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ABSTRACT

The lanthanoid sesquioxides exhibit a number of distinct structural phases. Below

2000°C these oxides exist in three crystal systems, namely the A-type hexagonal phase,

the B-type monoclinic phase and the C-type cubic phase. With increasing temperature

the stability of these structures is generalised by the order C → B → A, although not

every oxide will exhibit all phases; this general transition is typical of the middle

members of the group. Under ambient conditions, the A phase is preferred for La2O3 to

Pm2O3. Both the C and B phases exist for Sm2O3, Eu2O3 and Gd2O3. The C phase is

stable at room temperature from Sm2O3 onwards, and at the high atomic number end of

the series this phase is preferred.

Traditionally, the structures of the heavier sesquioxides (Er2O3 to Lu2O3) have been

believed to be cubic from ambient temperature all the way up to their melting points.

However, contrary to the current phase diagram, my work has shown that not only are

B-type Sm2O3, Eu2O3 and Gd2O3 very stable at ambient temperature, but it is also

possible to create 1% monoclinic Yb2O3 by heating and then quenching back to

ambient temperature.

Of the lanthanoids, praseodymium and terbium are known for their existence in both

the +3 and +4 oxidation states. The praseodymium-oxygen system is notable for its

multiple stoichiometries. This work presents kinetic data for the φ → β phase and the σ

→ θ phase transitions in this system, the results obtained via high-temperature X-ray

powder diffraction and differential scanning calorimetry.

The crystal structures of B-type Gd2O3 and Yb2O3 are reported, the former obtained

using both laboratory and synchrotron X-ray data and the latter using laboratory data

alone. It is proposed that this is the first time these two structures have been determined

following the application of temperature alone, without the additional application of

pressure.
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1 INTRODUCTION

1.1 THE RARE EARTHS

The rare earths constitute a series of highly electropositive elements occupying period 6

of the periodic table between the 6s and 5d blocks and their occurrence marks the first

occupying of the 4f atomic orbitals in the ground state.  Unlike the d block elements

their chemistry is fairly uniform across the series, with the +3 oxidation state

dominating.

The series corresponds to the filling of the 4f atomic orbitals from lanthanum, which

has an electronic configuration [Xe]5d
1
6s

2
, to lutetium, [Xe]4f

14
5d

1
6s

2
. As the

members of the series have similar properties they are referred to in the IUPAC scheme

as the lanthanoids, after the first element in the series, lanthanum, which itself takes its

name from the Greek λανθανειν (lanthanein), meaning to lie hidden. Despite this, the

term lanthanides is still widely in use. All the lanthanoids have similar chemical

properties, since the 4f atomic orbitals are of a smaller radial extension than the 6s and

5d atomic orbitals in which the valence electrons lie and hence do not greatly affect the

chemistry of the elements. The f orbitals are said to be buried inside the atom and

shielded from its external environment by the valence electrons. This means that the

chemistry of the lanthanoids is largely determined by their atomic radii.

All the lanthanoids show the +3 oxidation state. An unusual deviation from this is seen

with cerium, which can exhibit the +4 state, achieving the electronic stability of the

noble gas xenon. Europium exhibits the +2 state, achieving the stability of a half-filled

f shell. The +4 oxidation state is also seen with praseodymium and terbium. The

element promethium does not occur in nature.

Although not actually lanthanoids, yttrium and scandium are often considered to be rare

earths as they occur in the same sources. Yttrium, [Kr]4d
1
5s

2
, is the immediate vertical

neighbour of lanthanum, has a similar electronic configuration and shows a great

chemical resemblance to the lanthanoids. The radius of its tripositive ion lies between

those of Ho
3+

 and Er
3+

 and, as might be expected, its chemistry resembles these
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elements more strongly than it does any of the other lanthanoids. Scandium, [Ar]3d
1
4s

2
,

the lightest member of the transition elements and again vertical to lanthanum, also

resembles the lanthanoids closely in its chemical properties.

The term rare earths is actually a misnomer.  Cerium is the twenty-fifth most abundant

element in the earth and is as common as copper. Even the least-common rare earth,

thulium, occurs in greater proportion than mercury. However, because the rare earths

have a similar chemistry and tend to occur naturally together, historically their

separation from each other has been difficult. It is this fact that has given the

impression of their rarity. The phrase to lie hidden indicates that the metals are difficult

to separate i.e. they lie hidden behind each other. Originally, separation was performed

by a laborious series of fractional crystallisations. As the lanthanoid ions have subtly

different radii, the lattice energies of their salts and their hydration energies are also

different. This means that they have slight differences in solubility and hence different

metal salts will precipitate from solution at slightly different concentrations. In recent

times, separation of ions has been achieved by solvent extraction and ion exchange.

Both methods rely on the small differences in ionic radii across the group.

Typical sources of rare earths are monazite sand, the mineral xenotime (which both

contain a mixture of the phosphates of lanthanoids and thorium) and bastnaesite (which

contains lanthanoid fluorocarbonates). In terms of their occurrence in the earth’s crust,

lanthanum, cerium and neodymium are by far the most common. The rare earths have

many applications. Their most common use is in catalytic converters for internal

combustion engines. They also have use as refining catalysts in the petrochemical

industry. Other uses include alloying material in permanent magnets, colours for glass

and ceramics, phosphors, and doping agents for lasers. Cerium is contained in the alloy

known as misch metal, used as the flint of cigarette lighters. It is also used as an anti-

knock agent in petrol. Europium is used within nuclear fuel control rods and also within

the red phosphor in CRT television screens. Ytterbium has been shown to have an

application in thermophotovoltaic devices (Krishna et al 1999) and a lanthanum-doped

sodium tantalate catalyst has recently been shown to be effective in the photolysis of

water as a means of generating hydrogen fuel (Kato et al 2003).
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1.2 THE STABILITY OF THE TRIPOSITIVE OXIDATION STATE

The ground state electronic configurations of the uncharged lanthanoid atoms and their

tripositive ions are given in table 1.1. For the atoms, the 4f orbitals are generally more

stable than the 5d, illustrated by the fact that the 5d orbitals are only occupied in a few

cases. After lanthanum the 5d orbitals are empty and only when gadolinium is reached

is the extra stability of the half-filled 4f orbitals sufficient to induce reoccupation of the

5d orbitals. For the tripositive ions, chemically the most important oxidation state, the

4f orbitals are much more stable and the 5d and 6s orbitals are not occupied at all. The

electron configurations of the tripositive ions reveal a sequential filling of the 4f atomic

orbitals from lanthanum at f
0
 to lutetium at f

14
.

The 4f electrons occupy space inside the n = 5 shell. They are more stable and have

greater ionisation potentials than the 5d and 6s electrons.  Consequently the loss of the

6s and 5d electrons is always seen before that of the 4f electrons. This is illustrated by

electronic absorption spectra of compounds of tripositive lanthanoid ions. As a general

trend, ionisation energy increases with atomic number and shows marked half-shell

effects. Table 1.1 lists both the sum of the first three ionisation potentials and the fourth

ionisation potential for the lanthanoids. These values are plotted in figure 1.1.
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Z Element Electron

config.

Electron

config. for Ln
3+

Ionic radius

(pm) 6CN
†

ΣIP1-3

*

kJ.mol
-1

IP4

**

kJ.mol
-1

57 La [Xe]5d
1
6s

2
f

0
117.2 3455 4819

58 Ce [Xe]4f
1
5d

1
6s

2
f

1
115 3523 3547

59 Pr [Xe]4f
3
6s

2
f

2
113 3627 3761

60 Nd [Xe]4f
4
6s

2
f

3
112.3 3697 3899

61 Pm [Xe]4f
5
6s

2
f

4
111 3740 3966

62 Sm [Xe]4f
6
6s

2
f

5
109.8 3869 3994

63 Eu [Xe]4f
7
6s

2
f

6
108.7 4036 4110

64 Gd [Xe]4f
7
5d

1
6s

2
f

7
107.8 3749 4245

65 Tb [Xe]4f
9
6s

2
f

8
106.3 3791 3839

66 Dy [Xe]4f
10

6s
2

f
9

105.2 3911 4001

67 Ho [Xe]4f
11

6s
2

f
10

104.1 3924 4101

68 Er [Xe]4f
12

6s
2

f
11

103 3934 4115

69 Tm [Xe]4f
13

6s
2

f
12

102 4045 4119

70 Yb [Xe]4f
14

6s
2

f
13

100.8 4194 4220

71 Lu [Xe]4f
14

5d
1
6s

2
f

14
100.1 3887 4360

Table 1.1 Electron configurations of the lanthanoid atoms and their tripositive ions.

† 
metal cation showing six-fold coordination (Shannon 1976)

As a generalisation, IP4~2(IP3)~4(IP2)~8(IP1) and IP4 > (IP1+IP2+IP3)

* 
sum of first three ionisation potentials (Bernal et al 2004)

**
fourth ionisation potential (Bernal et al 2004)

[Xe] represents a xenon atomic core i.e. [1s
2 

2s
2 

2p
6 

3s
2 

3p
6 

4s
2 

3d
10 

4p
6
 5s

2 
4d

10 
5p

6
]
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Figure 1.1 ΣIP1-3 and IP4 for the lanthanoids (Bernal et al 2004).

Table 1.1 shows that the sum of the first three ionisation potentials for the lanthanoids

is fairly consistent across the series, indicating the +3 state to be a common one.

Indeed, this state is the preferred one under ambient conditions for most elements in the

series, other than those with a relatively low second or fourth ionisation potential.

Cerium, praseodymium and terbium all exhibit the +4 state, as well as displaying

oxides with mixed +3/+4 valencies such as Pr6O11 and Tb4O7. Cerium is the only

lanthanoid to be stable in the +4 oxidation state in aqueous solution. The only binary

cerium IV compounds known are CeF4 and CeO2. There are several stable complexes

containing Ce
4+

, for example (NH4)2[Ce(NO3)6], in which the nitrate ion acts as a

bidentate ligand, the co-ordination of the Ce
4+

 being icosahedral.  Only europium

shows a marked tendency for lower oxidation states, for example Eu
2+

 exists in EuO

and EuC2O4, although neodymium, samarium and ytterbium also show some tendency

for this oxidation state. Table 1.2 below lists the oxidation states attainable by the

lanthanoids and their corresponding electron configurations.
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Element Oxidation state Electron configuration

La +3 [Xe] noble gas

Ce +3

+4

[Xe]4f
1

[Xe] noble gas

Pr +3

+4

[Xe]4f
2

[Xe]4f
1

Nd +2

+3

[Xe]4f
4

[Xe]4f
3

Pm +3 [Xe]4f
4

Sm +2

+3

[Xe]4f
6

[Xe]4f
5

Eu +2

+3

[Xe]4f
7
 half shell

[Xe]4f
6

Gd +3 [Xe]4f
7
 half shell

Tb +3

+4

[Xe]4f
8

[Xe]4f
7
 half shell

Dy +3 [Xe]4f
9

Ho +3 [Xe]4f
10

Er +3 [Xe]4f
11

Tm +3 [Xe]4f
12

Yb +2

+3

[Xe]4f
14

 full shell

[Xe]4f
13

Lu +3 [Xe]4f
14

 full shell

Table 1.2 Electron configurations of the lanthanoids.

1.3 THE LANTHANIDE CONTRACTION

The elements in the first row of the f block exhibit a decrease in atomic radius from

lanthanum, Z=57 to lutetium, Z=71. Because of this phenomenon, termed the

lanthanide contraction, vertically-adjacent elements in the 2nd and 3rd rows of the d

block, which appear before and after the lanthanoids, have very similar atomic radii

even though they contain very different numbers of electrons. For example, the atomic

radii of zirconium and hafnium are 1.60Å and 1.59Å respectively; for silver and gold

the figures are both 1.44Å. With a significant increase in atomic weight and little or no

change in atomic radius there is an associated increase in density. For example, gold

has approximately twice the density of silver. Moving from left to right across the 1st
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row of the f block there is a steady decrease in atomic radius with increasing atomic

number. This contraction is also shown in the radii of the tripositive ions, illustrated in

figure 1.2. This decrease in ion size is accompanied by the filling of the 4f orbitals.

Before the electronic structures of the lanthanoids were elucidated by spectroscopy,

they could only be assumed. It was correctly believed that the electronic structure of the

lanthanum atom was [Xe]5d
1
6s

2
. It was therefore easy to explain the existence of the

+3 oxidation state by the loss of the three outer electrons. Assuming that the 5d
1
6s

2

electrons were retained across the series of atoms from [Xe]5d
1
6s

2
 to [Xe]4f

14
5d

1
6s

2

and that moving across the lanthanoids corresponded to the filling of the 4f shell, the

predominance of the +3 oxidation state could be explained as each atom could lose the

5d
1
6s

2 
electrons to form the tripositive ion. However, spectroscopy has revealed that the

atoms and ions do not all have the [Xe]4f
n
5d

1
6s

2
 and [Xe]4f

n
 structures respectively.

The removal of electrons from a lanthanoid atom proceeds in the manner of first the

outer 6s electrons, secondly the outer 5d electrons and thirdly the 4f electrons. Because

of their greater affinity for the nucleus and hence the shorter radial extension of their

atomic orbitals, the 4f electrons are termed inner or core electrons.

In a multi-electron atom, the distance an electron exists from the nucleus is determined

by both the shell in which it lies and the nuclear charge. Increasing nuclear charge

causes a shrinking of the atomic radius. However, this shrinkage is offset to some

degree by the presence of the inner electrons. This is due to a shielding effect; inner

electrons shield the outer electrons from the nucleus. Therefore, rather than experience

the full nuclear charge, Z, the outer electrons experience an effective nuclear charge,

Zeff. The shielding effect of occupied atomic orbitals decreases in the order s > p > d >

f. Because of their limited radial extension and their highly angular shapes, the 4f

atomic orbitals have a poor shielding effect and the shielding gained on adding

electrons to the 4f orbitals on crossing the lanthanoid series fails to compensate for the

increasing nuclear charge. For the lanthanoids, Zeff is seen to increase steadily with

increasing atomic number, causing the electrons to be drawn in towards the nucleus.

Consequently there is a steady and almost linear decrease in atomic radius with

increasing atomic number. This contraction is also shown in the radii of the tripositive

ions, shown in figure 1.2.
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Figure 1.2 Ionic radii for the tripositive ions Z=57 to 71 (Shannon 1999).

This poor shielding ability of the 4f electrons is believed to be the major contributor to

the lanthanide contraction, although studies reveal about 10% of the contraction is due

to relativistic effects (Pyykkö and Descleaux 1979). In heavy atoms such as the

lanthanoids, the effects of special relativity become significant for high-speed electrons

and result in both a contraction of the radial extension of atomic orbitals and an

increase in the rest mass of electrons. Consequently there is a decrease in the atomic

radius. Other notable examples of chemical relativistic effects are the physical state of

mercury at ambient temperature and the colour of gold. Mercury is known to exist as

the monoatomic species Hg in the gaseous state. The contraction of the valence

electron shell means it does not play a significant role in bonding and so the atoms in

the liquid are held together by weak Van der Waals forces alone. With gold, the

contraction of the 6s orbital means the 5d → 6s energy transition is shifted from the

ultra-violet into the visible part of the electromagnetic spectrum. The wavelength of

light concerned is in the blue region of the spectrum, resulting in the metal having its

distinctive yellow colour (Norrby 1991).
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1.3.1 The lanthanide contraction illustrated in unit cell parameters

Because of the existence of the lanthanide contraction the possibility arises that the unit

cell parameters for particular series of compounds might also follow a contraction. For

example, if a particular lanthanoid compound exhibits cubic symmetry, then the rest of

the lanthanoids when present in the same type of compound might also exhibit the

same symmetry. Furthermore, a plot of the unit cell parameter against atomic number

might show a trend similar to that of the lanthanide contraction. There are many

references citing cases of series of lanthanoid compounds exhibiting a common

structure (Siddiqui and Hoppe 1975), (Feldner and Hoppe 1980), (Urland et al 1980),

(Aléone and Pouzet 1968). Aléone and Pouzet consider the series of compounds

Rb
2
NaLnF

6
 and Cs

2
NaLnF

6
, where Ln is a lanthanoid, and state that all are cubic with

the perovskite structure and of space group Fm3m. Unit cell data for the series of cubic

structures Rb2NaLnF6 is given in table 1.3 and illustrated in figure 1.3. It is clear that

the trend in the cell size across the series is similar to that of the tripositive ionic radii.

Data for the series of tetragonal structures LiLnF4 is given in table 1.4 and illustrated in

figure 1.4. ICDD is the International Centre for Diffraction Data.

Z Element ICDD ref Cell a (Å) Crystal

system

Space group

62 Sm 21-1041 8.988 Cubic Fm3m

65 Tb 21-1042 8.921 Cubic Fm3m

67 Ho 21-1040 8.881 Cubic Fm3m

68 Er 20-1384 8.867 Cubic Fm3m

70 Yb 21-1043 8.816 Cubic Fm3m

Table 1.3 Unit cell parameters for the cubic series Rb2NaLnF6 (ICDD 1995).
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Figure 1.3 Atomic number versus unit cell parameter for the cubic series Rb2NaLnF6

(ICDD 1995).

Z Element ICDD ref Cell a (Å) Cell c (Å) Crystal

System

Space group

63 Eu 27-0292 5.21 11.02 Tetragonal I41/a

64 Gd 27-1236 5.21 11.00 Tetragonal I41/a

65 Tb 27-1262 5.19 10.89 Tetragonal I41/a

66 Dy 27-1233 5.19 10.81 Tetragonal I41/a

67 Ho 27-1243 5.16 10.75 Tetragonal I41/a

68 Er 27-1235 5.16 10.70 Tetragonal I41/a

69 Tm 27-1265 5.15 10.64 Tetragonal I41/a

70 Yb 23-0371 5.13 10.58 Tetragonal I41/a

71 Lu 27-1251 5.13 10.53 Tetragonal I41/a

Table 1.4 Unit cell parameters for the tetragonal series LiLnF4 (ICDD 1995).
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Figure 1.4 Atomic number versus unit cell parameters for the tetragonal series LiLnF4

(ICDD 1995).

Because of this trend across series of lanthanoid compounds, it is often a good starting

point when considering an unknown structure to look at the structures of the same

compounds of the adjacent metals. In many cases the cell type and space group will be

the same. Furthermore, the unit cell parameters may be the same, subject to an

adjustment according to the lanthanide contraction. In such a case, the atom positions

are also likely to be the same. However, a single cell type is not generally

representative of any one series of lanthanoids. There are series of compounds where

the shrinking co-ordination sphere of the metal induces a change in cell type. For

example, with the lanthanoid sesquioxides there is a shift from the 7-fold co-ordination

of a hexagonal structure, to the 6-fold co-ordination of a cubic structure. In such a

series a break would be seen in the plot of unit cell parameters; a pair of lines

corresponding to the values for a and c in the hexagonal cell would switch to a single

line corresponding to the single cubic cell parameter. For both cell types the plots

would still follow the downward trend of the lanthanide contraction.



12

1.4 LANTHANOID COMPOUNDS

1.4.1 Overview

The crystal structure of the simple compounds such as the sesquioxides and halides

exhibit high co-ordination numbers due to the large sizes of the tripositive lanthanoid

ions. The sesquioxides are the most stable oxides, except for those of cerium,

praseodymium and terbium, whose oxides contain the metal wholly (cerium) or partly

(praseodymium and terbium) in the +4 oxidation state. At ambient temperature the

sesquioxides of the lighter lanthanoids exhibit hexagonal symmetry. Heavier

sesquioxides exhibit cubic symmetry. The monoxide of europium is known but there is

doubt as to the phases of other low-oxygen species. Higher oxides exist, notably that of

cerium. Ceric oxide, CeO2, has the fluorite structure (as do PrO2 and TbO2) but a range

of phases is known to exist, with some intermediate between Ce2O3 and CeO2, for

example Ce32O58, Ce32O57 and Ce18O31. The compound Pr6O11 exists as a mixed phase

of the +3 and +4 oxides in the ratio 1:4 and may be converted to Pr2O3 with hydrogen

at high temperature. As with cerium there exists a range of phases between the

sesquioxide and the dioxide. The intermediate oxide Ln7O12 is also known for

lanthanum, cerium, praseodymium and terbium. The general property of many rare

earth oxides is that they have defect lattices in which some O
2-

 vacancies in the LnO2

fluorite structure are compensated for by the presence of Ln
3+

 ions.

The sulphides, selenides and tellurides exhibit the compounds LnS, Ln3S4, Ln2S3 and

LnS2 but there are many non-stoichiometric compounds in addition to these. The

interest in these compounds lies in their semi-conducting properties.

The hydroxide ion has a similar radius to the fluoride ion and consequently, for the

light lanthanoid trifluorides and hydroxides, the same crystal structure is exhibited, that

of tysonite, LnF3, with each lanthanoid co-ordinated to 9 fluorides anions. For the

trichlorides of the elements lanthanum to gadolinium the UCl3 structure is adopted with

nine-fold co-ordination around a trigonal prism with 3 chlorides against the three

vertical faces. Terbium trichloride adopts the eight-fold co-ordination PuBr3 structure

and for the metals dysprosium to lutetium the six-fold co-ordination of FeCl3 is evident.
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The tribromides adopt the same structures as the trichlorides. The triiodides adopt the

PuBr3 structure for lanthanum to neodymium and the FeCl3 structure for samarium to

lutetium. Lower halides are known; the difluorides of samarium, europium and

ytterbium exhibit the fluorite structure. The difluorides of thulium and ytterbium

exhibit the structure of CaI2. The dichlorides of neodymium, samarium, europium,

dysprosium and ytterbium are prepared by the reduction of the trichloride with the

lanthanoid. The dibromides of samarium, europium, thulium and ytterbium and the

diiodides of lanthanum, cerium, praseodymium, neodymium and gadolinium are

prepared in a similar way. Diiodides are also obtained by thermal decomposition of the

triodides. Tetrafluorides of cerium, praseodymium and terbium are known, having the

UF4 structure of a square anti-prism. Attempts to make other tetrafluorides have been

unsuccessful but the complexes Cs3[NdF7] and Cs3[DyF7] have been made by

fluorination of a mixture of caesium chloride and the lanthanoid trichloride. As a

general rule, for all classes of compounds there is a trend of decreasing co-ordination

number with decreasing ionic radius.

1.4.2 The lanthanoid sesquioxides

Historically the lanthanoid sesquioxides have been extensively studied, the first notable

publication being in 1925 (Goldschmidt et al 1925). This study first highlighted the

three structural types, A, B and C. Their crystallographic forms and polymorphism

have been reviewed on a number of occasions (Brauer 1968), (Haire and Eyring 1994),

(Adachi and Imanaka 1998), (Zinkevich 2007). Below 2000°C the sesquioxides exist in

three crystal systems i.e. the cubic C-type, the monoclinic B-type and the hexagonal A-

type. With increasing temperature the stability of the structures is generalised by the

order C → B → A, although not every oxide will exhibit all phases; this general

transition is typical of the middle members of the group. Under ambient conditions the

A-type oxide is preferred for lanthanum to promethium, although it may exist in

combination with the C-type. C-type cerium sesquioxide is actually a non-

stoichiometric oxide showing a range of oxygen content, but designated Ce2O3. Both C

and B-type oxides exist for samarium, europium and gadolinium. The C-type is stable

under ambient conditions from samarium onwards and for the heavier metals of the

series this phase is preferred, although it may exist in combination with the B-type
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oxide, the fraction of B-type falling with increasing weight of the metal. For lutetium

the C-type oxide is the only phase known, as there is a direct transition to the molten

state at approximately 2400°C.

Above 2000°C an additional two types, denoted by H and X, are present (Föex and

Traverse 1966). These are believed to be modifications of the hexagonal and cubic

phases, respectively (Aldebert and Traverse 1979). Only a very few lanthanoid

sesquioxides exhibit all five phases (promethium, samarium and europium). A phase

diagram showing all five modifications is given in figure 1.5.

Figure 1.5 Phase diagram for the lanthanoid sesquioxides (Föex and Traverse 1966).

The accepted phase diagram for these 5 polymorphs was constructed from two data

sources (Warshaw and Roy 1961), (Föex and Traverse 1966). The diagram shows the

three structure types that exist at ambient temperature. For the lighter oxides, the

ambient phase is hexagonal and this phase exists until the exotic high temperature H-
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and X-types are reached at over 2000°C. For the intermediate oxides, the ambient phase

is cubic. On heating, there is a transition to the monoclinic phase before the H and X-

types are reached. After holmium sesquioxide, the only phase is cubic until the H phase

is reached.

The structures of the three main phases are well known. The A-type exists in space

group P-3m1 with one formula unit per unit cell. The metal atoms occupy the 4f sites of

the space group. 4 of the oxygen atoms occupy the same sites; the remaining 2 oxygen

atoms occupy the 2a sites. The metal atoms are in seven-fold co-ordination to oxygen

with four oxygen atoms closer than the other three.

Figure 1.6 A-type (hexagonal) Ln2O3 (where Ln represents any lanthanoid). Solid dots

represent metal centres (Eyring 1979).

The B phase, a distortion of the A-type, exists in space group C2/m with six formula

units per unit cell. All 12 metal atoms occupy the 4i sites of this space group. 16

oxygen atoms also occupy the 4i sites, with a further 2 oxygens occupying the 2b sites.

The metal atoms in this phase are six-fold and seven-fold co-ordinated to oxygen.
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Figure 1.7 B-type (monoclinic) Ln2O (Eyring 1979).

The C-type has the bixbyite structure in space group Ia-3, bixbyite having its most

common form as Mn2O3. The unit cell contains 32 metal atoms (on the 8b and 24d

sites) and 48 oxygen atoms (occupying all 48e sites). The structure is effectively a

fluorite lattice with a quarter of the oxygen sites vacant. In this structure the metal

atoms are six-fold co-ordinated to oxygen.

Figure 1.8 C-type (cubic) Ln2O3 (Eyring 1979).
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1.4.3 The praseodymium-oxygen system

When the ratio of oxygen to metal is variable, the praseodymium-oxygen system shows

a number of discrete phases. In fact, of all the rare earth oxides, the praseodymium-

oxygen system is the most complex. In addition to the green-coloured sesquioxide there

are six well-established and well-studied oxides. The majority of work on the

praseodymium-oxygen system comes from Eyring and co-workers in a series of papers,

the most significant of which (Hyde et al 1965) established the phase diagram in figure

1.9. Here is confirmed the existence of the ι (x = 1.71), ξ (x = 1.78), ε (x = 1.80) and β

(x = 1.83) phases, together with two wide-ranging non-stoichiometric phases. These are

the face-centred α phase, with 2.00 ≥ x ≥ 1.72 and the body-centred σ phase, with 1.7 ≥

x ≥ 1.6. Observed for the first time is the δ (x = 1.816) phase. It was also established

that the discrete monophasic species were members of an incomplete homologous

series corresponding to the formula PrnO2n-2 for values of n = 4, 7, 9, 10, 11, 12 and ∞.

These phases are listed in table 1.5.

n Formula phase x in PrO
x

Cell Existence

4 Pr2O3 φ

θ

1.5

1.5

B-type BCC

A-type Hexagonal

<275°C

>900°C

7 Pr7O12 ι 1.714 Rhombohedral 500-1000°C

9 Pr9O16 ξ 1.778 Rhombohedral 450-600°C

10 Pr5O9 ε 1.8 FCC 300-500°C

11 Pr11O20 δ 1.818 FCC 375-475°C

12 Pr6O11 β 1.833 FCC 275 to 475°C

∞ PrO2 α 2 FCC >500°C

Table 1.5 Discrete phases in the praseodymium-oxygen system.

Aside from the sesquioxide Pr2O3, the red-black material Pr6O11, sometimes referred to

as the air-ignited oxide, is the only other oxide stable at ambient temperature. On

heating the pale green sesquioxide it is the first oxide to be created. Other than PrO2,

this material contains the greatest ratio of oxygen to metal. Further heating gradually

reduces this ratio through the phases Pr11O20, Pr5O9, Pr9O16, Pr7O12 and eventually back

to Pr2O3. The various known phases are shown in figure 1.9.
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Figure 1.9 Phase diagram for the praseodymium-oxygen system (Hyde at al 1965).

It has been claimed that praseodymium may exhibit the +5 oxidation state (Prandtl

1925) and that the air-ignited oxide has the formula 2Pr2O3.Pr2O5. However, later work

(Marsh 1946) shows that the highest oxidation state attainable by praseodymium is +4.

This is supported by other work (Zintl and Morawietz 1940) and shows Pr6O11 as the

double oxide 4PrO2.Pr2O3.
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1.5 AIMS OF THIS WORK

1.5.1 Determination of structures resulting from temperature-induced phase transitions

Investigation and characterisation of the structural changes in ceramic materials at high

temperature are particularly important.  For example, europium sesquioxide is used

within nuclear reactor control rods because of its neutron absorbing ability, while

ytterbium sesquioxide has been proposed as a component within thermophotovoltaic

energy conversion devices (Krishna 1999), (Durisch and Bitnar 2010). Both

applications cause structure changes in the oxides and hence an understanding of these

changes is important to their operation.

Although the series has been extensively studied, there are a number of omissions in

the published work. Not all structures indicated by the phase diagram have been

synthesised and their structures recorded. Some of these omissions are addressed in this

thesis. Two databases were used as the main source of reference material in this work.

The first is the Daresbury ICSD database (ICSD website), existing until January 2013

but now commissioned by the RSC (Royal Society of Chemistry). The second is the

ICDD Powder Diffraction File PDF-2 (ICDD 1995).

