order to maintain the maximum signal-to-noise-

ratio found in the semi-anechoic chamber.  The difference between the measurements 

with the vibration-dampening device and the tripod without the device were not measured 

in order to obtain an objective comparison.  However, the accuracy of the results 

improved significantly, as it can be visually compared with the early measurements.  In 

the early measurement, it can be noticed that there are larger estimation errors in the angle 

of arrival of direct sound and first reflection especially at high frequencies and low 

frequencies (please compare Figure 5.3 and Figure 6.56).  
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Figure 5.3: Example of measurement of p-p probe using the  STFT  made without the 

damping vibration on the source and the receiver.  The measurement position   P1  is also 

called the calibration position at 45º for the direct sound. 

 Laser cross system to define the real spatial coordinates 5.1.5 

To ensure that all the variables were tightly controlled, a number of measures were 

applied.  It was necessary to use laser pointers with a self-levelling system, which can 

deliver reliable horizontal and vertical lines (Black and Decker, Lasercross LZR6TP15).  

The laser used is a consumer level device that has an internal pendulum system where the 

dual orthogonal laser head is self-adjusted by gravity whenever it is moved.  The reported 

accuracy is +/- 1.5 mm/m.  It was found that in order to make reliable measurements of 

the receiver position, it was necessary to have two orthogonal laser pointers to keep the 

alignment of the microphone and the geometric centre of the speaker under a co-lineal 

                                                
15 http://www.blackanddecker.co.uk/powertools/productdetails/catno/LZR6TP/info/uses/    
[Online accessed on May 11th 2013] 
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arrangement.  The estimation of the ‘real angle’ of the reflection (
 
θmi

) was done with the 

measurements on the x-axis.  For the floor markers, a couple of two single line laser 

pointers were used to ensure the accuracy desired.  One was used to read the coordinate 

of the x-axis while the other was used to maintain the alignment of the microphone tripod, 

which was mounted on a wooden table with four attached wheel carts (refer to Figure 

5.5) 

Additionally, a rope was attached to the source and the receiver.  At the end of both, a 

plumb bob was set almost touching the measurement ruler.  It was fixed to the floor with 

tape (refer to Figure 5.6).  The sharp end of the plumb bob was used as the measurement 

point.  The intersection of the vertical point with the horizontal was set as the origin for 

the linear measurements in x-axis.  The microphone and the origin of the vertical line 

from the speaker were used to create all the coordinates used for the positions measured.  

With these tools, the accuracy of the measurements was tightened up to an uncertainty of 

±2 mm, since the width of the laser beam is around 1 mm (see Figure 5.6).  It was 

sufficient for the purpose of the experiment, because the minimum change in each step 

angle consisting in one-degree position was set to a distance over the ruler of 49 mm.  

Consequently, the uncertainty of the measurement represents only ±0.04º of a degree 

(±4% variability), which is quite acceptable for the measurement in this scenario.  The 

main limitation of this measurement system was human error involved in the 

measurements, which can become a cumulative error at the end of the sequence of 

measurements given that the rulers were not long enough to cover the entire set of 

distances.  In order to control this problem, a concatenation of rulers was used.  The 

parallax measurement error was compensated with the use of a small railway cart  (refer 

to Figure 5.5). 
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Figure 5.4: Measurement of single reflections captured by the Soundfield microphone 

model ST 350. 

  
Figure 5.5: The laser pointer controlled in a railway trolley cart and the perpendicular 

steel ruler serving as a guide with the plum bob pointing at the ruler. 

Two Laser Cross 
Pointers: one at the 

back to align the 
source and the 

receiver in 
x-z plane and the 
visible one placed 

to align the y-z 
plane perpendicular 

First 
Back Cross Laser

Second 
Lateral 

Cross Laser
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Figure 5.6: Measurement technique used with the plum bob (left) and the vibration-

dampening device that decouples the microphone tripod (right). 

The coordinate for position   P1  is calculated as 
   
x1 = cos 45( ) = 0.707 m , which is 

approximated as ≈ 70.7 cm.  The measurement is performed with the plumb bob and the 

laser pointer technique.  The origin is also verified at the beginning of the ruler.  Please 

refer to Figure 5.6. 

Throughout the research process, post-processing of the signals and new techniques to 

measure with more control has been also carried out.  This has been focused on 

improving the accuracy of the linear measurements with angles by using multiple laser 

pointers to maintain the level of precision of measurements down to ±2 mm. 

 

5.2 Laboratory tests for a single reflection in the semi-
anechoic chamber 

To assess the accuracy of a number of methods for measuring individual and aggregated 

room reflections, a series of scenarios were investigated.  This subsection will now 

discuss the methodology applied in each scenario. 
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 Single reflection scenario 5.2.1 

A logical research method pursues from the simple to the complex situations.  In order to 

deal with the simplest case, a single reflection case was chosen.  This was the natural 

choice, since it provides a simpler response without interaction of many reflections to 

extract from the time series.  A single reflection case for the impulse response ( IR ) was 

implemented in the semi-anechoic room at the acoustic laboratory of the University of 

Salford.  The background noise level is reported as 3.8 dBA, and the inner working 

dimensions are 4.2 m ×  3.3 m ×  3.0 m.  The usable frequency for this room is above 250 

Hz. 

The signals were acquired at 24 bits 192 kHz with three different step angles.  From 

position   P1  to   P6 , the angular step was one degree, from position   P6  to   P11  the angular 

step was two degrees, and from position   P11  to   P14  it was five degrees (See Figure 5.8).  

The first position is for calibration of the system.  By choosing   P1  to deliver an angle of 

45º for the direct sound ( θs ), the measurement system is tested on its capability to deliver 

symmetrical values on orthogonal axes.  The last position   P14  also gives a calibration 

value near 45º for the first reflection arrival angle (
   
θm14

= 45.067 ) (refer to Table 5.2 and 

Table 5.3).  This arrangement is useful to analyse the minimum resolution of the 

measurement system by giving the possibility to create three different analyses in fixed 

steps with five positions for each of the three sets.  The difference of this method against 

the methods used by other workers is that this method focuses in a very important effect, 

which has been overlooked.  This is the effect of varying the distance of the source and 

receiver and how it impacts in the accuracy of the angle of arrival of the direct and first 

reflection.  Most of the studies had been focused in a horizontal rotation of the source and 

that maintain the same radial distance while the angle is changed.  Therefore, the only 

variable is the rotation angle, and not the angle of the first reflection is kept constant.  

That assumption may be good to characterise the capabilities of an intensity probe in 

order to generate a graph with the capabilities for rotation of the direct sound across a 
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specific plane.  Nevertheless, these approaches are not reporting anything about the effect 

of varying the distance while there are two variables on direct sound and first reflection.  

The study presented in this thesis is more complete because it shows the real behaviour of 

a intensity probe against different patterns of direct sound and first reflections as it may 

occur in a real room.  The method considered the repeatability of the individual 14 

positions (  P1 − P14 ) and the sample size chosen was   N = 10  samples per position.  The 

Student’s t-distribution was used to correct the standard deviation calculations by 

multiplying the standard deviations by a factor of 1.833 corresponding to match the N-1 = 

9 degrees of freedom and the probability of 0.95. This is found in the corresponding table 

(Navidi, 2006).  For each position, an estimation of the angle of arrival of direct sound (

 
θsi

) and first reflection (
 
θmi

) was performed by two main methods herein named: a) time 

domain method ( TD ) and b) short-time Fourier transform method ( STFT ). 

The stimulus chosen was a logarithmic sine sweep signal generated using Farina’s 

method (Farina, 2000) with a frequency range of 50 Hz up to 96 kHz. The reason for this 

is because the Nyquist limit is imposed by the chosen sample frequency of 192 kHz.  

Initially, the original recorded signal was not band-pass filtered, the reason was to use the 

untreated signal, keeping its bandwidth and avoid frequency artifacts created by filtering 

the signal.16 

The equipment for the measurement system consists of the following items:  

a) Soundfield microphone model ST 350 and its portable signal conditioner,  

b) p-p intensity probe with G.R.A.S. phase-matched capsules and a Brüel and Kjaer ¼” 

internal preamplifier and a Norsonic signal conditioner model Frontend type 335, 

 c) RME Fireface UFX soundcard sampling at 192 kHz, with a bit depth of 24 bit using 

DAW Pro Tools 9 which can record at internally at 32 bits,  

                                                
16 http://www.rme-audio.de/en_products_fireface_ufx.php [Online accessed on April 25th 2013] 
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d) Several scripts of Matlab written by the author were used to acquire and condition the 

data (For more information please refer to Appendix A: Matlab scripts and physically 

there is a photo of the equipment in Figure 5.7). 

  
Figure 5.7: The equipment used for the last measurements. The photo of the left side 

shows the preamp for the Soundfield microphone ST350 and the Norsonic signal 

conditioner type 336 for the one-dimensional p-p probe. The photo of the right shows the 

RME Fireface UFX sound card which uses digital preamps connected to a DAW Pro 

Tools 9 running over a MacBook Pro. 

The measurement method consists of capturing both the sound pressure ( p ) and particle 

velocity (  
u ) in the 3 orthogonal directions at a single position in space.  The acquired 

data was examined using the STFT technique, with 10 ms Hann windows and 50% 

overlap.  For each STFT, the pressure and particle velocity were used to extract the 

direction of the sound energy flow   

i eθ .  The technique allows measurement of 

reflections with the highest accuracy compared with prior attempts in both horizontal and 

vertical planes. 
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Figure 5.8: Sketch of the 14 different positions tested, where the source is static and the 

receiver is moved to measure different angles of arrival of direct sound (
 
θsi

)  and first 

reflection (
 
θmi

).  An image source model is used to estimate the ‘real angle’ of the first 

reflection ( ϕ i ). 

  P1  0.707 m   P8  1.177 m 

  P2  0.758 m   P9  1.289 m 

  P3  0.807 m   P10  1.406 m 

  P4  0.858 m   P11  1.526 m 

  P5  0.909 m   P12  1.852 m 

  P6  0.961 m   P13  2.219 m 

  P7  1.068 m   P14  2.645 m 

Table 5.1: Calculated distance over x-axis in meters with positions   P1  to  P14 . 
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θs1

 45.000º 
  
θs8

 31.002º 

  
θs2

 43.052º 
  
θs9

 28.742º 

  
θs3

 41.218º 
  
θs10

 26.702º 

  
θs4

 39.491º 
  
θs11

 24.853º 

  
θs5

 37.865º 
  
θs12

 20.898º 

  
θs6

 36.331º 
  
θs13

 17.671º 

  
θs7

 33.517º 
  
θs14

 14.966º 

Table 5.2: Angles of arrival of direct sound (
 
θsi

) with positions   P1  to   P14  from the  

source. 

  
θm1

 -75.067º 
  
θm8

 -66.067º 

  
θm2

 -74.067º 
  
θm9

 -64.067º 

  
θm3

 -73.067º 
  
θm10

 -62.067º 

  
θm4

 -72.067º 
  
θm11

 -60.067º 

  
θm5

 -71.067º 
  
θm12

 -55.067º 

  
θm6

 -70.067º 
  
θm13

 -50.067º 

  
θm7

 -68.067º 
  
θm14

 -45.067º 

Table 5.3: Angles of arrival of first reflection (
 
θmi

) with positions   P1  to   P14  from the 

source. 
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Figure 5.9: Image source model used for determining the angle of arrival of first 

reflections (
 
θmi

). 

The image source model is useful to visualise the TOF of direct sound and first reflection. 

For the positions, which are far from the source e.g.   P11 − P14 , these distances are 

approaching to be similar.  This has some implications on the distribution of the impulse 

response.  To familiarise with the data used for calculation, please refer to the values of 

the angles of arrival of direct sound and first reflection to Table 5.1 for the coordinates in 

x-axis and the associated arrival angle of direct sound to Table 5.2 and for the associated 

arrival angle of first reflection to Table 5.3.    



 

Chapter 5: Acoustic probe configurations 
 

 

 

104 

 
Figure 5.10: Range of angles of arrival of direct sound (

 
θsi

) and first reflection (
 
θmi

) 

tested in x-z (vertical plane). 

