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This paper describes a numerical method for simulating far-field scattering from small regions of

inhomogeneous temperature fluctuations. Such scattering is of interest since it is the mechanism by

which acoustic wind velocity profiling devices (Doppler SODAR) receive backscatter. The method

may therefore be used to better understand the scattering mechanisms in operation and may

eventually provide a numerical test-bed for developing improved SODAR signals and post-processing

algorithms. The method combines an analytical incident sound model with a k-space model of the

scattered sound close to the inhomogeneous region and a near-to-far-field transform to obtain far-field

scattering patterns. Results from two test case atmospheres are presented: one with periodic temperature

fluctuations with height and one with stochastic temperature fluctuations given by the Kolmogorov

spectrum. Good agreement is seen with theoretically predicted far-field scattering and the impli-

cations for multi-frequency SODAR design are discussed. VC 2014 Acoustical Society of America
[http://dx.doi.org/10.1121/1.4835955]
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I. INTRODUCTION

Sound Detection and Ranging (SODAR) devices mea-

sure the backscattering of sound pulses transmitted into the

lower atmosphere, allowing remote sensing of a variety of

data including inversion layers and vertical profiling, wind

speed, wind direction, turbulence quantities and stability

classes.1 Unlike direct measurement techniques (such as

mast anemometers), they are quick to deploy and provide

continuous data with height; hence, they find application in

atmospheric research, pollution monitoring, and wind-

energy surveying.

In profiling the lower atmosphere using SODAR, one

may encounter difficulties with range and velocity resolution

as well as signal to noise ratio problems. To improve the ac-

curacy of these parameters, new signals and analysis meth-

ods need to be evaluated. This is difficult to achieve by

experimentation, however, since the “true” atmospheric data

required for comparison is not available and must be

acquired either from similar instruments or other devices

with their own limitations. Thus, there is a requirement for a

SODAR simulator to inform on SODAR performance char-

acteristics over a range of atmospheric conditions and this

paper presents some initial steps toward that objective. In

addition, it studies whether the process causing the backscat-

ter is compatible with the matched-filter post-processing

required for multi-frequency “pulse compression” SODAR

signals.2,3 These have been proposed to overcome the usual

tradeoff between transmitted power and height resolution by

transmitting multiple pulses of different frequencies.

Atmospheric scattering from acoustic pulses is strongest

where the spacing of the scattering structures is related to in-

teger multiples of half a wavelength; the mechanism in

operation here is Bragg scattering, though it has also been

called “Acoustic Iridescence” in other applications.4

Previous models of wind profilers have not simulated the

scattering process directly but have been based on statistical

models of the effective cross-section of sound scattering in

the atmosphere,1,5–7 ensemble average spectra of backscat-

tered sound,8 or frequency modulation of a pure tone by a

simulated velocity profile.9 In contrast, numerical algorithms

such at Finite-Difference-Time-Domain (FDTD) can directly

model the scattering of these transient acoustic pulses by a

specific temperature and velocity distribution.10–12 Given

however that SODARs generally operate in the frequency

range 1000–5000 Hz and generally have a range of 100 m

upward, FDTD simulation of the entire scattering volume in

three dimensions is unfortunately not feasible with currently

available computing power.

The classical theory studies the scattering from a region

of turbulence within an otherwise homogeneous atmosphere

(for example, see Ref. 7, Sec. 7.1.1). The distance from the

scattering volume to the sound source and receivers is

assumed to be large with respect to the characteristic size of

the volume, so the incident sound wave is approximately a

plane wave and a far-field approximation may also be

applied to the scattered sound at the receivers. Cheinet

et al.13 recently studied this scenario numerically in two

dimensions (2D) using FDTD. Good agreement with the

classical theory was seen for large scattering angles and the

discrepancies at small scattering angles could be explained

by approximations introduced in the classical theory.

In this paper, a similar numerical study is conducted in

three dimensions (3D), but requires a hybrid approach due to

the significantly increased storage and computation require-

ments that 3D presents. In particular, it was possible for the

authors of Ref. 13 to model in 2D (using a cluster) a domain

large enough that the receivers could be placed in the

far-field relative to the scattering volume and the far-field
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scattering calculated directly. In contrast, the algorithm

reported herein was both in 3D and designed to run on a sin-

gle workstation, so the volume modeled using FDTD had to

be restricted to be only slightly larger than the turbulent

region. This meant far-field pressure could not be estimated

directly from the grid data and instead a Near-To-Far-Field

(NTFF) transform14 was applied to convert the data at the

edge of the grid into far-field pressure. Since the NTFF trans-

form should operate only on the scattered sound, it was also

necessary to separate the incident and scattered fields.

Separate modeling of incident and scattered sound waves is

not uncommon in acoustic and electromagnetic simulation

of scattering from impenetrable objects15 (see “scattered

field” formulation Sec. 5.10), but its application to scattering

by a region of inhomogeneous refractive index is believed to

be novel.

The structure of the complete algorithm is depicted in

Fig. 1, showing its three parts (which are spatially coincident

but depicted separately for clarity). On the left is the incident

sound model; this is stated analytically and propagates

through V unchanged. In the middle is the scattered sound

model in V; this provides a correction such that the total

sound respects the inhomogeneous refractive index of V.

