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Abstract. This paper uses a statistical analysis of match sprint outcomes to guide tactical decisions 

in this highly tactical contest and to provide competitors and coaches with a potential, marginal gain. 

Logistic regression models are developed to predict the probability of the leading rider winning at 

different points of the race, based on how the race proceeds up to each point. Key tactics are 

successfully identified from the models, including how the leading rider might hold the lead and how 

the following rider might optimise overtaking. 
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1  Introduction 

In all sports, coaches and players seek competitive advantage through tactical analysis, and 

quantitative analysis of tactics may provide marginal gains. The sprint (or match sprint) in track 

cycling is highly tactical—in a balanced contest the decisions made by riders are decisive—and so it 

is interesting to quantify tactics in this context. In this paper, we aim to do just this, providing insight 

into winning tactics that might be adopted at different points or stages of the race, using a statistical 

analysis of race outcomes and characteristics. 

The match sprint is a race between two riders over 3 laps of a 250m banked track (figure 1). 

The first rider to cross the finish line wins the race. In a major championship the overall contest is 

organized as a knockout or single elimination tournament with several rounds. At the start of the 

contest, all riders complete an individual “flying” 200m test against the clock that decides who 

qualifies and who competes with whom in the first round, the rider with the fastest time being paired 

with the slowest. In early rounds each pairing competes in one race only with the winner proceeding 

to the next round. From the quarter-final stage, a round comprises 3 races; the first rider to win two 

races proceeding to the next round (UCI, 2009).  

 

 
Figure 1: 2-D illustration of a track.  

 

The race is highly tactical because broadly speaking riders vie for track position in the first part 

of the race and sprint for the finish line in the second part. The tactical fascination of the race is its 

positional asymmetry: the leading rider controls track position; the following rider has better sight of 

his opponent; the leading rider does not benefit from slipstreaming; the following must ride further 

and higher on the track to overtake. Riders make decisions about speed and position based upon their 

opponent’s speed and position, the distance to the finish, and their pre-race tactical plans. Pre-race 

tactical plans will depend on flying speeds (determined during qualification), how coaches and riders 

expect opponents to race, and starting position—a specified rider must lead at the start. The effect of 

slipstreaming is large as overcoming air resistance accounts for up to 40% of the work done by the 

leading rider rider (Atkinson et al., 2003). Riders typically cannot sustain an early sprint; in fact, a 

flat out sprint from the start is a rare occurrence and the rider who initiates such a move will be 

unsuccessful unless his opponent is sufficiently surprised or is very much weaker.  

Research in cycling to date has focused extensively on how physiological (maximal aerobic 

power, muscle fibre type and lactate threshold) and physical (air resistance and rolling resistance) 

factors influence cycling performance in terms of speed and power. See for example Craig and 

Norton (2001) and Atkinson et al. (2003). Optimal pacing strategies have been investigated using 

such factors (Atkinson et al., 2007; de Koning et al., 2011; Thomas et al., 2012). However, to the 

authors’ knowledge no research has developed probabilistic models to investigate how tactics, such 
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as choice of position and choice of overtaking manoeuvre, affect the probabilities of winning for the 

riders. Our contribution then is to develop such models and describe their tactical implications.  

The layout of the paper is as follows. In the next section, we describe the data collection. 

Section 3 discusses the statistical modelling. In section 4, our results are discussed and interpreted to 

identify tactics that influence race outcome probabilities. We finish with a summary of our findings 

and suggestions for further research. 

 

2  Data collection 

Video recordings of 231 races at 4 UCI Track Cycling World Cup competitions held at Manchester 

(February 2007), Sydney (November 2007), Beijing (December 2007) and Copenhagen (February 

2008) were used to calculate speed and positional data as described below. The 200m flying times of 

riders were obtained from the qualifying round of each competition (Tissot, 2009)). For the 231 

races, 69% of race winners had the shorter flying time, making this variable a good predictor of race 

outcome. For our analysis the flying times were converted into flying speeds (average speed over 

200m). 

 

2.1 Calculating sector times and track positions 

In order to describe our calculations, a brief description of the track is necessary. Although no two 

tracks are the same, modern tracks built to Olympic standard have a wooden surface that is banked, 

the track height being low and horizontal on the inside and high on the outside. The gradient changes 

around the track, shallow on the straight and steep on the curve. Five longitudinal lines or marks are 

drawn from the inner edge to the outer edge of the track (see Figure 2). These are the start/finish line, 

two lines 200m and 100m from the finish, and the pursuit lines, half way along each straight. The 

position of the start/finish line varies between velodromes so that distances between each of the 5 

marks vary. There are three latitudinal lines drawn around the track, namely the stayer’s line, the 

sprinter’s line and the measuring line. The track is 250m at the measuring line.  

We use the five marks to define five sectors, and the three latitudinal lines plus three others 

superimposed on the track during the video analysis stage to define six positions. Sector distances 

along the measuring line were obtained for each track. Times taken to complete each sector were 

determined from the video footage using the Dartfish software, providing a total of 15 split times, to 

an accuracy of 1/50
th

 of a second, over 3 laps. Track position was collected at each mark and also at 

the beginnings, ends and apexes of each curve, giving a total of eleven track positions per lap, 33 per 

rider per race. Figure 3 shows the distribution of position by mark and lap: we can see for example 

that with 700m to go (mark 1, lap 1) riders are nearly always in track position 1 and with 250m to go 

(start of last lap) riders are most frequently in track positions 2 and 3 (between the measuring line 

and the stayer’s line).  
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Figure 2: The track division for determining speed and position and describing covariates and tactics: 
longitudinal marks divide the track into five sectors; latitudinal lines divide the track into six positions.  