5.2.1.1 Soundfield microphone model ST 350 used to measure single 
reflection scenario 

This test uses the Soundfield microphone model ST 350 measuring 14 positions (  P1 − P14

).  Each position was repeated 10 times in order to compute statistics of repeatability.  For 

each position, an estimation of the angle of arrival of direct sound (
 
θsi

) and first reflection 

(
 
θmi

) was performed by two main methods: a) time domain method ( TD ) and b) short-

time Fourier transform ( STFT ) method. 
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5.2.1.2 One-dimensional face-to-face p-p intensity probe rotated 

This experiment uses the face-to-face p-p probe measuring the same 14 positions depicted 

in Figure 5.8.  Each position was repeated 10 times in order to compute statistics of 

repeatability.  For each position, an estimation of the angle of arrival of direct sound (
 
θsi

) 

and first reflection (
 
θmi

) was performed by two main methods: a) time domain method (

 TD ) and b) short-time Fourier transform ( STFT ) method. 

The spacing of p-p intensity probe directly affects the range of frequency.  In order to 

investigate which spacing was the optimum for the specifications of the needed frequency 

range, some variations were proposed and measured.  Three distances were tested in 

practical measurements: a) 10.3 mm with distance spacer, b) 10.3 mm without distance 

spacer, c) 50 mm without distance spacer, and d) 3.10 mm without distance spacer.  If the 

analysis of the first position was not localized properly with time domain and short-time 

Fourier transform ( STFT ) methods, no more analysis of positions are performed.  

Among all the positions tested, the results showed that only the configuration of the 10.3 

mm solid spacer was capable of delivering accurate results within a frequency range of 

approximately 125 Hz up to 5 kHz (Gade, 1982b, Gade, 1982a).  The following photos 

are some of the configurations used for measuring with the p-p intensity probe: 

 
Figure 5.11: Different configurations of spacers tested on the p-p probe. 

a) d = 10.33 mm     b) d = 10.33 mm              c) d = 50.00 mm         d) d = 3.10 mm 

          2 microphones        1 single microphone.       2 microphones            2 microphones. 
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According to Watkinson and Fahy (Watkinson and Fahy, 1984) and later validated by 

Jacobsen et al. (Jacobsen et al., 1996), a spacer of 12 mm seems to be a good compromise 

between 50 Hz up to 10 kHz as a wide band intensity p-p intensity probe.  When the 

diameter of the spacer is equal to the distance of the spacer, there is an extra octave, 

which is attained in the high frequency limit.  Nevertheless, in practice the p-p intensity 

probe used for the measurements showed inadequate performance below 700 Hz. 

5.3 Single microphone multiple positions 

Unfortunately, this case was the least accurate of the four configurations of p-p intensity 

probe’s spacers tested.  Results are not shown since the error found for the direct sound 

was greater than the tolerance of minimum audible angle ( MAA ).  It needs to be very 

precise in the setup of each of the four measurements and ensure to perform the 

measurements with care of time invariance. (See Figure 5.11 on section b) and Figure 

5.12.) 

       
Figure 5.12: Example of a set of 3 from 4 rotations in clockwise direction needed to 

obtain a single 2-D intensity at a single point in space.  

5.4 Multiple reflections scenario in laboratory conditions 

Simultaneously arriving reflections may occur when two sound waves arrive at the same 

discrete time index (n) from different angles (θ ).  The resultant magnitude and direction 

of concurrent reflections will be incorrect, since the procedure typically employed to add 
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the components on each axis produces a single resultant vector.  Therefore, it is 

impossible to differentiate simultaneous reflections in time domain ( TD ).  To create this 

measurement scenario, two reflector panels are located parallel to each other, additionally 

they are parallel to the line that joins the source and the receiver in the semi-anechoic 

chamber.  This measurement scenario was investigated with practical measurements by 

Abdou (Abdou, 1994) using a one-dimensional p-p intensity probe rotated in orthogonal 

axis.  Later, it was simulated by a mathematical model and later physically measured by 

Gover with a 32-microphone array using beamforming techniques (Gover, 2001).  The 

conclusions are that no matter how accurate the coincident microphone array is or the 

intensity probe, the measurement system is not fully capable of resolving true 

simultaneous reflections in the time domain ( TD ).  The reason for this is because under 

these conditions, the reflections will fuse together and create an aberrant new vector that 

is not taking into account the real directions of the previous simultaneous vectors.  The 

instantaneous intensity (  

iinst ) will only be useful to describe the direction and strength of 

the net transport of energy (Burns, 1996), but strictly speaking, it will not be able to 

differentiate true simultaneous arrivals.  In that case, the only way to overcome this 

situation is by using beamforming and cross-correlation between the microphones of a 

spaced array (Tervo, 2012, Protheroe et al., 2013). 

The simultaneous arrival of reflections was studied by Van Lancker in (van Lancker, 

2000) using a microphone array consisting of 8 omni-directional electret microphones 

located at each apex of a cube, with a distance of 25 cm between each microphone.  The 

location of the direct sound and the early reflections was performed using time-delay 

estimation ( TDE ) techniques.  In spite of the fact that he only reports the accuracy of the 

measuring system on the direct sound with a DOA down to 1 or 2 degrees, he does not 

report the early reflection DOA estimation error.   

Nevertheless, the computational cost of using beamforming makes a real time 

measurement system difficult to implement.  For the consumer’s market it is also an 

expensive solution.  The methodology used for this project focuses on overcoming this 

issue in a practical by way by increasing the sample rate of the analogue to digital 

converter to the highest resolution available (currently 192 kHz) and apply the short-time 



 

Chapter 5: Acoustic probe configurations 
 

 

 

108 

Fourier transform method to the signal in order to investigate differences on the spectrum 

of the arrival signals.  This may provide differences that will enable the resolution of 

some of the simultaneous reflections.  This potentially increases the accuracy of the 

estimation of angle, and is likely to be able to resolve most of the crucial simultaneous 

reflections, which appear in the early reflection stage of the decay.  It is important to note 

that in this thesis, the case of simultaneous reflections was not implemented in practice. 

5.5 Three-dimensional impulse response (3-D IR) 
measurements in small rooms 

A practical use of the acquisition of 3-D impulse responses (  3-D IR ) is to measure the 

distribution of reflections during the decay time of any room and map it to describe it in 

different planes.  Since this thesis is focusing in small rooms, the first target was to 

measure a control room and analyse its temporal decay.  Specifically, how the room 

evolves from a very directive sound field when the direct sound arrives to the receiver 

until the sound in the room vanishes.  One of the desirable properties of a control room is 

to be able to hear the direct sound and avoid flutter echoes and strong early reflections. 

By applying the analysis of the impulse response ( IR ) using the STFT method is possible 

to analyse the diffuseness and assess the temporal and spectral properties of the sound 

decay. This experiment was done before having access to the p-p probe, therefore only 

the Soundfield was used.  A description of the measurement conditions follows: 

A sample of 10 measurements of a   3-D IR  in small rooms was done using the Soundfield 

model SPS 422B microphone and applying the short Fourier transform method ( STFT ).  

Figure 5.13 shows the measurement scenario.  

Only the horizontal plane (xy-axis) is investigated at this time. The measurements were 

made in Blue Room 2 control Room from the facilities of recording studios at the 

University of Huddersfield, whose dimensions are 4.16 ×  2.75 ×  2.87 m and its volume 

is 32.1 m3.  Measurements were performed at two different source positions.  The first 

was at the front of the microphone and the second at 120º from the origin, referenced at 

front with an approximated angle of 0º (which was later measured and was 2º, see Figure 
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4.12, Figure 7.1 and Figure 7.2).  The sampling frequency resolution was set to 96 kHz, 

which gives a temporal resolution of 0.01 ms. 

This room has a fairly short reverberation time RT = 0.17 s @ 1 kHz, and a Mean Free 

Path  lMFP = 2.2 m giving a minimum time window of  Δt = 6 ms.  However, smaller time 

windows of 0.1 and 1 ms were tested in this analysis and seem more appropriate to 

determine any isolated early reflection.  Application of the Soundfield microphone model 

SP 422 to small rooms.  The results of this experiment are covered in Chapter 7 and the 

discussion of these results is found in Chapter 8,( section 8.2.1 ). 

  
Figure 5.13: Photo and sketch of Blue room 2 measured with the Soundfield microphone 

model SP 422. 

5.6 Summary 

This section describes details of the Acoustic probe configurations, covering the 

measurement conditions and the repetitions needed to validate the accuracy of the 

method.  The next section covered is the description of the measurement environment, 

which is comprised of: semi-anechoic chamber, monitor speaker influence, damping 

vibration on source and receiver, and the laser cross system to define spatial coordinates. 

It describes the laboratory test for single reflection measurements in the semi-anechoic 

chamber using the p-p probe and the Soundfield microphone.  Afterwards, the single 

microphone multiple positions is mentioned, which was discarded because of bad 
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performance in angular accuracy of sound detection.  An explanation of the effect of 

varying the spacing between the microphones is depicted in that section.  The usable 

frequency range is discussed according to the optimum selection of spacing at 10.3 mm.  

The next topic covered is the applications of 3-D IR measurements in a control room 

where the application of a cheaper and more versatile Soundfield microphone for the 

measurement of a real room response with multiple reflections.  
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Chapter 6 : Results of laboratory tests  

This section presents the results of the experiments undertaken in the single reflection 

scenario ( for an explanation of it please refer to section 5.2.1 ).  The case of measuring a 

single reflection in the semi-anechoic chamber is tested with the time domain ( TD ) 

method and the frequency domain method ( STFT ).  

The detection of the angle of arrival of direct sound (
 
θsi

) is a trivial issue, but the 

detection of the angle of arrival of first reflection (
 
θmi

) is not, and usually exhibits larger 

errors in its estimation.  Therefore, it is expected to have a larger errors and variations of 

the positions, which have the longest distance paths because the time of flight of the 

direct sound and the first reflection is closer than when the path difference is longer 

(Defrance et al., 2009).  Owing to the fact of the high sensitivity of the system to the 

angle of arrival of first reflection and its tendency to deliver errors on the estimation, two 

measurement methods were used.  This is because the time domain method ( TD ) and the 

frequency domain method ( STFT ) complement each other’s deficiencies.  

Due to the great amount of data created in this experiment, only the mean absolute 

percentage error graphs and their uncertainty are presented.  Initially the most intuitive 

graphs were the error graphs.  They showed if the measure was over estimating the real 

value or if it was under estimating.  Later the error graphs showed an analysis of the 

errors with positive or negative sign.  This complicated the analysis of errors.  It was 

needed to use an absolute norm of error.  Mean squared error was discharged because it 

introduced a non-linear explanation of errors while mean absolute percentage error seem 

to preserve the error without introducing any non-linear behaviour. 
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Figure 6.1: Example of impulse response B-Format signals measured. It contains the 

direct sound and first reflection (signals not normalised). 

6.1 Accuracy of methods of analysis  

 The measurements using the Soundfield microphone model 6.1.1 
ST 350  

This procedure uses the Soundfield microphone model ST 350 and compute circular 

statistics for repeatability and determination of the uncertainty of measurements by using 

the circular mean (θ ) and the circular standard deviation ( σ o ) and the computation of the 

MAPE and weighted average of standards deviation of the MAPE (
 
σε%

).  For each 

position, an estimation of the angle of arrival of direct sound (
 
θsi

) and first reflection (
 
θmi

) was performed by two main methods: a) time domain method ( TD ) and b) short-time 
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Fourier transform ( STFT ) method, for more details refer to Figure 6.2, Figure 6.3 and 

Figure 6.4. 

 
Figure 6.2: Sketch of the 14 positions (  P1 − P14 ) for reference of the results. 
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Figure 6.3: Graph of the measurement positions results for the direct sound.  According 

to the steps of 1º for position  P1 − P5  , then 2º for position   P6 − P11  and finally 5º for 

position  P11 − P14 . 

 
Figure 6.4: Graph of the measurement positions for the first reflection.  According to the 

steps of 1º for position   P1 − P5 , then 2º for position   P6 − P11  and finally 5º for position 
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6.1.1.1 Time domain method using instantaneous intensity (  

iinst ) using the 

Soundfield microphone 

 

 
Figure 6.5: Mean absolute percentage error ( MAPE )  ε%  and weighted average of 

standard deviation of mean absolute percentage error (
 
σε%

) of direct sound using 

instantaneous intensity (  

iinst ) in time domain ( TD ) using the Soundfield microphone 

model ST 350. 
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Figure 6.6: Mean absolute percentage error ( MAPE )  ε%  and weighted average of 

standard deviation of mean absolute percentage error (
 
σε%

) of first reflection using 

instantaneous intensity (  

iinst ) in time domain ( TD ) using the Soundfield microphone 

model ST 350. 