Finally, on the right is the far-field scattered sound model,

computed using the NTFF transform over a surface which is

within the FDTD modeling domain but which also entirely

encloses V. Compared to a total-field model of the entire

atmosphere, this approach has the benefits of reduced com-

putational cost, since it avoids using an expensive volumetric

method to model the homogeneous part of the atmosphere,

and better use of floating point precision, since the incident

and scattered sound waves (which typically differ by many

orders of magnitude) are computed separately so “subtraction

error” will not occur.

The numerical method is described in detail in Sec. II

and the results of the numerical simulations are presented in

Sec. III. Sec. IV summarizes the findings of the paper, dis-

cusses the scope of the model and identifies future directions.

II. NUMERICAL METHOD

Consider the problem of a scattering volume V with an

inhomogeneous temperature profile T rð Þ, where r is a vector

representing position in 3D Cartesian space, within an other-

wise homogenous atmosphere with temperature T0, density

q0, and sound speed c0. Density and sound speed within V
may be found by q rð Þ ¼ q0T0=T rð Þ and c rð Þ ¼ c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T rð Þ=T0

p
,

respectively, on the assumption that the ambient pressure is

constant and the air is dry and obeys the ideal-gas law. It is

assumed that the medium is stationary except for the small

perturbations due to acoustic particle velocity (i.e., no wind or

medium velocity due to turbulence).

An incident sound wave, which satisfies the wave equa-

tion with q0 and c0, propagates upward through the homoge-

neous atmosphere. As it impinges on V, the variations in

density and sound speed cause changes in how the sound

wave propagates, modifying its shape. Figure 2 illustrates an

exaggerated case of this where the temperature in V (area

within dotted circle) is significantly lower than T0, causing

the sound wave to slow down. Rather than modify the

FIG. 1. Diagram illustrating the solution process of the incident plus scattered model. The incident sound is defined analytically. The scattered sound is mod-

eled by a k-space scheme close to the inhomogeneous region and by a boundary integral equation further away.
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incident sound wave [Fig. 2(a)], the algorithm instead

introduces a scattered sound wave [Fig. 2(b)] such that the

sum of these gives a total sound wave [Fig. 2(c)], which

satisfies the wave equation with q rð Þ and c rð Þ. This

includes cancellation of the incident and scattered wave-

fronts immediately above the cold region such that

“slowing” of the total wave can be observed. Ultimately, it

is desirable to know the directivity with which this scat-

tered sound wave propagates into the far-field after it

leaves V; this is calculated using a boundary integral over

a surface enclosing V.

A. Incident sound model

The homogeneous incident sound wave is chosen to be

a plane wave with its propagation direction described by the

unit vector k̂i and time variation by the function f sð Þ. Its

pressure pi and particle velocity ui are given by

pi r; tð Þ ¼ f t� k̂i � r=c0

� �
; (1)

ui r; tð Þ ¼ k̂ipi r; tð Þ=q0c0: (2)

These satisfy the first-order linearized equations for a homo-

geneous medium

q0

@ui

@t
¼ �rpi; (3)

@pi

@t
¼ �q0c2

0r � ui: (4)

B. Scattered sound model

The scattered sound wave has pressure ps and particle

velocity us. Below are the first order linearized equations for

an inhomogeneous medium [e.g., Ref. 13 Eq. (1) and Eq.

(2), omitting source and medium velocity terms], which

apply to the total pressure pt ¼ pi þ ps and total particle ve-

locity ut ¼ ui þ us inside V,

q rð Þ @ut

@t
¼ �rpt; (5)

@pt

@t
¼ �q rð Þc2 rð Þr � ut: (6)

These are split into the incident and scattered parts

q rð Þ @ui

@t
þ @us

@t

� �
¼ � rpi þrpsð Þ; (7)

@pi

@t
þ @ps

@t
¼ �q rð Þc2 rð Þ r � ui þr � usð Þ: (8)

Subtracting Eq. (3) from Eq. (7) and Eq. (4) from Eq. (8)

gives the equations to be modeled numerically

q rð Þ @us

@t
¼ �rps þ q0 � q rð Þð Þ @ui

@t
; (9)

@ps

@t
¼ �q rð Þc2 rð Þr � us þ q0c2

0 � q rð Þc2 rð Þ
� �

r � ui

¼ �q0c2
0r � us: (10)

It should be noted that ps and us include multiple scattering

as well as compensation for the first-order scattering that pi

and ui should experience due to q rð Þ and c rð Þ; Eq. (9) and

Eq. (10) are exact results. The simplification in the second

line of Eq. (10) is possible because q rð Þc2 rð Þ ¼ q0c2
0 when

only temperature fluctuations are present, hence the incident

term equates to zero and may be omitted. From the perspec-

tive of the scattered sound model the term @ui=@t in Eq. (9)

is like a distributed source, passing sound energy from the

incident sound model to the scattered sound model such that

the total sound (sum of incident and scattered) satisfies the

inhomogeneous medium properties in V.

