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ABSTRACT 

This thesis presents a treatise on the rendering of focused sources using wave field 

synthesis (WFS). The thesis describes the fundamental theory of WFS and presents a 

thorough derivation of focused source driving functions including, monopoles, 

dipoles and pistonic sources. The principle characteristics of focused sources 

including, array truncation, spatial aliasing, pre-echo artefacts, colouration and 

amplitude errors are analysed in depth and a new spatial aliasing criterion is 

presented for focused sources. Additionally a new secondary source selection 

protocol is presented allowing for directed and symmetrically rendered sources. This 

thesis also describes how the low frequency rendering of focused sources is limited 

by the focusing ability of the loudspeaker array and thus derives a formula to predict 

the focusing limits and the corresponding focal shift that occurs at low frequencies 

and with short arrays. Subsequently a frequency dependent position correction is 

derived which increases the positional accuracy of the source. Other characteristics 

and issues with the rendering of focused sources are also described including the use 

of large arrays, rendering of moving focused sources, issues with multiple focused 

sources in the scene, the phase response, and the focal point size of focused sound 

field. 

 

The perceptual characteristics are also covered, with a review of the literature and a 

series of subjective tests into the localisation of focused sources. It is shown that an 

improvement in the localisation can be achieved by including the virtual first order 

images as point sources into the WFS rendering. 

 

Practical rendering of focused sources is generally done in compromised scenarios 

such as in non-anechoic, reverberant rooms which contain various scattering objects. 

These issues are also covered in this thesis with the aid of finite difference time 

domain models which allow the characterisation of room effects on the reproduced 

field, it is shown that room effects can actually even out spatial aliasing artefacts and 

therefore reduce the perception of colouration. Scattering objects can also be 

included in the model, thus the effects of scattering are also shown and a method of 

correcting for the scattering is suggested. Also covered is the rendering of focused 

sources using elevated arrays which can introduce position errors in the rendering. 
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GLOSSARY OF SYMBOLS 

Throughout this thesis letters or symbols in bold type describe vectors, a hat above 

the vector symbolises that it is a unit vector. A tilde above a symbol or letter denotes 

that the quantity is in the wavenumber domain. Other commonly used letters and 

symbols used in this thesis are as follows. 

c Speed of sound ( 1343ms )  

f Frequency, (Hz) 

falias Spatial aliasing frequency, (Hz) 

( )n

vH   Hankel function order, n and of the v
th

 kind 

 ..mj  m
th

 order spherical Bessel function of the first kind 

 ..mJ  m
th

 order Bessel function of the first kind 

j   1  

k  Wavenumber, 2k f c  , (m
-1

) 

t  Time (s) 

V  Volume (m
3
) 

0x  Secondary source position 

Sx  Virtual source position 

Refx  Reference point where amplitude errors are minimal 

 ..my  The m
th

 order spherical Bessel function of the second kind 

 ..mY  The m
th

 order Bessel function of the second kind,  

 

 

  Wavelength, (m) 

LS   Loudspeaker spacing, (m) 

0  Density of air (1.21kgm
-3

) 

ω Angular frequency, 2 f  , ( s
-1

) 
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LEV  Listener envelopment 

MADI  Multi-channel Audio Digital Interface 

NFC-HOA Near Field Compensated Higher Order Ambisonics 

PC  Personal Computer 

PML  Perfectly Matched Layer absorbing boundary in FDTD 

RMS  Root Mean Square 
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WFS  Wave Field Synthesis 

3D  Three-dimensional 
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1 Introduction 

 

 

 

 

 

 

 

The wave field synthesis (WFS) technique for spatial audio reproduction utilises 

many loudspeakers to synthesise arbitrary wave fronts throughout the listening space 

and consequently offers many advantages over standard methods as it is based upon 

physical principles rather than psychoacoustical approximations. A combination of 

many sources rendered using wave field synthesis results in the accurate 

reproduction or synthesis of an entire sound scene with each virtual source 

generating the same auditory cues as if a real source were actually at that location. 

Wave field synthesis therefore does not attempt to fool the brain using 

psychoacoustical tricks to synthesis auditory cues but rather recreates the exact cues 

that the listener would experience if they were in the original scene. WFS can thus be 

considered a volumetric approach to spatial audio and therefore has the advantage of 

not having a sweet spot, as the recreated wave fronts propagate throughout the 

listening space so the source will be localised to the same position irrespective of 

listener location.  
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Perhaps one of the most striking advantages of this technique however is the ability 

to create sources in front of the loudspeaker array. Such focused sources are in fact 

not real sources but rather they have the auditory appearance of a real source as all 

the acoustic energy is focused on to one point and thus re-radiates giving the 

impression of an acoustic source at that location. The rendering of a focused source 

allows listeners much more interaction with their environment than would otherwise 

be possible as they provide a physical audio event which listeners can localise and 

walk around. This is a remarkable feature of WFS and indeed any sound field 

synthesis technique and provides an increased realism and depth-of-scene for any 

synthesised sound environments, allowing sources to be positioned very close to 

listeners. When combined with 3D or holographic projection techniques this can 

therefore result in very realistic virtual scenes (Boone et al., 1996). Focused sources 

have also been shown to be useful for creating virtual loudspeaker signals in hybrid 

systems (Menzel et al., 2005) and virtual sound field synthesis systems (Spors and 

Ahrens, 2010a). 

Despite the unique and striking nature of focused sources in WFS, there has been 

relatively little attention given specifically to this topic to date. This thesis presents a 

treatise on WFS focused sources; analysing and characterising the physical and 

perceptual attributes and highlighting some improvements in the rendering and 

analysis thereof. 

 

1.1 Aims of research 

The aim of this research was the full characterisation of focused source reproduction 

in wave field synthesis. Following on from this characterisation, it was aimed that 

improvements could be made to the rendering of focused sources such that they 

could be reproduced to a greater degree of accuracy and localised over a wider 

listening area. 

 

1.2 Focus of thesis 

The thesis therefore focuses specifically on the wave field synthesis reproduction of 

sources in front of the loudspeaker array, termed ‘focused sources’ and the 

subsequent improvements in the rendering thereof. 
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1.3 Original contributions 

The following original contributions are made in this thesis: 

 

- Derivation of a secondary source selection criteria specific to focused sources 

for directional and symmetrical propagating virtual sources. 

- A definition of the un-aliased zone and derivation of a new aliasing condition 

for focused sources. 

- The prediction of, and correction for, the position error in focused source 

rendering caused by diffraction errors and resulting focal shift in the rendered 

virtual source at low frequencies or with short arrays. 

- The derivation of a direct-to-pre-echo ratio for focused sources which can be 

used as a rough measure of localisation performance. 

- The characterising of the localisation properties of focused sources with 

respect to listener angle. 

- A perceptual improvement in the localisation of focused sources based on the 

inclusion of first order image sources into the rendering for a focused source. 

- An analysis of room effects on focused sources using the finite difference 

time domain technique. 

- Analysis of the effect of scattering objects on the focused sound field. 

- The reduction in the effects of scattering in the convergent part of the sound 

field using time reversal techniques.  

 

1.4 Structure of thesis 

The thesis begins with a brief overview of spatial audio techniques and acoustic 

localisation mechanisms which contextualise the wave field synthesis, sound field 

reconstruction system used for this work. Chapter 3 presents an in-depth theoretical 

background of wave field synthesis describing the relevant driving functions, source 

selection criteria and some of the errors in the reproduced wave field. This chapter 

also reviews some of the current major topics of research in the area of wave field 

synthesis and includes the description of four wave field synthesis systems that have 

been designed, built, calibrated and commissioned at the University of Salford as 

part of this project. Chapter 4 deals specifically with focused source reproduction in 

wave field synthesis; presenting the important driving functions and the errors 



Chapter 1: Introduction  4 

 

 

associated with their rendering. The chapter pays specific attention to the definition 

of the un-aliased region in the reproduced wave field and the correction for the 

source position errors resulting from the focal shift phenomena. The chapter also 

includes the derivation of a direct-to-pre-echo ratio which is used for the analysis of 

the rendering of focused sources using large arrays towards the end of the chapter. 

Chapter 5 reviews some of the perceptual attributes of focused sources and presents 

results from a localisation test. In this chapter the key findings in the literature are 

reviewed with a brief description of the experiments performed therein. The chapter 

also describes a localisation test to determine the acoustic view angle of focused 

sources and demonstrates the improvements that can be made in the reproduction of 

focused source with the addition of the first order image sources into the rendering. 

Chapter 6 then describes the implementation of focused sources in 

compromised/practical environments. The chapter introduces the finite difference 

time domain as a method of modelling sound reproduction in rooms with arbitrary 

geometry and frequency dependent absorbing boundaries. This model is used in the 

chapter to analyse the effects of the reproduction room on the focused source 

reproduction. Also analysed in this chapter is the effect of both simple and complex 

scattering objects. A scattering correction approach is presented based upon the finite 

difference model and time reversal techniques. The chapter also includes an analysis 

of the effects of using elevated loudspeakers on the reproduction of focused sources. 

Chapter 7 provides a summary of the work performed and outlines some further 

work that will be undertaken as a result of these findings.   
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2 Spatial Audio Perception and 

Techniques 

 

 

 

 

 

 

 

 

2.1 Introduction 

This chapter describes some of the fundamental theory of spatial audio techniques 

and perception. The chapter will both put into context and provide a theoretical basis 

for the work described in this thesis. 

 

Since the beginning of audio reproduction technology in 1876 with Bell’s telephone 

(Bell, 1876)  and 1877 with Edison’s phonograph (Edison, 1878), there has been an 

ever growing desire by audio developers and enthusiasts alike to recreate sound 

scenes to a high level of accuracy in order to either give the listener the impression 

that they are at the performance or conversely that the performers are with them. 

Commonly people have sought an increased timbral fidelity, attempting to recreate 

audio such that it sounds as similar as possible to the original performance or the 
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intended audio impression/experience that the producer wishes to create. Recently 

innovation has been more keenly focused on the spatial fidelity of the sound scene, 

whether it is in order to give the impression that the listener is in the space where the 

recording was made or whether it is making the synthesised scene as believable as 

possible. Human spatial audio perception and the recreation of the cues thereof is 

vitally important as it allows us to interpret, interact and make sense of our 

environment whether real or virtual. The goal of spatial audio reproduction is to 

improve the listener experience and generally to create a sense of realism. In the case 

of cinema and computer games this could even be an experience of ‘hyper-reality’ 

where the spatial audio scene is created artistically to evoke certain impressions even 

if this is not exactly how the scene would be experienced in reality. This audio scene 

fidelity encompasses many psychoacoustical properties such as localisation, 

spaciousness/envelopment (Morimoto and Maekawa, 1989), apparent source width 

(Griesinger, 1997) and various other depth of scene cues, some of which will be 

mentioned in the following. (Re)creating an audio scene therefore requires that both 

the spatially discrete sources and the ambient sound be played back in a realistic 

manner as the brain is very good at interpreting all of the information to compose a 

picture of what the scene is like, if there is an incongruity in the cues then this will 

hinder the sense of presence and immersion that the listener will experience of the 

scene.  

 

Spatial audio systems find applications in many areas such as virtual reality and 

computer games but really the developments have been fuelled primarily by both the 

home and domestic cinema markets; as such in recent years there has been a constant 

development in the technology and systems used. Many of the systems that have 

been developed for this purpose to exploit various psychoacoustic mechanisms to 

evoke the impression of an acoustic source at a given location with the minimum 

number of sources used for the reproduction. 

 

Section 2.2 describes some of the principle localisation mechanisms that are 

important for spatial audio rendering whilst section 2.3 presents an overview of the 

major developments in the area of spatial audio reproduction systems up to now. 
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2.2 Audio localisation 

In order to gain a full understanding of spatial audio perception it is useful to define 

some terms from the outset that describe the relationship between the physical 

outputs from real or reproduced sources and the perception thereof. A sound event 

relates to the physical outputs from either a real or reproduced source while the term 

auditory event relates to the perception of the sound event. Multiple sound events 

form a sound scene which in turn evokes the perception of an auditory scene at the 

listener.  

 

The interpretation of an auditory scene and in particular the localisation is based 

upon many cues. Cues describe the auditory information used by the brain to 

interpret the auditory event or scene. Although there are some useful monaural cues, 

much of human spatial audio perception and cognition relies upon binaural cues 

resulting from differences between the signals arriving at the two ears; whether, 

timing, level or spectral differences, the signals from both ears arrive at the brain 

down the auditory nerve where higher cognitive processes determine the evocation 

and perception of the auditory scene. Because of this binaural processing, it is 

apparent that the recreation of any audio scene cannot be properly done monaurally. 

The recreation of these binaural cues is therefore done using multiple loudspeakers. 

This has been known for many years but as yet there is not a single technique that 

has risen as being the de facto method of spatial audio reproduction. Principally 

however, spatial audio systems work in a similar manner, seeking to reproduce the 

necessary psychoacoustical cues to evoke the sense of an audio source coming from 

a specific location. The debate over which cues are the most important and the 

methods of which these cues are created is still active in the literature and is the 

reason for the many different spatial audio systems that are currently used, (as 

described in section 2.3). 

 

This section discusses briefly the principle human localisation mechanisms that will 

be addressed and mentioned throughout this thesis. 
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2.2.1 Lateral localisation 

Human auditory localisation is better in the lateral plane than elevation localisation 

in the median plane, this is the result of both ears being in the same lateral plane, 

which provide more information. In the early 1900’s Lord Rayleigh formed his 

Duplex theory (Strutt, 1907) which states that interaural time differences (ITD) and 

interaural level differences (ILD) are the principle localisation cues in the lateral 

plane with ITD being a predominantly low frequency cue and ILD being a higher 

frequency cue (above 500Hz). Rayleigh’s experiments were done with sinusoidal 

signals generated using tuning forks and as such the results (having since been 

proven with additional experiments by other researchers) constitute only a specific 

case. The reality is that natural sounds are more complex both in terms of spectral 

content and also amplitude envelope thus requiring a more complex interpretation of 

ILD and ITD cues. 

 

2.2.1.1 Interaural time difference 

The temporal displacement of the signals arriving at one ear with respect to the other 

is often referred to as the interaural time difference (ITD). This temporal 

displacement is generated when a sound is incident off the central axis as shown in 

Fig. 2.1. A source at 90˚ corresponds to the maximum possible ITD which has a 

value in the region of about 650-700µs. As noted by Blauert (1997) the lateral 

displacement of the source increases linearly with time delays up to about 630µs 

above this value the difference in ITD causes a smaller rate of change in lateral 

position until about 1ms where there is no change at all.  
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Fig. 2.1 Geometry used for the derivation of ITD calculations 
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ITDs are particularly effective for signals with significant transient content like 

speech or other impulsive sounds where, the brain can easily determine the 

difference in arrival times. It should also be noted that even though ITD has been 

presented here as a frequency independent function it does actually vary slightly with 

frequency (Feddersen, 1957; Moore, 2003). Most real signals contain lots of 

frequency components which could each have a slightly different ITD therefore 

making the localisation a more complex process, however for most purposes (2.1) 

can be considered a good approximation.  

 

Practically the ITD is often calculated using the interaural cross-correlation 

coefficient (IACC). Two signals are recorded at the ears of a human or dummy head 

and the cross-correlation between them is computed, with the peak in the function 

occurring at the delay between the two signals which corresponds to the ITD. An 

example ITD of a real source measured with a dummy head can be seen in Fig. 2.2 

The glitches in the data are caused by the ambiguity of phase differences at higher 

frequencies, hence ITD is a predominantly low frequency cue. ITD provides 

predominantly low frequency cues and is generally considered the most important 
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localisation cue up to about 1.5kHz for broadband signals (Wightman and Kistler, 

1992). Wightman and Kistler also noted that if the low frequency energy is removed 

from the stimulus, the ILD becomes the most significant localisation cue. 

 

 

Fig. 2.2 Broadband ITD measurement with a KEMAR dummy head 

 

ITD cues do not provide much information as to front and back localisation as there 

will be no difference in the relative arrival times of the signals at each ear for a 

sound at a given angle in front of the listener as at the same angle behind as shown in 

Fig. 2.3a where the ITD as a result of a source at position A will be the same as that 

from position B. This is a specific case of what is commonly referred to as the cone 

of confusion (von Hornbostel and Wertheimer, 1920; cited in Blauert, 1997, p179) as 

shown in Fig. 2.3b. As the time difference of arrival is only known at only two 

points (each ear), there is an ambiguity of possible source positions. In the two 

dimensional case the possible source position would be anywhere along a hyperbolic 

path between the ears where the difference in distance travelled from the source to 

each ear is constant. In the three dimensional case, the possible source positions are 

anywhere on the surface of a hyperbolic cone as illustrated in Fig. 2.3b. This 

localisation confusion/ambiguity is resolved through additional cues generated from 

the changes in ITD with movements of the head. 
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a) b) 

Fig. 2.3 a) Example of front to back ambiguity of ITDs, b) Diagrammatic representation of the cone 

of confusion 

 

The role of ITD in spatial audio perception and localisation has been well 

documented in the literature and an excellent overview can be found in Blauert 

(1997). 

 

2.2.1.2 Interaural level differences 

Rayleigh’s duplex theory also outlined the importance of interaural level differences 

(ILD) for the localisation of sound. ILDs are caused primarily by the shadowing 

effect of the head. At higher frequencies, the head is of significant size with respect 

to the incident sound wavelength and as such acts as a barrier causing a difference in 

the levels received at each ear for a given source that varies with the angle of 

incidence. This effect is much less for lower frequencies (longer wavelengths) where 

the sound easily diffracts around the head resulting in very small or no difference in 

the levels between the signals received at the two ears. This effect can be seen from 

the plot of broadband ILDs as measured using a KEMAR dummy head. Below about 

500Hz the difference in relative levels is very small; consequently this cue is not 

useful for low frequencies. For closer sources this ILD may even be caused by the 
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extra distance from the source to the ears and the corresponding distance attenuation 

thereof. 

 

 

Fig. 2.4 Broadband ILD measurement with a KEMAR dummy head 

 

The magnitude of the ILD is dependent upon the frequency of the incident wave as 

shown in Fig. 2.4, additionally it has a source position dependency as, when sources 

are closer to the head, the wave front curvature becomes significant and causes larger 

ILDs (Brungart et al., 1999), conversely the same authors found that ITD is 

frequency independent. 

 

2.2.1.3 Spectral cues 

As previously mentioned, neither ILD nor ITD provide much information for front to 

back localisation. One of the mechanisms for determining whether a sound is in front 

or behind the listener is the spectral differences resulting from the filtering due to 

reflections from the person’s head and shoulders and more importantly the pinna. 

Everyone’s pinnae are different but learned cognitive patterns mean the reflections 

caused by the outer ear provide information as to source direction. Due to the 

unusual shape of the pinna each source position will cause different resonances and 

reflections making it possible to infer the source position. These effects are 

characterised as an individual’s head-related transfer function (HRTF). Every 
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person’s HRTF will be different due to anatomical differences, although there are 

some obvious trends/common feature that are true for most people, giving rise to 

various generic HRTF models (Wenzel et al., 1993) that can be used for the binaural 

techniques mentioned in the following section. HRTFs can be problematic and time 

consuming to measure as there is a need for a large number of source angles needed 

for a complete description of the HRTF. Work has been done however using 

interpolation methods to reduce the  number of measurements needed (Zotkin and 

Gumerov, 2004) additionally some researchers have used numerical methods to 

characterise the head and torso to provide the potential for a continuous set of 

HRTFs at different source angles (Katz, 2001a, 2001b) 

 

Once again it is most likely the differences in the HRTF signals at each ear that is 

important for the localisation of sounds. Whilst it is possible for the brain to do some 

pattern matching with just monaural cues, with stationary sources it is difficult to 

separate the timbral characteristics of the source from the spectral content received at 

the ear. There is evidence that the brain learns this sort of directional encoding and 

that in fact it has an adaptive ability if a listener’s HRTF were to change for any 

reason (Hofman, 1999; Wanrooij and Opstal, 2005). 

 

2.2.2 Vertical localisation 

Vertical localisation in the median plane is more difficult than horizontal localisation 

in the lateral plane due to the fact that the ears are on the same level, meaning there 

can be very little difference in the timing or level of the signals at each ear for 

different source elevations. Vertical localisation therefore is calculated by the brain 

based on the aforementioned spectral differences from sounds of differing elevations 

by way of the learnt HRTF. Generally humans have a far more limited capacity and 

localisation resolution in the vertical plane than in the lateral plane. The sound 

reproduction systems mentioned in this thesis are confined to two dimensions; as 

such a more in-depth analysis of vertical localisation mechanisms is outside the 

scope of this thesis. 
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2.2.3 Depth and distance perception  

The perception of depth and distance are not equivalent measures. Depth in this 

context defines not just distance perception but the overall perspective of an auditory 

scene and the dimensions of the entire scene, thus depth perception depends upon the 

distance perception of all the sources in the sound scene. As human localisation is 

based on binaural cues there is no possibility of any cognitive triangulation to 

position a source accurately in terms of distance so other localisation cues such as 

environmental characteristics become important. The primary mechanisms for 

distance perception are outlined below as given by Wittek (2009):  

 

i) Level (sound pressure) 

ii) Direct-to-reverberant energy ratio 

iii) Reflection pattern (timing, level and directions of early reflections) 

iv) Frequency spectrum (for very near and for far sources) 

v) Binaural differences: acoustic parallax as well as intensity/phase 

differences 

vi) Motion parallax (changes of perspective with source/listener movements) 

vii) Interaction with source familiarity and non-acoustical cues such as visual 

cues 

 

Perhaps the most important distance cue is the level of the source which will 

decrease by approximately 6dB for every doubling of distance due to spherical 

spreading and air absorption. This is a very useful cue if the original level of the 

source is known, i.e. if there is a reference. Where there is no reference, the level of 

the source provides very little localisation information unless the source moves in 

which case the changes in level provide the necessary localisation information. 

Spectral differences also provide useful information as to source distance as the 

atmosphere acts as a low-pass filter so distant sources will have less high frequency 

energy. Once again the value of this cue for localisation is dependent on prior 

knowledge of the source content, unless the source has a dynamic position.  

 

It has been found in several experiments that distance localisation is very poor in 

anechoic environments or where there is no reference for comparison (Nielsen, 
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1991) in this case localisation is based primarily on level cues with louder sounds 

being localised nearer to the listener, which confirms the findings of Gardner (1969) 

that level is the most important cue where there are no room reflections present. 

Where there are reflections present it is possible to infer the source localisation from 

the relative strength and timing of the direct sound to its reflections, of particular 

importance is the first reflection from the floor in the reproduction environment 

(Bech, 1998) as this is generally the first reflection received at the listener position. 

The relative timing of this reflection (and others) with respect to the direct source 

hence helps inform the auditory system of the source distance.  

 

2.3 An overview of spatial audio techniques 

Spatial audio systems can broadly be split into three categories: intensity-based 

systems, binaural reproduction and sound field reconstruction systems. A brief 

overview and history of each of these categories here follows. 

 

2.3.1 Intensity-based stereophonic systems 

The earliest recorded spatial audio experiments including, recording, transmission 

and reproduction were carried out at the Electrical Exhibition (‘La Lumiere 

Electrique’) held at the Paris Grand Opera in 1881 (Moncel, 1881). The system was 

designed by Clement Ader, and utilised four microphone pairs connected to binaural 

telephone receivers in four remote locations in the opera house allowing visitors to 

the exhibition to listen stereoscopically to the live performance.  
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a) b) 

Fig. 2.5 a) The first stereophonic transmission at ‘La Lumiere Electrique’ by Clement Ader. b) Advert 

showing the subsequent commercialisation of the Theatrophone for stereophonic transmission and  

 

However it was not until 1931 when the theoretical background for stereophonic 

systems was developed, following the experiments by Blumlein and his subsequent 

patenting of the first intensity stereo system (Blumlein, 1931), this contribution was 

complemented by stereo recording methods using multiple microphones.  

 

Around the same time the Bell labs were also looking into spatial audio reproduction 

techniques and the work by Steinberg and Snow (1934) proposed an early three-

channel stereo system, replaying a recording made with 3 spatially disparate 

microphones (shown in Fig. 2.7). Remarkably this early work into stereophonic 

reproduction shows many similarities to the now state-of-the-art wave field synthesis 

systems as described later this thesis. They suggested the idea of the Acoustic 

Curtain as shown in Fig. 2.6.  
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Fig. 2.6 Steinberg and Snow’s acoustic curtain concept, recording and recreating the wave fronts from 

the stage (after Rumsey (2001)) 

 

The idea was to have a row of microphones across the stage that exactly matched the 

spatial configuration of loudspeakers at the reproduction end. Quite correctly, they 

pointed out that this would recreate the original wave fronts and therefore the 

localisation cues that would be present if the listener were at the location. However 

this was put forward as the ideal situation which due to technical constraints could 

not be practically realised. They therefore came up with a compromise solution 

which utilised just three microphones and three loudspeakers as shown in Fig. 2.7. 

 

 

Fig. 2.7 Steinberg and Snow’s compromise version of the acoustic curtain concept, recording and 

recreating the wave fronts from the stage with three channels (after Rumsey (2001)) 
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Whilst the system in Fig. 2.7 was original devised as a compromised version of that 

shown in Fig. 2.6, Steinberg and Snow did point out that these two situations are in 

fact different in the localisation processes, as the latter compromised version actually 

relies more on the precedence effect rather than the information from the wave fronts 

reaching the ears, however they note that the performance of the compromised 

system was actually very good, which provides another example of the surprisingly 

good performance of stereophonic reproduction which has seen it so widely adopted. 

 

Despite the works from Steinberg and Snow and Blumlein, it was not until the 

1950’s that commercial stereophonic systems became realised; the market was 

fuelled in the 1960’s when two-channel vinyl records became popular. Stereophonic 

audio grew greatly in popularity and became ubiquitous for many years, to a great 

extent usurping monophonic reproduction. 

 

Despite the success of two-channel stereophony however, there was still a desire in 

the cinematic world for a greater spatial impression and rendering to fit with the 

moving image; consequently quadraphony was introduced as a concept. 

Quadraphony provided an extra two channels at the rear of the listener, increasing 

spatial impression and the creative options available to the producer/sound engineer. 

Quadraphony was however rather unpopular for consumer audio systems primarily 

due to compatibility issues and consumers not seeing the need for extra loudspeakers 

in their living rooms thus it did not supersede two-channel stereophony. 

 

With the invention of the CD in 1982 and the subsequent upsurge in digital audio 

technology, more audio channels have become easily available, driving the consumer 

market. Multi-channel sound reproduction is subsequently becoming more popular 

and is being utilised increasingly in an ever growing home cinema market. Since the 

consumer adoption of stereophony, people have increased the number of 

loudspeakers used within a given system such that it is now common to see 5.1, 7.1 

and even 22.2 (Hamasaki et al., 2005) surround sound systems.  
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All of these systems use both level and phase panning in order to provide the 

necessary information for the listener to be able to localise the sound in either a two 

or three dimensional space, the greater the number of loudspeakers the greater the 

definition of the localisation. A problem with the aforementioned systems however is 

the so-called ‘sweet spot’. The systems are generally optimised for just one position 

meaning that the listener will only receive correct spatial imaging if he or she is sat 

in the correct place in the room. This is because sources are positioned in the 

reproduced sound scene based on level and phase differences between each 

loudspeaker signal (generating the required ILDs and ITDs at the listener); if the 

listener moves even a small amount, these cues will be altered and the perceived 

location of the source will change thus it is said that the phantom source is unstable. 

These problems can be reduced if the sweet spot is set to be further away from the 

speakers; however this method still only allows true surround sound for one or two 

individuals. 

 

2.3.2 Binaural Systems 

Binaural audio can be considered as a special case of 2-channel stereophonic 

reproduction. Binaural audio is realised with recordings using a dummy head with a 

similar geometry to the proposed listener (as shown in Fig. 2.8) with the 

microphones placed in the ears such that the exact signals received at the 

microphone position can be played through headphones to the user giving them a 

potentially very realistic spatial impression of the original sound scene. Binaural 

stereo can also be realised by processing the sources in the scene with the HRTF 

(Head Related Transfer Function - see section 2.2.1.3) corresponding to the intended 

source location, thus an entire scene can be synthesised for binaural rendering if the 

source signals, and the HRTF of each source to listener, are combined. This will be 

very realistic if the HRTF that is used is correct (i.e. matches the source position and 

the individual), but as mentioned above, generic and interpolated HRTFs are often 

used which are an approximation and are therefore a compromise of the necessary 

localisation cues. 
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Fig. 2.8 Brüel & Kjær HATS dummy head used for binaural recording 

 

It is intended that the use of this method retains all the original auditory cues that the 

listener would have had if actually present at the recording location; it does however 

have several shortcomings. Primarily everyone’s ears are different and the geometry 

of the pinna is crucial in the spatial perception of an auditory stimulus. Results are 

also impaired if there is any additional processing on the signals such as compression 

and amplification or any noise in the system.  

 

The playback should be done with headphones, or it is possible to inverse filter the 

signal with the HRTF to obtain a transauralisation (Cooper and Bauck, 1989) played 

via loudspeakers but this is limited to a listening area of only a few centimetres so is 

often considered impractical. The fact that the playback is done using headphones 

can lead to an unrealistic spatial impression with binaural recordings, not only 

because headphones provide an unusual listening experience but also in real life 

localisation is greatly helped by small movements of the head to resolve ITDs and 

ILDs especially for depth perception. This resolving cannot be done inherently with 

headphones as head movements will have no effect on the received signals, thus 

optimum realism is achieved if the user does not move their head during playback or 

more complex head tracking is implemented (Begault et al., 2001). There is also the 

problem that with the use of headphones many people have the sensation that the 

sound source is located inside their head (so-called intracranial localisation) and 

externalisation is therefore difficult to achieve. The use of headphones also prevents 
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natural communication with other listeners which can be a problem for many 

applications. A good review of binaural audio techniques can be found in Begault 

(1994). 

 

2.3.3 Sound field synthesis/reproduction techniques 

The concept of recording an entire sound field and transmitting it to a remote 

location for playback is not a new concept and was arguably first conceived of by 

Steinberg and Snow (1934), however practical limitations meant that the idea would 

remain merely theoretical for many years.  With the vast improvements in 

computational power and the relatively cheap audio hardware now available, the 

possibility of not just using artificially created psychoacoustic cues to evoke an 

impression of a spatial scene but to accurately recreate the sound field such that all 

of the original localisation cues are present can now be a reality. Sound field 

synthesis techniques typically use a large number of loudspeakers and aim once 

again to recreate all of the localisation cues present at the original scene. As opposed 

to binaural techniques, sound field synthesis includes cues generated by the small 

movements of the head and don’t suffer from the problems associated with 

reproduction over headphones mentioned above. 

 

The goal of sound field synthesis/reproduction is the physical representation of the 

sound field in a given space. Whilst the aforementioned systems have their roots in 

physical principles, they all offer different compromises to reproduce a reduced set 

of auditory cues to provide a believable sound scene. Sound field reconstruction on 

the other hand aims at recreating all of the cues needed for the accurate perception of 

the intended sound scene at a given point in space or volume. Three predominant 

sound field reproduction methods will be mentioned in this section, namely 

Ambisonics (including higher orders), Wave Field Synthesis and the Spectral 

Division Method. 

 

2.3.3.1 Ambisonics 

Ambisonics uses spherical harmonics to describe the sound incident from all 

directions at one point in space using a spherical Fourier transform. This circular 
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harmonic expansion of the wave equation is written in circular coordinates such that 

the sound field can be written as a Fourier-Bessel series. Ambisonics thus offers a 

hierarchical representation such that the order of the spherical harmonic 

representation of the sound field defines the spatial resolution of the reproduced 

sound field. 

 

Much of the early theoretical work into the Ambisonics technique for sound field 

recording, encoding and reproduction was done by Michael Gerzon (Gerzon, 1973) 

at Oxford University and has since been complemented by many others e.g. (Daniel 

et al., 2003; Lee and Sung, 2003; Poletti, 1996). Despite the strong technical roots of 

Ambisonics and its theoretical benefits of offering a scalable system it has not been 

widely adopted for commercial systems and is mainly used in research and bespoke 

audio applications. However as it offers a scalable representation of a sound field it 

has much potential to be used to spatially encode and transmit a recorded scene for a 

format agnostic rendering (Batke et al., 2011) and consequently may yet prove to be 

adopted on a wider scale. 

 

Arguably, Ambisonics can be thought of as sound field synthesis as the technique 

does provide a physically accurate rendering of a sound field (even though 

remarkably the equations essentially become panning functions), however, generally 

this is optimised for a point rather than being a volumetric solution such as the other 

techniques mentioned in this section. However the Ambisonics technique is scalable 

and as such, using a higher order of coefficients for the sound field representation 

allows for a sound field reproduction over a wider area. 

 

2.3.3.2 Higher Order Ambisonics (HOA) 

The initial Ambisonics approach of the 1970s utilised only first order spherical 

harmonics for the sound field representation, more recently however, the research on 

Ambisonics techniques has been more keenly focused upon Higher Order 

Ambisonics (HOA) using higher order spherical harmonic representations for 

rendering (Daniel, 2001; Malham, 2003) and recording (Meyer and Elko, 2002; 

Teutsch, 2007). Generally the term Higher Order Ambisonics is reserved for 

Ambisonics above and including 2
nd

 order. 
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An increasingly popular extension to HOA is the so called Near-Field Compensated 

Higher Order Ambisonics (NFC-HOA) (Daniel, 2003). In principle, the sources in 

Ambisonics are assumed to be plane wave sources, but when loudspeakers are used 

for the reproduction the sources are much better represented as point sources, thus 

NFC-HOA is a method of applying a suitable correction to the loudspeaker driving 

signals such that the consequences of this source mismatch are minimised. 

Furthermore, the use of NFC-HOA means that the playback system is able to 

reproduce sources closer to the listener. 

 

2.3.3.3 Wave field synthesis (WFS) 

Whilst higher order Ambisonics systems can recreate a sound field over a large area, 

in most cases it is not considered a volumetric system as the region of accurate 

reproduction is limited and generally defined for one location in space. Unlike 

Ambisonics however, the wave field synthesis (WFS) technique, is a volumetric 

solution aiming at recreating/synthesising a given sound field over the entire 

reproduction space. This requires a very large number of loudspeakers with some 

systems currently utilising several hundred loudspeakers (De Vries, 2009). 

 

As will be discussed in this thesis, the WFS theory is based on the Huygens-Fresnel 

principle and the Kirchhoff-Helmholtz equation and can be considered to be a 

practical realisation of the acoustic curtain principle originally proposed by 

Steinberg and Snow (1934) (see Fig. 2.6). Practically a WFS system will consist of 

many loudspeakers surrounding the reproduction space whose output are 

individually defined and controlled. The superposition of all these loudspeaker 

signals results in reproduction of arbitrary wave fronts. The first formal 

implementation of WFS was proposed by (Berkhout et al., 1993; Berkhout, 1988) 

and since then there has been an active research community looking at many system 

improvements and analyses, some of which will be covered in this thesis.  
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Fig. 2.9. The early prototype wave field synthesis system installed in an anechoic chamber at TU 

Delft by Peter Vogel (image after (Vogel, 1993)) 

 

Perhaps the main advantage of the physical sound field reconstruction using WFS is 

its ability to create arbitrary sound fields that are accurately reproduced throughout 

the entire listening space, these sound fields can even include so-called focused 

sources that appear to be radiating from in front of the loudspeaker array (as is the 

focus of this thesis). This provides very accurate depth of scene cues and increases 

the sense of presence in the reproduced acoustic environment. WFS provides a set of 

driving functions for various source types such that the composition of an acoustic 

scene or soundscape can be achieved very easily by combining many different audio 

objects which have a defined position in space and audio content, in this case WFS 

will reproduce all of the original cues needed for the localisation and perception of 

all the sources in the scene. 