Generally, inaccurate results were obtained with positions   P6  to   P12  in direct sound and 

first reflection.  In specific position   P13  and   P14 , reported errors are somehow too high to 

be used.  These last positions exhibit shallow first reflection arrival angles (
 
θmi

) that tend 

to be difficult to measure by the microphone.  One of the reasons could be insufficient 

signal-to-noise-ratio  ( SNR ), the other is a smearing of the synchronicity between 

channels that creates estimation errors. 
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1) The direct sound overall absolute mean error εε  for the direct sound is 7.071º, which 

corresponds to an overall mean absolute percentage error 
 
εε%

 of 35.724% and an overall 

weighted average of standard deviation (σε ) of ±0.207º, which corresponds to an overall 

weighted average of standard deviation of mean absolute percentage error (
 
σε%

) of 

±1.833%. 

2) The overall absolute mean error εε  for the first reflection is 19.113º, which 

corresponds to an overall mean absolute percentage error 
 
εε%

 of 31.185% and an overall 

weighted average of standard deviation (σε ) of ±2.416º, which corresponds to an overall 

weighted average of standard deviation of mean absolute percentage error (
 
σε%

) of 

±3.629%. 
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6.1.1.2 Time domain method using the complex instantaneous intensity (

  

icomplex ) using the Soundfield microphone 

 
Figure 6.7: Mean absolute percentage error ( MAPE )  ε%  and weighted average of 

standard deviation of mean absolute percentage error (
 
σε%

) of direct sound using 

complex instantaneous intensity (
  

icomplex ) in time domain ( TD ) using the Soundfield 

microphone model ST 350. 
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Figure 6.8: Mean Absolute percentage error ( MAPE )  ε%  and weighted average of 

standard deviation of mean absolute percentage error (
 
σε%

) of first reflection using 

complex instantaneous intensity (
  

icomplex ) using the Soundfield microphone model ST 350. 
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weighted average of standard deviation of mean absolute percentage error (
 
σε%

) of 

±1.366%. 

6.1.1.3 Short-time Fourier transform ( STFT ) method using active 
instantaneous intensity (  


Ia ) using the Soundfield microphone 

The following graphs are the mean absolute percentage errors ( MAPE ) and weighted 

average of standard deviation of mean absolute percentage errors for direct sound and 

first reflections across the 16 ERB bands using the Soundfield microphone model ST350.  

 
Figure 6.9: ERB band 1 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound (left) and 

first reflection (right) for Soundfield microphone. 
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Figure 6.10: ERB band 2 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage error (
 
σε%

) for direct sound  (left) and 

first reflection (right) for Soundfield microphone. 

 
Figure 6.11: ERB band 3 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound (left) and 

first reflection (right) for Soundfield microphone. 
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Figure 6.12: ERB band 4 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound (left) and 

first reflection (right) for Soundfield microphone. 

 
Figure 6.13: ERB band 5 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound (left) and 

first reflection (right) for Soundfield microphone. 
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Figure 6.14: ERB band 6 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound (left) and 

first reflection (right) for Soundfield microphone. 

 
Figure 6.15: ERB band 7 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound (left) and 

first reflection (right) for Soundfield microphone. 
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Figure 6.16: ERB band 8 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound (left) and 

first reflection (right) for Soundfield microphone. 

 
Figure 6.17: ERB band 9 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound (left) and 

first reflection (right) for Soundfield microphone. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

 Mean Absolute Percentage Error (MAPE) and Standard Deviation of
Mean Absolute Relative Error of Direct Sound by Measurement Positions 

Band 8 ( 4.922 − 5.625 kHz ) Soundfield mic

Position Number [   ]

M
AP

E 
of

 th
e 

An
gl

e 
of

 a
rri

va
l [

 %
 ]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

40

45

50

 Mean Absolute Percentage Error (MAPE) and Standard Deviation of
 Mean Absolute Relative Error of First Reflection by Measurement Positions 

Band 8 ( 4.922 − 5.625 kHz ) Soundfield mic

Position Number [   ]

M
AP

E 
of

 th
e 

An
gl

e 
of

 a
rri

va
l [

 %
 ]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

 Mean Absolute Percentage Error (MAPE) and Standard Deviation of
Mean Absolute Relative Error of Direct Sound by Measurement Positions 

Band 9 ( 5.625 − 6.328 kHz ) Soundfield mic

Position Number [   ]

M
AP

E 
of

 th
e 

An
gl

e 
of

 a
rri

va
l [

 %
 ]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

 Mean Absolute Percentage Error (MAPE) and Standard Deviation of
 Mean Absolute Relative Error of First Reflection by Measurement Positions 

Band 9 ( 5.625 − 6.328 kHz ) Soundfield mic

Position Number [   ]

M
AP

E 
of

 th
e 

An
gl

e 
of

 a
rri

va
l [

 %
 ]



 

Chapter 6: Results of laboratory tests 
 

 

125 

 
Figure 6.18: ERB band 10 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound (left) and 

first reflection (right) for Soundfield microphone. 

 
Figure 6.19: ERB band 11 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound (left) and 

first reflection (right) for Soundfield microphone. 
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Figure 6.20: ERB band 12 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound (left) and 

first reflection (right) for Soundfield microphone. 

 
Figure 6.21: ERB band 13 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound (left) and 

first reflection (right) for Soundfield microphone. 
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Figure 6.22: ERB band 14 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound (left) and 

first reflection (right) for Soundfield microphone. 

 
Figure 6.23: ERB band 15 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound (left) and 

first reflection (right) for Soundfield microphone. 
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Figure 6.24: ERB band 16 mean absolute percentage errors  ε%  and weighted average of 

standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound (left) and 

first reflection (right) for Soundfield microphone. 
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σε%
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Figure 6.25: Overall mean absolute percentage error ( OMAPE ) 

 
εε%

 and overall 

weighted average of standard deviation of mean absolute percentage error 
 
σε%

 of direct 

sound by ERB band for the direct sound. 
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Figure 6.26: Overall mean absolute percentage error ( OMAPE ) 

 
εε%

 and overall 

weighted average of standard deviation of mean absolute percentage error 
 
σε%

 of direct 

sound by ERB band for the first reflection. 

6.1.1.4 Average of each position using short-time Fourier transform ( STFT ) 
using the Soundfield microphone 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

20

30

40

50

60

70

80

90

100

110

Overall Mean Absolute Percentage Error (OMAPE) and Overall Mean of Standard Deviation of
Mean Absolute Percentage Error of First Reflection by ERB Band with Soundfield mic

ERB bands [   ]

O
ve

ra
ll 

M
ea

n 
Ab

so
lu

te
 P

er
ce

nt
ag

e 
Er

ro
r o

f t
he

 A
ng

le
 o

f a
rri

va
l [

 %
 ]



 

Chapter 6: Results of laboratory tests 
 

 

131 

 
Figure 6.27: Overall mean absolute percentage error ( OMAPE ) of ERB 

  
ε%ERB

 and 

overall weighted average of standard deviation of mean absolute percentage error (
  
σε%ERB

) 

of direct sound by averaging each instantaneous position (ith) using the ERB’s band of the 

STFT using the Soundfield microphone model ST 350. 
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Figure 6.28: Overall mean absolute percentage error ( OMAPE ) of ERB 

  
ε%ERB

 and 

overall weighted average of standard deviation of mean absolute percentage error (
  
σε%ERB

) 

of first reflection by averaging each instantaneous position (ith) using the ERB’s band of 

the STFT using the Soundfield microphone model ST 350. 

1) The direct sound overall mean error ( εε ) for the direct sound is 1.355º, which in terms 
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is 6.893% and a 

overall weighted average of standard deviation of mean absolute percentage error (σε ) of 

± 0.029º, which in terms of weighted average of standard deviation of mean absolute 

percentage error of  ERB  (
  
σε%ERB

) is ± 0.128%. 

2) The overall mean error (εε ) for the first reflection is 18.791º, which in terms of overall 

mean absolute percentage error ( OMAPE ) of ERB 
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is 29.608% and a weighted 
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average of standard deviation error (σε ) of ±0.246º, which in terms of overall weighted 

average of standard deviation of mean absolute percentage error of ERB (
  
σε%ERB

) is 

±0.464%. 

The results show the same outcomes on the overall mean values because the same data is 

used for calculating the average, even though the direction of calculation was performed 

vertically (by measurement number) instead of horizontally (by ERB band).  

Nevertheless, the overall weighted average of standard deviation value shows a smaller 

value than reported in the previous results from section 6.1.1.3. 

Soundfield 
microphone 

Direct sound First reflection 

(ST 350) Overall 
Mean Error. 

εε  

Mean std. dev. 
of Mean Error  

σε  

Overall 
Mean Error. 

εε  

Mean std. dev. 
of Mean Error 

σε  
Mean Absolute  

Percentage Error 
( MAPE ) 

 
 

 ε%  

Weighted Average 
of Standard 

Deviation of Mean 
Absolute 

Percentage Error  

 
σε%

 

Mean Absolute  
Percentage Error 

( MAPE ) 
 
 

 ε%  

Weighted Average 
of Standard 

Deviation of Mean 
Absolute 

Percentage Error  

 
σε%

  

Instantaneous 
Intensity in 

Time domain. 

  

iinst  

 

  7.071  

 

  ±0.207  
 

  19.113  
 

  ±2.416  
 

 35.724%( )  
 

 ±1.180%( )  
 

 31.185%( )  
 

 ±3.629%( )  
Complex 

instantaneous 
intensity. 

  

icomplex  

 

  8.208  
 

  ±0.330  
 

  15.895  
 

  ±1.248  
 

 39.630%( )  

 

 ±1.580%( )  

 

 24.764%( )  

 

 ±1.366%( )  

Active 
Instantaneous 
Intensity with 

STFT. 

  

Ia  

 

  1.351  
 

  ±0.013  
 

  18.346  
 

  ±0.198  
 

 17.280%( )  

 

 ±0.060%( )  

 

 30.286%( )  

 

 ±1.333%( )  

Instantaneous 
Intensity Average 

each position. 

  

Ia  

 

  1.355  
 

  ±0.029  
 

  18.791  
 

  ±0.246  
 

 6.893%( )  

 

 ±0.128%( )  

 

 29.608%( )  

 

 ±0.464%( )  

Table 6.1: Summarised results for angular accuracy of direct and first reflection using 

different techniques performed with the Soundfield microphone model ST 350. 
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 Measurements using the one-dimensional p-p intensity probe 6.1.2 
rotated on orthogonal axis 

6.1.2.1 Time domain method using instantaneous intensity (  

iinst ) using the 

p-p probe 

The following graphs are shown in order to compare the accuracy of angle estimation of 

direct sound and first reflection using time domain ( TD ) method with the complex 

instantaneous intensity (
  

icomplex ).  

 
Figure 6.29: Overall mean absolute percentage error ( OMAPE ) 

 
εε%

 and overall 

weighted average of standard deviation of mean absolute percentage error 
 
σε%

 of direct 

sound with instantaneous intensity (  

iinst ) in time domain ( TD ) across all (ith) positions 

using the p-p intensity probe. 
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Figure 6.30: Overall mean absolute percentage error ( OMAPE ) 

 
εε%

 and overall 

weighted average of standard deviation of mean absolute percentage error 
 
σε%

of first 

reflection with instantaneous intensity (  

iinst ) in time domain ( TD ) across all positions (ith) 

using the p-p intensity probe. 

Using the Instantaneous Intensity gives the following overall results: 

1) The direct sound overall mean error (εε ) for the direct sound is 4.467º, which 

corresponds to an overall mean absolute percentage error ( OMAPE )
 
εε%

 of 22.856% and 

a weighted average of standard deviation error (σε ) of ±0.066º, which corresponds to an 

weighted average of standard deviation of mean absolute percentage error 
 
σε%

 of 

±0.273% . 
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2) The overall mean error (εε ) for the first reflection is 3.193º, which corresponds to an 

overall mean absolute percentage error ( OMAPE ) 
 
εε%

 of 16.683% with a weighted 

average of standard deviation error (σε ) of ±0.319º, which corresponds to an weighted 

average of standard deviation of mean absolute percentage error (
 
σε%

) of ±0.565%. 