 
Figure 3: Distribution of track positions of riders at each mark (231 races). 

 

2.2 Calculating sector speeds 

Calculating the sector speed is not straightforward because riders’ paths are 3-dimensional. Only 

when riders travel along the measuring line is sector speed the ratio of sector distance to sector time 

taken. To provide a better estimate of sector speed, we used a topographical model of a velodrome 

that defines the height of the track ),( yxfz   over a fine grid. Such a model was only available to 

us for the Manchester velodrome; for other tracks we use the same function modified slightly to 

account for differing lengths of the straights and curves. The x axis is parallel to the straight, the y 

axis perpendicular. For a small change in rider coordinate ),,( zyx  to ),,( dzzdyydxx   the path 

length is 
222 dzdydxdP  . From the video analysis, positions are recorded at the marks and 

intermediate points (curve starts, finishes, and apex); between these points we might assume riders 

take the shortest path—a geodesic, the length of which can be calculated using the calculus of 

variations. Instead we assume the rate of change of height over the path followed is a constant. Then 

on the straight we have  
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formulate the path length in terms of the angle   around the curve:  
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where 0  and 1  are the angles around the curve at 0p  and 1p . We then proceed similarly to above, 

assuming the curve is circular at the base of the track )0( z  and )/()(/ 0101   zzddz . The 

other derivatives can be calculated from the known track model, ),( yxfz  . Numerical integration 

is used to evaluate the path lengths. To determine the distance travelled in a sector, the lengths of the 

paths in the sector are added. The sector speed is then the ratio of sector path length to sector time 
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taken. Figure 4 shows the distribution of sector speeds of riders for each sector. We can see that 

sector speeds broadly increase through a race, with the variability decreasing. In the final sector 

(between the pursuit line and the finish line on the final lap (~15 metres)), riders would appear to 

slow as they tire.  

 

 
(a)                                                                                              (b) 
 

Figure 4: Error bar plot of sector average speeds vs metres to go, for (a) female and (b) male riders (231 
races). 

 

2.3 Calculations for other covariates 

Other covariates included in the analysis are described in Table 1; these have been calculated using 

the information described above. For example, distance between riders at each mark proved difficult 

to determine directly from video analysis, so it was estimated using the time difference between the 

riders crossing each mark and the sector speed for the leading rider in the preceding sector. Also 

sectors 2 and 3, and sectors 4 and 5 were merged together when calculating variables relating to the 

speeds and durations (time taken). Sectors 4 and 5 were merged together because sector 5 was 

relatively short; sectors 2 and 3 were also merged to make sector lengths consistent across all 

velodromes; for these variables the merged sectors were either 50m or 100m long. 

 

3  Methodology 

Our analysis investigates tactics that influence the outcome of a race, classified as either win or lose. 

In the individual sprint there are potentially a large (or unlimited) number of tactics and states. 

Therefore a natural approach is to consider the influence on race outcome of variables that 

summarise the race state and development. Logistic regression has the advantage of being 

straightforward to implement and readily allows many relationships between the outcome and 

explanatory variables to be identified and interpreted. It is then a matter of interpreting such 

relationships in order to determine winning tactics. Logistic regression has been used by many 

authors to predict match outcomes in many sports: e.g. in basketball (Schwertman et al., 1996), 

marathon running (Yeung et al., 2001), cricket (Allsopp and Clarke, 2004; Scarf and Shi, 2005; Scarf 

et al., 2011; Scarf and Akhtar, 2011; McHale and Asif, 2013), tennis (Magnus and Klaassen, 2008), 

baseball (e.g. Freiman, 2010), football (e.g. Leitner et al., 2011), golf (e.g. Fearing et al., 2011), and 

hockey (Bedford and Baglin, 2009; Gramacy et al., 2013). 

Models are fitted at each of 8 intermediate points or stages, namely 700m, 600m, 500m, 450m, 

350m, 250m, 200m and 100m to go (to the finish) The explanatory variables used are detailed in 

Table 1 and describe the actions riders can apply, e.g. increase track position. These actions are then 

interpreted in order to indicate potential winning tactics, with the aim of identifying the following: 
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Table 1: Description of covariates considered for analysis 

 
 

 How the leading rider can defend his or her position. 

 How the following rider can optimise his or her chance of overtaking. 

 When it is best to lead the race and when it is best to follow. 

 Which tactics are best for a faster rider (by flying speed) and which are best for a slower 

rider. 

Stages are indexed by i, i=1,…,8. The leading rider at point i is considered as the reference 

rider. The model determines the probability ijp  that the leading rider wins the j
th

 race given the race 

state at point i. The race state at point i is represented by selected explanatory variables, ijX , that 

describe the actions of riders up to point i, together with riders’ flying speeds. Conditional upon ijX , 

the outcome of race j at point i, ijY , is assumed to follow the Bernoulli distribution, )( ijpB , with 

ij
T

ijij pp X )}1/(log{  where T is a vector of parameters. This model is fitted by maximum 

likelihood. 