 

There has been some work done, looking at the similarities and differences between 

WFS and HOA (Daniel et al., 2003; Spors and Ahrens, 2008). One of the big 

differences is that for WFS there is an explicit solution for the loudspeaker driving 

functions for arbitrary geometries, whereas for HOA, there are only exact solutions 

for limited loudspeaker configurations. Another interesting difference is in the 

spatial aliasing artefacts (see section 3.5.2 for more details), for HOA there is a 

circular region in the centre of the reproduction space which doesn’t exhibit these 

artefacts whereas for WFS spatially aliased contributions are present throughout the 

reproduction space (above the aliasing frequency). There is however still work to be 

done to determine the perceptual consequence of the differences between the two 

techniques.  
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2.3.3.4 Spectral division method (SDM) 

A recent innovation in sound field synthesis has been proposed by Ahrens and Spors 

(2010) and is referred to as the Spectral division method (SDM). This method 

describes the desired sound field in the spatio-temporal frequency domain, or 

wavenumber domain (see section 3.5.2.3). From this mathematical description, the 

loudspeaker driving functions are calculated by taking the inverse spatial Fourier 

transform. In many respects the SDM shares many similarities with WFS, exhibiting 

some similar restrictions such as spatial aliasing and loudspeaker array truncation 

(refer to section 3.5.2 and section 3.5.3) but has been shown in some circumstances 

to produce more favourable results (Spors and Ahrens, 2010b). Work in this field is 

still in its infancy but the driving functions are slightly easier to define than the 

corresponding WFS functions and some of the reproduction errors can also be 

reduced such as it does not rely on a far field approximation as WFS does, so the 

method shows much promise. 

 

2.3.4 Other methods 

There are many other methods used for spatial audio reproduction including vector 

base amplitude panning (Pulkki, 1997), numerical approaches  (Fazi et al., 2008; 

Kirkeby and Nelson, 1993), approaches based on optimisation (Hannemann and 

Donohue, 2008) and the solutions of inverse problems (Ise, 1991). These references 

and the references therein will provide the interested reader with more information 

on these techniques but they will not be covered in any more detail here as they fall 

outside the scope of this thesis. 

 

2.4 Summary 

This chapter has briefly outlined some of the primary localisation mechanisms 

relevant to spatial audio and hence the study of focused sources in wave field 

synthesis as is addressed in this thesis. Also described in this chapter is a historical 

overview of some of the major spatial audio rendering techniques in order to 

contextualise the work described in this thesis. The three primary categories of 

spatial audio rendering systems have been reviewed and many of the principles and 
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concepts mentioned in this chapter serve to provide a framework from which to 

interpret the findings in the rest of this thesis. 
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3 Wave Field Synthesis 

 

 

 

 

 

 

 

 

3.1 Introduction 

This chapter begins with an overview of the history of the wave field synthesis 

technique, briefly covering its historical and technical roots. This is followed by a 

detailed review of the theory of wave field synthesis (WFS) including a full 

derivation of the Kirchhoff-Helmholtz equation which forms the basis of the driving 

functions which are also derived in detail. The driving functions include the major 

source types, point source, plane wave, and dipoles and also briefly covers sources 

with more complex radiation characteristics. The subsequent section describes the 

design, installation, calibration and use of 4 WFS systems installed in the University 

of Salford as part of this project. This chapter then concludes with a description of 

some of the key subjects of research in the WFS literature and some open issues. 
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3.2 History 

Arguably the first conception of WFS as it is now known was proposed by Steinberg 

and Snow (1934) as shown in the previous chapter (see Fig. 2.6). Due to the 

technological and practical constraints of the time, the system described here was 

never actually implemented and indeed the ideas mentioned laid dormant for many 

years until Berkhout (1988) formulated a more mathematically rigorous theory. 

Berkhout’s work was originally applied to seismic vibrations (Berkhout, 1987) but 

was later applied to audio acoustics in what was at that time named acoustic 

holography (or ‘holohphony’). Later the term ‘wave field synthesis’ was presented 

by the same author along with other academics at the Technical University of Delft 

(Berkhout et al., 1992, 1993), proposing practical uses of the system the principles of 

which had previously been outlined. Following these seminal papers many PhD 

theses were written at the same institution (Vogel, 1993; Start, 1997; Verheijen, 

1998; de Bruijn, 2004; Hulsebos, 2004), adding more rigorous theory and practical 

considerations of the WFS technique. 

 

Since this early conception of WFS there has been much interest in the area as many 

have realised its potential to (re)create sound fields that are spatially and physically 

accurate and that consequently provide listeners with the same localisation cues as if 

they were actually present in the recorded or synthesised audio scene. 

 

 

3.3 Theory 

Wave field synthesis is in essence an application of the well-known Huygens-Fresnel 

principle, the theory of which states that each point on a given wave front can be 

considered as the centre of a spherical wavelet radiating from that point. The 

superposition of an infinite number of these wavelets carries all the information of 

the original wave front. Thus, conceptually, if the pressure is recorded over an 

infinite number of points along the wave front, it can be completely reconstructed 

using secondary sources. A diagram of this principle is shown in Fig. 3.1. 
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Fig. 3.1 Diagrammatic representations of the Huygens Principle 

 

The Huygens principle originally dates back to the late 1600’s and was later 

modified by Augustin-Jean Fresnel to include the full effects of the superposition of 

the secondary wavelets. A more mathematically rigorous formulation which can be 

considered as a generalised form of this principle was proposed by Kirchhoff in the 

early 1800’s, for which we now have the Kirchhoff-Helmholtz equation (3.8) which 

forms the basis of WFS. The Kirchhoff-Helmholtz equation describes how the 

pressure field in a source-free volume can be completely described if the pressure 

and its gradient normal to the surface at a continuum of points on that surface are 

known. 

 

3.3.1 Derivation of the Kirchhoff-Helmholtz equation 

The starting point for the derivation for the Kirchhoff-Helmholtz equation is Green’s 

second theorem which states that if the field on the surface of a closed source free 

volume is known then the field within that volume can be completely determined. 

This theorem is given mathematically by equation (3.1): 

 

 2 2  .
V S

f g g f dV f g g f dS        n  (3.1) 

 

 
Field on the surface, S of a 

volume, V 

Field in the volume, V enclosed 

by a surface, S 
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Where f and g are functions of all three spatial dimensions x, y and z and n is the 

inward pointing unit vector normal to the surface, S. For acoustic scenarios these 

functions f and g will be acoustic pressures. The geometry used for (3.1) and the 

derivation of the Kirchhoff-Helmholtz equation is shown in Fig. 3.2. 

 

 

Fig. 3.2 Geometry used for Green’s 2
nd

 theorem and derivation of Kirchhoff-Helmholtz equation 

 

To determine the pressure at a receiver point, x inside the volume according to 

Green’s theorem we need to know the pressure on the surface,  0,xP  as a result 

of a distribution of acoustic sources outside of the volume, where k is the wave 

number in air given by k c  . The function  0,xP  will obey the homogeneous 

wave equation, such that: 

 

   2 2

0 0, , 0   x xP k P  (3.2) 

 

This gives the pressure on the surface as a result of a distribution of sources outside 

of the volume,  ,VS SP x . To determine the pressure at point, x within the volume 

we need to know the function, g of a source inside the volume that obeys the 

inhomogeneous wave equation: 

 

   2 2

0 0 0| , | , 4 ( )     x x x x x xG k G  (3.3) 
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This function,  ..G  is called the Green’s function and can be any function that 

obeys equation (3.3). A function that obeys this is that of a monopole so we place a 

monopole at the receiver position and determine that the Green’s function is: 

 

 
0

0

0

| ,
 




x x

x x
x x

jk
e

G  (3.4) 

 

This is the same as for a monopole at a point, 0x  on the surface propagating to the 

receiver, x due to the principle of acoustic reciprocity (that is to say, the transmission 

path between source and receiver is the same as from receiver to source). Thus 

 

   0 0| , | , x x x xG G  (3.5) 

 

So substituting  0,xP for f and  0| ,x xG for g in equation (3.1) gives: 

 

       

        

2 2

0 0 0 0

0 0 0 0

, | , | , , ...

                               , | , | , , .

V

S

P G G P dV

P G G P dS

   

   

   

  





x x x x x x

x x x x x x n
 (3.6) 

 

Now substituting  2

0, xP  from (3.2) and  2

0| , x xG from (3.3) and (3.5) 

into (3.6) gives: 

 

            0 0 0 0 0, 4 , | , | , , .o
V S

P dV P G G P dS          x x x x x x x x x n

 
(3.7) 

 

Utilising the sifting property of delta functions then results in the Kirchhoff-

Helmholtz equation: 

 

         0 0 0 0

1
, | , , , | ,

4
    



  
   

  
x x x x x x x  

n nS
P G P P G dS  (3.8) 

 

With 
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
 


n

n
 (3.9) 

 

The term  0 ,P 



x

n
 is the directional gradient of the pressure normal to the 

surface and can be given from (3.9) and the equation of motion as: 

 

     

 

0 0 0

0 0

, , .

                   ,n

P P

j V

 

 






 

x x n x
n

x

 

(3.10) 

 

And with 

 

 
 

00 0
0 2

00

1
| ,

 
  

 
 

x x
x x x x

x x
n x xx x

jk
jk

G e  (3.11) 

 

 

 (3.8) thus becomes: 

 

     
 0

0
0 0

0 0 0 2

0 00

11
, , ,

4

jk
jk

n
S

jke
P j V P e dS   



 
 

   
  
   


x x

x x
x x x x

x x x
x x x xx x

 (3.12) 

 

The physical interpretation of this equation is that the pressure at any point can be 

determined in a source free volume if the pressure,  0,xP  and normal component 

of the particle velocity,  0,xnV  on the surface are known. The first term of the 

integrand represents a continuous monopole distribution and the second term defines 

a continuous dipole distribution on the surface of the volume as shown 

diagrammatically in Fig. 3.3. 
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Fig. 3.3. Monopole and dipole distribution of Kirchhoff-Helmholtz equation 

 

3.3.2 Derivation of the Rayleigh I equation 

Thus (3.8) states that the pressure field  ,P x  in the volume, V enclosed by the 

surface, S (where Vx ) can be entirely determined by the pressure and its gradient 

on the boundary. It is important to note that outside of the volume, the pressure will 

be equal to zero. This can be intuitively seen as the result of the cancellation from 

the negative lobes of the dipole sources and the positive pressure from the 

monopoles. Thus the strict application of this equation will control only the pressure 

field within the volume. For practical reasons however it is often preferable to 

eliminate either the monopoles or the dipoles from the equation such that only one 

type of source is needed to reproduce the field in the volume. Commonly it is the 

dipoles that are eliminated as these are harder to realise using real loudspeakers, 

conversely monopoles can be approximated effectively using a small loudspeaker 

driver in a sealed enclosure. The dipoles can be removed from equation (3.8) by 

carefully choosing the Green’s function such that the second term in the integrand 

(corresponding to the dipoles) goes to zero, so that: 

 

 0| 0





x x ,
n

G , (where x0   S) (3.13) 

 

The condition described in (3.13) is a Neumann boundary condition i.e. the boundary 

is assumed to be an acoustically rigid surface and therefore there is a mirror image 

source created the other side of the boundary from x  at Rx (assuming a linear 

geometry) as shown in Fig. 3.4.  
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Fig. 3.4 The restricted geometry imposed by the use of the Neumann Green’s function 

 

So the Green’s function,  ..G  in (3.13) can be described by a Neumann Green’s 

function, GN given by (Williams, 1999) as  

 

     0 0 0| , | , | ,   x x x x x xN RG G G
,
 (3.14) 

 

which is valid only for the linear planar boundary shown in Fig. 3.4. As this source is 

the mirror image of the secondary source, equation (3.14) becomes: 

 

   0 0| , 2 | , x x x xNG G . (3.15) 

 

Substituting this into (3.8) successfully eliminates the dipole term and leaves just the 

monopoles driven at twice the pressure at the surface. This equation is often referred 

to as the Rayleigh I integral.  

 

     0 0

1
, 2 | , ,

4
P

S
P G S dS  



 
   

 
x x x x

n
 (3.16) 

 

It is also possible to remove the dipoles from (3.12) resulting in the so-called 

Rayleigh II equation (see e.g. Verheijen (1998)). 

 

The term  0, n xPS  represents the normal differential of the pressure field on 

the surface of the volume in question; it is determined using (3.9) and is referred to 

as the driving function,  0,xD  when scaled by a factor of 1 2  for the 
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secondary sources in 3-dimensional WFS. The pressure field as a result of the source 

distribution on the surface, S can then be given as 

 

      0 0, | , ,
S

P G D dS   x x x x  (3.17) 

 

with 

 

   0 0

1
, ,

2
 




 


x x

n
PD S  (3.18) 

 

where  0 ,PS x is the pressure on the boundary at 0x  as a result of a distribution of 

external primary sources.  

 

This equation is limited in that it can only be used for a specific geometry (see Fig. 

3.4), namely that of a linear planar array of secondary sources radiating into 

hemispherical space (Verheijen, 1998) thus it is not the full practical solution for 

sound reproduction as planar arrays are difficult to realise, thus some further steps 

should be taken in the derivation of the driving function such that the reproduction 

can be done with linear arrays of discrete loudspeakers.  

 

Removing the dipoles from (3.12) has the consequence that the field outside of the 

volume will no longer be zero. This is not generally a problem for sound field 

synthesis systems as loudspeakers are often mounted flush or at least close to the 

walls of the listening room and it is more important to control the sound field inside 

the room than outside it. Problems can occur however if the loudspeaker array is 

convex such that the radiation from the rear of one driver may affect the radiation 

from the front of another. For such loudspeaker geometries it is possible to select 

only the loudspeakers that don’t cause the undesirable artefacts for the reproduction 

using, for example, the time-averaged acoustic intensity vector as proposed by 

(Spors, 2003) (see section 3.4). 
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3.3.3 Derivation of WFS driving functions 

In order to have a realisable WFS system, a set of functions need to be derived that 

define the radiation of the secondary sources (loudspeakers), such driving functions 

can be derived for several major primary/virtual source types and can also be 

extended for sources with more complex radiation characteristics (Corteel, 2007; 

Baalman, 2008; Ahrens and Spors, 2007). This section presents the derivation for 

some of the more common source types including, plane waves, monopoles and 

dipoles. 

 

The first step towards a WFS driving function is to determine the pressure on the 

boundary, normal to that boundary, as a result of some primary/outside source. 

  

For whichever source type that is chosen, we need to solve (3.19): 

 

     0 0 0, , .P PS S 





x x n x
n

 (3.19) 

 

Where  0 ,PS x  is the source function of the primary source at 0x . So from (3.18) 

the 3-dimensional WFS driving function is given as: 

 

     3 0 0 0

1
, , .

2
D PD S 


  x x n x  (3.20) 

 

Using this driving function, the pressure field within V can be given from the 

Rayleigh I integral as: 

 

     0 3 0 3 0, , ,D D
S

P D G dS   x x x x  (3.21) 

 

3.3.3.1 3D to 2D conversion 

The Kirchhoff-Helmholtz equation defines the wave field in a 3-dimensional 

volume, however in practice it is more useful and practical to assume that the wave 

field in the z-dimension does not affect the overall impression such that the wave 
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field can be produced in two dimensions only. This however requires a 3D to 2D 

transformation which causes spectral errors in the driving function such that the 

driving functions for 2D WFS have a frequency dependant amplitude correction due 

to the changing of the secondary source Green’s function.  

 

In the traditional WFS literature this was done by the stationary phase approximation 

but here the simplification has been done by considering the 2D Green’s function (of 

a line source) as per (Spors et al., 2008). Doing this means that the amplitude has to 

be optimised for a specific point or reference line, Refx . As the signal is only correct 

at this reference point it has the effect of introducing amplitude errors in the 

reproduced wave field at all other locations. It essentially means that a plane wave 

source will actually be a cylindrical source which introduces an extra -3dB per 

doubling of distance; point sources will also have inherent amplitude errors. These 

small amplitude errors experienced elsewhere in the listening space are however not 

considered to be subjectively significant (Wittek et al., 2004). 

 

When calculating the pressure from the secondary sources (3D planar array) a free-

field 3D Green’s function of a point source is considered i.e. 

 

 
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 (3.22) 

 

However for 2D WFS a different Green’s function is required, i.e. that of a 2D point 

source (a line source). This will consequently change the Rayleigh I equation. The 

concept of 2D WFS is really to use a series of line sources to recreate the wave field 

in 2-dimensional space. Each line source is theoretically infinitely long and 

intercepts the boundary at x0 as shown in Fig. 3.5.  
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Fig. 3.5. Diagrammatic representation of line sources used for 2D WFS reproduction 

 

3.3.3.2 The 2.5D operator 

2-dimensional WFS systems are rarely, if ever, used in practice as line sources are 

difficult to realise. The derivation of 2-dimensional systems does however provide a 

useful intermediate step to the derivation of the more practical 2.5D WFS which uses 

point sources as the secondary source, as such 2D WFS is mentioned only briefly 

here. The Green’s function for monopole radiation by a line source is given as: 

 

   (2)

2 0 0 0,
4

 x x x - xD

j
G H k  (3.23) 

 

Where   
       is a Hankel function of the zero-th order and of the second kind. It is 

possible from here to derive a new driving function for the line sources that takes 

into account the differences in radiation characteristics of line sources and planar 

sources, this Green’s function is substituted into (3.21) (where         is the same 

driving function as for the 3D case, because this is independent of the reproduction 

system/sources). This will however result in amplitude errors because we are trying 

to radiate a 3D monopole (for example) using a 2D system. In this case a cylindrical 

wave should be used as the virtual source model rather than a spherical source. In 

any case line sources are not practical for WFS reproduction, plus they should really 

be infinitely long for correct reproduction which is clearly not possible. 

Consequently it is desirable to convert these line sources into monopole sources 

which can be realised using small loudspeakers in cabinets. It is not too difficult to 
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convert these line sources into point sources if one uses the asymptotic version of 

(3.23). The large argument approximation of the asymptotic expansion of a Hankel 

function of the second kind and zeroth order is given as 

 

   /4(2)

0

2
 





 j Z
H Z e

Z
 (3.24) 

 

Thus (3.23) can be approximated as: 

 

 

   0

0

0

/4

2 0

0

0

0

0

2
,  

4

2
                

4

2 1
                

4

j k

D

jk

jk

j
G e

k

j
e j

k

e

jk












  

 

 










x x

x x

x x

x x
x x

x x

x x

x x

 

(3.25) 

 

The second term in this equation is the Green’s function of a 3D monopole source as 

per (3.22), thus the 2D Green’s function is the same as the 3D Green’s function but 

with a frequency dependant amplitude correction. This asymptotic approximation 

however only stands for large arguments i.e. in this case, when 
0 1k x x . The 

error in dB between (3.23) and (3.25) is plotted in Fig. 3.6. 

 

As can be seen from Fig. 3.6, only at low frequencies and small secondary source to 

receiver distances is the approximation inaccurate. So with this limitation in mind 

(3.21) can be rewritten as: 

 

     0

0 0 3 0 0

2
, , ,  


    

x - x
x x x xD

S
P D G dS

jk
 (3.26) 
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dB 

 

 

Fig. 3.6. Error in dB between 2D Green’s function (3.23) and approximated version from asymptotic 

approximation (3.24) 

 

It can be seen from (3.26) that the driving function for a 2D WFS system using 

monopole secondary sources can be given as: 

 

   0

2.5 0 2 0

2
, ,


  

x - x
x xD DD D

jk
 (3.27) 

 

This equation is not ideal as it depends upon the listener position,   which is 

undesirable for WFS, therefore a position, Refx is chosen at which the amplitude will 

be correct; at the other positions there will be a position dependant error in the level 

with respect to a real point source although the phase will be correct over the entire 

reproduction plane (Verheijen, 1998). The amplitude errors with a 2.5D WFS 

reproduced plane wave compared to a real plane wave are shown in Fig. 3.7. 
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Fig. 3.7 Decay of a real and 2.5D WFS plane wave. 

 

Refx is usually chosen to be the most likely listener location or in the middle of the 

reproduction space. Thus the 2.5D driving function becomes: 

 

   Ref 0

2.5 0 2 0

2
, ,D DD D

jk


  

x - x
x x . (3.28) 

 

Now that the driving function has been derived it is necessary to determine the 

primary source characteristic to fully determine the driving function needed to 

reproduce a given source. 

 

3.3.3.3 Plane wave sources 

Perhaps the most basic source model is that of a plane wave as all sound fields can 

indeed be decomposed into plane wave components, thus they are the first source 

model dealt with here. A monochromatic plane wave source can be given by 

 

   , PWjk

planeS A e  


n x
x  (3.29) 
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where  cos ,sinPW  n  is the unit vector of the plane wave direction with   as 

the angle with respect to the x-axis and  A   is the spectral amplitude of the source. 

So taking the grad of this function and multiplying it by the normal unit vector on the 

surface at 0x  gives the 3D WFS driving function for a plane wave,  ,3 0 ,plane DD x

from (3.20):  

 

          0

,3 0 0 0 0

1 1
, , .

2 2

T
PWjkT

plane D P planeD S jkA e  
 


   

n x
x x n x n n x  (3.30) 

 

To reproduce a plane wave using monopole sources rather than planar arrays or line 

sources we need to add the spectral correction derived in (3.28). As the driving 

function is for a plane wave there is no need to derive a 2-dimensional case as the 

spectral radiation characteristics are the same for the 2D and 3D in the reproduction 

plane. Thus the 2.5D driving function for a plane wave is given by substituting 

(3.28) into (3.30). 
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 (3.31) 

 

Applying (3.17), the wave field over the reproduction volume can be plotted as 

shown in Fig. 3.8. 

 

 

 

Fig. 3.8 2.5D WFS reproduction of a plane wave using an infinitely long array. Left: Real part of 

pressure field. Right: Pressure field in dB. Note the amplitude decay is not the same as a real plane. 
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The factor jk  term in (3.31) is independent of both the primary and secondary 

source position, thus it can be computed in advance; consequently it is often referred 

to as the pre-filter. It is actually a difficult filter to implement recursively and there 

has been research done to approximate using fractional order IIR filters (Salvador, 

2010) and more recently to perform the filtering of the entire WFS driving function 

recursively in real-time from a streamed input (Drumm and Oldfield, 2013). The 

frequency response of the pre-filter function is show in Fig. 3.9. 

 

 

Fig. 3.9 Pre-filter function for plane wave and point sources in WFS 

 

3.3.3.4 Monopole point sources 

As the 2.5D driving function is based on the 2D driving function one should consider 

the 2D primary source function for the virtual source rather than a 3D source model. 

For a plane wave it is possible to use the 3D source function as the frequency 

characteristics are identical in both cases. For a spherical wave however, a line 

source should really be chosen as the primary source function, but line sources don’t 

have the same spectral characteristics as point sources and as such need a frequency 

correction. In most cases a point source model is adopted for the derivation of the 

driving function (as shown below) as point sources don’t have any spectral 

amplitude terms. However if a line source is used as the virtual source model, a 
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frequency correction term must be added into the equation. This frequency 

correction can be obtained using the far field approximation of the Hankel function 

and is given below. 

 

For the purposes of comparison to other WFS methods and systems, the derivation of 

the 2.5D driving function for a point source is given here but will also be shown for a 

monopole line source in the following. 

 

The source function at a point, 0x  of a monopole point source at Sx is given by 

(3.32) as: 
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 (3.32) 

 

Where 0x and Sx are 3 dimensional vectors,  0 0 0 0, ,x y zx  and  , ,S S S Sx y zx . 

 

Defining  0 S R x x  such that 0 SR  x x  and ˆ
R


R

R , thus (3.32) becomes: 
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And the driving function becomes 
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2
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From (3.9) , this can be expressed as 
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where  
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So finally the 3D driving function for a monopole source in WFS can be expressed 

as: 
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Thus it follows from (3.27) that the 2.5D driving function for a spherical wave can 

be given as: 
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(3.38) 

 

To write this equation in a more recognisable form that can be compared more easily 

with the traditional driving functions as originally formulated by Verheijen (1998), 

(3.38) can be rearranged as: 
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(3.39) 

 

This is similar to driving function as derived by (Spors et al., 2008) apart from an 

amplitude factor of 1 4 introduced as a result of Spors not including this factor in 

the Kirchhoff-Helmholtz equation. The frequency dependent terms have been 

grouped together for clarity. 
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Fig. 3.10 2.5D WFS point source 800f Hz with an inter-loudspeaker spacing, 0.125LS m  . Left: 

Real part of pressure field, Right: Pressure field in dB 

 

3.3.3.5 Monopole line sources 

As we are considering 2.5D WFS the virtual source model should ideally be a 2D 

source model such that the error as a result of the dimensionality miss-match is only 

caused by the secondary sources rather than the primary source model. Consequently 

a line source is used as the virtual source model in the following. The virtual source 

model of a line source is thus given as: 

 

   (2)

0 0 0,
4

line S

j
S H k  x x x

 

(3.40) 

  

The problem with this source model is that it has a spectral characteristic that doesn’t 

match that of a 3D point source, thus there will be errors in reproduction. These 

spectral characteristics can be eliminated from the driving function by once again 

examining the far field approximation of this source function. 
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(3.41) 

 

So to remove the spectral differences between this function and that of a 3D point 

source we need to multiply (3.41) by jk such that we now have 
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(3.42) 

 

So to calculate the driving function we need to determine from (3.18) 
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So 
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With ˆ RR R   where 
0R  x x  and  0 R x x such that from the chain rule, 

we have  
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(3.45) 

 

So from (3.43) the 2-Dimensional driving function for a line source can be 

formulated as:  
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(3.47) 

 

The generic large argument asymptotic expansion approximation is given as 

(Abramowitz and Stegun, 1965): 
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Thus the driving function can be approximated as: 
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(3.49) 

 

Remembering the relationship between the 2.5D and 2D driving functions: 
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(3.50) 

 

So combining (3.49) and (3.50) results in the 2.5D driving function for a monopole 

line source as: 
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(3.51) 

 

It is often useful to express driving functions by their large argument approximation 

as it separates out the pre-filter term which, as previously mentioned, can be applied 

to sources prior to the WFS rendering to reduce the computational overhead. Thus 

recalling the approximation made in (3.49), (3.51) can be expressed as: 
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(3.52) 



Chapter 3: Wave Field Synthesis  49 

 

 

This equation can be considered to be superior to (3.39) as the pre-filter  of jk is 

more straightforward and is the same as that for plane waves as shown in Fig. 3.9 

thus is easier to implement in a real system. 

 

3.3.3.6 Dipole sources 

The sound field of a dipole line source can be given as: 
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The derivation of the driving function for a focused dipole is given in full detail in 

chapter 4 and the working can easily be adapted for the non-focused case. For an 

non-focused dipole source therefore, the driving function can be expressed as: 
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This can basically be thought of as monopole radiation with an angular dependant 

term and an additional amplitude term. Fig. 3.11 shows the resultant wave field 

produced by the driving function, clearly showing the positive and negative lobes 

characteristic of dipole sources. 

 

 

 
 

dB 

 

Fig. 3.11 2.5D WFS dipole source 800f Hz with 0.125LS m  . Left: Real part of pressure field. 

Right: Pressure field in dB 
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3.3.3.7 Sources with more complex directivity patterns 

It has been shown by several authors (Ahrens and Spors, 2007; Baalman, 2008; 

Corteel, 2007; Ahrens and Spors, 2008b), that WFS systems can reproduce primary 

sources with arbitrary directivity characteristics although the derivation of such 

driving functions is more complex. 

 

A driving function for a source with arbitrary directivity characteristics defined by 

spherical harmonics can be adapted from Ahrens (2012):  
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(3.55) 

 

Where 
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(3.56) 

 

Here N is the order or spherical harmonics or  and or are the angles of the source 

propagation in terms of azimuth and elevation respectively, 0  is the reference angle 

and n is the angle of which is the driving function is calculated at i.e. the angle 

between the primary and secondary source. The resultant wave field produced by 

this driving function is shown in Fig. 3.12. 

 

Sources with more complex radiation patterns are not used in this thesis and 

therefore no greater details on their rendering will be given here. However the next 

chapter does present the theory for the driving function of a virtual loudspeaker 

using the source model of a circular piston in an infinite baffle which has a 

frequency dependent directivity pattern. 
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Fig. 3.12 2.5D WFS source with complex directivity 800f Hz with 0.125LS m  . Based on a 

Matlab script from (Ahrens, 2012), 3or   , 2or  and 31N  .   

 

3.4 Secondary source selection 

The above driving functions can readily be applied to arbitrary shaped loudspeaker 

arrays e.g. circular (as shown in Fig. 3.13 and Fig. 3.14) if the correct secondary 

source selection is made. The source selection is most often made by comparison of 

the source direction vector and the direction unit vector of the loudspeakers. The 

criterion is slightly different depending on the source type. For plane waves the 

source selection criteria is given by Spors (2003) as: 
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(3.57) 

 

Where   is the dot product of the two vectors. Simply stated, a loudspeaker is set to 

be active when the angle between the plane wave and the angle normal to the 

loudspeaker array at loudspeaker position 0x   is less than 90°. 
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Fig. 3.13 2.5D WFS plane wave 800f Hz  with 0.125LS m  with a circular array of 

loudspeakers. The arrows denote the direction vector of the active loudspeakers that satisfy (3.57) 

 

For a source with a specific location such as a monopole, dipole or other directional 

sources the source selection criteria can be expressed as: 

 

 

 
    0 0

0

1,    if 0

0,    otherwise

S

pointa
   

 


x x n x
x

  

(3.58) 

 

In this case it is the angle between the primary and secondary source which must be 

less than 90° for the loudspeakers to be active. The source selection criterion for 

focused sources is slightly more complicated and will be dealt with in the next 

chapter (see section 4.2). 
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Fig. 3.14 Pressure field of a 2.5D WFS point source 800f Hz  with 0.125LS m  with a circular 

array of loudspeakers. The arrows denote the direction vector of the active loudspeakers that satisfy 

(3.58) 

 

3.5 Reproduction Errors 

Wave field synthesis reproduction is based on a physical model of sound fields as 

described by the Kirchhoff-Helmholtz equation, but the simplifications needed to 

enable practical sound field reproduction mean that there are several sources of error 

in the reproduction. The principle errors that are found in real WFS systems are 

amplitude errors, resulting from the transformation from 3D to 2D using point 

sources rather than line source, truncation errors, due to the finite size of the 

secondary source array and spatial aliasing as a consequence of a discretised non-

continuous secondary source array. This section briefly reviews these errors and the 

consequences thereof. 

 

3.5.1 Amplitude errors 

Most WFS systems concentrate on the accurate reproduction in one plane only 

mainly for practical reasons apart from exceptional systems (Komiyama et al., 1991) 

where a planar array of loudspeakers were employed for distance perception tests. 

The benefits of such a system however rarely out-ways the large amount of effort 
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and hardware needed for its implementation and consequently they are rarely if ever 

seen. 

 

Amplitude errors are inherent in a non-3D implementation of WFS. As shown in Fig. 

3.7, for a plane wave scenario the amplitude decay is proportional to 1 r   (where r 

is the distance from the virtual source to receiver) which equates to approximately 

3dB per doubling of distance, which is in contrast to a real plane wave which 

exhibits no attenuation with respect to distance. This amplitude error is a 

consequence for using a 2D array of point sources rather than planar arrays as would 

be the case in a true 3D setup. This means that plane wave virtual sources are 

actually cylindrical waves and thus exhibit distance attenuation accordingly (Toole, 

2008). 

 

For virtual monopole sources, the error in distance attenuation between real and 2.5D 

WFS sources is dependent on the virtual source distance to the loudspeaker array and 

is plotted for reference in dB in Fig. 3.15. 

 

 

dB 

 

Fig. 3.15 Error in dB between the distance attenuation of a real point source and a 2.5D WFS source 

with varying virtual source distances. The reference point is chosen as 2m from the array. 

 



Chapter 3: Wave Field Synthesis  55 

 

 

This plot shows that the amplitude mismatch between real and WFS sources is 

greatest for virtual sources far from the loudspeaker array and when the listener is 

close to the secondary sources as is intuitive because this is where the gradient of the 

decay from the secondary sources is greatest and when the primary source is a long 

way away from the listener in a real scenario the gradient of the amplitude decay is 

much less.  

 

The amplitude errors associated with WFS reproduction have been well documented 

in the literature for non-focused sources and more details can be found in (e.g. Sonke 

et al., 1998 and Verheijen, 1998). The amplitude errors pertaining to focused source 

reproduction can be found in the next chapter. 

 

3.5.2 Spatial sampling errors 

3.5.2.1 Introduction 

The driving functions presented in this chapter have been derived using the 

assumption that the reproduction array is continuous. Continuous arrays however are 

not currently realisable; hence real WFS systems introduce a compromise by 

sampling the secondary source array at discrete locations using loudspeakers. This 

spatial sampling is often dictated by driver dimensions, limiting how close they can 

be placed together. The physical artefacts in the reproduced wave field introduced by 

this sampling manifest in the form of additional wave contributions in a different 

direction to the intended source, reducing the spatial resolution of the reproduced 

wave front and thus introducing distortion in the spatial and timbral fidelity of the 

intended sound field as shown in Fig. 3.16 and Fig. 3.17. 
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Fig. 3.16 WFS point source exhibiting spatial aliasing. 2500f Hz using an array of loudspeakers 

2m long with 0.125LS m   

 

 
 

Fig. 3.17 Broadband WFS point source 1m behind a loudspeaker array with registered 

along a line of receivers 0.5m in front of the array, exhibiting spatial aliasing. The red line shows the 

aliasing frequency 1372aliasf Hz beyond which colouration is seen in the reproduced wave field. 

 

Generally, spatial aliasing artefacts don’t cause significant localisation problems and 

are often considered to be imperceptible in a non-anechoic environment (Spors and 

0.125LS m 
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Rabenstein, 2006), however spatial aliasing effects will manifest perceptually as a 

position dependent colouration in the reproduced sound field (as shown in Fig. 3.17), 

a fact that was further investigated by De Bruijn (2004) who looked specifically at 

the differences in colouration with different loudspeaker spacings, noting that as long 

as the loudspeaker spacing was below ~0.25m the colouration introduced was not 

perceptually significant.  

 

Spatial aliasing artefacts are thus caused when the spacing between secondary 

sources is too great to accurately reproduce the desired wave front; it is a sampling 

problem in space analogous to temporal sampling in digital audio conversion and as 

such can be analysed in a similar manner but where the analysis of temporal aliasing 

is done in the frequency domain, the analysis of spatial aliasing is done in the spatio-

temporal frequency domain or wavenumber domain (as described in section 3.5.2.3). 

The most comprehensive analysis of spatial aliasing artefacts using this technique is 

given by (Spors and Rabenstein, 2006) and many of the same principles used in this 

paper have been applied in the analysis presented here.  

 

3.5.2.2 History of the analysis of spatial aliasing 

Spatial aliasing errors have been well documented in the literature, since the earliest 

conception of WFS e.g. (Start, 1997; Verheijen, 1998; Corteel, 2006; Spors and 

Rabenstien, 2006; Wittek, 2009) resulting in several different versions of the 

equation for the frequency above which, spatial aliasing artefacts can be expected in 

the reproduced wave field, aliasf  , here follows a brief overview of some of the 

important developments in this area.  

 

The traditional method draws upon an analogy of time domain sampling utilising a 

spatial application of the Shannon sampling criteria. Shannon sampling theory states 

that the sampling of a time domain signal needs to be made twice per wavelength to 

result in enough information for a correct reconstruction of the original signal, giving 

rise to a sampling criterion of 
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max
2

Sff 

  

(3.59) 

 

where Sf   is the sampling frequency of the signal. If the signal is sampled less than 

this, unwanted aliased frequencies will appear in the reconstructed waveform due to 

the ambiguity in level fluctuations between samples that arises in the discretised 

signal. 

 

Applying this sampling criteria for a spatial application demands that the spatial 

sampling of the sound field contains at least two secondary sources per wavelength 

such that the spatial aliasing frequency is given as (Verheijen, 1998); 

 

 

2
alias

LS

c
f 



  

(3.60) 

 

This definition is rather simplistic in that it fails to take into account the differing 

directions of propagation of the plane wave components of the virtual source, and 

thus this constitutes the strictest form of the spatial aliasing criteria. This criteria is 

useful in that it holds true for all source types and incidence angles, however it will 

predict aliasing for some situations where there will be no such artefacts. In reality

aliasf  is dependent upon the angle at which the source is incident on the array as is 

pointed out by (Start, 1997) and can be seen from Fig. 3.18b which demonstrates that 

the wavelength as registered along the axis of the loudspeaker array is greater than 

the signal wavelength, thus allowing a larger loudspeaker spacing whilst still 

avoiding aliasing.  
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a)                                                                               b) 

Fig. 3.18 Source geometry for the definition of the spatial aliasing criteria. a) point source 

propagation, b) plane wave propagation 

 

This gives rise to another spatial aliasing criterion with the inclusion of the source 

angle. 