6.1.2.2 Time domain method using the complex instantaneous intensity (

  

icomplex ) using the p-p probe  

The following graphs show the improvement in accuracy using complex instantaneous 

intensity (
  

icomplex ) to estimate the angle of arrival of the direct sound and first reflection in 

the case of p-p intensity probe. 
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Figure 6.31: Overall mean absolute percentage error ( OMAPE ) 

 
εε%

 and overall 

weighted average of standard deviation of mean absolute percentage error 
 
σε%

 of direct 

sound in time domain ( TD ) with complex instantaneous intensity (
  

icomplex ) across all 

positions using the p-p intensity probe. 
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Figure 6.32: Overall mean absolute percentage error ( OMAPE ) 

 
εε%

 and weighted 

average of standard deviation of mean absolute percentage error (
 
σε%

) of first reflection 

in time domain ( TD ) with complex instantaneous intensity (
  

icomplex ) across all positions 

using the p-p intensity probe. 

Using the complex instantaneous intensity (
  

icomplex ) gives the following overall results: 

1) The direct sound overall mean error (εε ) for the direct sound is 4.838º, which 

corresponds to an overall mean absolute percentage error ( OMAPE ) 
 
εε%

 of 24.494% 

and a weighted average of standard deviation error (σε ) of ±0.057º, which corresponds to 

an weighted average of standard deviation of mean absolute percentage error (
 
σε%

) of  

±0.312%. 
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2) The overall mean error (εε ) for the first reflection is 8.582º, which corresponds to an 

overall mean absolute percentage error ( OMAPE ) 
 
εε%

 of 14.422% with a weighted 

average of standard deviation error (σε ) of ± 0.238º, which corresponds to an weighted 

average of standard deviation of mean absolute percentage error (
 
σε%

) of ±0.495%. 

6.1.2.3 Short-time Fourier transform ( STFT ) method using active 
instantaneous intensity (  


Ia ) using the p-p probe 

The following graphs are the mean absolute percentage errors ( MAPE ) and weighted 

average of standard deviation of mean absolute percentage errors (
 
σε%

) for direct sound 

and first reflections across the 16 ERB bands using the face-to-face p-p probe using the 

latest prototype of the custom cradle orthogonal rotation of x-z axis.  

 
Figure 6.33: ERB band 1 mean absolute percentage error ( MAPE )  ε%  and weighted 

average standard deviation of mean absolute percentage error 
 
σε%

for direct sound (left) 

and first reflection (right) for p-p probe. 
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Figure 6.34: ERB band 2 mean absolute percentage error ( MAPE )  ε%  and weighted 

average standard deviation of mean absolute percentage error 
 
σε%

for direct sound (left) 

and first reflection (right) for p-p probe. 

 
Figure 6.35: ERB band 3 mean absolute percentage error ( MAPE )  ε%  and weighted 

average standard deviation of mean absolute percentage error 
 
σε%

 for direct sound (left) 

and first reflection (right) for p-p probe. 
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Figure 6.36: ERB band 4 mean absolute percentage error ( MAPE )  ε%  and weighted 

average standard deviation of mean absolute percentage error 
 
σε%  

for direct sound (left) 

and first reflection (right) for p-p probe. 

 

 
Figure 6.37: ERB band 5 mean absolute percentage error ( MAPE )  ε%  and weighted 

average standard deviation of mean absolute percentage error 
 
σε%

for direct sound (left) 

and first reflection (right) for p-p probe. 
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Figure 6.38: ERB band 6 mean absolute percentage error ( MAPE )  ε rel  and weighted 

average standard deviation of mean absolute percentage error 
 
σε%

for direct sound (left) 

and first reflection (right) for p-p probe. 

 

 
Figure 6.39: ERB band 7 mean absolute percentage error ( MAPE )  ε%  and weighted 

average standard deviation of mean absolute percentage error 
 
σε%

for direct sound (left) 

and first reflection (right) for p-p probe. 
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Figure 6.40: ERB band 8 mean absolute percentage error ( MAPE )  ε%  and weighted 

average standard deviation of mean absolute percentage error 
 
σε%

for direct sound (left) 

and first reflection (right) for p-p probe. 

 
Figure 6.41: ERB band 9 mean absolute percentage error ( MAPE )  ε%  and weighted 

average standard deviation of mean absolute percentage error 
 
σε%

for direct sound (left) 

and first reflection (right) for p-p probe. 
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Figure 6.42: ERB band 10 mean absolute percentage error ( MAPE )  ε%  and weighted 

average standard deviation of mean absolute percentage error
  
σε%

for direct sound (left) 

and first reflection (right) for p-p probe. 

 

 
Figure 6.43: ERB band 11 mean absolute percentage error ( MAPE )  ε%  and weighted 

average standard deviation of mean absolute percentage error
  
σε%

for direct sound (left) 

and first reflection (right) for p-p probe. 
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Figure 6.44: ERB band 12 mean absolute percentage error ( MAPE )  ε%  and weighted 

average standard deviation of mean absolute percentage error
  
σε%

for direct sound (left) 

and first reflection (right) for p-p probe. 

 

 
Figure 6.45: ERB band 13 mean absolute percentage error ( MAPE )  ε%  and weighted 

average standard deviation of mean absolute percentage error
  
σε%

for direct sound (left) 

and first reflection (right) for p-p probe. 
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Figure 6.46: ERB band 14 mean absolute percentage error ( MAPE )  ε%  and weighted 

average standard deviation of mean absolute percentage error 
 
σε%

for direct sound (left) 

and first reflection (right) for p-p probe. 

 

 
Figure 6.47: ERB band 15 mean absolute percentage error ( MAPE )  ε%  and weighted 

average standard deviation of mean absolute percentage error 
 
σε%

for direct sound (left) 

and first reflection (right) for p-p probe. 
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Figure 6.48: ERB band 16 mean absolute percentage error ( MAPE )  ε%  and weighted 

average standard deviation of mean absolute percentage error 
 
σε%

for direct sound (left) 

and first reflection (right) for p-p probe. 
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1) The direct sound overall mean error (εε ) for the direct sound is 0.163º, which in terms 

of overall mean absolute percentage error ( OMAPE ) 
 
εε%

 is 14.628% and a weighted 

average of standard deviation error (σε ) of ±0.367º, which in terms of weighted average 

of standard deviation of mean absolute percentage error (
 
σε%

) represents ±1.092%. 

2) The overall mean error ( εε ) for the first reflection is 4.385º which in terms of overall 

mean absolute percentage error ( OMAPE ) 
 
εε%

 is 22.909% and with a weighted average 

of standard deviation error (σε ) of ±0.788º, which in terms of weighted average of 

standard deviation of mean absolute percentage error (
 
σε%

) represents ±0.920%. 

After the analysis of the performance of the Soundfield microphone by 16 ERB bands 

using the direct sound and the first reflection, it was found that a synthesis of these data in 

a graph can show the bands that perform better and it is possible to select the frequency 
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Figure 6.49: Overall mean absolute percentage error ( OMAPE )  ε%  and overall 

weighted average of standard deviation of mean absolute percentage error (
 
σε%

) of direct 

sound by ERB bands using the p-p probe. 
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Figure 6.50: Overall mean absolute percentage error ( OMAPE )  ε%  and overall 

weighted average of standard deviation of mean absolute percentage error (
 
σε%

) of first 

reflection by ERB bands using the p-p probe. 

6.1.2.4 Average of each position using short-time Fourier transform ( STFT ) 
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Figure 6.51: Overall mean absolute percentage error ( OMAPE ) 

 
εε%

 and weighted 

average of standard deviation of mean absolute percentage error (
 
σε%

) of direct sound 

averaging instantaneous intensity (  

iinst ) by each position using the p-p intensity probe. 
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Figure 6.52: Overall mean absolute percentage error ( OMAPE ) 

 
εε%

 and weighted 

average of standard deviation of mean absolute percentage error (
 
σε%

) of first reflection 

averaging instantaneous intensity (  

iinst ) by measurement (ith) positions using the p-p 

intensity probe. 

1) The direct sound overall mean error (εε ) for the direct sound is 0.226º, which 

corresponds to an overall mean absolute percentage error ( OMAPE ) 
 
εε%

 of 4.428% and 

a weighted average of standard deviation error  (σε ) of ±0.293º, which in terms of 

weighted average of standard deviation of mean absolute percentage error (
 
σε%

) of  

±1.752 %. 

2) The overall mean error for the first reflection (εε ) is 2.971º, which corresponds to an 

overall mean absolute percentage error ( OMAPE ) 
 
εε%

of 6.866% with a mean of 
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standard deviation error (σε ) of ±0.110º, which in terms of weighted average of standard 

deviation of mean absolute percentage error (
 
σε%

) of  ±0.251%. 

6.1.2.5 The best repeatability case using the p-p intensity probe  

Based on the smaller overall mean error (εε ) found in the first reflection, the following 

selection of weighted average of standard deviation is depicted: 

1) The weighted average of standard deviation error of direct sound σε = ±0.293º, which 

corresponds to a weighted average of standard deviation for mean absolute percentage 

error 
 
σε%

= ±1.752%. 

2) The weighted average of standard deviation error of first reflection σε = ±0.110º, 

which corresponds to a weighted average of standard deviation for mean absolute 

percentage error 
 
σε%

= ±0.251%. 

The algorithm to calculate a weighted average of standard deviation (
 
σε%

), (please refer 

to equation 3.51 in page 55) does give smaller values in percentage.  This is due to the 

fact that the biggest standard deviation will not dominate the value of the weighted mean 

because the standard deviations are squared and then summed as variances ( σ
2 ), and then 

the squared root is taken and divided by the number of samples because calculate the 

arithmetic mean is not valid for standard deviations. 
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p-p intensity 
probe 

Direct sound First reflection 

(face-to-face) Overall 
Mean error. 

εε  

Mean std. dev. 
of Mean Error 

σε  

Overall 
Mean error. 

εε  

Mean std. dev. 
of Mean Error  

σε  
Mean Absolute  

Percentage Error 
( MAPE ) 

 
 

 ε%  

Weighted Average 
of Standard 

Deviation of Mean 
Absolute 

Percentage Error  

 
σε%

 

Mean Absolute  
Percentage Error 

( MAPE ) 
 
 

 ε%  

Weighted Average 
of Standard 

Deviation of Mean 
Absolute 

Percentage Error  

 
σε%

  

Instantaneous 
Intensity in 

Time domain. 

  

iinst  

 

  4.467  

 

  ±0.066  
 

  3.193  
 

  ±0.319  
 

 22.856%( )  
 

 ±1.021%( )  
 

 

 16.683%( )  
 

 ±2.112%( )  

Complex 
instantaneous 

intensity. 

  

icomplex  

 

  4.838  
 

  ±0.057  
 

  8.582  
 

  ±0.238  
 

 24.494%( )  
 

 ±1.164%( )  

 

 14.422%( )  
 

 ±1.855%( )  

Active 
Instantaneous 
Intensity with 

STFT. 

  

Ia  

 

  0.163  
 

  ±0.367  
 

  4.385  
 

  ±0.788  
 

 14.628%( )  
 

 ±16.332%( )  
 

 22.909%( )  
 

 ±13.777%( )  

Instantaneous 
Intensity Average 

each position. 

  

Ia  

 

  0.226  
 

  ±0.293  

 

  2.971  
 

  ±0.110  
 

 4.428%( )  
 

 ±1.752%( )  
 

  6.866%( )  
 

 0.251%( )   

Table 6.2: Summarised results for angular accuracy of direct and first reflection using 

different techniques performed with the p-p intensity probe. 

From Table 6.1 and Table 6.2 it can be seen that the best measure for first reflection is 

acquired using the p-p intensity probe with the short Fourier transform method and the 

time averaged instantaneous intensity 
  

Iinst  used in the spatial impulse response 

rendering SIRR method proposed by Merimaa (Merimaa, 2006).  This result is the one 

that is reported in the abstract of this thesis.  The best resolution for the estimation of first 

reflection is   εε = 2.971 ,  σε ± 0.226. Consequently, the complex instantaneous intensity 

(
  

icomplex ) used in time domain is not recommended, and the case of complex instantaneous 
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intensity (
  

Icomplex ) applied to the short-time Fourier transform ( STFT ) was not 

investigated, considering the poor results obtained in time domain. 