Covariate Description

RF Flying speed of leading rider relative to flying speed of following rider

S (l ,s )
Sector speed in sector s , lap l of the leading rider relative to the sector speed 

of the average rider in sector s, lap l  (by gender and event)

RS (l ,s )
Sector speed in sector s , lap l of the leading rider relative to the sector speed 

of the following rider in sector s, lap l 

A (l ,s )
Sector speed in sector s , lap l  of the leading rider relative to his (or her) 

sector speed in previous sector (s -1)

T (l ,s )
Average time taken for a rider to complete sector s in lap l (by gender and 

event) relative to the time taken for leading rider to complete sector s in lap l

RT (l ,s )
Time taken for following rider to complete sector s  in lap l  relative to the time 

taken for leading rider to complete sector s in lap l

TA (l ,s ) T (l ,s ) relative to T (l ,s -1)

D (l ,m ) Distance between riders at mark m, lap l

LC (l ,m )* Lead has changed in the race between mark m  in lap l and current mark

PL (l ,m )** , 

PF (l ,m )**

Track positions for leading and following riders respectively at mark m in lap 

l

DL (l ,m )* , 

DF (l ,m )*

Leading and following riders have decreased track position between mark m 

in lap l  and the current mark respectively

IL (m )*, IF (m )*
Leading and following riders have increased track position between mark m 

in lap l and the current mark respectively

FH (m )*
Following rider is in a higher or in the same track position as the leading rider 

at mark m in lap l

FL (m )*
Following rider is in a lower or in the same track position as the leading rider 

at mark m in lap l

NB: () denotes covariate is a function of lap l  and either sector s  or mark m

 * is a binary variable taking values 0 if no and 1 if yes, ** is a  categorical variable.
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At each intermediate point i, to determine the best fitting model, we used a forward step-wise 

procedure for variable selection, with influential variables and two-way interactions being entered 

into the model. Thus at each intermediate point i, a “best” model is chosen using the forward 

stepwise procedure. In the following section results are presented for the “best” model at each 

intermediate point, although for brevity the qualification “best” is dropped. Three-way interactions 

were also considered but none proved to be influential. The Akaike Information Criterion (AIC) 

(Dobson and Barnett, 2008) was used in Moffatt et al. (2009) as a selection criterion, but this method 

allowed too many terms to enter into the model, making interpretation difficult. The Bayesian 

Information Criterion (BIC) penalises the number of model parameters more heavily. However, 

using BIC only a few terms were selected in the models. Therefore stepwise regression using the 

likelihood ratio chi-square test (accepting variables with a p-value of less than 0.05) was used; this 

allowed  an intermediate number of terms to be added.  

To restrict the number of variables and 2-way interactions being tested, only flying speed and 

variables close (within the previous 200m) to the current point of the race were considered for each 

model. Variables relating to early parts of the race may interact with variables relating to later parts 

of the race, making it difficult to interpret the results and identify key tactics.  

 
4  Model results and tactical implications  

The overall accuracies of the models are first discussed. Then the overall effect of influential 

variables is compared at the different points of the race. Finally, influential actions identified by each 

of the models are discussed in terms of tactics, in race order, taking the overall model accuracies into 

account. 

In order to assess the model accuracy, the probability that the leading rider wins a race was 

calculated for each intermediate point or stage for all 231 races. If the model predicted the leading 

rider had over a 50% chance of winning the race he was classified as winning the race, otherwise he 

was classified as losing the race. The model predictions were compared to actual outcome and Figure 

5(a) shows the percentage of races for each of the 8 models correctly classified. At 700m and 600m 

to go 69% of races were correctly classified. The only variable found to be influential was the 

relative flying speed of riders, and as mentioned in Section 2 69% of faster riders (by flying speed) 

win. See Table 2 for the parameter estimates for both these models. Thus, at 600m to go, covariates 

from which tactics might be inferred did not influence race outcome, and so tactics in the first 150m 

do not appear, on the basis of the model, to be important.  

From 600m to go covariates and hence race tactics become increasingly important. The 

difference between the percentage of races correctly classified and the percentage of faster riders (by 

flying speed) who go on to win indicates the percentage of race winners being accounted for by race 

tactics. This is 8% at 500m, 450m and 350m to go, 13% at 250m to go, and 23% at 100m to go.  
 
 

Table 2: Parameter estimates at 700m (mark 1, lap 1) and 600m (mark 3, lap 1) to go. 

 
 

The models perform considerably better than the simple assumption that the leading rider wins, 

even towards the end of the race. For the first 2 laps who is leading does not affect the chances of 

Variable Coefficient Variable Coefficient

Intercept -66.47 (11.1)* Intercept -66.08 (10.88)*

RF 66.54 (11.12)* RF 66.1 (10.89)*

NB: See Table 1 for covariate definitions, * signifcant at 1% level.

(1) 5 observations removed due to missing values.

Model at 700 m to go
(1)

Model at 600 m to go
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winning, as there is around a 50/50 chance for each rider. In the last lap being in front increases a 

rider’s chance of winning; at 100m to go only 25% of those behind go on to win (see Figure 5(a)). 

The models fitted at each stage were also compared using Nagelkerke R
2
, a modified form of 

Cox and Snell pseudo R
2 
(Nagelkerke, 1991) that is, broadly speaking, the proportion of variability in 

race outcomes that is explained by the variables in the model. As expected, the R
2
 value is higher for 

models relating to stages closer to the finish (see Figure 5(b)).  