 

2 sin
alias

LS max

c
f






  

(3.61) 

 

The problem with this aliasing criterion is that at grazing incidence when max  is 0°, 

the aliasing frequency becomes infinite which is unrealistic. Consequently a less 

optimistic equation has been presented by Spors and Rabenstein (2006), given by 

(3.62). 

 

 

 1 sin
alias

LS max

c
f



 

  

(3.62) 

 

This condition was formulated based on a plane wave virtual source but the authors 

note that all sources can be split into plane wave components therefore the model 

described can be used for the generic case as well. When looking at the extremes of 

possible source angles ( max 0   and max 90   ) it is clear that this formula 

predicts the following aliasing condition.  
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(3.63) 

 

All of these conditions are derived based on a frequency or spatial frequency domain 

approach but it is also possible to perform the analysis in the time domain as per 

(Corteel, 2006a). Such a temporal description has the advantage of describing the 

aliasing effects with respect to listener location which can be useful in some 

circumstances. 
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(3.64) 

 

Where     1 1 1max , ,l L l lt t      x x  is the maximum time difference of arrival at 

the listener location, x from successive loudspeakers for a given virtual source,    

where L is the total number of loudspeakers in the reproduction array. This criterion 

can be shown to produce similar results to (3.62) but is more complicated to 

calculate and for many circumstances the spatial aliasing frequency formulation acts 

only as a guide and it is more useful to simply have a frequency above which 

aliasing will occur rather than knowing the position dependent aliasing effects unless 

e.g. room equalisation algorithms are being employed (Corteel, 2006b). 

 

3.5.2.3 Wavenumber domain 

In the same way that temporal aliasing can be viewed in the frequency domain, 

spatial sampling can be viewed nicely in the spatial frequency domain often referred 

to as the wavenumber domain or ‘k-space’ 

 

The wavenumber domain provides a very useful representation of reproduced sound 

fields and driving functions and is an excellent tool for analysing attributes of a 

given sound field such as spatial aliasing (Spors and Rabenstien, 2006), near field 

effects (Spors and Ahrens, 2007) and truncation (Start, 1997) etc.  
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The spatial Fourier Transform of a function,  ,S x  can be thought of as the spatial 

equivalent to the temporal Fourier Transform and can be formulated as (3.65). 

 

   , , , , xjk xdx

xS k y z S e 






  x

 

(3.65) 

 

In this equation, xk  is the variable in the Fourier domain and 2 f  , is the 

angular frequency. Although this operation can be applied independently along each 

of the three Cartesian directions it is given here only in the x-direction for 

convenience. The inverse of this operation can also be performed as (3.66) 
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


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(3.66) 

 

One of the great advantages of using the spatial frequency representation is that it 

allows, on inspection, the direction of the propagating wave(s) to be determined and 

indeed offers a technique for a plane wave decomposition of a function. A broadband 

plane wave plotted in the wavenumber domain is shown in Fig. 3.19 the equivalent, 

monochromatic plane wave would simply be a discrete point on this plot rather than 

a line. 
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Fig. 3.19 Broadband plane wave at = π/4 radians with respect to the x-direction in the wavenumber 

domain 

 

The angle of the line with respect to the x-axis determines the direction of the 

propagating plane wave and is given by (3.67). 

 

tan sinxk

k
  

 

(3.67) 

 

Where   is the angle with respect to the y-axis (shown in Fig. 3.19) and   is the 

propagation angle of the plane wave component with respect to the x-axis. 

 

Equation (3.66) can be thought of as a plane wave decomposition of the wave field 

into monochromatic plane waves whose direction is given by (3.67) hence for a 

spherical source where the propagating energy spreads out equally in all directions, 

the k-space representation takes the form of a triangular area depicting the 

propagating part of the sound field (as shown in Fig. 3.20). If the transform is done 

in three dimensions then the triangular section becomes a conical section. 
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dB 

 

Fig. 3.20 Broadband point source in the wavenumber domain, the magenta lines demark the boundary 

between the propagating and evanescent contributions 

 

The Fourier variable, xk  can take on any value between   and    meaning that 

the wave field can be decomposed into both propagating waves (where
xk k ) and 

an evanescent waves (where
xk k ). The magenta dotted line in Fig. 3.20 depicts 

the boundary in spatial frequency between these propagating and evanescent 

contributions. Evanescent waves are caused at the source position and die away 

exponentially in the source direction in a frequency dependent manner such that the 

higher frequencies decay faster than the low frequency contributions. The perceptual 

consequence and audibility of these evanescent contributions is not well understood 

in the literature but an analysis of these contributions in the spatial frequency domain 

has been done by Spors and Ahrens (2007) to demonstrate the near field effects of 

WFS sources. 

 

It is possible to use this technique to analyse sound fields, by placing a row of 

receivers and then calculating the spatial Fourier transform along the line. This can 

be used to show the frequency at which spatial aliasing occurs as shown by Fig. 3.21. 
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dB 

 

Fig. 3.21 Aliased broadband WFS point source, 0.125LS m   ( 1372aliasf Hz ), placed 1m in front 

of the centre of a 10m loudspeaker array. 

 

Fig. 3.21 shows that the aliased contributions form additional propagating 

components in a direction different from the intended virtual point source. 

 

3.5.3 Truncation errors 

Truncation errors are caused by the finite dimensions of the secondary source array. 

The effects of the array truncation are caused by diffraction waves radiating from the 

edges of the loudspeaker array. These diffraction effects can be seen in the 

broadband case shown in Fig. 3.24a and also from the curved wave fronts in Fig. 

3.22. In the broadband case, the artefacts from array truncation result in echoes or 

pre-echoes for focused sources (as described in section 4.10). The consequences of 

secondary source array truncation are that the listening area is reduced and also the 

wave front curvature will be decreased. Spors states that truncation could also lead to 

an increases spatial aliasing frequency (Spors and Ahrens, 2010b). 

 

The effects of truncation can be reduced to some extent as described in section 

3.5.3.1. 
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Fig. 3.22 WFS plane wave at 60˚ to x-axis, showing wave font distortion at the edges due to 

truncation error. The loudspeaker array in this case was 4m long with 0.125LS m   

 

For a linear array, truncation effects can be modelled by multiplying the driving 

function by a windowing function  0w x  as shown by Start (1997). The reproduced 

wave field of the truncated array can then be given from (3.21) as, 

 

       0 0 0 0 0, , ,truncP w x D G dx  



 x x x x .

 

(3.68) 

 

The windowing function can be any windowing function but for the analysis of the 

errors of array truncation a sensible choice of windowing function is a rectangular 

window given by, 

  0

0

1,    if 
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0,    otherwise
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w x
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


 

(3.69) 

 

where L is the length of the loudspeaker array. It can be helpful to plot the effects of 

the array truncation in the wavenumber domain. As such the windowing function can 

be written in the wavenumber domain, which for the rectangular window given in 

(3.69) is expressed as: 
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(3.70) 

 

Thus for the rectangular case the truncation errors will manifest as spatial amplitude 

lobes in the reproduced wave field, in the same way that a time domain signal will 

result in peaks and troughs in the frequency response if multiplied by a rectangular 

window. In the temporal domain, these lobes are reduced by using different window 

shapes such as a Hanning window etc. and thus the frequency response can be 

smoothed. In the same way the effects of a rectangular truncation of the secondary 

array in spatial frequency domain can be reduced to some extend by using a tapering 

window rather than a rectangular window as described in the next section. 

 

3.5.3.1 Reduction of truncation errors 

The unwanted artefacts associated with the truncation of the secondary source array 

can be reduced to some extent by applying the well-known technique of 

tapering/windowing of the loudspeaker array (Vogel, 1993; Boone et al., 1995; Start, 

1997; Verheijen, 1998). Tapering involves decreasing the level of the loudspeakers 

at the edges of the array. This is typically done using a cos
2
 window, half-Hanning or 

Tukey window as shown in Fig. 3.23. Practically, the length of this tapering function 

is usually about 20% of the array dimension array (Start, 1997) but a strict criteria 

for the window length cannot be found in the current literature, the first and last 

loudspeakers in the array are generally not set to zero amplitude but rather the array 

is considered to have an imaginary loudspeaker at each end with zero amplitude, to 

maximise the use of the available hardware.  

 

 

Fig. 3.23 Graphical representation of loudspeaker tapering 
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De Vries et al. (1994) suggested an alternative approach of modelling the diffraction 

waves from the edges of the array as additional sources with a specific directivity 

(although the implementation used point sources), and showed good results in 

decreasing the level of the truncation errors by placing additional sources at the edge 

of the array to reduce these contributions significantly at a desired listening position. 

Although the results of this technique are good, the method doesn’t offer any 

advantages over the standard tapering technique and as such it is not often used. 

 

 

a) b) 

Fig. 3.24  Narrowband ( 1000fx Hz ) 2.5D WFS point source, at 0 , 1.5S m m   x  with

0.125LS m  . a) Un-windowed and b) Windowed array 

 

Tapering can also be applied to the corners of arrays where, if untreated the 

discontinuity can cause errors in the reproduced sound field, a more thorough 

treatment of corner effects can be found in (Verheijen, 1998). 

 

 

3.6 Practical WFS implementations 

With the growing popularity of wave field synthesis as a sound reproduction 

technique, there has been an ever-growing number of systems being installed 

throughout the world. Popular commercial solutions include the IOSONO® and 

SonicEmotion™ systems but the resulting expense of these systems has led many 

institutions to seek their own custom built WFS installations. A review of many of 

the more prominent WFS systems has been published as an AES monograph (De 
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Vries, 2009), this document describes in detail the hardware and software of these 

systems and also gives an overview of the theory of WFS. Whilst all WFS systems 

are different in purpose and construction, several key aspects pervade all of the 

designs; that is they all require a large number of discrete audio channels and a 

powerful workstation on which to calculate the loudspeaker signals. 

This section describes the design, installation and commissioning of four wave field 

synthesis systems at the University of Salford installed as part of this project. Whilst 

all of the systems have much in common in terms of their architecture and hardware, 

each system is configured in a specific way to fit the requirements of the installation 

environment and intended uses of the system. The first system described is a 128-

channel semi-portable system which can be erected in any suitably sized room. This 

system is used predominantly for the testing and optimisation of WFS algorithms 

and for much of the work described here has been set up in the anechoic chamber; 

this introduces several technical and practical challenges as will be described in the 

following. The second system is a smaller 64-channel portable system which can be 

transported easily for various demonstrations and trade shows etc. The third system 

is a 112-channel permanent installation in a ITU spec listening room (Oldfield et al., 

2011). The fourth system is a 128-channel permanent system installed in the 

OCTAVE 3D virtual reality laboratory at the University of Salford. 

 

3.6.1 General Considerations 

Regardless of the size and location of a WFS installation, there are a number of 

general issues that must be addressed such as the hardware choice and mounting. 

 

3.6.1.1 Loudspeakers 

For this project it was decided that passive drivers were more suitable than active 

drivers as they are lighter weight, generally have a smaller rim (allowing the drivers 

to be closer together increasing the spatial aliasing frequency) and to provide greater 

flexibility for future applications.  It is also easier to distribute the power to passive 
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loudspeakers, as multichannel amplifiers can be used, requiring one mains 

connection per 8 channels (16 in total as opposed to 128 if active drivers are used).  

 

All of the systems described here consist of arrays of the same type of drivers. The 

loudspeakers that were chosen were KEF CR100QR, which comprise a 100mm 

woofer and a coaxial 19mm tweeter in a sealer 0.7 litre enclosure which also 

contains the passive crossover (at 3kHz). Originally designed for in-ceiling 

installation, they are ideally suited to creating WFS arrays since they include 

mounting hardware and their individual enclosures eliminate coupling through the 

enclosure volume.  Individually they reproduce 110Hz to 27kHz ±6dB and can be 

fitted with separation of just 12.95cm, giving an aliasing frequency of approximately 

1.33kHz. 

 

These loudspeakers were specifically chosen for their coaxial design i.e. the tweeter 

is in the centre of the woofer. This design means that the radiation centre remains the 

same for all frequencies thus the phase response is very stable and the wave front 

coherency is also very good, as such they are ideally suited to sound field 

reconstruction techniques. 

 

For all of the systems described in this section, the nominal spacing between the 

drivers was kept the same across the array, however this spacing increases slightly at 

the point where the arrays are joined (as can be seen from Fig. 3.27a) and from the 

corners (as seen in Fig. 3.26). This has only a minor effect on the reproduced wave 

field in terms of the spatial aliasing artefacts but not on the reproduced waveform 

below the aliasing frequency as the loudspeaker positions are explicitly input into the 

driving function. The effects of this slight irregularity on the spatial aliasing can be 

however be quantified by using a time domain approach as shown by Corteel 

(2006a) (see section 3.5.2.2). 

 

3.6.1.2 Audio Hardware 

When designing a WFS system there are a number of issues that first need to be 

addressed. For example it is not a trivial matter to have a system consisting of 128 

individual audio output channels as this is obviously reflected right down the signal 
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chain, requiring large numbers of converters, amplifier and loudspeakers 

accordingly. 

 

The control PCs in this case are each fitted with 1 or 2 RME HDSPe MADI 

soundcards each of which is capable of outputting 64 channels of audio in MADI 

(Multi-channel Audio Digital Interface) format. Each MADI signal is then fed via 

coax into two daisy-chained RME M-32DA converters which each convert 32 

channels of the MADI signal into 32 audio outputs (as shown in Fig. 3.25). These 

signals in-turn feed Cloud CX A850 8-channel power amplifiers. The loudspeaker 

cables (each one carrying 8 channels) are fed through to the loudspeakers. The 

overall system level is set by calibrating the amplifier gain using a dummy load 

resistance of 10Ω on each channel and setting the RMS voltage with a calibration 

signal. 

 

 

Fig. 3.25 Hardware diagram for WFS installation 

 

3.6.2 Semi-portable system 

As mentioned previously, the semi-portable system is used primarily in the fully 

anechoic chamber which constitutes a challenging installation environment for a 

WFS system, not least for the mounting of the loudspeakers, as there is no floor on 

which to place any stands etc. There are however several mount points distributed 

throughout the room allowing for a framework of poles to be erected, on which the 

loudspeakers could be mounted. It was also important to design this framework 

mounting for the loudspeaker arrays carefully such that it offers sufficient rigidity, 

flexibility and allows for the loudspeakers to be mounted as closely as possible to 
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each other to increase the spatial aliasing frequency. This design allows the speaker 

separation and height to be changed easily; also, several bars can be mounted on 

each pair of stands to allow for planar WFS testing if required. 

 

 

Fig. 3.26 Semi-portable WFS installed in the anechoic chamber 

 

Although the anechoic chamber offers the theoretically optimal acoustical 

environment for WFS, such rooms rarely offer the cabling for the required number of 

channels of audio input, thus for the system implemented here, the cables were fed 

around the outer and inner doors such that there was a small opening. For most test 

scenarios this is not too problematic as it only affects listeners who are in line of 

sight with the opening. The motivation for a semi-permanent system in the anechoic 

chamber was to enable testing of a system in a truly reflection free environment 

rather than to exploit the extremely low background noise levels offered by the 

chamber, thus the small gap made by the door is not problematic and indeed can be 

bridged with additional absorbent material. 

 

3.6.3 Portable system 

For the portable system, the loudspeaker system was designed to be modular in 

nature.  Lightweight 6mm plywood enclosures were constructed that each contained 

eight loudspeakers. The enclosures were designed to be as small as possible for 

obvious practical reasons, as each driver has its own sealed enclosure this had no 

bearing on the overall frequency response or radiation characteristics of the system. 

This system utilises the same hardware architecture as the semi-portable system, 
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however this system only supports 64 channels. The portable system is shown in Fig. 

3.27a. 

 

 

a) 

 

b) 

Fig. 3.27 a) Portable WFS installed in a typical classroom environment, b) Audio amplifiers and 

converters in the listening room void. 

 

This WFS system is generally used for tradeshows, demonstrations and public 

engagement activities and can be setup in an hour, it is also useful for determining 

the effects of WFS propagation in rooms with different acoustic properties. 

 

3.6.4 Listening Room Installation 

As with the portable system, for the permanent installation in the listening room, the 

loudspeakers were placed in boxes of eight. For the installation in the listening room 

these were clamped directly onto the supporting frame, which was constructed from 

48.3mm steel pipe.  Fourteen enclosures were arranged in a rectangle four enclosures 

deep and three wide, using 112 loudspeakers in total (as shown in Fig. 3.28).  The 

control PC, audio digital-to-analogue conversion hardware and amplification are all 

located in the void around the side of the room as shown in Fig. 3.27b. 

 

The design brief required that the system could be used at a range of different 

listening heights, from seated to standing, and should not compromise the acoustics 

of the room for other uses.  In response to this the innovative solution of suspending 

the loudspeaker on a winch system was adopted.  This was straightforward because 
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the room had been constructed with a concrete slab ceiling for acoustic isolation 

purposes and a flying system of the type most commonly seen in theatre lighting grid 

systems was designed and installed by a certified contractor according to LOLER 

regulations.  The steel pipe was supported at four hanging points which were 

diverted by a system of pulleys back to a single ratcheted hand winch.  The 

loudspeakers can be positioned at any height from 0.7m upwards and winched to 

within a few inches of the ceiling so that they are roughly flush with the existing 

acoustic treatment and both visually and acoustically unobtrusive.  Cabling was 

routed around the steel ring and slung across to a strain relief bar (located so as to 

avoid the cable’s weight pulling the flying frame askew) and finally through glands 

on a plate on the wall furthest from the door.  Photos and a plan view of the system 

are shown in Fig. 3.28 and Fig. 3.29 respectively. 

 

  

  

Fig. 3.28 Loudspeakers suspended on winch system in listening room 



Chapter 3: Wave Field Synthesis  74 

 

 

 

Fig. 3.29 Plan view of listening room with WFS install 

 

The room was tested before and after the installation of the system and in both cases 

it conforms to the specifications set out in the standards ITU-R BS 1116-11, BS 

6840-13 and IEC 268-132. 

 

3.6.5 Octave Installation 

The installation in the Octave is very similar in construction to that of the listening 

room. The arrays have exactly the same construction but the positioning of the arrays 

is at a fixed height. Due to the restrictions imposed by the rear projectors on the 

Octave it was neither possible to have the loudspeakers in font or behind the screens, 

so the solution was to place the arrays above the screens pointing at an angle to the 

listening area. Although this will reduce the vertical localisation accuracy, the 

azimuth localisation should remain stable. The problems associated with elevated 

loudspeaker arrays is an open research question and is briefly covered in section 6.5, 

more information on elevated sources in WFS can be found in (Lopez et al., 2010). 

The system installed in the Octave is shown in Fig. 3.30. 
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Fig. 3.30 128 channel WFS system installed in the Octave virtual reality lab at the University of 

Salford 

 

The bespoke WFS rendering software has a UDP connection from the 3D visual 

rendering engine such that the positions of the audio sources can be adjusted 

dynamically to match those of the visual objects. This is particularly important for 

3D rendering with audio so there is no incongruity in the audio and visual 

localisation cues and to prevent any problems associated with audio visual parallax 

error (Melchior et al., 2003; Springer et al., 2006), the UDP connection also enables 

the use of the tracking system with the audio system for optimised WFS rendering as 

suggested by (Melchior et al., 2008). 

 

3.6.6 Software Development 

Different versions of the control software have been developed that serve different 

practical purposes. The first implementation is a .dll library written in C++ that can 

be accessed in real-time by other pieces of software allowing the positioning and 

rendering of sources in real-time with UDP and TCP/IP links to allow input streams 

from other applications. Additionally a MATLAB® implementation has been written 

allowing for the testing and characterising of new driving functions and rendering 

methods as described in this thesis. The MATLAB® implementation is not real-time 

but does facilitate multiple sources and also accommodates moving sources. Each 

sound scene needs to be rendered offline in advance and rendered later. 
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3.6.6.1 Real-time C++ implementation 

The controlling software for the WFS system has been written and visual C++ and 

has been complied to .dll format such that it can be accessed via a C# program that 

allows the arbitrary positioning of primary and secondary sources based on the XNA 

framework. The C++ part of the software takes advantage of the Windows Audio 

Session API (WASAPI), first introduced in Windows Vista which allows for simpler 

communication directly to the buffers on audio devices such that a desired output 

can be written straight to any audio channel of a soundcard. The C# side of the 

software works by using the positional data from the source and receiver, it sends a 

link object containing the corresponding spectral amplitude and delay from each 

source to each loudspeaker which are changed every time the virtual source is 

moved. 

 

3.6.6.2 MATLAB® Implementation 

For the ease of subjective tests an implementation of the software was written in 

MATLAB® such that the files could be rendered beforehand and played back on the 

request of the participant. The advantage of this technique is that the source files can 

be verified analytically insuring a correct auralisation for the test itself, the downside 

is that it does not work in real time. It has however been programmed in the 

frequency domain and time domain so it allows for moving virtual sources and there 

is no limit to the number of virtual sources that can be included in the sound scene. 

 

3.6.6.3 Verification of the software 

Before the setup could be used for research it had to be verified that it is correctly 

recreating acoustic wave fronts. For this to be confirmed a simple test has been done 

on the software to check the syncing between each output channel from the 

soundcard, if there is a syncing problem between the audio outputs, it will not be 

possible to recreate an acoustic wave front, as the small differences in phase between 

each loudspeaker are the key to successful sound field reconstruction. 

 

A Gaussian pulse was put through the system with equal amplitude and phase on 

each channel, the ADAT outputs from the soundcard were recorded directly to 
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eliminate any other sources of delay. Results demonstrated that there is a delay of 

several samples between output channels. To check that it was in fact the output 

from the soundcard that was producing the error rather than the latency of the 

measurement system, the outputs from the soundcard were fed into an oscilloscope 

and the waveforms studied, this revealed that there was a delay with respect to the 

channels such that it was a problem at the output side. The measurement software 

was also checked by splitting the sinusoidal output from a signal generator into 8 

identical signals and recording all 8 channels. The sine waves matched up perfectly 

meaning that the WFS software was producing the error.  

 

The delay was caused by errors in WASAPI which later received a Windows® 

service pack update that fixed the problem a year later. The software sync between 

channels was again checked and revealed that a maximum of just 4 samples delay 

could be seen between channels which was due to the time it takes for the software 

to loop through all of the channels and release the audio buffers to the soundcard one 

at a time, the error was therefore corrected by determining the time it takes for the 

loop to complete the buffer release. This was done using clock function in the 

WASAPI used in the C++ part of the software, resulting in zero delay between 

channels. 

 

3.6.7 System calibration 

The system has been calibrated using a multi-meter on the output terminals of the 

power amplifiers. Given a sinusoidal output from each channel with the same 

amplitude, the voltage drop across a 10Ω resistor for each channel of the amplifier 

was adjusted to be the same. This technique assumes that the sensitivity of each of 

the loudspeakers is equal such that the output sound pressure from each one is the 

same. In order to verify this, the entire WFS system would have to be moved into the 

anechoic chamber and the acoustic output measured from each driver. It was decided 

therefore that the error in the relative loudspeaker sensitivities will be smaller than 

those introduced by the errors introduced by measuring the SPL from each driver 

separately such as the positioning of the microphone so the technique of calibrating 

the output level of the amplifiers was adopted. 
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3.6.8 System verification  

The WFS system had been verified in several ways. Analytically using the 

MATLAB® implementation of the software, and also using multi-trace impulse 

response measurements with a linear microphone array. 

 

3.6.8.1 MATLAB® implementation verification  

Various scenarios can be rendered in MATLAB® and the corresponding wave field 

analysed before rendering to verify that the system, or at least the software, is 

working correctly.  

 

 

Fig. 3.31 16-channel multi-trace impulse response for a real source (black trace) and a WFS source 

(grey trace) with a Gaussian pulse 2.5m back from the centre of a linear loudspeaker array 

 

Fig. 3.31 shows the impulse response at 16 locations recorded for both a real source 

and a WFS point source. The simulation demonstrates that the MATLAB® 

implementation aligns well with the analytical solution of a point source. There is 

some ripple evident in the impulse response after the main pulse which is due to 

echo artefacts from the WFS array as a consequence of truncation errors. Truncation 

errors are also responsible for the small delay error in the impulse response for the 

edge receivers causing some small errors in wave front curvature. 
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3.6.8.1 Multi-trace impulse testing 

To objectively verify that the full system was working, a linear array of 16 

microphones was set up in the centre of the listening room and various source types 

were output from the WFS system with a number of test signals to see if the rendered 

wave field was as intended. The method of checking this is the multi-impulse test 

method which lines up the time histories from each microphone in the array to reveal 

how the wave field changes with time over the dimensions of microphone array. 

 

Fig. 3.32 shows the results from these experiments showing both the measured and 

analytical data. The results not only illustrate that the system successfully recreates 

the correct wave fronts but also demonstrates how the WFS driving functions match 

up well with the analytical solutions. 

 

 

 

Fig. 3.32 Multi-trace impulse response measurements in the listening room, with a) a focused point 

source,  b) a normal point source and c) a plane wave at 45˚. The black trace shows the measured data 

and the grey trace the analytical solution. 

 

b) 

a) 

c) 
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Results from the multi-trace impulse tests show that the wave fronts are being 

rendered accurately for the three main source types (plane wave, point source and 

focused point source). There are some minor differences in the wave front curvature 

for scenario a) and b) which are a consequence of array truncation. The room effects 

are also seen as a rippling in the impulse responses after the main pulse, these effects 

will be dealt with in detail in chapter 6. For the focused source case in a) there are 

some pre-echo artefacts present (i.e. contributions arriving before the intended wave 

front), these are specific to focused sources and will be described in more detail in 

chapter 4. 

 

 

3.7 Areas of research in WFS literature 

Research in WFS has taken many directions to date and the literature covers a broad 

range of applications. The following is a brief description of some of the major 

research areas in WFS. 

 

3.7.1 Room compensation 

The early seminal papers provided a strong theoretical foundation for WFS and 

demonstrated in particular the possibility of using the idea for acoustic control in 

rooms (Berkhout et al., 1993; Berkhout, 1988). This has remained one of the 

strongest areas of WFS research and much attention is given to the use of WFS for 

room compensation (Spors et al., 2007) with a number of techniques currently being 

used (e.g. Corteel and Nicol, 2003; López et al., 2005; Petrausch et al., 2005; Spors 

et al., 2004), similar principles can also be employed to use WFS for variable 

acoustics applications (Sonke et al., 1998) and for active noise control (Kuntz and 

Rabenstein, 2004; Peretti et al., 2007; Spors and Buchner, 2004). Wave field 

synthesis is ideal for such applications as it can recreate acoustic wave fronts of 

almost any shape and arriving from any direction, even sources within the room can 

be produced/reproduced effectively. This means that if the field in the room can be 

measured accurately enough and to a high enough resolution, the WFS system can 

radiate the opposite wave field and can cancel it out. This raises a number of issues 

and is certainly not an easy task, especially as the sound field within a room is 3-
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dimensional whereas most WFS systems are just 2-dimensional. There are also 

problems with the frequency limitations of WFS. Spatial aliasing at higher 

frequencies means that an accurate spatial wave field can no longer be recreated thus 

it will not cancel effectively with the original field, possibly compounding the 

original problem, there is also the problem of time variance in a room especially 

when it is in use which is hard to correct for. Research in this area has however lead 

to what has now been termed Adaptive Wave Field Synthesis (Gauthier and Berry, 

2006) which describes the combination of a standard wave field synthesis system 

with room compensation built in to the driving functions to correct for the unwanted 

reflections (Gauthier and Berry, 2007) in the room which damage the reproduced 

wave field, this is an important area of research because the definition of the WFS 

driving functions assumes free field source free conditions which is certainly not the 

case in a real room as each reflection essentially acts as a new source. Ideally 

therefore WFS reproduction should be done in an anechoic space or the reflections 

corrected for using active techniques. 

 

3.7.2 Sound reinforcement 

Another of the main uses of WFS is for sound reinforcement and there has 

correspondingly been much written on this topic (e.g. Verheijen, 1998; de Vries, 

1996; de Vries et al., 1994). WFS provides accurate rendering in the spatial, 

temporal and frequency domain therefore to use it for sound reinforcement is ideal as 

it eliminates the separation that can occur with the audience seeing the performer in 

one position but hearing the audio coming from loudspeakers in various discrete 

locations. WFS can help alleviate this problem by amplifying the sound and also 

retaining the original spatial information. For this to be successful, careful attention 

has to be given to the microphone arrangement recording the performers so the 

signals can be accurately reproduced spatially. One can adopt an array based 

approach as (Snow, 1953) or else use close miking (Theile, 2004) or other more 

complicated schemes (Hulsebos et al., 2002). 
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3.7.3 Virtual reality applications 

Possibly the most ubiquitous application of WFS is in virtual reality, cinema and 

sound scene creation (Sporer, 2004; Strauss et al., 2004). WFS allows very accurate 

spatial reproduction of a sound field and thus retains all of the spatial hearing cues 

that humans use to localise sound, it therefore provides excellent source localisation 

and a realistic impression, immersion and presence. There is consequently great 

scope to use WFS for soundscape rendering (Geier et al., 2008) and analysis as a 

recorded sound scene can be recreated almost perfectly so when combined with 

multiple visual displays (Springer et al., 2006) a very realistic impression of a given 

place/scene can be realised. Coupled with the field of virtual reality there is also a 

widening body of research into videoconferencing which attempt to increase the 

realism in the communication between two geographically separated groups. Wave 

field synthesis is seen as a good solution to the problem of matching up the audio 

signals with the visual information as conflicting auditory and visual cues reduces 

the realism and can cause confusion in the communication (De Bruijn, 2004). There 

is however research suggesting that WFS is only better for these applications when 

combined with a 3-dimensional projection (Melchior et al., 2003). The 2-

dimensional visual display with a 3-dimensional audio signal (rendered using WFS) 

actually provides conflicting cues and with a parallax error between the two source 

positions, in one study it was found by (De Bruijn and Boone, 2003) that the subjects 

localised better with multi-channel stereophony rather than WFS with a 2-

dimensional display; a 3-dimensional display however yielded better results with 

WFS.  

 

3.7.4 Using flat panel loudspeakers 

The concept of using WFS with multiple visual displays has driven research into the 

use of flat panel (distributed mode/multi actuator) loudspeakers for the rendering of 

WFS (Boone and De Bruijn, 2000). This proves to be a troublesome area as there are 

many corrections that one has to do for both the response of the individual panels 

(Spors et al., 2005) and also for reflections caused by the different panels (Corteel et 

al., 2004) as they are significantly larger than moving coil loudspeakers where this is 

not a problem, consequently there is a growing body of research in this area. This is 
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one of the key areas for improvement in WFS as it will open up the scope for many 

more applications and places where systems could be installed. At the moment, WFS 

systems consist of a lot of hardware and the loudspeakers themselves can be heavy, 

making installation not only problematic but also unsightly. The use of flat panel 

loudspeakers would reduce these problems and provide greater ease of installation, 

the loudspeakers could also have dual functionality as projection screens. The use of 

flat panel loudspeakers does have a subjective effect on the recreated sound field 

however and work has been done on the perceptual evaluation of this (Corteel et al., 

2007) to ensure that the benefits outweigh the shortcomings. 

 

3.7.5 Perceptual aspects 

There are many different aspects to perception of WFS systems as the sound 

recreation takes place in the temporal, frequency and spatial domain, providing many 

variables for analysis, consequently there has been much work done to analyse these 

perceptual characteristics. Within this area there is a need to compare the perception 

of WFS with other existing spatial audio systems such as stereophony (Wittek, 

2009), Ambisonics (Daniel et al., 2003) and VBAP (Pulkki, 1997) etc. Work on the 

comparison between these methods has led to the conclusion that a combination of 

different rendering schemes can be profitable, combining the merits of stereophony, 

Ambisonics and VBAP to result in various hybrid approaches (Nicol and Emerit, 

1999; Wittek et al., 2007a) which minimise processing and maximise localisation 

accuracy. 

  

3.7.6 Different source types 

A key area in the perception of WFS rendering is that of moving virtual sources 

(Franck et al., 2007). The theory of wave field synthesis inherently takes into 

account a moving source and a good subjective impression can be achieved by 

rendering a series of stationary sources at advancing locations using an iterative 

approach. Further research by (Ahrens and Spors, 2008a) however revealed that 

rendering a series of stationary sources does not accurately represent the sound field 

produced by a real moving source. They used an analytical approach and 

demonstrated a reproduced sound field of a moving sources with greater realism 
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using an analytical driving function which explicitly models the Doppler Effect. It 

seems however that whilst the wave field looks more accurate with Ahrens and 

Spors’ technique, the perception of the traditional method of rendering moving 

sources is perfectly adequate providing the sources are not moving at speeds greater 

than 40ms
-1

. 

 

The traditional WFS literature allows for sources of a plane wave or spherical wave 

type but not much attention was paid to the topic of rendering directional sources, 

however this is becoming a more prominent area of research as there is a greater 

need for increased accuracy in WFS rendering. It is possible to derive driving 

functions from first principles that take into account a desired directivity (Ahrens and 

Spors, 2007; Baalman, 2008; Corteel, 2007), Ahrens also presented an approach to 

deriving a focused source with a given directivity (Ahrens and Spors, 2008b) which 

would allow a user to walk around the focussed source and experience a more 

realistic directivity pattern rather than that of a point source. 

 

3.7.7 Analysis and reduction of errors in WFS reproduction 

All of the above uses of WFS are subject to the inherent errors of WFS such as 

discretisation, spatial aliasing and truncation effects/edge effects. Truncation errors 

are caused by the finite length of the arrays used for the reproduction, causing 

diffraction errors at the end of the arrays. Edge errors are also caused in the corners 

where two loudspeaker arrays meet. Whilst these can be minimised by adopting 

various filtering schemes, there are consequent limits on the available applications of 

WFS. Analyses of the errors inherent in WFS reproduction due to the size of the 

arrays being used to reproduce the signals and the discretisation of the array can be 

found in (Spors and Rabenstien, 2006; Start, 1997; Verheijen, 1998) 

 

Much research is still to be done in the area of WFS, looking at the optimisation of 

the WFS reproduction and coding, subjective effects resulting from simplifications 

that are made, evaluation and prediction of wave fields, novel applications of WFS, 

perceptual effects and dual modality investigation when using WFS with 2-

dimensional or 3-dimensional displays. Consequently there is an ever increasing 

body of research into this exciting subject of wave field synthesis. This thesis aims at 
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the characterisation and improvement of focused sources in WFS, which is an under-

researched area so far despite the many novel applications and interesting properties 

of such sources. 

 

 

3.8 Summary 

This chapter has presented the background theory of the wave field synthesis sound 

field reconstruction technique. A comprehensive theoretical background has been 

presented, including the foundational mathematic constructs and a detailed 

derivation of the important driving functions used throughout this thesis. A brief 

analysis of some of the reproduction artefacts of WFS has also been described in this 

chapter including, amplitude errors, spatial sampling artefacts and truncation errors. 

Many of these errors are common to both focused and non-focused sources although 

the manifestation of the artefacts will be different for focused sources. This chapter 

has described only non-focused sources, the next chapter deals specifically with the 

objective analysis of WFS focused sources and the errors there inherent. 

  

Having laid the theoretical background of WFS, the chapter then described the 

design, installation and calibration of four WFS systems that have been installed at 

the University of Salford that have been used in the work described in this thesis. 

Also covered is a generic literature review, presenting an overview of the main areas 

of research in WFS since its conception in the late 1980’s.  
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4.1 Introduction 

The ability of sound reproduction techniques based on physical principles and a 

sound field description such as wave field synthesis to recreate acoustic wave fronts 

of an arbitrary shape allows for the reproduction of so-called focused sources. 

Focused sources are in fact not really sources but rather they describe the focusing of 

acoustic energy to a point in space. As the point does not behave like an acoustic 

sink, the acoustic energy peaks at the ‘focal point’ and then re-radiates from there, 

giving the impression of a source at that point. This is a remarkable attribute of WFS 

systems and allows for several interesting applications. For example, focused sources 

can be used for 3D virtual reality systems such that the depth of the acoustic source 

matches more perfectly the depth of the visual source being generated/projected 

(Boone et al., 1996). Focused sources have also been showed to be useful for 

creating virtual loudspeaker signals in hybrid systems (Menzel et al., 2005). 
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In the strictest sense, focused sources in WFS cannot be fully described by the 

Kirchhoff-Helmholtz equation demonstrated in the previous chapter. The Kirchhoff-

Helmholtz equation states that the volume in question should be source free whereas 

a focused source expressly describes a volume with a source present. However this is 

not a real source but rather the appearance of a source thus the method of derivation 

used for normal WFS sources also stands in this case. 