Of particular interest to this study was the unpublished structure of the B-type phase of

Gd2O3. Within the Daresbury database there are three distinct structural types of

Gd2O3, all of which are cubic. They are a = 10.80Å, space group Ia3 (Saiki et al 1984),

a = 10.81Å, space group I213 (Zachariasen 1928) and a = 5.21Å, space group Fm3m

(Kashaev et al 1975). The PDF-2 database lists 5 entries for Gd2O3, two of which are

cubic, space group Ia3, 1 is hexagonal (Föex 1966) and 2 are monoclinic, space group

C2/m (Guentert and Mozzi 1958), (Grier and McCarthy 1991).

The phase diagram for the sesquioxides implies that there are no monoclinic phases

existing at ambient temperature. Goldschmidt et al were unable to identify the cell for

the B-type oxide, stating it to be pseudotrigonal, orthorhombic or monoclinic. The first

publication of the monoclinic cell was over thirty years later (Douglass and Staritsky

1956) with the atom positions established the following year (Cromer 1957).
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Historically there have been a number of studies on B-type Gd2O3 (Guentert and Mozzi

1958), (Grier and McCarthy 1991). Although none of these studies published a

description of the unit cell, both concur that the system is analogous to that of B-type

Sm2O3. Furthermore, and contrary to the phase diagram, Guentert and Mozzi remark

that their B form was stable at ambient temperatures. The known structures of both

Eu2O3 and Sm2O3, both having similar unit cell parameters and the same space group,

would therefore be a useful starting point for the determination of the structure of

monoclinic Gd2O3 and for determining if this high temperature modification could be

retained on cooling.

It is interesting to note that there is a general lack of entries in the Daresbury database

for the B-types. The phase diagram indicates that for increasing atomic number of the

lanthanoid, an increasingly high temperature is required to convert the C-type to the B-

type. However, the diagram also indicates that after Ho2O3 the C-type converts either to

the H-type before melting, or just melts, and that no B-type exists. It is only quite

recently that heavy (Ho2O3 and above) monoclinic sesquioxides have been reported.

Just prior to the construction of the sesquioxide phase diagram it had been stated that

no monoclinic phases existed beyond Dy2O3 (Warshaw and Roy 1961). The ICSD

database reports monoclinic structures for Sm2O3, Eu2O3 and Tb2O3, together with a

recent entry for Er2O3 (Wontcheu and Schleid 2008). There is also a recent study

reporting the structures of a number of A and B-types across the series, although these

have been obtained theoretically (Wu et al 2007). Considering the report of the

existence of B-type Er2O3 (contrary to the phase diagram), it was decided to investigate

the possibility of there being a B-type cell for the only monoclinic species without any

entry whatsoever in the ICSD database, namely ytterbium sesquioxide. There are

reports of these heavy atom B-type oxides being obtained via temperature and pressure,

including those of ytterbia and lutetia (Hoekstra and Gingerich 1964), (Hoekstra 1966).

The use of inductively coupled radio frequency plasma spraying to create a residual

monoclinic phase of lutetia within an otherwise cubic sample has also been reported

(Sun et al 2007). However, my work was concerned only with structural conversions

obtained via increased temperature. A recent high-pressure study (Meyer et al 1995)

has shown the structure of monoclinic Yb2O3. A study at ambient pressure (Guo,

Harvey et al 2007) has shown the creation of nanoparticles of B-type Dy, Ho, Er, Tm
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and Yb sesquioxides by a method of flame synthesis. Another study (Guo et al 2007)

has shown the creation of B-type Er2O3 under pressure, which could be quenched to

ambient conditions. These references imply that there are modifications to be made to

the phase diagram i.e. the lines drawn thereupon are not absolute. The inference is that

it might be possible to create monoclinic ytterbia in the bulk material at high

temperature and retain it to ambient temperature.

1.5.2 Kinetic studies

There has been considerable work done on the kinetics of the C → B transition of the

intermediate oxides (Sm2O3, Eu2O3 and Gd2O3). There are two notable references

(Stecura 1966), (Ainscough et al 1975), but to date no kinetic work has been carried out

on the heavier oxides. In addition, there are gaps in work on the kinetics of the C ↔ A

transitions for the lighter oxides. Although Stecura did look at the kinetics for La2O3

and Nd2O3, there has been no work done on Ce2O3 (presumably because of the lack of a

pure sesquioxide) and Pr2O3. All kinetic studies have involved the raising of a sample

to a number of temperatures and at each temperature noting the degree of conversion

with time. Using XRPD data, Stecura measured this variation by noting the change in

the integrated intensity of the 222 Bragg reflection from the low temperature

modification. Ainscough measured it by comparing the patterns to a series of standards

containing both cubic and monoclinic phases in varying proportions.

Although their respective structures are well documented, there is no kinetic data for

the C → A phase transition in Pr2O3. It was therefore decided to perform a kinetic study

of this phase change by taking powder diffraction patterns in situ.

Further, there is no data for the θ → β or the higher temperature phase transitions in the

Pr-O system, or the C → B phase transition in Tb2O3. It was decided to investigate the

former by a combination of DSC and XRPD and the latter by DSC alone.
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1.5.3 Investigating and redrawing phase diagrams

Finally, the above results would be compared to the current phase diagrams for the

oxides and an attempt would be made at redrawing them.
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2 X-RAY DIFFRACTION

2.1 THEORY

2.1.1 The Bragg Construction

In 1912 Walter Friedrich and Paul Knipping, working under Max von Laue,

demonstrated the diffraction of X-rays, using a single crystal of copper sulphate for a

grating. Laue was subsequently awarded the Nobel Prize for demonstrating the both

wave-like nature of X-rays and the periodic internal structure of a crystal. The

explanation of these results in terms of crystal structure and the behaviour of X-rays

inside the crystal was carried out by W.H and W.L. Bragg in 1913 for which they

jointly won the Nobel Prize. Since then X-ray crystallography has become a powerful

and well-established tool for structure determination in the solid state.

Laue’s postulate that a crystal consisted of regularly spaced particles was confirmed by

this famous experiment. A photographic plate placed beyond the sample showed a

series of dark spots where X-rays had fallen after reflection from the crystal. He

proposed that different spots on the photograph were caused by different wavelengths

of X-rays. The Braggs interpreted these spots quite differently, explaining them as

showing diffraction occurring only in certain definite directions from the three-

dimensional periodic structure of the crystal. Rather than the slits of a diffraction

grating, the spacing now corresponded to the perpendicular distance between adjacent

parallel planes of atoms in the crystal. In certain directions, the wavelets propagating

from successive planes would constructively interfere and produce a dark spot, or

Bragg peak.

The Braggs considered the crystal as a series of parallel planes separated by a distance,

d, which, for the purpose of the construction, act like mirrors. This is illustrated in

figure 2.1. X-rays arriving from the left are incident on the parallel crystal planes at an

angle θ and leave the crystal at the same angle. The path difference between the top and

bottom waves is a multiple of the wavelength, λ.
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Figure 2.1 The Bragg Construction.

From figure 2.1

AB BC nλ+ = (2.1)

Therefore:

sin
2

n

d

λ
θ = (2.2)

Rearranging gives the Bragg equation:

nλ = 2d sin θ (2.3)

where n is an integer corresponding to the order of the diffracted beam.

The Bragg equation describes the condition for constructive interference from any set

of parallel planes of the crystal, separated by a distance d.

2.1.2 Describing crystal planes and reflections

A crystal is a repeat structure in three dimensions and the basic building block from

which it is constructed is called the unit cell. To illustrate this, figure 2.2 shows a unit

cell. The 3 side lengths in 3-dimensional space are termed a, b and c. The 3 interaxial

angles are termed α, β and γ.
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Figure 2.2 A unit cell. Cell edges are represented by a, b and c, interaxial angles by α,

β and γ.

In the simplest terms there are seven types of cell, each displaying different

symmetries. The highest symmetry is expressed by the cubic cell, which has one

parameter, namely the length of its edge. The lowest symmetry is shown by the triclinic

cell, with three different cell edges and three different interaxial angles. The seven

crystal systems are detailed in table 2.1, along with their associated degrees of freedom

and the restrictions placed on the unit cell parameters.

Crystal system Degrees of freedom Restrictions

Cubic 1 a = b = c ; α = β = γ = 90°

Tetragonal 2 a = b ≠ c ; α = β  = γ = 90°

Hexagonal 2 a = b ≠ c ; α = β = 90°; γ = 120°

Trigonal 2 a = b = c ; α = β = γ ≠ 90°

Orthorhombic 3 a ≠  b ≠  c ; α = β = γ = 90°

Monoclinic 4 a ≠  b ≠  c ; α = γ = 90° ≠ β

Triclinic 6 a ≠  b ≠  c ; α ≠ β ≠ γ ≠ 90°

Table 2.1 The seven crystal systems.

The seven crystal systems represent the building blocks of a crystal at its most basic

level. If we consider any of these cells to contain a single repeat unit i.e. only one point

of symmetry (at each of its 8 vertices) then we obtain the 7 primitive cells. However,

when translational symmetry is also taken into consideration it is found that there are
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actually 14 cell types, called the Bravais Lattices (or Space Lattices). These take into

account all possible combinations of cell-centered and face-centered symmetry points.

The 14 Bravais Lattices are illustrated in figure 2.3.

Figure 2.3 The 14 Bravais Lattices. Image from

http://www.seas.upenn.edu/~chem101/sschem/solidstatechem.html

A crystal lattice is a repeat structure in 3-dimensional space with each point in the

lattice representing a physical unit. For example, the primitive cubic cell has one repeat

unit at each vertex. This unit may be as simple as a single atom. It might be a group of

atoms or an organic molecule. Since each of these 8 points is shared amongst 8

adjoining unit cells, there is actually only one repeat unit per cell. The body-centred

unit cell has the one repeat unit by virtue of its 8 vertices and another repeat unit at the

body centre, making a total of 2 in the unit cell. The face-centred unit cell again has the

one repeat unit of the primitive cell plus another 3 by virtue of its face-centred units,

making a total of 4 in the unit cell.
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2.1.3 Crystal planes

Any set of parallel planes within a crystal lattice can be described by 3 numbers, called

the Miller indices of the planes. The numbers represent the number of intercepts on

each of the 3 spatial axes within a single unit cell. Figure 2.4 illustrates this concept.

Figure 2.4 A set of parallel planes in a crystal.

In figure 2.4 the set of parallel planes illustrated intersect the a axis twice per unit cell,

the b axis twice and the c axis once. Hence this set of planes is termed (221). The value

of n in the Bragg equation then becomes incorporated into the description of the set of

planes i.e. n is always taken to be 1.
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2.1.4 The Bragg equation reflected in crystal symmetry

Figure 2.5 A section of a 2-dimensional lattice.

Figure 2.5 shows a section of a 2-dimensional lattice, where d is the interplanar

spacing, a and c are the unit cell parameters and h and l are the Miller indices of the set

of planes under consideration. It follows from trigonometry that:

( 0 )
sin

/

h l
d

a h
θ = (2.4)

and 
( 0 )

cos
/

h l
d

c l
θ = (2.5)

Using the relationship sin
2
θ + cos

2
θ = 1

2 2

( 0 ) ( 0 )

2 2
1

h l h l
d h d l

a c
+ = (2.6)

Factorising

2 2
2

( 0 ) 2 2
1

h l

h l
d

a c

 
+ = 

 
(2.7)
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Rearranging

2 2

2 2 2

( 0 )

1

h l

h l

d a c
= + (2.8)

By analogy, in three dimensions the equation becomes:

2 2 2

2 2 2 2

( )

1

hkl

h k l

d a b c
= + + (2.9)

This equation represents the orthorhombic system. Combining the above with the

Bragg equation nλ = 2d sinθ gives:

sin
2
θ(hkl) = Ah

2
 + Bk

2
 + Cl

2
(2.10)

where 
2 2 2

2 2 2
, ,

4 4 4
A B C

a b c

λ λ λ
= = =

This provides a simple expression relating the angles at which Bragg diffraction can

occur and the respective planes giving rise to it. It can be simplified for higher

symmetry systems. For the tetragonal system, where a = b, the equations become

2 2 2

2 2 2

( )

1

hkl

h k l

d a c

+
= + (2.11)

sin
2
θ(hkl) = A(h

2
 + k

2
) + Cl

2
(2.12)

and for the cubic system, where a = b = c, the equations reduce to:

2 2 2

2 2

( )

1

hkl

h k l

d a

+ +
= (2.13)

sin
2
θ(hkl) = A(h

2
 + k

2
 + l

2
) (2.14)
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These equations for the orthogonal cells illustrate that Bragg diffraction may occur only

at specific angles (or specific interplanar spacings). It is possible to derive selection

rules for the Miller indices for different lattices. Table 2.2 shows the possible values of

h, k and l for cubic lattices.

Bravais lattice Allowed reflections Forbidden reflections Examples

Primitive (P) Any hkl None CsCl

Body-centred (I) h+k+l even h+k+l odd Fe

Face-centred (F) hkl all even or odd hkl mixed even or odd NaCl, Ag

Table 2.2 Values of h, k and l for cubic lattices.

2.1.5 Point groups and space groups

Once the cell type has been identified, the crystal can be assigned to one of the 230

space groups. A space group represents the most specific description possible for a

crystal lattice and categorically defines the structure. The symmetry operations present

in the lattice are described by the point group (or crystal class), of which there are 32 in

total. Any such symmetry operation leaves the structure visually unchanged and at least

one point unmoved. They consist of rotation (where the structure is rotated a specific

fraction of a circle), reflection (where the structure is reflected through a plane) and

inversion (where the signs of co-ordinates are reversed with respect to a centre of

symmetry). When the point group operations are combined with certain translational

operations, we arrive at the 230 point groups. The relevant translations are a pure

translation (moving in a line a certain fraction of a unit cell), a screw axis (rotation

followed by translation parallel to the axis of rotation) and a glide plane (translation

along a plane then reflection through the plane).
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2.2 EXPERIMENTAL DETAILS

2.2.1 The X-ray powder diffraction (XRPD) pattern

The Bragg equation defines the planes, d-spacings and directions at which constructive

interference occurs with a crystal. For a single crystal of sufficient size, the various

reflections can be identified as the detector is moved around the sample. This means

that together with a list of angles, interplanar spacings and intensities of the Bragg

peaks, the Miller indices of the planes are also known. However, if a single crystal of

sufficient size cannot be grown, X-ray powder diffraction (XRPD) is employed. Now

rather than a single crystal lattice having one orientation relative to the incident X-ray

beam, the bulk sample consists of a large number of randomly oriented

microcrystallites. An incident beam may strike a particular set of planes within a

microcrystal and Bragg reflection will occur at the corresponding angle. However, the

specific direction that the diffracted beam leaves the sample will depend on the

orientation of the microcrystal relative to the bulk powder. This is illustrated in figure

2.6.

Figure 2.6 X-ray diffraction from a single crystal versus powder.
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Figure 2.6(a) shows an X-ray beam incident on a single crystal. Bragg diffraction

occurs from a number of planes and spots are seen on the photographic plate. As in

figure 2.1, the Bragg construction, the angle between incident and scattered rays is 2θ.

Figure 2.6(b) shows four randomly oriented single crystals. Again Bragg diffraction

occurs and four sets of spots now appear on the plate. Figure 2.6(c) shows the effect of

placing a polycrystalline material in the beam. The crystallites now lie in every possible

orientation, and so each set of parallel planes in the sample gives rise to a cone of

scattered radiation with a semi-vertex angle of 2θ. The spots merge into circles where

they intersect with the plate, producing so-called Debye-Scherrer rings, named after the

camera invented by Debye, Scherrer and Hull. A modern X-ray powder diffractometer

measures intensity against 2θ, extending radially from the centre of the circle in figure

2.6(c). With a single crystal there is directional anisotropy as well as angular

information to the image. With the powder the directional information is lost and only

the angles are measurable. Thus an XRPD pattern consists of a set of 2θ values (readily

convertible to d-spacings via the Bragg equation) and the associated intensities of the

reflections.
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2.2.2 The factors that contribute to a powder pattern

2.2.2.1 Peak position and intensity

Figure 2.7 Peak positions and peak intensities.

The two most important features of an XRPD pattern are both expressions of the unit

cell. These features are illustrated in figure 2.7. Firstly the positions of the peaks in the

pattern i.e. the specific angles at which Bragg diffraction can occur are determined

solely by the cell type. The unit cell parameters of the lattice generate a series of

possible d-spacings. Essentially, all XRPD patterns of the same cell type will have the

same series of peaks, albeit there will be differences of scale between patterns due to

different cell sizes. For example, potassium chloride and elemental silver both have

face-centred cubic lattices and so both will have the same series of Miller indices from

which Bragg reflections occur. To illustrate how peak positions vary with unit cell

parameter, figure 2.8 shows a number of patterns for a cubic cell.
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Figure 2.8 How unit cell parameter affects peak positions.

For each cell in figure 2.8 only the unit cell parameter, a, has been changed. As the cell

shrinks, the magnitudes of the possible interplanar spacings decrease according to the

Bragg equation. Hence the angles at which Bragg diffraction occur increase in inverse

proportion.

Secondly, the intensities of the peaks are determined by atomic weights and the

positions of the atoms in the unit cell. To illustrate how peak intensities are affected by

changing the cell contents whilst leaving the peak positions unaffected, figure 2.9

shows 2 XRPD patterns based on the structure of the mineral europia (Eu2O3). The top

image gives the actual pattern based on the known structure. The second gives a

calculated pattern where the europium atoms are replaced by scandium, a much lighter

metal with fewer electrons to scatter the incident X-ray beam.
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Figure 2.9 How cell contents affect peak intensities. Upper pattern Eu2O3, lower

pattern Sc2O3.

Although an ideal powder pattern would contain sharp Bragg reflections, there is

always a profile to each peak. The height of the peak is determined by other factors in

addition to the atomic positions, the major factors being multiplicity and preferred

orientation. Multiplicity is the number of reflections contributing to a peak. If we

consider the equation for the cubic cell, sin
2
θ(hkl) = A(h

2
 + k

2
 + l

2
), it is clear that for

some values of 2θ there can be more than one set of planes with the same d-spacing. To

illustrate this, the (221) planes and the (300) planes both have h
2
 + k

2
 + l

2
 =9.

Therefore, some peaks in the pattern are actually the summation of several peaks, but

because the diffraction pattern is condensed into the one dimension of 2θ space

(compared to the 3 dimensions of a single crystal pattern), these peaks are

superimposed and a single peak is recorded. Preferred orientation becomes important

when the crystal morphology is elongated in one or more direction. In either case, the

material tends to line up in certain directions rather than the random orientation

desirable for XRPD. The result is that the intensities of particular peaks will tend to be

enhanced. This can be obviated somewhat by grinding the powder sufficiently prior to

analysis.

For an ideal powder sample the intensity is given by:



36

I(hkl) = c L(2θ) P(2θ) A(2θ) jhkl F(hkl)2
(2.15)

where c is a scale factor

L is the geometric (Lorentz) factor

P is the polarisation of the X-ray source

A is the absorption factor

jhkl is the multiplicity of the reflection

F(hkl)
 
is the structure factor, a measure of the scattering power of the electrons of the

unit cell

L, P are correction factors for the diffractometer; A is a correction factor for the sample.

Each atom in the unit cell is surrounded by an electron cloud and it is this that is

responsible for the scattering of incident X-rays. The scattering due to all atoms

throughout the unit cell is a vector quantity called the structure factor. This vector

quantity is a summation over all the atoms in the unit cell and is given by

(2 ( ))
( ) n n n n

W i hx ky lz

n n
F hkl s o e e

π− + +=∑  (2.16)

where sn is the atomic scattering length, the ratio of the atom X-ray scattering factor

(proportional to atomic number) to the electron radius 2.818x10
-15

m

on is the atomic occupation on a particular site

exp (2πi (hxn+kyn+lzn)) is the wave interference term

Wn is a thermal factor called the Debye-Waller factor, dependent upon both temperature

and atomic displacement.

Whereas the structure factor is a vector quantity and contains phase information, the

intensity contains the modulus of the square of the structure factor. Therefore the

intensity, which is the quantity measured in a powder pattern, can provide no

information on the phases of interfering wavelets. Hence nothing of the cell contents

can be inferred directly from the pattern. How the intensity relationship is employed in

structure solution will be explained further in 2.3.5.
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2.2.2.2 Peak width

Since the electron cloud of an atom has size, scattered X-rays arising from different

points on its surface will experience different degrees of interference.

Figure 2.10 Scattering of X-rays by a single atom. Image from

http://pd.chem.ucl.ac.uk/pdnn/peaks/peakcon.htm

Figure 2.10 shows that X-rays leaving the atom from different points may have a

different path length to the detector. This is one factor leading to peak widening. Peak

width is also determined by the size and strain of the crystallites. Figure 2.11 shows a

typical peak.

Figure 2.11 A peak from a powder diffraction pattern. Image from

http://pd.chem.ucl.ac.uk/pdnn/peaks/peakcon.htm
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Looking at the peak, there are two important features to note. First, the peak has a

distribution of intensities rather than a single value. Second, the assigned 2θ value may

not occur at the middle of the peak i.e. there may be some asymmetry. The quantity

used to measure the peak width is FWHM (full width at half maximum). It is clear from

this image that care must be taken to record the pattern as accurately as possible in

order that the most appropriate value for 2θ can be determined, as it is the 2θ values

that will be used in indexing in order to determine the cell type.

2.2.2.3 Short-range order

The regions between the peaks may contain information about short-range order in the

material. This may be important if the material shows only part crystallinity, or is

mixed with such a material. This might occur with a polymer, where there is a degree

of alignment in a certain direction, but this is not extended through the whole material.

2.2.3 Sources of X-rays

2.2.3.1 The X-ray tube

The modern X-ray tube is in principle no different to the cathode ray tubes employed

by Crookes in the late 19
th

 century. Indeed, it was Röntgen’s experiments with a

Crookes tube in 1895 that led to his discovery of X-rays. An evacuated glass tube has at

one end a hot tungsten filament, which, by virtue of its temperature, emits electrons. A

large potential difference, of the order of 100kV, is applied across the tube and the

electrons are accelerated to the anode, with which they interact. X-rays are then

produced, leaving the tube through a window perpendicular to the electron beam.

About 1% of the incident energy is converted to X-rays, the rest being converted to

heat. Because of the intense heat created in the anode it is mounted on a heat sink,

which is cooled with water. A schematic for an X-ray tube is shown in figure 2.12.
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Figure 2.12 The basic elements of an X-ray tube. In this example the anode metal is

shown as tungsten.

Image from http://www.genesis.net.au/~ajs/projects/medical_physics/x-rays/

In a vacuum tube, X-rays are generated in two ways. Firstly, the characteristic curve of

the emission spectrum, known as white radiation, represents the incident electrons

losing kinetic energy in the form of X-rays. This deceleration, caused by the electron

interacting with the metal nucleus, can occur over multiple events and so there is a

corresponding range of emitted X-ray energies, peaking with the incident electron

decelerating in one sudden burst of radiation. The term for this phenomenon is

Bremsstrahlung, or ‘braking radiation’. Bremsstrahlung refers to any emission of

radiation due to change of velocity of a charged particle, for example the generation of

synchrotron radiation. However, the term is often used more specifically to identify the

white radiation output of an X-ray tube. Figure 2.13 shows a typical X-ray emission

spectrum. Secondly, the characteristic spikes in the spectrum are due to specific

electron transitions in the atomic orbitals of the anode metal. An incoming electron

may knock out a low energy electron, close to the nucleus. A high-energy electron then

‘falls back’ to replace it, releasing radiation in the form of an X-ray photon. If the drop

is to the K shell, the emission is termed Kα or Kβ, depending upon the exact state from

which it fell.
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Figure 2.13 An X-ray emission spectrum. Image from

http://pd.chem.ucl.ac.uk/pdnn/inst1/xrays.htm

Characteristic emissions are designated by the name of the shell to which the electron

falls back (K, L, M etc). If the transition is between adjacent shells it is termed an α

line. If the transition is across 2 shells it is called a β line. It is these specific X-ray

energies in the spectrum which are employed in X-ray crystallography and typically the

Kα emission is used. A number of transitions are shown in figure 2.14.

Figure 2.14 Electron transitions giving rise to characteristic X-rays. Image from

http://en.wikipedia.org/wiki/K-alpha
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The Kα line results when an electron drops to the K shell (principal quantum number 1)

from a 2p orbital of the L shell (principal quantum number 2). The line is actually a

doublet, consisting of lines termed Kα1 and Kα2. The two lines have slightly different

energies, which arise from spin-orbit interaction energy between the electron spin and

the orbital momentum of the 2p orbital. The Kα emission is generally the most intense

one in the spectrum. For copper, a typical target material, it is about 1.54Ǻ. A list of

wavelengths is given in table 2.3.

Element
Kα

(weight average)

Kα2

(strong)

Kα1

(very strong)

Kβ

(weak)

Cr 2.29100 2.29361 2.28970 2.08487

Fe 1.93736 1.93998 1.93604 1.75661

Co 1.79026 1.79285 1.78897 1.62079

Cu 1.54184 1.54439 1.54056 1.39222

Mo 0.71073 0.71359 0.70930 0.63229

Table 2.3 X-ray wavelengths for typical anode metals. All values in Ǻngströms.

2.2.3.2 Synchrotron source

2.2.3.2.1 Introduction

Synchrotron radiation is emitted when charged particles moving at relativistic speed

experience a change in velocity. In practice this is obtained by forcing them to travel in

a circuit consisting of straight sections joined by dipole bending magnets. It is the

change in direction at each corner of this multi-sided polygon that forces the emission

of synchrotron radiation. Modern synchrotron sources are housed in large toroidal

buildings and typically have a circumference measured in hundreds of metres.

Synchrotron radiation is emitted in a broad continuum, typically from X-ray to far

infra-red. Compared to the X-rays generated in a lab-based powder diffractometer,

synchrotron radiation is of high intensity and hence the signal-to-noise ratio is low,

giving a high resolution pattern. The synchrotron radiation passes through a double

crystal monochromator, from which a specific wavelength can be selected. Thus the

output incident beam is highly monochromatic with no Kα couplet and is highly

collimated. Peak positions are insensitive to sample shape or incorrect alignment and
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peak widths are unaffected by the parafocussing condition as the detector is rotated

around the sample. Because of this, peak widths are generally narrow. XRPD patterns

obtained via synchrotron radiation are therefore superior in many ways to their lab

equivalents.

Photon energies emitted by a synchrotron source are measured in keV rather than

Ǻngströms. This is shown by the equation

λ (Ǻngström) x energy (keV) = 12.3984 (2.17)

Therefore Cu Kα1 radiation at 1.54056Ǻ can also be expressed as 8.05 keV.

The synchrotron radiation used in this work was generated at Diamond Light Source,

Oxfordshire and collected on beamline I11.

Figure 2.15 Schematic of the Diamond Light Source site. Image from

http://www.diamond.ac.uk/Home/Technology/Components/storagering.html
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2.2.3.2.2 Parts of the synchrotron machine

There are four main components to the synchrotron source. These are an electron gun

to generate low-energy electrons; a linear accelerator (linac) to increase the velocity of

the electrons; a small booster synchrotron to accelerate the electrons further before

injection into the storage ring; and a storage ring to confine the electrons in orbit and

maintain their energy as they generate synchrotron radiation.

The electron gun and linac are essentially the same as the X-ray tube in a powder

diffractometer. These are labelled ‘1’ in figure 2.15. Electrons are released by

thermionic emission from a hot tungsten cathode under vacuum. From here they are

attracted to the anode, but are grouped into bunches by a grid which is turned on and

off alternately. As the grid opens, a bunch of electrons passes through before the grid

closes again. This bunch is accelerated by the anode to 90keV before entering the 30m

linac. Within the linac, the electron bunch is accelerated further by tuning an electric

field to its speed. This ensures that the electrons experience a permanently positive

field. On exiting the linac, electrons are travelling at near light speed, with an energy of

100MeV before entering the booster synchrotron.

The 158m booster synchrotron, labelled ‘2’, is able to accelerate electrons to an energy

of 3GeV before entering the main storage ring. Rather than a regular polygon, it

consists of two straight sections and two curved sections, rather like an athletics track.

A series of 36 dipole magnets operating at up to 0.8 Tesla are needed to maintain the

electron beam around these curves as the energy of the beam increases to its maximum.

The electrons are accelerated along the straight sections by a radio-frequency voltage

source.

The 561.6m storage ring, labelled ‘3’, actually consists of 24 straight sections

connected by a total of 48 bending magnets. Each of these magnets is capable of

diverting the electron beam by 7.5°, meaning that a closed orbit is maintained around

the building. At an energy of 3GeV, an electron will orbit the ring over 500,000 times

per second. The storage ring is under high vacuum to minimise energy loss from the

beam striking air molecules and at this pressure the beam lifetime is defined as the time
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for the energy to drop to 37% (e
-1

) of its starting value. This equates to about 20 hours.

The beam will eventually dissipate, colliding with the occasional air molecule and

eventually with the outer wall of the storage ring. Therefore the beam energy is

maintained by use of the linac and booster synchrotron to periodically top up the

storage ring. In addition, on each circuit of the ring the electron beam passes through a

radio frequency cavity (labelled ‘9’). This ensures that energy lost as synchrotron

radiation via the bending magnets or insertion devices is replaced and the beam orbit is

maintained.

Much of the power consumed by the synchrotron machine is due to the bending

magnets. Operating at 1.4 Tesla, each coil carries 1,300A of current.  The magnetic

field and electron energy also determines the continuum of synchrotron radiation. At

Diamond, the average energy photons are 8keV.