 
(a)                                                                 (b) 

 

Figure 5 (a) Comparison of percentage of races predicted correctly by the model (    ), percentage of 

leading riders who go on to win( ),and percentage of faster riders (by flying speed) who win  

the race (  ); (b) Nagelkerke R
2 
for each model. 

 

Each model, starting with the 450m to go model, is discussed in turn in the following sections. 

We have omitted the discussion for the 500m to go model as the covariates effects are complex and 

their explanatory power are quite low. However the covariates for the 500m to go model are shown 

in Table 3. Rather than repeatedly use he/she and his/her throughout, we will without prejudice 

consider riders as male. It should be noted that in the remainder of this paper although we will say a 

rider should carry out certain actions/tactics in order to increase his chance of winning, strictly we 

will mean that our interpretation of fitted models imply that such actions increase the win probability 

for the rider. 

 

4.1 Model at 450 metres to go 

At 450m to go, and just prior to this, the actions riders applied in this part of the race as identified by 

the model only have a small influence (8%) on race outcome, see Figure 5(a).  

The model suggests the leading rider should increase speed in sectors 4 and 5 on lap 1 if his 

opponent is in an attacking position (hence higher track position) at mark 3 (on the 2
nd

 bend in lap 1), 

see Figure 6 where (FL(1,3)=0). However, the rider should not be too far ahead (<3m front wheel to 

front wheel), keeping the follower just on his shoulder (see Table 3, the interaction D(2,1)×FH(1,4S) 

is negative). Being far ahead may indicate that too much energy has been expended or that the 

following rider has the opportunity to accelerate and overtake quickly. A slow speed (~90% of 

average speed, or 25 and 26 km/hr for women and men respectively) should be adopted to save 

energy if the opponent is not in an attacking position at mark 3 (see Figure 6 where (FL(1,3)=1)).  
The best position for the leading rider to be in at mark 1, lap 2 is position 2, as this is where the 

track gradient is at its highest; being in position 1 allows the opponent to overtake relatively easily. 

Conversely being in position 5 or 6 is also advantageous; this could be to stop an overtaking move 

(see Table 3 PL(2,1)).   
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Table 3: Parameter estimates at 500m (mark 5, lap 1), 450m (mark 1, lap 2) and 350m (mark 3, lap 2) to go 
obtained by stepwise selection. 

 

 
 

 

 
Figure 6: Win probability for leading rider at 450m to go (mark 1, lap 2) as a function of sector speed over 
sectors 4 and 5 on lap 1 for the leading rider compared to the average rider (S(1,4+5)): following rider in a 

lower or in the same track position as the leading rider, FL(1,3)=1, (), following rider in a higher track 

position, FL(1,3)=0,(   ). The leading rider is in position 3 (modal position) at mark 1, lap 2, and all other 
model variables were set to average values if continuous and 0 if binary, bar FH(1,4S) which was set to 1. 

Covariate Coefficient Covariate Coefficient Covariate Coefficient

Intercept -61.69 (12.93)* Intercept -71.45 (17.71)* Intercept -8.79 (19.70)

RF 62.89 (13.14)* RF 56.86 (16.36)* RF 41.73 (15.83)*

D (1,3) 0.59 (0.16)* D (2,1) 3.33 (1.43)** TA (2,2+3) 3.13 (1.41)**

FH (1,4S) -3.04 (1.10)* FH (1,4S) 11.51 (4.84)** FH (2,2S) -36.25 (10.94)*

IF (1,4S) 1.99 (0.67)* IF (1,4C) -0.90 (0.57) IF (2,2S) 1.05 (0.41)*

FL (1,5) -63.38 (31.35)** FL (1,3) 4.99 (1.83)* IF (2,2) -1.56 (0.51)*

LC (1,3) -6.46 (2.99)** IL (1,4C) -2.56 (0.92)* LC (2,1) -18.10 (8.56)**

PL (2,1,1) PL (2,1,1)

PL (2,1,2) 2.17 (0.76)* PL (2,1,2) 1.79 (0.72)*

PL (2,1,3) 1.05 (0.73) PL (2,1,3) 0.05 (0.71)

PL (2,1,4) 1.57 (0.89)*** PL (2,1,4) 0.18 (0.85)

PL (2,1,5) 2.30 (0.92)* PL (2,1,5) 0.40 (0.87)

PL (2,1,6) 2.16 (1.22)*** PL (2,1,6) -0.39 (1.06)

S (1,4+5) 2.56 (1.60) TA (2,1) -36.59 (11.08)*

DL (1,4) -73.33 (27.38)* IL (2,1) -81.08 (30.29)*

D (2,1)×FH (1,4S) -3.45 (1.44)** TA (2,1)×FH (2,2S) 36.44 (11.01)*

FL (1,3)×S (1,4+5) -5.54 (1.81)* TA (2,1)×LC (2,1) 19.64 (8.94)**

DL (1,4)×RF 74.27 (27.42)* RF×IL (2,1) 80.91 (30.30)*

IF (1,4C)×IL (1,4C) 2.65 (1.06)*

NB: See Table 1 for covariate definitions.

PL (2,1)  is a categorical variable, with  PL (2,1,1)) corresponding to the leading rider at mark 6 being in 

track position 1.

(2) 3 observations were removed due to missing values.