This chapter begins with a brief overview of sound focusing techniques and 

describes some of the properties of the produced focused wave fields. The chapter 

then goes on to describe the driving functions for the main focused source models 

used for practical WFS implementations including monopoles, dipoles and pistonic 

sources. Following this is a description of the secondary source selection criteria 

specific to the reproduction of focused sources and the necessary correction needed 

for symmetrical rendering and directed sources. The primary attributes of focused 

sources in WFS are then described including amplitude errors, truncation and spatial 

aliasing errors, causality and pre-echo artefacts, focal spot size and phase response. 

A model is also derived to predict the position error in focused source as a result of 

the focal shift phenomena caused by diffraction effects at low frequencies. A full 

description of spatial aliasing artefacts, including an analytical expression for the 

position dependant spatial aliasing condition for focused sources and the definition 

of the aliasing-free zone in the near vicinity of the focal point is also presented. The 

chapter concludes with some discussions on the rendering of moving sources and 

sources using large arrays.  

 

4.2 An overview of acoustic focusing techniques 

This section briefly overviews some of the major techniques for acoustic focusing 

that this chapter will make reference to and covers some of the main applications for 

the techniques mentioned. 

 

4.2.1 Time reversal acoustics 

Time reversal acoustics essentially exploits the theory of acoustic reciprocity, that is 

to say the characteristic of the acoustic wave equation that states that the transfer 
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function between source and receiver is the same as from receiver to source. A time 

reversal mirror (Fink, 1992, 1999), often used in ultrasonic applications, exploits this 

phenomenon, by placing a line of transducers that can act in both receive and emit 

mode in front of an acoustic sources, the field is recorded by the transducers in 

receive mode. These recorded signals are time reversed (i.e. played backwards) and 

resulting in the sound energy focusing on the original source position (or at least at a 

point the equivalent distance from the array if the array is moved). 

 

4.2.2 Phase conjugation 

Phase conjugation is a technique often applied in the field of underwater acoustics. It 

shares many similarities with time reversal acoustics, but the underlying method is 

slightly different. Phase conjugation exploits the fact that in the frequency domain a 

conjugated wave propagates in the opposite direction to the original i.e. if 
jkRp e  

is a propagating point source, then 
jkRp e describes an acoustic sink. Thus if the 

conjugate form of a recorded signal is transmitted, the result will be a time reversed 

version of the original signal (i.e. one that converges on to the original source 

location) 

 

4.2.3 Focused transducers 

Much of the work in focused acoustic fields has been done using focused transducers 

and much of the same theory can be applied to WFS focused sources as described in 

this chapter. A focused transducer is often a curved piezoelectric transducer that due 

to its curved geometry will radiate focused acoustic energy on to a point at a position 

defined by the surface geometry. Most often these devices will have a hemi-spherical 

or semi-circular geometry and will therefore focus energy on to a point at the centre 

of the sphere or circle. This is probably the simplest method of acoustic focusing and 

is used to increase the radiated power at a given receiver location. As the radius of 

curvature decreases the solution for the on-axis pressure of these devices tends 

towards that of a piston source.  
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4.2.4 Physical acoustic lens’ 

Physical acoustic lens’ (Hurwitz, 1977; Miller, 1983) have many different designs 

and can be made out of a variety of acoustic meta-materials, often made up of arrays 

of acoustic scatterers known collectively as a sonic crystal. Whatever the material or 

design of these devices, the aim is to selectively delay some of the acoustic energy 

such that it all arrives at the target location (focal point) at the same point in time. 

This delay means that the device has to exhibit different wave propagation speeds or 

the acoustic paths have to further to achieve the necessary delays, this can be thought 

of as a variable acoustic refractive index (like an optical lens). 

 

4.2.5 Applications of acoustic focusing 

There are many applications of acoustic focusing (Fink, 2006; Fink et al., 2004) 

utilising many different methods of focusing acoustic energy. Many of the major 

applications are in ultrasonic frequencies and are found in the field of medicine 

where focusing has been used for the destruction of tumours and kidney stones 

(Thomas et al., 1996), brain therapy (Clement et al., 2000). Also predominantly in 

ultrasonic frequencies, acoustic focusing has been used for non-destructive testing 

for defects in metals (Zumpano and Meo, 2007). Ocean acoustics is another area 

where acoustic focusing is often employed in this case it is predominantly for 

communication and transmission purposes (Kuperman et al., 1998). Mine detection 

(Sutin and Johnson, 2005), acoustic microscopes (Lemons and Quate, 1974), and 

even ink printing (Elrod et al., 1988) are yet more examples of acoustic focusing 

applications. 

Most of the aforementioned applications use acoustic energy at ultrasonic 

frequencies, however, recently there has been more attention paid to acoustic 

focusing of audio frequencies, specifically in sound reproduction which is possible 

using sound field synthesis systems such as wave field synthesis (Jensen, 1997; 

Spors et al., 2009), Higher Order Ambisonics (Ahrens and Spors, 2008c; Jensen, 

1997; Spors et al., 2009) and the Spectral Division Method (Spors and Ahrens, 

2010c). Methods of acoustic time reversal have also been applied in room acoustics 

e.g. (Yon et al., 2003a, 2003b).  



Chapter 4: Objective Analysis of WFS Focused Sources  90 

 

 

The following section presents the theory of acoustic focusing using the WFS 

method and will derive the important driving function used. 

 

4.1 WFS driving functions for focused sources 

Driving functions for focused sources in WFS can be derived in a manner similar to 

that of an non-focused sources but using a time reversal/phase conjugation approach 

such that the virtual source models become acoustic sinks rather than acoustic 

sources. An acoustic sink describes a point in space which absorbs all acoustic 

energy incident on it. For WFS rendering, the energy is not absorbed by the sink, but 

rather the acoustic energy is focused on to this point and then re-radiates giving the 

impression of a source located at the sink’s position. As shown in Fig. 4.1. 

 

 

Fig. 4.1 Diagram of the theoretical view angle for focused source reproduction 

 

This section briefly outlines the derivation of the driving functions for the major 

focused source types commonly used in WFS rendering. The geometry used for the 

derivation of the WFS driving function is shown in Fig. 4.2. 
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Fig. 4.2. Geometry used for the derivation of WFS focused sources driving functions 

 

4.1.1 Monopole sources 

For 3D WFS the time reversed equation of a point source would be sensible choice 

for the virtual source model. This describes the pressure at 0x  as a result of a point 

sink at Sx and can be given as: 
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For 2D WFS however, a more suitable source model for a monopole virtual source 

would be an acoustic line sink, the source function of which is given by (Williams, 

1999) as (4.2).  

 

   (1)

,2 0 0 0,
4

Sink D S

j
S H k  x x x  (4.2) 

 

where  (1)

0 ..H is the zeroth order Hankel function of the first kind. The line sink is 

used as the source model therefore for 2.5D WFS a spectral correction must be 

applied as was introduced in the previous chapter. This equation can be 

approximated using the large argument/asymptotic expansion of the Hankel function 

(3.48) (valid for 0 1Sk x x ) as: 
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(4.3) 

 

 

This source model, however is not suitable for 2.5D synthesis due to the spectral 

differences introduced when radiating 2D sound fields using point sources. From 

(4.3) and (4.1) it can be seen that the free field Green’s function of line sink is the 

same as the 3D Green’s function of a point sink but with a spectral correction of 

j k  and an additional amplitude weighting. The inverse of this spectral correction 

can be applied to the driving function for a time-reversed monopole line sink such 

that the source model behaves like a line sink but with the spectral characteristics of 

a point sink, and thus is a desirable source model for 2.5D synthesis. The spectral 

correction therefore takes the form of k j . The virtual source model with 

frequency correction applied can then be written as: 

 

   (1)

0

1
,  

4
SS jk H k  x x x  (4.4) 

 

Where the position of the virtual source is given by the vector Sx . Once again the 

2D driving function can be expressed as: 

 

     2 0 0 0

1
, , .

2
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
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Inserting (4.4) into (4.5) gives the driving function as: 
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Which, noting that 
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gives 
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So the 2.5D driving function is given by applying the amplitude correction from 

(3.28) (the spectral correction has already been applied) as: 
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Where once again  0 0/ /S SR   R R x x x x , and 0( )n x  is the unit vector 

normal to the direction of the loudspeaker. 

 

It is often considered desirable to separate the frequency dependent terms in WFS 

driving functions such that they can applied efficiently as a pre-filter, hence the far 

field approximation of the Hankel function in (3.48) can be applied to (4.9) resulting 

in the driving function of a focused monopole line source: 
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This is the same as that given by (Spors et al., 2009) barring a normalisation factor. 

The resulting focused wave field produced by this driving function is shown in Fig. 

4.3. 
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Fig. 4.3Wave field of a focused line source in 2.5D WFS, 800f Hz  at  0 , 1S m m x  with 

0.125LS m   

 

4.1.2 Dipole focused sources 

The source function for a focused acoustic dipole can be given by (3.53), From this, 

the Green’s function of a dipole line sink can be given as (4.11), with the source 

geometry given by Fig. 4.2. 
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(4.11) becomes 

   (1)

0, Sx
S jk H kR

R
  x  (4.13) 

 

Thus, from (4.5) and (4.13), the 2D driving function for a dipole line sink can be 

expressed as (4.14) 
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which can be approximated with the far field approximation in (3.48) as: 
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Thus the 2D driving function for a line dipole sink is given is given as: 
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(4.17) 

 

The necessary correction can also be applied to this equation resulting in the 2.5D 

driving function for a focused dipole line source from (3.28). 
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The spectral correction for a dipole line source can be calculated from the large 

argument approximation of  (1)

0H kR   function and is jk . So the spectrally 

corrected 2.5D driving function is therefore expressed as: 
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Fig. 4.4Wave field of a focused dipole line source in 2.5D WFS, 800f Hz  at  0 , 1S m m x  with 

0.125LS m   

 

Note that due to the fact that focused sources are not real sources but rather the 

appearance of radiation as the sound passes through the focal point, the dipole source 

will be out of phase by   radians with respect to the desired pressure field, thus the 

driving function should be multiplied by minus one to correct for this phase shift. 

 

The rendering of dipoles as WFS virtual sources offers the potential of generating 

sources with arbitrary directivity patterns and finite extent as any source directivity 

pattern can be created by the addition of multipole sources with different polarities 

and respective amplitudes (Williams, 1999). Of course this results in the need for 
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many different virtual sources which significantly increases the computational 

overhead of WFS systems, thus the commonly used techniques for creating more 

complex models is to use a spherical harmonic approach (Corteel, 2007). 

 

4.1.3 Pistonic focused sources 

Pistons are a useful source model for focused sources especially because they allow 

the rendering of a virtual loudspeaker in the listening space and therefore create the 

possibility of virtual surround loudspeakers (Boone and Horbach, 1999). A circular 

piston in an infinite baffle is often used as a mathematical model of a loudspeaker as 

it radiates much like a point source but with a frequency dependant directivity such 

that as 1ka   the piston becomes increasingly directional as per a real loudspeaker 

in a sealed enclosure. 

 

The far-field radiation of a circular piston sink in an infinite baffle can be given by 

the time reversed version of the equation of a pistonic source as (Kinsler et al., 

2000a). 
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0

sin S

S

y
 

x x
 (4.21) 

 

   
0

12
0

0

0

0

2

,
S

S

jk
S

piston
SS

S

ka y
J

jka e
S A

ka y
 



  
       
 

 
 

x x x x
x

x x

x x

 (4.22) 

 

Where a is the loudspeaker radius and  ..nJ   is the n
th

 order Bessel function of the 

first kind. Assuming a coordinate system with the virtual source placed at the origin 

and substituting (4.22) with respect to R gives. 
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Thus the 2.5D driving function of a circular piston in an infinite baffle can be 

expressed as: 
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(4.24) 

 

An example of the focused wave field produced with this driving function is given in 

Fig. 4.5. The virtual source has a similar appearance to a point source but with a 

frequency dependent directivity pattern as a function of the piston radius. A piston 

therefore has a broader radiation spot as seen in Fig. 4.5. 

 

 

Fig. 4.5Wave field of a focused loudspeaker modelled as a piston with a radius of 0.2m in 2.5D WFS, 

1000f Hz  at  0 , 1S m m x  with 0.125LS m   

Piston 

diameter 
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The modelling of loudspeakers as focused piston sources in WFS is similar to the 

work done by Ahrens in modelling sources with extended radiation characteristics 

such as plates vibrating with different number of modes. A more detailed analysis 

can therefore be found in (Ahrens, 2012). 

 

4.2 Secondary source selection 

When practically rendering a focused source it is possible to choose the direction of 

propagation, this essentially means carefully selecting and weighting the 

loudspeakers such that the energy of the source is radiating in the required direction. 

This is not important for non-focused sources as they can be considered as 

omnidirectional point sources thus localisation is independent of listener position. 

For a focused source however the direction of propagation is important because a 

listener has to be within the source’s view angle for correct localisation (see chapter 

5). In order to choose a specific direction for a focused source, a source direction is 

chosen relative to the x-axis as a unit vector. This direction vector can then be 

compared with the unit direction vector of each loudspeaker in the normal way to 

check which ones should be active. Making sure that the dot product of the direction 

vectors of the secondary source 
0xn   and the primary source PSn  is greater than zero: 

 

0
0x PS n n  (4.25) 

 

If this condition is not satisfied the loudspeakers are switched off. The second phase 

is to insure that the loudspeakers are behind the point of propagation. For a directed 

focused source this means drawing a line perpendicular to the intended source 

direction and making sure that only loudspeakers in the region behind this line are 

active. This can be tested using the set of conditions in (4.26) where xPS, yPS, x0 and 

y0 are the x and y coordinates of the focused source and loudspeaker respectively and 

focus is the angle of the focused source with respect to the x-axis.  
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Fig. 4.6 Source selection geometry for symmetrical secondary source situations 

 

For focused sources the secondary source selection criteria differs depending on the 

angle, 
focus . 
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(4.26) 

 

Applying these source selection criteria results in a focused source that can be 

positioned to propagate in any chosen direction with respect to the x-axis as shown in 

Fig. 4.7, where the arrows show the direction vectors of the active sources and the 

primary source. 
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Fig. 4.7 A 2.5D WFS focused monopole virtual source with a position of [0m, 0m] travelling at 50° to 

the x-axis 

 

It is very important, when defining an audio scene using WFS that the direction of 

any focused sources be considered carefully as the direction of the source dictates 

the areas where listeners will localise correctly. It has been suggested by (Melchior 

et al., 2008) that listener tracking can be used so update the WFS driving functions 

such that the listening space can be maximised. In the absence of such tracking or 

when there are multiple listeners it is important to consider the most probable 

location of listeners and then render the focused source directions accordingly. 

Rendering a focused source at an angle can also be useful for increasing the view 

angle of the focused source if using a square/rectangular array as it enables the 

source to be reproduced by all the loudspeakers in the corner of the array. This is not 

such a problem for circular arrays where the view angle is approximately 180˚ 

anyway (as is shown by the blue dotted line in Fig. 4.7) , but for rectangular arrays 

the view angle can be increase to nearly 180° which can be hugely advantageous. 

Obviously the source will then have a direction that may not be desired but for point 

sources this direction will not always be perceptible. For a source with a specific 

directivity pattern (e.g. Corteel, 2007) the angle of the source again becomes 

important. 
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A further consideration needed for the source selection of directed focused sources is 

to check whether the selected sources are symmetrically distributed, that is to say it 

is important that the angle between the source direction and the final source at each 

end of the array is the same. When this is not the case, the weighting of the source 

from one side of the array is greater than that from the other side of the array and the 

source radiates asymmetrically as seen in Fig. 4.8. 

 

 

Fig. 4.8 Directed focused source with an asymmetric secondary source selection 

 

On close inspection of Fig. 4.8 it can be noticed that the principle energy from the 

source is slightly off-axis from the intended direction as shown by the blue arrow. 

This is less problematic for monopole sources as in Fig. 4.8 for sources with a 

complex directivity pattern the angle of propagation is important and should not be 

affected by the secondary source selection. These problems with the asymmetric 

source distribution can be alleviated by employing an additional source selection 

requirement based on the geometry in Fig. 4.9. 
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Fig. 4.9 Source selection geometry for non-symmetrical situations. The blue sources are the active 

sources, red sources are real sources that have been switched off, the grey source falls outside of the 

source selection criterion and the dotted loudspeakers are imaginary. 

 

From Fig. 4.9 it becomes apparent that in order to have a symmetrical secondary 

source distribution, the source selection criteria must satisfy the relation 

, ,max left max right  . As such a further source selection condition is therefore given that: 

 

 
, ,

0

1,     

0,     otherwise

max left max right
a

 
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

x  (4.27) 

 

Equation (4.25) is formulated for the geometry Fig. 4.9. If this condition is adhered 

to the wave field in Fig. 4.8 becomes as shown in Fig. 4.10 which exhibits better 

symmetry around the focus point when compared with the asymmetric source 

selection case. 
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Fig. 4.10 Directed focused source with a symmetric secondary source selection 

 

4.3 Amplitude errors 

As mentioned in chapter 2, the primary localisation mechanism for distance 

perception of acoustic sources is amplitude cues. As such it is important for the 

creation of focused sources that the amplitude cues are recreated as faithfully as 

possible. It is more important that this is the case for focused sources as they are 

nearer to the listener than standard WFS sources thus movement of the listener with 

respect to the source has a greater effect. The amplitude decay of a focused source 

using the driving function of (4.10) is plotted in Fig. 4.11 compared with the 

amplitude decay of an equivalent real source. 
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Fig. 4.11 Distance attenuation of a 200f Hz focused source with the reference point, Refx  2m in 

front of the source position (blue trace) compared with distance attenuation of an equivalent real 

source (red trace).  

 

4.3.1 Position of the reference point 

The reference point or line defines the position in space where the amplitude errors 

resulting from the conversion from 3D to 2.5D reproduction are equal to zero. This 

position can be arbitrarily set such that the reproduction is optimised for a given 

listener position. For focused sources however it is better that the reference point be 

situated in front of the virtual source position as to have zero amplitude error in the 

region behind the source position makes little sense as this is the convergent region 

of the focused source and the amplitude distribution of a focused source on the axis 

perpendicular to the loudspeaker array is not symmetrical about the focus point in 

the same way a real source is symmetrical about the point of propagation. 

Consequently it is better to define the reference point to be set to a given distance in 

front of the specific focused source or as close to the reference point used for the 

non-focused sources but still being in front of the focused source. 

 

If the reference point is chosen to be too close to the source, the amplitude will be 

correct only in the very near vicinity of the virtual source position therefore a more 
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appropriate location for the reference line would be about 1-2m in front of the 

source, such that it is only very close to the source that the distance cues will be 

inaccurate. 

 

Fig. 4.11 shows the amplitude error for one position, the amplitude error as a 

function of source distance from the loudspeaker array and listener distance is shown 

in Fig. 4.12. For this calculation of the distance errors for WFS focused monopole 

sources, the reference point is set to always be the same distance in front of the 

source position so the distance error can be compared for different source distances 

from the secondary source array.  

 

 

 

Fig. 4.12 Distance attenuation error between a real and WFS focused source, 200f Hz with the 

reference point, Refx  2m in front of the source position. The dashed black line shows the position of 

the reference line 0dB error 

 

Fig. 4.12 shows that the errors in amplitude cues with respect to distance are not 

equal for different source positions. The errors are greatest when the source is 

positioned further from the array. When the source is very close to the array the 

amplitude errors with distance tend to zero, which is an expected result since, the 

closer the source is to the array the fewer active secondary sources there will be in 



Chapter 4: Objective Analysis of WFS Focused Sources  107 

 

 

the rendering and thus the radiation tends towards that of a single loudspeaker where 

there will be no amplitude errors.  

 

One of the interesting features of focused sources that can be seen in Fig. 4.11 is that 

as the distance from the source increases the gradient of the attenuation tends 

towards that of a real source. This characteristic is in contrast to non-focused sources 

where the difference in distance attenuation between a real and a WFS source is 

proportional to 1 r . The reason for this is that the recreated source, although based 

on a 2D source model is actually a 3D source because all of the energy is focused on 

to one point rather than a line which is theoretically infinitesimal, thus, from this 

source position, the radiation is in all directions and approximates that of a spherical 

source. The consequence of this is that if the listener is close to the virtual source and 

moves away from it, the distance cues will change in an unexpected manner and the 

listener may therefore localise the source incorrectly with respect to distance, 

however as the listener moves still further away from the virtual source the change in 

cues will more closely match those of a real source and it is therefore more likely 

that the listener will localise the source distance correctly. 

 

4.3.2 Lateral amplitude errors 

The amplitude in the lateral direction i.e. taking a line of receivers parallel to the x-

axis can also be computed for a focused source and compared to that of a real point 

source as shown in Fig. 4.13. 
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Fig. 4.13 Amplitude distribution in the lateral direction for a real source (red trace) and WFS focused 

source (blue trace) for a 800Hz virtual source 0.5m in front of an 8m loudspeaker array with 

0.125LS m   and Refx 2.5m in front of the virtual source. The analysis line is parallel with the x-

axis at a distance of 2.5m in front of the virtual source 

 

The lateral amplitude in Fig. 4.13 is shown to be quite accurately reproduced by the 

WFS focused source, however there is a clear ripple in the amplitude distribution of 

a WFS focused source with respect to a real point source which is a consequence of 

array truncation and the limits of acoustic focusing such that a true point source 

cannot be fully recreated. Interestingly, the ripple still remains for very large arrays 

where pre-echoes cause aberrations in the rendered wave field as described in more 

detail in section 4.11. If the array is truncated too heavily, the focusing effect of the 

array is too weak and the Q-factor of this curve is too narrow and exhibits strong 

ripples. 

 

The ripples are caused by the fact that the source is being reproduced by a line array 

of secondary sources and therefore an analytical solution for the ripples can be 

obtained from the theory of line array loudspeakers if desired. 
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4.4 Spatial aliasing 

One of the interesting physical attributes of WFS focused sources is the spatial 

aliasing artefacts resulting from the discrete sampling of the secondary source array 

(see section 3.5.2). For a normal WFS source the spatial aliasing frequency is 

constant throughout the reproduction space and is often considered simply to be a 

function of the loudspeaker distance and the wave velocity. There are small changes 

in this frequency with respect to space as pointed out by (Corteel, 2006a) but most 

authors consider the aliasing frequency to be constant throughout the space. Contrary 

to this, the spatial aliasing frequency for focused sources is heavily dependent on the 

position in the listening space as can be seen from Fig. 4.17. 

 

The effects of aliasing can also be seen in the frequency domain as shown in Fig. 

4.14, where there is a well-defined frequency at which strong colouration artefacts 

occur in the reproduced wave field. For non-focused sources this frequency is 

independent of space as can be seen from the plot in Fig. 3.17, however for the 

focused source case colouration introduced in the received spectrum happens at a 

different frequency with respect to distance. 

 

 

Fig. 4.14 Frequency spectrum of a focused source, with a 4m long receiver line 0.5m in front of a 

broadband focused source 1m from the secondary source array. The dashed red line shows the 

approximate boundary between the aliased and un-aliased region 



Chapter 4: Objective Analysis of WFS Focused Sources  110 

 

 

 

dB 

 

Fig. 4.15 Wavenumber domain plot of a focused source 1m in front of a 6m long loudspeaker array 

with 0.125LS m  . The line of receiver points is 0.2m in front of the virtual source position 

 

This position-dependent aliasing frequency means that as a listener moves 

throughout the reproduction space they will move from aliased regions to un-aliased 

regions. As described in chapter 3, spatial aliasing results in spatially varying 

coloration in the reproduced wave field as can be seen in the wavenumber 

representation in Fig. 4.15. Moving from a region of strong colouration artefacts to 

an un-aliased, uncoloured region will be perceptually disturbing and as such it is 

important to characterise the un-aliased region for a given focused source so as to 

help with the design of a sound scene or to inform user-dependent WFS rendering 

techniques.   

 

4.4.1 Defining the un-aliased region 

The fact that focused sources exhibit this extended area of un-aliased contributions 

has important ramifications for sound scene design and for the use of so-called local 

sound field synthesis techniques (Spors and Ahrens, 2010a) where focused sources 

are used as secondary sources in a virtual sound field synthesis array. The 

characterisation of this area is also important for the techniques of removing the 
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effects of scattering objects in the convergent region of focused sources as described 

in section 6.6.4. 

 

4.4.1.1 Geometric method 

The definition of the un-aliased area for focused sources can be done using a simple 

geometrical approach such that a radius around the source can be determined where 

there will be no spatial aliasing artefacts in the reproduced wave field. The area of 

this un-aliased region area will be quantified in the following for both the linear and 

circular array cases. The theory uses a geometrical sound propagation method to 

define a region in the wave field that will remain un-aliased for the frequency in 

question. 

 

Fig. 4.16 Geometry for defining the un-aliased region for circular loudspeaker arrays 

 

Using Huygens-Fresnel Principle the distance from the virtual source at which there 

will no aliasing effects can be calculated by assuming a ray-based propagation model 

as shown in Fig. 4.16. The Huygens-Fresnel principle states that the reproduced 

wave front can be considered to be the superposition of a distribution of secondary 

sources, here we assume that there is a finite number of secondary wavelets radiating 

with a position on the reproduced wave front determined by the intersection of a 

sound ray from each secondary source with the virtual source position as shown in 
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Fig. 4.16. Thus a set of virtual secondary sources can be assumed at a distance apart, 

VLS  which would result in aliasing for the given frequency of interest. As the radius 

of the wave front increases, there is still the same number of wavelets defined by the 

ray-based propagation model and thus there will be a radius, UAR  above which, the 

secondary wavelets will be too far apart to reproduce the wave field accurately.  

Thus a virtual loudspeaker separation 
VLS can be defined, a value greater than which 

will result in aliasing in the reproduced wave field. 

 

The traditional spatial aliasing frequency as presented by Spors and Rabenstein 

(2006) (see section 3.5.2) can be given by (4.28). 

 

 1 sin
alias

LS

c
f



 

 (4.28) 

 

Thus the loudspeaker separation at which aliasing contributions would begin to be 

seen in the reproduced wave field is expressed as: 

  

 1 sin
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alias

c

f 
 


 (4.29) 

 

So the distance between the virtual sources, LSv  (given by the red dots in Fig. 4.16) 

at which aliased artefacts will begin to appear in the reproduced wave field can be 

given as: 
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 1 sin
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 (4.31) 

  

Where LS   is the angle in radians between the loudspeakers as shown in Fig. 4.16. 

RUA describes the radius around the virtual source within which there will be no 

spatially aliased contributions in the reproduced wave field. 
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Applying (4.31) to the scenario shown in Fig. 4.17 predicts an un-aliased region 

surrounding the virtual source with a radius of 1.027m which can be seen to be an 

accurate prediction. 

 

 

Fig. 4.17 Focused source, 5000f Hz   at [0m, 0m] with 0.125LS m   , exhibiting a clear un-

aliased zone of radius, UAR  demarked by the yellow arrow 

 

The radius of this un-aliased region is a function of the source frequency and the 

inter-loudspeaker angle, and so is a function of virtual source position as can be seen 

from Fig. 4.18. One of the major problems with focused sources therefore is that the 

spatial aliasing frequency changes constantly not only with virtual source position 

but also with listener position. This is problematic for colouration perception for 

moving virtual sources and also for pre-filtering of the source signal (which should 

only be applied up to the spatial aliasing frequency (Spors and Ahrens, 2010b)) as 

the cut-off frequency of the filtering function changes with listener position, as will 

be seen in the subsequent section. 

RUA=1.027

m 
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Fig. 4.18 Focused sources, with 0.125LS m   , exhibiting a clear un-aliased zone varying in width 

with respect to frequency and source distance. Top left: focused source at 0 ,0m m  , 3000f Hz . 

Top right: focused source at 0 ,0m m  , 5000f Hz , Bottom left: focused source at  0 ,1m m ,

3000f Hz , bottom right: focused source at  0 ,1m m 5000f Hz  

 

For the case of a linear array of loudspeakers or where the virtual source is not 

centrally located in a circular array, the shape of the un-aliased region becomes more 

complex and may extend beyond the limit defined by (4.31). The aliased 

superposition of all of the secondary sources produces a complex wave field which 

cannot easily be defined by geometrical methods, however the wave field will still 

exhibit a circle around the virtual source with a radius defined by (4.31) at which 

aliasing contributions will not be present. This circle defines the minimum area 

around the source in which there will be no aliased contributions although the region 

may extend further than this in the propagation direction of the source. As shown in 

Fig. 4.19, the inter-loudspeaker angle, LS  changes across the array so in this case 

the aliasing condition is controlled by the maximum angle.  
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Fig. 4.19 Geometry for defining the un-aliased region for linear loudspeaker arrays 

 

Fig. 4.20 demonstrates how for sources produced by linear loudspeaker arrays and 

those produced off-centre by circular arrays still exhibit a circular aliasing-free zone 

defined by (4.31) as shown by the yellow trace on the plot. 

 

 

Fig. 4.20 Reproduced wave field of a 5kHz focused source with 0.125LS m  including an un-

aliased region (demarked by the yellow line) for a source at  0 ,0.5m m  produced by a linear array 

(left) and a source produced by a circular array at  0.5 , 0.5m m (right) 

 

If a listener is anywhere outside this un-aliased region it can be expected that they 

will experience colouration in the reproduced wave field, these colouration effects 

are spatially variant and are thus affected by both source and listener movements. 
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Further analysis on the colouration of focused sources in WFS is the topic of the 

subsequent section. 

 

Spors and Ahrens (2011) also derive a formula for predicting this un-aliased region 

based on the work by Dickins et al. (2005) analysing the spatial dimensionality that 

can be synthesised using a limited number of loudspeakers. 

 

S
UA

LS

y c
R 


 (4.32) 

 

Applying (4.32) to the example above and assuming that the distance, yS is the 

largest distance in the y-direction, gives a value of the un-aliased region of 1.098m 

which for this example slightly over-predicts the radius of this un-aliased region but 

is within a similar region to the condition as given here by (4.31). A further 

limitation of this formula and indeed (4.31) is that they both fail to accurately predict 

the un-aliased region for off centre sources rendered using circular arrays as shown 

in Fig. 4.23. Thus there is a clear need for a more rigorous formula that can deal with 

arbitrary loudspeaker setups and source positions. Such a formula is described 

below. 

 

4.4.1.2 Time domain method 

For the case of a linear array of loudspeakers or where the virtual source is not 

centrally located in a circular array, the shape of the un-aliased region becomes more 

complex and may extend beyond the limit defined by (4.31) as shown in Fig. 4.20. 

The aliased superposition of all of the secondary sources produces a complex wave 

field which cannot easily be defined by geometrical methods, however the wave 

field will still exhibit a circle around the virtual source with a radius defined by 

(4.31) at which aliasing contributions will not be present. This circle defines only the 

minimum area around the source in which there will be no aliased contributions and 

can thus be considered a worst case scenario. In reality the region may extend further 

than this, particularly in the propagation direction of the source.  
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Due to the limitations of the geometrical approach to describe this more complex 

region, the un-aliased region can be better classified using a time domain approach 

similar to that used for unfocused sources by (Corteel, 2006a) by looking at the 

difference in arrival times between the direct energy from the secondary sources and 

the superposed energy via the virtual source position for consecutive loudspeakers. 

 

 

Fig. 4.21 Geometry used for the time domain derivation of the un-aliased region for focused sources 

 

The geometry used for this derivation is given in Fig. 4.21 with the total distance, 

RIndirect between the source and receiver through the virtual source expressed as: 

 

I ndirect S RecR R R   (4.33) 

  

The path difference, ∆R between the direct path from loudspeaker to receiver and the 

path through the virtual source therefore given as: 

 

Indirect DirectR R R    (4.34) 

  

To compute the anti-aliasing condition, the relative values of ∆R between 

consecutive loudspeakers is compared across the array, if the maximum difference 

across all loudspeakers exceeds the source wavelength, λ then aliasing contributions 

can be expected in the reproduced wave field. When this is computed for a given 

point in space it is possible to determine whether or not aliasing contributions can be 

expected. Performing this for each point in the room allows the plotting of a map of 
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the un-aliased region as shown in Fig. 4.22. This method also allows the 

determination of the un-aliased region for irregular loudspeaker spacings and 

complex array geometries as shown in Fig. 4.25. 

 

Fig. 4.22  Un-aliased Region for a 8kHz source at [0m, -1m]. The Red trace marks the un-aliased 

region as given by (4.32) the blue trace given by the geometrical method from (4.31) and the yellow 

trace shows the time domain method given by (4.35) 

 

 

Fig. 4.23 Un-aliased Region for a 5kHz source at [0.5m,-0.5m]. The Red trace marks the un-aliased 

region as given by (4.32), the blue trace given by the geometrical method from (4.31) and the yellow 

trace shows the time domain method given by (4.39) 
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The spatial aliasing frequency for a given position in the listening space for a given 

virtual source,  can therefore be given as: 

 

 ,
max

alias

c
f

R
 


x  (4.35) 

  

This equation allows the plotting of the variation in the spatial aliasing frequency 

across the listening space for a given source position as shown in Fig. 4.24. This is a 

useful tool as it allows, on inspection, the region of validity of a given focused 

source at and below a given frequency of interest.  

 

 

Fig. 4.24  A map of the variation in spatial aliasing frequency across the listening space for a source 

at [0.5m, -0.5m], the colour bar is clipped at 20kHz for illustrative purposes 

  

If a listener is anywhere outside this un-aliased region it can be expected that they 

will experience colouration in the reproduced wave field, these colouration effects 

are spatially variant and are thus affected by both source and listener movements. 
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4.5 Colouration 

The above mentioned spatial aliasing artefacts result in unwanted colouration in the 

reproduced wave field. As can be seen from Fig. 4.14, these colouration artefacts are 

strong and are highly position dependent, as such when a listener moves around the 

listening space or if the focused source is moving, changes in colouration become 

more obvious and undesirable to listen to. To some extent these effects are reduced 

when the reproduction system is placed in a non-anechoic environment as room 

effects smudge out the spatially aliased components as will be discussed in the 

following chapter. 

 

Informal listening tests in an anechoic chamber suggest that these colouration effects 

are particularly disturbing and many listeners complained of ‘phasing’ effects as they 

moved about the chamber, which suggests that moving focused sources in an 

anechoic environment would be particularly problematic. The colouration in the 

reproduced wave field is primarily caused by the high frequency spatial aliased pre-

echoes which cause comb filtering as described in more detail in section 4.10.3. 

These pre-echoes and the resulting colouration can be seen clearly in impulse 

response and frequency response shown in Fig. 4.25. 

 

As there is a frequency and position dependent un-aliased zone for focused sources 

(see section 4.4.1), there are particular problems as listeners move around the 

reproduction area as they move from an aliased region to an un-aliased region etc. 
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Fig. 4.25 Typical broadband impulse response and corresponding frequency response at [0.5m, 0.5m] 

for a WFS focused source at [0m, 0m] produced by a 4m long array at y = -1m with ΔLS = 0.125m. 

Note the repetitive aliased pre-echoes artefacts cause comb filtering in the frequency response above 

the aliasing frequency. 

 

Further colouration can be caused by anomalies in the pre-filtering of WFS source. 

For non-focused sources the source functions are typically pre-filtered before 

rendering as the filtering function is not source position dependant, this is a useful 

technique as it greatly reduces the computational overhead. The pre-filtering 

function for a focused source is shown in Fig. 4.26, corresponding to a high pass 

filter function. However the pre-filtering is typically only applied up to the spatial 

aliasing frequency (Spors and Ahrens, 2010b) as the spatial sampling of the 

secondary source array already adds an increase in energy of roughly 3dB/octave. 

This poses a problem for focused sources as the spatial aliasing frequency is heavily 

position dependent, meaning that the cut-off frequency for the pre-filter should really 

be position dependent. It is undesirable to have such a position dependent filter thus 

typically only one pre-filter is applied which can be chosen to match the spatial 

aliasing frequency at a point in space e.g. the reference point, Refx . The consequence 

of this is that some areas of the listening space will not have the correct equalisation 

applied and as such a colouration below the spatial aliasing frequency may be 

discernible at some listener positions. This problem can of course be alleviated by 
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applying the filtering operation at the point of rendering rather than as a pre-filter but 

the additional computational load needed for this can reduce the number of sources 

that a WFS can render and may therefore be undesirable. In reality the perceptual 

effect of these colouration artefacts is small as they only change gradually with 

listener position and will simply result in an increase in low frequency energy. 