The electron beam is highly contained; the gap through the bending magnets is only

50mm, whilst the beam itself averages 0.25mm wide and 0.017mm high.

Beamlines at Diamond designated with a ‘B’ use only the polychromatic synchrotron

radiation emitted by the bending magnets at the ends of the straight sections. There are

currently 4 ‘B’ beamlines at Diamond. Beamlines designated with an ‘I’ use insertion

devices to stimulate the emission of high-intensity X-rays. These are placed in the

straight section before the beamline. They consist of magnets alternately arranged so

that the beam experiences a rapid oscillation as it passes the device, analogous to

driving a vehicle over a cattle grid at speed. There are two types of insertion device,

namely wigglers and undulators, both consisting of magnetic arrays. A wiggler

produces a wide spectrum of very high energy X-rays; undulators are more commonly

employed and create a narrow energy range of X-rays, which can be changed by

adjusting the separation of the magnets.
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Figure 2.16 Insertion device consisting of alternately-arranged magnets causing the

electron beam to oscillate. Image from

http://www.diamond.ac.uk/Home/About/FAQs/Science.html#storagering

The various beamlines, labelled ‘4’, are arranged tangentially to the storage ring. These

are the points at which synchrotron radiation is emitted, as the electron beam is forced

to change direction by the bending magnets. Each beamline consists of 3 sections: an

optics hutch (‘6’) where the particular X-rays required are filtered, an experimental

hutch (‘7’) where the X-rays are incident upon the sample, and a control cabin (‘8’)

where the experimental data is collected.

2.2.3.2.3 Beamline Schematic

The beamline used at Diamond Light Source was I11. A schematic of the beamline is

shown below.

Figure 2.17 Schematic of beamline I11 at Diamond. Image from

http://confluence.diamond.ac.uk/display/I11Doc/Technical+Documentation
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2.2.4 The X-ray powder diffractometer

2.2.4.1 Introduction

In its simplest terms an X-ray powder diffractometer is a machine whereby a

monochromatic X-ray source is targeted at a microcrystalline sample and the intensity

of reflected radiation measured against angle. In principle the source emitting from the

tube anode is, of course, polychromatic. It is also divergent and so measures are taken

to produce a straight, flat monochromatic beam of a similar width to the sample size.

The usual geometry used in a diffractometer is reflection, although some machines

employ transmission geometry. The diffractometer geometry used in this work is

known as Bragg-Brentano and is shown in figure 2.18. The incident beam and detector

move on the circumference of a circle centred on the sample in what is known as a

parafocussing mode. The powder sample is held in a shallow, circular well. The

powder is pressed into the well and its surface made level with the top of the well. The

sample holder is then aligned on the goniometer axis of the diffractometer at an angle θ

to the incident beam. The detector, a scintillation counter, rotates around the sample at

twice this angle, meaning that a set of readings for 2θ against intensity is obtained. In

theory this information is all that is needed to arrive at a full crystal structure for the

material, although it will be shown later that this is by no means a straightforward task.

Figure 2.18 Diffractometer with Bragg-Brentano geometry. Image from

http://pd.chem.ucl.ac.uk/pd/welcome.htm
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2.2.4.2 The parts of the diffractometer

After leaving the X-ray tube the polychromatic beam strikes the primary

monochromator, which consists of a single crystal. The crystal used is oriented such

that the Bragg condition is satisfied for radiation at the Kα wavelength. Kαradiation

exiting the crystal then passes through a Soller slit. This is a set of metal plates used to

slice a single source of X-rays into a series of thinner, parallel beams. The purpose of

this is to limit the out-of-plane (axial) divergence of the X-ray beam whilst maintaining

a significant width. This means that the beam can be targeted accurately and will strike

the full width of the sample. The beam then passes through a divergence slit. As the

spread of the beam across the sample increases at low angle, in some diffractometers

these slits are variable so that this variation can be compensated for prior to striking the

sample. The monochromatic beam then strikes the sample and the diffracted beam

passes through an anti-scatter slit and a receiving slit. After passing through another

Soller slit the beam strikes the secondary monochromator, if present. The beam then

passes through the detector slit to meet the detector, where a scintillant is used to

convert X-ray excitation of electrons into visible light. Light photons give rise to an

electrical signal, which can be amplified. A schematic of a diffractometer is given in

figure 2.19.
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Figure 2.19 Schematic of a powder diffractometer. Image from PANalytical X’Pert

manual.

Figure 2.20 shows the PANalytical X’Pert diffractometer used in this work.

Figure 2.20 PANalytical powder diffractometer.
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In the above image the X-ray tube is positioned on the left, identified by the radiation

label. The sample holder is inserted from below the central section (steel cylinder) and

held in place by four bolts. The incident X-ray beam passes from the X-ray tube into

the sample, at an incident angle θ, and exits the sample at an angle 2θ to its original

direction. The diffracted beam is then recorded by the detector on the right of the

image, marked ‘X-Celerator’.

2.2.4.3 Sample preparation

There are a number of issues to consider when preparing a sample for the collection of

XRPD data. All are designed to ensure that the reflected beam positions and intensities

are representative of the polycrystalline material. Grinding of the powder ensures that

particle sizes are similar and small, preferably <10µm. This is essential if peak

intensities are to be measured accurately; large differences between crystallite sizes

lead to inaccuracies in measured intensities. Grinding can also obviate preferred

orientation to a lesser degree.

The sample needs to be flat and level with the sample holder; if not the peaks will be

displaced. If the sample is flat but not level with the sample holder then a zero shift can

be added to the line peak positions. However, if the sample surface is rough then

adding this shift is impracticable. An uneven surface also tends to reduce intensities at

low angles.

The sample needs to be of sufficient depth. In this example the well needs to be filled;

if not, intensities will again be affected at different angles. In a thick sample the

incident beam penetrates the same volume of sample irrespective of angle. At low

angle it will only penetrate the sample to a shallow depth but for a longer horizontal

distance than if it were at high angle, where it penetrates deeply but not for as long

horizontally. This is illustrated in figure 2.21.
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Figure 2.21 Penetration of incident beam into sample.

In figure 2.21, each sample is shown with 2 different incident beams. For the thick

sample the volume of material probed by the beam is the same for both angles. For the

shallow sample, the high angle beam passes through the sample before the relevant

volume is probed. This leads to peak intensity reduction at high angle. Additionally, the

incident beam needs to strike within the sample for all angles. If not, the beam overspill

at low angle will not give rise to Bragg diffraction and leads to a reduction in peak

intensity.

2.2.4.4 Calibration standard

It is common practice to calibrate the diffractometer with a material that has a small

number of well-established peaks. In this work the mineral quartz was used. When

XRPD data is collected from the standard, any deviation from the expected peak

positions will provide the adjustment needed to the peak positions recorded in

subsequent diffraction patterns.
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2.2.4.5 Data collection

The diffractometer can be set up to scan the sample at a desired rate. In practice there

are two factors to consider. Firstly, the 2θ step determines the angle the detector moves

between readings. Typically this might be 0.01°. Secondly, for each reading a time to

collect the diffracted radiation is stated. This speed would depend on the information

required. If the sample was being analysed for the presence of a known structure, a

rapid scan could be performed; in this case the signal to noise ratio would not prevent

the identification of a set of known peaks in the pattern from the sample. If the sample

was of unknown structure then a slow scan would be required, in order to get the

sharpest peaks possible which in turn would allow precise determination of their

positions and intensities.

2.2.4.6 Output data

The output from the diffractometer consists of values of 2θ and intensity. When plotted

these create a histogram, examples of which are given in figures 2.7 to 2.9. It is clear

from the images that Bragg diffraction is occurring in certain directions because of the

appearance of discrete, sharp peaks in the histogram. From these values for 2θ and

intensity, together with the molecular formula, it should now be possible to determine

the full crystal structure. This will be explored in the following chapter.

2.3 STRUCTURE DETERMINATION

Crystal structure determination from XRPD data is extremely challenging for a number

of reasons. First, as discussed in 2.2.2.1, a powder pattern is essentially a single crystal

pattern but compressed into the one dimension of 2θ space. This means that all the

directional information obtained from a single crystal diffractometer (i.e. the relevant

planes giving rise to Bragg diffraction) is not immediately available, although it is

possible to determine this information if the peak positions and intensities can be

sufficiently resolved. Whereas a single crystal would generate a single point on the

detector for each plane, a polycrystalline sample generates a cone of radiation; where

the cone intersects the detector a peak is measured. Second, all planes which have the
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same spacing will give rise to superimposed Bragg reflection at the same 2θ position

and therefore only one peak is seen. For example, in the cubic system, planes (200),

(020) and (002) will give rise to Bragg reflection at the same angle. A knowledge of all

possible planes giving rise to the peak is therefore required in order to work back and

assign intensities to individual reflections. Third, peaks which are close together may

be subject to significant overlap, especially if there are instrumental or sample

preparation errors. Peaks may even overlap so much as to be indistinguishable. Fourth,

if more than one phase is present then there may be overlap of peaks from unrelated

structures. Fifth, once the peak positions are ascertained, the task of assigning Miller

indices to the reflections is necessary in order to establish the unit cell. Sixth, in order

to index a pattern, an adequate number of peaks needs to be recorded. For many of the

automated programs available this number needs to be at least 20. This process of

assigning Miller indices to reflections and determining unit cell parameters is called

indexing and is widely regarded as the most challenging part of the whole process

(LeBail and Cranswick 2002). For increasing degrees of freedom this becomes

increasingly difficult to perform. For the cubic cell it is usually an easy task, but at the

other extreme, the triclinic cell, indexing often fails to find the correct structure; there

are so many possible combinations of the 6 unit cell parameters that a multitude of

potential cells might be found.  This is why it is so important to obtain the best data

possible from the diffractometer, particularly establishing with great precision where

the peaks lie.

2.3.1 Treatment of data from the diffractometer

2.3.1.1 Raw data

Raw data from the diffractometer consists primarily of a two-column text file

containing values for 2θ and intensity. The value of 2θ increase in equal steps, specified

at the beginning of the file.
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2.3.1.2 Background removal

Based on the known emission profile from the diffractometer, a subtraction from the

recorded pattern is made. This has the effect of dropping the peak profiles slightly so

that their tails lie on the 2θ axis.

2.3.1.3 Kα2 stripping

At low angle, the Kα1 and Kα2 peaks are closely overlapped. It is possible to

mathematically remove the Kα2 peak, since both their respective wavelengths and the

ratio between their intensities are known (see table 2.3). The measured intensity is

therefore reduced to take account of this.

2.3.1.4 Peak identification

Bragg peaks are measured as envelopes rather than sharp lines. This necessitates the

allocation of an absolute position for the particular line. Generally this is done

automatically by peak finding software, although it is possible to assign peak positions

manually.

2.3.1.5 Corrections factors

A correction factor ∆2θ can be applied to measured peak positions 2θobs to determine

the theoretical position 2θcalc

2θobs = 2θcalc + ∆2θ (2.18)

The factors affecting peak position are given by:

1 2 3
2 4sin 5cos 6

tan 2 sin 2 tan 2

p p p
p p pθ θ θ

θ θ θ
∆ = + + + + + (2.19)
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where p1 and p2 are measures of the incident beam axial divergence and peak

asymmetry. Axial divergence is corrected by use of Soller slits. Peak asymmetry is

caused by the finite detector receiving slit length.

p3 is the incident beam in-plane divergence. This arises because the sample is not

curved i.e. it does not all fall on the diffractometer focussing circle. However, the effect

is small.

p4 is the absorption error, which is important for thick samples with low absorption

coefficients.

p5 is the sample displacement, due to displacement of the sample off the goniometer

axis

p6 is the zero error, caused by misalignment of the source and detector.

2.3.2 Indexing

Historically there have been two main methods employed for indexing XRPD patterns,

namely graphical and arithmetical. Graphical methods work well for high-symmetry

systems (cubic, tetragonal, hexagonal). Arithmetical methods may be employed for all

symmetry systems, although the chance of success decreases with decreasing

symmetry. There has also been some development of software employing global

optimisation methods.

2.3.2.1 Graphical methods

The equation relating sin
2
θ and the Miller indices for the cubic system is:

sin
2
θ(hkl) = A(h

2
 + k

2
 + l

2
) (2.20)

where 
2

24
A

a

λ
=

The expression shows that for all cubic cells the peak positions will arise in the same

distribution, subject to a scaling factor A (which is dependent upon the unit cell

parameter, a). That is, the ratios between peak positions for any pattern will be

identical. There may be missing peaks due to the particular internal symmetry of the
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cell but the essential list of peaks will be the same. Thus, if this peak distribution is

found in the diffraction pattern, the presence of a cubic cell can be established.

Historically this has been achieved by a graphical method, as shown in figure 2.22.

Figure 2.22 A graphical method for indexing the cubic system.

A chart as in figure 2.22 is issued upon which is printed a set of lines corresponding to

the possible Miller planes for the cubic system. The spacing of these lines increases as

they fan out across the card from left to right, the horizontal axis marked in Ǻngströms.

Each line is marked with its corresponding Miller plane. The relative positions of the

recorded Bragg peaks are marked on a thin strip of card which is moved across the

chart until the lines on each match up. At this position the corresponding point on the
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horizontal axis gives the unit cell parameter. The Miller planes can then be assigned

directly from the fan diagram. Similar charts exist for the tetragonal and hexagonal

systems. Methods have been developed for determining the tetragonal system (Hull and

Davey 1921), (Bjurström 1931), (Bunn 1961). Charts do exist for the orthorhombic

system although with increasing degrees of freedom they become increasingly

complicated.

2.3.2.2 Arithmetical methods

2.3.2.2.1 Cubic system

Rearranging equation 2.20 gives

2 2 2
a d h k l= + + (2.21)

The expression indicates that for the cubic system, there is a relationship between the

inter-planar spacing, d, of any set of planes (hkl) values and the unit cell parameter, a.

The possible values of 
 2 2 2

h k l+ +  are known. Therefore if we multiply the highest

recorded d-spacing by each of these values, a list of possible unit cell parameters is

generated. If this is repeated for the next peak, another list of candidate values is

obtained. Some of the values in both lists will match. If the process is repeated for

subsequent peaks, the list of matching values will eventually collapse to one value, a.

This is illustrated in table 2.4. The material concerned is iron chromium oxide, JDPDS

reference 24-512. The table looks at the first 5 peaks in the XRPD pattern.
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hkl d1 d2 Matches d3 Matches d4 matches d5 Matches

2.956Å 2.517Å 2.415Å 2.091Å 1.708Å

100 2.9560 2.5170 8.3608 2.4150 8.3608 2.0910 8.3608 1.7080 8.3608

110 4.1804 3.5596 9.3477 3.4153 11.0603 2.9571 11.8240 2.4155

111 5.1199 4.3596 10.6580 4.1829 11.8240 3.6217 12.5413 2.9583

200 5.9120 5.0340 11.0603 4.8300 12.5413 4.1820 3.4160

210 6.6098 5.6282 11.8240 5.4001 14.4814 4.6756 3.8192

211 7.2407 6.1654 12.5413 5.9155 14.7800 5.1219 4.1837

220 8.3608 7.1192 13.5461 6.8307 5.9142 4.8310

300 8.8680 7.5510 14.4814 7.2450 6.2730 5.1240

310 9.3477 7.9595 15.0727 7.6369 6.6123 5.4012

311 9.8039 8.3479 8.0096 6.9351 5.6648

222 10.2399 8.7191 8.3658 7.2434 5.9167

320 10.6580 9.0752 8.7074 7.5392 6.1583

321 11.0603 9.4178 9.0361 7.8238 6.3908

400 11.8240 10.0680 9.6600 8.3640 6.8320

322 12.1879 10.3779 9.9573 8.6214 7.0423

330 12.5413 10.6787 10.2460 8.8714 7.2464

331 12.8849 10.9714 10.5267 9.1145 7.4450

420 13.2196 11.2564 10.8002 9.3512 7.6384

421 13.5461 11.5343 11.0669 9.5822 7.8270

332 13.8649 11.8058 11.3274 9.8077 8.0112

422 14.4814 12.3307 11.8310 10.2438 8.3675

430 14.7800 12.5850 12.0750 10.4550 8.5400

431 15.0727 12.8342 12.3141 10.6621 8.7091

333 15.3598 13.0787 12.5487 10.8652 8.8750

432 15.9185 13.5545 13.0052 11.2604 9.1979

440 16.7217 14.2383 13.6613 11.8285 9.6619

441 16.9809 14.4591 13.8731 12.0119 9.8117

433 17.2363 14.6765 14.0817 12.1925 9.9593

442 17.7360 15.1020 14.4900 12.5460 10.2480

443 18.9276 16.1167 15.4635 13.3889 10.9365

Table 2.4 Arithmetical derivation of unit cell parameter for a cubic cell. All values are

in Ǻngströms.

Although it is possible to work in terms of d-spacings and Miller indices for cells of

high symmetry, using the relationship between sin
2
θ and the Miller indices is a useful

method for dealing with all crystal systems. Recalling equation 2.20, the relation

between sin
2
θ and the Miller indices:

sin
2
θ(hkl) = A(h

2
 + k

2
 + l

2
)
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where 
2

24
A

a

λ
=

This equation shows a relationship between the sum of the squares of the possible

Miller indices in the cubic system and the angle at which diffraction occurs. For each

peak the value of sin
2
θ can be determined. If the cell is cubic there should be found

whole number ratios between the values of sin
2
θ. For example, if the (400) and (200)

reflections are present, then the ratios of their corresponding sin
2
θ values should be 4:1.

This method of indexing is suggested by D’Eye and Wait (D’Eye and Wait 1960) and

an example of this process is shown in table 2.5.

Line 2θθθθ sin
2θθθθ ratio to

0.006444

INTEGER

ratio

hkl sin
2θθθθ calc ABS

difference

1 15.9800 0.0193 3.0000 3 111 0.0193 0.0000

2 18.4700 0.0258 3.9963 4 200 0.0258 0.0000

3 26.2600 0.0516 8.0120 8 220 0.0516 0.0001

4 30.8000 0.0706 10.9483 11 311 0.0709 0.0003

5 32.2500 0.0772 11.9741 12 222 0.0773 0.0002

6 37.3700 0.1027 15.9321 16 400 0.1031 0.0004

7 42.0000 0.1285 19.9374 20 420 0.1289 0.0004

8 46.2500 0.1543 23.9434 24 422 0.1547 0.0004

9 49.2600 0.1737 26.9611 27 333 0.1740 0.0003

10 54.1300 0.2071 32.1353 32 440 0.2062 0.0009

SUM 1.0107 157

Estimated A 0.0064

Refined A 0.0064

a 9.6005

Table 2.5 Arithmetical method for indexing the cubic system.

Looking at the list of sin
2
θ values, if the ratio of each peak to peak 1 is taken, the first

and second ratios are 1 and 1.33 respectively, meaning that the divisor is smaller than

the value of sin
2
θ for line 1. By scaling up from 1 and 1.33 we can take the ratios to be

3 and 4, making the divisor one third of the first sin
2
θ i.e. the divisor (the constant A) is

taken to be 0.06444. Dividing throughout gives ratios close to whole numbers. The

value of A can be refined by calculating:
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2sin

A

ratio

θ

=
∑

∑
(2.22)

The unit cell parameter is then calculated from the relationship 
2

24
A

a

λ
= . The lower is

the difference between experimental and calculated values for sin
2 

θ then the more

likely it is that the pattern has been indexed correctly. D'Eye and Wait recommend that

differences up to 0.0005 can be accepted but state that poor correlation is often due to

the weaker intensities in the pattern which have a lower accuracy of measurement than

the stronger lines. It is therefore essential that an XRPD pattern is measured accurately.

In this case, all differences except for that of line 10 are less than 0.0005, which implies

that the system is indeed cubic.

2.3.2.2.2 Tetragonal system

For the tetragonal system the relationship becomes:

sin
2
θ(hkl) = A(h

2
 + k

2
) + Cl

2
(2.23)

the volume of the unit cell being a
2
c

A method used for the indexing of tetragonal and orthorhombic systems (D’Eye and

Wait 1960) is based on two sources (Hesse 1948), (Lipson 1949). Hesse states that the

indexing of tetragonal photographs has been successful in several cases where he did

not know the crystal system. His method is to look for ratios in the lines where one of

the Miller indices is zero, for example the hk0 planes.  The relationship would then be

simplified to sin
2
θ (hk0) = A(h

2
 + k

2
). The first possible nine values of sin

2
θ(hk0) for these

planes are shown in table 2.6.
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hk0 100 110 200 210 220 300 310 320 330

sin
2
θ A 2A 4A 5A 8A 9A 10A 13A 18A

Table 2.6 Arithmetic method for indexing the tetragonal system.

It can be seen that ratios of two occur between the first and second values, the second

and third values, and the third and fifth values, and so on. In fact, there are a total of

five ratios of two for these nine lines. This ratio of two cannot occur in any other

system other than the cubic and the tetragonal. Assuming the cubic system has been

discounted, it is likely that the system is tetragonal and an attempt can be made at

finding the other constant, C. In the above case, because the plane (100) was present,

the constant A was identifiable as the smallest factor to give a ratio of two.  However, if

this line had been absent and the first line had been due to the (110) plane, the lowest

factor would have been 2A. If the first line was due to the (200) plane then the lowest

factor would have been 4A. It is important to be aware that a value that appears to be A

may in fact be a multiple of A, otherwise known as a harmonic; if the pattern cannot be

indexed satisfactorily, the value may be divided by two and then re-tested. If necessary

it may be divided by four, and so on.

The method for finding C is to subtract all possible values for A(h
2
 + k

2
) from the

observed lines. For example, subtracting 2A from the sin
2
θ (hkl) for a (201) line would

give C, or subtracting 5A from the sin
2
θ (hkl) for a (212) line would give 4C. Values of

A, 2A, 4A, 5A, 8A etc are subtracted from the values of sin
2
θ (hkl) to leave a value of C

(or 4C, 9C, 16C etc depending on the Miller indices for the plane giving rise to line 1)

somewhere in each column of the difference table. In addition, there will be multiples

of A present due to subtractions from hk0 lines.

For each possible value of A there may be several possible values of C. Using each pair

of A and C, theoretical sin
2
θ (hkl) values are calculated by using all possible Miller

indices for the tetragonal system and are then compared against the experimental

values. The combination of A and C that gives the highest number of matches is likely

to be the correct combination. The values of the constants and hence the unit cell

parameters can then be refined.



61

2.3.2.2.3 Hexagonal system

For the hexagonal system the equation is:

sin
2
θ(hkl) = A(h

2
 + hk + k

2
) + Cl

2
(2.24)

where 
2

23
A

a

λ
=  and 

2

24
C

c

λ
= , the volume of the unit cell being a

2
c sin θ

2.3.2.2.4 Orthorhombic system

For the orthorhombic system the relationship is:

sin
2
θ(hkl) = Ah

2
 + Bk

2
 + Cl

2
(2.25)

The volume of the unit cell is given by abc.

The orthorhombic system is an example of an intermediate symmetry order and tends

to be the cut-off point between the likelihood of success or failure with manual

indexing methods. It has been shown that the cubic and tetragonal systems can be

recognised by a constantly recurring factor, or by ratios of 2 appearing in the sin
2
θ(hkl)

values. For the orthorhombic system there are no such relationships but, as Hess states,

this may be overcome if enough lines are present. The general equation for the

orthorhombic system has 3 constants. If all three constants are unknown it is necessary

to break the equation down using the lines of the pattern. The A component is only

dependent on h, the B component on k and the C component on l. This generates the

following relationships:

sin
2
θ (h00) = Ah

2
(2.26)

sin
2
θ (0k0) = Bk

2
(2.27)

sin
2
θ (00l) = Cl

2
(2.28)

Therefore:
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sin
2
θ (hk0) = Ah

2
 + Bk

2
(2.29)

Because each Miller index has its own constant, the values of Ah
2
, Bk

2
 and Cl

2
 can be

treated independently. Additions of sin
2
θ (hkl) values of lines, each with two indices of

zero, can be done to generate the sin
2
θ (hkl) value of some other line. For example

sin
2
θ (100) = A, sin

2
θ (010) = B and sin

2
θ (001) = C

This leads to equations of the following types:

sin
2
θ (110) = sin

2
θ (100) + sin

2
θ (010) = A + B (2.31)

sin
2
θ (011) = sin

2
θ (010) + sin

2
θ (001) = B + C (2.32)

sin
2
θ (101) = sin

2
θ (100) + sin

2
θ (001) = A + C (2.33)

sin
2
θ (111) = sin

2
θ (100) + sin

2
θ (010) + sin

2
θ (001) = A + B + C (2.34)

and generally:

sin
2
θ (hkl) = sin

2
θ (h00) + sin

2
θ (0k0) + sin

2
θ (00l) = Ah

2
 + Bk

2
 + Cl

2
(2.35)

Therefore, if two or three lines at the low angle end of the pattern can be added together

to produce a third line it is likely that the first two lines corresponded to planes having

two Miller indices equal to zero. However, the chance of there being all (100), (010)

and (001) planes in the pattern is low. It would be useful to make use of the subtraction

of lines, thereby generating a much better chance of finding at least one of the

constants.  Rewriting the above equations:

sin
2
θ (100) = sin

2
θ (110) - sin

2
θ (010) = A (2.36)

sin
2
θ (100) = sin

2
θ (101) - sin

2
θ (001) = A (2.37)

and generally:

sin
2
θ (100) = sin

2
θ (1kl) - sin

2
θ (0kl) = A (2.38)

Equations of a similar type can be written for B and C. If a difference table is set up
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such that each sin
2
θ (hkl) value is subtracted from every other value there should arise

recurring differences. The differences that occur most frequently are likely to be one or

more of the constants.

However, if insufficient lines are present, the recurring numbers may all be harmonics.

These multiples will not necessarily be of magnitude 4, 9, 16, 25 etc as the multiplier is

generated by subtraction of two lines. The possible multipliers produced by the

subtraction of two square numbers are 3, 4, 5, 7, 8, 9, 11, 12, 15, 16, 20, 21, 24, 25, 32,

35, 36 etc. If a number recurs but does not generate another constant when used as

below, then it may be one of these multiples. Dividing by each multiple in turn and

testing for generation of another constant should locate the first constant.

Once the first constant has been found, a second can be found, again by a process of

subtractions.  For (hk0) lines the quadratic form can be written as sin
2
θ (hkl) - Bk

2
 = Ah

2
.

Subtracting values of Bk
2
 from sin

2
θ should generate A or a multiple of A

It should now be relatively easy to find C. To do this, values of Ah
2
 + Bk

2
 are

subtracted from sin
2
θ.  Any recurring values in the table should be equal to C, 4C, 9C

etc. Once a choice of constants has been decided upon, an attempt can be made at

indexing the diffraction pattern.

Compared with the relatively straightforward use of graphical charts, the manual

arithmetical indexing of XRPD patterns is not always a straightforward problem and

often relies on some degree of intuition on the part of the investigator. To write a

computer program to automatically index a pattern, even one of orthorhombic

symmetry, is a substantial task. The methods employed so far approach the problem

from the high symmetry end. If the pattern cannot be indexed on a cubic cwll then the

system of next lowest symmetry is looked for. For each system the task becomes

increasingly difficult, until the problem is either solved or abandoned. The following

sections discuss methods that approach the problem from the low symmetry side.
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2.3.2.2.5 Monoclinic system

For the monoclinic system the equation is:

sin
2
θ(hkl) = Ah

2
 + Bk

2
 + Cl

2
 – Dhl (2.39)

where 
2 2

2 2 2 2 2
, ,

4 sin 4 4 sin
A B C

a b c

λ λ λ

θ θ
= = =  and 

2

2

cos

2 sin
D

ac

λ θ

θ
= , the volume of the

unit cell being abc(1 - cos
2
θ)

2.3.2.2.6 Triclinic system

For the triclinic system the equation for sin
2
θ is written in terms of the reciprocal

lattice:

sin
2
θ(hkl) =  λ

2
/4(h

2
a*

2
 + k

2
b*

2
 + l

2
c*

2
 + 2klb*c*cosθ* + 2hlc*a*cosθ* + 2hka*b*cosθ*)

(2.40)

where 
sin cos cos cos

* ,cos *
sin sin

bc
a

V

α β γ α
α

β γ

−
= =

sin cos cos cos
* ,cos *

sin sin

ac
b

V

β α γ β
β

α γ

−
= =

sin cos cos cos
* ,cos *

sin sin

ab
c

V

λ α β γ
γ

α β

−
= =

the volume of the unit cell given by:

V = abc (1 + 2cosα cosβ cosγ - cos
2
α - cos

2
β  - cos

2
γ)

The expression for the triclinic system is the equation from which most of the auto-

indexing methods in current use are derived. Its use makes no assumptions about the
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symmetry of a material under investigation. The complexity of the equation illustrates

that recognition of the cell type for the triclinic system from XRPD data alone is a

problem of formidable complexity. A number of methods attempt this task (Ito 1949),

(DeWolff 1957), (Visser 1969). Arithmetical methods work well for crystal systems up

to orthorhombic and can be extended to the monoclinic system, although successful

indexing is not always certain. For systems of the lowest symmetry these approaches

often fail to provide a general solution to the problem.

The method for the cubic system in 2.3.2.2.1 was that used by the program

GRAPHPRO in chapter 7. Another program has been written by the author and has

proved successful for orthogonal systems.