C. k-space algorithm

For an incident plus scattered sound model to operate

correctly, it is crucial that the speed of wave propagation is

identical in both models; if not, then sound energy being

transferred from the incident to scattered model in the cur-

rent time-step will be misaligned with scattering from previ-

ous time-steps. This is automatically assured in typical

“scattered field” FDTD formulations, since a FDTD scheme

is also used for the incident sound. However, further consid-

eration is required here because the incident sound wave is

stated analytically. Standard FDTD algorithms suffer from

the well reported issue of numerical dispersion (e.g., Ref. 15,

Chap. 4), meaning the speed of wave propagation is direc-

tion and frequency dependent, so they are unsuitable for this

application. Here instead the scattered field in the homoge-

neous volume will be evaluated using a k-space variant of

the FDTD method.16 This is closely related to the Pseudo-

Spectral-Time-Domain (PSTD)17 method and uses a spatial

FIG. 2. (Color online) Example of the

incident plus scattering model of a cold

temperature region (inside the dashed

circle) within a uniform temperature

medium. Arrows indicate wave propa-

gation direction and color scale is iden-

tical across all three subplots. (a)

incident pressure; (b) scattered pressure;

(c) total pressure (incidentþ scattered).
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Fourier series to interpolate the grid data at each time-step,

allowing the spatial derivatives to be found by Fast Fourier

Transform (FFT) using fewer grid points per wavelength

than would be required by a finite-difference scheme of simi-

lar precision. Crucially for the application herein, numerical

dispersion effects are compensated for in the k-space spatial

operators (see Ref. 16, Sec. II), so the resulting algorithm is

free of numerical dispersion.

The algorithm used here has been adapted from Tabei

et al.16 and the k-wave toolbox18 with the following primary

differences: inclusion of the extra incident sound terms above,

absence of relaxation absorption, and the use of collocated

(non-staggered) grids. Use of collocated grids is known to cre-

ate spatial Gibbs effects for sudden changes in medium proper-

ties, but those are not present in the atmospheric temperature

profiles under consideration so the algorithm can benefit from

a slightly simpler NTFF implementation and the potential to

support velocity fluctuations in future (these involve spatial

tensor derivatives which are complicated to implement on

staggered grids). The pressure and particle velocity grids are

however still staggered in time. For a collocated grid scheme

the k-space differential operators, including dispersion correc-

tion, are given by the following concatenation of operators,

where F represents a multi-dimensional FFT and F�1 its

inverse. Here Dt is the time-step duration, k is the spatial wave

number in the k-domain (for more details see Ref. 16) and kx

is its component in the x direction. Note that for brevity only

the x direction operators are given in what follows, but equiva-

lent statements exist for y and z,

@

@x
…f g � F�1 ikxsinc c0Dtk=2ð ÞF …f g

n o
: (11)

The collocated grid algorithm was verified against the stag-

gered algorithm implemented in the k-wave toolbox by

marching on from initial conditions, and the error between

the two algorithms was found to be less than �50 dB com-

pared to the excited pressure in the medium.

The modeling region is surrounded by a Perfectly

Matched Layer (PML). This is particularly critical since it

prevents both reflections from the edge of the domain and

wrap-around due to the FFT. It is also implemented accord-

ing to Ref. 16 but with the significant simplification that

relaxation absorption is absent, hence the derivation is

repeated here. In order to implement the PML, the scattered

pressure must be split into directional components

ps ¼ px
s þ py

s þ pz
s. This decomposes Eq. (9) and Eq. (10)

into a set of coupled (via ps) 1D equations in which PMLs

may be applied by replacing each time differential with a

first-order differential equation involving a dimensionless

absorption parameter ax,

@ux
s

@t
r; tð Þ !

@ux
s

@t
r; tð Þ þ ax rð Þux

s r; tð Þ;

@px
s

@t
r; tð Þ !

@px
s

@t
r; tð Þ þ ax rð Þpx

s : (12)

Yuan et al.19 showed that if such equations with the form

@f=@tþ af ¼ g are replaced by ones with the form @ eatfð Þ=
@t ¼ eatg then larger attenuations are possible without

numerical instability. This time derivative may be approxi-

mated by central finite difference giving eaDt=2f tþð Þ
�e�aDt=2f t�ð Þ ¼ Dtg tð Þ. The time differentials above are

therefore approximated by the following statements, which

simplify to the regular central difference scheme, where

ax ¼ 0,

@ux
s

@t
r; tð Þ þ ax rð Þux

s r; tð Þ

� eax rð ÞDt=2ux
s r; tþDt=2ð Þ � e�ax rð ÞDt=2ux

s r; t�Dt=2ð Þ
Dt

;

@px
s

@t
r; tð Þ þ ax rð Þpx

s r; tð Þ

� eax rð ÞDt=2px
s r; tþDt=2ð Þ � e�ax rð ÞDt=2px

s r; t�Dt=2ð Þ
Dt

:

(13)

The absorption parameters are tapered in the PML according

to

ax ¼ A
c0

Dx

x� x0

x1 � x0

� �4

: (14)

Here x0 is the coordinate at the inner edge of the PML, x1 is

the coordinate of the outer edge of the grid, and A is the

absorption per cell in nepers. So long as q xð Þ ¼ q0 and

c xð Þ ¼ c0 in the PML zone, then no energy will be trans-

ferred here and no further consideration need to be made to

the effect of the incident terms on the PML. The PML imple-

mentation was verified using Yuan et al. approach19 of com-

paring a small domain model to a larger domain model;

error due to PML artifacts was found to be around �60 dB

compared to the excited pressure in the medium.