 

 

Fig. 4.26 Pre-filter for focused sources given by the k j  term in (4.10) 

 

4.6 Truncation effects 

The effects of array truncation have been covered in chapter 3 for non-focused 

sources. For the case of focused source the truncation of the secondary array 

introduces additional wave fronts from the edges of the array that arrive at all listener 

positions before the intended virtual source and thus form pre-echoes which are 

perceptibly disturbing. Truncation of the loudspeaker array can also cause rippling in 

the reproduced wave field as seen in Fig. 4.27. 

 

One of the most prominent effects of the truncation of the secondary source array 

however is the resulting reduction in wave front curvature of the intended virtual 

source. As the array length decreases the requirement of strong focusing can no 

longer be met and the radiation from the extremities of the array reduces the wave 

front curvature at the edges of wave. These effects cause what is known as the focal 

shift phenomena which is described in more detail in section 4.9 and if uncorrected 

for will result in errors in the depth of the reproduced source. The focal shift 

phenomenon is linked with the limit of acoustic focusing, i.e. there has to be a 

sufficient number of secondary sources in the array in order to be able to achieve a 

given strength of focusing. 



Chapter 4: Objective Analysis of WFS Focused Sources  123 

 

 

 

Truncation effects can also cause colouration in the reproduced wave field (Start, 

1997) and impose limits on the size of the listening space. Truncation effects are 

especially prominent for focused sources when the array is not just one linear array 

i.e. using a corner or circular array. In these cases, the additional diffraction waves 

from the edges of the array radiate with greater amplitude into the listening area 

causing ripples in the reproduced wave field as shown in Fig. 4.27. 

 

 

Fig. 4.27 Truncation artefacts present in the reproduced wave field of an 800Hz focused source 

0 ,0m m   at an angle of 50° to the x-axis 

 

One of the effects of truncation is that the reproduced focused source becomes 

broader in dimension at the focal point as described in the following section. The 

position of the focal point also is affected by the truncation as will be described in 

section 4.9. 

 

4.7 Focal point size 

It is well known in diffraction theory that the minimum size of a focal spot is limited 

by diffraction. This physical limit means that the dimension of the focal in the 

transverse direction is λ/2 whereas the depth resolution is λ. This can be seen from 
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the RMS amplitude distribution taken through the focal spot in both the x-direction 

and y-direction as shown in Fig. 4.28.  

 

An analytical expression for the pressure in the focal plane is given by (Lucas and 

Muir, 1982) as: 

 12 /

/
Lucas

J kax R
P

kax R
  (4.36) 

 

Which can be shown to match up well with the pressure distribution in the focal 

plane of a WFS focused source as shown in Fig. 4.28. The pressures zeros are then 

given by the zeros of the Bessel function. 

 

The 3dB down width the of the focal spot in the focal plane is given by Chen et al. 

(1993) as: 

 

3

3.232
dB

R
Width

ka
  (4.37) 

 

 

Fig. 4.28 RMS pressure distribution in dB through the focal point in the transverse direction (top) and 

range (bottom) for a monochromatic focused source f = 1000Hz at 1m with a 4m array. The black 

dots on the bottom plot shown the 1
st
 two minima as predicted by (4.38) 

λ/2 
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An analytical expression for the on-axis pressure of a focusing source is given by 

O’Neil (1949) and also by Lucas and Muir (1982) both of whom provide analytical 

expressions for the locations of the pressure minima in the focal plane. The solution 

by Lucas and Muir can be considered as an approximation of that given by O’Neil 

who formulates the locations of the minima as: 

 

2
2

1
2

n

R n
z

n R ka

 

 

  
       

 (4.38) 

 

Where the Rayleigh distance 
2 2ka   and n is any positive integer. R is the 

geometrical focus position and a is the apparent array aperture, given by b in Fig. 

4.33. These predictions match up well with the RMS pressure distribution for a WFS 

focused source shown by the black dots in Fig. 4.28. 

 

4.8 Phase response 

An interesting aspect of focused sources is that the phase response exhibits a shift of 

π radians with respect to a real source at the same position as the source crosses the 

focus point. This phase shift can be seen in Fig. 4.29. 

 

 

 

 

Fig. 4.29 Phase responses of a real source (Left) and a WFS focused source (Right) for f = 500Hz ΔLS 

= 0.125m  
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In optical literature it is commonly referred to as the phase anomaly (Born and Wolf, 

1999) but has also been applied for the assessment of acoustic focusing applications 

(Lucas and Muir, 1982) and can be seen in any wave-based focusing scenarios. The 

phase anomaly is the difference in phase between a real source at the source position 

and the source created by focusing waves to that same point. The ‘real’ source used 

for the focus anomaly is actually more like that of a plane wave but radiating as a 

point source (not a physically realisable source model) such that the phase is given 

as: 

 

,       when 0

,       when 0

kR R

kR R


 
 
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 (4.39) 

 

Where R is the distance from the focal point. This condition describes plane wave 

type propagation but with spherical wave fronts.  

 

The phase anomaly is useful for depicting the position of the focused wave field 

however it cannot be used for the determination of the focal point as it requires a 

priori information of the source position for its computation. As such the focused 

source position can be determined by the location of the RMS pressure maximum as 

will be discussed more in the following section. 

 

4.9 Position errors 

At high frequencies and with large array apertures, the acoustic focusing follows 

geometric laws, thus the focal position can be chosen and rendered accurately using 

a simple ray-based geometry and scaling the delays of the secondary sources 

respectively. For low frequencies and small array apertures however, significant 

diffraction effects occur causing a shift in the expected focal point. Such a 

phenomena has been demonstrated, and is well known in both the field of optics 

(Born and Wolf, 1999) and ultrasonics (O’Neil, 1949; Lucas and Muir, 1982; Makov 

et al., 1982) but has not been applied in the field of audio acoustics and the rendering 

of focused sources in wave field synthesis. This section presents the basic theory of 

diffraction-based focal point position errors and presents an analytical model based 
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on (Makov et al., 1982, 2008) for predicting the location of the pressure maximum 

on axis to the loudspeaker array. Fig. 4.30 demonstrates the difference in focal point 

position as a result of different focusing effects of the diffraction and geometric 

zones of focusing. 

 

Fig. 4.30 Diagrammatic interpretation of the focal shift phenomena (after Makov et al. (2008)). Line 1 

shows the geometrical focus, Line 2 shows the diffraction (without focusing) and Line3 shows the 

combined effect of Line 1 and Line 2 (diffractional divergence and geometrical focusing). 

 

4.9.1 Makov’s model 

The theoretical background for the so called focal shift is well documented in the 

optical literature and was first discussed for acoustic scenarios by (O’Neil, 1949) and 

was subsequently improved upon by (Lucas and Muir, 1982). These papers provide 

models that aim to predict the local pressure maximum corresponding to the position 

of the acoustic focus point, and formulate how this focus position differs from the 

intended geometric focal point. Both of these models describe and quantify the 

phenomenon using diffraction theory, however they both utilise a simplification of 

the system such that the resulting equations are only valid for cases where the 

aperture is large with respect to the wavelength. Makov et al. (1982) also present a 

model for predicting the position of the pressure maximum for a spherical focusing 

transducer with the aim of demonstrating how the focal shift phenomena varies due 

to non-linear affects, as a result of their work in the non-linear region, they also 

present a more accurate model for the linear case which was later revisited and 

expanded upon in (Makov et al., 2008). 
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Makov’s model for the focal shift of ultrasonic transducers was formulated for 

spherical focused transducers which consist of a plate that is curved such that the 

energy focuses onto a point, the position of which is dictated by the radius of 

curvature in a similar way to an optical lens. If the focusing lens is strong, i.e. there 

is a large initial wave front curvature, the lens behaves geometrically and the focus 

point can be predicted accurately, however when the initial wave front curvature is 

small, the lens tends towards the behaviour of a flat piston and thus there is little or 

no focusing present. These phenomena can be described well by using the Fresnel 

Number, well known in Optics (Born and Wolf, 1999).  

 

The Fresnel number of the spherical focusing transducer can be given as: 

    

2

F

a
N

R
  (4.40) 

 

with the geometry given in Fig. 4.31. 

 

 

Fig. 4.31 Geometry for deriving Makov analytical model focal shift in focusing transducers 
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The Fresnel number can alternatively be thought of as the number of half 

wavelengths that are contained within h such that it is given as: 

 

2
F

h
N


  (4.41) 

 

Where h can be expressed in terms of the aperture, a of the transducer and the 

geometric focal distance, R as: 
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h R c R R a

R
      (4.42) 

 

The focusing transducer can loosely be split into two regions corresponding to 

1FN  where the lens will be a strong wave front curvature and the lens behaves 

approximately geometrically. Alternatively for 1FN  the initial wave front 

curvature is weaker and the effect of focusing is weaker such that transducer tends 

towards the solution of a plane circular driver and the lens will not follow geometric 

laws, being affected more by the diffractional divergence as shown in Fig. 4.30, 

resulting in a focal shift and a broadening of the Q-factor of the rms pressure 

distribution. As can be seen from (4.40), the Fresnel number is controlled by both the 

radiated wavelength and the aperture, thus for low frequencies or small apertures the 

focusing effect is weaker and the focal shift phenomena becomes more prominent, 

conversely large apertures and higher frequencies exhibit focusing behaviour that 

can be easily predicted using geometric approaches. 

 

As (Lucas and Muir, 1982), the axial pressure can be given as: 

 

     
, , ,

j kz t
p r z t A r z e


  (4.43) 

 

Where the complex pressure amplitude,  ,A r z  along the lens axis can be 

determined by the parabolic approximation of the ordinary wave equation: 
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The boundary condition is then assumed to be that of a truncated Gaussian pressure 

distribution. From here Makov formulates the on axis pressure ratio where 0A  is the 

constant pressure amplitude across the transducer (assuming a uniform pressure 

distribution) as: 

 

 

0

0, 1 1
2 sin

1 2

F
A z N z

A z z

  
  

  
 (4.45) 

 

The focal point is defined as the value of z at the peak of (4.45). There is no direct 

solution to this equation however. Taking the derivative of this function and equating 

it to zero allows for the formulation of the pressure maxima as: 

 

cot( ) 1z X   (4.46) 

Where 
1

2
FN z

X
z

 
   

 

An exact solution of this transcendental equation is difficult to obtain therefore, in 

order to obtain an explicit formula for the focal shift of a given transducer, (4.46) can 

be re-written as: 

 
 

sin 2
cos

F

X X
X

X N

 
  
 

 (4.47) 

 

This can be expressed as a 3
rd

 order power series and taking only the significant 

terms can be expressed as: 

 

 2 2 2 224 3 4Fz N z z    (4.48) 

 

The solution to (4.48) is given by Makov et al as: 
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 (4.49) 

 

This result is useful as it allows the analytical prediction of the focal shift for a given 

transducer as shown in Fig. 4.32. When compared with previous formulae from other 

authors (O’Neil, 1949; Lucas and Muir, 1982) it proves to give better predictions for 

low Fresnel number lenses as it is based on the wave equation and can thus be 

considered an exact solution (when calculated numerically from (4.44)). The 

analytical approximation given in (4.49) is consequently very useful in the case 

described below for the determination of the low frequency errors in the position of 

WFS rendered focused sources.  

 

 

 

Fig. 4.32 Comparison of equations predicting the focal shift of focused transducers with a geometric 

focus of 2m. The blue trace is the exact solution given by (4.44), the red trace is the approximation 

thereof given by (4.49), and the black line is the prediction given by (Lucas and Muir, 1982; O’Neil, 

1949) 

 

4.9.2 Focal shift prediction for WFS focused sources 

Fig. 4.36 shows the pressure on axis to the loudspeaker array at different distances 

and Fresnel numbers. The peak of this RMS pressure distribution denotes the focal 
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point of the system, which in this case is at 3m. The black dashed line shows the 

maximum RMS pressure for each Fresnel number. Fig. 4.36 demonstrates how the 

focal point deviates from the geometrical focal point for Fresnel numbers below 

approximately 4. This can be corrected to some extent as described in the following. 

For now we seek to quantify this deviation from the geometric focus based on the 

above described formula. 

 

The model described in section 4.9.1 can be adapted to predict the case of a linear 

array of loudspeakers rendering a focused source as a result of the relative delays 

between the loudspeakers as is the case in WFS. The model is based on an amended 

geometry given in Fig. 4.33.  

 

 

Fig. 4.33 Geometry for deriving analytical model for focused source position errors 

 

Once again, the Fresnel Number can be given as the number of half wavelengths that 

can propagate within the distance, h between the lens and the aperture plane and is 

given by (4.41). For focusing applications using linear arrays of loudspeakers, h can 

be inferred from Fig. 4.33 as: 

 

 1 cosh R c R      (4.50) 

Where  
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 (4.51) 

 

Where a is the array aperture which is half of the length of the active loudspeaker 

array and R is the distance between the loudspeaker array and the intended focused 

source (also known as the geometric focal point). Combining (4.50) and (4.51), h can 

be expressed as: 

 
2

1
1

1

h R

a R

 
  
 

 

 (4.52) 

 

From this the Fresnel-Number, FN  can be calculated from (4.41) for a given 

wavelength,  . Then using (4.49) the focal shift of a WFS reproduced source can be 

predicted. 

 

The sound pressure in dB on axis for a typical WFS focused source at different 

frequencies is shown in Fig. 4.34 exhibiting a strong peak at the focus point.  

 

 

 

Fig. 4.34 Level in dB normalised to focal point for different frequency focused sources placed at 0m 

with the 4m loudspeaker array at -3m. Green: 1200Hz, Black: 900Hz, Red: 600Hz and Blue: 300Hz. 
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As the frequency is decreased, the position of this peak moves away from the 

geometrical focus and towards the loudspeaker array as expected. This behaviour is 

predicted accurately by (4.49) as shown in Fig. 4.35. 

 

 

 

Fig. 4.35 Makov prediction of focus position (Red) and WFS focused source position (Blue) 
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Fig. 4.36 RMS pressure in dB on axis, normal to the loudspeaker array. The dashed magenta line 

shows the pressure maximum corresponding to the focal point for each Fresnel number as predicted 

by (4.49), the black dashed line shows the actual position of the pressure maxima in the WFS 

reproduced wave field. The pressure is normalised to the focus point. The array is 4m long and the 

source is placed centrally, 3m in front of the array 

 

4.9.3 Correcting for the focal shift 

Using the formula described here it is possible to provide a correction for the 

position error of the rendered focused source such that the position of pressure 

maxima is the same as the intended geometric focus position. This is done by 

rearranging (4.49) and recalling that Maxz  is the ratio of the pressure maximum to the 

geometric focus ( Max Maxz z R ). 

2 2

3

2 72

F
Max

F F

R N
z

N N



 


 
 (4.53) 

 

Where FN  is the Fresnel number given by (4.41). Thus the correction in corrR  that is 

required to produce a pressure maximum at position defined by Maxz  can be given as: 
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So where, 
IntendedR  is the intended location of the source, the position to render the 

source to, 
RenderR  is given as: 

 

Render Intended CorrR R R   (4.55) 

 

Applying (4.54) and (4.55), the wave field produced by a 4m long array with a 

virtual focused source positioned 3m in front of it was modelled. The focus position 

was measured as the RMS pressure maximum on axis perpendicular to the 

loudspeaker array through the virtual source position. Fig. 4.37 shows the results of 

the simulation, with the focus point as predicted by the adapted Makov model from 

(4.49), the measured focus point from the WFS array and also the corrected focus 

point. The focus point data is plotted with respect to frequency rather than Fresnel 

Number for clarity. The data shows that the source correction function is successful 

in correcting for the focal shift phenomena up to approximately 500Hz. Below this 

frequency the improvements in the rendering begin to subside and errors in source 

position become large. It is apparent that the focal shift can only be corrected for to 

some extent as at very low frequencies, diffraction limits the possibility of focusing 

energy at all and therefore the focal point cannot be measured by a local pressure 

maxima. Correcting for the focal shift in this way has reduced position error at 1kHz 

of nearly 0.3m, suggesting the improvements are significant. 
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Fig. 4.37 Focal points as predicted by (4.49) (red trace), measured by RMS pressure maximum in 

reproduced wave field (black), corrected WFS focal points (blue) 

 

As the Fresnel number is frequency dependent, the focal shift will vary with 

frequency which means that for a broadband signal, the pressure maximum will be in 

a frequency dependent position, causing a smearing in the amplitude distribution 

around the focus region. Applying this correction to the position of the intended 

virtual source helps alleviate this focal shift effect for a given frequency and thus 

increases the Q-factor of the amplitude peak at the source position (i.e. the RMS 

amplitude peak will be in the same place across all frequencies). 
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Fig. 4.38 RMS pressure in dB on axis, normal to the loudspeaker array, the black dashed line shows 

the position of the pressure maxima in the WFS reproduced wave field exhibiting focal shift. The 

white dashed line shows the max RMS pressure of the corrected wave field. The pressure is 

normalised to the focus point. The source is placed centrally, 3m in front of a 4m long array 

 

Fig. 4.38 shows how the focal position of a focused source can be corrected for 

especially at low frequencies, although at very low Fresnel numbers (low frequency 

or short arrays) there are still limits on the ability of the loudspeaker array to focus 

the acoustic energy. 

 

4.10 Pre-echoes 

Inherent in the rendering of focused sources in WFS are the unwanted pre-echo 

artefacts that can cause spectral and temporal problems in the reproduced wave field. 

A pre-echo is defined as any energy that reaches the listener before the direct energy 

from the virtual source. Perceptibly these artefacts have been known to cause 

colouration or, ‘phasiness’ (Oldfield et al., 2010) of the virtual source, chirping 

(Geier et al., 2010) and temporal smearing; they can also introduce localisation 

errors as will be seen in the next chapter.  

 

Pre-echoes are caused by spatial aliasing, truncation and causality artefacts. Each of 

these spatial aliasing and truncation artefacts are also seen in non-focused WFS 
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sources but in this case they arrive after the direct energy and as such are often 

masked. Due to the time reversal nature of focused sources however the artefacts in 

this case appear before the direct energy and therefore cannot be masked. This makes 

them perceptibly relevant and consequently they should be characterised as 

demonstrated in this section. 

 

4.10.1 Causality effects 

Using a WFS focused source to create a real point source is physically impossible to 

achieve using an array of loudspeakers at a remote location as a real system cannot 

be non-causal as such there will always be causality artefacts in the reproduced wave 

field. These artefacts are a result of the requirement that the loudspeakers at the 

edges of the array are activated before those in the middle of the array such that the 

sound is focused. The physical outworking of these causality effects is that at any 

point in the room, the listener will receive sound from the edge loudspeakers before, 

or potentially at the same time, as the sound from the virtual source. The impulse 

response at a given location will contain energy from the pre-echo artefacts and also 

the direct energy from the source as can be seen in Fig. 4.39. 

 

 

Fig. 4.39 Narrowband impulse response at position  1 ,1m m  with a source at 0 ,0m m  , showing pre-

echo energy before t t   

Pre-echo region Direct energy region 

t t 

t t 
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Causality artefacts like this are highly dependent upon the listener position both in 

terms of level and also in terms of the duration over which they occur as seen in 

section 4.10.4. Another important parameter is the array shape and dimensions. If the 

array is very long and contains many secondary sources, the temporal difference 

between the pre-echo artefacts and the direct sound will increase and their effect will 

be magnified as described in the following section. 

 

4.10.2 Truncation 

As previously stated, the truncation of the secondary source array results in 

additional sources from the edges of the array which distort the reproduced wave 

field and reduce the area over which correct localisation can be expected. For non-

focused point sources, these artefacts appear after the initial wave front as can be 

seen in Fig. 3.24, but for a focused source the opposite is the case and the additional 

contributions from the edges of the array appear, before the direct energy, thus they 

constitute pre-echo contributions as shown in Fig. 4.40.  

 

Fig. 4.40 Time evolution of a narrow band un-windowed focused source at 0 ,0m m  , 0.125LS m  , 

with a 2m array exhibiting pre-echo/truncation artefacts. Top left: 3t ms  , Top right: 1.5t ms  , 

Bottom left: 0t ms , Bottom right: 1.5t ms  
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These artefacts can once again be reduced to some extent with the use of windowing 

as shown in 3.5.3.1. 

 

4.10.3 Spatial aliasing 

The abovementioned causality effects are more problematic for a broadband scenario 

containing significant energy at frequencies above the spatial aliasing frequency as 

shown in Fig. 4.41, where the pre-echo contributions from each loudspeaker arrive at 

discrete time intervals. This results in a kind of comb filtering, causing colouration in 

the wave field and as a result they are particularly problematic both physically and 

perceptually.  

 

 

Fig. 4.41 Time evolution of a broadband focused source at 0 ,0m m   with 0.125LS m  . The spatial 

aliased pre-echo artefacts are visible and arrive at the listener position before radiation from the 

primary source. Top left: -3ms, Top right: -1.5ms, Bottom left: 0ms, Bottom right: 1.5ms 

 

Plotting the impulse response recorded at a single location in the reproduction space 

as shown in Fig. 4.42 demonstrate that spatial aliasing pre-echoes constitute a special 

case of causality artefacts where each loudspeaker signal is received at the listener 
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position at a discrete point in time, resulting in potentially unpleasant comb filtering 

and colouration as was seen in Fig. 4.25. 

 

 

Fig. 4.42 Broadband impulse response at position  1 ,1m m with a source at 0 ,0m m   produced with a 

4m array with a 12.5% window, showing pre-echo energy before t t   

 

4.10.4 Direct to pre-echo ratio 

To determine the severity of pre-echo artefacts it possible to calculate the ratio of the 

direct-to-pre-echo energy for a given listener position using a geometrical approach. 

The energy that arrives at or after 0t   is a result of the primary source and provides 

only the correct localisation cues for the focused source. If the listener is in line with 

the virtual source and the edge loudspeaker, it is possible that the loudspeaker 

radiation reaches the listener at 0t   as well but this is not considered to be a pre-

echo as it will reinforce the focused source. 

 

It can be seen from Fig. 4.43 that regardless of the listener position 
Lx , the 

contribution from the primary source at position, 
Sx  will always arrive after the 

contribution from the secondary source.  

Pre-echo region 

Direct energy  

region 

t t 

t t 
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Fig. 4.43 Pre-echo source geometry, showing the primary source to listener distance is always greater 

than the secondary source to listener distance 

 

From this, it is possible to separate the pre-echo contributions from the focused 

source contributions. If the focused source is generated at 0t   then the 

contributions from the focused source will reach the listener at t t   where:  

 

L St
c


 

x x
 (4.56) 

 

Therefore any contributions at the listener location that arrive before t t  can be 

attributed to pre-echoes or causality artefacts and any energy after t can be 

considered to be direct energy from the focused source. The ratio of the energy 

arriving before and after t  results in the direct to pre-echo ratio which can be given 

as: 
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 (4.57) 

 

 

Applying this across the listening array results in a map of the pre-echo artefacts for 

a given source geometry as shown in Fig. 4.44. 
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Fig. 4.44 Direct to pre-echo energy ratio in dB for a narrowband (un-aliased) focused source at 

0 ,0m m   with a 4m array. Left: Un-windowed, Right: Windowed (half-Hanning, 25% of the array). 

The White dashed line shows the theoretical focused source view angle. The contours show the areas 

where the ratio is above 10, 15, 20 and 25dB. 

 

Fig. 4.44 shows the difference between the windowed and un-windowed array 

producing the focused source. The windowed array in the right hand plot exhibits a 

wider zone where the direct to pre-echo energy ratio is higher. So according to the 

precedence effect (see section 6.3.1.8), the localisation in this case, should be better. 

 

A similar work has also been performed recently by (Song and Kim, 2011; Song et 

al., 2012). They claim that the levels of the pre-echo artefacts can be minimised for a 

specific listener location, by carefully selecting which loudspeakers should be active, 

a similar proposal was also suggested by (Wierstorf et al., 2010). The problem with 

this method is that WFS is inherently designed to be a multi-listener volumetric 

reproduction system and thus optimising it for a specific location may not be 

preferable in all cases. As was seen in section 4.2, the choice of active loudspeakers 

for the rendering of a focused source can affect the direction in which the source 

points and as described in section 4.9 could cause errors in the rendered source 

position, thus introducing this method of pre-echo suppression may result in 

directional sources pointing in the incorrect direction.  

 

Another potential method for reducing the negative effects of pre-echoes could be to 

apply a frequency dependant windowing to the loudspeaker array such that the 

higher frequencies have a longer window than the lower frequencies. The longer 
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window results in a shorter active array so the temporal difference between the pre-

echo and the direct energy would be reduced. The advantage of this method is that 

the colouration resulting from the spatially aliased pre-echoes can be reduced which 

is subjectively the most significant attribute of pre-echo artefacts. Using a shorter 

array at higher frequencies would result in a decrease in localisation accuracy as the 

wave front curvature would be incorrect and would introduce a spatial variation in 

frequency of the reproduced wave field, but the effects resulting in the changing in 

colouration as the listener moves around the listening space or if the source itself was 

moving would be reduced.  

 

4.10.5 Localisation effects 

The problem with the creation of focused sources is that, regardless of the listening 

position, the radiation from the secondary sources will reach the listener at the same 

time (if the primary source is on a direct line between the secondary source and the 

listener) or more generally, before the contribution from the intended primary source 

as can be seen by the wave field produced by a typical broadband focused source 

shown in Fig. 4.46.  

 

 

Fig. 4.45 Full band WFS demonstrating pre-echoes as a result of spatial aliasing for a focused source 

at  0 ,0m m  
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For normal (non-focused) WFS sources the opposite is true, with reproduction errors 

reaching the listener after the arrival of the direct sound (the virtual source) as shown 

in Fig. 4.46. Thus this case is not problematic in terms of confusing localisation cues 

but only in terms of colouration. 

 

 

Fig. 4.46 Full band WFS demonstrating echoes as a result of spatial aliasing for an non-focused 

source at  0 , 2m m  

 

Using the direct-to-pre-echo ratio it possible to make a rough prediction of the 

localisation quality of a focused source at a given listener position using the 

precedence effect. The precedence effect (Wallach et al., 1949) provides some 

explanation into the localisation of sounds in rooms or in environments where there 

are reflections present and states that humans localise sound based on the first 

arriving wave front providing that subsequent reflections arrive before 40ms after the 

direct sound and that the subsequent reflections are not more than ~10-15dB louder 

than the preceding sound. Thus the direct to pre-echo ratio map can help show 

regions of the listening space where these criteria are met. 

 

This theory is of particular importance for the analysis of pre-echoes in WFS 

reproduction as the intention is that the listener localises the audio based not on the 
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first wave fronts which correspond to pre-echoes from the individual loudspeakers 

but rather on the later arriving energy from the virtual source. Thus the level of the 

pre-echoes needs to be significantly lower than that of the virtual source such that the 

localisation will be correct and not blurred. From Fig. 4.44 it can be seen that at 

different positions in the reproduction space the relative level of the direct sound and 

the pre-echo contributions is different. As the time difference between the direct 

sound and pre-echoes is less than 40ms, according to the precedence effect it can be 

expected that the localisation performance of the system will be good for the regions 

where this ratio is greater than 15dB and less good outside of these regions. The map 

of the direct-to-pre-echo ratio demonstrates therefore that the view angle of 

localisation approximates the geometrical view angle shown by the white lines on 

Fig. 4.44. This can also be seen from the results of the localisation tests described in 

chapter 5. It is also apparent from Fig. 4.44 that with the windowed array the 

localisation angle of the source increases as the plot exhibits a wider range of angles 

in which the direct-to-pre-echo ratio is higher. 

 

Pre-echoes are most visibly obvious at frequencies above the spatial aliasing 

frequency as can be seen when comparing the narrowband case in Fig. 4.40 with the 

broadband case in Fig. 4.41. Pre-echoes are also perceptually more problematic 

above the aliasing frequency, for transient sounds and for sources reproduced with 

large arrays, as will be discussed in more detail in section 4.11. It has been shown 

(Geier et al., 2010) that aliased pre-echo contributions can result in chirping, 

smearing of transients, the perception of multiple sources and localisation confusion. 

The effects of spatial aliasing artefacts on the localisation of WFS virtual sources is 

still an open area of research, however when the direct-to-pre-echo ratio is plotted 

for the same source geometry as Fig. 4.44 but using a broadband source, the effects 

of the spatial aliasing can be seen clearly. 
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Fig. 4.47 Direct-to-pre-echo energy ratio in dB for a broadband (aliased) focused source at 0 ,0m m   

with a 4m array. 

 

Fig. 4.47 demonstrates that the direct-to-pre-echo energy ratio is significantly lower 

than for the un-aliased case, suggesting that the precedence effect would cause errors 

in source localisation unless the listener was very close to the source or off axis from 

the source. This is congruous with the qualitative findings from Geier et al. The 

particularly low ratio of direct and pre-echo contributions may be due to the very 

large number of low amplitude pre-echoes rather than fewer pre-echoes with a very 

large amplitude, therefore localisation may not be as impaired as could be expected, 

which informal listening test suggest. The increase in spatial aliasing however will 

result in more localisation blur as pointed out by (Wittek, 2009). 

 

4.11 Focused sources using large arrays 

Unlike with non-focused sources, focused sources are not best produced by infinitely 

long arrays. In the case that the array is extremely long, the radiation from the pre-

echoes not only cause temporal problems but also result in distortion in the wave 

front, manifesting as faint ripples as can be seen in the left hand plot in Fig. 4.48 

even when a suitable windowing function is applied to the array. The effect of the 

ripples is relatively small and occurs only with arrays over about 15m long. Longer 
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arrays do however result in a larger view angle as is evident from Fig. 4.48 and thus 

are able to reproduce focused sources with a more accurate wave front curvature. 

 

Fig. 4.48 800f Hz focused sources at  0 , 1m m  with 0.125LS m  . Left: 100m array, Right 4m 

array 

The temporal artefacts produced by focused sources rendered with large arrays are 

particularly problematic due to the longer time discrepancy between the sound from 

the virtual source and the reproduction artefacts from the ends of the array (pre-

echoes/truncation effects). 

The reproduction of focused sources on a larger scale in large rooms or with long 

loudspeaker arrays can exhibit more severe errors due to the longer time discrepancy 

between the sound from the virtual source and the reproduction artefacts from the 

ends of the array (pre-echoes/truncation effects). To alleviate these problems it has 

been suggested by some authors (Wierstorf et al., 2010; Song et al., 2012) to use 

only a subset of loudspeakers for the reproduction. The problem with doing this for 

focused sources using large arrays, is that the application is usually for large 

listening spaces where there will be many people present and thus reducing the 

number of loudspeakers used for the reproduction, reduces the area over which 

correct localisation can be expected as can be inferred from Fig. 4.1 and seen from 

Fig. 4.48. It can also be expected that reducing the number of loudspeaker used for 

the reproduction of the focused source will result in a decrease in the positional 

accuracy of the source at low frequencies due to the focal shift phenomena described 

in section 4.9. 
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As the array gets larger the temporal difference between the direct energy and the 

pre-echo energy increases and as such eventually the precedence effect will result in 

people localising the pre-echoes rather than the direct source itself. The limiting 

factor of this can be determined using the direct-to-pre-echo ratio as described in 

section 4.10.4. The limiting temporal difference for the precedence effect is ~40ms 

which means that the difference in distance between the listener at
Lx  and focused 

source, 
Sx  and the listener and the end of the loudspeaker array

0x  must obey 

(4.58). 

0

max 40L S Lt ms
c

  
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x x x x
 (4.58) 

 

This means that as long as 
0 13.71L S L m   x x x x the precedence effect will 

prevent the pre-echoes from being localised instead of the intended source (assuming 

that the direct energy from the focused source is 10-15dB higher that the energy from 

the pre-echoes. 

Fig. 4.49 shows that for most of the listening space, the relative delay between the 

pre-echoes and the direct sound is within the required 40ms. However, towards the 

edges of the array the delays are large and thus listeners may localise the individual 

pre-echoes and they may consequently be perceived as separate sources. It can be 

seen however that the in the region between the white lines on Fig. 4.49, the relative 

level between the direct and pre-echoes is high enough not to trigger the precedence 

effect and the delay between the respective contributions is lower than the 40ms, this 

helps explain why (Geier et al., 2010) found that the performance of large arrays for 

producing WFS focused sources was not as bad as had previously been expected. 
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Fig. 4.49 Narrowband (un-aliased) focused source at  0 ,0m m produced with a 16m array with

0.125LS m  . Top: Direct-to-pre-echo-ratio in dB. Bottom: Delay in ms between direct sound and 

pre-echo contributions  

4.12 Multiple focused sources in the scene 

Due to limitations in the view angle of focused sources, care has to be taken in the 

design of a reproduced audio scene/soundscape. There could arise the possibility 

where the listener could be in the divergent region of one focused source yet be in 

the convergent region of another focused source. Where this is the case, problems 

arise in terms of the loudness ratio between the two sources. The source of which the 

listener is in the convergent region of will be louder than it was designed to be and 

the localisation cues will be incorrect. This problem is difficult to negate without 

knowledge of the listener position (Melchior et al., 2008). However the scene can be 

designed to suit the most likely listener position and if necessary focused sources can 

be removed and instead rendered as non-focused point sources at a very small 

distance behind the loudspeaker array such that localisation is not impeded by the 

listener being in the convergent/shadow region. The direction in which the focused 
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source points can also be changed using the source selection criteria presented in 

section 4.2 such that the area in which it radiates into will best match the optimum 

listener position. 

 

 

 

Fig. 4.50 Limited listening area as a result of multiple focused sources each with an individually 

defined view angle based on Fig. 4.1 and the source selection criteria in section 4.2 

 

Fig. 4.1 earlier in this chapter demonstrates diagrammatically how the region in 

which all sources can be perceived accurately can be very small for sound scenes 

where there are multiple focused sources. If a greater number of sources are 

positioned in the scene there is a higher chance of the listener being in the 

convergent region of at least one of the sources. This situation is difficult to prevent 

if many sources are needed by the scene designer. If the region over which the 

source can be accurately localised can be increased, this can be less of a problem. 

One such technique of improving the focused source localisation view angle has 

been shown by (Oldfield et al., 2010) and will be demonstrated in chapter 5 of this 

thesis. 
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4.13 Moving focused sources 

For moving focused sources, the source selection criteria as described in section 4.2 

is of particular importance, as the source position is changing constantly with respect 

to the listeners, as such the listeners effectively move into the shadow region of the 

source where the wave field is convergent, thus as the source moves past the listener, 

the location of the sound source will suddenly flip providing an unusual and 

unnatural listening experience. 

 

As shown in Fig. 4.51 there are four principle methods that can be adopted for the 

rendering of moving sources. The secondary sources can be selected such that: 

 

1) The source points in the direction of travel 

2) The source points at the centre of the room  

3) The source points perpendicular to the direction of travel 

4) The source points towards a tracked listener 

 

Depending on the source selection protocol used here the listener will experience a 

different sensation of the focused source and may experience the source coming 

from the incorrect location not to mention errors in the Doppler Effect. 

 

Fig. 4.51 Diagrammatic representation of the four primary methods of moving source rendering 
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For most practical WFS systems focused source are set to always point at the middle 

of the room (or a predefined area for optimal listening/sound field reproduction), in 

this case, as the source crosses the centre of the room or optimisation point the 

direction of the source will flip 180˚ and the sources on the opposite side of the array 

will become active. This secondary source flip usually takes the form of a 

fading/panning function between the sources such that the perception of the 180˚ flip 

is minimised for the listeners, but can be perceptually problematic in some cases. 

 

The advantage of 1) is that there is no need to fade between loudspeakers on the 

other side of the array because it is always the same loudspeakers reproducing the 

source with additional sources becoming active gradually as the source moves. The 

disadvantage of this method is that the level normalisation is more complex and 

unwanted artefacts resulting from the switching on and off of the loudspeakers as the 

source moves in the form of clicks and pops can be undesirable and must be dealt 

with properly by using a gradual ramping function. A further disadvantage of this 

method is that the probability of a listener being in the shadow zone of the focused 

source is very high unless they are at either extremities of the listening space. Being 

in the shadow zone causes errors in the localisation of the source for static sources as 

described in chapter 5 and for moving sources there will also be amplitude errors 

introduced as the listener is in the shadow zone. These disadvantages mean that 

option 2) is often the best method of source selection for moving focused sources. 