2.3.2.3 The indexing suite

In 1999 an attempt was made to bring together a number of indexing programs into one

user-friendly format. This has developed into the CRYSFIRE indexing suite (Shirley

2002). CRYSFIRE works by allowing the user to input observed Bragg reflections via

a graphical user interface. Reflections may be entered as either 2θ values or as d-

spacings. Nine indexing programs, including the widely-used ITO (Visser 1969),

TREOR (Werner et al 1985) and DICVOL (Louër and Boultif 2004) can be

individually selected and applied to the data. Each possible solution consists of a set of

unit cell parameters and is awarded a figure of merit. CRYSFIRE puts all candidate

solutions into a single file so that results from each indexing program can be compared

and then loaded into other software such as CHECKCELL to look for the best fit to the

experimental data. CRYSFIRE, its indexing programs and CHECKCELL will be

discussed further in chapter 5.

Indexing programs make use of the relationship:

* 2

2

1
( )

hkl

hkl

r
d

= (2.41)

where r
*
 is the reciprocal lattice vector.
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The quantity 
2

1

hkl
d

 is referred to in crystallography as Qhkl. The expressions for Qhkl

according to crystal system are given in table 2.7.

Cell type Q
hkl

Cubic (h
2 
+ k

2 
+ l

2
).a11

Tetragonal (h
2 
+ k

2
).a11 + l

2
.a33

Hexagonal (h
2 
+ hk + k

2
).a11 + l

2
.a33

Orthorhombic h
2
.a11

 
+ k

2
.a22

 
+ l

2
.a33

Monoclinic h
2
.a11

 
+ k

2
.a22

 
+ l

2
.a33 + hl.a13

Triclinic h
2
.a11

 
+ k

2
.a22

 
+ l

2
.a33 + kh.a12 + kl.a23 + hl.a13

Table 2.7 Values of Qhkl expressed using reciprocal unit cell parameters

where 
2*

11a a= , 
2*

22a b= , 
2*

33a c= ,
* * *

12
cosa a b γ= ,

* * *

13
2 cosa a c β= and

* * *

23
2 cosa b c α=

The expressions in table 2.7 are visually similar to those for sin
2θ and are the ones used

in most indexing programs.

2.3.3 Assigning the space group

Once the unit cell has been established, the next task is to assign it to one of the 230

space groups. The cell type and the systematic absences in the Miller indices should

provide sufficient information for a list of trial space groups to be arrived at. For the

purpose of this work, the program Checkcell was used to find the most likely space

group.

2.3.4 Establishing the atom positions

The cell and space group is sufficient information to generate a list of peak positions.

However, it is the set of atomic positions which determines the intensities of the peaks.

There are a number of ways by which this information can be obtained, but the main

method used in this work was to look at a similar structure. If a material under
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investigation is part of a series, or similar structures are known, these structures can be

used as starting points for the unknown structure. For example, many of the rare earth

oxides exhibit a monoclinic phase at high temperature. If the structure for gadolinia is

not known we could turn to its immediate neighbours europia and terbia and use their

known structures as starting points. If the unit cell parameters follow the lanthanide

contraction, we could reasonably expect the atoms in gadolinia to lie at the same points.

With the advent of computers with fast processing speeds, it has become possible to

work out structures ab initio, that is, without any prior knowledge of possible atom

positions. Global optimisation is a way of reaching a good approximation to a solution

when exploring a large search space. All global optimisation methods begin with a

series of trial structures. These are generated by randomly populating the unit cell with

atoms, so long as the known empirical formula and density are complied with. For each

structure a theoretical diffraction pattern is created and compared with the measured

pattern. A measure of fitness is then applied to each trial structure. It is these measures

of fitness which determine whether a trial structure is rejected, or accepted and used as

the basis for the next generation of trial structures. After many iterations the objective

is to converge upon a single solution. In principle this can be difficult for a number of

reasons, most notably the problem of becoming trapped in local minima. For this

reason, there is provision in the software for random new structures to be introduced

even when convergent solutions are evident.

Monte Carlo methods are essentially trial and error algorithms using random numbers.

The most widely used Monte Carlo algorithm is the Metropolis-Harrison algorithm.

Originally proposed in 1953 (Metropolis 1953) it was first employed in crystal

structure determination in the 1990s (Harris et al 1994). A Monte Carlo method is used

in the programs ESPOIR (Le Bail 2001) and Fullprof (Rodriguez-Carvajal 1993). It is

also the basis for the indexing program McMaille (Le Bail 2006).

Simulated annealing is a specific Monte Carlo method. It models a process employed in

the heat treatment of metals, where a material is heated and then cooled slowly. This

has the effect of allowing unfavourable jumps at high energy, but as the temperature

falls, these jumps become less likely. Although a jump in the ‘wrong’ direction is
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unfavourable if it results in a lower fit for the new structure, it is encouraged more at

higher temperature. The longer the time the algorithm is run for and the slower the rate

of cooling, the better the result should be. Simulated annealing has been applied to

structure solution (Kirkpatrick et al 1983), (Černý 1985) and is employed by structure

solution programs such as DASH (David et al 2006) and Fox (Favre-Nicolin and Černý

2002).

The genetic algorithm is a subset of the methods termed evolutionary algorithms.

Rather than modelling their operation on thermodynamic processes as with the Monte

Carlo method, they employ phenomena seen in nature such as inheritance and

mutation. The system being studied is encoded in strings called chromosomes, usually

as binary 1s and 0s. As with the Monte Carlo method, a means of generating starting

structures is employed and these are all given some measure of fitness to the solution.

A percentage of these structures, again including some with poor fit, are then selected

for reproduction. Two or more parent strings are combined to generate an offspring

string. This could be by randomly varying a part of the string (mutation) or crossover

(cutting the chromosomes at a specific point and splicing them together). This new

generation is then tested for fitness to the solution and the algorithm continues, again

always including some poor fits to avoid local minima. Genetic algorithms were first

used in crystal structure determination in the 1990s (Harris et al 1998).

2.3.5 Full profile refinement

2.3.5.1 Introduction

Once the atomic positions have been established with some accuracy the final stage in

the process of structure solution is full profile refinement. Rietveld’s method (Rietveld

1969) was the method used in this work. The approximate crystal structure (unit cell

and atom positions) combined with information on the instrument (such as zero shift,

axial divergence and a background factor) together with adjustments for structural

parameters (such as thermal motion and preferred orientation) are used to generate a

theoretical diffraction pattern. A method of fit is used to compare this to the

experimental pattern and the various parameters then varied using least squares
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refinement in order to bring this calculated pattern as close to the experimental one as

possible.

Prior to Rietveld, structure determination from XRPD data was difficult because of the

overlap in peaks that tends to occur in the 1-dimensional data space. Rietveld’s method

is important in that it finds a way of modelling the XRPD pattern by looking at

individual contributions to the diffraction envelope at any point along the 2θ axis. By

doing this it is possible to work with individual overlapping peaks.

Rietveld refinement uses a least squares minimisation on the following function:

exp 2

exp

1
( ) ,calc

i i i i

i

WSS w I I w
I

= − =∑ (2.42)

where I
calc

 is given by the classical intensity equation:

2

, , ,2
1 1

(2 2 )
Nphases Npeaks

jcalc

i F k k j j i k j k j j i

j kj

f
I S L F S P A bkg

V
θ θ

= =

= − +∑ ∑ (2.43)

The wave envelope is determined by a range of factors. The material under analysis has

contributions due to cell size, space group, atom positions, texture, stress and strain.

The sample in the diffractometer will affect the wasve envelope due to its position,

shape and orientation. The diffractometer itself has a contribution, due to beam

intensity, Lorentz Polarisation, background and radiation. The important point to note

is that each of these contributing factors can be expressed mathematically and can be

refined.

2.3.5.2 Factors contributing to the wave envelope

The refineable factors are identified below in the intensity equation.
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For each phase present in the sample, the scale factor, Sj, is given by:

2
.

j

j F

j

f
S S

V
= (2.44)

where SF is the beam intensity

fj is the phase volume fraction

Vj is the phase cell volume.

The Lorentz Polarisation factor, LK, is a function of the diffractometer and is dependent

upon the instrument geometry, the monochromator, the detector, the beam and sample

size, and the sample orientation. For Bragg-Brentano geometry, the factor is given by:

2

2

1 cos (2 )

2(1 )sin cos

h

p

h

P
L

P

θ

θ θ

+
=

+
(2.45)

where Ph=cos
2
(2α), a property of the monochromator.

A typical profile for this factor is shown in figure 2.23.
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Figure 2.23 Lorentz Polarisation factor profile. Image from

http://pd.chem.ucl.ac.uk/pdnn/diff2/loren.htm

The structure factor is given by:

2

2

2
sin

2
2 ( )

,

1

( )
n

n n n

N B
i hx ky lz

k j k n

n

F m f e e

θ
πλ

−
+ +

=

= ∑ (2.46)

where mk represents the multiplicity of the k reflection,

N the number of atoms,

Bn the temperature (Debye-Waller) factor,

xn, yn, zn the coordinates of the n
th

 atom,

and fn the atomic scattering factor.

The X-ray atomic scattering factor, fn, is proportional to the number of electrons and

decreases with 2θ.

Rietveld assumes a Gaussian shape for each peak in the diffraction envelope.  For a

Gaussian distribution, peak width is given by:

Hk

2
 = U tan

2θk + V tanθk + W (2.47)

where U, V and W are the half width parameters,

and θk is the centre of the peak.
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To incorporate preferred orientation, Pk,j, Rietveld employs the March-Dollase formula:

3

2 2
2 2

,

1

sin1
cos

k
m

n

k j MD n

nk MD

P P
m P

α
α

−

=

 
= + 

 
∑ (2.48)

where PMD is the March-Dollase parameter,

αn is the angle between the scattering vector and the crystallographic plane hkl.

Again, summation is made over all equivalent hkl reflections, mk.

For Bragg-Brentano geometry involving a thick sample, the absorption factor, Aj, is

given by:

1

2
j

A
µ

= (2.49)

where µ is the linear absorption coefficient of the sample. For a thin sample the

absorption depends upon 2θ, as detailed in 2.2.4.3.

The background term, bkgi, is a polynomial function in 2θ, given by:

0

(2 ) (2 )
b

N

n

i n i

n

bkg aθ θ
=

=∑ (2.50)

where Nb is the polynomial degree,

an the polynomial coefficient.

2.3.5.3 Least squares parameters

Rietveld defines two lists of parameters for use in the least squares process. The first

list contains the profile parameters. These give the the positions, the halfwidths and the

asymmetry of the Bragg peaks, plus the preferred orientation. These parameters are:

U, V, W half width parameters

Z zero point

A, B, C, D, E, F unit cell parameters
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P asymmetry parameter

G preferred orientation parameter

His second list contains what he calls structural parameters. These relate to the cell

contents:

c scale factor, such that ycalc = c.yobs

Q overall isotropic temperature parameter

xi, yi, zi fractional coordinates of i
th

 atom

Bi atomic isotropic temperature parameter

ni occupation number

2.3.5.4 Measuring the quality of the refinement

Least squares refinement can be measured in a number of ways. Rietveld refinement

minimises the weighted sum of the squares (equation 2.42):

exp 2

exp

1
( ) ,calc

i i i i

i

WSS w I I w
I

= − =∑

A common measure for the quality of refinement is the weighted R profile:
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(2.51)

Rietveld states that a computer program based on his method allows the refinement or

otherwise of any parameter in the least square process. This is essentially the same

process used today in programs such as GSAS (Larson and Von Dreele 1994), which

will be discussed further in chapter 5. An image showing this program in operation is

given is figure 2.24.
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Figure 2.24 Full profile refinement of an XRPD pattern using the program GSAS.

Figure 2.24 shows the experimental data as a series of horizontal ticks marking the

wave envelope. The calculated pattern follows the same profile but as a solid line. The

difference between the two histograms is shown by the lower line. The peak positions

are shown by vertical ticks.
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3 DIFFERENTIAL SCANNING CALORIMETRY

3.1 INTRODUCTION

Differential Scanning Calorimetry (DSC) is a thermal analysis technique used primarily

to investigate enthalpy changes, such as those associated with change of phase,

crystallisation or chemical reactions. It is defined by the ASTM as ‘a technique in

which the difference in energy input into a substance and a reference material is

measured as a function of temperature, while the substance and reference material are

subjected to a controlled temperature program’ (ASTM).

There are typically two types of DSC program: isothermal hold and temperature ramp.

During an isothermal hold the sample is heated to a defined temperature and held there

for a certain period of time. A temperature ramp involves heating the sample across a

temperature range at a defined rate. In both situations, the purpose of the experiment is

to follow a physical change in the sample by observing its absorption or release of heat.

All the DSC experiments in this thesis involved temperature ramps. When a material is

heated there is generally a correlation between heat input and temperature. That is, with

continued heating the material increases in temperature. However, at certain points

where events such as phase changes exist, there occur anomalies in the DSC output.

These thermal events involve additional heat either being taken in or given out by the

material, as the structure rearranges in some manner. At some temperature, the material

starts to undergo a chemical or physical transformation that involves the release or

absorption of heat and no further change in temperature is seen until the reaction has

completed. The ordinate value in the DSC output at any given time or temperature is

related to the difference in heat flow between a reference sample and the material under

analysis.

3.2 INSTRUMENTATION

Both sample and reference are held in small pans, often made from alumina. In some

cases the reference may just be an empty pan, which was the experimental set up
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employed during this work. It is important that the specific heat capacities of the pans

are as close as possible; generally this means that pans of identical size and material are

used. If a reference sample is used in the reference pan then it is also important that it is

of a similar mass to the sample material. Both pans are equipped with a thermocouple

for determination of temperature, and a heating element. The pans may be blanketed

with a chosen gas during the experimental run. Typically the sample and reference are

heated slowly through a pre-determined temperature range. When the sample

undergoes a physical change, which may be endothermic or exothermic, the device

measures the heat input or output difference which then arises between the sample and

the reference. The electrical input to the sample pan is then adjusted to bring the

temperatures in line. This input, which is measured in mW, is convertible into the

amount of heat needed to keep the sample and reference at the same temperature.

Therefore the DSC effectively measures the heat involved in the transition.

The heater connected to the reference pan supplies power at the pre-determined rate,

heating the reference in a linear manner according to the experiment in progress. The

sample heater adjusts in proportion to the temperature difference between the two pans.

The difference in the power consumption of the 2 heaters is amplified and plotted as a

function of temperature.

It is important to note that the alumina pans themselves will have their own

contribution to the signal and therefore their effect is measured via a preliminary run

with both pans empty, using the same conditions (heaing rate, gas atmosphere and

flow). The resulting signal can then be subtracted from the experimental signal to

determine the contribution from the sample alone.

A schematic of a DSC is shown in figure 3.1.
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Figure 3.1 DSC schematic.

Figure 3.2 shows the instrument used in this work, a Netszch ST449 F3 Jupiter. This

instrument is capable of heating a sample up to 1500°C. It is also capable of weighing

the sample throughout the run, allowing a TG (thermogravimetric) analysis of the

reaction. The base unit (below) and the hoisting device/furnace (above) can be clearly

seen. The sample carrier is the thin white alumina rod between the two, upon which sit

the sample and reference pans.
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Figure 3.2 Netzsch ST449 F3 Jupiter DSC.

Figure 3.3 shows the two alumina pans. The pan nearer the camera is the one

containing the sample, which in this case is the pale green powder of Pr2O3.
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Figure 3.3 Sample carrier with reference and sample pans atop.

Figure 3.4 shows a cut-away schematic of the instrument.
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Figure 3.4 Cut-away schematic of the DSC. Image taken from NETZSCH manual

(NETZSCH).

The base unit of the instrument contains the connections for the thermocouples and the

gas flow. Gas is introduced from a cylinder beside the instrument, although it is

possible to run the machine without any carrier/protective gas. The sample carrier is

plugged into a socket and can therefore be easily exchanged. The experimental setup,

data acquisition and analysis are performed by an associated computer running

NETZSCH software.

3.3 INSTRUMENTAL OUTPUT

The data from the instrument can give a number of pieces of information. The shape of

the curve at the transition temperature indicates the nature of the reaction e.g.  a sharp

peak may imply it occurs suddenly; a broad peak may indicate that an increasing

energy input is needed to convert the material across the ramp. Integration of the area

under the heat flow curve yields the enthalpy change associated with the thermal event.

The shift in position of the transition over ramps of different rates can be used to

determine the activation energy.
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Figure 3.5 DSC curve showing heat flow against temperature (exothermic is ‘up’).

Figure 3.5 shows typical features associated with a typical DSC curve. The glass

transition at low temperature represents a shift in structure from amorphous to some

degree of short range order. Once a glass transition has taken place the level of the trace

is taken as the new baseline. Crystallisation is an exothermic process, whereby a system

attains a greater stability by the release of heat. It is represented by a negative peak in

the trace i.e. 
dH

dt
∆  is negative. Melting is an endothermic process, whereby heat is

taken in to the sample, represented by a positive peak i.e. 
dH

dt
∆  is positive. The area

between a particular peak and the baseline represents the enthalpy change giving rise to

it, assuming the heat capacity of the reference is unchanging across the peak.

sample

sample

dH
dt H

dt

 
= ∆ 

 
∫ (3.1)

As the DSC is held at constant pressure, the measured heat flow is proportionate to the

enthalpy change:
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P

dq dH

dt dt

 
= 

 
(3.2)

The heat flow difference between the pans is given by:

sample reference

dH dH dH

dt dt dt

   
∆ = −   

   
(3.3)

Heat capacity for a transition, Cp, can be determined from the baseline shift and is

given by:

p

P P

dq dH
C

dT dT

   
= =   
   

(3.4)

Using the chain rule:

.
p

dH dt
C

dt dT

   
=    
   

(3.5)

dH

dt
 represents the baseline shift, 

dt

dT
is the inverse of the scan rate of the machine.

By finding the area under the curve it is possible to make use of the following

relationship:

∆H = kA (3.6)

where ∆H is the enthalpy change

k is the calorimetric constant, which is particular to the machine used

A is the area under the curve

The equilibrium constant k and the standard enthalpy change for the process, ∆H
Θ
, can

be found from the van’t Hoff equation:
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2 lnd k
H RT

dT

Θ  
∆ =  

 
(3.7)

the standard free energy change from:

lnG RT k
Θ∆ = − (3.8)

the standard entropy change from:

S H T S
Θ Θ Θ∆ = ∆ − ∆ (3.9)

The instrument has particular limitations, which need to be borne in mind. A high

sample mass increases the signal strength, but can reduce resolution if there are

overlapping peaks. The greater the heating rate, the greater is the signal strength, but as

with sample mass, there is a trade-off with peak resolution. If a gas is used, one with

high thermal conductivity, such as helium, causes lower signal strength but better peak

separation. Additionally, there is a limit to the heating rate that can be employed to

prolong longevity of the furnace. Typically a rate no greater than 20K/min is used with

this instrument, as in the figure below.
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Figure 3.6 20K/min ramp for praseodymium sesquioxide.

As an example of the information that can be obtained, figure 3.6 shows a combined

DSC-TG plot for the praseodymium-oxygen system over the temperature range 20°C to

1550°C. As indicated in Chapter 1, the system is rich in that it shows a large number of

stoichiometries, each existing in its own temperature range. The lower line, showing

sharps peaks, represents the DSC and shows that, for example, a significant thermal

event occurs at 442°C, with an accompanying mass increase of 2.83% shown by the

TG plot (upper line). A small endotherm at about 500°C is associated with a further but

small mass increase. Following this, there are three more endotherms, each associated

with a mass loss. More detailed analyses of the DSC-TG plots obtained will be

presented in Chapter 8.
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4 REACTION KINETICS

4.1 INTRODUCTION

The purpose of any kinetic study is to record how a reaction progresses with time under

certain environmental conditions. To do this, it is necessary to establish how much

conversion from reactant to product has taken place at any moment. By creating a

mathematical model for the reaction, the rate constant at any temperature can be

derived and subsequently used to derive the activation energy for the process.

The fundamental aims of a kinetic model are to:

(1) visualise how the transformation arises and propagates;

(2) express the degree of conversion as a function of time;

(3) determine the rate constants and activation energy.

In this study the work has been concerned with conversion against temperature only.

Data used in the analyses were obtained from both XRPD and DSC. Three models have

been used to determine the rate constants activation energies, namely the Shrinking

Sphere Model, the JMAK model and Kissinger Analysis.

4.2 PHASE BOUNDARIES

As a general rule, the heavier is the lanthanoid under investigation, the more effort is

required to induce a particular phase change. Figure 1.5 shows the C → B phase

boundary to be an upwardly sloping line. That is, the transition temperature increases

with the atomic number of the lanthanoid. Consequently, the heating temperature

and/or heating time required to convert a particular low temperature phase to a high

temperature one for a specific lanthanoid sesquioxide will increase with the atomic

weight of the lanthanoid. For example, the C → B transition in europia is easily

achieved by heating to 1300ºC for one hour. However, heating the C form of gadolinia

to even 1500ºC for an hour produces little change. It is only when the oxide is kept at

this temperature for an extended period that the transition occurs. Gadolinium is the

adjacent element to europium and yet the change in kinetics is considerable. We would
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therefore expect that for the heaviest oxides the heating times would be considerably

extended and the product materials would show less metastability on quenching.

4.3 DATA USED IN KINETIC MODELLING

4.3.1 Data from XRPD

As one phase converts to another there is an associated change in peak intensities

within the XRPD pattern. The peaks for the reactant phase will fall in height as the

peaks for the product emerge from the baseline. A method of measuring the degree of

conversion at any point is to select a prominent Bragg reflection arising from the

reactant phase. For the lanthanoid sesquioxides, the most comprehensive historic study

(Stecura 1966) looked at the change in intensity of the 222 Bragg reflection in the

reactant phase. In my work this was identified at 2θ of 28.45º for Eu2O3 and 29.65º for

Yb2O3. An alternative method would be to look for the peaks arising from the product

phase. Two prominent peaks in the monoclinic phase are the 401 and 11-2 reflections.

These occur at 2θ of 29.3º and 32.3º for Eu2O3 and 30.15º and 33.7º for Yb2O3.

However, it would be more practical to use the 222 reflection in the reactant phase.

Firstly, the maximum intensity is known from the start and so any decrease in the peak

(and associated increase in the peak of the high-temperature modification) can be

immediately ascribed a fractional conversion. With the product phase, the final heights

of the new peaks are not known at the start of the experiment. Secondly, the 222 peak is

readily discernible in the reactant pattern whereas the emerging peaks in the product

pattern will not be so in the initial stages.

Figure 4.1 shows a series of XRPD patterns taken over time, clearly showing a reactant

peak at 40.2° of 2θ falling in intensity. What is not as clear is the magnitude of the

corresponding rise in the product peak at 38.1°.
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Figure 4.1 Changes in peak intensity over time.

4.3.2 Data from DSC

The data used from the DSC work are the heating rate and the temperature of onset of

conversion. For each material the approximate temperature at which the product starts

to convert to reactant is determined by a wide range temperature ramp. Once this

conversion point has been established, a number of temperature ramps up to the

conversion temperature are carried out, each at a different heating rate. The onset

temperature is known to vary with the heating rate (generally a slower heating rate has

a lower conversion temperature). A process called Kissinger Analysis (Kissinger 1955)

can then be applied to this information to determine the rate constant and activation

energy.

4.4 SHRINKING SPHERE MODEL

A model historically adopted for kinetic work in the solid state is based on a shrinking

sphere model (Tammann 1925), (Jander 1927). This model states that the nucleating
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sites of the new phase are created quickly in comparison to their propagation

throughout the bulk material. This means the growth of the phase boundary is the rate-

determining factor. Tamman postulated that the rate of increase of the high-temperature

phase at the phase boundary was inversely proportional to time.

T
kdy

dt t
= (4.1)

where y is the thickness of high-temperature phase layer, t is time and kT is a constant.

On integration this becomes:

y = kT ln t + A1 (4.2)

where A1 is a constant of integration.

Jander noted that some phase reactions did not agree with Tamman’s postulate. He

found that for some reactions it was the square of the thickness of the product layer that

was proportional to time.

y
2 

= 2kj t (4.3)

This is an integrated form of 
j

kdy

dt y
=

This equation states that the rate of growth is inversely proportional to the thickness at

time t. In this situation the existence of product slows the reaction as it progresses. This

equation is known as Jander’s law. It is one of three possible reactions in the solid state.

The second type of reaction occurs if the phase boundary moves at a constant rate:

dy
k

dt
= (4.4)
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Then the product does not influence the rate of reaction. On integration this equation

becomes:

y = kt + A2 (4.5)

where A2 is a constant of integration. However, A2 is equal to zero because at t=0 the

thickness of product is also zero.

The third type of reaction is where the rate of reaction is proportional to the thickness

of product i.e. it is catalysed by the thickness of product. It is given by:

A

dy
k y

dt
= (4.6)

On integration this becomes:

ln y = kAt = A3 (4.7)

where A3 is a constant of integration, again equal to zero.

Both Stecura and Ainscough employed Jander’s second equation in relation to the rare

earth sesquioxides. However, before the equation can be used it is necessary to

ascertain the degree of conversion to the high-temperature modification.

Assuming the reactant particles are spherical, an increase in the product thickness

results in a decrease in the radius, r, of the reactant particle, to r-y. The density of the

reactant particle prior to reaction is:

1

1

A

M

V
ρ = (4.8)
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where ρA is the density, M1 is the mass of the reactant particle and V1 is the volume of

the reactant particle. After reaction, the density of the reactant particle is:

2

2

A

M

V
ρ = (4.9)

where M2 is the mass of reactant particle at time t and V2 is the volume of the reactant

particle at time t. As the density of the reactant material does not change, equations 4.8

and 4.9 can be equated.

1 2

1 2

A

M M

V V
ρ = = (4.10)

Rearranging:

2

1 1 2

1

.

M

V M V
= (4.11)

If α is the fraction of the particle which has reacted then (1-α) represents M2/M1.

Substituting (1-α) into equation 4.11 gives:

1 2

1 1

V V

α−
= (4.12)

The volume of the reactant particle before reaction is 
34

3
rπ  and its volume after time t

is 
34

( )
3

r yπ − . Substituting into equation 4.12 gives:

3 34 4
(1 ). ( )

3 3
r r yα π π− = − (4.13)

Rearranging:
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r - y = r(1 - α)
⅓

(4.14)

Expressing as y, the thickness of the product layer, gives

y = r(1 - (1 - α)
⅓

) (4.15)

Equating this with equation 4.5:

kt = r(1 - (1 - α)
⅓

) (4.16)

where k is the linear rate of propagation.

Rearranging:

3

(1 ) 1
kt

r
α

 
− = − 

 
(4.17)

Expanding the polynomial and keeping only the first term:

3

1
kt

reα
−

− = (4.18)

Rearranging:

1
ln

1
kt

α

 
= 

− 
(4.19)

where k is the rate constant. This is the equation presented by Stecura. Ainscough uses

the equivalent:

-ln(1 - x) = kt (4.20)

where x = α. This is a first order rate equation. A plot of –ln(1 - α) against t should

yield a straight line with gradient k. Therefore for any set of isotherms the rate constant
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at that temperature can be determined. The activation energy can then be determined by

use of the Arrhenius equation:

EA

RTk Ae

−

= (4.21)

where k is the rate constant, A is a constant, EA is the activation energy, R is the gas

constant and T is the temperature. The Arrhenius equation can be rewritten as:

ln ln A
E

k A
RT

= − (4.22)

A plot of ln k against 
1

T
 should yield a straight line with gradient A

E

R

−
. Therefore the

activation energy for a particular phase transformation may be determined.

4.5 THE JMAK MODEL

The Johnson-Mehl-Avrami-Kolmogorov (JMAK) model comes from work carried out

during the late 1930s and early 1940s. The equations involved are often referred to as

Avrami equations; Avrami published extensively during this period, in a series of

papers in the Journal of Chemical Physics, all of which are still referenced today

whenever the model is discussed (Avrami 1939, 1940, 1941).

The model assumes that the new phase is created from randomly-distributed germ

nuclei already existing in the reactant phase. If there is no further nucleation during the

reaction i.e. all nuclei are present at the start, the material is termed site saturated. With

increasing temperature some of these germ nuclei become growth nuclei, creating

grains in the product phase. These grains grow at a linear rate. As the reaction

progresses the degree of transformation follows a sigmoidal or S-type curve. That is,

conversion is initially slow but increases exponentially. There comes a point of

inflexion in the curve, which represents a running out of space in the product phase,

where grains are impinging on one another. The curve then decreases in gradient until it
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flattens out. A typical sigmoidal curve is shown in red in figure 4.2. The sigmoidal

curve is typical of many processes in nature involving growth.

Figure 4.2 Sigmoidal function (top) and its linearised form.

The basic sigmoid curve, called the logistic curve, is given by:

1
( )

1 t
P t

e
−

=
+

(4.23)

where P is the population and t is time. This basic relationship, or variations upon it, is

used in many fields, including biology, economics and artificial neural networks. Its

basic feature is that for small values of t growth appears exponential and there is an

equilibrium point at which it begins to slow.
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The fundamental principle in the derivation of the JMAK equation is to express the

change in fractional volume of product relative to the existing fractional volume. The

fractional volume changed to product is given by:

total

V
f

V
= (4.24)

where f is the fraction changed, V is the volume of product and Vtotal is the total volume

of the reaction space (reactant plus product). As the reaction progresses, germ nuclei

grow into grains of the new phase. Eventually some of these grains impinge on one

another, as shown in figure 4.3.