*, **, *** signifcant at 1%, 5% and 10% level respectively.

e.g. 4S for beginning of the straight before mark 4 in sector 4.

(1) 2 observations were removed due to missing values. 

Model at 500 m to go
(1)

Model at 450 m to go
(2)

Model at 350 m to go

Marks denoted by C occur at the curve apexes, and by S at the beginning and end of the straights 

D (1,3)× 

IF (1,4S)
-0.61 (0.16)*

-2.14 (0.81)*
D (1,3)× 

LC (1,3)

FL (1,5)

× RF
62.54 (31.33)**
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4.2 Model at 350 metres to go 

The 350m to go model was the only model to contain variables relating to the time taken for riders to 

complete sectors. These variables had greater predictive power than speed variables. Note, as per the 

discussion in section 2.2, a sector time alone does not imply a speed, because riders change track 

position and may do so to a great extent in this sector (between 450 and 350m to go). The model 

indicates that the leading rider increases his win probability by slowing the race down in sector 1, lap 

2, then increasing speed in sectors 2 and 3, on lap 2, (see Table 3 variables TA(2,1) and TA(2,2+3) 

which are indicative of acceleration). The leading rider is thereby forcing his opponent to either slow 

down or overtake (or undertake). If the leading rider is a faster rider (by flying speed) he can further 

increase his win probability by moving to a higher track position between marks 1 and 3 on lap 2 

(see Table 3 RF, DL(2,1) and RFDL(2,1)). A slower rider should not increase track position and 

should conserve energy for the sprint later on.  

The following rider increases his chance of winning by using the track gradient to his 

advantage to save energy or increase speed. This is shown by Table 4 when IF(2,2S)=0 and 

IF(2,2)=1, which corresponds to a rider moving to a lower track position between marks 2S and 2 on 

lap 2 then moving to a higher track position to mark 3.   
 

Table 4: Win probability for following rider at 350m to go (mark 3, lap 2) as a function of whether the following 
rider moves to a higher track position between marks 2S and 3 on lap 2 (IF(2,2S)), and moves to a higher 

track position between marks 2 and 3 on lap 2 (IF(2,2)). We suppose the leading rider is in position 3 (modal 
position) at mark 1 on lap 2 and all other variables were set to average values if continuous and 0 if binary, 

bar FH(2,2S) which was set to 1 . 

 

. 

 

A successful overtaking (or undertaking) tactic involves first slowing the race down in sector 1, 

lap 2, and then attaining an attacking position (opponent in a lower track position) at the beginning of 

the straight, in sector 2 on lap 2. Then an opponent is surprised by a high acceleration to overtake (or 

undertake), see Figure 7 where FH(2,2S)=0. A different successful overtaking (or undertaking) tactic 

is for the rider to increase speed in sector 1 (on lap 2) while being in a lower or in the same track 

position as the opponent at the beginning of the straight in sector 2, lap 2, see Figure 7 where 

FH(2,2S)=1. Being in a higher track position requires taking a longer route around the bend, and 

hence considerably more energy to overtake, especially with the race increasing in speed. 

 

4.3 Model at 250 metres to go 

At 250 metres to go (1 lap to go) riders are typically making an attacking move to accelerate to 

maximum speed. Being the leading rider at this point is more advantageous with 61% of leading 

riders going on to win the race (see Figure 5(a)). At this stage, 13% of race outcomes accounted for 

by tactics-related covariates (see Figure 5(a)).  

The model (Table 5) indicates the leading rider should defend his lead by increasing speed and 

position between 350m and 250m to go (sectors 4 and 5, lap 2) with the most important part of this 

tactic being a move to a higher track position between marks 4 and 5 on lap 2, see Figure 8. The 

leading rider can also defend his lead and also increase his chance further by being in position 4 at 

mark 4 on lap 2 (see Table 5, where PL(2,4)=4). Being in a higher track position here also delays 

riders in reaching maximum speed. The following rider therefore will spend less time benefiting 

from the slipstream of the leading rider making it more difficult for the rider to overtake to win.  

0 1

0 0.57 0.86

1 0.32 0.69

IF (2,2S)
IF (2,2)
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Figure 7: Win probability for the leading rider who has overtaken between marks 1 and 3 on lap 2 as a 
function of time to complete sector 1 on lap 2 relative to sectors 4 and 5 on lap 1 for the leading rider, as at 

350m to go, (TA(2,1)): following rider at mark 3 (350m to go) was in a higher or in the same track position as 

the leading rider at mark 2S in lap 2 , FH(2,2S)=1, (  ); following rider was in a lower track position, 

FH(2,2S)=0, (). We set the leading rider at 350m to go in position 3 (modal position) at mark 1 on lap 2 
and all other variables were set to average values if continuous and 0 if binary. 

 

 
 

Figure 8: Win probability for leading rider at 250m to go (mark 5, lap 2) as a function of sector speed for the 
leading rider relative to that of the following rider in sectors 4 and 5, lap 2, (RS(2,4+5)). The graphs 

correspond to RS(2,2+3) (the sector speed for the leading rider relative to following rider in sectors 2 and 3, 
lap 2) and IL(2,4C) (the leading rider moves to a higher track position between mark 4C and 5 on lap 2): 

Taking the following values: RS(2,2+3)=0.99 and IL(2,4C)=0 (), RS(2,2+3)=1.01 and IL(2,4C)=0 (   ), 

RS(2, 2+3)=0.99 and IL(2,4C)=1 (  ), RS(2,2+3)=1.01 and IL(2,4C)=1 (). We set leading rider in 
position 3 (modal position) at mark 4 on lap 2, and all other model variables were set to average values if 

continuous and 0 if binary. 