 

In some situations it may however be beneficial to employ option 3) for the source 

selection if for example the listener(s) location remains constant and the source 

moves in front of them like modelling a sound source on a stage as shown in Fig. 

4.51. 

 

Option 4) of pointing the source at a tracked listener (Melchior et al., 2008) will 

generally produce the best listening experience for the listener but as WFS is 

specifically aimed at scenarios where a volumetric approach to spatial sound 

reproduction is needed, it is less desirable to track listeners as this optimises the 

sound field for one point/person only. 
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It is not just important from a localisation perspective that moving focused sources 

are rendered correctly; a large problem with moving focused sources is also that the 

pre-echo artefacts that cause colouration at the listening position. These can vary 

greatly with listener location and as the source will be moving, the timbre of the 

source will constantly change for a given listener. It is difficult to alleviate these 

problems except by employing a low-pass filter cut off at the aliasing frequency 

(which clearly results in decreased timbral fidelity). As will be seen in chapter 6 

however, the problems associated with these colouration artefacts are actually less 

disturbing when the reproduction takes place in a real (non-anechoic) room and 

therefore the anti-aliasing filters are generally not employed. 

 

In summary, the secondary source selection for moving focused source is dependent 

on the reproduction scenario, most commonly the sources are optimised for the 

centre of the room but for the case of sources moving in front of a stationary 

audience it could be better to employ a source selection protocol such that the source 

always points perpendicular (or at a constant angle) to the direction of travel.  

 

4.14 Summary 

In this chapter, a set of driving functions has been derived from first principles 

demonstrating, monopoles, dipoles and pistonic focused sources. Where possible the 

sources were derived using a 2D representation of the primary source sound field 

such that the radiation characteristic match best the dimensionality of 2.5D synthesis. 

For this to be possible a frequency correction term is applied to the source driving 

functions to remove the spectral differences between 2D and 3D sources from the 

rendering. 

 

The rendering of focused sources in WFS has been analysed with special attention 

paid to the spatial aliasing artefacts which near to the focal point are almost non-

existent. This area of un-focused energy in the wave field has been quantified for the 

first time allowing the constraints of techniques such as local sound field synthesis to 

be quantified. Also analysed is the error in the position of the focused source with 

respect to the geometric focus. This error is greater at lower frequencies and smaller 
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loudspeaker arrays where diffraction becomes significant and prevents the system 

from focusing the energy at the geometric focal point. The effect has been modelled 

and it has been shown how to some extent this error can be corrected for by adding 

the required positional offset in the rendering. 

 

This chapter has also re-visited and demonstrated the effects of truncation on the 

reproduced wave field for focused sources, and thus showed how these effects, 

combined with causality artefacts and spatial aliasing result in pre-echoes in the 

listening space. 

 

Also briefly discussed are moving focused sources and the issues with the rendering 

thereof, the reproduction of focused source using long arrays and rendering multiple 

focused sources in a single sound scene. 
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5 Perceptual Aspects of Focused Sources 

 

 

 

 

 

 

 

 

5.1 Introduction 

This chapter describes a series of subjective tests used to evaluate some of the 

perceptual qualities of focused sources in wave field synthesis. There have been 

many subjective tests described in the literature, studying various perceptual 

attributes of WFS but as yet not much has been done specifically on the topic of 

focused source reproduction yet this is perhaps one of the most subjectively striking 

attributes of WFS and indeed one of the attributes of sound field synthesis 

techniques that constitute a significant advantage over traditional spatial audio 

techniques mentioned in Chapter 2 of this thesis. 

 

The tests covered in this chapter include studies of distance and angular localisation 

in the horizontal plane for focused sources at different distances from a fixed listener 

position. A second test demonstrates how it is possible to increase the range of 

listener positions for which a focused source can be accurately localised by including 

the first order image source into the WFS rendering. For completeness, this chapter 
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also reviews the key published work in this area, summarising the significant results 

found therein. 

 

5.2 Literature review 

The first published subjective tests involving focused sources in WFS was done by 

Verheijen (1998). Verheijen used just two subjects for his localisation tests and 

adopted a simlar test as used by Hartman in his experiments on sound localisation in 

rooms (Hartman, 1983), processing the results based on the run standard deviation of 

the subjects’ responses. The test stimuli were 2s bursts of unfiltered pink noise. The 

stimuli were deliberately unfiltered so as to include the effects of spatial aliasing in 

the results. For his tests the subjects were allowed to freely move their heads as they 

localised each of the sources at the 25 test locations. Verheijen’s test included both 

focused and non-focused sources and his conclusion was that there was no 

appreciable difference in the accuracy of the subjects’ responses for focused sources 

as compared to non-focused sources. Due to hardware constraints, Verheijen’s 

experiments did not employ the pre-filtering term k j , hence the sources would 

have had a low frequency emphasis. Verheijen repeated his experiments with a low 

pass filter to remove the effects of spatial aliasing and found that there was no 

appreciable difference in the results, suggesting that localisation is not affected much 

by pre-echo artefacts as is apparent from the investigation described in chapter 4 of 

this thesis. Verheijen noted that the results for focused sources exhibited a higher 

standard deviation (uncertainty) and therefore localisation is more reliable for normal 

WFS point sources. He does however warn against drawing rigid conclusions from 

these results due to the limited number of participants involved. Consequently there 

is scope for further investigation into the localisation of focused sources which is the 

motivation for the experiments described in this thesis.  

 

Subsequent to the tests by Verheijen other experiments were done by Wittek (2009). 

Wittek’s tests were designed to determine the effect of wave front curvature upon 

distance localisation and formed part of the work of developing his technique for 

enhancing the perceptual aspects of WFS by optimised phantom source imaging 

(OPSI) (Wittek et al., 2007b). Once again, for Wittek’s tests, the subjects were able 
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to move their heads during the localisation tests. The subjects were asked to localise 

several test sources rendered using WFS and also real sources using discrete 

loudspeakers. All of the sources were close to the listeners as at larger distances the 

effects of wave front curvature are negligible. The tests were carried out in an 

anechoic chamber with stationary listeners with the sources placed perpendicular to 

the listener so to maximise the difference in the binaural cues. 

 

Wittek’s localisation experiments were not specifically analysing focused source 

preproduction although he did find that spatial aliasing causes a reduction in the 

locatedness (Rumsey, 2001) of WFS sources (including focused sources) and that 

WFS sources offer much better localisation-ability than stereo phantom sources but 

were not better than real sources. 

 

Preliminary work by Spors commented briefly on some of the perceptual attributes 

of focused sources (Spors et al., 2009). This paper specifically mentions the effect of 

pre-echoes and presents some initial qualitative findings from a small set of 

subjective tests. Listeners were asked to describe the perceptual differences between 

WFS focused sources and real sources with specific attention to the colouration 

artefacts and changes in spatial impression. It was noted that listeners experienced 

audible artefacts as soon as the listening position was moved away from the central 

location. The artefacts that were noted were comb filtering, smearing of transients 

and chirping, it was noted that head movements had a large effect on the artefacts 

which was most likely due to the lack of a room used for the dynamic binaural 

resynthesis techniques (Lindau et al., 2007) they used for the tests. This is an 

approach whereby the secondary source signals are convolved with the HRTF 

corresponding to their position in space. The listener is tracked and the reproduction 

is done over headphones. The advantage of this technique is that it is possible to 

seamlessly switch between different rendering systems and very large systems can 

be tested without the need to set up hundreds of loudspeakers. Significantly they also 

mention the particular problems encountered when rendering focused sources using 

very large arrays as described in section 4.11. 
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Subsequent work from the same research group (Geier et al., 2010) again used a 

dynamic binaural resynthesis technique (Lindau et al., 2007) for the tests. These 

experiments provided a more detailed perceptual analysis and more concrete 

conclusions although much of the experimental work was qualitative. They used a 

panel of 25 expert listeners who noted that colouration, chirping, the perception of 

multiple sources and incorrect localisation when not in the central listening position. 

It was noted from these experiments that there is a region in the reproduction space 

that is perceptually artefact free but that this area was in fact very small. They also 

noted that the magnitude of these perceptual artefacts was greater for larger arrays 

although this effect was not as pronounced as expected. 

 

As a result of these findings there has since been some attempts to improve the 

perceptual aspects of focused sources with the work by Wierstorf et al. (2010) and 

Oldfield et al. (2010). Wierstorf proposed some perceptual enhancements 

specifically aimed at the reproduction of focused sources using large scale arrays, 

pointing out that it could be perceptually beneficial to only perform the rendering 

using a subset of the available loudspeakers. As has been described in chapter 4 of 

this thesis, this has the undesirable effect of reducing the definition of the rendered 

source such that the focal spot is wider which also means that the distance at which 

the source is rendered to will be inaccurate. Oldfield’s work is described in this 

chapter and aimed at improving the range of angles at which a focused source would 

be accurately localised by introducing the first order virtual reflections into the 

rendering and showed that indeed the so-called view angle of a focused source could 

thenceforth be increased. 

 

5.3 Source colouration 

One of the major problems with focused source reproduction is the colouration 

caused in particular by spatial aliasing artefacts. As shown in Chapter 4, there can be 

large discrepancies in the frequency response of the source at different listening 

positions. These colouration artefacts can become particularly perceptible when 

listeners move throughout the listening space and if the reproduction environment is 

acoustically dead. In the extreme case of an anechoic chamber many of the test 
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subjects who took part in the tests described below commented upon an apparent 

‘phasiness’ as they walked around the listening space and even noticed the timbral 

character of the source stimulus change when it was moved to a different position in 

the room. These colouration artefacts are averaged out to some extent when the 

reproduction takes place in a more reverberant environment and pilot test studies 

revealed that in an environment such as the listening room system described in 

section 3.6.4, people no longer notice these colouration effects even with slow and 

fast moving sources. These findings are confirmed by the finite difference time 

domain models described in the next chapter where the effects of the reproduction 

room are analysed in the temporal, spatial and spectral domain. 

 

Colouration causes problems as listeners move around the room as it becomes more 

apparent that the source is not behaving like a real source behaves in terms of the 

distance attenuation both in the high and low frequency region. 

 

Some work has been done to try and alleviate some of the colouration introduced, for 

example, when using multi actuator panel (MAP) loudspeakers. These flat panel 

loudspeakers need additional frequency correction because of the complex 

interaction between the drivers at different points on the panel and consequently, 

complex multi-channel filtering algorithms have been presented for this purpose 

(Corteel et al., 2004; Spors et al., 2005) 

 

For focused source reproduction however it is difficult to perform a spectral 

correction as the coloration is listener position dependent and therefore any 

improvement in one location will have a negative effect in another region of the 

listening space. However work done by Drumm and Oldfield (2013) shows how the 

frequency response can be corrected at a given receiver position by adopting a 

recursive filtering process. This approach could be applied to a small wireless 

microphone attached to a listener and the frequency response then corrected for that 

location. 
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5.4 Pre-echoes 

The perception of pre-echo artefacts has been dealt with briefly in Chapter 4. There 

have been some recent attempts to categorise the perceptual effects of pre-echoes, 

based on the temporal separation of the pre-echoes from the direct energy and the 

difference in level between these artefacts and direct energy. Approaches have been 

presented in (Bianchi et al., 2012), (Song et al., 2012) and also in this thesis (see 

section 4.10.4). The approach adopted by Bianchi et al is interesting because it 

utilises the masking curves used as part of spatial audio coding algorithms. 

 

The perceptual tests by Verheijen (1998), described above suggest that the effect of 

pre-echoes in the localisation of focused sources is not as great as would be 

expected, on the contrary the effects of pre-echoes, specifically from the spatially 

aliased contributions from the loudspeaker array seemed not to have a significant 

effect on the localisation performance of the subjects. To some extent, this has also 

been shown by Geier et al. (2010) who noted that when using the very large arrays 

for the rendering of focused sources, the effects artefacts perceived (which would be 

caused by pre-echoes) were not as severe as were expected.  

 

The experiments described below include the effects of pre-echo artefacts to varying 

degrees as the source is moved around the listening position. When the source-

receiver angle is greater the pre-echo component will be more significant and 

therefore affect the localisation performance.  

 

5.5 Localisation test 

This section describes a localisation test that was performed using the WFS system 

described in section 3.6.2 where the angle of the focused source with respect to the 

listener was changed. The purpose of this experiment was to test what range of 

angles a focused source could be accurately localised in and to act as a benchmark 

for the testing of subsequent improvements to the rendering techniques. 
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5.5.1 Introduction 

First formally proposed by Verheijen (1998) it is often suggested that there is a 

certain angle for sources produced by WFS over which correct localisation can be 

expected, outside of this angle, errors in the wave front and consequently errors in 

localisation can be expected. This angle can be illustrated for both focused and non-

focused sources by the diagram in Fig. 5.1. The extent of this window or view angle 

is dictated by the dimensions of the array and the position of the virtual source and 

consequently decreases if windowing/tapering is applied to the edges of the arrays as 

described in section 3.5.3.1. 

 

 

 

Fig. 5.1 Objective view angle for focused and non-focused WFS sources 

 

The view angle defines the area over which the wave field will be accurately 

reproduced. The question that these subjective tests attempt to answer is: At what 

listener angle the localisation-ability of a focused source breaks down, i.e. what is 

the perceptual view angle of a focused source? A subjective test was performed in 

the anechoic chamber at the University of Salford with 10 participants. 25 sources 

were placed around the listeners and at 4 different radii. All of the sources were 

pointing directly straight ahead in the +ve x-direction, with the listener facing in the 

–ve x-direction. Thus the results provide data as to the polar response of localisation 

of such focused sources as the angle between the source and the listener changes 

with each source location.  

 

The knowledge of the localisation view angle of focused sources helps in the 

definition of a sound scene as it enables the creator to know in which areas of the 

listening space the localisation will be correct. The results from the test also show 

how sources are localised when the listener is in the shadow region of the source i.e. 
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in between the source and the loudspeakers. A listener placed the ‘wrong side’ of a 

focused source like this will receive confusing and conflicting auditory cues with the 

wave field having the shape of a source radiating from within the reproduction space 

but a reversed propagation direction (a situation similar to the scattered sound from a 

convex reflector), this makes correct localisation difficult. Results show that as the 

angle of the focused source to the listener increases, the localisation accuracy 

decreases in a manner similar to the geometric case shown in Fig. 5.1.  

 

The implication that focused sources can only be perceived accurately from in front 

of the source limits the use of such sources as it reduces the listening area for correct 

localisation and thus limits the number of listeners that will experience an accurate 

auditory scene. If, for example, two focused sources were placed propagating in 

different directions the only place where both sources could be accurately perceived 

would be between the two virtual sources such that the listener will be in front of 

both sources (as shown in Fig. 5.2), thus the possibilities of using multiple focused 

sources is greatly reduced. It is therefore important that the effects of focused 

sources as ‘viewed’ from all angles be determined.  

 

 

Fig. 5.2 Limited listening area when rendering multiple focused sources. The blue area depicts the 

shadow zone of the virtual sources 
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From the results it is possible to plot a 360° polar response graph of the localisation 

accuracy of focused sources. This can act as the benchmark from which 

improvements to the rendering of focused sources can be made (as described in 

section 5.6), it also provides a useful tool for sound scene creation as it shows where 

focused sources will be valid within the listening space. Anecdotal evidence from the 

test suggests that some subjects could discern an ‘intimate’ source but could not 

accurately localise it when the ‘wrong side’ of the source; the perception of such 

sources changes with listener orientation with some subjects localising image 

sources from behind the active loudspeaker arrays perpendicular to the direction they 

are facing due to the lateral energy from this direction. Also of interest is the area in 

the reproduction space where the listener transitions from being in front to being 

behind the virtual source, categorising this enables an analysis of the effective 

listening area of a focused source and the determination of the focused source view 

angle. The results provide interesting grounds for further research into the 

reproduction of focused sources to improve the evoked perception from all sides of 

the reproduction space. The possibility of using different directivity patterns of the 

source and employing windowing functions to the active loudspeaker arrays is 

suggested; this may decrease the sharpness of the virtual source but it is hoped will 

increase the listening area and consequently allow a greater number of users to 

experience the focused source(s).  

 

5.5.2  Test Description    

The listening tests were performed in an anechoic chamber with a cut off frequency 

of 100Hz. Listeners were sat in the middle of the chamber surrounded by a 3m × 4m 

rectangular array of 104 loudspeakers as shown in Fig. 5.3. An acoustically 

transparent sheet was set up in front of the loudspeakers to make a square ‘room’ 

measuring 2.75m × 2.75m surrounding the listener, the purpose of the sheet was to 

ensure a natural response from the subjects rather than being affected by the visual 

cues introduced by loudspeakers. The acoustically transparent sheet also helps 

reduce the effects of the visually unnatural environment of the anechoic chamber. 

Additionally, the creation of a virtual room in this manner provided the correct 
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environment to test the effects of adding the first order image sources as described in 

section 5.6.1. 

 

The loudspeakers were 1.45m from the floor such that they were ear height for the 

participants when sat on the stool at the listener position. 

 

Fig. 5.3 Test set up for initial localisation test 

 

5.5.2.1 Audio System 

The audio system used for the WFS reproduction consisted of 2 RME HDSPe MADI 

64 channel sound cards controlled by a single dual core PC. Each of the two MADI 

signals (64 channels encoded in a digital format down a BNC cable) from the sound 

cards were converted into 8 ADAT signals using two RME ADI-648 modules; each 

of these 8 ADAT signals were then converted into audio signals using RME ADI-

8DS modules. These were amplified by Cloud CX A850 8-channel power amplifiers. 

The loudspeakers were Kef UniQ Ci100QR normally using as ceiling loudspeakers 

but chosen for this application because of the resulting stable phase and spatial 

responses due to the dual concentric design. More details of the hardware setup can 

be found in section 3.6. 

 

The audio signals for each channel were controlled from a multichannel API .dll 

wrapped in MATLAB® function.  Each of the test signals were pre-rendered as a 
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multichannel .wav file with each audio channel being sent to its corresponding 

channel on the soundcard to eliminate the need of real time processing. 

5.5.2.2 Test procedure 

Each test participant sat in the anechoic chamber with a laptop linked to the main 

control PC via a network cable so all the amps and control PC were outside the 

anechoic chamber to remove additional sound sources. The test participant 

controlled when the next source would be played and then clicked the location on the 

localisation map on the screen of the laptop where they perceived the source to be 

coming from and recorded with a slider the perceived distance of the source.  

 

5.5.2.3  Reporting the Results 

In order to retrieve the results of the test a user interface was constructed in 

MATLAB®. The user was asked to position the sound source on a circle on a 2-

dimensional Cartesian plane and was then asked to report the distance of the source 

using a slider. The user interface is shown in Fig. 5.4. 

 

 

Fig. 5.4 User interface for subjective tests 

By clicking on the circumference of the circle, the angular error in each participant’s 

response was kept the same. For the distance perception, the letters A-Z were 

Source Number: 1/120 
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included on the slider to help the participants scale their results. A line was put up in 

the listening space with the distances A-F marked on to provide the participant with 

an anchor to aid their distance evaluation. Labeling the line with letters rather than 

with numbers was decided to prevent people from recording the source distance 

based on their pre-conceived judgment of distances and so they felt at liberty to 

choose letters up to Z even though it was only A-Z that were visible in the room. 

 

5.5.2.4 Test Panel 

The initial test panel consisted of 10 participants, half of which were experienced in 

listening to surround sound and had taken part in sound localisation tests previously. 

The test took on average 14 minutes to complete, this was kept to a minimum to 

prevent listener fatigue affecting the results. Participants were told to face forward 

but were at liberty to move their heads during the test and were given a short training 

session of 5 sample sources to familiarise themselves with the test procedure. 

 

5.5.2.5 Test Sources 

The test was done using both noise bursts and also a speech stimulus. Broadband 

noise is a good test signal as it achieves optimal localisation performance as it offers 

a full range of cues to the listener especially with a short attack and decay ramp 

applied such that the transients provide additional information. Noise, however is 

only an approximation of a real signal and would not likely be the source type 

listened to must often by such a system. Additionally a speech source was also used 

for the tests as this constitutes a more ‘real world’ source.  

 

The noise source consisted of two bursts of unfiltered pink noise of 1 second 

duration with a 0.4s silence in between, the onset and offset transients of the signal 

were 0.1s long. The envelope of the noise source is shown in Fig. 5.5. 
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Fig. 5.5 Envelope of the pink noise test signal 

 

The speech signal was a short sentence taken from the Hearing In Noise Test (HINT) 

(Nilsson et al., 1994): 

 

“The yellow pears taste good” 

 

In order to achieve useful results each source was reproduced identically such that 

the objective view angle was kept the same despite the distance from the loudspeaker 

array changing, this meant selecting a different set of loudspeakers for each source. 

By doing this each source could be considered identical and only the listener position 

with respect to the source was changed each time despite the listener remaining in 

the same location. 

 

Small changes in the source position were introduced such that each source would be 

in the middle of the chosen loudspeakers to prevent the asymmetrical effects 

described in section 4.2. The source selection criteria insured that the geometric view 

angle was 70˚ for each source. Nominally the chosen angles were every 7.5º but 

spread over both sides of the circle such that the angular separation was 15º with a 

7.5º shift at 180º. 

 

The test consisted of 100 virtual sources positioned in circles around the listener at 4 

different radii (0.45m, 0.6m, 0.75m and 0.9m). The geometry of the test source and 

the loudspeakers is shown in Fig. 5.6. 
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Fig. 5.6 Virtual source geometry and secondary source selection for constant view angle of 70˚ 

 

The direction that the focused sources point in was chosen to be in the +ve x-

direction for all angles, thus only the array in front of the listener was active for each 

source. This meant that for each source position, it was the angle with respect to the 

listener that was changing but without the test participants having to move. Despite 

only the front array being active, the other loudspeakers however remained in place 

and connected up so participants would not show a bias in their responses to the 

front of the room. 

 

The source order was randomised for each listener to prevent any bias to specific 

results and from listener fatigue having an overall effect on the results. For each of 

the virtual sources the number of active loudspeakers was chosen such that the view 

angle of was 70°. A cos
2
 window is applied to the last 20% loudspeakers in the array 

as suggested by Start (1997).  
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5.5.3  Results 

5.5.3.1 Noise 

The first test source signal was the pink noise burst, for which the results are shown 

below for the 4 different source radii. The results are presented as reported angle 

versus the true virtual source angle for each source radius.  

 

 

Fig. 5.7 Reported angle versus true angle of all 10 subjects for noise sources at a radius of 0.45m (top 

left), 0.6m (top right), 0.75m (bottom left) and 0.9m (bottom right). The error bars show the standard 

deviation of the reported angles. 

 

The results show that for small virtual source angles most subjects localise the 

source correctly and the standard deviation of the responses is small. There is 

however a large standard deviation, especially at larger source-listener angles, this is 

due to a number of outliers resulting from the conflicting cues present when 

attempting to localise focused sources outside of the geometric view angle. It can be 

seen from Fig. 5.7 for example that some people managed to localise the sound 
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correctly even when they were substantially outside of the correct view angle, whilst 

others localised a source coming from the front array. Because of this high standard 

deviation the median was chosen to make an average as this reduces the effects of 

the outliers and can give a more faithful representation of the trend of the results. 

Plotting the median lines of all distances on the same set of axes demonstrates how 

the view angle of localisation changes with distance. Fig. 5.9 shows the data points 

of the median results per angle with the circles, triangles, diamonds and stars 

corresponding to the median scores per angle for source distances 0.45m, 0.6m, 

0.75m and 0.9m respectively.  A 5
th

 order polynomial curve was fitted to the data 

points in a least squares sense and is plotted as the lines on the graph for clarity. Fig. 

5.9 shows how the view angle of localisation accuracy is not constant with source 

distance but increases with listener distance.  

 

It can also be helpful to view the data in the form of angular error for each source 

position as shown in Fig. 5.8. 

 

Fig. 5.8 Localisation angle error versus true angle of all 10 subjects for noise sources at a radius of 

0.45m (top left), 0.6m (top right), 0.75m (bottom left) and 0.9m (bottom right) 



Chapter 5: Perceptual Aspects of Focused Sources  173 

 

 

 

Fig. 5.8 exhibits a flat region for smaller virtual source angles corresponding to the 

region over which the localisation error is smallest. As the virtual source distance is 

increased, the range of angles over which this flat region extends increases, showing 

that the subjective view angle increases with increasing source distance. Plotting the 

median results data with a 5
th

 order polynomial curve fitting show the relationship 

between the results of each source distance as shown in Fig. 5.9. 

 

 

Fig. 5.9 Left: Median localisation error versus true angle, Right: Reported angle versus true angle. 

Both with 5
th

 order polynomial curve fitting for the noise source at different distances. Blue 0.45m, 

Red: 0.6m, Black: 0.75m, Green: 0.9m. In each case, the line is the best fit line and the markers 

denote the median values 

 

5.5.3.2 Speech 

The same test was performed using the speech source, for which the same set of 

curves can be plotted for comparison between the two source signals. 
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Fig. 5.10 Reported angle versus true angle of all 10 subjects for speech sources at a radius of 0.45m 

(top left), 0.6m (top right), 0.75m (bottom left) and 0.9m (bottom right). The error bars show the 

standard deviation of the reported angles. 

The results for the speech source reveal a similar trend to that of the noise source, with the subjective 

view angle increasing as a function of source distance. It is apparent when comparing the results for 

the different source types that the speech source results in a greater standard deviation at 

larger angles (as shown in Fig. 5.11), suggesting that participants found it harder to 

localise the speech source than the noise source. This is in congruence with research 

in this area (Blauert, 1997; Wittek, 2009). 
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Fig. 5.11 Standard deviation of localisation results versus absolute virtual source angle for both test 

signal types. Blue: Noise at 0.6m, Red: Noise at 0.9m, Black: Speech at 0.6m, Green: Speech at 0.9m. 

 

Fig. 5.11 not only demonstrates the increased uncertainty in the localisation of 

speech with respect to noise but also demonstrates how the standard deviation in the 

participants’ responses increases as the absolute source angle increases. 

Interestingly, when the source is positioned at 180˚ (behind the listener), most of the 

participants localised the source as coming from in front of them and thus the 

standard deviation is decreased in this region. This front to back confusion is 

common in localisation tests as the source is placed in the so-called cone of 

confusion (see Fig. 2.3b). The reason for this is the very limited number of cues 

available to judge between sounds coming from in front or behind as described in 

section 2.2.1.  
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Fig. 5.12 Localisation angle error versus true angle of all 10 subjects for speech sources at a radius of 

0.45m (top left), 0.6m (top right), 0.75m (bottom left) and 0.9m (bottom right) 

 

Once again, the curve fitted median results are plotted on the same axes such that the 

relationship between the different test conditions can be compared more easily 

revealing the same trend as for the results with the noise source. 
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Fig. 5.13 Left: Median localisation error versus true angle, Right: Reported angle versus true angle. 

Both with 5
th

 order polynomial curve fitting for the speech source at different distances. Blue 0.45m, 

Red: 0.6m, Black: 0.75m, Green: 0.9m. In each case, the line is the best fit line and the markers 

denote the median values 

 

5.5.3.3  Distance perception 

The results from the distance perception test reveal that there are large errors in the 

localisation for all virtual source distances. For each of the source distances 

evaluated, the minimum error occurs at approximately 180° where the listener is 

actually in the convergent region of the focused source, which is rendered behind 

them. This is most likely due to the increased amplitude of these sources with respect 

to the others as the listener is in the convergent rather than the divergent region. 

 

The finding concurs with other research in this area (Wittek, 2009), that the wave 

front curvature alone does not provide enough auditory cues for an accurate 

localisation. For an accurate distance perception, listener movement is an important 

cue. For these experiments, the listeners were seated at a fixed position throughout 

the tests and are hence relying upon a limited set of distance cues (as described in 

section 2.2.3). Primarily the localisation cues here are wave front curvature and 

small spectral changes resulting from reflections from the pinna. Fig. 5.14 shows the 

results of the distance perception test using the noise source. Plotting the mean lines 

on these plots reveals that most subjects failed to accurately identify the distance 

although most subjects did in fact place the source in front of the loudspeaker array 

in each case. 
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Fig. 5.14 Results from the distance perception tests, for source distances of 0.45m (top left), 0.6m (top 

right), 0.75m (bottom left), 0.9m (bottom right) with a noise source. 

 

The same is true for the distance localisation results for the speech source as can be 

seen in Fig. 5.15. There is again no clear trend and no obvious difference between 

participants’ ability to localise the source depth for different virtual source distances. 
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Fig. 5.15 Results from the distance perception tests, for source distances of 0.45m (top left), 0.6m (top 

right), 0.75m (bottom left), 0.9m (bottom right) with a speech source. 

 

Despite providing some visual markers within the listening space, distance 

perception is often helped by the associated visual cues from the source. Thus 

localising a source within a room where there is no visual stimulus and no reflections 

constitutes an unusual scenario and may cause people to localise sources from 

behind the array as would be the case for traditional listening tests. 

 

5.5.4 Discussion 

These results of the horizontal localisation test show that the subjective view angle is 

not always the same as the objective view angle where the wave field can be 

considered to be reproduced correctly; this is unsurprising as humans don’t 

necessarily need to have all of the correct cues in order to be able to localise 

correctly (hence even stereophonic reproduction is very effective). The subjective 

view angle for localisation however changes with distance from the source. The 
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localisation accuracy of a focused source decreases at smaller distances from source 

to receiver.  

 

As the distance increases the rate at which the view angle increases with distance 

decreases, presumably asymptotically towards a value governed by the length of the 

array. Due to the size of the anechoic chamber it was not possible to render focused 

sources much further away from the listener than 0.9m therefore this could not be 

tested. This finding is congruous with the results shown in the previous chapter, that 

the direct-to-pre-echo ratio (shown in Fig. 4.44) exhibits an increase in the angle 

over which this ratio is in excess of 15dB as the distance from the source increases. 

This suggests that the localisation improves as the direct-to-pre-echo ratio increases. 

 

The standard deviation of the reported results from all listeners is greater for the 

speech source than for the noise, this is most likely due to the transient nature of the 

speech signal emphasising the pre-echoes from the loudspeaker array and causing 

localisation confusion. The effect of pre-echoes on the noise stimulus doesn’t seem 

to be as obvious, although the standard deviation in the noise case is also high 

suggesting confusion of the participants. This confusion is unsurprising as the cues 

received from a focused source at an oblique angle become less like those from a 

real source, and as the listener moves round to the side of the focused source the 

relative strength of the pre-echoes increases with respect to the direct energy from 

the virtual source, thus the localisation accuracy decreases; although some 

participants were still able to localise the source correctly even at large source-

listener angles which is why the standard deviation of the results increases at larger 

angles. 

 

A polar plot of the angular accuracy of the reported angles can be a useful 

representation of the results and demonstrates well the increase in view angle with an 

increase in source-listener distance. The radial axis in this case is the angular 

accuracy which is given by (5.1).  

 

 
Angular Acuracy = 1

180

errormedian  
 
 
 

 (5.1) 
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Fig. 5.16 Polar plot of localisation accuracy for a noise source 

 

 

Fig. 5.17 Polar plot of localisation accuracy for a speech source 
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The polar plots show how the angular accuracy deteriorates as one moves to the rear 

of the focused source, it also demonstrates how there is a wider ‘beam’ for the larger 

source distances. This is seen both for the noise and for the speech sources in Fig. 

5.16 and Fig. 5.17 respectively. The optimal polar response would be constant 

localisation accuracy of unity for all angles (i.e. an omnidirectional response), 

physical constraints of focused sources mean this is unlikely but subjective 

improvements can be made, as shown in section 5.6.  

 

Assuming correct localisation to be where the angular error is ±10º it is possible to 

define a subjective view angle for focused sources from the results at each distance 

as can be seen in Fig. 5.18 where the ±10º error limits are plotted as black dotted 

lines. 

 

 

Fig. 5.18 Best fit of median results from all participants at all source angles for noise. Blue 0.45m, 

Red: 0.6m, Black: 0.75m, Green: 0.9m.  

 

From Fig. 5.18 the perceptual view angle for focused sources is given in Table 5.1. 

 

Distance Subjective View angle 

0.45m -16˚ → 23˚ = 39˚ 

0.6m -28˚ → 25˚ = 53˚ 

0.75m -31˚ → 36˚ = 67˚ 

0.9m -43˚ → 47˚ = 90˚ 

Table 5.1 Changes in subjective view angle with listener distance noise 
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These results demonstrate that the geometric view angle (70˚ in this case – see Fig. 

5.6) is indeed a good approximation of the subjective view angle for moderate source 

distance. When the source is very close to the listener localisation seems to be more 

difficult and this is reflected in the particularly small subjective view angle.  

 

The same procedure can be applied to the results from the test using the speech 

source as shown in Fig. 5.19 and Table 5.2. 

 

 

Fig. 5.19 Best fit of median results from all participants at all source angles for speech. Blue 0.45m, 

Red: 0.6m, Black: 0.75m, Green: 0.9m. 

 

Distance Subjective View 

angle 

0.45m -19˚ → 37˚ = 56˚ 

0.6m -30˚ → 38˚ = 68˚ 

0.75m -47˚ → 43˚ = 90˚ 

0.9m -40˚ → 45˚ = 85˚  

Table 5.2 Changes in subjective view angle with listener distance speech 

 

The results from the speech signal are similar to those of the noise experiment, 

exhibiting a similar trend. The one anomaly in this case is that view angle at 0.75m is 

greater than at 0.9m, this is a result of the abrupt nature of the imposed error region 

which was assigned being unable to allow for fluctuations in the median of subjects’ 

responses which are particularly prevalent in the speech results due to the higher 

standard deviation. The method of deriving the subjective view angle is fairly 

arbitrary in that the range of allowed angular errors (±10º) could be defined as any 
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angle depending upon the required accuracy, however the results do show how the 

view angle changes with distance and provide a definition of the subjective view 

angle that can be used as a means of measuring the success of any attempt to 

increase the view angle as described in the next section. 

 

5.6 Improving the subjective view angle 

It is apparent from these results that there is a need to broaden the subjective view 

angle of focused sources rendered using WFS. Although for these tests only one 

array was active, thus it could be considered a worst case scenario, there is still need 

for improvement as there is a large region where localisation is incorrect. Various 

methods have been suggested for improving the limitations of focused sources as 

described by Melchior et al. (2008) who suggested using a listener tracking system to 

update the WFS driving function such that the listener was always in the zone of 

correct localisation. Additionally Caulkins et al. (2003) suggested the inclusion of 

image sources to improve the localisation of such sources and to make the sensation 

more akin to natural listening conditions although they did not present any subjective 

tests to substantiate this idea, the purpose of the following is to substantiate this 

claim.  

 

5.6.1 Adding first order image sources 

This section presents an initial test performed in order to test the image source 

hypothesis, 10 subjects participated using the same setup as described above. All the 

sources were placed at 0.75m from the listener but with two different rendering 

scenarios which were compared with the normal WFS focused source. For the two 

rendering scenarios the same focused source was produced but with the four 

principal first order image sources included as the room model (Allen and Berkley, 

1979). These sources were added in the rendering as normal WFS point sources, 

corresponding to the position and weighting of the reflections from the four walls as 

shown in Fig. 5.20. 

 

The image sources were added with the correct delay applied to the source to 

account for the extra distance that would be travelled by the image source. The two 
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scenarios that were tested differed only with respect to the absorption coefficient of 

the ‘walls’. For the first scenario this was set to 0.5 and for the second it was set to 

0.8. The location of the image sources was governed by the distance of the focused 

source from the acoustically transparent curtain such that the curtain acted as a wall 

in terms of visual and auditory perception.  

 

 

Fig. 5.20 Focused source (green) with the four first order image sources (red). The dashed line shows 

the virtual room from which the position of the images are calculated 

 

As the test took place in an anechoic chamber there was no conflict between 

synthesised and real reflections. 

 

5.6.1.1 Results 

Again, the results from the ten participants are shown as scatter plots with the 

median line and error bars. As for the initial test, both noise and speech signals were 

used. 

Noise 

Once again the noise stimulus was two bursts of pink noise with the amplitude 

envelope shown in Fig. 5.5. 
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Fig. 5.21 Reported angle versus true angle for a focused noise source at 0.75m from the listener with 

images sources (Left: 0.5   Right: 0.8  ) 

 

Plotting the curve fitted median results for the two image source scenarios and the 

normal WFS focused source show a large increase in the area of correct localisation 

of the focused source with added image sources as shown in Fig. 5.22 with a 5
th

 

order polynomial fitted to the data once again. 