Figure 4.3 Germ nucleation, grain growth and grain impingement.
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Avrami appreciated that as grains grow they eventually come into contact with one

another (figure 4.3C) and growth would cease. He therefore defined an extended

volume fraction, as if the grains always had free reactant space in which to grow and no

impingement occurs.

Figure 4.4 Illustration of extended volume.

Figure 4.4 shows an enlarged region of figure 4.3C where 2 grains have grown against

one another. The volume of the smaller grain is given by V1 and that of the larger grain

by V2. The fraction changed by virtue of the extended volume is given by:

1 2
ext

total

V V
f

V

+
= (4.25)

The actual fraction changed is given by:

1 2

total

V V
f

V

∪
= (4.26)

where ∪ represents the union of the two circles i.e. the area of both but including their

overlap just once. The relationship between increments in f and fext can be expressed by

the following differential equation:

df = dfext(1 - f) (4.27)



96

As is typical of any growth, the amount of material already transformed, f, acts as a

feedback in the above equation, limiting the change possible at any moment by the

volume already transformed. At reaction completion, the volume of a grain transformed

is given by:

34

3
V rπ= (4.28)

where r is the radius of the grain, assuming a spherical reaction volume. The radius r

can be expressed as a distance st where s is the radial speed of propagation of the grain

surface and t is time. Therefore:

34
( )

3
V stπ= (4.29)

Multiplying the volume of the grain by N, the density of nuclei, gives the extended

volume:

34
( )

3
ext

f N stπ= (4.30)

The extended fraction increment, dfext, is given by:

dfext = 4πNs
3
t
2
 .dt (4.31)

Substituting into equation 4.27:

df = 4πNs
3
t
2
 .dt (1-f) (4.32)

Rearranging:

3 24 .
1

df
Ns t dt

f
π=

−
(4.33)
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A constant k is defined, which contains the nucleation and growth terms:

34

3
k Nsπ= (4.34)

Recognising that 
1

ln
d

x
dx x

 
= 

 
:

-ln(1 - f) = kt
3

(4.35)

Rearranging:

3

1 kt
f e

−= − (4.36)

This is the specific Avrami equation for site saturated growth in three dimensions. The

general form is given by:

1
n

kt
f e

−= − (4.37)

Whereas the value of k is determined by energy-dependent terms, the value of n, called

the Avrami exponent, is interpreted as defining the geometry of the transformation.

Generally the number of dimensions involved in the growth is equal to n, although it is

quite possible to have fractional values for n. Therefore it is not always straightforward

to deduce the geometry from the value. For any reaction, the value of n should be a

constant irrespective of temperature. Typical values for n are given in table 4.1.

Value of n Geometry Type of growth

1 < n < 2 1D Needle

2 < n < 3 2D Platelet

3 < n < 4 3D Spherical – all nucleation sites present from start

4 3D Spherical – nucleation occurs throughout, slowing to zero

Table 4.1 Values of the Avrami exponent, n, and corresponding geometries.
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The more familiar form of the JMAK equation is the linear form, resulting from taking

the double logarithm of the general equation. It is given by:

ln(-ln(1 - f)) = ln k + nln t (4.38)

or

1
ln ln ln ln

1
k n t

f

  
= +  

−  
(4.39)

Thus a plot of ln(-ln(1 - f)) against ln t should yield a straight line with intercept ln k

and gradient n. In practice it is possible to use a variety of quantities to calculate the

value of f. If the fractional conversion is inferred by the change in peak intensity in an

XRPD pattern, the following relationship can be used:

1
ln ln ln ln

1
t

k n t
I

  
= +   −  

(4.40)

where It is the intensity arising from a selected peak of the new phase. Alternatively,

this could be determined from the decrease in the intensity of a selected peak in the

reactant phase. For example, if the intensity had fallen to 90% of its original value, the

intensity It attributable to the product phase would be taken to be 0.1.

As with a Shrinking Sphere Model, the activation energy can then be determined by use

of the Arrhenius equation (equation 4.22). Again, a plot of ln k against 
1

T
 should yield

a straight line with gradient A
E

R

−
.

4.6 KISSINGER ANALYSIS

Kissinger noted that the temperature of maximum deflection during a DSC analysis

varied with temperature. This variation is determined by the activation energy. By
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linearising a function relating heating rate and temperature it is possible to derive the

activation energy. Kissinger started with a generic equation describing a solid → solid +

gas reaction process:

(1 ) .
A

E

n RT
dx

A x e
dt

−

= − (4.41)

where x is the fraction converted, 
dx

dt
 is the reaction rate, n is the reaction order, R is

the gas constant, EA is the activation energy and T is the temperature. When the reaction

rate is at a maximum, 
2

2

d x

dt
 is equal to zero. Solving the above equation for 

2

2

d x

dt

2
1

2 2
. (1 ) .

A
E

nA RT
Ed x dx dT

An x e
dt dt RT dt

−
−

 
= − − 

 
(4.42)

Substituting φ for the heating rate, 
dT

dt

2
1

2 2
. (1 ) .

A
E

nA RT
Ed x dx

An x e
dt dt RT

ϕ
−

−
 

= − − 
 

(4.43)

The expression n(1-x)
n-1

 approximates to 1, therefore:

2

2 2
.

A
E

A RT
Ed x dx

Ae
dt dt RT

ϕ
− 

= − 
 

(4.44)

Equating this with zero gives:

2
.

A
E

A RT
E

Ae
RT

ϕ
−

= (4.45)

Differentiating:
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2
(ln )

1
( )

m A

m

d
T E

R
d

T

ϕ

−
= (4.46)

Therefore a plot of 
2

ln
m

T

ϕ
 against 

1

m
T

 should yield a straight line with gradient

A
E

R

−
. Once EA is known, A can be calculated from equation 4.45, above.

An alternative method of calculating the activation energy is by use of the Arrhenius

relationship:

0

1 1
exp A

B

E

k Tτ τ

 
= − 

 
(4.47)

where 1/τ is the inverse rate constant, k
-1

, or time constant, EA is the activation energy,

kB is the Boltzman constant and T is the isothermal annealing temperature. The use of

this expression assumes that the transformation takes place at a single temperature and

in a single step. The expression can also be written as:

0( ) .

A

B

E

k T
k T k e

−

= (4.48)

Both equations can be linearised as:

0

1 1
ln ln A

B

E

k Tτ τ
= − (4.49)

and

0ln ( ) ln A

B

E
k T k

k T
= − (4.51)
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A series of isothermal anneals carried out close to the transition temperature will give a

series of values for τ (or k) against T. A plot of  
1

ln
τ

 (or ln k) against 
1

B
k T

 should yield

a straight line with gradient -EA.
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5 SOFTWARE USED IN THIS WORK

5.1 SOFTWARE FOR XRPD

All the software mentioned in section 5.1 is hosted on the CCP14 (Collaborative

Computational Projects 14) website www.ccp14.ac.uk. This is a site dedicated to the

promotion of freely available single crystal and powder diffraction software for

academic use.

5.1.1 Determining the peak positions, calculating peak area, stacking of patterns –

PowderX and WINPLOTR

PowderX (Dong 1998) is a graphical program for XRPD data analysis. Data from the

diffractometer in the form of intensities against 2θ is used as the input information. The

output from the Siemens D500 diffractometer is in the form of a RAW file, although

PowderX accepts a number of formats. This information is plotted in the form of a

histogram, an example of which is shown in figure 5.1.

Figure 5.1 Raw data (intensity versus 2θ) displayed in PowderX.
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The three functions of PowderX used in this work were:

(i) removing the part of the histogram attributable to Kα2 radiation.

(ii) removing the background contribution i.e. bringing the Bragg peaks down to the

2θ axis.

(iii) identification of the peak positions.

Figure 5.2 shows the above histogram after these processes have been applied.

Figure 5.2 Histogram after removal of Kα2 contribution, background and identification

of peak positions.

A list of the identified line positions can be saved as a text file, ready for use in an

indexing program. The adjusted pattern can then be saved in a form for use in the full

profile refinement program GSAS.

WINPLOTR (Roisnel and Rodriguez-Carvajal 2010) is another graphical program for

analysis of XRPD patterns and comes as part of the Fullprof Suite, written by the same

authors. In this work it has been used solely for calculation of peak height/area and for

graphically stacking patterns from ramps and anneals.
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5.1.2 Indexing – the Crysfire Indexing Suite and GRAPHPRO

The Crysfire Indexing Suite (Shirley 2002) has brought together 10 indexing programs,

allowing the user to access them all through a single interface. The peak positions,

established above via PowderX, are entered into Crysfire once. Each indexing program

can then be applied to the data in turn and will generate a number of possible solutions.

As each program generates solutions these are added to a summary file, which, after

using all the indexing programs, can be quite extensive. Figure 5.3 shows the input

screen of Crysfire where the user enters the peak positions. The screens shot is at the

stage of entering the position of the 4
th

 Bragg reflection.

Figure 5.3 Crysfire peak position input screen.

As well as employing the widely used programs ITO, DICVOL and TREOR, Crysfire

also contains the programs TAUP (Taupin 1973), KOHL (Kohlbeck and Hörl 1978),

FJZN6 (Visser and Shirley 2000), LZON (Shirley et al 1978) and LOSHFZRF (Shirley

and Louër 1978). An example of a summary file is shown in figure 5.4.
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Figure 5.4 Summary file of indexing results.

Figure 5.4 shows a set of results from Crysfire, listed in order of merit. As an example,

the best fit to the experimental data is the top entry, with a figure of merit of 46.4. This

set of unit cell parameters has enabled the indexing of all the first 20 lines in the

pattern, shown by the value of I(20) = 20. The unit cell for this trial structure is

orthorhombic (a = 8.875Å, b = 15.3629Å, c = 5.4319Å). Many trial structures may be

generated from a diffraction pattern and it is quite possible that the actual solution is

not allocated the top position in the summary file, if it is found at all. The user is able to

change the tolerance in 2θ i.e. to adjust how far from the actual peak positions the

calculated positions are allowed to stray. In some cases increasing this tolerance may

bring the actual solution into the summary list if it wasn’t already present, but this is at

the expense of accepting poor data from the diffractometer. The indexing process is

often regarded as the most difficult stage in the process of structure solution. This is

because just a small error in measuring the peak positions can generate many

unnecessary trial cells, even missing the actual cell altogether. The process of

identifying potential cells from the summary list is often one of trial and error. The

need for accurately measuring the Bragg reflections and assigning the peak positions is

clear.

Although only used in this work when Crysfire failed, GRAPHPRO is a program

written by myself for quickly indexing cubic cells.
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5.1.3 Space group determination - CHEKCELL

CHEKCELL (Laugier and Bochu) is a program for both manually and automatically

finding the best unit cell parameters and space group for the unit cell and has been

designed to work in tandem with Crysfire. The peak positions and possible cells are

taken from the relevant Crysfire files. An example is shown in figure 5.5.

Figure 5.5 CHEKCELL main screen showing trial cells (top half) and comparison of

measured and calculated peak positions (bottom half).

Each possible cell, together with the space groups available for it, is used to generate

Bragg peak positions. From all the trial cells used, the best fit to the experimental data

is taken as a possible solution for the cell (see figure 5.6). It is then possible to refine

the trial unit cell parameters to get a better fit to the measured peak positions (see figure

5.7). This is the trial cell to be used in Rietveld refinement.
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Figure 5.6 Best solution from CHEKCELL (highlighted at the foot of the image).

Figure 5.7 Unit cell refinement in CHEKCELL (mean square deviation for the refined

unit cell parameters is lower than initial parameters).
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5.1.4 Full profile refinement – GSAS

GSAS (General Structure Analysis System) (Larson and Von Dreele 1994) is a

program for performing Rietveld refinement on XRPD data. GSAS itself is a DOS

environment application but a graphical user interface, EXPGUI, has recently been

developed to assist in its use (Toby 2001). The essential factor with use of full profile

refinement is that a close fit to the structure has already been found, which should

prevent the program from becoming trapped in local minima. GSAS allows for

refinement of the parameters discussed in chapter 2, namely the unit cell parameters,

the atomic positions, peak asymmetry, peak profile, preferred orientation and

temperature factors. At each stage of refinement a comparison between the

experimental and calculated XRPD patterns is made by means of a difference line and a

measure of fitness. Ideally only a few parameters should be refined at a time. GSAS is

not an automated program and relies on some expertise on behalf of the user. This

involves a visual inspection of the two patterns at each stage. For example, if all the

peaks are displaced by the same amount there may be a zero error adjustment. If the 2

patterns are slightly out of scale the unit cell parameters may need refining. If the peak

heights do not quite match then the atom positions can be adjusted. Asymmetry in the

measured peaks can be modelled by adjusting the peak profile parameters. Figure 5.8

shows an example of a pattern where a close match has been achieved using GSAS.
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Figure 5.8 Histogram after refinement in GSAS.

Lines represent data as follows: experimental data is the series of horizontal ticks

marking the wave envelope. Calculated pattern follows the same profile but as a solid

line. Difference plot is shown by the lower line. Peak positions are shown by vertical

tick marks. Intensity is in arbitrary units.

The full crystal structure obtained from GSAS, consisting of the unit cell parameters,

atom positions, occupancies and thermal parameters can then be put into a standard

crystal structure file format such as CIF or SHELXL. This can then be used in crystal

structure plotting software, examples of which are given in figures 7.15 to 7.17.

5.2 SOFTWARE FOR DSC-TG

The Netzsch DSC is supplied with software for both recording and analysing data from

the machine. The recording software allows input of sample information including

identity and weight. It is also possible to use the in-built balance to weigh the sample.

An instruction file can then be written which creates a heating programme for the

machine.
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The Netzsch software was used predominantly for identification of transition

temperatures and mass changes due to oxidation and reduction. A typical example of

the screen display is shown in figure 5.9.

Figure 5.9 Combined DSG-TG plot. DSC plot shows sharp peaks; TG mass changes

are highlighted..

From the image it is evident that the thermal events shown by the deflections in the

DSC plot are all accompanied by changes in the weight of the sample. The sample

represented is a metal oxide and the weight changes all show either oxidation or

reduction.
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6 SAMPLE PREPARATION AND EXPERIMENTAL

CONDITIONS

This chapter contains all the experimental details for the work carried out in this thesis.

The work consisted of three areas: ambient temperature XRPD on commercially-

obtained samples and on the same samples following annealing; in-situ high-

temperature XRPD; and DSC-TG. The work was carried out with the intention of

demonstrating phase changes and determining kinetic data.

6.1 AMBIENT TEMPERATURE XRPD

Samples of polycrystalline material were obtained as follows:

Material (sample number in parentheses) Supplier

(1) Eu2O3 Alfa Aesar

(2) Gd2O3 Alfa Aesar

(3) Yb2O3 Alfa Aesar

(4) Pr2O3 Sigma Aldrich

(5) Tb2O3 Sigma Aldrich

(6) Pr2O3 Alfa Aesar

(7) Yb2O3 Alfa Aesar

(8) Gd2O3 Apollo

(9) Nd2O3 Alfa Aesar

(10) Sm2O3 Alfa Aesar

(11) Eu2O3 Alfa Aesar

Table 6.1 Samples obtained for XRPD and DSC-TG.

6.1.1 Preliminary XRPD patterns on untreated samples

Each of the samples (1) to (5) and (9) to (11) was thoroughly ground with a pestle and

mortar and XRPD data recorded using Cu Kα radiation according to the following

table.
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Sample Diffractometer Range Step Time Standard

(1) Eu2O3 Siemens D500 10° - 90° 0.01° 12 hours Quartz

(2) Gd2O3 Siemens D500 10° - 90° 0.01° 12 hours Quartz

(3) Yb2O3 Siemens D500 10° - 90° 0.01° 12 hours Quartz

(4) Pr2O3 Bruker D8 10° - 92.43° 0.01° 12 hours Corundum

(5) Tb2O3 Bruker D8 10° - 92.43° 0.01° 12 hours Corundum

(9) Nd2O3 Bruker D8 10° - 92.43° 0.01° 1 hour Corundum

(10) Sm2O3 Bruker D8 10° - 92.43° 0.01° 1 hour Corundum

(11) Eu2O3 Bruker D8 10° - 92.43° 0.01° 1 hour Corundum

Table 6.2 XRPD schedule for samples.

6.1.2 Sample annealing

Samples were annealed according to table 6.3.

Sample Furnace Temperature Time Cooling

(1) Eu2O3 Carbolite tube 1334ºC 1 hour Slow cooled

(2) Gd2O3 Carbolite tube 1334ºC 1 hour Slow cooled

(2) Gd2O3 Heraeus CL-G77 1500ºC 1 hour Quenched

(2) Gd2O3 Heraeus CL-G77 1500ºC 7 hours Quenched

(3) Yb2O3 Heraeus CL-G77 1500ºC 1 hour Quenched

(3) Yb2O3 Heraeus CL-G77 1500ºC 5 hours Quenched

(7) Yb2O3 Glass furnace 1800ºC 5 hours Quenched

(8) Gd2O3 Netzsch DSC 1500ºC 7 hours Quenched

Table 6.3 Heating scheme for samples.

6.1.3 Post-annealing XRPD

The annealed samples were reground and powder diffraction patterns taken according

to the following table. Sample (8) was mounted on a 0.5mm glass capillary and

exposed to 0.827130Å synchrotron radiation. For the remainder of the samples Cu Kα

radiation was used.
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Sample Anneal Diffractometer Range Step Time Standard

(1) Eu2O3 1 hour at 1334ºC Siemens D500 10° - 90° 0.01° 12h Quartz

(2) Gd2O3 1 hour at 1334ºC Siemens D500 10° - 90° 0.01° 12h Quartz

(2) Gd2O3 1 hour at 1500ºC Siemens D500 10° - 90° 0.01° 12h Quartz

(2) Gd2O3 7 hours at 1500ºC Siemens D500 10° - 90° 0.01° 22h Quartz

(3) Yb2O3 1 hour at 1500ºC Siemens D500 10° - 90° 0.01° 12h Quartz

(3) Yb2O3 5 hours at 1500ºC Siemens D500 10° - 90° 0.01° 22h Quartz

(7) Yb2O3 5 hours at 1800ºC Bruker D8 10° - 92.43° 0.01° 12h Corundum

(8) Gd2O3 7 hours at 1500ºC DLS beamline I11 0° - 149.999° 0.001° 1h Quartz

Table 6.4 XRPD schedule for annealed samples.

6.2 IN SITU HIGH-TEMPERATURE XRPD

6.2.1 Praseosdymia ramp in air

Sample (4) Pr2O3 was mounted in a PANalytical X’Pert diffractometer and XRPD data

recorded at ambient temperature for 2θ between 18° and 60° in 0.03° steps. The whole

scan took 15 minutes. The sample was then heated in air from 25°C to 800°C and back

to 125°C, in 25°C steps. At each temperature an XRPD pattern was recorded from 18°

to 60° of 2θ.

6.2.2 Praseodymia isothermal hold in air - phase change at 275ºC

A sample of (4) Pr2O3 was mounted in the PANalytical X’Pert diffractometer, held at

230ºC in air and XRPD data recorded every 5 minutes from 18° to 60° of 2θ until the

reactant material had converted. The process was repeated for new samples at 240ºC,

250°C, 260°C, 270°C and 280°C.

6.2.3 Praseodymia quench in air

The 280°C sample from 6.2 was quenched to ambient temperature XRPD data recorded

from 18° to 60° of 2θ.
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6.3 DSC-TG

6.3.1 Praseodymia

6.3.1.1 Wide run in nitrogen

4 Samples of (4) Pr2O3 were heated in the Netzsch STA449 F3 DSC using a protective

nitrogen gas of 20ml/min and a purge of nitrogen at 60ml/min. The DSC-TG

measurements were made from 20
o
C to 1550

o
C at 10°C/min. The samples used in the

third and fourth runs were subject to heating in an attempt to remove any bound gas

prior to placing in the DSC, as follows:

Sample Run Temperature Time

(4) Pr2O3 3 170°C 10 mins

(4) Pr2O3 4 380°C 30 mins

Table 6.5 Pre-DSC-TG heating schedule for sample (4).

6.3.1.2 Wide run in air

2 samples of (6) Pr2O3 were heated in the Netzsch STA449 F3 DSC in air. The DSC-

TG measurements were made from 20
o
C to 1400

o
C at 10°C/min.

2 samples of the same material were heated in air from 20°C to 1400°C and back again

to look for reversibility of reactions.

6.3.1.3 Ramps in nitrogen

Seven temperature ramps were performed on (4) Pr2O3 in nitrogen using a protective

nitrogen gas of 20ml/min and a purge of nitrogen at 60ml/min. The DSC-TG

measurements were made from 200
o
C to 600

o
C. The heating rates were 1, 2, 4, 7, 10,

15 and 20°C/min.
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6.3.1.4 Ramps in air

Seven temperature ramps were performed on (6) Pr2O3 in air. The DSC and TG

measurements were made from 200
o
C to 500

o
C. The heating rates were 1, 2, 4, 7, 10,

15 and 20°C/min. A second set of ramps on (6) Pr2O3 was performed at the above rates,

from 20
o
C to 1500

o
C.

6.3.1.5 Gas absorption

Sample (6) Pr2O3 was left exposed to the atmosphere for an extended time to determine

what effect this had on the chemical structure. A DSC-TG measurement was carried

out from 20
o
C to 1500

o
C at 10°C/min after 7, 78 and 85 days respectively.

6.3.2 Terbia

6.3.2.1 Wide run in nitrogen

2 samples of (5) Tb2O3 were heated in the Netzsch STA449 F3 DSC using a protective

nitrogen gas of 20ml/min and a purge of nitrogen at 60ml/min. The DSC-TG

measurements were made from 20
o
C to 1550

o
C at 10°C/min. 1550°C represents the

temperature limit of the instrument. The phase diagram indicates a cubic to monoclinic

phase transition at about 1600°C. The purpose of this experiment was to determine

whether the transition could be induced below this temperature. However, nothing was

seen in the DSC data to warrant further mention in the results section. This indicates

that the transition is indeed beyond the range of the instrument.
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7 RESULTS FROM X-RAY POWDER DIFFRACTION

This chapter contains all the XRPD work carried out on PrOx, Nd2O3, Sm2O3, Eu2O3,

Gd2O3 and Yb2O3.The work had six aims, namely:

(i) to establish the ambient phase(s);

(ii) to induce phase changes by heating;

(iii) to determine the non-ambient phases either in situ or after quenching;

(iv) to perform kinetic measurements using in situ data;

(v) to match phase changes against the published phase diagrams;

(vi) and to note any discrepancies between this work and the published phase diagrams.

7.1 AMBIENT TEMPERATURE XRPD

7.1.1 Diffraction patterns

The XRPD patterns recorded at ambient temperature are shown in figures 7.1 to 7.13

below.
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Figure 7.1 XRPD pattern for sample (1) Eu2O3. Intensity in arbitrary units.

Figure 7.2 XRPD pattern for sample (1) Eu2O3 showing the region between 46° and

64° in more detail.
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Figure 7.3 XRPD pattern for sample (2) Gd2O3.

Figure 7.4 XRPD pattern for sample (2) Gd2O3 showing the region between 46° and

64° in more detail.
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Figure 7.5 XRPD pattern for sample (3) Yb2O3.

Figure 7.6 XRPD pattern for sample (3) Yb2O3 showing the region between 46° and

64° in more detail.
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Figure 7.7 XRPD pattern for sample (4) Pr2O3. Upper tick marks show the hexagonal

phase, lower tick marks cubic.

Figure 7.8 XRPD pattern for sample (4) Pr2O3 showing the region between 46° and

64° in more detail.
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Figure 7.9 XRPD pattern for sample (5) Tb2O3

.

Figure 7.10 XRPD pattern for sample (5) Tb2O3 showing the region between 46° and

64° in more detail. Tick marks show reflections from both Cu Kα1 and Kα2 radiation.
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Figure 7.11 XRPD pattern for sample (9) Nd2O3.

Figure 7.12 XRPD pattern for sample (10) Sm2O3. Upper tick marks show the cubic

phase, lower tick marks monoclinic.
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Figure 7.13 XRPD pattern for sample (11) Eu2O3.

7.1.2 Ambient temperature cell types

The unit cell parameters for sample (1) to (5) and (9) to (11) are given in table 7.1

below.

Sample Material Phase Cell parameters (Å) Space group

(1) Eu2O3 Cubic a  = 10.860(2) Ia-3

(2) Gd2O3 Cubic a  = 10.786(2) Ia-3

(3) Pr2O3 Cubic 56%

Hexagonal 44%

a  = 11.152(2)

a = 3.860(2)

c = 6.017(2)

Ia-3

P-3m1

(4) Yb2O3 Cubic a  = 10.437(2) Ia-3

(5) Tb2O3 Cubic a  = 10.711(2) Ia-3

(9) Nd2O3 Hexagonal a = 3.828(2)

c = 5.996(2)

P-3m1

(10) Sm2O3 Monoclinic 97%

Cubic 3%

a = 14.168(2),

b = 3.624(2),

c = 8.848(2),

β = 100.05º

a  = 10.928(2)

C2/m

Ia-3

(11) Eu2O3 Cubic a  = 10.860(2) Ia-3

Table 7.1 Refined unit cell parameters for samples (1) to (5) and (9) to (11).
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To reflect the lanthanide contraction, the following image shows unit cell parameter

against atomic number for the cubic cells in table 7.1.

Figure 7.14 Plot of unit cell parameter against atomic number for the C-type cell.

Error bars are within the data points.

Analysis of the data in figure 7.14 showed that the unit cell parameter decreased on

average by 0.065Å for each unit increase in atomic number.
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7.1.3 Ambient temperature crystal structures

The cell contents after refinement for all phases are given below.

7.1.3.1 The C-type phase

Figure 7.15 Crystal structure of the C-type cubic phase in space group Ia-3. Larger

spheres represent the metallic atoms.

Pr2O3 a = 11.152(2)Å, sg Ia-3, Rwp = 0.3271*

Site x y Z Occupancy

Pr1 0.25 0.25 0.25 1

Pr2 0.973872 0 0.25 1

O1 0.364587 0.151367 0.364111 1

Table 7.2 Crystal structure of cubic Pr2O3. *total value for the C and A mixed phase.

Eu2O3 sample (1) a = 10.860(2)Å, sg Ia-3, Rwp = 0.2151

Site x y z Occupancy

Eu1 0.25 0.25 0.25 1

Eu2 0.96958 0 0.25 1

O1 0.39050 0.15783 0.38611 1

Table 7.3 Crystal structure of cubic Eu2O3.
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Eu2O3 sample (11) a = 10.860(2)Å, sg Ia-3, Rwp = 0.0741

Site x y z Occupancy

Eu1 0.25 0.25 0.25 1

Eu2 0.969358 0 0.25 1

O1 0.396584 0.147428 0.399414 1

Table 7.4 Crystal structure of cubic Eu2O3.

Gd2O3 a = 10.786(2)Å, sg Ia-3, Rwp = 0.5869

Site x Y z Occupancy

Gd1 0.25 0.25 0.25 1

Gd2 0.969583 0 0.25 1

O1 0.39107 0.15586 0.37911 1

Table 7.5 Crystal structure of cubic Gd2O3.

Tb2O3 a = 10.711(2)Å, sg Ia-3

Site x y z Occupancy

Tb1 0.25 0.25 0.25 1

Tb2 0.958688 0 0.25 1

O1 0.373145 0.156786 0.350571 1

Table 7.6 Crystal structure of cubic Tb2O3.

Yb2O3 a = 10.437(2)Å, sg Ia-3(206), Rwp = 0.2164

Atom X y z Occupancy

Yb1 0.25 0.25 0.25 1

Yb2 0.96744 0 0.25 1

O1 0.39349 0.15304 0.38678 1

Table 7.7 Crystal structure of cubic Yb2O3.
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7.1.3.2 The B-type phase

Figure 7.16 Crystal structure of the B-type monoclinc phase in space group C2/m.

Larger spheres represent the metallic atoms.

Sm2O3 a = 14.168(2)Å, b = 3.624(2)Å, c = 8.848(2)Å, β = 100.05°, sg C2/m, Rwp =

0.1700

Site x y z Occupancy

Sm1 0.132074 0.5 0.500535 1

Sm2 0.193545 0.5 0.162728 1

Sm3 0.472639 0.5 0.201875 1

O1 0.101440 0 0.409000 1

O2 0.423910 0.5 0.047833 1

O3 0.399147 0.5 0.377914 1

O4 0.537647 0 0.445264 1

O5 0 0.5 0 1

Table 7.8 Crystal structure of monoclinic Sm2O3.



128

7.1.3.3 The A-type phase

Figure 7.17 Crystal structure of the A-type hexagonal phase in space group P-3m1.

Larger spheres represent the metallic atoms.

Pr2O3 a = 3.860(2)Å, c = 6.017(2)Å, sg P–3m1, Rwp = 0.3271*

Site x y z Occupancy

Pr1 0.674413 0.325587 0.269493 1

Pr2 0.719677 0.280324 0.610808 1

O1 0 0 0 1

Table 7.9 Crystal structure of hexagonal Pr2O3. *total value for the C and A mixed

phase.

Nd2O3 a = 3.828(2)Å, c = 5.996(2)Å, sg P–3m1, Rwp = 0.2143

Site x y z Occupancy

Nd1 0.341433 0.658566 0.238656 1

Nd2 0.428594 0.714297 0.642839 1

O1 0 0 0 1

Table 7.10 Crystal structure of hexagonal Nd2O3.