D. Near-to-far-field transform

The NTFF transform is concerned with mapping the scat-

tered sound in the near-field to plane waves in the far-field.

This begins with the time domain Kirchhoff–Helmholtz inte-

gral equation20 on a surface S (enclosing V) which calculates

the pressure ps r; tð Þ scattered to a point r outside S due to the

pressure field p r0; tð Þ on S,

ps r; tð Þ ¼
ð ð

S

n̂ � ½pðr0; tÞ�rgðr; r0; tÞ

� gðr; r0; tÞ�rpðr0; tÞ�dr0: (15)

Here � represents temporal convolution and the gradient is

taken with respect to r0. Point r0 lies on S, n̂ is the surface-

normal unit vector at r0, and g r; r0; tð Þ ¼ d t� R=c0ð Þ=4pR is

the time domain Green’s function with R ¼ jr� r0j.
The NTFF transform is found from Eq. (15) by applying a

far-field approximation; this assumes that r0 and r are, respec-

tively, near and far from the origin of the coordinate system so

R may be approximated by R � jrj � r̂ � r0. The Green’s func-

tion is modified, with spherical spreading and propagation delay

jrj=c0 from the origin to r being compensated for, leading to a

far-field Green’s function gf f r̂; r0; tð Þ ¼ d tþ r̂ � r0=c0ð Þ in
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direction r̂. Substituting this Eq. (15) allows the far-field

pressure pf f r̂; tð Þ in direction r̂ to be computed,

pf f r̂; tð Þ ¼
ð ð

S

n̂ � p r0; tð Þ�rgf f r̂; r0; tð Þ
�

� gf f r̂; r0; tð Þ�rp r0; tð Þ�dr0: (16)

By applying the sifting property of the delta function it may

be shown that p r0; tð Þ�rgf f r̂; r0; tð Þ ¼ r̂@p=@t r0; t0ð Þ=c0 and

gf f r̂; r0; tð Þ�rp r0; tð Þ ¼ rp r0; t0ð Þ, where t0 ¼ tþ r̂ � r0=c0.

Substituting this and Eq. (5) [with q r0ð Þ ¼ q0 since r0 is out-

side V] produces

pf f r̂; tð Þ ¼
ð ð

S

@

@t
n̂ � r̂p r0; t0ð Þ=c0þq0u r0; t0ð Þ
� �

dr0: (17)

In practice, S is chosen to be the surface of a cube aligned to

the k-space grid just inside the PML. The spatial integral is

performed numerically using the trapezium rule with ab-

scissa collocated with the k-space grid points, so no spatial

interpolation is required for this collocated-grid scheme.

However, the time-retardation/advancement implicit in t0 is

not typically an integer multiple of Dt so temporal interpola-

tion is required. In accordance with the temporal finite-

difference operators used in the update equations, the grid

pressure and velocity components are interpolated linearly

between time-steps using triangle functions.

Here a choice presents itself. The temporal derivative in

Eq. (17) can either be applied directly to the triangle func-

tions (as was done by Luebbers et al.14) or moved outside

the surface integral and evaluated by finite difference. A

consequence of the former approach is that the quantities

inside the integral are piece-wise constant instead of piece-

wise linear, meaning the retardation is less well approxi-

mated (effectively rounded to the nearest time-step). This

produces a simpler algorithm with reduced storage require-

ments. However, numerical experiments showed that accu-

racy is reduced compared with the approach of moving the

temporal derivative outside the integral; hence, this latter

approach is chosen.

Because Eq. (17) involves a time-advancement operator,

evaluating the current instantaneous far-field pressure

requires past and future grid data. Instead of storing the time

history of the grid data, which would be prohibitively large,

the algorithm instead maintains a buffer of the far-field com-

ponents, starting from zero initial conditions and adding grid

data as it becomes available; a similar approach was imple-

mented by Luebbers et al.14 The geometric and quadrature

weights associated with each grid point were pre-calculated;

this represents a significant storage requirement, but the al-

ternative, re-computing the coefficients at every iteration, is

extremely inefficient on a CPU (though it may be an appro-

priate strategy if the code was implemented on a GPGPU).

The NTFF implementation was verified by calculating the

grid data analytically as if there was a point source located at

the center of the grid, substituting that into the NTFF algorithm

and comparing the output to the analytically calculated far-

field pattern. Normalized mean square error between the

numerical and analytical results was �24 dB and the angular

variation of the far-field pressure was only 60.02 dB (indicat-

ing the orientation of S does not affect the NTFF output).

Taflove15 identified that NTFF implementations may also be

compromised by incomplete cancelation of the monopole and

dipole terms in the boundary integral, radiating significant

energy at 180� from its intended far-field direction (i.e., back

through the medium and out the other side), and recommends

removing sections of S, which are not expected to contribute to

the far-field angle under consideration. However, numerical

experiments showed that this was not an issue for the NTFF

implementation given here; a scenario with strong forward

scattering (similar to Fig. 2) was simulated and the erroneous

backscatter off the top surface was �58 dB compared to the

correct forward-scatter, which is the same error magnitude as

caused by PML reflections. It is therefore concluded that the

far-field pressure numerical “signal to noise ratio” (with respect

to scattering angle) of this algorithm is approximately 60 dB.