 

 

Fig. 5.22 localisation error versus virtual source angle (left) and reported angle versus virtual source 

position (right) for noise source at 0.75m from the listener (Blue: 0.5   Red: 0.8  , Black: no 

image sources) 
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Distance Subjective View angle 

Normal -16˚ → 23˚ = 39˚ 

Images08 -72˚ → 64˚ = 136˚ 

Images05 -108˚ → 113 = 221˚ 

Table 5.3 Changes in subjective view angle with listener distance noise 

Speech 

Plotting the same set of curves for the speech source reveals a similar increase in the 

area of correct localisation as shown in Fig. 5.23 and Fig. 5.24. 

 

 

Fig. 5.23 Reported angle versus true angle for a focused speech source at 0.7m from the listener with 

images sources (Left: 0.5   Right: 0.8  ) 

 

 

Fig. 5.24 localisation error versus virtual source angle (left) and reported angle versus virtual source 

position (right) for speech source at 0.7m from the listener (Blue: 0.5   Red: 0.8  , Black: no 

image sources) 
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If the same error limits are applied, the subjective view angle with the inclusion of 

first order images sources can be seen in Table 5.4. It should be noticed that there is 

a greater variation in the results when adding the first order image sources for both 

the speech and noise stimuli, thus the strict criterion of ±10° as the allowed error 

limits for the definition of the subjective view angle has to be relaxed slightly as 

there are points where the median line has an error greater than ±10° but then moves 

back within these error margins at a larger source angle. Thus the definition of the 

subjective view angle here is defined by the greatest angle at which the line crosses 

the ±10° boundary without coming back again within these limits. 

 

Distance Subjective View angle 

Normal -47˚ → 43˚ = 90˚ 

Images08 -83˚ → 72˚ = 155˚ 

Images05 -102˚ → 99˚ = 201˚ 

Table 5.4 Changes in subjective view angle with listener distance speech 

 

5.6.1.2 Discussion 

It can be seen from these results that the addition of the principal first order image 

sources to the rendering of a focused source greatly widens the view angle. With the 

image sources with an absorption coefficient of 0.5, the subjective view angle 

increases to about 221° for noise and 201° for speech which corresponds to a 82% 

increase for noise and 55% for speech. It can be seen from Fig. 5.23 however that 

with the increased amplitude of the images sources, people began to localise the 

image sources rather than the focused source itself. The reason for this is due to the 

very low level of the direct energy from the focused source at angles of 60 - 90°. 

This means that with the image sources set at the higher level the lateral image 

source begins to dominate the localisation. This is less of a problem with the image 

sources set with an absorption coefficient of 0.8, whilst localising the image sources 

leads to an error in localisation, the error is less than at the same angles with no 

image sources. It could be argued that as the positions of the image sources are 

related to the actual source location, the errors will less disturbing and when 

combined with listener movements will give greater localisation accuracy as the 
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listener puts the whole ‘picture’ together, so the method can be considered 

advantageous. Further investigations will assess the validity of this method with 

listeners permitted to move around the space.  

 

Again the standard deviation of the reported results is high. This is caused by the 

conflicting cues and people making localisation errors due to the pre-echoes and in 

this case the image sources. Front to back confusion also causes a larger than 

expected standard deviation in the results especially at 0°, where the ILD and ITD 

cues are the same for a source at 180° except for some spectral differences from 

shadowing of the pinna. These spectral differences can’t be used for localisation in 

this case as the direct energy comes only from the front loudspeaker array, thus the 

front to back confusion can be an even greater problem. For the image source test, 

energy from the rear loudspeaker array reproducing one of the image sources can 

also cause people to localise sources mistakenly from the rear. 

Differences between the noise and speech sources are surprisingly small. It was 

predicted that rendering the image sources for a speech signal would be more 

effective as the transients in the source would provide more localisation cues and 

draw attention to the image sources. Also humans are very accustomed to listening to 

people talking in a room, where there will be real reflections, thus it was predicted 

that there would be a cognitive expectancy of how the source should sound based on 

previous experience of listening to people speaking in small rooms, i.e. 

subconsciously expecting a certain reflected energy pattern. However it seems that 

the effect of the image sources on the noise is equally as effective as with the speech 

source, suggesting that the addition of the image sources works well for both 

transient and more steady state signals. 

 

5.6.2 Multi-band WFS approach 

A multi-band approach was also postulated and piloted during the subjective test. 

The principle was to split up the WFS source file into its high and low frequency 

components and render the low frequency with the rear loudspeakers and the high 

frequency content from the front loudspeaker array. This concept is illustrated in Fig. 

5.27. Both the high and low frequency sources are rendered to the same location with 
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the idea that for any source angle the listener will be in the divergent region of one of 

the sources. The cut-off frequency was set at 500Hz, the principle was to separate out 

the different localisation methods to see if the brain could use different cues to 

localise the source at the different angles around the head. It was hoped that by doing 

this there would be enough localisation cues at all angles to localise the source. The 

localisation accuracy in this case does come at the cost of colouration however, thus 

this method would be more useful for an application where the listeners were 

stationary such that the detection of these colouration artefacts would not be as 

apparent. 

 

Fig. 5.25 Diagram of the split frequency source concept, the red array renders the red (low frequency 

source) and the green array renders the red (high frequency source) at the same position 

 

5.6.2.1 Results 

The spit source experiment again shows an increase in the subjective view angle (as 

shown in Fig. 5.26 and Fig. 5.27) although there is an increase in angular error which 

is roughly proportional to the true angle of the source suggesting that this approach is 

not valid or at least needs some improvement before it can become a viable solution. 
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Fig. 5.26 Reported angle versus true angle for a split frequency speech source with. Blue: Standard 

rendering, Red: Split source rendering, Back: Split source rendering with 1
st
 order images ( 0.8  ) 

 

 

 

Fig. 5.27 Reported angle versus true angle for a split frequency noise source with. Blue: Standard 

rendering, Red: Split source rendering, Black: Split source rendering with 1
st
 order images ( 0.8  ) 

 

A polar response showing the four new rendering methods is shown in Fig. 5.28 for 

noise and Fig. 5.29 for speech and reveals the relative merits of the different 

techniques. 
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Fig. 5.28 Polar plot of angular accuracy for the 4 new rendering methods for noise 

 

 

Fig. 5.29 Polar plot of angular accuracy for the 4 new rendering methods for speech 
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5.6.2.2 Discussion 

These polar plots show the data with a 5
th

 order polynomial curve fitting applied to 

the data. The results demonstrate that the scenario with the images sources with an 

absorption coefficient of 0.5 has the greatest view angle but the split source with 

images also performs well, especially at orthogonal angles. It could be postulated 

that having image sources with an even lower absorption coefficient might be 

beneficial, however experience of listening to the system during the pilot test phase 

revealed that as the level of the image sources increased, the locatedness (Rumsey, 

2001) of the source decreased such that it is difficult to position the source at a 

specific location. 

 

5.7 Conclusions 

This chapter has described some of the interesting perceptual properties of focused 

sources in WFS. It has highlighted some of the key experiments and results found in 

the literature. The chapter also describes a localisation test that was performed in 

order to determine the subjective ‘view angle’ of focused sources. Results from this 

test demonstrate that the subjective view angle is a function of virtual source 

distance; decreasing for sources very close to the listener. This chapter has also 

shown that the inclusion of the first order image source in the rendering of a focused 

source can dramatically increase the subjective view angle, although the level of the 

reflections needs to be sufficiently low so as to insure that the listeners don’t localise 

the images over the direct sound. A multi-band approach was also proposed, 

rendering two sources for each virtual source location with the high frequencies from 

one direction and the low frequencies from the other, such that the listener would be 

in the divergent region of one of the source at any given location, it was hoped this 

would provide enough cues to improve the localisation over a wide range of angles. 

However, results suggest that this technique introduces too many colouration 

artefacts and the standard deviation of the results is too great to consider it a viable 

improvement to focused source rendering. The work described here can also be 

found in (Oldfield et al., 2010). 
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6 Focused Sources in Compromised 

Reproduction Scenarios 

 

 

 

 

 

 

 

 

6.1 Introduction 

As has been seen from the preceding chapters, wave field synthesis is a spatial sound 

reproduction which offers a very accurate representation of sound scenes. However 

there are strict requirements upon the system, namely that the loudspeakers should 

be setup at ear level as a continuous array surrounding the listener. Secondly the 

reproduction room should ideally be source-free as dictated by the Kirchhoff-

Helmholtz equation; this includes any scattering objects in the space as the resulting 

reflections approximate an acoustic source. These conditions are rarely met in real 

WFS systems and the respective reproduction environments and as such it is 

important to analyse the effect of not adhering to the requirements on the reproduced 

sound field. This chapter will analyse some of the errors of WFS sound fields in non-

ideal reproduction situations. The errors that will be covered are those associated 

with the reproduction room, errors as a result of elevated loudspeakers and the effect 
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of scattering objects in the reproduction space. All of these errors are more critical 

for focused sources as they are generally rendered close to the listeners who have a 

clear frame of reference for the source as it has a tangible location within the room. 

The close proximity of the source to the listeners means that any errors are more 

keenly felt and as such should be characterised and if possible, corrected for. 

 

Room Effects 

The fundamental principles of wave field synthesis demand that the reproduction 

volume be source free and thus theoretically WFS systems should be installed in 

anechoic environments where no reflections/sources are present. For several 

practical reasons this is rarely the case apart from test/research systems such as the 

one described in section 3.6.2. Consequently there are several errors associated with 

the reproduction of sound fields in real rooms resulting from the reflections from the 

room’s boundaries and objects therein. Investigations by Gauthier and Berry (2007) 

show experimental data of sound field distortion as a result of room effects on their 

WFS system and Wittek (2009) in his thesis  made some brief observations on the 

real reflections from focused sources and the corresponding effect on the reproduced 

wave field but other than these publications there has been relatively little attention 

to objective and subjective effects of room reflections on the practical use of wave 

field synthesis systems. Work has however been done to try and alleviate these 

effects by using active control techniques (Corteel and Nicol, 2003; Gauthier and 

Berry, 2006; Spors et al., 2004a). WFS is well suited to these techniques as there is 

such a large number of sources available for controlling the sound field in the room. 

In fact some of the very earliest papers on WFS were specifically focused on the 

topic of controlling the sound field and acoustics of the reproduction room  

(Berkhout et al., 1993; Berkhout, 1988), many other active control techniques have 

also been presented, an overview of some has already been described in section 

3.7.1. Most of the techniques presented offer rudimentary control in the 2D plane 

that the WFS system operates in. This can be problematic as room reflections and 

scattering off objects happen in three dimensions requiring that an infinite number of 

loudspeakers be placed on a continuous surface surrounding the reproduction space 

in order to accurately control the entire sound field and eliminate the temporal and 

spectral errors resulting from these reflections. There are also problems associated 
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with the number of transducers required to sample the sound field such that the 

necessary corrections can be determined and applied. 

 

This chapter demonstrates the usefulness of the finite difference time domain 

(FDTD) method for predicting the sound field produced by a WFS system as part of 

a given room. Running the model in both free-field conditions and as part of the 

room enables the acoustic effects of the room to be quantified; this presents a 

significant advantage when designing a system as it provides an estimation of the 

amount of absorption needed in the reproduction room for sound field reproduction 

of sufficient accuracy. The model not only allows arbitrary room geometries but also 

enables the absorption profiles of the room’s surfaces to be changed allowing 

optimisation for a given application. Results show that there is significant 

degradation in the synthesised sound field spatially, temporally and with respect to 

frequency when the reproduction takes place in a room as opposed to free field 

conditions (as the WFS definition dictates). The positioning and amount of 

absorption in the room is consequently crucial to a successful WFS system unless 

active room compensation is employed but this presents practical difficulties and 

significant additional computation complications.  

 

Elevated Loudspeakers 

In many WFS systems (as with the system described in section 3.6.5) it is not 

possible to position the loudspeakers at ear height surrounding the listener due to 

visual requirements such as the inclusion of projection screens in the reproduction 

environment. The consequence of this is that the rendered source position will be 

different to the intended source position. This is particularly problematic for focused 

sources where the source is rendered close to the listener and small changes/errors in 

position are more noticeable. 

 

Scattering Objects 

Also covered in this chapter is the effect of scattering objects on the reproduction of 

focused sources. Scattering objects within a room are common in real listening 

environments and for real source radiation and consequently the human auditory 

system is good at interpreting the auditory scene and localising sources even in these 
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scenarios. It could thus be argued that it is not necessary to analyse the effects of 

scattering on the sound field (assuming the sound field is accurately rendered) as the 

situation is approximating real listening conditions anyway. For focused source 

reproduction however there are additional considerations for the scattering of the 

sound field as the scattering object may be in the convergent region of the focused 

source and may therefore have a tangible effect on the rendering of the said source. 

This chapter concludes with an analysis of the scattering effects of objects both in 

the convergent and divergent region of a focused source. The scattering from a rigid 

sphere is initially considered followed by the scattering introduced by more complex 

objects using an FDTD approach. A method for correcting the effects of this 

scattering using time reversal techniques is also presented. 

 

 

6.2 Finite difference time domain (FDTD) method 

It is difficult to create an analytical model that can predict the performance of a 

system including the reflections from boundaries in the room, which means that real 

reproduction scenarios are hard to predict. This section presents a finite difference 

time domain (FDTD) model that can be used to predict the sound field produced by a 

given system either in an anechoic environment or when used in a real room 

(Oldfield et al., 2009; Drumm and Oldfield, 2010). The model described here allows 

the arbitrary assignment of room geometry (Drumm and Lam, 2007) as well as the 

application of frequency dependent absorption characteristics to the surfaces and 

objects within the room. As the modelling is done in the time domain, it is easy to 

produce a visualisation of the waves propagating through the room enabling the 

determination of the directions of particularly problematic reflections. Consequently 

it can be used to determine the effects that the room has on the reproduced wave 

field in the temporal, frequency and spatial frequency domains, thus making it a very 

powerful tool for the analysis of WFS systems.  

 

6.2.1 FDTD Theory 

The FDTD method has attracted substantial interest in the last decade for modelling 

complex acoustic wave propagation situations. The technique was originally 
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developed by Yee (1966) to solve Maxwell’s equations for electromagnetic wave 

propagation through isotropic media by approximating derivatives by finite 

differences and has since been adapted and applied to acoustic propagation scenarios 

(Botteldooren, 1995; Maloney and Cummings, 1995).   

 

6.2.1.1 Staggered grid 

Yee’s classic method for simulating electromagnetic wave propagation uses spatially 

and temporally staggered grids where electric and magnetic fields are stored at 

interleaved locations.  The acoustic FDTD method on the other hand uses spatially 

staggered grids of pressure and particle velocities, as shown in Fig. 6.1. Multiple 

pressure generators/sources (e.g. loudspeakers) and surfaces can be placed within 

this grid and hence the interaction of waves with scatterers and each other can be 

predicted in the time domain.  

 

The acoustic implementation of FDTD considers sound propagation as two coupled 

equations (6.1) and (6.2) 

 

1v
p

t 


  


 (6.1) 
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where p is the acoustic pressure, v is the particle velocity and ρ and K are the density 

and bulk modulus of the medium respectively. Equations (6.1) and (6.2) can be 

expressed as centre difference equations (6.3), (6.4), (6.5) and (6.6) for the velocities 

in each orthogonal direction and pressure respectively where n is the time step and i, 

j and k represent the spatial grid location index in each Cartesian direction (x, y, and 

z). 
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The half steps in the equation indicate that the pressure and velocity grids are 

interleaved in a ‘staggered grid’ arrangement. Hence via a leap-frog algorithm the 

pressure at a given time step is calculated from the previous pressure and adjacent 

velocities and conversely the velocity calculated from previous velocity and adjacent 

pressures. This principle can be represented for a simple 1 dimensional case 

diagrammatically as Fig. 6.1. 

 

 

 

Fig. 6.1. The ‘staggered grid’ representation of the FDTD algorithm 
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6.2.1.2 Stability 

The temporal and spatial grid size  as well as the wave speed imposes limits on the 

stability of the FDTD algorithm which can be related to the Courant number 

(Maloney and Cummings, 1995; Taflove and Hagness, 2000) as follows. In order for 

the algorithm to be stable the condition in (6.7) must be upheld, where s is the 

Courant number, c is the wave propagation speed Δt is the temporal spacing and Δx 

is the spatial separation (assuming a uniform grid in all Cartesian directions), N is the 

number of dimensions in the model. 

   

1 
  
 

c t
s

x N
 (6.7) 

  

6.2.1.3 Perfectly matched layer 

In order to implement FDTD in practical software application there has to be limits 

to the FDTD medium to insure that there is no scattering or reflections back from the 

terminations of the medium causing errors in the prediction. This problem can be 

greatly reduced by implementing a theoretically reflection-free boundary around the 

medium based on modified FDTD equations which include anisotropic absorption and 

pressures. A practical implementation of this principle can be realised by progressively 

increasing absorption at the boundaries using a technique detailed in the literature as 

perfectly match layers (PML) (Berenger, 1994; Yuan et al., 1999). A PML is 

necessary especially in models such as the one described here where the boundaries 

such as walls etc. have absorbing characteristics as leakage through the walls would 

cause unwanted reflections that would propagate back into the room being modelled. 

 

6.2.1.4 Source Type 

Another potential source of undesirable scattering in FDTD affecting the accuracy of 

the prediction is caused by the source itself. There are principally, three possible 

source types that can be used in FDTD modelling, hard sources, soft sources and 

transparent sources. Hard sources are the most basic sources; the principle here is 

simply to set the pressure at a given grid location using some kind of time dependant 

function such as a sinusoid or a Gaussian pulse etc. This means that the pressure or 
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velocity at the node is not controlled by equations (6.3) - (6.6) but are rather 

controlled by the source function. The problem with this simplistic source is that the 

source itself will scatter incident waves in the grid. Consequently so called soft 

sources are sometimes used which add pressure to the grid rather than actually 

setting its value. These sources allow sound to propagate freely through the source 

location thus don’t exhibit the problems due to scattering that hard sources do. The 

problem associated with this source type is that the net effect of the source is 

modified by the medium’s response, effectively introducing a filtering into the 

source function. A transparent source (Schneider et al., 1998) has thus since been 

suggested that attempts to compensate for this filtering by convolving the source 

function with the inverse response of the medium. Transparent sources incur extra 

computational cost as the simulation effectively has to be carried out twice and also 

exhibit a lack of stability as there is no guarantee that the medium’s impulse 

response will be minimum phase therefore be invertible. The FDTD model used here 

does allow the capability for transparent and soft sources, but the negative effects of 

hard sources were found to have negligible effect of the predictions of the 

reproduced sound field when computed in 3D, so have been used for all of the FDTD 

predictions in this thesis.  

 

6.2.2 Implementation 

The simulations presented here have been made using the WaveTank software 

developed at the University of Salford (Drumm and Lam, 2007). The software 

allows not only to position surfaces in the FDTD grid but also allows the assigning 

of frequency dependent absorption coefficients to those surfaces. 

 

6.2.2.1 Incorporating scene geometry 

Arbitrary room geometries can be imported into the WaveTank software in a variety 

of common formats including CATT acoustic, ODEON or X3D files (Drumm and 

Lam, 2007). These are then voxelised using a ray based approach (Drumm, 2005) to 

form surfaces in the 3 dimensional FDTD medium. Voxelising the planes in this 

manner requires a process of firing rays at the plane and testing whether it falls 

within the FDTD grid. Depending on how coarse the grid is, the object’s smooth 
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edges will become more like a step in a similar manner to pixilation in a 2D image. 

Using this approach also allows arbitrary geometric objects to be placed within the 

FDTD grid as scattering/absorbing bodies (as shown in section 6.6.4.1). 

 

6.2.2.2 Incorporating frequency dependant boundaries 

The frequency dependent absorption characteristics of any surfaces within the room 

are modelled using an approach analogous to IIR filtering. It is assumed that a 

velocity component at the surface is given as the function of the history of the 

normal velocity components incident and the history of the outputs from this 

function such that: 
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Where n

xv  is given by (6.5) and nx is the absolute value of the surface’s unit normal. 

The output from this equation becomes an input of (6.6) hence the surface effect can 

easily be included in the FDTD iterative cycle. Equation (6.8) can be considered as 

the difference equation of an IIR filter which can be written in the form: 
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The coefficients 0h , 1a , 2a … Na  and 1b , 2b … Nb can determined from the plane’s 

octave banded absorption data using a quasi-Newton optimisation algorithm to 

minimise the Lp-norm objective function. 

 

 
2

( ) ( ) dE x H H d     (6.10) 

 

Where the desired magnitude response of the filter as a function of octave banded 

absorption coefficients ,  a    is given as: 
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Hence in conjunction with the gradient  

 

     2 ReE x e H d       , (6.14) 

 

an iterative scheme based on the Davidon-Fletcher-Powell update formula (Davidon, 

1991) is employed. 

 

6.2.3 Simulations 

Single audio sources or arrays thereof can be positioned virtually into a room with an 

arbitrary geometry such as a concert hall, providing a very useful audio design tool. 

The entire FDTD grid can be exported allowing auralisation at any point within the 

room before the installation of a system or to demonstrate other acoustic effects. 

Even relatively complex geometries can be imported as shown in Fig. 6.2, 

demonstrating the usefulness and versatility of the FDTD method in modelling WFS 

reproduction.  
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Fig. 6.2. WFS source reproduction in a room with complex geometry 

 

It is also possible to include Direct3D models into the simulation as will be seen in 

section 6.6.4.1 where the effects of scattering objects on the reproduced wave field 

are analysed. Direct3D is the graphics API within DirectX and models 3D objects as 

a series of interconnected triangles to form a more complex geometries that can be 

navigated around using DirectX applications. 

 

Showing the propagation through the room in the time domain using FDTD is very 

important as it provides a useful diagnostic tool to determine which reflections are 

causing the majority of problems. The problems could be seen as colouration in the 

frequency domain, temporal smearing in the time domain or distortion of the spatial 

wave front leading to a reduced localisation ability. 

 

6.3 FDTD for determining Room effects on Focused Sources 

As has been shown, FDTD is a very powerful acoustical modelling tool allowing the 

prediction of the performance of WFS systems that traditional methods would not 

permit. This is particularly important for the analysis of the effect of real room 

reflections for focused sources.  

 

6.3.1 Room acoustic principles 

A typical impulse response of a source in a room is generally split into three sections 

corresponding to the direct energy, the early reflections and the late reflections or 

reverberation, as shown diagrammatically in Fig. 6.3.  
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Fig. 6.3 Diagram of a typical impulse response of a source in a room 

 

The first impulse represents the direct sound emitted by the source. This part defines 

the timbre and spatial properties of the source and the binaural cues generated 

therein inform the auditory system of the location of the source. The early reflections 

are normally distributed in all directions depending on the surrounding surfaces of 

the room and arrive within a time range of approximately 20ms to 200ms. These 

early reflections are important for the characterisation of the size and type of 

environment. It is well known that the early reflections provide the auditory system 

with information as to the room dimensions, help invoke a sense of spaciousness 

(Griesinger, 1997) and also help the perception of source directivity (Toole, 2008). 

The late part of the impulse responses is normally characterised by a diffuse field 

(Kuttruff, 2000) and can be largely described by its statistical properties (Jot et al., 

1997). The later reverberant part of the impulse response is the most perceptually 

obvious cue for room size and is often characterised by the RT60 which is the time 

in which it takes for the acoustic energy to decay by 60dB (as discussed in section 

6.3.1.1). 

 

6.3.1.1 Reverberation time (RT60) 

The reverberation time is perhaps the most perceptually significant attribute of a 

room impulse response and was first formally introduced by Wallace Sabine (1922) 

as a method of characterising a room’s response to sound based upon its volume and 

absorption coefficient of the room’s surfaces. His formula was derived empirically 

and can be expressed as: 
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Where V is the volume of the room, c is the speed of sound and A is the total 

absorption of all surfaces given as: 
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with Si and αi as the surface area and absorption coefficient of the i
th

 surface of the 

room respectively. There have been several extensions to this formula (see Kuttruff, 

2000) to include for example the different absorbing characteristics of the surfaces of 

the room (e.g. Millington, 1932) but it is still widely adopted as a simple means of 

predicting the reverberation time in diffuse conditions of a room with a given 

volume. 

 

The reverberation time is defined as the time taken for the acoustic energy in the 

room to decay by 60dB. In many cases the dynamic range of the impulse is not 

sufficiently high to achieve an accurate measure of a 60dB decay, thus in many 

practical situations, the decay is measured between -5dB and -35dB (this is often 

termed T30) and the time multiplied by 2 to give the equivalent RT60, it is also not 

uncommon to see reverberation time measurements based on a 20dB decay (T20), 

but in general lower decay values introduce further inaccuracies in the measurement. 

 

Estimating the reverberation time from a measured impulse response is done by 

computing the Schroeder curve (Schroeder, 1965) which is computed by taking a 

backwards integral of the impulse energy response given in dB by (6.17). 
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Fig. 6.4 Example Schroeder decay curve 

 

It can be seen from Fig. 6.4 that due to the logarithmic decay of the energy of a 

typical impulse response of a point source in a room, the Schroeder decay curve 

exhibits a clear linear region, which can be used to estimate the RT60. By taking a 

line of best fit of this curve between -5dB and -35dB from the maximum value the 

T30 can be calculated and hence the RT60 can be determined (as shown in Fig. 6.5). 

 

The decay curve in Fig. 6.4 demonstrates also that for a typical room impulse 

response the early part of the curve exhibits a steeper gradient which is a 

perceptually significant feature of sound decay in rooms and has hence lead to the 

development of the early decay time as described below. 

 

6.3.1.2 Early decay time (EDT) 

The early decay time (Jordon, 1970) is generally considered to be a perceptually 

better measure of reverberation time when compared with the perception of sound 

attenuation in rooms (Gade, 1994). Like the RT60, EDT is a measure of the time it 

takes for the sound energy in the room to decay by 60dB but rather than performing 

an extrapolation based on the decay rate between -5dB and -35dB, the extrapolation 

is done over the first 10dB decay of the Schroeder curve as shown in Fig. 6.5. 
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Fig. 6.5 Calculating the RT60 and EDT from the Schroeder decay curve. Solid line is the Schroeder 

decay curve, the dashed line is the best fit line between -5dB and -35dB used for calculating the RT60 

and the dotted line is the best-fit line between 0dB and -10dB used for calculating the EDT 

 

As EDT is measured initial region of the impulse response is predominantly affected 

by early reflections. As such it is exhibits more variation with listener/measurement 

position and is also affected more by the geometry of the room in question. EDT can 

be both longer or shorter than the RT60 depending on the room.  

 

6.3.1.3 Deutlichkeit (D50) 

Deutlichkeit or ‘definition’ is a measure of clarity and can be calculated directly 

from the room impulse response,  h t . It is the ratio between the acoustic energy in 

the first 50ms and the entire acoustic energy of the impulse response at the receiver 

location as a percentage. D50 was initially proposed by (Thiele, 1953) as a measure 

of clarity in concert halls and can be calculated by: 
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Both the integrals in (6.18) must contain the direct sound of the impulse. A high 

value of D50 corresponds to good clarity of the received signal. If there are no 

reflected components arriving after 50ms, the D50 would be 100% and the clarity 

good. The relationship between D50 and syllable intelligibility was first established 

by Boré (1956) and shows that the respective measures have a high correlation. 

 

6.3.1.4 Clarity Index (C80) 

The clarity Index (C80) was first presented by Reichardt et al. (1974) and is an 

alternative measure of the clarity/distinctness. Whereas D50 is particularly aimed at 

calculating the definition of speech, C80 is used to calculate the clarity or 

transparency of music. Whilst this parameter was originally designed for 

characterising the acoustics of concert halls, it is also widely used for smaller room 

scenarios (Zahorik, 2009). The C80 is the ratio in dB of the acoustic energy arriving 

in the first 80ms with the energy arriving from 80ms to the end of the impulse 

response and can be calculated using (6.19). 
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 (6.19) 

 

As C80 is mainly used for the clarity of music a higher integration limit is employed, 

allowing for the fact that reflections are less detectable for music than for speech. As 

with D50, a high value of C80 corresponds to good clarity. Typical values of C80 are 

considered to be between -5dB and +3dB (Gade, 1994). 

 

6.3.1.5 Centre time 

The integration times defined in both the D50 and C80 are intended as a crude 

approximation of the how human hearing and are thus designed to approximate 

perceptual experience. The centre time (Kürer, 1969) is similar to the 

aforementioned parameters although in this case the integration time limit is infinite. 
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The centre time is defined as the first moment of the squared impulse response and 

can be calculated by: 
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 (6.20) 

 

Essentially the centre time measures the centre of gravity of the impulse response. 

The centre time is a useful room acoustic parameter as it has a high correlation with 

the speech intelligibility word score (Kuttruff, 2000). The centre time accounts for 

the fact that a later arriving reflection is potential more problematic in terms of 

intelligibility or transparency. The longer a reflection is delayed, the greater effect it 

will have on the centre time and the higher the calculated value will be, consequently 

it is apparent that a low value corresponds to high transparency or good speech 

intelligibility.  

 

Many of the important room acoustic parameters and the procedures by which they 

are measured and calculated are described in ISO-3382 (1997). 

 

6.3.1.6 Listener envelopment 

Listener envelopment (LEV) (Bradley and Soulodre, 1995a, 1995b) is the sense of 

being in a large space. It is not so much related to localisation but more to being 

surrounded by many diffuse sound sources. It is generally considered to be a positive 

attribute of concert halls and can often be improved with the addition of diffusers in 

the listening space. 

 

6.3.1.7 Apparent source width 

The definition of apparent source width (ASW) is generally ascribed to (Barron, 

1971) although in his paper he referred to it as spatial impression. It is a similar 

measure to LEV although it is characterised predominantly by an apparent 

broadening of a sound image which has a specific location. Whereas LEV is affected 
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predominantly by the later reverberation, ASW is affected more by the early 

reflections. 

 

6.3.1.8 Precedence effect 

Fundamental to the perception of sound in reflective environments is the ‘law of the 

first wavefront’ (Cremer, 1948), ‘precedence effect’ (Wallach et al., 1949) or ‘Haas 

effect’ (Haas, 1951). All three of these theories, although founded by different 

authors essentially describe the same phenomena and aid the understanding of 

human auditory perception in reflective environments. 

  

Many reflections reach the listener after the arrival of the initial signal, however, 

surprisingly the presence of these reflections seem not to affect the human 

localisation of sound. This is a puzzling phenomenon as one would expect there to 

be many source locations discerned by the brain corresponding to the cues from each 

of the reflections. The truth of the matter is that even with a sound in a room where 

there are many reflections, still one auditory event is localised depending on the 

relative delay of the reflection with respect to the direct sound.  

 

If two loudspeakers are placed in front of a listener (as per a stereo setup), then the 

position of the phantom source they create can be shifted on a continuum between 

the loudspeakers by altering the relative delays between the reproduced signals. In 

order for it to be clear that one source is a delayed form of the other, the signals 

should be non-periodic, coherent sounds. This is the case for small delays 

(td<0.63ms), when the delay is increased in the region of (0.63ms<td<1ms), the 

phantom source can be localised to the position of the loudspeaker that radiates the 

signal first. Above 1ms, the phantom source is localised using only the cues from the 

loudspeaker that radiates the signal first, this effect was first highlighted by Cremer 

in 1948 (Cremer, 1948) and is commonly referred to as the law of the first wavefront. 

 

The smallest time delay at which the law of the first wavefront becomes the primary 

localisation method is defined by the minimum time delay between the two sounds 

that the perceived phantom source location begins to move away from the location of 

the first arriving sound. This value is between 0.63ms and 1ms.  
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6.3.2 Room acoustics of focused sources 

The reflections from a focused source are different from the reflections that would 

come from a real source at the same position due to their causal nature, being 

generated by a remote array of secondary sources. This difference in reflection 

pattern will provide confusing localisation information to the listener and may affect 

the way in which focused sources should be rendered for optimal localisation 

accuracy. Of particular interest is the early reflection pattern produced by a focused 

source as this is the region in which the impulse responses of real and WFS focused 

sources differ the most (as will be discussed later and can be seen from Fig. 6.7).  

 

A problem with WFS reproduction in real spaces is that the loudspeaker arrays are 

typically placed near the boundaries of the room which equates to the position of the 

pressure maxima of the room modes. Thus the arrays easily excite these room modes 

particularly as line arrays are used hence the area over which the mode is excited is 

greater. Consequently for WFS reproduction there is a need to think carefully about 

absorption, or active control techniques (e.g. Corteel and Nicol, 2003; Spors et al., 

2004) specifically in these lower frequency modal regions. Modal problems can 

cause colouration in the frequency domain and temporal ringing in the time domain 

as well as an uneven spatial response (Kuttruff, 2000); consequently it is imperative 

that they are damped sufficiently for applications of WFS. The FDTD model 

described here allows for the inclusion of a band-pass filter absorbing boundary to be 

placed at the corner, simulating a membrane absorber such that the absorbers used 

within the room can be tuned and optimised (Oldfield, 2006) to suit the reproduction 

environment. 

 

6.3.3 FDTD model implementation 

A simulation was made of a WFS 2.5D focused source reproduced in a room 

approximating a standard listening room, with frequency dependent absorbing 

boundaries matching the characteristics of plaster (for the walls and ceiling) and a 

thick carpet (for the floor) (see Table 6.1). Setting the frequency dependant 

absorbing boundaries of the room enables more accurate predictions to be made 

rather than simply applying a fixed absorption coefficient to each surface. The 
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surfaces in the model represent real materials that are used in construction but 

exhibit low absorption coefficients. In a real room environment the acoustic situation 

is more complex with various soft furnishings which will provide significant 

absorption. However, modelling in this way, highlights the effects of the room 

acoustics on the wave field as many of the rooms in which WFS systems are 

installed do not have significant soft furnishings etc. The materials used in these 

simulations approximate those of the ITU listening room described in section 3.6.4. 

 

  Octave Band Absorption Coefficient 

Surface Material 63 Hz 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 

Floor Carpet 0.02 0.04 0.08 0.2 0.35 0.4 

Ceiling and 

side walls 

Plaster 0.2 0.15 0.1 0.08 0.04 0.02 

 

Table 6.1 Octave band absorption coefficients of surfaces in the room 

 

The WFS system was modelled to reproduce a focused source at different positions 

across the room as shown in Fig. 6.6. 

 

 

Fig. 6.6 Geometrical layout of room modelled with FDTD, the red circles show the virtual source 

positions modelled 
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The FDTD model described in section 6.2.2 was used to analyse the effect of 

boundary reflections on WFS focused source reproduction in the temporal, spectral 

and spatial domains. Simulations were performed with 4 scenarios for each source 

position: 

 

1) Anechoic non-WFS source 

2) Real room non-WFS source 

3) Anechoic WFS focused source 

4) Real room WFS focused source 

 

By modelling source propagation with and without boundaries and for WFS and 

normal point sources enables firm comparisons to be made and an analysis both of 

the effect the reproduction room has on the wave field and also the effect of 

reproducing focused sources as virtual point sources. 

 

6.3.4 Temporal effects introduced by the reproduction room 

It is well known in room acoustics that the reflections from the room’s boundaries 

create a feeling of spaciousness and that many reflections cause reverberation, 

providing the sense of a natural listening environment – in fact many people when 

they first venture into an anechoic chamber find the experience disorientating as the 

lack or reflections is so alien. Reverberation in the time domain is a smearing of the 

impulse response at a given location; this has an interesting effect on the temporal 

attributes of focused sources, most notably pre-echoes. In an anechoic chamber these 

pre-echoes are detected by the auditory system as discrete reflections, and their close 

proximity causes colouration (Wittek, 2009) rather than noticeable echoes. It is in 

fact the change in colouration as the listener moves around the listening space that 

has proved to be the most disturbing effect of pre-echoes, thus making moving 

focused sources particularly problematic in WFS. 

 

Informal listening tests have shown that these artefacts of focused sources are more 

intrusive for an anechoic rendering than in a real room environment, this can be seen 

in Fig. 6.10 and Fig. 6.11  where the spatial fluctuations in the frequency domain are 
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far more pronounced for the anechoic case when compared with the system modelled 

in a room. This is consistent with the preliminary work done by Start (1997) who 

also pointed out that an anechoic environment was not the optimal reproduction 

environment for WFS as it highlighted the errors inherent in the system. The room 

therefore acts as an averaging filter in the time, frequency and spatial domain which 

reduce the perception of the WFS artefacts. 