7.1.4 Discussion on ambient temperature results

To obtain the above results, the diffraction patterns obtained were run through the

CRYSFIRE indexing suite, the indexing program GRAPHPRO and Chekcell to find

the best match and space group. Full profile Rietveld refinement was performed using

GSAS. The Gd2O3 pattern was successfully indexed using CRYSFIRE. However, the

patterns for Eu2O3, Pr2O3, Yb2O3, Tb2O3, Nd2O3 and Sm2O3 could not be indexed using
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CRYSFIRE. GRAPHPRO was used to determine the unit cell parameters for sample

(1) Eu2O3, Yb2O3, Tb2O3 and sample (11) Eu2O3, the initial values being a = 10.828Å,

10.405Å, 10.699Å and 10.8232Å respectively. Relaxing the 2θ tolerance in

CRYSFIRE from the default of 0.04 degrees to 0.1 degrees meant that CRYSFIRE was

able to locate solutions for Eu2O3 (10.8379Å), Yb2O3 (10.4068Å) and Nd2O3 (a =

3.828Å, c = 5.994Å). Relaxing the tolerance further to 0.15 degrees meant the indexing

of Tb2O3 was successful (10.712Å). The space group in each case was found to be Ia-3

via Chekcell. GRAPHPRO was unable to index the Pr2O3 pattern.

As might be expected, the patterns for the cubic cells appear essentially the same for all

samples, with just slight shifts on the 2θ axis reflecting the changes in unit cell

parameter. With increasing atomic number of the rare earth metal, the unit cell

parameter decreases according to the lanthanide contraction (shown in figure 7.14) and

2θ positions increase according to the Bragg equation. However, for Eu2O3 there were a

number of low-intensity lines around 2θ = 30° which could not be explained by the

cubic indexing. Since the phase diagram implied that no high-temperature phase

existed at ambient temperature, these were at first thought to be due to an impurity.

However, it will be shown later that this was due to the unexpected presence of the

high-temperature modification.

The pattern for sample (3) Pr2O3 was different to those of the other samples because it

contained many more peaks. Analysis of the data showed that the sample consisted of

both cubic and hexagonal phases, which is consistent with the phase diagram in chapter

1. Its cubic cell was estimated at 11.2Å by extrapolation from the other known cubic

cells in the series. Taking the initial atom positions to be the same as for europia, GSAS

was used to refine the cubic cell to a parameter of 11.152Å. Once the cubic lines in the

pattern were identified, CRYSFIRE was run on the remaining lines to index the other

cell contributing to the pattern. GSAS was again used to refine this cell to a = 3.860Å

and c = 6.017Å. Analysis of the pattern from the refined phase fractions in GSAS

showed there to be approximately 56% of the cubic phase and 44% of the hexagonal

phase present.
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From figure 1.5 Nd2O3 was provisionally expected to be cubic with a cell side around

11.06Å (found by interpolation), or perhaps mixed phase. However, the histogram

showed there to be 100% hexagonal (high-temperature) phase present.

Again from figure 1.5, Sm2O3 was expected to show cubic phase (10.93Å by

interpolation) with perhaps a small degree of monoclinic. However, the histogram

showed there to be 97% monoclinic phase present. The supplier was contacted and

stated that the crystal structure should be cubic. However, on further enquiry it was

found that the sesquioxide had been generated via a multi-stage process, by dissolving

the bastnaesite ore in acid, precipitating the carbonate and calcining to the oxide. As the

material had been exposed to elevated temperature in its preparation, the monoclinic

phase was already present in the commercial sample.

7.2 XRPD AFTER ANNEALING

7.2.1 Diffraction patterns

The XRPD patterns recorded after annealing are shown in figures 7.18 to 7.27 below.

Rietveld refinements of the data were carried out where significant conversion to the

high temperature phase had occurred (figures 7.18, 7.21, 7.22, 7.26, 7.27).
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Figure 7.18 XRPD pattern for sample (1) Eu2O3 following 1 hour anneal at 1334ºC

and slow cooling.

Figure 7.19 XRPD pattern for sample (2) Gd2O3 following 1 hour anneal at 1334ºC

and slow cooling.
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Figure 7.20 XRPD pattern for sample (2) Gd2O3 following 1 hour anneal at 1500ºC

and quenching.

Figure 7.21 XRPD pattern for sample (2) Gd2O3 following 7 hour anneal at 1500ºC

and quenching.
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Figure 7.22 XRPD pattern for sample (2) Gd2O3 following 7 hour anneal at 1500ºC

and quenching showing the region between 28° and 35° in more detail.

Figure 7.23 XRPD pattern for sample (3) Yb2O3 following 1 hour anneal at 1500ºC and

quenching.
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Figure 7.24 XRPD pattern for sample (3) Yb2O3 following 5 hour anneal at 1500ºC and

quenching.

Figure 7.25 XRPD pattern for sample (7) Yb2O3 following 5 hour anneal at 1800ºC and

quenching.
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Figure 7.26 XRPD pattern for sample (8) Gd2O3 following 7 hour anneal at 1500ºC

and quenching.

Figure 7.27 XRPD pattern for sample (8) Gd2O3 following 7 hour anneal at 1500ºC

and quenching showing the region between 14° and 18° in more detail.
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7.2.2 Cell types following annealing

The unit cell parameters for samples (1), (2), (3), (7) and (8) following annealing are

given in table 7.11 below.

Sample Anneal Phase Cell parameters (Å) Space group

(1) Eu2O3 1 hour at 1334ºC Monoclinic 95%

(Cubic 5%)

a = 14.110(2)

b = 3.602(2)

c = 8.808(2)

β = 100.06°

C2/m

(2) Gd2O3 1 hour at 1334ºC Cubic 99%

(Monoclinic 1%)

a  = 10.860(2) Ia-3

(2) Gd2O3 1 hour at 1500ºC Cubic 99%

(Monoclinic 1%)

a  = 10.860(2) Ia-3

(2) Gd2O3 7 hours at 1500ºC Monoclinic 97%

(Cubic 3%)

a = 14.073(2)

b = 3.572(2)

c = 8.755(2)

β = 100.03°

C2/m

(3) Yb2O3 1 hour at 1500ºC Cubic 99%

(Monoclinic 1%)

a  = 10.406(2) Ia-3

(3) Yb2O3 5 hours at 1500ºC Cubic 99%

Monoclinic 1%

a  = 10.406(2)

a = 13.740(2)

b = 3.400(2)

c = 8.593(2)

β = 100.12º.

Ia-3

C2/m

(7) Yb2O3 5 hours at 1800ºC Cubic 100% a  = 10.435(2) Ia-3

(8) Gd2O3 7 hours at 1500ºC Monoclinic 100% a = 14.0980(8)

b = 3.5750(8)

c = 8.7670(8)

β = 100.08°

C2/m

Table 7.11 Unit cell parameters for samples (1), (2), (3), (7) and (8) after annealing..

To reflect the lanthanide contraction, the following image shows unit cell parameters

against atomic number for the monoclinic cells in tables 7.1 and 7.11.
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Figure 7.28 Plot of unit cell parameter against atomic number for the B-type cell.

Error bars are within the data points.

7.2.3 High-temperature crystal structures

The cell contents for all phases after refinement are given below. For completeness, the

structures for gadolinia taken from both laboratory and synchrotron data are included.
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7.2.3.1 The B-type phase

Eu2O3 a = 14.110(2)Å, b = 3.602(2)Å, c = 8.808(2)Å, β = 100.06°, sg C2/m

Site x y z Occupancy

Eu1 0.13325 0.5 0.49001 1

Eu2 0.19061 0.5 0.14136 1

Eu3 0.46897 0.5 0.19012 1

O1 0.11556 0 0.28831 1

O2 0.36952 0.5 0.00401 1

O3 0.38693 0.5 0.40872 1

O4 0.48730 0 0.36007 1

O5 0 0.5 0 1

Table 7.12 Crystal structure of monoclinic Eu2O3.

Gd2O3 a = 14.073(2)Å, b = 3.572(2)Å, c = 8.755(2)Å, β = 100.03°, sg C2/m, Rwp =

0.5147

Site x y Z Occupancy

Gd1 0.13229 0.5 0.48514 1

Gd2 0.19332 0.5 0.13665 1

Gd3 0.47041 0.5 0.18702 1

O1 0.12246 0 0.32855 1

O2 0.34297 0.5 0.00172 1

O3 0.30732 0.5 0.36905 1

O4 0.48348 0 0.33026 1

O5 0 0.5 0 1

Table 7.13 Crystal structure of monoclinic Gd2O3 from lab data.

Gd2O3 a = 14.0980(2)Å, b = 3.5750(2)Å, c = 8.7670(2)Å, β = 100.08°, sg C2/m, Rwp =

0.4709

Site x y z Occupancy

Gd1 0.13485 0.5 0.48879 1

Gd2 0.18928 0.5 0.13617 1

Gd3 0.46561 0.5 0.18799 1

O1 0.12638 0 0.28385 1

O2 0.33025 0.5 0.04017 1

O3 0.29291 0.5 0.37098 1

O4 0.47671 0 0.35531 1

O5 0 0.5 0 1

Table 7.14 Crystal structure of monoclinic Gd2O3 from synchrotron data.



139

7.2.3.2 Praseodymia β phase (Pr6O11)

a = 5.4790(2)Å, sg Fm-3m

Site x y z Occupancy

Pr1 0 0 0 1

O1 0.25 0.25 0.25 0.915

Table 7.15 Crystal structure of Pr6O11.

7.2.3.3 Praseodymia ι phase (Pr7O12)

a = 10.3460(2)Å, c = 9.6430(2) Å, space group R-3, Rwp = 0.2957

Atom x y z Occupancy

Pr1 0 0 0 1

Pr2 0.121139 0.411048 0.006016 1

O1 0.166206 0.280304 0.447745 1

O2 0.249534 0.104719 0.083884 1

Table 7.16 Crystal structure of Pr7O12.

7.2.4 Discussion on annealed sample results

7.2.4.1 Europia

Indexing of the (1) Eu2O3 pattern taken post-heating using CRYSFIRE/Chekcell gave a

monoclinic cell with a = 14.110Å, b = 3.602Å, c = 8.808Å, β = 100.06° and space

group C2/m. The cubic pattern was found to have almost completely disappeared.

Interestingly, the inexplicable lines present in the diffraction pattern from the cubic

phase had intensified, indicating that the feature initially thought to be caused by

impurity was due to the presence of a small proportion of monoclinic phase in the

commercially-obtained material. Further analysis of the ambient temperature pattern in

figure 7.1 using GSAS showed there to be approximately 95% of the monoclinic phase

and 5% of the cubic phase present.

7.2.4.2 Gadolinia

The pattern for (2) Gd2O3 obtained after 1 hour in the Carbolite furnace at 1334ºC

appeared virtually identical to that prior to annealing. However, there was a small but

noticeable change in the appearance of a number of extremely low-intensity reflections

around the 2θ = 30° mark, as shown in figure 7.29 below.
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Figure 7.29 Diffraction pattern of Gd2O3 following 1 hour anneal at 1334ºC showing

low-intensity reflections due to the monoclinic phase.

The pattern for Gd2O3 obtained after 1 hour in the Heraeus furnace at 1500ºC again

appeared virtually identical to that prior to heating. As with the Carbolite furnace

experiment, the same low-intensity reflections appeared around 2θ = 30°. In addition,

there were also two low intensity reflections around 2θ = 46.6° and 47.2°. These are

indicated in figure 7.30 below.
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Figure 7.30 Diffraction pattern of Gd2O3 following 1 hour anneal at 1500ºC showing

low-intensity reflections due to the monoclinic phase.

Because of the similarity with the europia cubic pattern it was assumed that these low

intensity lines in the Gd2O3 XRPD patterns were due to the presence of some

monoclinic phase. These 5 lines were run through CRYSFIRE to see if anything

significant was found. None of the indexing programs found a solution that seemed

reasonable and approximating to that of monoclinic Eu2O3. The 5 lines were then put

into Chekcell and a set of calculated reflections generated from the monoclinic Eu2O3

unit cell parameters. These parameters were refined until the experimental and

calculated lines converged. Thus a set of approximate unit cell parameters for

monoclinic Gd2O3 were found, namely  a = 14.05Å, b = 3.52Å, c = 8.58Å, β = 100.19º.

The pattern for Gd2O3 obtained after 7 hours’ annealing at 1500ºC in the Heraeus

furnace showed an almost complete conversion to the monoclinic phase. Figure 7.31

shows the original cubic pattern and the monoclinic pattern. The 4 lowest angle cubic

lines still retained are marked. These lines were at 2θ = 20.28º, 28.73º, 33.23º and
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35.38º. Other reflections due to the cubic cell were also present at higher angles (2θ =

56.55º, 57.89º, 59.26º, 63.24º, 68.36º, 69.56º, 76.91º and 88.59º).

Figure 7.31 Cubic (upper image) and monoclinic (following 7 hour anneal at 1500ºC)

patterns for Gd2O3. The 4 marks indicate the cubic lines which were retained after

annealing.

Indexing of the 7-hour annealed gadolinia pattern using CRYSFIRE/Chekcell was

attempted, discarding the 4 cubic lines and allowing for a zero shift in the pattern of 0.2

degrees following the running of a quartz standard in the diffractometer. However, no

results analogous to that of monoclinic europia were obtained. It was therefore decided

to use the approximate unit cell parameters obtained above. These parameters proved

too far from the solution for GSAS to converge. It was then decided to estimate the unit

cell parameters of monoclinic Gd2O3 by looking at the known cell parameters for its
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neighbours samaria, europia and terbia and interpolating to find those for gadolinia.

Figure 7.32 shows this process for estimating the value of the a parameter, although in

practice this process was repeated for the other unit cell parameters. A similar method

has been applied for the determination of the lutetia cell (Sun et al 2007) although in

this reference the cell of B-type Sm2O3 was used as the starting point.

Figure 7.32 Estimation of unit cell parameter ‘a’ for monoclinic Gd2O3 by a method of

interpolation.

The provisional unit cell parameters for monoclinic Gd2O3 were estimated at a =

14.07Å, b = 3.57Å, c = 8.77Å, β = 100.07°. It should be noted that although a and b are

close to those estimated from the 1 hour heating data, the value of c is significantly

higher.

Least squares refinement still left a discrepancy in intensity for the 2θ = 30.06º peak

(402 plane). The remainder of the peaks were well fitted. It was thought that the

discrepancy might be explained by preferred orientation of the microcrystalline sample.

To this end, the sample was reground and the pattern collected again. However, the

pattern showed no change. This discrepancy was seen neither with the europia
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monoclinic pattern nor the second gadolinia sample exposed to synchrotron radiation.

There is no ambient phase peak in the same 2θ region that might cause superposition.

The problem peak was therefore put down to preferred orientation that was not

sufficiently ground out.

Analysis of the pattern from the refined phase fractions in GSAS showed there to be

approximately 97% of the monoclinic phase and 3% of the cubic phase present.

Because of the significantly greater energy input required to force the conversion in

gadolinia compared to europia, it was decided to repeat an XRPD pattern at a later date

in order to determine if there had been any change in the phase fractions. The sample

was analysed 5 months after annealing and found to contain the same proportion of B-

type oxide.

Unlike sample (2), sample (8) Gd2O3 showed a complete conversion following the

same time at what was believed to be the same temperature. Sample (2) was annealed

in a cylindrical crucible with the open end exposed to the air. Sample (8) was annealed

in the enclosed space of the DSC. It is likely that the temperature for sample (8) was

slightly higher and not subject to the cooling effect of direct exposure to the

atmosphere. The diffraction pattern (figure 7.26) shows distinct and narrow Bragg

reflections characteristic of those generated using synchrotron radiation. Although the

data was captured up to 149.99° of 2θ it was not possible to load the entire diffraction

pattern into the relevant software due to the file size. Instead the characteristic region

below 40° was chosen. To ensure there was nothing other than monoclinic phase

present the entire diffractogram was loaded into a spreadsheet and compared against a

calculated pattern. The patterns were found to correspond exactly, meaning that the

sample had completely converted to the monoclinic phase. This is contrary to sample

(2), where 100% conversion to the monoclinic phase did not occur.

7.2.4.3 Ytterbia

Heating the Yb2O3 sample for 1 hour in the Heraeus furnace produced virtually no

change in the diffraction pattern. As with Gd2O3 there was a small change with the
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appearance of low intensity lines around 2θ = 30º, although this time they were

considerably weaker than for gadolinia. This is to be expected, since increasing atomic

number of the rare earth is accompanied by a sharp increase in the energy needed to

make the phase transition.

Figure 7.33 XRPD pattern of Yb2O3 post-heating to 1500ºC showing low-intensity

reflections due to the monoclinic phase.

Because of the similarity with the Gd2O3 pattern in figure 7.20 (and the cubic europia

pattern in figure 7.1) it was again assumed that the low intensity lines in the Yb2O3

pattern around 2θ = 30º were due to the presence of a monoclinic phase. These 6 lines

were run through CRYSFIRE to determine if anything significant could be found. None

of the software found a solution that seemed reasonable or approximated to that of

monoclinic Eu2O3. The 6 lines were then put into Chekcell and a set of calculated lines

generated from unit cell parameters extrapolated from monoclinic europia. The starting

points were taken as a = 13.75Å, b = 3.45Å, c = 8.5Å and β = 100.2º. These parameters

were refined until the experimental and calculated lines converged. Thus a set of

approximate unit cell parameters for monoclinic Yb2O3 were found, namely a =

13.740(2)Å, b = 3.400(2)Å, c = 8.593(2)Å and β = 100.12º. The existence of this phase
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is contrary to the phase diagram and also to recently published work (Guo, Harvey et al

2007), (Meyer et al 1995).

The pattern for Yb2O3 obtained post-heating for 7 hours in the Heraeus furnace again

showed little conversion to the monoclinic phase. The same 6 monoclinic lines were

visible around 2θ = 30º but there was no increase in intensity relative to the other lines.

Because of this no further work was carried out on the diffraction pattern.

Using the estimated unit cell parameters for ytterbia and assuming the atom positions to

be the same as for gadolinia, analysis of the pattern from the refined phase fractions in

GSAS showed there to be approximately 99% of the cubic phase and 1% of the

monoclinic phase present.

The pattern for Yb2O3 obtained post-heating for 5 hours at 1800°C showed no

conversion to the monoclinic phase. There was a 2-week delay between the annealing

and the diffraction pattern being collected. It would be reasonable to assume that the

material had converted at least as much as sample (3) in the furnace and possibly more

because of the increased temperature. However, the monoclinic phase of ytterbia is

obviously very unstable under ambient conditions. To show the change, the immediate

recording of XRPD data under ambient conditions or, ideally, in situ XRPD, would be

needed.

7.3 IN SITU HIGH TEMPERATURE XRPD

7.3.1 Praseodymia ramp in air

The purpose of this section was to identify the temperatures of the phase transitions

within the range of the diffractometer with the intention of then carrying out the kinetic

study detailed in 7.3.2. Sample (4) was heated in 25° steps from 25°C to 800°C and

cooled back in 25°C steps to 125°C. At each temperature a diffraction pattern was

recorded. The 33 XRPD patterns obtained from 25ºC to 800ºC are shown stacked

together in the 3 images below.
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Figure 7.34 Praseodymia ramp 25ºC to 275ºC showing the appearance of the ceria-

type β phase (Pr6O11) at 275ºC.

Figure 7.34 shows the sudden appearance of the β phase at 275ºC. Here the pattern

corresponding to the mixed A and C-type phases transforms to the 5-peak pattern of the

CeO2 structure. This structure is represented in the phase diagram in figure 1.9 by a

narrow vertical section to the bottom right. The 5 peaks were run through CRYSFIRE.

However, the program was unable to index the XRPD pattern because of the small

number of lines. GRAPHPRO returned the unit cell parameter as 5.476 Å. Full profile

refinement using GSAS was carried out using the atom positions in the ICDD database

reference 42-1121. The refined unit cell parameter was 5.4790(2)Å.
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Figure 7.35 Praseodymia ramp 300ºC to 550ºC showing the ceria cell throughout.

Figure 7.35 shows no change throughout the temperature ramp other than an

intensifying of the reflections. Although the phase diagram shows there are 3 phases in

this range (the δ, ε and ζ phases), there was no indication of any structural change from

the XRPD patterns. This is to be expected as the changes are solely due to the different

oxygen compositions whilst still retaining the ceria-type cubic cell. The contribution to

peak intensities from oxygen is small compared to that of praseodymium.
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Figure 7.36 Praseosymia ramp 575ºC  to  800ºC showing the appearance of the ι phase

(Pr7O12) at 625ºC.

It is not until 625ºC that a new cell type is discernible in the diffractograms, where the ι

phase slowly emerges over a series of patterns in figure 7.36. Its presence is indicated

by the weak reflection present between the 5 stronger reflections already present.

CRYSFIRE was unable to index the XRPD pattern of this new structure. Full profile

refinement using GSAS was carried out using the atom positions in the ICDD database

reference 7-0449. The refined unit cell parameters were a = 10.3460(2)Å and c =

9.6430(2)Å, space group R-3.

The diffraction patterns for both the β and ι phases are shown in figures 7.37 and 7.38.
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Figure 7.37 Final stage of refinement of the β phase (Pr6O11) of praseodymia.

Figure 7.38 Final stage of refinement of the ι phase (Pr7O12) of praseodymia.
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The 28 XRPD patterns obtained on cooling back from 800ºC to 125ºC are shown

stacked together in the 2 images below.

Figure 7.39 Praseodymia ramp 800ºC to 450ºC showing the loss of the ι phase of

Pr7O12 at 575ºC.

Figure 7.39 shows that on cooling the sample back from 800°C, the ι phase which had

appeared at 625°C when the temperature was ascending disappeared at 575°C. This

marks the point where the conversion back to the ceria cell occurred. More detailed

examples of hysteresis in the Pr-O system will be shown in chapter 8.
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Figure 7.40 Praseodymia ramp 425ºC to 125ºC showing the ceria cell throughout.

Figure 7.40 shows that further cooling showed no change in the XRPD pattern i.e. the

ambient temperature phase did not appear below 300°C. This echoes findings with

europia and gadolinia; some high-temperature phases are metastable.

7.3.2 Praseodymia isothermal holds in air - conversion from Pr2O3 to Pr6O11 at 275°C

Now that the transition temperature for formation of the β phase had been established

at approximately 275°C it was possible to perform a series of isothermal holds close to

this temperature to observe how fast the reaction proceeded with temperature.

7.3.2.1 Peak heights and intensities

Figure 7.41 shows an example of the ambient temperature phase transforming into the

β-phase over a period of 45 minutes.
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Figure 7.41 The five Bragg peaks of the β phase emerging from the ambient mixed

phase during the 250°C isothermal hold.
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The diffraction patterns in figure 7.41 clearly show the 5 peaks of the high-temperature

phase emerging from the pattern of the ambient mixed phase. Two characteristic peaks

were chosen for analysis. These were at 47.2º (corresponding to the 220 plane in the β

phase) and 41.4° (the 012 plane in the ambient cubic phase). The integrated intensities

of these peaks were recorded across each isothermal hold and the fractional changes in

the peaks plotted against time. The following chart illustrates the degree of conversion

to the β phase as measured by the increase in intensity of the 47.2° peak.

Figure 7.42 Conversion against time for Pr2O3 to Pr6O11 phase change using the

increase in intensity of the 47.2º (β phase 220 plane) peak.

7.3.2.2 Shrinking Sphere model

The fractional conversions for the 230°C holds were discarded as there were found to

be anomalies in the data due to operational error. Use of the Shrinking Sphere model on

the remaining holds at 240°C, 250°C, 260°C, 270°C and 280°C gave the set of kinetic

isotherms in figure 7.43.
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Figure 7.43 Shrinking Sphere kinetic isotherms for the 47.2º (β phase 220 plane) peak.

Use of the data in the above chart gave the following set of values for the rate constant,

k.

Temp (ºC) k (s
-1

)

240 7x10
-4

250 3.2x10
-3

260 2.8x10
-3

270 7.9x10
-3

280 9.7x10
-3

Table 7.17 Values of the rate constant, k, for the 47.2º (β phase 220 plane) peak.

A plot of ln k against reciprocal temperature is shown below.
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Figure 7.44 Plot of ln k against 1/T for the 47.2º (β phase 220 plane) peak.

Further analysis of the above data generated value of -146(2) kJ.mol
-1

 for the activation

energy.

7.3.2.3 JMAK model

Starting with the same fractional conversion data as in 7.3.2.2, use of the JMAK model

gave the following double log plot.
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Figure 7.45 JMAK kinetic isotherms for the 47.2º (β phase 220 plane) peak.

Use of the data in the above chart gave the following set of values for the rate constant,

k and Avrami exponent, n.

Temp (ºC) K (s
-1

) n

230 Not able to determine Not able to determine

240 2.972x10
-7

1.80(59)

250 1.68x10
-10

3.08(25)

260 9.182x10
-9

2.57(7)

270 3.777x10
-10

3.29(6)

280 1.308x10
-9

3.24(11)

Table 7.18 Values of the rate constant and Avrami exponent for the 47.2º (β phase 220

plane) peak.

JMAK data obtained from accurately recorded data should yield a series of plots in

figure 7.45 with similar gradient, corresponding to the Avrami exponent. In turn, the

plot in figure 7.46 should be a downward sloping line. Because of the lack of data (only

5 data points) and the erratic spread of Avrami exponents in table 7.18 it was decided to
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take a practical approach and only use the data giving similar gradients in figure 7.45.

The relevant temperature holds were 250ºC, 270ºC and 280ºC. A plot of ln k against

reciprocal temperature is shown below.

Figure 7.46 Plot of ln k against 1/T for the 47.2º (β phase 220 plane) peak.

Further analysis of the above data generated a value of -154(2) kJ.mol
-1

 for the

activation energy.

Figure 7.42 clearly shows that the isothermal hold at 230ºC was not long enough for

significant conversion to take place. As a result of this, the data was of no use in

determining the Avrami exponent. The 240ºC data does not level out, meaning that

100% conversion did not occur. Again, this meant that the value for the Avrami

exponent could not be deemed accurate. The remaining 4 values for the Avrami

exponent do show some agreement, although had other holds been possible, perhaps at

intermediate temperatures eg 245ºC, 255ºC etc, the value for the activation energy

might have been improved. The JMAK model is useful in providing the dimensionality

information via the Avrami exponent, but to obtain it we must effectively take the log
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of both sides of the Shrinking Sphere equation. The Shrinking Sphere model plots –ln(1

- x) against t whereas the JMAK model plots ln(-ln(1 - x)) against ln t. In taking this

secondary log, significant error is introduced into the working and therefore into the

values for the Avrami exponent and activation energy. To counter this, it would be

useful to record XRPD patterns more often. This would improve the kinetic isotherms

and hopefully the values for the above quantities.

A summarised set of results, including that for the 41.4º peak, is given in the table

below. The values for the activation energy obtained by both models for the 47.2º peak

are close. Encouragingly, they correspond to the value of –149(10) kJ.mol
-1

 for the

40.1º peak, where it had been assumed that the kinetics attributable to a collapsing peak

in the XRPD pattern would be the same as that for a growing peak.

Peak Phase Method EA (kJ.mol
-1

) n

41.4º Ambient hexagonal Shrinking sphere -149(10) N/A

47.2º High temp cubic Shrinking sphere -146(2) N/A

47.2º High temp cubic JMAK -154(2) 3.05(7) avg

Table 7.19 Values for activation energy for the φ → β transition in Pr-O.

Referring to table 4.1, the value of n being between 3 and 4 indicates that the product

phase propagates three-dimensionally from existing nucleation sites in the reactant

material.

7.3.3 Praseodymia quench in air

The ι phase, which appeared at 625ºC when the temperature was ascending, was

retained up to the maximum temperature reached of 800ºC. On quenching, the ceria

phase was retained at ambient temperature as the β form.

7.3.4 Change in unit cell parameter with temperature

The temperature ramp in 7.3.1 showed 2 distinct changes to the XRPD pattern. At

about 275°C there was a significant change, corresponding to the mixed A and C-type
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phase converting to Pr6O11. At 625°C there was a more subtle change in the pattern

with Pr6O11 converting to Pr7O12. With increasing temperature there is an associated

thermal expansion of the crystal lattice, indicated by a small shift in the positions of the

Bragg reflections. This phenomenon is often used as a means of measuring temperature

in situ when XRPD data is being collected at high temperature. In such a case, a known

material such as platinum is introduced to the sample and the shift in its Bragg peaks

used to determine temperature. The following table shows the values for the unit cell

parameters between 275°C and 800°C, obtained by observing the change in the

position of the 111 reflection.

Figure 7.47 Variation in unit cell parameter with temperature for Pr6O11. Error bars

are within the data points.

Figure 7.47 shows a linear correlation between unit cell parameter and temperature.

7.4 COMPARISON WITH OTHER WORK

The study of the lanthanoid oxides is a long and well-established tradition and there is a

vast amount of data in the available literature. The crystal structures of the sesquioxides

are well known and they are in general agreement with the phase diagram in figure 1.5.
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However, there are notable exceptions. The phase diagram does not indicate that high

temperature modifications exist at ambient temperature. This work has shown that

Sm2O3, Eu2O3 and Gd2O3 can all persist under ambient conditions. Additionally, high-

temperature modifications exist which are not indicated in the diagram as existing at

all, notably Er2O3 and Yb2O3, and may be quenched to ambient temperature.

Historically, there has been limited kinetic work done on the Pr-O system, the bulk of

the data on the lanthanides lying with the oxides of neodymium to gadolinium. The

main sources of XRPD data are Stecura and Ainscough, whose data is presented in

table 7.20.