 

The following rider can increase his win probability if he does not move to a lower track 

position between marks 3 and 5 on lap 2 (see Table 5, DF(2,3) is positive) and if he is in the same or 

in a lower track position than the leading rider at mark 4 on lap 2 (see Table 5: FL(2,4) is highly 

negative). If both riders are in a low track position (positions 1 to 3), the race is likely to be already at 

maximum (or close to maximum) speed, therefore the following rider can then benefit from the 

opponents slipstream, saving energy to overtake later. If both riders are in a high track position (4 to 

6), and if the following rider is in a higher track position than the opponent they would be expending 

more energy as the track gradient is higher. The following rider reduces his win probability if he 

moves to a lower track position; this is likely to be a response to the leading rider suddenly moving 

to a lower track position to accelerate to full speed, to gain a lead. 
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Table 5: Fitted parameter estimates for the model at 250m (mark 5, lap 2), 200m (mark 1, lap 3) and 100m to 

go (mark 3, lap 3) obtained by stepwise selection 
 

 
 

 

4.4 Model at 200 metres to go 

Generally riders at 200m to go (mark 1, lap 3) are at or descending to the bottom of the track and are 

travelling close to maximum speed (92 ± 5% of their flying speed). At this point in the race 65% of 

leading riders go on to win and 15% of race outcomes are accounted for by tactics-related covariates, 

noting that the model predicts 84% of races correctly with 69% of faster riders (by flying speed) 

winning—see Figure 5(a).  

Covariate Coefficient Covariate Coefficient Covariate Coefficient

Intercept -130.26 (21.19)* Intercept -122.27 (20.41)* Intercept 712.08 (228.64)*

RF 92.56 (15.72)* RF 111.43 (18.80)* RF 100.49 (22.80)*

RS (2,2+3) 19.53 (6.95)* FH (3,1S) -3.65 (1.33)* A (3,2+3) -791.49 (227.29)*

RS (2,4+5) 18.58 (9.58)** RS (3,1) 13.92 (7.48)*** S (3,2+3) -855.85 (244.58)*

D (2,3) 4.56 (1.60)* D (3,1) 0.08 (0.26) D (3,3) 4.62 (0.87)*

PL (2,4,1+2)) PL (2,4,1+2) D (3,2) -2.69 (0.59)*

PL (2,4,3) -0.24 (0.43) PL (2,4,3) 0.16 (0.48) PF (3,1) 0.48 (0.60)

PL (2,4,4) 3.22 (1.01)* PL (2,4,4) 3.33 (1.08)* IF (3,2) 2.88 (1.00)*

PL (2,4,5+6)) -2.32 (1.08)** PL (2,4,5+6) -1.11 (0.93)

DF (2,3) 0.29 (0.54) DF (2,3) -1.85 (1.18)

IL (2,4C) 32.97 (20.03)*** IL (2,4S) -2.95 (0.98)*

FL (2,4) -4.14 (1.20)* IL (2,5) 2.31 (0.83)*

FL (2,4S) -0.15 (0.55) PF (3,1S,1+2)

PF (3,1S,3) 3.08 (1.14)*

PF (3,1S,4) 2.58 (1.56)***

PF (3,1S,5+6) 8.40 (3.62)**

NB: See Table 1 for covariate definitions.

PL (2,4)  is a categorical variable, with P L (2,4,1+2)) corresponding to the leading rider at mark 4 in lap 2

being in track positions 1 or 2 etc.

(3) 4 observations were removed with 3 due to missing values and a further 1 for being an extreme outlier.

Marks denoted by C occur at curve apexes, and by S at the beginning and end of the straights 

e.g. 4S for beginning of the straight before mark 4 in sector 4.

*, **, *** significant at 1%, 5% and 10% level respectively.

(1) 5 observations , (2) 4 observations were removed due to missing values. 

833.15 (235.02)*

-4.29 (1.41)*

Model at 100 m to go
(3)

73.77 (28.36)*

-1.31 (0.36)*

Model at 250 m to go
(1)

Model at 200 m to go
(2)

D (3,1)×  

PF (3,1S,3)
2.89 (0.96)*

-103.25 (27.01)*
IL (2,4C)× 

RS (2,2+3)

-4.48 (1.60)*

-1.05 (0.42)*D (3,1)× 

PF (3,1S,4)
2.36 (0.98)**

S (3,2+3) 

× A (3,2+3)

PF (3,1)× 

IF (3,2)

1.18 (0.38)*

FL (2,4)× 

DF (2,3)

D (2,3)× 

RS (2,2+3)

IL (2,4C)× 

RS (2,4+5)

FL (2,4)× 

FL (2,4S) -2.74 (0.87)*

D (3,1)× 

DF(2,3)

D (3,1)× 

PF (3,1S,1+2)

D (3,1)× 

PF (3,1S,5+6)
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The model indicates that it is optimal for the leading rider to be in position 4 at mark 4 on lap 

2, (see Table 5 PL(2,4,4) is positive). A rider should also be in a higher track position than his 

opponent at the end of the straight in sector 1, lap 3 (see Table 5, FH(3,1S) is negative). These two 

actions make overtaking more difficult for the following rider. The leading rider can also defend his 

position by first moving to a lower track position to mark 5 on lap 2 before moving to a higher track 

position around the bend, where the track gradient is high. This corresponds to IL(2,4S)=0 and 

IL(2,5)=1, see Table 5 where IL(2,4S)<0 and IL(2,5)>0. 