6.1.2.6 Time Domain ( TD ) and short-time Fourier transform ( STFT ) 
analysis using the p-p intensity probe rotated to orthogonal axis 

The procedure to perform this complementary analysis is to calculate in time domain (

 TD ) the intensity quantities such as the instantaneous intensity (  

iinst ) and the complex 

instantaneous intensity (
  

icomplex ) for each orthogonal x, y and z-axis, then combine them to 

create the corresponding intensity vector along the desired plane as it was reported in 

(Romero-Perez, 2010).  For the p-p intensity probe, this is found in the Matlab m file 

named: 

Extract_winMLS_signals_Corrected69LOG_BFormat_192kHz.m 

In the case of the Soundfield microphone model ST350 the script used to analyse the 

signals is named: 

Extract_winMLS_signals_Corrected70LOG_BFormat.m 

This m files produce a lot of graphs that are useful for diverse analysis of the 3-D impulse 

response.  In this report, only the four most relevant types of graphs are presented.   
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Figure 6.53: A comparison among the components of the envelope of intensity in x and 

z-axis (  ix ,  iz ) vs. the active complex instantaneous intensity in x-axis (
  


iactive

complexx

) and z-axis (

  


iactive

complexz

). 

In the following example shown in Figure 6.53 it is possible to see how the different 

types of intensity are compared for the accuracy detection of the first reflection. It depicts 

the envelope of intensity ( i ) used for detection of direct sound and first reflection when a 

p-p intensity probe is used in position  P1  measurement 1.  It is calculated using equation 

3.13 from page 38.  It can be seen that the active complex instantaneous intensity 

components (
   


i active

complexx

,

iactive

complexz

) have positive and negative excursions and the envelope 

intensity components (  ix , iz ) preserve the polarity of them.  The active complex 

instantaneous intensity is calculated using equation 3.33 on page 46.  The envelope of a 
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signal is a positive quantity and may be presented in a logarithmic amplitude scale in 

order to depict a huge range in the time domain ( TD ).  The envelope is related to the 

Energy-Time Curve, or ETC, known from Time Delay Spectrometry (Thrane et al., 

1984).  However, it shows more contrast than the instantaneous intensity (  

iinst ) preserving 

important details of the signal, which are useful for location of reflections. 

In Figure 6.54 it can be seen that the instantaneous intensity (  

iinst ) tends to show the 

instantaneous incoming energy in a way that does not take into account any averaging.  

Therefore, the localisation of reflections is more difficult, due to the fact that the arrows 

are more spread than in the case of the use of complex instantaneous intensity (
  

icomplex ) as 

it can be seen in Figure 6.55. 
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Figure 6.54: Graph of the instantaneous intensity (  


iinst ) of the whole sound decay using 

p-p intensity probe, where the blue solid arrow is the real direction of the reflection.  

Analysis performed under the time domain method. 

A comparison of Figure 6.54 and Figure 6.55 shows that calculations of active 

instantaneous intensity (  

ia ) with the particle velocity estimate (  

u ) have a slight deviation 

on the estimation of the direct sound and its first reflections.  After doing the analysis 

throughout the sample of ten measurements per position, it was found there were some 

differences in terms of distribution of reflections in time.  In terms of the direction of the 
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direct sound, both techniques converge to the same value.  In the case of the first 

reflection, it is not the same, likely because of the mixing time process that tends to create 

some uncorrelated sources of patterns of reflections. Another cause of discrepancies on 

different time of arrival is attributed to the two drivers on the monitor speaker.  Both 

drivers are located in different coordinates; therefore, the location of the direct sound and 

first reflection may vary slightly in time and direction of arrival ( DOA).  The other 

concern is with the different polar directivities that exhibit each driver across frequency.  

At high frequencies, the tweeter tends to be more directional than at mid frequencies. 

As can be seen in Figure 6.55, the effect of using the active complex instantaneous 

intensity in time domain (
  


iactive

complex

) is an evident aid for detection of the first reflection.  It 

helps to locate it in a more clear way than using the active instantaneous intensity in the 

time domain (  

ia ). 
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Figure 6.55: Graph of active complex instantaneous intensity (

  


iactive

complex

) of the whole sound 

decay using p-p intensity probe, where the blue solid arrow is the real direction of the 

reflection.  Analysis performed under the time domain method ( TD ). 

In the case of the short-time Fourier transform  ( STFT ) method and the mean active 

intensity in frequency domain averaged inside each time window every five samples. 
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Figure 6.56: Example of short-time Fourier transform ( STFT ) method applied to the p-p 

intensity probe with vibration damping in position   P1  also known as the calibration 

position for direct sound (
   
θs1

= 45 ) and first reflection (
   
θm1

= −75.067 ). 

Referring to Figure 6.56 it can be seen that it shows the strength and the direction of the 

direct sound and the first reflection for position   P1  measurement 1.  The length of the 

Fourier transform (NFFT = 2048) and the sample rate is 192 kHz.  The number of ERB is 

16 and covers up to 10 kHz.  The length of the time window is 2.667 ms, overlapping at 

50% of its length.  The direct sound is located at t = 0 and the first reflection is found 

around 5.385 ms. 

The diffuseness estimate (ψ ) is a very useful measure for detection of transients in a 

sound decay.  It can be used for detection of specular reflections. 
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Figure 6.57: Example of diffuseness estimate  (ψ ) graph made in position 1 

measurement 1 with the p-p intensity probe. 

6.2 Summary 

This section describes the results and discussion.  The calculations implemented are 

described and an adequate number of graphs show the characterisation of the reflections 

and the measurement of uncertainty on the measurements of direct sound and first 

reflections. The first topic is the description of the measurement environment, the semi-

anechoic chamber, and the monitor speaker influence.  Subsequently, the measurement 

positions and the calculation of the angles with the geometrical are presented.  The 

accuracy of the methods of analysis for all cases is discussed.  A table of results is 

presented in order to compare effects of different probes.  For the single reflection 

scenario, the graphs of the Soundfield microphone are depicted.  An example of the peak 
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detection on the B-Format signals is shown.  The next graphs are the p-p intensity probe 

rotated to orthogonal axis.  An example of the time domain method ( TD ) using the 

envelope of the signals is presented.  Successively, a graph of instantaneous intensity (  

iinst

) is compared with complex instantaneous intensity (
  

icomplex ) and the best estimation is 

found with the first (  

iinst ).  The following graph described is the short Fourier transform 

method ( STFT ) applied to the p-p intensity probe.  The last result presented in this 

chapter is depicted with the diffuseness estimate (ψ ) graph using the p-p intensity probe. 
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Chapter 7 : Results of practical applications 

This chapter aims to investigate the extraction and analysis of temporal and spatial 

distribution early sound decay in a real room using the Soundfield microphone ( please 

refer to section 5.5 ).  A method based on B-format signals is adapted to small rooms.  It 

can map the spatial and temporal distribution of sound energy and diffuseness in three 

dimensions.  The main acoustic problem found in small rooms is coloration of sound.  It 

is perceived as a change of timbre, rhythm sensation and signal pitch and is the main 

problem encountered when music is reproduced in such spaces (Rubak and Johansen, 

2003).  It happens in a complicated way, as it depends on temporal and spatial variables.  

In order to minimize these problems, acoustic treatment needs to be applied to the room.  

The traditional ways of measuring rooms to assess this treatment had not taken into 

account the directionality of the sound energy and their effect in terms of perception of 

stereo image without blur estimation caused by harmful reflections, nor had take into 

account the characteristics of neutral rooms.  This technique is practical to be used to 

assess 3-D impulse responses (  3-D IR ) of rooms. 

7.1 Three-dimensional impulse response (3-D IR) 
measurements in small rooms 

These types of practical measurements were performed using a Soundfield microphone 

and a Focusrite Saffire 26 i/o soundcard connected to a portable computer.  The 

measurement software performs the extraction of the impulse response of the four B-

Format signals. (Refer to Figure 4.12).  Matlab is used for further analysis as discussed 

in section 4.4.  The excitation source was the existing studio monitors found in the rooms. 

The impulse response of the room ( IR ) represents the interaction of the speaker and the 

room at this particular position.  It is important to note that these impulse responses are 
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not good to calculate any acoustic parameter due to the fact that the studio monitors are 

not omni-directional at all frequencies. To obtain the impulse response, a deconvolution 

process is performed with the aid of the measurement software WinMLS17.  The impulse 

response from the measurement is generated in binary or ACII file formats.  The 

excitation signal chosen in the software was linear swept sine.  To improve accuracy, the 

sweep length was selected according to the measured RT.  The four impulse responses 

were obtained by performing simultaneous RT measurements by selecting the ‘4 channel 

mode’, with the soundcard operating at its highest resolution, which was a bit depth of 24 

bits and a sampling rate of 96 kHz.  The final step is to export data to Matlab for further 

analysis using Loadimp.m, a script provided by WinMLS.  The B-Format signals are 

normalized by the maximum value found in the four signals. 

Some measurements of a   3-D IR  in small rooms were done using the Soundfield model 

SPS 422B microphone18 and applying the short Fourier Transform ( STFT ) method.  

Figure 7.1 and Figure 7.2 show some results of this measurement scenario. 

Only the horizontal plane (xy-axis) is investigated at this time.  Measurements were 

performed at two different source positions.  The first was at the front of the microphone 

and the second at 120º from the origin, referenced at front with an approximated angle of 

0º (which later was measured and was 2º, see Figure 7.1 and Figure 7.2). 

The time scale begins at around 0 ms, the useful region is adapted to observe the direct 

sound and its decay.  Looking at Figure 7.2 in the upper graph, it can be seen that the 

variation of direction of the early reflections is not traceable after the time labelled around 

10 ms.  It corresponds to the 10-15 ms limit where the reflections leave the discrete zone 

and increase its density across time.  It is interesting to see that the more diffuse the 

reflection, the less coherent the direction estimate is across the audible frequency range.  

In Figure 7.2 it can be seen that the diffuseness values (ψ ), which appear as grey spots, 

tend to randomly vary after the appearance of the early reflections.  Therefore, this is not 

a useful descriptor of the stage of decay, unless it is combined with the amplitude level of 

the reflections calculated with the Matlab’s quiver graph function, which shows the 
                                                
17 http://www.winmls.com [Online accessed in Oct 20th 2009] 
18 http://www.soundfield.com/products/sps422b.php [Online accessed in Oct 20th 2009] 
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mean direction of the reflections calculated after smoothing with the ERB bank filter.  

From this analysis, it is clear that new measures for taking into account the mixing time (

 tmix ) and the beginning of the reverberant tail are needed in order to perform an automatic 

analysis of each room measured.   The use of higher-order statistics and modern time 

series theory may possibly be adapted to cover this needs. 

 3-D Graphs of short-time Fourier method ( STFT ) using the 7.1.1 
SPS 422B Soundfield microphone  

 
Figure 7.1: Upper graph shows the direct sound, early reflections, and late sound decay 

in Blue Room 2, which is a small control room at the University of Huddersfield.  Lower 

graph shows the diffuseness estimate (ψ ) calculated with the STFT method.  The source 

was located at 121º.  Note that the front direction is located at 0º at the right side. 
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Figure 7.2: Graphs showing the direct and early reflections and late sound decay (upper 

graph) and the diffuseness estimate ψ( )  in the (lower graph).  The monitor direction used 

is from the position 2 (at the front of the microphone).  Note that the front direction 

located at 0º is rotated -90º in the sketch of the control room. 

For more details on the implementation of this measurement system, please refer to 

Romero-Perez (Fazenda and Romero-Perez, 2008, Romero-Perez et al., 2009). 
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Figure 7.3: Example of peak detection algorithm applied to the B-format signals. 

The example of a peak detector application is depicted in Figure 7.3.  It shows the 

capabilities of the peak detector algorithm tested.  It uses the raw data of B-Format signal 

to display the peaks and valleys in the signal as asterisks.  It can find the peaks either in 

positive or negative sides with different asterisk colours, and if combined with the right 

procedures such as using it on the envelope of the intensity, it already can automatically 

map the early reflections.  This is because the procedure of calculating the instantaneous 

intensity acts like a good filter of relevant information on the signal, and if a much 

cleaner signal is needed to locate the relevant reflections, then its envelope can simplify 

the signal furthermore. 
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7.2 Summary 

The estimation of direction of arrival of early reflections using the  STFT approach in 

time-frequency domain appears to be a good technique with high accuracy and 

repeatability in comparison with the time domain analysis.  The inclusion of Equivalent 

Rectangular Band bank filter and localization blur perception limits in the model helps 

bridge the gap between the objective measures and the subjective measures.  This paper 

reports advances of the research up to date and possible research directions. 