III. RESULTS OF SCATTERING FROM ATMOSPHERES

In this section, some acoustic scattering results from

temperature fluctuations simulated using the new numerical

model are presented. Sections III A and III B investigate

scattering from periodic and stochastic temperature fluctua-

tions, respectively. A secondary aim of this investigation is

to predict the performance of multi-frequency SODAR sys-

tems. To this end the phase coherence of backscatter from

temperature fluctuations typical of atmospheric turbulence

will be investigated, since this has been shown to affect the

performance of the matched-filter post-processing they uti-

lize.21 Modeling temperature fluctuations only is acceptable

to give a first insight into this phenomenon, since classical

theory asserts that turbulent movement of the medium does

not cause backscatter and that the effect of humidity on scat-

tering cross-section is not significant over dry ground (Ref. 7,

Sec. 7.1.4). The parameters for the homogeneous part

of the atmosphere are taken to be22 T0 ¼ 288 K � 15 �C,

q0 ¼ 1:22 kg=m3, and c0 ¼ 340 m=s.

The grid dimensions were chosen to be Nx ¼ Ny ¼ Nz

¼ 256, so each of the eight 3D double-precision arrays

required to store the grid data occupied 128 MB, being 1 GB

in total. The PML depth and absorption were chosen to be

eight layers and 16 Nepers per layer, respectively; this is sig-

nificantly thinner than used by Cheinet et al.13 but is similar

to the configuration recommended by Tabei et al.16 and was

found to be a good compromise to give minimum wrap-

around or reflection at the boundaries of the numerical grid

while maximizing the enclosed simulation volume. The

grid-point spacing Dx was 2 cm in all dimensions giving a

spatial Nyquist frequency of 8.5 kHz and a modeled volume

of 4.8 m	 4.8 m	 4.8 m within the PMLs. This is signifi-

cantly smaller than the 25 m radius area modeled by Cheinet

et al.13 but is still of interest because it is on the order of size

of a SODAR “range gate” (the pulse duration divided by the

speed of sound), the scattering by each of which is typically

treated separately in SODAR post-processing.

To satisfy the stability criterion of the k-space method,

the time-step duration Dt was set at 20 ls, giving a temporal
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Nyquist frequency of 25 kHz and a Courant–Friedrichs–Lewy

number c0Dt=Dx ¼ 0:34. These limits may at first seem quite

conservative relative to the excitation pulse center frequency

(mostly 1 kHz), but Bragg backscattering effects involve

refractive index changes with as little as half the wavelength

of the reflected sound, so a temperature fluctuation which

reflects at 1 kHz may have a periodicity of around 0.17 m

which equates to only 8.5 grid points per oscillation. Also,

360 far-field directions were modeled spaced at equal angles

over the y ¼ 0 plane.

The incident sound (as defined in Sec. II A) was chosen

to be a modulated Gaussian plane wave traveling vertically

upward, typical of a SODAR vertical beam, so k̂i ¼ ẑ and

f sð Þ ¼ e�ð s�lð Þ=2rÞ2 cos2pfm s� lð Þ, where fm is the modula-

tion frequency and l and r are the pulse delay and duration

(standard deviation) parameters, respectively. Unless stated

otherwise fm ¼ 1 kHz, l ¼ 60 ms, and r ¼ 10 ms, which are

approximately representative of a SODAR pulse. In all

cases, the temperature fluctuations were windowed to ensure

that no incident terms [@ui=@t in Eq. (9)] arose in the PML

zone and that scattering cross-section was not influenced by

the k-space domain shape. This was performed using a

spherical flat-top (Tukey) window w rð Þ,

w rð Þ ¼

1; jrj < r1

1

2
þ 1

2
cos

jrj � r1

r0 � r1

� �
; r1 
 jrj 
 r0

0; r0 < jrj:

8>>>><
>>>>:

(18)

The window’s outer radius r0 ¼ 2:4 m unless stated otherwise

and its inner radius r1 ¼ ð3=4Þr0 in all cases. The scattering

volume Vscat was estimated by performing a volume integral

of w rð Þ, which for r0 ¼ 2:4 m evaluates as Vscat ¼ 39:2 m3.

A. Atmosphere with periodic temperature fluctuations

It is widely accepted that the dominant backscattering

mechanism in monostatic SODAR systems is Bragg scatter-

ing from temperature fluctuations with a spatial period that

equals half the acoustic wavelength. Simulation of these

fluctuations in isolation will be performed in this section to

give increased understanding of this phenomenon.

The first set of simulations involved testing scattering

regions of five different sizes, with radii logarithmically

spaced fractions of the maximum window size, to character-

ize how the scattering pattern changes as the size of the fluc-

tuating temperature field varies with wavelength. In these

tests, a shorter pulse (r ¼ 1 ms) was chosen since its wider

spectral peak made it possible to quantify the frequency

response of the backscattering process. It should be noted

that despite the fact that this pulse is very short, Bragg scat-

tering will still occur since it is a linear mechanism defined

by the medium properties, not by the excitation (for exam-

ple, see the impulse response plots in Fig. 8 of Ref. 4). The

spatial period and amplitude DT of the temperature fluctua-

tions were set to be half the acoustic wavelength at the mod-

ulation frequency of the pulse and 1 K, respectively; this

will be referred to as a “Bragg Atmosphere,”