Oxide Ambient phase Reaction EA (kJ.mol
-1

)

Nd2O3 Cubic C-type → A-type 502
1

Sm2O3 Cubic C-type → B-type 628
1

Eu2O3 Cubic C-type → B-type 691
1

Eu2O3 Cubic C-type → B-type 493
2

Gd2O3 Cubic C-type → B-type 787
1

Table 7.20 Activation energies for the lanthanide oxides.

1 
(Stecura 1966). 

2
 (Ainscough et al 1975)

The value for the activation energy of the φ → β transformation in praseodymia is

considerably lower. There is correlation between the 2 values obtained using the

increase in height of the 47.2° Bragg reflection in the product phase (-146(2) kJ.mol
-1

obtained via a shrinking sphere model and -154(2) kJ.mol
-1

 obtained via the JMAK

model). The value obtained by looking at the fall in the 41.4° Bragg reflection in the

reactant phase (-149(10) kJ.mol
-1

) corresponds to the former two values, indicating the

the assumption in its derivation was correct i.e. it is possible to use changes in either

reactant or product peaks to obtain the same result. In addition to their closeness, the

three values are relatively small when compared with the much higher values for the

heavier oxides. The kinetic data obtained via XRPD will be discussed further in chapter

8 alongside the results obtained from DSC-TG both historically and in this work.
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8 RESULTS FROM DIFFERENTIAL SCANNING

CALORIMETRY

This chapter contains all the DSC work carried out on PrOx. The work had five aims,

namely:

(i) to identify phase changes in the system;

(ii) to perform kinetic measurements where possible;

(iii) to match phase changes against the published phase diagram;

(iv) to note any discrepancies between this work and the phase diagram;

(v) and to determine the extent of degradation of the material in air.

8.1 FULL RANGE DSC-TG IN NITROGEN

The results obtained from sample (4) using the full temperature range (up to 1550°C) of

the instrument are given in the following 4 images.

Figure 8.1 DSC-TG recorded on sample (4) Pr2O3 from 20°C to 1550°C at 10K/min

under nitrogen.
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Figure 8.2 DSC-TG recorded on sample (4) Pr2O3 from 20°C to 1550°C at 10K/min

under nitrogen. 2
nd

 attempt, showing greater mass loss compared to figure 8.1.

The phase diagram for praseodymium sesquioxide (figure 1.5) shows only 2 structures:

the cubic C form and the hexagonal A form. The transition temperature from one form

to the other is not well defined in the diagram but appears to be around 500°C.

Therefore a deflection was expected to be seen in the DSC around this temperature.

However, this was not observed. Looking at the above images, there were two

deflections between 280°C and 360°C and a large and broad peak after this

temperature. Figure 8.1 shows deflections at 288.5°C, 343.1°C, 652.1°C and 958.5°C;

the deflection at 288.5°C is accompanied by a small mass loss of 1.17%. Figure 8.2 still

shows 2 deflections between 280°C and 360°C, but the other peaks present in figure 8.1

are absent, the remainder of the DSC line having become a large hump. The mass loss

has now increased to 3.01%. The broad peak in all of figures 8.1 to 8.4 was not

explainable in terms of the deflections expected from the phase diagram and a machine

fault was suspected. What was interesting to note was that the sample removed from

the DSC was no longer pale green but red-black, indicating that oxidation may have

occurred. The phase diagram for the praseodymium-oxygen system (figure 1.9) was

consulted. The diagram indicates that the hexagonal θ phase (sesquioxide) exists above

800°C, although in chapter 7 it has been established by XRPD that it can exist at
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ambient temperature. It was at first surprising to find that the sesquioxide was not

retained on heating; it was assumed that the cubic φ phase present in the sample would

be converted to hexagonal, leaving only the θ form. That this did not occur gave an

indication of the complex nature of the Pr-O system and the readiness of praseodymium

to undergo oxidation, even using a nitrogen atmosphere. That the oxidation occurs at a

low temperature and was not prevented by the protective and purge gases indicated that

the reaction had low activation energy. This was confirmed by the kinetic work in

Chapters 7 and 8.

The conversion to the β phase was identified as a possible explanation for the

deflections between 280°C and 360°C. The Pr-O phase diagram indicates a temperature

of about 275°C for this change, which is in agreement with the DSC results. However,

oxidation of Pr2O3 to Pr6O11 would result in a mass increase of 3.2%, not a mass loss. It

was believed that any mass increase was being masked by a larger loss, resulting in a

net loss on the TG. Pr2O3 is known for absorbing carbon dioxide and water from the air

(Anderson and Gallagher 1963). The possibility of mass loss due to the release of

bound water or carbon dioxide was considered. The initial sample (4) came sealed in a

glass ampoule and between the initial XRPD pattern and one taken 2 months later there

was some change, albeit both cubic and hexagonal phases were still readily discernible.

The 3.2% increase in mass due to oxidation would be swamped by the loss of, say, a

fraction of water or carbon dioxide. Additionally, the TG in figures 8.1 and 8.2 do not

show agreement in mass loss; this may be due to the sample degrading over time.

To investigate the mass loss, a further 2 runs were carried out on sample (4). This time

the sample was pre-heated prior to using the DSC with the intention of driving off any

absorbed gas but without inducing any oxidation or phase change.
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Figure 8.3 DSC-TG recorded on sample (4) Pr2O3 from 20°C to 1550°C at 10K/min

under nitrogen following heating at 170°C for 10 minutes.

Figure 8.4 DSC 4 recorded on sample (4) Pr2O3 from 20°C to 1550°C at 10K/min

under nitrogen following heating at 380°C for 30 minutes.
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Figure 8.3 shows 2 deflections between 280°C and 400°C. As with figure 8.2 the other

deflections are absent, the remainder of the DSC plot having become a large hump. The

mass loss has now increased a small amount to 3.69%. Figure 8.4 shows that the

deflections between 280°C and 400°C have disappeared, although 2 peaks have

appeared at 516°C and 822°C which may correspond to those in figure 8.1, although

they have appeared at much lower temperatures. The mass loss has now dropped to

below 0.5%.

The results following pre-heating indicate two properties of θ phase Pr2O3. Firstly,

heating the sample to 170°C is not hot enough to drive off any bound gas. It may be

that heating for an extended period at this temperature would cause a slow release of

gas, but such facilities were not available. Secondly, the oxidation and the gas loss

occur at the same point. It may be the case that the structural change from the

hexagonal θ phase to the cubic ceria structure forces the release of gas from the lattice.

Following these unexpected results and to determine whether or not there were

instrumental problems, the sample was run on a Mettler Toledo DSC. The resultant

DSC-TG is shown in figure 8.5.
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Figure 8.5 Mettler DSC-TG recorded on sample (4) Pr2O3 from 20°C to 1100°C under

nitrogen.

The Mettler data shows the same deflection around 300°C. Additionally it identifies a

deflection around 400°C (as figure 8.1) and 900°C (as figures 8.1 and 8.4). There is

clearly a difference in the quality of the baseline between the machines. Of interest is

the mass loss around 275°C, which has increased to 7.15% ie almost double that in

figure 8.4. This indicates that the material is still absorbing gas from the atmosphere,

the Mettler Toledo being used a month after the results from the Netzsch machine.

8.2 FULL RANGE DSC-TG IN AIR

Because of the possibility of sample (4) degrading further a new sample (6) Pr2O3 was

obtained. The following image shows the initial DSC-TG recorded on this material.
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Fig 8.6 DSC-TG recorded on sample (6) from 20°C to 1500°C at 10K/min under air.

The DSC-TG for sample (6) was very different to those obtained from sample (4).

Where, for sample (4), there had been a series of peaks around 300°C, there was now a

small endotherm followed by a large exotherm. It was initially taken that this small

endotherm might correspond to gas loss. Each deflection across the DSC was

discernible as a discrete peak and many of these peaks could be related to known

transitions on the Pr-O phase diagram. What is notable is that the broad hump had

disappeared. The different look of the image for sample (6) is due to two factors.

Firstly, sample (4) contained a mixture of cubic and hexagonal phases whereas sample

(6) contained only the hexagonal phase. Secondly, sample (4) has absorbed significant

gas before any DSC-TG work was performed on it. The degradation in the sample can

be seen by comparing figures 7.7 and 7.34.

It is known from the Pr-O phase diagram that the ambient Pr2O3 phase oxidises at

275°C. From the sesquioxide phase diagram it is unclear at exactly what temperature

the cubic phase will convert although it appears to be in the region of 500°C.

Furthermore, the sesquioxide diagram does not show oxidation, although it should be

assumed that heating cubic Pr2O3 is likely to result in oxidation too, presumably to

Pr6O11. It may be that in addition to the sharp DSC peaks when the starting point is
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pure hexagonal Pr2O3 there is some additional contribution from the cubic phase that

masks the detail obtained from the pure hexagonal phase. Conversion of the cubic

phase may be sluggish, occurring over much of the run, resulting in a wide hump, as

shown in figures 8.1 to 8.4.

The TG for sample (6) shows a small mass loss of 0.13% around 275°C. This is likely

to be gas loss from the sample; there has already been a small absorption from the air in

the time the bottle had been opened. Following this mass loss there is a large gain of

2.89%, presumably due to oxidation. The expected mass gain for Pr2O3 → Pr6O11

would be 3.2%.

8.3 RAMPS IN NITROGEN

The DSC data recorded during the 7 ramps performed on sample (4) are shown in

figure 8.7 below.

Figure 8.7 DSC recorded on sample (4) Pr2O3 from 200°C to 500°C under nitrogen.

Heating rates are indicated beside the lines.

The reaction appears to follow a three-stage process. This is understandable as there are

likely to be deflections for the loss of gas, and also for both ambient phases converting
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to the high-temperature phase. The table below lists the temperature ramps and the

corresponding transition temperatures as identified by the maximum deflection for the

first endotherm. The calculations are taken from the method given in Chapter 4.

Heating rate, φφφφ
(K/min)

Temp of max

deflection, T
m

 (°°°°C)

T
m

 (K) T
m

-1
Ln(φφφφ/T

m

2
)

1 242.5 515.7 0.001939 -12.491

2 254.3 527.5 0.001896 -11.843

4 268.3 541.5 0.001847 -11.202

7 277.6 550.8 0.001816 -10.677

10 283.6 556.8 0.001796 -10.342

15 296.9 570.1 0.001754 -9.984

20 308.2 581.4 0.001720 -9.735

Table 8.1 Kissinger analysis for 1
st
 endotherm - sample (4) Pr2O3.

Figures 8.8 and 8.9 below show the plot of temperature against heating rate and the

linear plot from which the activation energy can be calculated.

Figure 8.8 Temperature of maximum deflection, Tm, versus heating rate, φ, for sample

(4) Pr2O3 1
st
 endotherm.
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Figure 8.9 Plot of ln (ϕ /Tm

2
) against 1/Tm for sample (4) Pr2O3 1

st
 endotherm.

In chapter 4 it was shown that the gradient of the straight line is equal to -EA/R.

Therefore the activation energy was calculated to be 108(9) kJ.mol
-1

.

Because the conversion is a multi-stage process (there are 3 endotherms) it was decided

to analyse the other two peaks in the same way. Kissinger Analysis is dependent upon

the shift in peaks with heating rate rather than their absolute positions, so this seemed a

reasonable step to take.

φφφφ (K/min) T
m

 (°°°°C) T
m

 (K) T
m

-1
ln(φφφφ/T

m

2
)

1 296.7 569.9 0.001755(4) -12.691(6)

2 315.5 588.7 0.001699 -12.063(6)

4 326.6 599.8 0.001667 -11.407(6)

7 349.8 623 0.001605 -10.923(6)

10 351.8 625 0.001600 -10.573(6)

15 372.5 645.7 0.001549 -10.233(6)

20 377.0 650.2 0.001538 -9.959(6)

Table 8.2 Kissinger analysis for 2
nd

 endotherm - sample (4) Pr2O3.
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Figure 8.10 Temperature of maximum deflection, Tm, versus heating rate, φ, for sample

(4) Pr2O3 2
nd

 endotherm.

Figure 8.11 Plot of ln (ϕ /Tm

2
) against 1/Tm for sample (4) Pr2O3 2

nd
 endotherm.
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φφφφ (K/min) T
m

 (°°°°C) T
m

 (K) T
m

-1
ln(φφφφ/T

m

2
)

1 Not discernible

2 349.0 622.2 0.001607 -12.173(6)

4 361.0 (unclear) 634.2 0.001577 -11.518(6)

7 395.6 (unclear) 668.8 0.001495 -11.065(6)

10 410.3 683.5 0.001463 -10.752(6)

15 416.7 (unclear) 689.9 0.001449 -10.365(6)

20 422.9 696.1 0.001437 -10.095(6)

Table 8.3 Kissinger analysis for 3
rd

 endotherm - sample (4) Pr2O3.

Figure 8.12 Temperature of maximum deflection, Tm, versus heating rate, φ, for sample

(4) Pr2O3 3
rd

 endotherm.
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Figure 8.13 Plot of ln (ϕ /Tm

2
) against 1/Tm for sample (4) Pr2O3 3

rd
 endotherm.

The activation energy for endotherm 2 was calculated to be 103(6) kJ.mol
-1

 For

endotherm 3 the figure is 61(3) kJ.mol
-
1 if all data points are used. However, there was

some difficulty measuring the troughs for the 4, 7 and 15K/minute runs. The Netzsch

software was unable to pick them up and so they had to be determined manually.

Omitting these 3 points the figure is 56(3) kJ.mol
-1

, which is still close to the former

reading.

8.4 RAMPS IN AIR

8.4.1 Ramp performed between 20°C and 600°C

The DSC recorded during the 7 ramps performed between 20°C and 600°C on sample

(6) are shown in figure 8.14 below.
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Figure 8.14 DSC ramps on sample (6) Pr2O3 from 200°C to 600°C in air.

As with figure 8.6, the DSC data collected from sample (6) shows a single deflection

around 400°C rather than the three shown by sample (4). The sample (6) deflections do

not follow as smooth a shift with heating rate as for sample (4); the 15K/min and

10K/min peaks are close, as are those for 4K/min and 2K/min. The table below lists the

temperature ramps and the corresponding temperatures of the maximum deflection for

this exotherm.

φφφφ (K/min) T
m

 (°°°°C) T
m

 (K) T
m

-1
ln(φφφφ/T

m

2
)

1 368.7 641.9 0.001558 -12.929

2 388.1 661.3 0.001512 -12.295

4 390.3 663.5 0.001507 -11.609

7 412.7 685.9 0.001458 -11.116

10 425.3 698.5 0.001432 -10.795

15 430.9 704.1 0.001420 -10.406

20 460.4 733.6 0.001363 -10.200

Table 8.4 Kissinger analysis for 1
st
 exotherm - sample (6) Pr2O3. Data recorded from

200°C to 600°C.

Figures 8.15 and 8.16 below show the plot of temperature against heating rate and the

linear plot from which the activation energy can be calculated.
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Figure 8.15 Temperature of maximum deflection, Tm, versus heating rate, φ, for sample

(6) Pr2O3 1
st
 exotherm.

Figure 8.16 Plot of ln (ϕ /Tm

2
) against 1/Tm, for sample (6) Pr2O3 1

st
 exotherm.

The activation energy for the exotherm in sample (6) was calculated to be -122(6)

kJ.mol
-1

. It was notable that the DSC data for the 4K/min ramp showed other features,
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similar to figure 8.7 and presumably due to gas absorption. This was confirmed by the

associated TG plot, which was very different to those for the other ramps. Furthermore,

the temperature of maximum deflection for the 4K/min ramp lies unusually close to

that for the 2K/min ramp (see table 8.4), again presumably because of sample

contamination. Omitting the 4K/min data point the activation energy becomes -128(6)

kJ.mol
-1

.

It is notable that figures 8.7 and 8.17 both show a smooth shift of peak position with

heating rate. However, there still appears to be a problem with figure 8.14 in that the

20K/min data point does not follow this trend. The exact reason for this is not known

and due to instrument availability it was not possible to repeat the recording. Although

it would have been useful to repeat the 20K/min ramp, if both 20K/min and 4K/min

data points are omitted the value for the activation energy is -152(8) kJ.mol
-1

.

8.4.2 Ramp performed between 20°C and 1500°C

The DSC recorded for the 7 ramps performed between 20°C and 1500°C on sample (6)

are shown in figure 8.17 below. The labelled peak is the 1
st
 exotherm.

Figure 8.17 DSC ramps on sample (6) Pr2O3 from 20°C to 1500°C in air.



178

The change in peak temperature with heating rate is more uniform than for the 20°C to

600°C run, although the 15K/min and 10K/min peaks are still close. The table below

lists the temperature ramps and the corresponding temperatures of the maximum

deflection for the same exotherm studied in the 20°C to 500°C runs above.

φφφφ (K/min) T
m

 (°°°°C) T
m

 (K) T
m

-1
ln(φφφφ/T

m

2
)

1 371.1 644.3 0.001552 -12.936

2 387.2 660.4 0.001514 -12.292

4 398.6 671.8 0.001489 -11.634

7 412 685.2 0.001460 -11.113

10 425 698.2 0.001432 -10.794

15 427.8 701.0 0.001427 -10.397

20 442.2 715.4 0.001398 -10.150

Table 8.5 Kissinger analysis for 1
st
 exotherm - sample (6) Pr2O3. Data recorded from

20°C to 1500°C.

Figures 8.18 and 8.19 below show the plot of temperature against heating rate and the

linear plot from which the activation energy can be calculated.

Figure 8.18 Temperature of maximum deflection, Tm, versus heating rate, φ, for sample

(6) Pr2O3 1
st
 exotherm.
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Figure 8.19 Plot of ln (ϕ /Tm

2
) against 1/Tm  for sample (6) Pr2O3 1

st
 exotherm.

Analysis of the above results gave an activation energy for the exotherm in sample (6)

of -155(10) kJ.mol
-1

.

The data in figure 8.17 was also used to examine the four deflections above 400°C. The

only transition which produced meaningful data was the one occurring around 1250°C,

where the σ phase converts to the highest temperature phase of θ Pr2O3. The data for

this endotherm is given in table 8.6 below.

φφφφ (K/min) T
m

 (°°°°C) T
m

 (K) T
m

-1
ln(φφφφ/T

m

2
)

1 1224.3 1497.5 0.0006680 -14.622

2 1240.2 1513.4 0.0006609 -13.951

4 1250.3 1523.5 0.0006566 -13.271

7 1254.9 1528.1 0.0006545 -12.716

10 1264.4 1537.6 0.0006506 -12.373

15 1263.9 1537.1 0.0006510 -11.966

20 1273.1 1546.3 0.0006468 -11.691

Table 8.6 Kissinger analysis for endotherm at 1250°C - sample (6) Pr2O3. Data

recorded from 20°C to 1500°C.
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Figure 8.20 Temperature of maximum deflection, Tm, versus heating rate, φ, for sample

(6) 1250°C endotherm.

Figure 8.21 Plot of ln (ϕ /Tm

2
) against 1/Tm, for sample (6) 1250°C endotherm.

Analysis of the above results gave an activation energy of 1224(122) kJ.mol
-1

 for the

endotherm at 1250°C.
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8.4.3 Summary of activation energies

Sample Ramp Peak EA1 (kJ.mol
-1

) EA2

*
EA3

*

(4) Pr2O3 200°C to 500°C 1
st
 endotherm 108(9)

(4) Pr2O3 200°C to 500°C 2
nd

 endotherm 103(6)

(4) Pr2O3 200°C to 500°C 3
rd

 endotherm 61(3)

(6) Pr2O3 20°C to 500°C 1
st
 exotherm -122(6) -128(6) -152(8)

(6) Pr2O3 20°C to 1500°C 1
st
 exotherm -155(10)

(6) Pr2O3 20°C to 1500°C 1250°C endotherm 1224(122)

Table 8.7 Activation energies for phase changes in samples (4) and (6). 
*
 indicates

omitted data point(s).

8.5 TWO-DIRECTIONAL DSC-TG: 20°°°°C TO 1400°°°°C AND BACK

To determine whether any of the transitions in the Pr-O system were reversible, sample

(6) was heated to 1400°C and cooled back again. The recorded DSC is shown in figure

8.22.
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Figure 8.22 DSC recorded on sample (6) Pr2O3 from 20°C to 1400°C and back at

10K/min in air. The data collected from 20°C to 1500°C (from figure 8.6) is shown on

the left for comparison.

There is a clear vertical correlation in figure 8.22 between the two lines, as should be

expected since they are of the same sample, albeit at different ages. As this was one of

the later experiments on sample (6) there has been considerable gas absorption, shown

by the TG curve in figure 8.23, below.
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Figure 8.23 DSC-TG recorded on sample (6) Pr2O3 from 20°C to 1400°C and back at

10K/min in air.

Figure 8.6 showed a mass loss on sample (6) of 0.13% and a mass gain due to oxidation

of 2.89%. Figure 8.23 shows the sample 2 months later. There is now a greater mass

loss (1.09%). There is also a change to the profile of the corresponding exotherm for

the oxidation. Other than the weight loss at approximately 300°C, the TG appears fairly

symmetrical about the centre of the figure. This point represents 1400°C where the

instrument began to cool the sample. Figure 8.24 shows a wrapped image.
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Figure 8.24 DSC-TG recorded on sample (6) Pr2O3 from 20°C to 1400°C and back at

10K/min in air. Image wrapped to compare associated transitions.

Figure 8.25 shows the values for the mass changes.

Figure 8.25 DSC-TG recorded on sample (6) Pr2O3 from 20°C to 1400°C and back at

10K/min in air. Mass changes are shown.
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The transition temperatures and mass changes occurring during the heating and cooling

ramp show hysteresis. This has been tabulated below.

Feature DSC temp (°°°°C) TG temp (°°°°C) Mass change (%) Ramp

1 306.3 264.8 -1.09 Heating

2 348.7 322.3 +2.36 Heating

3
1

475.3 452.7 -0.09 Heating

4
2

695.4 688.0 -0.88 Heating

5
3

990.8 981.5 -0.61 Heating

6
4

1259.1 1238.1 -1.80 Heating

7
4

1081.3 1114.4 +1.65 Cooling

8
3

965.3 970.8 +0.39 Cooling

9
2

675.1 697.0 +0.70 Cooling

10
1

481.5 493.4 +0.31 Cooling

Table 8.8 Transition temperatures for sample (6) Pr2O3 taken from 10K/min DSC-TG

data. Paired transitions are indicated by superscripts.

Figure 8.25 and table 88 indicate that the final state of the material is the β phase,

Pr6O11. For each DSC deflection and mass change when the temperature is rising, other

than the initial gas loss and the first oxidation to Pr6O11, there is a corresponding

reversal when the temperature is falling. The β phase is therefore stable under ambient

conditions, also demonstrated by the pan containing a red-black powder rather than the

green of the sesquioxide.

8.6 GAS ABSORPTION

Praseodymium sesquioxide is known for absorbing both water and carbon dioxide

readily from the air. As discussed earlier in this chapter, if gas was being lost at the

point of phase change, this relatively large mass loss would hide the small gain due to

oxidation. The image below shows the DSC-TG on sample (6) taken after 85 days from

opening the sample. A portion of sample (6) was spread in a thin layer and left directly

exposed to the air. The weight loss results for this experiment on sample (6) are given

below in table 8.9.
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Fig 8.26. Gas loss from sample (6) Pr2O3 after 85 days’ exposure to air.

It is interesting to note the change in the DSC-TG from that shown in figure 8.6. The

large exotherm at around 400°C in figure 8.6 has gone, replaced by a large endotherm.

This endotherm appears to be the same as the 1
st
 endotherm in the DSC-TG for sample

(4). As it was known that sample (6) was a pure hexagonal phase, it can be proposed

that this point corresponds to release of bound gas from the material, there being no

endo/exotherms associated with a structural change from the ambient cubic phase. The

same endotherm exists in DSC-TG runs for earlier runs of sample (6), when there was

much less gas contamination; figure 8.6 shows a small endotherm at 297.6°C, before

the large exotherm at 425°C which represents the phase change. Other than this, the

remaining deflections in both the DSC and TG appear to match up, indicating that the

material present above 425°C is the same.

Time (days) Weight loss (%) Temperature of endotherm (°°°°C)

7 (1
st
 measurement) -10.50 370.0

7 (2
nd

 measurement) -10.33 372.0

78 -11.30 347.1

85 -11.14 350.7

Table 8.9 Weight loss on sample (6) Pr2O3 on exposing to air.

Assuming that it is water that is being absorbed, the following calculations can be

made:
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Original material (Pr2O3) + water → hydrates to the hydroxide Pr(OH)3

RMM of Pr2O3 (equivalent to PrO1.5) is 329.8 (164.9 per Pr atom)

RMM of Pr(OH)3 is 191.924

RMM of Pr6O11 (equivalent to PrO1.833) (the β phase of praseodymium oxide) is 1021.4

(170.23 per Pr atom)

Assuming the reaction proceeds as follows:

loss of water oxidation

Pr(OH)3 →→→→ PrO1.5 →→→→ PrO1.833

RMM 191.124 RMM 164.9* RMM 170.23*

-13.7% +3.23%

* equivalent mass relative to one atom of Pr

This loss of water followed by oxidation should therefore result in a net mass change of

–10.9%. This is very close to the figure of –11.14% measured after 85 days of exposing

powdered sample (6) to the atmosphere, which indicates that it is indeed hydrating to

the hydroxide. It should be noted that prior to the DSC-TG work the sample bottle had

been in use for 4 months, albeit closed for much of the time, and so some degradation

would also have occurred during this period. Table 8.8 only shows further degradation

when it was decided to completely expose the sample to the air. Sample (6) arrived as

sintered chips rather than powder; it is believed that this afforded it some protection

from the air, due to the reduced surface area exposed to the atmosphere. As a

comparison, sample (4) had already degraded within the bottle prior to the DSC being

used.

8.7 RELATING THE DSC-TG TO THE PHASE DIAGRAM

As already discussed, the Pr-O phase diagram is complex and this is reflected in the

DSC-TG for sample (6). Figure 8.6 shows that after the gas loss endotherm, there are 5

deflections in the DSC. Figure 8.27 below shows all the peaks and mass changes with

labels.
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Fig 8.27 DSC-TG recorded on sample (6) Pr2O3 from 20°C to 1500°C at 10K/min in

air. Mass changes are indicated.

Because of the additional weight due to water absorption, the TG values need to be

adjusted such that the mass is 100% after the first weight loss. Figure 8.25 below is a

plot of temperature versus x in PrOx following this adjustment for the 10K/minute

ramp. The inset shows the known phases. The points labelled 1 to 7 identify the phases

of interest.
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Figure 8.28 Temperature versus oxygen in the Pr-O system for DSC recorded on

sample (6) Pr2O3 at 10K/min in air.

Figure 8.28 shows that the ambient form of hexagonal Pr2O3 is stable up to about

350°C where there is a sudden and significant mass gain to point 1 (PrO1.800), followed

by a small and gradual mass gain to poin 2 (PrO1.811) and a small and gradual mass loss

to point 3 (PrO1.788). These three points clearly correspond to the area of the phase

diagram where the β, δ, ε and ζ phases lie. However, to ascertain exactly which phase

corresponds to which point in figure 8.28 is difficult, particularly because the

stoichiometries of these phases are very close. The phase with highest oxygen content

is expected to be Pr6O11 (PrO1.833). However, the highest value of x from the 10K/min

run was 1.811, implying this phase was actually Pr11O20. The gradual mass loss from x

= 1.811 to 1.788 does not indicate any of the discrete phases (the closest would be the ζ

phase) but instead the non-stoichiometric α phase, the boundary for which, in figure

1.9, follows a similar slope. From x = 1.788 there is a sudden drop to 1.727 at about

700°C. This appears to mark the appearance of the ι phase of Pr7O12. As in the phase

diagram the stoichiometry is steady up to about 1000°C, where there is a sudden drop

to x = 1.678. This phase gradually loses oxygen for the next 250 degrees and represents
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a wide range of oxygen content, down to x = 1.595. Finally, at about 1250°C there is a

sudden mass loss to the θ phase of Pr2O3. Figure 8.29 shows the combined TG data

from all runs on sample (6) and table 8.10 gives the values of x in PrOx.

Figure 8.29 Temperature versus oygen content for all DSC recorded on sample (6)

Pr2O3 from 20°C to 1500°C in air. Labels correspond to superscipt numbers in table

8.10.

Ramp 375°°°°C
1

530°°°°C
2

680°°°°C
3

705°°°°C
4

1000-1250°°°°C
5-6

1275°°°°C
7

1K/min 1.786 1.827, 1.817, 1.818 1.768 1.709 1.611 to 1.523 1.411

2K/min 1.798 1.822, 1.816, 1.812, 1.814 1.781 1.726 1.664 to 1.580 1.481

4K/min 1.789 1.804, 1.802, 1.812 1.785 1.728 1.678 to 1.590 1.482

7K/min 1.789 1.801, 1.802, 1.813 1.788 1.732 1.680 to 1.598 1.497

10K/min 1.792 1.800, 1.801, 1.811 1.788 1.728 1.678 to 1.595 1.493

20K/min 1.788 1.795, 1.800, 1.809 1.785 1.725 1.670 to 1.580 1.478

Table 8.10 Values of x in PrOx for DSC-TG recorded on sample (6). Superscripts

beside temperatures correspond to points in figures 8.28 and 8.29.