The physical limitation of the system is the resolution of the Soundfield microphone, 

especially in the forward and backward directions where the human localisation blur 

angle is more accurate.  The future use of the Microflown probe may improve the 

measurement results, and better prepare the impulse response to create accurate 

auralisation. 
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Chapter 8 : Discussion of results 

Angles of arrival of sound for their nature exhibit particular problems in error analysis, 

since in many situations, the "zero degree direction" is arbitrarily chosen and, therefore a 

percentage error ( ε% ) is meaningless.  Likewise, an “absolute” angle uncertainty is 

meaningful, but the percentage of uncertainties feel a rapport, merely when they are 

related to a difference between two different angles of arrival, or when there is an 

undoubtedly implicit “zero reference.”  For example, relating to a full sequence of 360°, 

where there may be a rotation of a particular reflection in the time series of a sound 

decay.  This is not relevant in the case of an acoustic measurement unless a diffuseness 

estimation measurement (ψ ) is made to treat a room, which has dissimilar absorption 

coefficients ( α i ) and the sound energy is creating some rotation of the reflection patterns 

across the decay time. 

The procedure to obtain the weighted average of the standard deviation as described in 

the last part of section 3.2.3.3 was tested and it was found that the biggest standard 

deviation of a particular sample (σ ) had more weight in the average because when it was 

squared to obtain the variance ( σ
2 ) it grew exponentially, not linearly.  Therefore, the 

weighted average of standard deviation (σε ) was chosen over the mean of the standard 

deviation.  The correction of the small sample using the Student’s t-distribution increases 

a factor of 1.833 of the original calculated value of the weighted average of standard 

deviation.  The best repeatability case was found to be with the p-p probe, and is still a 

reasonable result below  1 5  of one degree.  According to section 6.1.2.5, the highest 

value reported is (
  
σε = 0.160 ,  σε%

± 0.956% ). Therefore, its repeatability is acceptable; 

even though the accuracy is suffering from some systematic and random errors.  

Depending on the position ( Pi ) and the ERB band, some of these errors are not tolerable. 
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8.1 Time domain method 

 Single reflection scenario 8.1.1 

This section describes the discussion of the results of the experiment introduced in section 

5.2.1 and the results described in chapter 6.  One of the extents found after performing 

such a comprehensive study of the direct sound and first reflection over 14 positions is 

the difficulty to explain the random errors and the systematic errors.  It could be said that 

it is frequency and spatially dependent and its accuracy strongly depends on the type of 

probe chosen.  In the quest for minimising errors, several techniques were tested; the 

repeatability was found not to be a random issue, as most of the positions showed 

uncertainties below 1 degree.  The noticeable outliers had been found in the far positions 

in both probes.  The p-p probe seems to have larger errors and larger uncertainties than 

the positions mentioned previously.  The reason is likely a combination of factors such as 

the ones mentioned below: 

It is important to note that the positions that are far from the source such as   P12 − P14 , tend 

to have smaller differences of time and its impulse response (IR) will show that early 

reflections and the direct sound are nearer each other than in the first positions   P1 − P10   

and the first reflection (refer to TOF results in Appendix B and Figure 5.9).  These close 

values on time of flight  TOF  made the analysis of the of the first reflection and the direct 

sound difficult because they tend to overlap and interfere with each other, and the 

accuracy of detection of the incoming sound is compromised with low signal-to-noise 

ratio ( SNR ) and time smearing on the impulse response ( IR ).  This may be the reason for 

poor results in these positions.  It seems that even with a poor directivity to capture the 

first reflection at positions near the source (  P1 − P10 ), it was possible to obtain better angle 

estimations than in the far positions from the source (e.g.   P11 − P14 ).  

The estimation of the equivalent rectangular bands (ERB) shows that the first band gives 

bad estimations because the band is interfering with the cut-off frequency of the studio 
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monitor Genelec 8030A, which is around 66 Hz, and also because the microphone 

sensitivity of the p-p probe at low frequencies is not reliable.  Therefore, from second 

band (  ERB2 ) up to the seventh band (  ERB7 ) (0.7 - 5 kHz) are consistent for detection of 

the first reflection.  Higher frequencies suffer from directivity deformation in both probes, 

consequently increasing the error of estimation. 

A sound wave front is usually planar by the time it reaches the listener’s ear because it 

has travelled a distance that makes its radius big enough to look more like a plane wave 

shape than a spherical curved shape.  However, if the source and the receiver are 

sufficiently near, the wave front will show a spherical shape and the spectral content of 

the wave will add emphasis to the lower frequencies over the high frequencies of the 

source.  This limit is about distances larger than one metre (Begault, 2000). 

Consequently, the far positions suffer from a lack of power on the high frequencies 

compared with the low frequencies. On the other hand, a monitor speaker has less 

efficiency radiating low frequencies because it needs a larger driver, a strong housing and 

magnet, as well as a powerful amplifier to deliver proper low frequency balance over the 

mid and high frequencies.  

Positions   P11 − P14  suffered from being the last ones measured after performing 

measurements for more than two of hours due to the long duration of recoding 10 

repetitions per position with 10 seconds duration per position.  Additionally, the way of 

measuring the p-p probe also created the first sets of positions from   P1  to P14  and then a 

second set of measurements were made with the 90 degree rotated p-p probe.  The way of 

measuring the positions created an incremental error that was larger in the last positions.  

The lack of precision in these measurements implies that in the future, the distances that 

are too far and need a combination of rulers to measure them could be made first in order 

to diminish the probability of making erroneous measurements. 
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8.2 Short-time Fourier method 

There are many of external factors, which can be detrimental to obtaining good readings 

of the estimation angles.  Firstly, if the extraction of the impulse response exhibits 

artifacts it will translate those anomalies into inaccuracies of the impulse response on the 

low and high frequencies (  ERB1,  and ERB11 - ERB14 ), where it tends to miscalculate the 

directions and the levels.  The accurate deconvolution of the impulse response ( IR ) is 

recommended to implement it in time domain ( TD ).  In the case of this thesis, it was not 

implemented in that way because the sample frequency used (first was 96 and later 192 

kHz) prohibited the process using a computer without enough memory resources and 

process capability.  The creation of the exponential sine swept signal (chirp) for the 

measurements did not implement the ramp in the Soundfield and the p-p probe code of 

deconvolution.  Unfortunately it only was implemented in code designed to be used by 

the Microflown probe, which was not reported in this thesis due to lack of data and time 

to include it.  In order to make better estimations of the impulse response, it needs to be 

implemented in future measurements.  In addition, it is worth to mention that the 

compensation for the low frequencies was also not implemented in the exponential sine 

swept signal.  It was discovered in the spectrogram of the exponential sine swept signal 

that it exhibited artifacts that happened at the very end of the signal, which may be the 

cause of the inaccuracies in high frequencies found both in p-p probe and Soundfield 

microphone cases.  Some comparison testing was done using the RME Fireface UFX 

sound card and the Motu 896HD, and this artefact was still audible in some of the 

samples.  Nevertheless, because this artifact occurred at a very high frequency almost at 

the end of the sweep, it did not adversely affect the measurements, which had a narrower 

bandwidth of about 11.250 kHz.  However, the lack of compensation of the low 

frequencies in the exponential sine sweep recommended by Farina (Farina, 2000) may 

have created many localisation errors at low frequencies, which can be attributed to the 

random behaviour found in the results, especially with the p-p probe.  

The results of using the use of circular statistics increased the error of angles of arrival in 

overall circular mean (θ ) and average of circular standard deviation ( σ o ) of first 
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reflection.  The effect is that the biggest error dominates over the smaller ones and the 

calculation returns larger uncertainties than using linear statistics as it was mistakenly 

reported at first. 

The batteries of the preamps used could be exhausted after 2 hours of measurements and 

by the time the last positions were measured, more than 2 hours had passed.  The effect 

found when the batteries were emptied was that the sound was distorted and the level of 

the signal was too low.  

The majority of the measurements show low variability with bad precision in some of the 

positions.  The cause of the systematic errors depends on additional external causes, 

which have influenced the results.  It is expected that the larger errors occur in the first 

reflection measurement using either intensity probe as the overall mean absolute 

percentage errors, and overall average of standard deviation of MAPE results, although 

the position of the outliers is not consistent in all the different methods applied.  Some 

trends tend to be monotonically increasing the error, while others have a minimum value 

around ERB located towards the middle (  ERB6 − ERB10 ).  

There is a general issue found with the Soundfield microphone measurements. The 

problem arises when the error of estimation of the direct sound is larger than the 

localisation Blur for the frontal side.  To minimise these errors it is necessary to have 

better correction filters customised for each microphone capsule of the Soundfield 

microphone unit.  Currently, the Soundfield company is not interested in improving the 

accuracy of this microphone to convert it into a measurement-grade instrument.  The 

device mentioned has been commercialised as a studio grade-recording microphone with 

applications for surround recording.  This may be an opportunity to develop the next 

generation of Soundfield microphones with measurement grade capsules or at least with 

smaller distances to overcome the high frequency limit, which tends to be below 5 

kHz19,20,21. 

                                                
19 http://www.euphonia.fr/pdf/DPA4.pdf [Online accessed on May 23th 2013] 
20 https://www.kickstarter.com/projects/1569945514/brahma-affordable-ambisonics-microphone [Online 
accessed on May 23th 2013] 
21 http://www.oktavausa.com/ProductsPages/Ambient4DMic.html [Online accessed on May 23th 2013] 
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The method of post-processing the data introduces many of potential errors.  First, the 

data is recorded with  DAW  software, which depends in several gains on the 4 channels.  

The third sound card used, the RME Fireface UFX sound card, is a good option to 

overcome the problem of how to calibrate the microphone gains in intermediate values of 

the gain. When the experiments were previously conducted with the Focusrite Saffire 26 

i/o and the Motu 896HD sound cards, it was not possible to use an intermediate gain on 

the preamps, only maximum or minimum.  The Motu 896HD sound card has more 

options than the Focusrite Saffire 26 i/o.  One of the desirable inputs for the laboratory 

equipment is to have at least 4 TRS or TS plug inputs.  Another desirable feature is to 

physically have three input gains such as microphone level (used in measurements 

because of variable gain with the analogue preamp), line-level (-10 dB) and Balanced 

level (+4dB).  Of course, it is a major problem to try to record good signals with the high 

mismatch that was found using the measurement-grade microphones and the Microflown 

probe.  This was the main reason that this research changed the sound card to the RME 

Fireface UFX, as this was the only way to acquire such data with confidence.  However, 

in the experience of using the 2 sets of Soundfield microphones, it is worth noting that the 

outputs of the Soundfield microphones were adequate to record with optimum levels to 

avoid excessive floor noise because of insufficient gain while recording or clipping 

because of excessive gain. 

The editing of the recorded data includes cut to length of the recorded data and its manual 

naming using the DAW software cannot be automated. This became a very time- 

consuming task due to the fact that 14 positions with 10 measurements of 4 channels give 

a total of 560 different high-resolution wav files that needed to be edited and named 

before using them in the post-processing phase in Matlab.  This data needed great care in 

order to be analysed without introducing misplaced data. 

The DAW software Logic Pro 9 records audio measurements as wav files @ 24 bits and 

192 kHz. However, Matlab 2011b can read audio files up to 32 bits, and the internal 

processing is performed with 32 bits, on single precision numbers and with 64 bits with 

double precision numbers.  The best way to improve the signal-to-noise-ratio ( SNR ) on 

the recording system is to use any DAW that can record at 32 bits native.  In this way, the 
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problem of acquiring the signals at low levels because of the impedance mismatch can be 

ameliorated.  At the end of the completed measurements used in this report, the plan was 

to change the DAW to Pro Tools 9 because of this feature and the easy way of editing 

data for preparation for post-processing.  Some preliminary recordings for using the 

Microflown probe were recorded in this configuration and with the RME Fireface UFX 

sound card.  For future measurements, another option is to acquire the sound recordings 

used to extract the impulse response directly into Matlab by using an application called 

Playrec from the author Robert Humphrey22.  The downside is that a custom sound card’s 

driver such as the ASIO or PortAudio or a National Instruments custom acquisition A/D 

card is needed.  One of the limitations found when using several applications together is 

that they were not to designed to work simultaneously and they need a comprehensive 

test to validate their compatibility.  Further research is needed to overcome these 

problems; the level of technology that is available during its realisation will always limit 

a given project. 

The next stage was the running and extraction of the impulse response.  Zero-padding 

was used to cut the length of the signals in order to make it easy to deconvolve using high 

sampling rates.  This choice created very long wav files and it was difficult to manage 

them in the Matlab post-processing.  The chirp length was chosen to be as long as 

possible (10 s) in order to have enough time to cover the lower frequency octaves.  

Within the constraints of the computer power assigned to the project, a compromise was 

made between the accuracy and the time it took to post-process it. 