T rð Þ ¼ T0 þ w rð Þcos 4pfmẑ � r=cð ÞDT : (19)

The far-field scattering results are shown in Fig. 3 and sum-

marized in Table I. The radial quantity H hð Þ in the polar

plots is the scattered power ratio, being the power in the scat-

tered sound normalized to the power density in the incident

wave, expressed in dB. It is calculated by

HðhÞ ¼

X1
m¼�1

p2
ff ðr̂h;mDtÞ

X1
m¼�1

p2
i ðmDtÞ

: (20)

In all cases, the strongest scattering occurs at 180� back toward

the source and the characteristic7 scattering nulls at 690� can

also be observed. The main trends are that as the scattering

volume is increased the scattering becomes stronger, more

directional, and more selective in frequency. These three quan-

tities are, respectively, quantified by the half-power (�3 dB)

lobe width W around 180�, the backscattered power ratio

H 180�ð Þ and the Q-factor in frequency (the center frequency

fm divided by the half-power bandwidth). Figure 4 depicts the

relationship between backscatter lobe width and scattering

region outer radius r0. The empirically fitted trend line follows

W ¼ 35� 	 k=r0, showing that this backscatter directionality

is inversely proportional to the dimensions of the scattering

volume. Figure 5 depicts the relationship between backscat-

tered power ratio and scattering region volume Vscat and the

trend line follows 0:213	 V2
scat. The values of H 180�ð Þ which

are greater than 1 occur because the scattered power was nor-

malized to the incident power density, and Vscat > 1 m3. It is

interesting therefore that scattered power scales with V2
scat

instead of Vscat, since this implies the strength of the Bragg

backscatter mechanism is also proportional to Vscat, though it

must saturate at some volume since it is not possible to scatter

more energy than is incident. Data for Q-factor is more lim-

ited. The data present in Table I appears to be inversely pro-

portional to r0, that is, a small scattering volume (including

only a few periods of the temperature fluctuations) gives

broadband backscatter whereas a large scattering volume

(including many periods of the temperature fluctuations) gives

backscatter which is quite narrowband and highly dependent

on the spacing of the temperature fluctuations. For the smallest

scattering volumes r0¼ 0.15 m and 0.3 m, Q could not be cal-

culated since the frequency content of the backscatter was lim-

ited by the frequency content of the excitation, not by the

frequency response of the backscattering process.

The second set of simulations examined the phase of the

backscattered signal, since it has been established that this is

important in remote sensing systems which utilize pulse

compression.21 Here the standard values for r and r0 were

used and a number of simulations were run with small verti-

cal shifts in the temperature profile defined by a random pa-

rameter 0 
 a 
 2p with

T rð Þ ¼ T0 þ w rð Þcos 4pfmẑ � r=cþ að ÞDT : (21)

The phase of the reflection was examined at the excitation

frequency and found to be equal to a to within 3 decimal pla-

ces (plus a small constant offset of 4� caused by a delay
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factor). This is as expected since moving the temperature

fluctuations amounts to changing the reflected path length

and a delay (phase change in frequency) proportional to the

increased path length will occur. This may seem like a trivial

result; however, it will be drawn upon in the interpretation

of the results in the next section.

B. Atmosphere with stochastic temperature
fluctuations

In this section, an atmosphere with stochastic tempera-

ture fluctuations is modeled and the far-field scattering

compared to theoretical results. There is insufficient space

here to adequately describe the subtleties and motivations

of the atmospheric models used, and the interested reader

is directed toward Ref. 7 (Chap. 7) and Ref. 22

(Appendixes I and J), which provides a particularly accessi-

ble explanation.

It is assumed that the distribution of temperature fluctuations

is homogeneous and isotropic, which is acceptable in a no-wind

condition, and given by the Kolmogorov spectrum. Note that

this differs from the study by Cheinet et al.13 which used the von

Karman spectrum. In three dimensions, the Kolmogorov spectral

density as a function of wave number k is given by

FIG. 3. Polar plots of far-field scattered power ratio H hð Þ in dB versus angle for the “Bragg atmosphere” from smallest to largest scattering volume. (a) r0¼ 0.15 m, (b)

r0¼ 0.3 m, (c) r0 ¼ 0.6 m, (d) r0 ¼ 1.2 m, (e) r0¼ 2.4 m.

TABLE I. Summary of far-field scattering by the “Bragg atmosphere.” r0 is

the outer radius of the scattering region, Vscat is the volume of the scattering

region, W is the half-power lobe width, H 180�ð Þ is the backscattered power

ratio, and Q is the Q-factor in frequency.

r0 (m) r0=k Vscat (m3) W (deg) H 180�ð Þ (dB) Q

0.15 0.44 0.0096 64.1 �44.5 -

0.30 0.88 0.077 38.8 �27.1 -

0.6 1.8 0.61 20.4 �10.1 5.55

1.2 3.5 4.90 10.2 5.77 11.0

2.4 7.1 39.2 5.13 21.1 21.8 FIG. 4. Backscattered lobe width W versus scattering region outer radius r0

for the “Bragg atmosphere.”
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U kð Þ ¼ C2
T

C 8=3ð Þ
4p2

sin p=3ð Þk�11=3: (22)

Here C2
T is the temperature structure parameter and on a summer

day it typically takes values in the range 2	 10�10 m�2=3


 C2
T=T2

0 
 6	 10�7m�2=3 (Ref. 7, Eq. 6.56). For the simula-

tions herein, a value toward the upper limit of this range C2
T ¼

1:5	 10�7T2
0 (larger amplitude temperature fluctuations) has

been used. Technically, this model is only valid within the range

of characteristic eddy size L�1
out < k < L�1

in , termed the “inertial

subrange,” but this is not a problem as Lout is typically larger

than the inhomogeneous domain V and Lin is smaller than the k-

space grid spacing (and considered to be unimportant in

acoustics22).