The following rider should be close to the opponent at mark 1 on lap 3 when in a low track 

position (1 or 2), see Figures 9(a) and (b) where PF(3,1S,1+2), to benefit from the slipstream of the 

opponent. If the following rider does not move to a lower track position and remains in the higher 

track position (typically 3 as this would mean the rider will then be in a high position at mark 1 on 

lap 3, when most races are at maximum speed) the rider will benefit if he is further back from the 

leading rider (as shown in Figures 9(a) where PF(3,1S,3)). The race is likely to be slower in this case 

and it is more difficult for the leading rider to judge what move the following rider will attempt. 

When the following rider is in an high position (5 or 6) at the end of the straight in sector 1, lap 3, 

and he then moves to a lower track position, (see Figures 9(b), PF(3,1S,5+6)) the rider also gains an 

advantage from being far behind.  
 

 
 (a)                                                                              (b) 

 
Figure 9: Win probability for following rider at 200m to go (mark 1, lap 3) as a function of distance 

behind at mark 1 on lap 3 (D(3,1)), and track position at mark 1S, lap3, for the following rider: PF(3,1S,1+2) 

(), PF(3,1S,3) (   ), PF(3,1S,4) (  ), PF(3,1S,5+6) (); (a) following rider has not moved to a lower 
track position between marks 3 on lap 2 and mark 1 on lap 3 (DF(2,3)=0), and (b) following rider has moved to 
a lower track position between marks 3 on lap 2 and mark 1 on lap 3 (DF(2,3)=1). We set the leading rider in 
position 3 (modal position) at mark 4, lap 2, the following rider in a higher or the same track position at mark 

1S on lap 3 and all other model variables were set to average values if continuous and 0 if binary. 
 

4.5 Model at 100 metres to go 

Riders are now on the last bend (mark 3, lap 3) with the following rider making his last attempt to 

overtake. As generally riders will be positions 1 to 3 (see Figure 2) and do not change track position 

significantly, intermediate marks (e.g. Mark 2) were not considered in the modelling process. At this 

point in the race still only 75% of leading riders go on to win and tactics-related covariates account 

for 23% of race outcomes.  

The model (see Table 5) now indicates winning factors rather than tactics over which riders 

have some control. Thus the leading rider should be as far ahead as possible at 100m to go (mark 3, 

lap 3), he should also be increasing his or her lead between marks 2 and 3 in lap 3 (see Table 5 

D(3,3) is positive and D(3,2) is negative). Riders should also be travelling at a high speed and should 

be accelerating over sectors 1 to 3 on lap 3 (see Table 5 the interaction A(3,2&3)×S(3,2&3) is 
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positive, while the main effects are negative). If a rider is unable to accelerate he is less likely to win, 

indicating he has gone too fast too early and is tiring.  

The best tactic for the following rider involves being in a high position (3 or above) on the 

track on the 1
st
 bend of the last lap (mark 1, lap 3), to use the declining track gradient to accelerate, 

and then move to a higher track position to mark 3, to attain a good position to overtake. See Figure 

10 where PF(3,1)=1 and IF(3,2)=1. 
 

 
 

Figure 10: Win probability for the following rider at 100m to go (mark 3, lap 3) as a function of the flying speed 
for the leading rider compared to the opponent (RF). The graphs shows the dependence on the following rider 

being in a low track position at mark 1 on lap 3 (PF(3,1)=1 for 1 or 2, and 0 otherwise) and on the following 

rider moving to a higher track position between marks 2 and 3 on lap 3 IF(3,2): PF(3,1)=0 and IF(3,2)=0 (), 

PF(3,1)=0 and IF(3,2)=1 (   ), PF(3,1)=1 and IF(3,2)=0 (  ), PF(3,1)=1 and IF(3,2)=1 (). We set the 
following rider at 1 metre behind at marks 2 and 3 in lap 3 and all other model variables are set to the average 
 

5  Discussion 

We develop statistical models to allow key tactics that influence the win probabilities for riders to be 

identified. Eight regression models are described for different points of the race. These models 

consider actions in terms of optimal positions and speeds, allowing tactics to be identified. They 

show that one clear tactic cannot be defined for a rider throughout the race (unlike for endurance 

events such as the 4000m pursuit) because riders cannot sustain maximum speed for the whole race 

and must react to race circumstances, maintaining a best position given the development of the race. 

The optimum tactics for riders are also interdependent. The models provide insight into how to 

prevent being overtaken, how and when to overtake, and when to accelerate to maximum speed. 

They also identify that some tactics work for the faster (by flying speed) rider but not for slower rider 

and vice versa.  

The explanatory effects in the models are quite difficult to interpret. Also, when putting tactical 

interpretations on explanatory effects, we must distinguish those factors under a rider’s control from 

those not. Another limitation of our approach is that each part of the race is considered in isolation. 