The platform of post-processing was split between Excel and Matlab in order to perform 

the ordering of the matrices and data.  This introduced additional possible errors.  It was 

necessary to verify all the steps several times to be sure that the results were consistent.  

After checking these numerous steps, the conclusion is that an automated system should 

avoid using many cross platforms among the  DAW , Matlab and Excel.  Unfortunately, 

the measurement system developed here is not practical for the acousticians that are not 

familiar with the platforms used in this thesis and needs to be made offline.  

                                                
22 http://www.playrec.co.uk/compiling.php [Online accessed on May 13th 2013] 
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The Soundfield microphone delivers better results on the low frequencies (e.g. 

  ERB1 − ERB5 ) than in the high frequencies (e.g.   ERB11 − ERB14 ).  This is because the 

figure-of-eight patterns are not distorted, while at high frequencies the patterns show 

strong asymmetries, which are the cause of the systematic errors found.  

On the other hand, the p-p probe is not adequate at very low (e.g.   ERB1 ) and at very high 

frequencies (e.g.   ERB14 − ERB16 ). 

In some of the positions, there were minimum errors on both probes. It is worth noting 

that position   P6  showed the best-ranked error with both intensity probes. 

According to Blauert (Blauert, 1997b), the human localisation blur is between 1º and 2.5º.  

The results obtained showed an overall mean error of 2.971º for the p-p probe and 

15.895º for the Soundfied microphone ST350. These results mean that using the p-p probe 

is the best option, even though it is not practical in all cases.  By using this measurement 

system it is possible to achieve an angular resolution slightly larger than the human 

localisation blur within a frequency range from 20 Hz up to 10 kHz.  It is possible to 

improve the estimation of this value by the use of filters carefully customised for each 

microphone by adapting individual calibration.  This result contradicts the results that 

were reported by Günel (Günel et al., 2007), where the mean error for the Soundfield 

SPS422B found was 7º.  The difference is that the angles tested in this study did not cover 

360º, whereas Günel’s experiment did cover 360º with a step angle of 5º, which is the 

original request of this study.  Therefore, it is encouraging to fully validate these results at 

360º and to test the wavelet approach, which may improve the present results. 

 Measurement in small rooms  8.2.1 

The following section deals with the discussion of the experiment introduced in section 

5.5 and the results presented in Chapter 7.  

The direct sound is clearly detected in both Figure 7.1 and Figure 7.2, which 

corresponds with the white colour on the diffuse estimate values (ψ ) in the diffuse 
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estimate graph.  It can be seen that the mean direction estimate for the direct sound on 

each frequency band is coherent in all the frequency bandwidth (red rectangles) and tends 

to deviate slightly at frequencies above 8 kHz because of the limitation of the correction 

filters of the Soundfield microphone.  The model is capable of detecting very few full 

bandwidth reflections (green rectangles) in Figure 7.2 and depending on the orientation 

of the source, around 13 ms it can sense only one strong coherent reflection.  Because of 

this limitation, in some respects, it is preferable to use arbitrarily chosen time windows to 

detect reflections as Ohta et al. had implemented before (Ohta et al., 2008, Yano et al., 

2008).  The reason for the appearance of some blur information which does not convey 

any reflection information may be using of overlapping windows with 50 %, which may 

create some type of redundant information.  This choice creates a double average because 

each window intersects common information and may create some ambiguous direction 

estimates.  The choice of a stepper window rather than the long Hann window is 

compromised with the distortion, which may be found in its spectrum. 

On the other hand, the practical application of Fourier transform by the use of the 

Matlab’s fft creates a scaling problem which is partially solved by normalizing its 

instantaneous complex value dividing it by the length of the signal.  However, this 

approach sometimes needs a careful review before combining the orthogonal components 

of vectors, which may underestimate or overestimate spectral peaks.  One problem found 

was that increasing the sampling resolution also creates the need to raise the length of the 

time window in order to maintain the same frequency resolution.  This option is not very 

useful for the measurement of short decay times, on the grounds that a large number of 

information is irrelevant, since there is mainly background noise after and before the 

sound decay.  The random behaviour of a signal may be filtered by subsequent averaging, 

but zero padding was found to be a complex procedure when the magnitudes need to be 

converted to dB, and also tends to deliver a wrong impression of the spectrum. 

It is interesting to note that this type of directional analysis is not completely valid for 

measurements made with only one source-receiver position, because its response varies 

considerably with different angles and different source positions.  One possible reason is 

the fact that in small rooms, only statistical measurements are meaningful because of the 
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high variability of results across changes in spatial, temporal and spectral parameters 

(Geddes and Lee, 2003b). 

8.3 Summary 

Several causes of inaccuracies and a high level of systematic and random errors have 

been addressed.  In the case of the laboratory experiments specifically, a very 

comprehensive analysis is obtained in the single reflection scenario.  In the case of the 

measurements of small rooms, a more practical experiment was presented.  The level of 

detailed information found in the laboratory reveals that the random errors are not easy to 

avoid even with refinements on the method of acquiring data and the post-processing of 

the information.  The results found in this study help to define a workable frequency 

range for each of the intensity probes from 66 Hz up to 8 kHz using both probes.   
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Chapter 9 : Conclusions and Further work 

9.1 Conclusions 

Two methods have been presented to characterise the time of arrival ( TOA ), strength and 

direction of arrival ( DOA) of early reflections in small rooms: a) Time domain ( TD ) and 

b) Short-time Fourier transform ( STFT ) method based on the spatial impulse response 

rendering ( SIRR ) method proposed by Merimaa (Merimaa, 2006).  The reason for using 

both is because the time domain method ( TD ) and the frequency domain method ( STFT

) complement each other in their deficiencies. 

The estimation of the direction of the arrival of early reflections using the STFT approach 

in time-frequency domain appears to be a good technique with high accuracy and 

repeatability in comparison with the time domain ( TD ) analysis.  However, both analyses 

are complementary.  The inclusion of equivalent rectangular band bank ( ERB ) filter 

model helps bridge the gap between the objective measures and the subjective measures. 

The measurement method applied to two different intensity probes still found inaccurate 

estimations on positions   P11 − P14 .  There are several possible reasons for the incorrect 

estimates in the positions, which are far from the source.  The systematic one is caused by 

the increasing interference between the direct sound and first reflection, as the time of 

flight of both signals is closer.  A careful study of shallow reflections is proposed by 

using a single point sound source to eliminate the effect of the two drivers on the sound 

source. 

In the case of the Soundfield microphone as an affordable 3-D intensity probe, it is 

possible to be used in practical measurements in small rooms.  However, the accuracy of 

this device is not for high resolution, as angular errors are too high to be useful to be 

trusted for remedial room acoustic treatment.  The physical limitation of the measuring 

system is the resolution of the Soundfield microphone model SP 422, especially in the 
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forward and backward directions where the human localisation blur angle is more 

accurate.  The future use of the Microflown probe may improve the measurement results, 

and better prepare the impulse response to create more accurate auralisation. 

Using these methods, two variants have been compared: a) instantaneous intensity (  

iinst ), 

and b) complex instantaneous intensity (
  

icomplex ). 

The accuracy of the angle of the arrival of direct sound (
 
θsi

) and first reflection  (
 
θmi

) 

case had been validated using two measurement probes:  

a) The p-p intensity probe with an overall mean error εε = 2.971º ±0.414º, which in 

terms of percentage is 6.866% ±0.251%.  This result was found using the 

instantaneous intensity 
  

Ia  average on each position method across the 16 ERB 

bands. 

b) The Soundfield microphone model ST350, which has an overall mean error εε  

=15.895º ±1.248º which in terms of percentage is 24.764% ±1.366%.  This result 

was found using the complex instantaneous intensity (
  

icomplex ) method in Time 

Domain ( TD ). 

The rigorous method of treating the angles with circular statistics showed a slight increase 

in the best case on accuracy.  The value of 2.971º seems slightly high; nevertheless, it is 

worth noting that the outliers found in the first and last ERBs were not discharged in light 

of showing the deficiencies of this measurement method.  If they were discharged, a very 

accurate value could be reported. 

The mean absolute percentage error ( MAPE ) is a practical way of showing the errors, 

which can be compared easily against the different probes as a positive percentage.  

However, in academic literature, the accuracy of an angular measurement system still 

needs to be reported as an error in terms of angle.  Therefore, a dual error system and the 

circular statistics are needed, while linear statistics method is necessary for the MAPE 

calculations. 
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These results are not consistent regarding which method applied yields better results for 

measuring the accuracy of the measurement system.  This may be caused by the 

difference in the time consumed to acquire a 3-D impulse response.  The probe that 

acquires the 3-D data in one step is more likely to have less random errors than the one 

that needs to rotate the probe to make another set of measurements in order to obtain the 

complete 3-D impulse response.  This is disadvantage, as it forces a complete analysis on 

each measurement in order to decide which of the techniques delivers better results. 

If the real values of the measurement are not known, then it is important to choose the p-p 

probe and stick with the lowest uncertainty the device provides.  It may be possible to use 

another intensity probe.  The important point is to be able to know the uncertainty of the 

device prior to using it, otherwise the estimation of the incoming reflections may be 

biased, and the exact amount it is biased will never be known. 

One of the most sensitive parts of the measurement system is the deconvolution of the 

impulse response algorithm.  The important points are that time domain convolution with 

the inverse of the sine sweep signal is the best solution in terms of not using any fast 

Fourier transform and inverse Fourier transform in the process, which may introduce 

rounding errors by the complex numbers involved in the algorithm.  In this thesis it was 

not possible to implement this algorithm due to the long signals acquired with a high 

sampling rate.  It was a compromise between using more detail for the detection of 

reflections and more accuracy on the extraction of the impulse response at the expense of 

losing time resolution.  Another limitation was to ensure that the beginning and the end of 

the signal are crossing zero point in order to avoid spectral aliasing when the fast Fourier 

transform is applied.  If this is implemented as a linear time ramp, it creates a temporal 

linear gain in the impulse response ( IR ).  If the sine sweep signal is created with visual 

inspection cutting the non-zero crossing at the beginning and end of the sine swept signal, 

it becomes not practical, although it ensures the quality of the deconvolution process.  

The pre-emphasis on low frequencies was not implemented in the exponential sine sweep. 

This can affect the low signal-to-noise ratio, which could bias the angles of arrival at low 

frequencies, especially in the far positions (  P11 − P14 ). 
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The use of DAW recording equipment combined with the high impedance of the acoustic 

measurement-grade p-p probe, is problematic.  This is due to the fact that consumer 

recording equipment and the low gain of the internal preamps of a measurement-grade 

microphone imposes a high gain in the preamps of the audio interface, and multiple 

channels with similar calibrated values.  The compromise is using a high quality 

analogue-to-digital conversion and a high sample rate, which is not common in 

measurement grade-equipment such as the Pulse system from Brüel and Kjaer. 

The use of the dampening vibration devices in the microphone stands used for the source 

and the receiver is highly recommended in order to minimize the random errors found in 

the low and high frequencies in the directional data. It helped to achieve the results 

reported in this thesis. 

The overall mean error (εε ) was estimated using the ERB bands from the STFT method.  

Both time-domain method ( TD ) and short-time Fourier transform method ( STFT ) are 

complementary. 

In the case of this study, a sound source using two drivers (Genelec 8030A studio 

speaker) was selected.  This is typically the case encountered in critical listening rooms, 

where the source is usually a multi-driver monitor speaker.  If better results need to be 

obtained, it is recommended to use of an omni-directional source across the usable 

frequency range such as the OmniSource type 4295 from Brüel and Kjaer23, which is 

based on by design by Pollack (Polack, 1996).  

9.2 Further work 

• To perform similar angular accuracy measurements using the Microflown USP p-

u intensity probe to validate the resolution of the probe for detection of sound 

reflections.  The author expects that this will improve the results obtained with the 

p-p intensity probe so far. 

                                                
23 http://www.bksv.com/doc/bp1689.pdf [Online accessed on May 25th 2013] 
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• Further investigation of the proposed use of the quantity called complex 

instantaneous intensity (
  

Icomplex ) inside the short-time Fourier transform method (

 STFT ) is needed. 

• To characterise and use an omni-directional source based on a compressor driver 

and a tube terminated end to improve the accuracy of detection of reflections.  If 

possible, use the Brüel and Kjaer OmniSource type 4295. 

• To study simultaneous arrival of reflections in real rooms using the present 

technique and combining dual array to resolve ambiguities, possibly using two 

intensity probes or two Soundfield type microphones and a triangulation technique 

based on the work of Dimoulas (Dimoulas et al., 2007) and the advanced 

reflection techniques proposed by Tervo (Tervo, 2012). 