In what follows, it will be assumed that the temperature

field (due to turbulence) is invariant during each SODAR

pulse simulation; this amounts to a “frozen medium” approach

and is valid where the rate of evolution of the temperature

field is much lower than the speed of sound. Stochastic proper-

ties are characterized by generating multiple random instances

of the temperature field and averaging their responses. The

individual instances of the temperature field are generated

from sampled versions of U kð Þ by applying a random phase

(i.e., spatial offset) to each coefficient of the discretized spec-

trum and then applying a 3D inverse discrete Fourier trans-

form; this is equivalent to the process described by Frehlich

et al.23 Note that for the Kolmogorov spectrum, the coefficient

at k ¼ 0 must be practically be omitted since U 0ð Þ ¼ 1. The

smallest and largest wave number components reconstructed

were therefore 2p divided by the size of the modeling domain

and 2p divided by the grid spacing, respectively.

Figure 6 depicts a slice through a temperature offset

profile calculated by this method, including windowing

by w rð Þ. As expected, there are rapidly varying features

with small amplitude superimposed upon more slowly

varying features with larger amplitude. The shape of the

window w rð Þ is also clearly visible. Temperature profile

instances generated by this method will be referred to as

“Kolmogorov atmospheres.”

Ostashev gives an analytical model for the scattering

from stochastic atmospheres such as this in Sec. 7.1.3 of

Ref. 7. Re-writing it for temperature fluctuations only gives

r hð Þ ¼ 0:0041
C2

T

T2
0

k1=3cos2h

sin h=2ð Þð Þ11=3
: (23)

The quantity r hð Þ is the scattering cross-section per unit vol-

ume, and it is related to the scattered power ratio H hð Þ by

H hð Þ � 4pð Þ2Vscatr hð Þ. Figure 7 shows the analytical model

superimposed on a set of numerical results. The gray lines

are the scattering from eight independent temperature profile

realizations; these are stochastically generated so unsurpris-

ingly they have quite irregular scattering patterns. The dark

black line is the power average of these measurements and

shows a much more regular pattern. The dashed line is the

scattering predicted by analytical model, showing good agree-

ment both in scattering pattern and amplitude despite the

FIG. 6. (Color online) Slice through an instance of a temperature field

(minus ambient) for an instance of a “Kolmogorov atmosphere.”

FIG. 5. Backscattered power ratio H 180�ð Þ vs scattering region volume Vscat

for the “Bragg atmosphere.”

FIG. 7. (Color online) Polar plot of far-field scattered power ratio H hð Þ in

dB versus angle for the “Kolmogorov atmosphere.” Gray lines are individual

simulations, black line is the power average of these simulations, dashed

line is the analytical model.
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relatively small number of simulation instances which are

averaged (Cheinet et al.13 use 200 instances in an equivalent

calculation). A major discrepancy is however seen for the for-

ward scattering around h ¼ 0�. Recall from Fig. 2 that a non-

periodic temperature offset (i.e., with a spectrum that is large

at small k) produces a significant forward-scatter to account

for the change in sound speed encountered as the wave passes

through the domain. The classical model of large scattering

angle for the Kolmogorov spectrum is an extreme example of

this; it predicts infinite scattering at h ¼ 0� due to the infinite

temperature offset implied by U 0ð Þ ¼ 1. This behavior is

not replicated in the numerical results because the infinite

value of U 0ð Þ was omitted from the turbulence reconstruction

on the grounds of being unphysical. In addition, the window-

ing of the temperature fluctuations effectively imposes an Lout

turbule size limit and significantly affects the forward scatter.

A similar effect was seen for the von Karman spectrum by

Cheinet et al.,13 who go on to analyze the forward scattering

case in much greater detail than is considered here.

The result at the end of Sec. III A demonstrated that

spatially offsetting periodic temperature fluctuations

causes a related change of phase in the backscattered

sound. Since instances of the Kolmogorov atmosphere may

be thought of as a sum of such fluctuations spatially offset

by a random amount, it follows that the phase of different

frequency components in the backscattered sound will also

be independently random. In addition, the backscattered

phase for the same frequency will vary randomly for dif-

ferent temperature field instances, for instance, during a

SODAR measurement which is long with respect to the

rate of evolution of the temperature field. Table II gives

the phase of the signal backscattered from the eight simu-

lated instances of the Kolmogorov atmosphere, both for

fm ¼ 1 kHz and fm ¼ 1:2 kHz excitation; in the right hand

columns, the corresponding relative delays have been cal-

culated to permit easy comparison between the different

frequency data. As expected there is no discernible rela-

tionship between the backscattered phases at 1 kHz and

1.2 kHz; they appear to be independently random.