The joint effect of a rider applying a tactic at for example 450m to go and another tactic at 250m to 

go cannot be measured. Models for later parts of the race could have included variables relating to 

earlier parts of the race but, as discussed in Section 3, the number of 2-way interaction being 

considered would be extremely large making it difficult to interpret the models. 

Finally, while feedback obtained from sprint coaches prior to the 2012 Olympic Games was 

positive—the general tactical implications of the models were sensible—the prevailing view was that 

tactics should be modelled in rider specific contexts. This would require much more data (video 

analysis) of rider-versus-rider contests and modelling of specific rider-versus-rider effects. 

Alternatively, rider attributes (other than gender and flying speed) might be quantified. 

0.0

0.2

0.4

0.6

0.8

1.0

0.98 0.99 1 1.01 1.02

P
ro

b
ab

ili
ty

 o
f 

fo
llo

w
in

g 
ri

d
e

r 
w

in
n

in
g

RF: relative flying speed (leading/following)



 15 

Acknowledgements: This work has been supported by the Engineering and Physical Sciences 

Research Council of the UK, under grant number EP/F005792/1. We are grateful for the cooperation 

of the English Institute for Sport for use of the data and the help of Paul Barrett, Mike Hughes and 

Duncan Locke, and Jan Van Eijden of British Cycling. 

 

References 

 
Allsopp, P. E. & Clarke, Stephen R. (2004) Rating teams and analysing outcomes in one-day and test cricket. 

Journal of the Royal Statistical Society: Series A 167, 657-667. 
Atkinson, G., Davison, R., Jeukendrup, A. & Passfield, L. (2003) Science and cycling: current knowledge and 

future directions for research. J Sports Sci, 21, 767-87. 
Atkinson, G., Peacock, O. & Passfield, L. (2007) Variable versus constant power strategies during cycling time-

trials: prediction of time savings using an up-to-date mathematical model. J Sports Sci, 25, 1001-1009. 
Bedford,A. & Baglin, J. (2009) Evaluating performance of an ice hokey team using interactive phases of play. 

IMA Journal of Management Mathematics 20, 159-166. 
Collett, D. (2002) Modelling binary data. Boca Raton, FL: Chapman & Hall/CRC. 
Craig, N. P. & Norton, K. I. (2001) Characteristics of track cycling. Sports Medicine, 31, 457-468. 
de Koning, J.J., Foster, C., Bakkum, A., Kloppenburg, S., Thiel, C., et al. (2011). Regulation of Pacing Strategy 

during Athletic Competition. PLoS ONE 6(1): e15863. doi:10.1371/journal.pone.0015863 
Dobson, A. J. & Barnett, A. G. (2008) An introduction to generalized linear models. London: CRC Press. 
Fearing, D., Acimovic, J. & Graves, S. (2011). How to Catch a Tiger: Understanding Putting Performance on 

the PGA TOUR. Journal of Quantitative Analysis in Sports 7(1).  
Freiman, M. (2010). Using Random Forests and Simulated Annealing to Predict Probabilities of Election to 

the Baseball Hall of Fame. Journal of Quantitative Analysis in Sports 6(2).  
Gramacy, R., Jensen, S. & Taddy, M. (2013). Estimating player contribution in hockey with regularized logistic 

regression. Journal of Quantitative Analysis in Sports 9, 97-111.  
Leitner, C., Zeileis,A. & Hornik, K. (2011) Bookmaker concensus and agreement for the UEFA Champions 

League. IMA Journal of Management Mathematics 22, 183-194. 
Magnus, J. & Klaassen, F. (2008) Myths in Tennis. Statistical Thinking in Sports (Albert, J. & Koning, R. H. eds). 

Chapman & Hall/CRC (Taylor & Francis Group), pp. 217-240. 
McHale, I. & Asif, M. (2013) Modelling one day international cricket match outcomes in play. Submitted for 

publication. 
Nagelkerke, N.J.D. (1991) A note on a general definition of the coefficient of determination. Biometrika, 78, 

691-692. 
Scarf, P.A. & Akhtar, S. (2011) An analysis of strategy in the first three innings in test cricket: declaration and 

the follow-on. Journal of the Operational Research Society 62, 1931-1940.  
Scarf, P.A. & Shi X. (2005) Modelling match outcomes and decision support for setting a final innings target in 

test cricket, IMA Journal Management Mathematics 16, 161-178 
Scarf, Shi, X. & Akhtar, S. (2011) The distribution of runs scored and batting strategy in test cricket. Journal of 

the Royal Statistical Society, Series A 174, 471-497. 
Schwertman, N. C., Schenk, K. L. & Holbrook, B. C. (1996) More probability models for the NCAA regional 

basketball tournaments. The American Statistician, 50, 34-38. 
Thomas, K., Stone, M. R., Thompson, K. G., Gibson, A. S. and Ansley, L. (2012). The effect of self- even- and 

variable-pacing strategies on the physiological and perceptual response to cycling. European Journal of 
Applied Physiology 112, 3069-3078. 

Tissot (2009) Flying times. http://www.tissottiming.com/. 
UCI (2009) Cycling. http://www.uci.ch/. 
Yeung, S.S., Yeung, E.W. & Wong, T.W. (2001) Marathon finishers and non-finishers characteristics: A 

preamble to success. Journal of Sports Medicine and Physical Fitness 41, 170-176. 

 

http://www.tissottiming.com/
http://www.uci.ch/