• Research on the link of perception of early reflections with objective 

measurements that can rank acoustic quality of small rooms.  Develop an 

objective measure for acoustic quality based on directionality of reflected energy, 

and design perceptual experiments to validate it according to the current 

perceptual research in spatial audio. 

• Study the case of multiple reflections in 3-D IR using laboratory and real rooms. 

• Design an automation of the 3-D IR measurement system performed with 

mechanical devices to increase the accuracy and reliability of the measurement 

system. 

 Other measurements 9.2.1 

The measurements planed were not completely performed with the Microflown probe.  

They need to be validated and compared under the same conditions with the p-p intensity 

probe and the Soundfield microphone model ST 350, in order to report which device 

exhibits the best accuracy in the market.  This is still an open question for research.  The 

method developed by the author is suitable for comparison of different intensity probes. 
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The acoustic camera may be tested in similar cases to obtain its accuracy on detection of 

reflected energy in controlled environments.  The transient sound phenomenon has been 

less investigated than the steady state noise sources. 

The design and construction of a couple of custom B-Format microphones, each of them 

comprised of 4 Tascam cardiod 5 mm diameter capsules, may be beneficial in order to 

minimize the distance between the capsules.  The creation of an accurate tetrahedral 

enclosure made by CNC permits a good quality assembly.  The pre-amplification of the 

signals may be done with a pair of Tascam DR100, which sum four inputs and once its 

accuracy is validated in the semi-anechoic chamber, it is possible to measure more 

complex sound fields.  This project may help to improve the detection of simultaneous 

arrivals, but at an expense of more channels to analyse following the Dimoulas approach 

(Dimoulas et al., 2007). 

The recent introduction to the market of the Soundbrush probe made by collaboration of 

G.R.A.S. and LMS companies may be tested on its performance on cases such as 

transient signals where there is sound decay.  Some research has been done with intensity 

probes using a tetrahedral microphone array embedded in a spherical body, although at 

this time there is no publication on its accuracy on detection of early reflections, only on 

detection of a broadband source with limitations of errors about 10º at 4 kHz (Janssens et 

al., 2013).  However, it seems to be a good option since the spherical enclosure helps to 

obtain a uniform response on all directions and the diffraction effect of a sphere can be 

compensated. 

It may be interesting to test the performance of a six-microphone intensity probe such as 

the Type 50AI from G.R.A.S.24, which is the most expensive solution, and additionally 

uses two additional channels, ensuring high accuracy.  According to the accuracy results 

measured with the one-dimensional p-p intensity probe; it may be the most accurate 

measuring system for detection of early reflections in enclosures. 

                                                
24  http://www.gras.dk/media/docs/files/items/p/d/pd_50vi_ver_06_08_02.pdf  
[Accessed on Oct 21st 2013]. 
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 Proposal of an objective metric 9.2.2 

By using the current perceptual knowledge of the precedence effect and image-shift, it is 

possible to predict the perception of detrimental and desirable reflections once they are 

extracted from a three-dimensional impulse response (  3-D IR ).  The main idea is to 

compare the measurement of a three-dimensional hedgehog distribution to a set of given 

ideal room impulse responses ( IR ), with desirable preferences of temporal and 

directional reflections in order to assess the quality of a given space at a given coordinate.  

This work is a multi-dimensional analysis because it requires mixing different 

independent room parameters such as room geometry, acoustic absorption of the 

boundaries and fittings in the room.  In addition, it is needed to determine multiple 

listening positions in each enclosure in order to fully characterise them. 

 Short-time Fourier transform ( STFT ) based 9.2.3 

The use of two-dimensional functions such as short-time Fourier transform ( STFT ) may 

give information for temporal and spectral behaviour related to the quality of the 

reflections.  This is exploiting the strong correlation between a successful objective 

measure and the perception of a desirable acoustic quality.  These experiments will use 

the tool developed in the present thesis and require an extensive number of measured 

spaces to make a preference table. 

 Use diffuseness estimate to stop early reflection analysis 9.2.4 

The mixing time is a parameter that can help to determine the boundaries of the early 

reflections and the late reverberation.  Research of proper parameters to map diffuseness 

estimate (ψ ) may find a use for determining the mixing time ( tmix ). 
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Appendix A: Matlab scripts 

There are several scripts used for creating the results of this report. 

For the p-p intensity probe the script used to analyse the signals is named: 

Extract_winMLS_signals_Corrected69LOG_BFormat_192kHz.m 

In the case of the Soundfield microphone model ST350 the script used to analyse the 

signals is named: 

Extract_winMLS_signals_Corrected70LOG_BFormat.m 

Each script is too long to attach it to the body of the report, so it was included in the DVD 

ROM in order to have the complete set of data to analyse and the scripts used. 

In the case of post-processing the signals to obtain the desired statistics, there are several 

variants of scripts used depending on the case studied: 

Postprocessing_reflections_ERBs_odds_Bformat.m 

Postprocessing_reflections_ERBs_odds_Bformat_New.m 

Postprocessing_reflections_ERBs_odds_p_p_probe.m 

Postprocessing_reflections_ERBs_odds_p_p_probe_New.m 

Postprocessing_reflections_ERBs_odds.m 

Postprocessing_reflections_TD_odds_BFormat_Complex_intensity_N.m 

Postprocessing_reflections_TD_odds_BFormat_Inst_int_Avera.m 

Postprocessing_reflections_TD_odds_BFormat_Inst_int_Avera_N.m 

Postprocessing_reflections_TD_odds_BFormat_Inst_int_Avera_NC.m 

Postprocessing_reflections_TD_odds_BFormat_Inst_int_Avera_NCC.m 

Postprocessing_reflections_TD_odds_BFormat_inst_intensity.m 
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Postprocessing_reflections_TD_odds_BFormat_inst_intensity_N.m 

Postprocessing_reflections_TD_odds_p_p_probe_Complex_intensity.m 

Postprocessing_reflections_TD_odds_p_p_probe_Complex_intensity_N.m 

Postprocessing_reflections_TD_odds_p_p_probe_inst_intensity.m 

Postprocessing_reflections_TD_odds_p_p_probe_intst_Avera.m 

Postprocessing_reflections_TD_odds_p_p_probe_intst_Avera_N.m 

Postprocessing_reflections_Time_Domain_odds_p_p_probe.m 

Postprocessing_reflections_TD_odds_p_p_probe_intst_Avera_rel_error.m 
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Appendix B: Calculation method of the single reflection scenario 

This is calculation is performed in the Matlab script named  

a) Extract_winMLS_signals_Corrected69LOG_BFormat_192kHz.m  

b) Extract_winMLS_signals_Corrected70LOG_BFormat.m 

The angle of arrival of first reflection (
 
θmi

)  is selected arbitrarily by the angular step used 

and its calculation was made with the geometry presented in Figure 5.8. 

The calculation of the angle of arrival of the first reflection (
 
θmi

) using equation (4.1) in 

page 63 yields the following numbers: 

theta_m1  = -75.067º 

theta_m2  = -74.067º 

theta_m3  = -73.067º 

theta_m4  = -72.067º 

theta_m5  = -71.067º 

theta_m6  = -70.067º 

theta_m7  = -68.067º 

theta_m8  = -66.067º 

theta_m9  = -64.067º 

theta_m10 = -62.067º 

theta_m11 = -60.067º 

theta_m12 = -55.067º 
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theta_m13 = -50.067º 

theta_m14  = -45.067º 

The calculated coordinates in distances in equation (4.2) in page 63 gives the following 

data in meters: 

 x_1  = 0.707 m 

x_2  = 0.758 m 

x_3  = 0.807 m 

x_4  = 0.858 m 

x_5  = 0.909 m 

x_6  = 0.961 m 

x_7  = 1.068 m 

x_8  = 1.177 m 

x_9  = 1.289 m 

x_10 = 1.406 m 

x_11 = 1.526 m 

x_12 = 1.852 m 

x_13 = 2.219 m 

x_14 = 2.645 m 

The increments of distance  Δxi  along x-axis for the generation of the step angles are 

calculated with equation (4.3) in page 64: 

delta_x_2  = 0.0498 m 

delta_x_3  = 0.0503 m 
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delta_x_4  = 0.0508 m 

delta_x_5  = 0.0514 m 

delta_x_6  = 0.0520 m 

delta_x_7  = 0.1061 m 

delta_x_8  = 0.1091 m 

delta_x_9  = 0.1126 m 

delta_x_10 = 0.1164 m 

delta_x_11 = 0.1208 m 

delta_x_12 = 0.3252 m 

delta_x_13 = 0.3675 m 

delta_x_14 = 0.4256 m 

The computation of the angles of arrival of the direct sound (
 
θsi

) use the x-axis coordinate 

values by using the equation (4.4) in page 64: 

theta_s_1  = 45.000º 

theta_s_2  = 43.052º 

theta_s_3  = 41.218º 

theta_s_4  = 39.491º 

theta_s_5  = 37.865º 

theta_s_6  = 36.331º 

theta_s_7  = 33.517º 

theta_s_8  = 31.002º 
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theta_s_9  = 28.742º 

theta_s_10 = 26.702º 

theta_s_11 = 24.853º 

theta_s_12 = 20.898º 

theta_s_13 = 17.671º 

theta_s_14 = 14.966º 

The distance travelled of the direct sound from the source to the receiver (
 
ridirect

) is 

calculated with equation (4.5) in page 64. 

The time delay ( ti ) of the  ith  direct sound is calculated using equation (4.6) in page 65, 

applying it for the 14 positions it results in: 

Time_delay_direct_sound_1  = 2.937 ms 

Time_delay_direct_sound_2  = 3.043 ms 

Time_delay_direct_sound_3  = 3.152 ms 

Time_delay_direct_sound_4  = 3.266 ms 

Time_delay_direct_sound_5  = 3.384 ms 

Time_delay_direct_sound_6  = 3.506 ms 

Time_delay_direct_sound_7  = 3.761 ms 

Time_delay_direct_sound_8  = 4.033 ms 

Time_delay_direct_sound_9  = 4.319 ms 

Time_delay_direct_sound_10 = 4.622 ms 

Time_delay_direct_sound_11 = 4.942 ms 
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Time_delay_direct_sound_12 = 5.823 ms 

Time_delay_direct_sound_13 = 6.842 ms 

Time_delay_direct_sound_14 = 8.043 ms 

The time difference also known as time of flight ( TOF ) from the first reflection to the 

direct sound is calculated as the measure to assess the reliability of the impulse responses 

using equation (4.7) and its expanded version (4.8) in page 65.  The time delay calculated 

in milliseconds yield the following results: 

difference_direct_first_reflection_1  = 5.123 ms 

difference_direct_first_reflection_2  = 5.057 ms 

difference_direct_first_reflection_3  = 4.989 ms 

difference_direct_first_reflection_4  = 4.920 ms 

difference_direct_first_reflection_5  = 4.850 ms 

difference_direct_first_reflection_6  = 4.779 ms 

difference_direct_first_reflection_7  = 4.634 ms 

difference_direct_first_reflection_8  = 4.488 ms 

difference_direct_first_reflection_9  = 4.341 ms 

difference_direct_first_reflection_10 = 4.193 ms 

difference_direct_first_reflection_11 = 4.045 ms 

difference_direct_first_reflection_12 = 3.677 ms 

difference_direct_first_reflection_13 = 3.314 ms 

difference_direct_first_reflection_14 = 2.958 ms 

The difference of adjacent position’s time delay ( Δti→i+n ) is calculated using equation 

(4.9) in page 66: 
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difference_of_Time_delay_1_vs_2   = 0.066 ms 

difference_of_Time_delay_2_vs_3   = 0.068 ms 

difference_of_Time_delay_3_vs_4   = 0.069 ms 

difference_of_Time_delay_4_vs_5   = 0.070 ms 

difference_of_Time_delay_5_vs_6   = 0.071 ms 

difference_of_Time_delay_6_vs_7   = 0.144 ms 

difference_of_Time_delay_7_vs_8   = 0.146 ms 

difference_of_Time_delay_8_vs_9   = 0.147 ms 

difference_of_Time_delay_9_vs_10  = 0.1479 ms 

difference_of_Time_delay_10_vs_11 = 0.148 ms 

difference_of_Time_delay_11_vs_12 = 0.368 ms 

difference_of_Time_delay_12_vs_13 = 0.363 ms 

difference_of_Time_delay_13_vs_14 = 0.356 ms 
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