This result has implications for the design of pulse-

compression algorithms for SODAR, since the matched filter-

ing they utilize depends on a linear-phase time-invariant

response. This means backscattered delay must be equal over

the operating bandwidth and time-invariant over each pulse

sequence, and the discussion above and results in Table II

shows that this is not the case. As discussed in Ref. 21, under

these circumstances the benefits of the matched filtering are

lost and the system performs no better than a non-coherent

multi-frequency approach.

IV. DISCUSSION, CONCLUSIONS, AND FUTURE
DIRECTIONS

This paper has described a numerical method for simu-

lating far-field scattering from small regions of inhomogene-

ous temperature fluctuations. The method combined an

analytical incident sound model with a k-space model of the

scattered sound close to the inhomogeneous region and a

Near-to-Far-Field transformation to obtain far-field scatter-

ing patterns. The algorithm was applied to two idealized test

case atmospheres: one with periodic temperature fluctuations

with height and one with stochastic temperature fluctuations

given by the Kolmogorov spectrum, for which good agree-

ment with classical results was seen. From that perspective,

this paper may be thought of as an extension of some aspects

of the work of Cheinet et al.13 to three dimensions. The pa-

per also aimed to draw conclusions about multi-frequency

SODAR performance and to that end the phase of the back-

scattered signals was analyzed. This suggested that stochas-

tic atmospheres produce a randomized phase response which

is independent with respect to frequency, suggesting atmos-

pheric backscatter is an unsuitable target for matched-filter

multi-frequency SODAR systems.

However, the model also has various limitations which

require further discussion. One important aspect is that tur-

bulent velocity fluctuations are omitted in this simulation (as

they are in Sec. III B of Ref. 13). This was justified by citing

the classical result that only temperature fluctuations contrib-

ute to the backscattered signal, but it would be desirable to

properly test this assertion. With regard to the conclusions

about randomized phase scattering from stochastic tempera-

ture fluctuations, it is conceivable that velocity fluctuations

may have an additional effect (they are, for example, known

to cause a widening of the Doppler peak), but it seems far

more likely that this would create further phase randomiza-

tion rather than remove it. Considering the full propagation

path shown in Fig. 1, it is also clear that consideration has

not been given to scattering processes between the SODAR

and the scattering volume in either direction, and in a sto-

chastic atmosphere these are also likely to be dispersive

effects. It therefore seems reasonable to suppose that the sto-

chastic features omitted from the model would further com-

promise the performance of the matched-filter post

processing in a multi-frequency SODAR, so the negative

conclusions reached here are likely to be generalizable.

As regards the suitability of the method as a numerical

testbed for a broader class of SODAR, it is clear that the

omitted features described in the previous paragraph would

be also desirable for this application. Stochastic velocity

fluctuations due to turbulence could be incorporated within

the k-space model of the scattering region, though initial

efforts suggest that this will be very computationally

TABLE II. Phase (and equivalent delay) of backscatter from the “Kolmogorov

atmosphere.” Each row in the table presents the data from a different simulation

instance.

Backscattered Phase Relative Backscattered Delay

1000 Hz 1200 Hz 1000 Hz 1200 Hz

�95.3� �96.9� �0.265 ms �0.224 ms

�113.1� �154.8� �0.314 ms �0.358 ms

�121.1� �117.6� �0.336 ms �0.272 ms

23.1� 126.7� 0.064 ms 0.293 ms

�128.3� �20.3� �0.356 ms �0.047 ms

62.8� 36.4� 0.175 ms 0.084 ms

89.5� 120.1� 0.249 ms 0.278 ms

87.8� �117.5� 0.244 ms �0.272 ms
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expensive and probably require a GPGPU implementation.

Another important extension would be to include tempera-

ture and wind profiles through the atmosphere. It is antici-

pated that these could be included by modifying only the

incident and far-field parts of the model to account for the

curvature those sound waves experience while propagating

through the atmosphere, and that the k-space model of the

scattering volume could be left largely unchanged (albeit

perhaps cast into a moving coordinate system in the case of

wind shear).

It would also be interesting to simulate the periodic tem-

perature fluctuation scenario over many different cases over

wider frequency bands, since it is essentially a building block

of the stochastic atmosphere scenario. This may enable a bet-

ter understanding of the scattering of sound by atmospheric

turbulence and permit extraction of more trends, which could

possibly even form the basis of an empirical model. However,

the computation speed of the current code precludes this and a

much faster implementation (e.g., GPGPU) would be neces-

sary also to undertake this investigation.

The applicability of all these approaches, however, is

built upon the validity of the Born approximation, which is

essentially that forward scatter is negligible as a sound wave

propagates through the atmosphere, meaning the backscatter

from a small region may be calculated independently of the

scattering from other regions. At first glance, Fig. 7 suggests

that forward scattering is far from negligible, but as dis-

cussed in Sec. III B, the forward scatter predicted there is

predominately associated with slight changes in the speed of

sound due to spatially large temperature fluctuations. Hence,

it is likely to be non-dispersive and to not have a significant

effect on SODAR measurements. Given an adequate compu-

tational resource, it would be attractive to verify these

assumptions by undertaking a small number of models of

very large FDTD domains (themselves ideally verified

against measurement), against which less computationally

demanding algorithms (such as those proposed above) could

ultimately be verified.
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