All but one of the runs in figure 8.26 show precision; however, the run at 1K/min has

deviated somewhat, shown particularly by the final value of x being 1.411. The 1K/min

and 2K/min runs both show an intial maximum in the TG, followed by a small
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decrease, a small increase, then a fall; the other runs build to the maximum. The exact

route through the phases in this temperature region therefore appears different

depending upon the heating rate. The largest of these maxima is shown by the 1K/min

run at an oxygen content of 1.827. As the 2 highest values for x on the phase diagram

are 1.818 and 1.833, it is reasonable to assume that this maximum point corresponds to

the β phase of Pr6O11. It is notable that amongst the remaining ramps the maximum

oxygen content was only 1.811, implying the presence of the δ phase Pr11O20, the β

phase Pr6O11 not being attained.. With the deviation in the 1K/min final value, it might

be expected that all the 1K/min values were unreliable. However, the 1K/min and

2K/min ramps shows a proximity in their values for the oxygen contents across the

majority of the temperature range. The 2K/min ramp maximum of 1.822 correlates with

the maximum for the 1K/min ramp, indicating that the β phase is indeed present.

The first mass change gives a value of x of approximately 1.790, which appears to be

the ε phase. The order of the phases as they appear for the 1K/min and 2K/min ramps is

therefore believed to be as in table 8.11. For the remaining ramps the only difference

appears to be that the δ phase appears immediately before the β phase.

Phase Temperature (°°°°C) x in PrO
x
 (from TG) Formula

ε 400-420 1.798-1.813 Pr5O9

β 420-445 1.813-1.822 Pr6O11

δ 470-490 1.815-1.812 Pr11O20

α 520-680 1.814-1.785 Non-stoichiometric

ι 705-985 1.723-1.704 Pr7O12

σ 995 to 1225 1.664-1.584 Non-stoichiometric

θ 1250- 1.479-1.481 Pr2O3

Table 8.11 Order of appearance of phases in the Pr-O system with temperature for the

2K/min ramp.

This information is also shown in figure 8.30, below.
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Figure 8.30 DSC recorded on sample (6) Pr2O3 at 2K/min in air with phases marked.

Figure 8.31 shows the paths through the phases, according to temperature.
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Figure 8.31 Phases attained during ramps on sample (6) Pr2O3.
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Much of the temperature-composition diagram can be explained by the existence of

discrete monophasic regions in the phase diagram, shown by little or no change in x

with temperature. The only section of figure 8.29 that remains to be explained is the

region between 1000°C and 1250°C. The region appears to correspond to the low

oxygen boundary of the σ phase in the Pr-O phase diagram of figure 1.9. However,

Hyde et al do not show oxygen composition above 1100°C. Also, the phase diagram

does not show oxygen content above this temperature. A search through the PDF-2

database produced a reference for PrO1.57 which is a cubic cell with the ceria structure,

the oxygen sites being occupied only to 0.78. The material is described in the report as

‘green brownish red’. This value of x is in the middle of the sloping line for this phase

in figure 8.29 so it appears that the phase detected by DSC-TG is cubic. To support

this, Hyde et al do state that their σ phase is cubic. It would be reasonable to assume

that this line in figure 8.29 represents a continuity of stoichiometries and a slow release

of oxygen from the cell. This is supported in the literature (Hyde et al 1965), (Adachi

and Imanaka 1998). This data represents an addition to the existing phase diagram.

The change in the XRPD around 600°C (figure 7.36) can now be explained by the

appearance of the ι phase, Pr7O12. The initial change from the hexagonal ambient phase

to the cubic β phase is clear to see as it involves a change of cell type. However, many

of the other Pr-O phase changes merely correspond to loss or gain of oxygen on the 8c

Wyckoff sites of the ceria cell. These light atom changes are very difficult to detect

using a laboratory diffractometer. It is only when the cell type again changes from the

α phase (cubic) to the ι phase of Pr7O12 (rhombohedral) that a change in the XRPD

pattern is noticed. The phase change is shown as occurring at 625°C on heating and

disappearing at 575°C on cooling. This point corresponds to the vertical section in the

middle of the Pr-O phase diagram in figure 1.9 and also to region 4 in figure 8.29.

Figure 8.32 shows the hysteresis loop for this transition.
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Figure 8.32 Hysteresis loop for the α phase to ι phase (Pr7O12) transition.

In a temperature-composition diagram, a vertical line typically indicates a monophasic

region i.e. the presence of a discrete compound that is structurally highly-ordered,

where heating and cooling paths are often coincident. A horizontal line, where there is

a sudden change of composition with little change of temperature, typically indicates a

diphasic region where heating and cooling paths are not expected to coincide. This is

illustrated in figure 8.32. Sloping temperature-composition lines which are coincident

on heating and cooling also indicate a monophasic region, but with a disordered and

non-stoichiometric phase. Where heating and cooling paths are not coincident, a multi-

phasic and non-stoichiometric region is inferred. The latter example is the case with the

σ phase shown in the TG data, and illustrated in figure 8.33, below.
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Figure 8.33 Temperature-composition plot for the ι -σ - θ region.

Other than the fact that there is some horizontal displacement between the heating and

cooling plots, figure 8.33 shows that the path through the σ phase is not the same in

both directions; on cooling, the sample oxidises rapidly below 1100°C to an oxygen

composition of x = 1.65, rather than x = 1.6 which marked the low-oxygen end of the σ

phase on heating.

8.8 COMPARISON WITH OTHER WORK

The δ (x = 1.816) phase is the most recently established (Hyde et al 1965) and these

results have demonstrated its fleeting existence. In figure 8.31 it appears as a brief kink

in the TG data either just before or just after the appearance of the β phase. This point

in the data is most pronounced in the 2K/min and 4K/min runs. The kink which appears

to mark the ε phase is less pronounced., and does not appear in the 1K/min and 2K/min

runs. Hyde and co-workers only found the δ phase at low pressure, during the 45mm

Hg run. They also note the ease with which oxygen is exchanged between solid PrOx

and the gas phase. This is confirmed by the close grouping of the ε, β and δ phases in
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figure 8.29 and the corresponding lack of change in the XRPD in this temperature

region (figure 7.35).

Hyde et al performed 4 heating experiments on praseodymium oxide at different

pressures. They found that the order of appearance of phases changed with pressure.

For example, in the run at 10mm Hg, the phases were ε (<497°C); ζ appearing at

497°C; ι appearing at 588°C; σ appearing at 906°C and showing the range 1.65 ≥ x ≥

1.60; and θ appearing at 1068°C. However, the run at 45mm Hg, which began with the

β phase, showed the δ phase occurring briefly between the β and ε phases. For the run

at 650mm Hg, the closest to that in this work (atmospheric pressure), the β phase

existed below 300°C; rather than δ and ε, the α phase appeared at 470°C; ι appeared at

795°C; σ existed between 1065°C and 1150°C; and ι reappeared on cooling at 1069°C.

In this thesis the only significant change between the different ramps was the order of

appearance of the β and δ phases. The general pathway of Hyde et al (β - α - ι - σ) is in

partial accord with the results in this work (ε -β - δ - α - ι - σ). However, my work also

appeared to show the existence of the ε and δ phases at ambient pressure, contrary to

the results of Hyde et al.

Hyde et al note the coincidence of heating and cooling curves for the higher oxygen

content phases (β, δ, ε and ξ), but not for the higher temperature transitions. In this

thesis, this pattern was noted. At 10mm Hg they noted the lack of the σ phase on

cooling, the θ phase converting directly into the ι phase. In general, their heating and

cooling curves at high temperature were not coincident. They attribute this to the

presence of a mixed θ and σ phase at the point of commencement of cooling, with the

σ phase immediately starting to oxidise on cooling but the θ phase not oxidising until a

break temperature of about 1050°C. Their isobaric runs are shown in figure 8.34.
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Figure 8.34 Isobaric runs on Pr2O3. Figures against curves indicate pressure in mm

Hg (Hyde et al 1965).

This behaviour has been observed by others (Sonström 2010). A similar divergence of

curves was noted in my work. Figure 8.33 clearly shows a different pathway for θ - σ -

ι on heating than on cooling, confirming the hysteresis. Additionally, the run of Hyde et

al carried out at 650mm Hg shows different ascending and descending curves for the ι -

σ boundary. In their paper this is the only pressure at which this occurs, all other runs

showing coincident curves. The work in this thesis was done at a similar pressure and

shows a similar divergence.

Finally, Hyde et al note the appearance of ε and ζ only at low pressure; they appear in

the 10mm and 45mm Hg runs as vertical sections. However, in the 205mm and 650mm

Hg runs the prominent feature in this region is a sloping line indicating the α phase.

The appearance of α (and the consequential absence of ζ) was a prominent feature of
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the work in this thesis. However, contrary to the work of Hyde et al, the ε phase does

appear to be present in the images of figure 8.31.

Although there have been many studies on the Pr-O system, there have been very few

kinetic studies, as already mentioned in chapter 7. One study (Inaba et al 1980) looked

at the conversion between the ξ and ι phases over the temperature range 535-570°C and

obtained a value of 189.7kJ.mol
-1 

for the activation energy. A second study (Hyde et al

1965) studied oxidation of the β phase to the dioxide in the range 265-307°C, obtaining

a value of 112.6kJ/g-atom of O for the activation energy. Figure 8.32, which shows the

ι - α transition, is consistent with the historical work on this phase transition (Inaba et

al 1981). This reference demonstrated a reproducible hysteresis loop with varying

oxygen pressure and an activation energy of 60.9kcal.mol
-1

 (255.0kJ.mol
-1

) on

reduction and 75.0kcal.mol
-1

 (314.0kJ.mol
-1

) on oxidation. Although it was not possible

to determine the activation energy from the DSC-TG data in this thesis, this value

appears consistent with the other values for phase changes in this system. The authors

noted an inflexion in the hysteresis loop at PrO1.75, although this was not observed in

my work.

The activation energy values obtained in my work were -154(7) kJ.mol
-1

 (avg) for the φ

to β phase transition, occuring between 368°C and 460°C and 1224(122) kJ.mol
-1

 for

the σ to θ phase transition, occuring between 1224°C and 1273°C. These are tabulated

below together with the historic values.

Transition Temperature range (°C) EA (kJ.mol
-1

)

φ → β 368 to 460 -154(7) avg

β → PrO2 265 to 307 112.6kJ/g-atom of O
1

Equivalent to 306.3

ξ → ι 535 to 570 189.7 (oxidation)
2

α ↔ ι 655 to 715 255.0 (reduction)

314.0 (oxidation)
3

σ → θ 1224 to 1273 1224(122)

Table 8.12 Kinetic data for the Pr-O system.

1
 (Hyde et al 1965)

 2
 (Inaba et al 1980) 

3
 (Inaba et al 1981)
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Although the available data is limited, there is a correlation between temperature of

phase change and activation energy. Encouragingly, the value of -154(7) kJ.mol
-1

obtained for the φ → β transition agrees with that obtained in Chapter 7 via XRPD data.
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9 CONCLUSIONS AND SUGGESTIONS FOR FUTURE

WORK

9.1 SUMMARY

This work has demonstrated the following:

(i) the high-temperature phases of some lanthanoid oxides can be quenched to ambient

temperature, contrary to the phase diagram;

(ii) structural modifications exist which are not indicated by the phase diagram;

(iii) high-temperature phases may already exist in commercially available samples,

contrary to the supplier’s information;

(iv) kinetic data in the Pr-O system obtained via different sources show correlation, and

activation energies are generally much lower than for the sesquioxides;

(v) phase pathway can depend upon heating rate;

(vi) indexing of XRPD data is not straightforward and it is not even guaranteed that

high-symmetry cells will always index;

(vii) it is possible to index a cell from limited XRPD data when the Bragg reflections

contribute only a small fraction to the overall diffraction wave envelope;

The above summary is detailed in the following sections.

9.2 LANTHANIDE OXIDE CRYSTAL STRUCTURES

The phase diagram for the sesquioxides shown in figure 1.5 indicated that no

monoclinic phases were present at ambient temperature. However, it was immediately

found that the commercially-obtained sample of europia already contained a small

quantity of the B-type phase. More surprisingly, samaria contained 97% B-type phase,

even though the supplier stated the cell type to be cubic. The metastability of B-type

europia was demonstrated by heating to 1334°C, holding for 1 hour and cooling slowly.

The short anneal time and lack of quenching were expected to be detrimental to the

creation and retention of the B-type phase. However, it was shown that monoclinic

europia is relatively easy to generate and stable enough for the bulk material to



202

maintain 100% B phase on standing. Figure 1.5 indicates a higher temperature is

required to perform the same treatment on gadolinia. In practice it took significantly

more energy than was expected in order to force the change. Considering the sample of

gadolinia was heated over 160ºC higher than the sample of europia and also cooled

rapidly it seemed reasonable to predict that a significant proportion of monoclinic

structure should have been retained. However, this was not the case. An anneal for 7

hours at 1500°C was required to completely transform the structure. Again, this change

was maintained in the bulk material, and long enough for it to be posted to Diamond

Light Source. A 5-hour run at the same temperature led to the creation of 97% B phase;

clearly the reaction in gadolinia requires considerably more energy than for europia.

Both the laboratory and synchrotron data allowed the previously unpublished structure

of monoclinic gadolinia to be determined.

To demonstrate whether B-type gadolinia was as stable as B-type europia, an XRPD

pattern on the sample used in figure 7.21 was taken 5 months later. The phase fractions

were found to have stayed the same, showing that B-type gadolinia, too, may persist at

ambient temperature.

Because of lack of facilities it was not possible to determine the structure for B-type

Yb2O3. However, the cell type was shown to be monoclinic, again demonstrating the

existence of a phase contrary to figure 1.5. The energy required to force the change in

ytterbia is so high that either melting and quenching, or in situ XRPD, would be

required to demonstrate the structure. Whatever conversion was achieved in the furnace

at 1500°C, after quenching only 1% B phase was detected. The presence of B-type

Yb2O3 after heating to a relatively low temperature is contrary to recent work (Guo,

Harvey et al 2007), (Meyer et al 1995). The former reference states that flame

synthesis at high temperature (up to 2800°C) and ambient temperature, followed by

rapid cooling, is necessary to create the monoclinic phases of Er2O3, Tm2O3 and Yb2O3,

and that lower temperature (2680°C) only led to the cubic phases. Meyer et al state that

a temperature of 2000°C is not sufficient for the B-type structure to be attained. My

work has shown that heating in a laboratory bench-top furnace to 1500°C will create a

small amount of B-type Yb2O3 in the bulk material. Reflecting my results, Sun and co-

workers (Sun et al 2007) were able to identify the cell type from a residue of
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monoclinic lutetia existing within an otherwise cubic sample, but state there are high

uncertainties in the recorded lattice parameters.

Although monoclinic ytterbia was present as a residue, the calculated lattice parameters

compare favourably with those obtained historically. The cell reported in this work was

a = 13.740(2)Å, b = 3.400(2)Å, c = 8.593(2)Å and β = 100.12º. Previously reported

cells are a = 13.73(1)Å, b = 3.425(3)Å, c = 8.452(8)Å and β = 100.17(5)º (Hoekstra

1966) and a = 13.72Å, b = 3.428Å, c = 8.437Å and β = 100.18º (Coutures et al 1972).

It is noteworthy that the metastability of the B-type phases for the intermediate weight

oxides and their existence at ambient temperature indicates that the phase diagram

according to Foëx and Traverse is somewhat misleading. Such irreversibility of phase

conversion was also seen in the Pr-O system with the φ to β phase change, occurring at

only 275°C on heating. The actual pathway through the Pr-O phases appears to depend

on heating rate, but the final phase is the θ phase. However, on cooling back, the β

phase is the last to form i.e. the φ phase does not reappear. The activation energy of

around –150 kJ.mol
-1

 for the φ → β transition was found to be much less than that of

the well-researched europium sesquioxide C → B transition, at 650 kJ.mol
-1

.

9.3 INDEXING

Although the cubic gadolinia pattern indexed successfully using CRYSFIRE, those of

europia and ytterbia did not. However, on relaxing the tolerance in the allowed 2θ

difference between matching experimental and calculated lines, CRYSFIRE found the

correct solutions. It is noted that reliance should always be placed on an accurately

recorded pattern rather than a reduction in the strictness of the indexing parameters; it

is all too easy to find a solution which appears to match the experimental data, when in

fact it is not the correct solution. As an aside, to test the efficacy of the indexing

programs, a set of theoretical Bragg reflections for a cubic cell were created and

entered into CRYSFIRE; none of the indexing programs was able to find the correct

solution.
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It is notable that CRYSFIRE failed to index the B-type gadolina pattern. Had it not

been for the fact that the cell parameters for europia were known, this would have been

a serious obstacle to the determination of the crystal structure. It serves as an

illustration that the indexing stage is the often the most problematic in the sequence and

is also the most difficult and most time-consuming part of the process.

The lack of significant changes in the gadolinia and ytterbia patterns on heating was

initially considered to be a stumbling block in the investigation of their monoclinic

phases. However, it was decided to investigate just the lines which had appeared on

heating. Surprisingly, by making assumptions about cell parameters and minimising the

differences between the actual and calculated lines it was possible to estimate the cell

parameters of the respective materials. It was, of course, not possible to carry out full

profile refinement using GSAS because only a fragment of the monoclinic pattern was

being observed and even then, the intensities were very low. But this exercise in

‘forensic diffractometry’ serves to show that it is possible to use limited information

together with certain assumptions to determine crystal habit.

9.4 COMPARISON OF KINETIC DATA FROM XRPD AND DSC

Although some problems were experienced in obtaining kinetic data, most notably due

to the mixed phase and gas contamination of sample (4) Pr2O3, there are definite

correlations in the data. Analysis of isothermal holds using XRPD data gave activation

energy values of –149(10) kJ.mol
-1

, -146(2) kJ.mol
-1

 and -154(2) kJ.mol
-1

 using 2

different methods for the φ to β phase transition. These values were supported by those

obtained through DSC, which indicates the data to be accurate and obtained using

sound methods. The kinetic data is summarised in table 9.1.
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Sample Low temp phase Reaction Feature Method EA (kJ.mol
-1

)

(4) Pr2O3 Cubic+hex φ → β 47.2° peak XRPD -146(2) (ShSp
1
)

-154(2) (JMAK
2
)

(4) Pr2O3 Cubic+hex φ → β 41.4° peak XRPD -149(10) (ShSp
1
)

(4) Pr2O3 Cubic+hex φ → β 
3 1

st
 endo DSC 108(9)

(4) Pr2O3 Cubic+hex φ → β 
3 2

nd
 endo DSC 103(6)

(4) Pr2O3 Cubic+hex φ → β 
3 3

rd
 endo DSC 61(3)

(6) Pr2O3 Hex φ → β 1
st
 exo 450°C DSC 152(8)

(6) Pr2O3 Hex φ → β 1
st
 exo 450°C DSC 155(10)

(6) Pr2O3 Cubic σ → θ 1250°C endotherm DSC 1224(122)
1 
obtained via a Shrinking Sphere model

2
 obtained via JMAK model

3
 Believed to proceed as Pr(OH)3 → Pr2O3 → Pr6O11

Table 9.1 Comparison of activation energy data from XRPD and DSC.

Had facilities continued to be available, it would have been useful to compare the

activation energy value of approximately -150 kJ.mol
-1

 for praseodymia with those for

nedodymia, samaria and europia via DSC and to then relate these to the values obtained

historically by Stecura and Ainscough. Table 9.2 shows the values obtained above with

these historical values.

Oxide Ambient phase Reaction Method EA (kJ.mol
-1

)

(4) Pr2O3 Cubic+hex Pr2O3 → Pr6O11 XRPD -146(2) (ShSp
3
)

(4) Pr2O3 Cubic+hex Pr2O3 → Pr6O11 XRPD -154(2) (JMAK
4
)

(4) Pr2O3 Cubic+hex Pr2O3 → Pr6O11 XRPD -149(10) (ShSp
3
)

(6) Pr2O3 Hex Pr2O3 → Pr6O11 DSC -152(8)

(6) Pr2O3 Hex Pr2O3 → Pr6O11 DSC -155(10)

Nd2O3 Cubic C type → A type XRPD 502
1

Sm2O3 Cubic C type → B type XRPD 628
1

Eu2O3 Cubic C type → B type XRPD 691
1

Eu2O3 Cubic C type → B type XRPD 493
2

Gd2O3 Cubic C type → B type XRPD 787
1

Table 9.2 Activation energies for the lanthanide oxides.

1 
(Stecura 1966)

2
 (Ainscough et al 1975)

3
 obtained via a Shrinking Sphere model.

4
 obtained via JMAK model

Had the diffractometer hot stage been able to reach a higher temperature than 800°C,

two further changes in the XRPD patterns would be expected. These would be the ι

phase changing to the σ phase around 1000°C and finally the σ phase changing to the

A-type (θ phase) sesquioxide at 1200°C. The access to a diffractometer capable of

reaching 1500°C would enable a more detailed study of the Pr-O phase diagram; it is
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the high-temperature and low-oxygen region of the diagram that is lacking in

information.

9.5 COMPARISON OF DSC-TG DATA WITH HISTORIC DATA

The 2 transitions for which kinetic data were obtained in my work (φ → β and σ → θ)

do not appear to have been investigated previously. The data presented in chapter 8 is

repeated below, including the historic data for the β → PrO2, the ξ → ι and the α ↔ ι

transitions.

Transition Temperature range (°C) EA (kJ.mol
-1

)

φ → β 368 to 460 -151(16) avg

β → PrO2 265 to 307 112.6kJ/g-atom of O
1

Equivalent to 306.3

ξ → ι 535 to 570 189.7 (oxidation)
2

α ↔ ι 655 to 715 255.0 (reduction)
3

314.0 (oxidation)
3

σ → θ 1224 to 1273 1219.9
1
 (Hyde et al 1965)

 2
 (Inaba et al 1980) 

3
 (Inaba et al 1981)

Table 9.3 Kinetic data for the Pr-O system.

Whilst there is little kinetic data against which to review the results from this thesis, the

transitions in the high oxygen composition of the phase diagram are all considerably

less than those involving the C → B phase transitions in the sesquioxides. It is known

that the activation energies for the C → B transformation in the intermediate weight

oxides are in the range 500 to 800kJ.mol
-1

 (Stecura 1966). It should be expected that

activation energies in the high oxygen region of the Pr-O system would be significantly

less, because of the ease with which oxygen exchanges between the solid and the gas

phase and indeed this is the case with the above data.

There were two notable results from the DSC-TG work on Pr-O. Firstly, the exact

pathway through the phases appears to depend upon heating rate. Figure 8.31 shows

that for the slower heating rates (2K/min and 1K/min) the pathway for ascending

temperature is φ → ε → β → δ → α → ι → θ. However, for the faster ramps (20K/min

down to 4K/min), the pathway is φ → ε → δ → β → α → ι → θ  i.e. the appearance of

β and δ are reversed. The former path is the expected one when considering the

temperature range through which the species occur in the phase diagram (figure 1.9).
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However, it appears that for this to be observed, a slow and prolonged input of heat is

required. Secondly, Eyring and his co-workers were only able to demonstrate the

existence of the ε phase up to 45mm Hg pressure, and yet it appears to be present in the

4, 7, 10 and 20K/min ramps of figure 8.31, recorded at atmospheric pressure. The

appearance of the ε phase in the DSC-TG data was always slight, being no more than

an inflexion in the curve, although its prominence increased with temperature ramp.

However, it does seem reasonable that its existence at ambient temperature is possible,

since the other two phases in this close triplet (β and δ) are merely the same structure

but with different oxygen content.

9.6 REDRAWING THE PHASE DIAGRAMS

Table 9.4 lists the temperatures of phase transformations in Ln2O3 recorded historically

and also in this work.

Oxide Phase change Temperature (°°°°C) Author

La2O3 C → A 450 Stecura
1

Nd2O3 C → A 850-1050 Stecura
1

Sm2O3 C → B 950-1100 Stecura
1

Eu2O3 C → B 1072-1347

1334

1297

1050-1300

1175-1200

1127

Beljaev
2

My work

Sun et al
3

Stecura
1

Ainscough

et al
4

Antic et al
5

Gd2O3 C → B 1334-1500

1397

1260-1400

My work

Sun et al
3

Stecura
1

Yb2O3 C → B 1500+ My work
1 

(Stecura 1966) 
2 

(Beljaev 1974) 
3 

(Sun et al 2003) 
4 

(Ainscough et al 1975) 
5 

(Antic et

al 1997)

Table 9.4 Temperatures of phase transformations in Ln2O3.

To reflect the data in table 9.3, the phase diagram in figure 1.5 has been redrawn below.
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Figure 9.1 Amended phase diagram for the lanthanide sesquioxides.

Where conversion temperatures are stated, much of the work following that of Foëx

and Traverse is consistent with figure 1.5 i.e. the data follows the C → B boundary.

However, there are discrepancies. It has been demonstrated that it is possible to flame

synthesise and quench monoclinic Er2O3 from 2800°C (Guo, Harvey et al 2007).

Monoclinic erbia has also been created between 9.9 and 16.3GPa at 1000°C and
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quenched (Guo, Zhao et al 2007). Yet in figure 1.5 Er2O3 is clearly shown as having no

B-type phase. My work has shown that a small percentage of Yb2O3 was present after

heating for 5 hours at 1500°C and quenching. The percentage conversion at this

temperature is not known, but it is clear that phases exist contrary to the phase diagram.

What is needed is an estimate for where the C → B boundary continues after Gd2O3.

Looking at Stecura’s data, the temperature range across which the transformation

occurs to any degree decreases with increasing atomic number of the lanthanide. For

example, the range for Nd2O3 is 200 degrees and for Gd2O3 it is 122 degrees. Assuming

a linear relationship and extrapolating to Yb2O3 gives a value of approximately zero for

the range. Clearly this is not reasonable, as we would expect some kinetic element to

any data collected. However, it may be that the range is indeed very narrow. With only

one data point collected in my work it is not possible to draw the new boundary, but it

must encompass the point at 1500°C recorded in section 7.2 with Yb2O3. It may be that

it also encompasses the oxide Lu2O3.

Also of note is the stability of many of the B-type oxides. My work has shown that

monoclinic Eu2O3 and Gd2O3 are stable at ambient temperature i.e. the reaction is not

reversible. The commercial sample of Eu2O3 already contained a trace of B-type phase

and the sample of Sm2O3 contained 97% B-type phase, contrary to the supplier’s

information. The existence of heavier oxides at ambient temperature after heating to

2800°C and quenching has been demonstrated (Guo, Harvey et al 2007).

The work in chapter 8 did allow a study of the existence of the σ phase of Pr-O above

the temperature reached by Hyde et al and figure 9.2 shows this pathway.
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Figure 9.2. Amended phase diagram for the praseodymium-oxygen system showing the

σ phase.

9.7 SUGGESTED FUTURE WORK

The most pressing work must be the obtaining of DSC data for Nd2O3, Sm2O3 and

Eu2O3 to enable a kinetic study. The results could then be compared to those of

Ainscough and Stecura and to the boundary line for the cubic-monoclinic interface in

figure 1.5.
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The monoclinic forms of the heavier lanthanide sesquioxides (Sm-Yb) are now all

known to exist. Heating ytterbia for longer in a furnace and quenching is a possibility

but considering the phase diagram in figure 1.5 the XRPD pattern might need to be

recorded in situ. If this were possible then a kinetic study could be made. It would also

enable the redrawing of the C → B boundary. However, such facilities are rare and the

intense conditions detrimental to the sample environment. An alternative would be to

melt and fuse the material in an oxy-acetlyene flame, grind up the cooled solid and run

the pattern again, on the assumption that it would remain stable back to ambient

temperature. Monoclinic Sm2O3 has been obtained by this method (Douglas and

Staritsky 1956), although of course the stability of samaria at ambient temperature

would be far greater than that of B-type ytterbia. However, there is a possibility that the

B phase of ytterbia might be locked in on fusing and even if 100% conversion is not

retained, there may be enough product phase present to enable the atom positions to be

determined. That monoclinic Er2O3 was quenched to ambient conditions (Guo et al

2007) gives reason to believe that it may be possible with Yb2O3.

Regarding the existence of the ε phase, the conflicting work of Eyring et al with figure

8.31 warrants further investigation. It appears that a fast heating rate is needed to more

clearly show the transition from the φ phase. The work in 6.3.1.4 could be repeated, and

augmented with ramps at, say, 30K/min and 40K/min, which is the limit of the

machine. Also, XRPD patterns could be recorded at a much faster heating rate to

identify any change in the Bragg reflections attributable to the ε phase. A characteristic

region of 2θ would need to be identified in order to greatly reduce the counting time

and allow the temperature to be changed more rapidly. Alternatively, the machine

could be pre-heated to the required temperature and the sample mounted directly into a

hot environment.

There exists the possibility of studying other series of compounds in which the

recorded powder diffraction patterns and/or structures are not available. Compounds of

the lanthanides are of particular interest because of the steady contraction in cell size

that is seen across any particular series. This is a reflection of the lanthanide contraction

of ionic radius across the series of tripositive lanthanide ions. This feature of lanthanoid
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compounds means it is often possible to predict the structure of an unprepared species

based on the structures of its neighbours in that particular series.

There are some absences in the anhydrous lanthanoid trichlorides. The members of the

series LnCl3 are hexagonal from lanthanum to gadolinium. From terbium onwards there

are hexagonal, tetragonal and orthorhombic structures present. However, from analysis

of the Daresbury database, no crystal structures appear to have been recorded for the

trichlorides of samarium, holmium, erbium, ytterbium and lutetium. In the PDF-2

database there are cell parameters for all except HoCl3.

A review of the efficacy of the indexing programs within the CRYSFIRE suite would

be of interest. It had been demonstrated in my preliminary work that the programs can

often fail even for XRPD patterns of high symmetry (even cubic) systems.
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