 

This section looks at the characteristics of focused source radiation in reflective 

environments in the time domain. Fig. 6.7 shows a comparison between the impulse 

response from a real source in a room and a WFS focused source at the same 

location.  

 

 

Fig. 6.7 Example impulse response predictions made using FDTD model for a real point source (top) 

and a WFS focused source (bottom). Note the pre-echo energy arriving before the direct sound for the 

WFS case. 

 

Looking at the impulse responses simulated for both the real source and the WFS 

focused source it is apparent that the temporal decay in both cases is very similar but 

more processing is needed in order to determine the differences in the other room 

acoustic parameters mentioned in section 6.3.1. From the derived energy decay curve 

and Schroeder curve it can be seen that there is a significant noise floor in the FDTD 

simulation as shown in Fig. 6.8. This noise is a consequence of the FDTD method 

and is compounded in the WFS models as there are many sources in this case each 
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one adding noise to the simulation, resulting in an apparent non-linear energy decay 

(as seen in the Schroeder curve in Fig. 6.8) which would not be expected for a real 

room. To reduce the effect of this modelling noise a half-Hanning window is applied 

to the first 0.5s of each impulse such that the Schroeder curve has a linear decay, 

resulting in more accurate assessment of room acoustic parameters. If the impulse 

response is windowed like this to remove the noise floor, the RT60 and EDT times 

are within the difference limen shown in Table 6.3. Thus the conclusion is that the 

energy decay of a real source and a WFS focused source are equal. 

 

 

Fig. 6.8 Top: Energy decay curve, Bottom: Schroeder curve, for an exemplar FDTD modelled 

focused source for the un-windowed case (black traces) and the windowed case (grey traces). The 

approximate noise floor is shown by the dashed yellow line in the top plot. 

 

A line of 155 receiver positions across the width of the room and 1m in front of the 

source position were chosen from the FDTD simulations for both the real source 

case and the WFS focused source, with the geometry of the model defined in Fig. 

6.6. In both cases the RT60, EDT, D50, C80 and Tc were averaged across all 155 

receiver locations to give the mean results shown in Table 6.2. The results from the 

source at a distance of 1.5m from the array for each receiver position are shown in 

Fig. 6.9. This figure shows that there is no overall trend in how the parameters 

change throughout the room but does demonstrate that the overall trend of the 

parameters for the real and focused source relative to each other remain consistent 

across the room. 
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Fig. 6.9 Acoustic parameters calculated across a line of 155 receivers 1m in front of the source. Black: 

Real source, Grey: WFS focused source 
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Distance (m) RT60 (s) EDT (s) D50 (%) C80 (dB) Tc (ms) 

 Real WFS Real WFS Real WFS Real WFS Real WFS 

0.5 0.6 0.61 0.35 0.51 87.4 77.77 -0.24 -0.56 24.3 43.7 

1.0 0.62 0.66 0.4 0.46 84.35 81.61 -0.28 -0.44 29.7 37.3 

1.5 0.61 0.64 0.42 0.42 83.21 80.23 -0.32 -0.41 30.1 35.2 

2.0 0.61 0.65 0.45 0.44 82.5 81.68 -0.39 -0.40 35.4 34.2 

 

Table 6.2 Predictions of RT60 and EDT for both the real source and WFS focused source modelled 

scenarios in FDTD simulations 

 

It can be seen from Table 6.2 that both the RT60 and EDT predictions are very 

similar for both real source and WFS focused source for each distance. For both of 

these parameters the values from the simulation fall within the perceptual difference 

limen (Bork, 2000) as given in Table 6.3. 

 

Parameter Difference Limen 

RT60(t30) 5% ( >2s), 0.1s (<2s) 

EDT 5% ( >2s), 0.1s (<2s) 

C80 1dB 

D50 5% 

Tc 10ms 

Table 6.3Difference limen of some common room acoustic parameters, from (Bork, 2000) 

 

Confirming these difference limen, Kuttruff (2000) also states that there is little point 

in quoting RT60 measurements to an accuracy greater than 0.1s due to inaccuracies 

in measurement errors therefore perceptually real and focused sources can be 

considered equivalent in terms of reverberation time. The same can be considered 

the case for EDT. Thus it can be concluded that for the modelled room there will not 

be a perceptible difference between the temporal decay of the energy from a real 

source or a WFS focused source. The other parameters in Table 6.2 show that there 

is a small difference in the clarity of the sound in the room produced by a real source 

and a WFS focused source. The focused source is subject to pre-echoes as described 

in the previous chapter and as such there is a larger difference in the measured centre 
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time. The pre-echoes are also responsible for the decrease in clarity as determined 

from the lower values of D50 and C80. These differences are small however and it 

should be remembered that these results are only based on one particular room 

geometry. There is however evidence to suggest (when combined with perceptual 

tests mentioned in Chapter 5) that the clarity of the source is affected by the pre-echo 

artefacts anyway and therefore the room may not have such an effect on the clarity. 

 

6.3.5 Room Effects in the frequency domain 

WFS is formulated such that the reproduction space is assumed to be source free and 

as such it is commonly thought to only be an appropriate to reproduction technique 

in anechoic environments. However, as will be demonstrated in this section, room 

effects can improve the perception and colouration as a result of the aliasing. 

 

The WFS system was modelled in FDTD both in anechoic conditions (Fig. 6.10) and 

also in the room (Fig. 6.11) and the results compared. 

 

 

Fig. 6.10. FDTD prediction of a real source (left) and a WFS focused source (right) in anechoic 

conditions with source geometry given by Fig. 6.6. The colour bar is clipped between -50dB (black) 

and 0dB (white) 
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Fig. 6.11. Frequency response across a line or 155 receivers, 1m in front of a real source (left) and a 

WFS focused source (right) modelled using FDTD with a room geometry as shown in Fig. 6.6 with 

the source at 1.5m. The colour bar is clipped between -50 (black) and 0dB (white) 

 

Comparing the results from Fig. 6.10 and Fig. 6.11 it can be seen that the effect of 

the WFS reproduction in the room is to even out the effects of colouration resulting 

from spatial aliasing effects. In the anechoic case the level of the reproduced wave 

field with respect to frequency varies greatly across the listening space, whereas for 

the real room case the multiple reflections from the surfaces of the room mean that 

the global effect of the colouration of the WFS system is evened out. This is 

emphasised still further when the difference in between the two cases is plotted as 

shown in Fig. 6.12 where once again there is no obvious pattern in the energy 

distribution across the room and the error is largely diffuse in nature. 

 

This finding is in agreement with informal listening tests performed both in an 

anechoic environment and also in a listening room in which participants complained 

about the colouration and ‘phasing’ effect as they moved in the anechoic chamber 

but not when presented with the same audio scene in the listening room environment. 

 



Chapter 6: Focused Sources in Compromised Reproduction Scenarios  221 

 

 

 

Fig. 6.12 Difference in frequency response between a real and focused source radiating in a room 

registered across a line or 155 receivers, 1m in front of the source modelled using FDTD with a room 

geometry as shown in Fig. 6.6 with the source at 1.5m. The colour bar is clipped between -50 (black) 

and 0dB (white) 

 

6.3.6 Room Effects in the spatial domain 

The effects of room reflections can be shown clearly in the spatio-temporal domain 

by employing a multi-trace impulse response technique such that all of the impulse 

responses measured by a line of receivers are aligned side by side to demonstrate the 

temporal evolution of the spatial response along the line of receivers. This can be 

seen in Fig. 6.13 for both a real source and WFS focused source modelled in an 

anechoic environment. From this figure it is clear that the aliased focused source 

produces pre-echoes seen as additional wave fronts arriving at a given listener 

location before the direct wave front. These additional wave fronts produce multiple 

reflections when radiating in a room as seen in Fig. 6.15.  

 

Fig. 6.13 exhibits some low level reflections in the reproduction space (seen as faint 

lines arriving after the direct pulse); these are not artefacts of the focused source 

rendering but rather are caused by the imperfection of the FDTD PML (see section 

6.2.1.3) resulting in reflections at the medium boundary. 
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Fig. 6.13 Space time plot of a real source (right) and a WFS focused source (left)  at [0m, 0.5m] 

according Fig. 6.6 with a 4m long array of 155 receivers, 1m in front of the source position in 

anechoic conditions 

 

Modelling both an WFS focused source and a real source in a real room as shown in 

Fig. 6.15 and Fig. 6.14 respectively, demonstrates the effects of the room on the 

spatio-temporal response of the system. In this case the source was placed 1m in 

front of the loudspeaker array. 

 

 

Fig. 6.14 Space time plot of a real source at [0, 1m] with a 4m long array of 155 receivers, 1m in front 

of the source position 
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It can be seen from Fig. 6.14 how the pattern of reflections changes with time. It 

clearly shows the different areas of the room impulse response. The direct sound 

wave front arrives first at all positions along the line of receivers and is followed by 

several early reflections from the boundaries of the room which can be seen to come 

from specific directions. These reflections get close together as time goes on until 

such a point that they are almost indistinguishable from each other as the sound field 

becomes progressively diffuse in nature. 

 

When the same scenario is plotted for a focused source as shown in Fig. 6.15, the 

effects of spatial aliasing are clearly visible as additional unwanted wave fronts 

radiating in all directions. In this case, the direct sound no longer arrives first at all 

locations, on the contrary, it is the pre-echo artefacts that arrive first from the edges 

of the loudspeaker array, these can be seen particularly clearly when they are 

spatially aliased. The consequence of these aliased contributions is that there are 

many more wave fronts propagating in all directions and as such the sound field 

becomes diffuse more quickly than for the real source case. Reproducing the point 

source with secondary sources as a WFS focused source means that additional 

reflections are seen in the room as the radiation from the loudspeakers is reflected 

form the wall behind the array. Consequently there reflection density again increases 

faster than the real source case as there are more acoustic sources in the room. 

Interestingly however all of the same reflections as for the real source are present in 

the reflection pattern from the focused source, there are just extra reflected 

components resulting from the array and the spatially aliased contributions. 
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Fig. 6.15 Space time plot of a focused source at [0, 0.5m] with a 4m long array of 155 receivers 1m in 

front of the source position 

 

The wave front curvature at the edges is also slightly less than for a true spherical 

source as a result of the truncated length of the secondary source array. Fig. 6.15 also 

shows that the lateral reflections are not as strong for the focused source case as for 

the real source. This is a consequence of focused sources not being omnidirectional 

and thus not radiating as much lateral energy as a true point source. 

 

A further interesting feature of these plots is the effect of pre-echoes (as can be seen 

when comparing Fig. 6.15 and Fig. 6.13a). The prominence of the pre-echoes when 

the source is reproduced in a room is less that when reproduced anechoically. The 

reason for this is the many lateral reflections from the side walls reflecting the 

individual pre-echo contributions from the loudspeakers. The superposition of these 

many reflections (with the direct loudspeaker contributions) cause a more diffuse 

sound field and thus the pre-echoes are less defined. This provides some explanation 

as to why colouration as a result of the pre-echoes is less pronounced with a focused 

source in a room than in the anechoic case (see Fig. 6.10 and Fig. 6.11). 
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6.4 A qualitative view of real reflections from focused 

sources 

As previously mentioned, Wittek (2009) pointed out that the real reflections from a 

focused source are not necessarily the same as those from a real source and are 

actually dependant on the listening position, this means the real reflections can 

provide incorrect localisation cues and in particular can affect the accuracy of the 

distance perception of focused sources. The reflections from WFS focused sources 

will also depend on the source geometry and the shape of the loudspeaker array. Fig. 

6.16 shows diagrammatically the first order reflections from both a real source and a 

focused source. It can be seen that some of the reflections are in the correct positions 

but there will be additional reflections from the edges of the array and also from the 

pre-echo artefacts (as shown in the previous section). The position of the reflection 

behind the loudspeaker array is the most problematic as it will not necessarily line up 

with the respective reflection from a real source (except for very specific 

geometries). 

 

Fig. 6.16 Diagram of the reflections of a rectangular room in the horizontal (reproduction plane). The 

red image sources show reflections, common to both real and synthesised sources and green image 

sources will only be present for the WFS focused sources, blue sources are only present for real 

sources 
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When curved arrays are used for the reproduction, the reflections produced by the 

focused source will differ from the linear case, as the radiation from the rear of the 

loudspeakers will not be a mirror image of the virtual source but will rather have a 

characteristic more similar to a real source (depending on the position of the virtual 

source with respect to the array). For the special case of a circular array reproducing 

a focused source in the centre of the array the reflected sources will be similar to 

those of a real source Fig. 6.16. 

 

 

Fig. 6.17 Diagram of the reflections of a rectangular room in the horizontal (reproduction plane) with 

a focused source rendered by a circular array. The red image sources show reflections, common to 

both real and synthesised sources and green image sources will only be present for the WFS focused 

sources, the blue image source are present only for real sources 

 

This special case is interesting as it very closely approximates the case of true source 

reproduction and subsequent reflections. For the example case that a point source is 

reproduced at a location in the centre of a loudspeaker array, the source reflections 

from the back wall will exactly match those from a real source in the same location 

although there will be additional reflections from the edges of the arrays and from 

the floor and ceiling which will not match those of a real source which could provide 
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miss-leading cues especially in terms of source depth information particularly above 

the spatial aliasing frequency. 

 

6.5 Analysing the effect of elevated loudspeakers for focused 

source reproduction 

For many practical applications of WFS systems, the loudspeakers cannot be placed 

at ear height as would be desired, due to the location of visual equipment such as 

screens etc. The consequence of this is that the system generates additional elevation 

cues such that all sources are localised above the intended reproduction plane. For 

scenarios such as the Octave system described in section 3.6.5, where the sound field 

is accompanied by a fully immersive visual display this can be less of a problem as 

the localisation cues are complimented by the visual cues. The additional elevation 

cues may not be problematic for sources modelled far away from the listeners but for 

focused source reproduction however there will be an apparent source position miss-

match as a result of using the elevated loudspeakers which will be noticeable as the 

source is close to the listener. The consequence of rendering focused sources with 

elevated arrays therefore is that the location of the pressure maximum will not be at 

the intended position, as shown in the diagram in Fig. 6.18. 

 

 

Fig. 6.18 Diagrammatic representations of source position miss-match by using elevated loudspeakers 

 

Fig. 6.18 demonstrates the geometry of the problem of using elevated loudspeakers. 

If the intended source position is a given distance, D from the loudspeaker array, 

then depending on the height of the loudspeakers, y the position of the source will 

actually be, Z where 
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2 2Z D y   (6.21) 

 

So, if elevated loudspeakers are used for the intended reproduction in the horizontal 

plane a correction, Z  in the focused source position of the source must be applied 

in the driving function where: 

 

2 2Z D D y     (6.22) 

 

The errors in the position rendering of focused sources using elevated loudspeakers 

can be plotted as shown in Fig. 6.19 as a function of loudspeaker height and distance 

of virtual source from the loudspeaker array. As the intended distance of the focused 

source from the loudspeaker array increases, the error in source position increases.  

 

 
 

Fig. 6.19 Errors in rendered focused source position as a function of loudspeaker height above 

listening plane and distance of source in front of loudspeakers. Large error values are clipped as 

shown by the colour bar 

 

Fig. 6.19 demonstrates that as a result of the elevated loudspeakers there is a region 

or set of distances at which it is not possible to render a focused source, this is 
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because the focal length in this region is less than the distance, D, meaning that the 

pressure maxima categorising the position of the focused source is not able to be in 

the horizontal/listener plane. This is likely to cause listeners to localise the source 

based on the elevation cues rather than in the listening plane. 

 

The problems associated with elevated loudspeakers are more significant for focused 

source reproduction than for normal WFS sources because the angular error will be 

greater as is shown in Fig. 6.20. The angular error for a non-focused source, nf is 

always the angle between the listener and the loudspeakers regardless of source 

position, whereas the angular error for a focused source, f  is dependent on the 

virtual source position and is greater than nf .  

 

Fig. 6.20 Illustration of increased problems of elevated loudspeakers when rendering focused sources 

as opposed to non-focused sources 

 

Elevated loudspeakers will therefore introduce an error in vertical localisation, the 

effect of which may be decreased to some extent by using additional loudspeakers at 

a lower elevation to bring the localised sound image down a bit. This would not 

exhibit correct wave front curvature at the lower level but may provide enough 

additional acoustic energy to prevent all sound source being localised too high. This 

is a topic of further research. 
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6.6 Scattering of the focused wave field 

The scattering of synthetic sound fields has been investigated by Ahrens and Spors 

(2011) who used a spherical harmonic description of the intended sound field and the 

scattered field to produce plots of the total summed field. Their results demonstrated 

that the scattering off a sphere placed in a sound field of a plane wave produced by a 

spherical array of loudspeakers within the reproduction space was equivalent to the 

scattering produced by the same sphere by an analytical plane wave. They did 

however demonstrate that for the case of 2.5D sound field reconstruction that the 

shadow region produced by the presence of the sphere was more pronounced than in 

the natural case. 

 

Here the approach to analysing the scattered field is different and is more versatile 

for analysing the scattered pressure for different source types and positions of the 

sphere. 

 

6.6.1 Theory 

The scattering from a rigid sphere is a topic that has been well documented when the 

incident field is that of a plane wave, the theory for which was first formulated by 

Rayleigh (1896). In this thesis the theory for the scattering by a sphere is given when 

the incident field is that of a spherical source, following (Bowman et al., 1987; 

Kirkeby et al., 1998). 

 

The boundary condition for a rigid sphere states that there will be zero velocity on 

the surface of the sphere, such that. 

 

0Tot

r a

S

r 





 (6.23) 

 

Where TotS  is the total pressure given as 

 

     , , ,Tot FF ScatS r S r S r     (6.24) 
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With 
FFS  as the free field pressure of a monopole and 

ScatS is the scattered pressure 

and the source geometry given in Fig. 6.21. 

 

The sound radiation from a monopole source is given as (Morse and Ingard, 1987): 
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With 0  being the density of air and q being the source strength. As before, k is the 

acoustic wavenumber given as k c  where    is the angular frequency of the 

source and R is the distance of the source to the receiver point. The spatially 

invariant terms can be grouped together as an amplitude constant, V such that 
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where 
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Fig. 6.21 Source geometry for the derivation of the field of a point source scattered by a rigid sphere 

 

Equation (6.26) can be expanded using the series expansions found in Abramowitz 

and Stegun (1965, eq.10.1.45 and 10.1.46, p440),  
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where 

 

2 2 2 cosR r r      (6.30) 

 

and the source geometry is given in Fig. 6.21. From (6.29) and (6.30), the free field 

pressure in (6.26) can be expanded such that the sound field at the receiver position, 

r given as 
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Where  mj z  and  my z  are the m
th

 order spherical Bessel function of the first and 

second kind respectively and are related to the m
th

 order Bessel functions of the first 

and second kind (  mJ z  and  mY z ) by (6.32). 

 

       1 2 1 2,      
2 2

m m m mj z J z y z Y z
z z

 
    (6.32) 

 

(6.31) is not used directly for the calculation of the total field of a point source 

scattered by a rigid sphere as it converges very slowly and thus requires a high value, 

m so is very computationally expensive. Thus (6.26) is used for the calculated free 

field pressure produced by the point source. However (6.31) is useful for deriving 

the scattered pressure if one imposes the boundary condition in (6.23) to (6.31). 
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The scattered pressure from the sphere can be considered as an infinite sum of waves 

propagating outwards from the centre of sphere and is given by (Crighton et al., 

1992, p.533-535) as. 
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The constants 
mb  can be determined by applying the boundary condition in (6.23) to 

(6.31) which is given by (Kirkeby et al., 1998) as: 
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Where, mj  and 
my are the first order differentials of the first and second order 

spherical Bessel functions expressed as: 
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(6.35) 

  

6.6.2 Implementation 

The scattered pressure can thus be computed easily in MATLAB®. It should be 

noted that the theory presented here is a simplification based on the specific 

geometry given in Fig. 6.21 but as a sphere is symmetrical and the result will be the 

same irrespective of the source angle it is a simple matter to perform a coordinate 

transformation such that the source and receiver can be placed anywhere in the 

modelled reproduction space. For the non-simplified case of the scattered pressure 

from a rigid sphere the reader is referred to (Bowman et al., 1987). 
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Fig. 6.22 A snapshot in time of a monopole point source scattered by a rigid sphere for both the 

monochromatic case 2000f Hz   (Left) and the narrowband case (Right). In both cases the source 

position is  0 , 1.5m m  with the sphere of radius, 0.3m positioned at 0 ,0m m  . 

 

The simulation in Fig. 6.22 shows that some of the energy is diffracted around the 

sphere with a smaller portion being reflected. As expected, for the monochromatic 

case a clear shadow region can be identified behind the sphere with the propagation 

in this area being delayed due to the extra distance travelled by the diffracted waves. 

The narrow band case demonstrates that the resultant wave field exhibits direct 

sound, diffracted components and some specula reflections off the surface of the 

sphere as expected.  

 

6.6.3 Modelling the scattering of WFS sources 

This model can easily be extended to model the sound field of multiple point source 

scattered by a rigid sphere such that the total sound field is a summation of the free-

field and scattered pressures of all of the point sources: 
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6.6.3.1 Spheres in the divergent zone 

Utilising (6.36) it is possible to place a sphere at an arbitrary location in the wave 

filed created by the superposition of many secondary sources. Placing a sphere in the 

divergent region of a focused source reveals very similar results to those obtained 

using an analytical point source. 

 

 

Fig. 6.23 Monochromatic WFS focused source at 0 ,1m m    and 1200f Hz . Free-field case (left), 

total pressure (middle) and scattered pressure (Right),  with a sphere of radius 0.3m in the divergent 

region of the focused source at  0 ,2m m . 

 

As with Fig. 6.22a Fig. 6.23b exhibits a clear shadow region behind the sphere where 

the amplitude is reduced. Additionally the wave front is delayed with respect to the 

rest of the wave front in this region as a consequence of the diffraction around the 

sphere. This result is unsurprising as it has already been shown that WFS synthesised 

wave fields below the aliasing frequency are physically accurate. 

 

6.6.3.2 Spheres in the convergent zone 

Whilst the scattering effects of sphere in the divergent region of a focused source 

field has been shown to be equivalent to that of a real source it useful to see what the 

effects of a scattering object are in the convergent region of a focused source as this 

could affect how well the acoustic energy focuses at the intended location. This 

analysis is important as it reveals whether objects and in particular, people in the 

room affect the rendering of the focused sources. The results from the simulations 

(shown in Fig. 6.24) demonstrate the case of a sphere with a radius of 0.0875m 

which is often used as the radius of a sphere to approximate a human head. 
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Fig. 6.24 Monochromatic WFS focused source at 0 ,1m m    and 1200f Hz . Free-field case (left), 

total pressure (middle) and scattered pressure (Right),  with a sphere of radius 0.3m in the convergent 

region of the focused source at  0 ,0m m . 

 

It interesting to note from Fig. 6.24 that when a scattering object is placed in the 

convergent region of a focused source, the shadow region leads rather than lags the 

free-field energy. This is due to the time reversal involved with the rendering of 

point sources such that the scattered energy arrives before the free-field energy. As 

expected once again the shadow region exhibits a reduction in sound pressure level 

as the rigid sphere scatters some of the energy specularly causing it to act as a 

barrier. 

 

6.6.4 Correcting for the scattering 

To some degree it is possible to correct for the scattering of an object that is in the 

convergent region of a focused source, by combining standard time-reversal/phase 

conjugation techniques with the WFS driving function. The correction demands that 

the transmission path between the focused source position and each of the 

loudspeakers is known with the scattering object present. For this, a source is placed 

at the intended focused source position and the pressures at each of the loudspeaker 

locations are recorded with the scattering object in place and time-reversed (or 

phase-conjugated in the frequency domain). These time reversed signals are then 

radiated from the loudspeakers with the scattering object at the same location as 

before. Due to acoustic reciprocity (Kinsler et al., 2000b) the signals from the 

loudspeakers will retrace their paths back to focus at the virtual source position. The 
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result is that the radiated pressure at the focused source position more closely 

approximates that of the intended source.  

 

 

Fig. 6.25 Uncorrected (left) and corrected field (right) of a monochromatic WFS focused source at 

 0 ,0m m  and 1200f Hz  with a sphere of radius 0.3m in the convergent region of the source at 

 0 , 1m m . 

 

Fig. 6.25 shows the corrected field from a focused source with a sphere present in 

the convergent region of the source. The simulation shows that there is now no 

longer a phase lead in the shadow region of the sphere as this has been corrected for 

through the use of the phase conjugation method. There is however still a decrease in 

the amplitude of the reproduced wave field in the shadow region of the sphere. Thus 

the effects of the scattering of the sphere cannot be completely removed. The reason 

for this is because some of the energy incident to the sphere is scattered specularly 

and thus the transfer function between the source position and the loudspeaker 

positions does not completely describe the propagation of the scattered focused 

source. An analysis of the scattered pressure component in specula directions would 

allow for this energy to be added into the system to improve the shadowing effect of 

the sphere but this is difficult to do for objects that do not have an analytical solution 

like a sphere. If the same procedure is performed on a focused source radiating in a 

room, the results can be more favourable as the reflections from the surfaces of the 

room mean that the specular reflections are included in the transfer function between 

in the virtual source and the loudspeakers so that shadow region is less well 
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pronounced and the wave front curvature more closely approximates that of the ideal 

focused source where no scattering object is present. 

 

A further limitation of this technique is that it only allows for the correction of 

acoustically rigid objects. When the scattering object is to some degree absorbing, 

the situation becomes more complicated as some energy is lost and therefore the 

complete transfer function at the loudspeaker positions cannot be determined. 

 

Combining these principles within a WFS rendering requires some consideration, for 

example it should be noted that the frequency correction as described by equation 

(3.28) needs to still be applied to correct for the rendering of a 3D field using a 2D 

array of secondary sources. Additionally it should be noted that correcting for 

scattering using the above mentioned time reversal technique is only valid below 

aliasf  as the time reversal process measured the transfer function between just one 

source and one receiver and as such is independent of spatial aliasing. This may not 

be too problematic because, as shown in section 4.4.1, a characteristic of focused 

sources is an area near the source position which is aliasing free thus the time 

reversal approach can still be applied if the sphere is in the un-aliased region of the 

source. 

 

6.6.4.1 Correcting for the scattering of objects with more complex geometry 

More complicated scattering objects can also be taken into account using the FDTD 

methods presented earlier in this chapter. As described in section 6.2.2.1 the FDTD 

model enables DirectX models to be voxelised into the FDTD grid allowing for the 

prediction of scattering and diffraction of objects with complex geometry. Thus the 

FDTD model can be used to test the method of correcting for scattering. The 

principles remain the same of calculating the pressures from a point source at the 

intended source location at each loudspeaker with the scattering object in place, time 

reversing the signals and the re-radiating them from the loudspeaker positions with 

the scattering object still in place.  
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Initially a sphere is modelled in the FDTD simulation in the same manner as 

described in section 6.2.2.1. The sphere is situated in the centre of a room 1.5m in 

front of a 25 element loudspeaker array reproducing a focused source to a point 0.5m 

behind the sphere (the sphere is in the convergent region of the focused source). A 

slice is taken through the centre of the room in the horizontal plane as shown in Fig. 

6.26.   

 

Fig. 6.26 FDTD simulation of a sphere in the convergent region of a focused source being reproduced 

in a 3D room environment with realistic reflecting boundaries. 

 

The simulation demonstrates that for a sphere of this radius in the convergent region 

of a focused source being reproduced in a real room environment, the scattering from 

the sphere has little effect upon the focused source wave front. The specular 

reflection is seen as a small wave front travelling back towards the loudspeaker 

array, but there is not much deformation of the direct/intended wave front. 

 

Fig. 6.27 3D model of a sofa imported into the FDTD model 
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For larger, more complicated geometries such as the sofa shown in Fig. 6.27 the 

effects on the rendering of the focused source can be much more pronounced and can 

prevent an accurate focusing. When the effects of scattering are not addressed and 

corrected for as shown in Fig. 6.28, the wave front curvature of the intended focused 

source is incorrect and in fact more closely approximates a source at the position of 

the scattering object (in this case, a sofa). If correction is applied using the time 

reversal approach described above, it is possible to once again render a focused 

source at the correct location as can be seen from Fig. 6.29 although there is a 

compromise in the rendering with the addition of contributions arriving before the 

direct energy. 

 

  
 

Fig. 6.28 Time evolution of the sound field reproduced from the scattering of a sofa in the convergent 

region of a focused source. The dashed red box shows the position of the sofa and the yellow circle 

shows the intended virtual source position. 
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Fig. 6.29 demonstrates a focused source rendered at the position of the yellow circle 

with a sofa in between the loudspeakers and the source position. The time evolution 

plot shows that using the time reversal approach for reproduction in a room, the 

scattering can, to some extent, be corrected for. Performing this correction does 

produce a focused source at the correct location (with the correct wave front 

curvature) but there are additional spatial artefacts caused by the reflections from the 

early part of the time reversed impulse which cause a spatial distortion of the wave 

field. This an unavoidable consequence of using time reversal techniques in rooms  

where there is a significant portion of energy radiated into the room before the 

intended impulse (Yon et al., 2003a). This also has consequences in terms of the 

perception of the sound especially for transient signals and for highly reverberant 

environments where the contributions arriving before the main impulse will be 

particularly pronounced.  

 

 

Fig. 6.29 Time evolution of the sound field reproduced from the correction for the scattering of a sofa 

in the convergent region of a focused source. The dashed red box shows the position of the sofa and 

the yellow circle shows the virtual source position. 
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In order to apply this technique in the strictest sense, one would need an infinite 

amount of time to account for all of the possible reflected paths, this is clearly not 

possible or desirable and thus a compromise has to be reached for the number of 

reflections taken into account and the time taken for the rendering of the source. As 

an initial simulation, the first order reflection only can be taken into account as these 

are the most problematic and can in particular lead to comb filtering and other 

adverse perceptual attributes in the reproduced sound field. Thus the amount of time 

between when the loudspeakers become active and when the focused source radiates, 

depends on the longest path of the first order reflections and hence upon the 

dimensions of the reproduction room. The merits of increasing the order of 

reflections will reap diminishing returns as the temporal structure of the signal 

becomes less important, the amplitude of the reflections becomes less and small 

changes within the room (such as people) will have a larger temporal affect and 

hence the effects of the reflections may not be accurately corrected for. 

 

Clearly there is more work to be done in order to fully correct for scattering objects 

in the convergent region of an intended focused source, but the time reversal 

technique presented here demonstrates a proof of concept which could be used to 

improve the source localisation in compromised situations. This approach may even 

be used to remove the effect of the room’s reflection on the rendering of a focused 

source. The goal in this case would not be to have a rendered focused source with no 

room effects at all but rather to have a focused source where only the divergent part 

was affected by the room response, thus better approximating a real source.  

 

Application 

An application of such a correction would be the use of focused sources as virtual 

loudspeakers as so-called virtual panning spots (Theile et al., 2003). Fig. 6.30 shows 

an example of using virtual panning spots for a variable loudspeaker configuration in 

a recording studio. 
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Fig. 6.30 WFS focused source used as virtual loudspeakers (represented as orange circles), with 

scattering objects in the convergent region of the virtual sources 

 

A setup like this would allow for content to be mixed in a variety of different spatial 

audio formats such as 2-channel stereo or 5.1 as shown here, by switching between 

virtual source positions (shown by the orange circles in Fig. 6.30). It is conceivable 

that in such an example there may be pieces of furniture or other objects in the room 

that would be in the convergent region of the focused sources and would hence have 

to be corrected for. In this case the position of the focused sources would not change 

as they could be placed in the optimum position with respect to the listener which 

would mean that the transfer function between virtual source and secondary source 

would only have to be determined once. In this case it may be worthwhile to perform 

a laser scan of the object and to input the geometry into an FDTD model to work out 

the required transfer function between each loudspeaker and the intended focused 

source so that the scattering objects could be corrected for. 

 

This technique would be unsuitable for situations where moving focused sources 

were part of the intended soundscape as one would first have to calculate the transfer 

function between the primary and secondary source positions before the source could 

be rendered. However, if the source positions are stationary, the transfer function 

calculations (or  measurements) can be made in advance and can then be applied to 
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the signal before rendering. Practically, this would most likely involve convolving 

the source signal with a measured or calculated impulse response between the source 

positions. It should be noted that the source function must first be reversed before the 

simulation take place so that when it is time reversed, the signal plays as intended. 

 

Another application of correcting for the scattering of WFS focused sources is for 

spatial audio in combination with a video screen as shown in Fig. 6.31. A problem 

with standard techniques is that it is difficult to make audio sources match the 

location of the visual sources because it would require audio sources to be in front of 

the screen or for the use of an acoustically transparent screen, both of which are 

difficult to achieve in practice. However using WFS focused sources it would be 

possible to render sources just in front of the screen such that there was no audio and 

visual position miss-match. In order to achieve this, the scattering effects of 

television screen would have to be corrected for as described above. By rendering an 

array of these scattering corrected sources, a virtual WFS array could be realised (as 

shown in Fig. 6.31) which could then be used to create virtual sources at any location 

that are not affected by the scattering from the TV screen. This would require 

techniques similar to the local sound field synthesis methods proposed by Spors and 

Ahrens (2010) which use focused sources as virtual secondary sources to control the 

sound field within a smaller area. 

 

 

Fig. 6.31 Conceptual diagram, using an array of focused sources to create a virtual WFS array 
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If the target audio format was a technique other than WFS, the focused sources could 

act as virtual loudspeakers (Theile, 2004). This would only require the measurement 

of one set of transfer functions as the focused sources would always be rendered to 

the same positions.  

 

6.7 Conclusions 

This chapter has presented the theoretical and practical aspects of rendering WFS 

focused sources in non-ideal reproduction situations. It has been shown that the finite 

difference time domain (FDTD) is a useful modelling technique that can be used for 

the analysis of the effects of the real room acoustics on the WFS rendering. This is 

particularly important for focused sources where listeners have a tangible source 

within the room aiding their comparison between the virtual source and an 

equivalent real source which draws attention to any incongruity between the virtual 

and real sources. Several FDTD models have been run that allow different room and 

source geometries to be modelled. The models demonstrate that despite being 

generated with remote arrays of secondary source, the room acoustic parameters in 

the time domain are the same for both real and focused sources. Analysing the 

effects in the frequency domain demonstrate how the room serves to even out the 

spatial aliasing artefacts produced by the WFS array and consequently make them 

less perceptible than for the same sources in an anechoic environment. Showing the 

results of the FDTD predictions in the spatial domain using the multi-trace impulse 

response technique demonstrates how the reflections from a focused source become 

more diffuse quicker than for a real source, helping a sense of spaciousness. It has 

also been shown that the reflection pattern from a focused source is different from a 

real source at the same position although with some strong similarities. 

 

The effects of elevated loudspeakers used for the WFS rendering of focused source 

has also been analysed with a correction factor derived to account for the position 

error that will be in inherent in the reproduction of focused sources. It has been 

further illustrated the inability of the system to render focused sources close to the 
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array if elevated sources are used. The position error is a function of the height of the 

secondary sources and the intended position of the focused source in the space. 

 

The chapter concluded with an analysis of the scattering of focused sound fields with 

spherical objects using an analytical approach and more complex geometries using 

further FDTD models. It has further been demonstrated that to some extent the 

scattering in the convergent region of a focused source can be corrected for by using 

time reversal principles which has applications of using WFS for rooms with 

obstacles in the way of the intended listening area. 
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7 Conclusions and Further Work 

 

 

 

 

 

 

 

 

7.1 Conclusions 

This thesis has presented a detailed analysis of focused source reproduction using 

wave field synthesis (WFS) and demonstrated several improvements to the rendering 

thereof. The second chapter of this thesis put the described work into context by 

highlighting some of the key spatial audio principles and current techniques relevant 

to the work undertaken here. The third chapter presented a detailed theory of wave 

field synthesis demonstrating the derivation of the Kirchhoff-Helmholtz equation, 

Rayleigh I integral and driving functions of the major source types used in WFS. 

This chapter also introduced some of the errors inherent in WFS systems including 

spatial aliasing and truncation artefacts and described some analysis techniques used 

throughout the rest of the thesis. Following this a detailed analysis of the physical 

attributes of focused sources has been presented. Particular attention has been given 
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to the derivation of the important driving functions, including point sources, dipole 

and piston sources. A new secondary source selection criterion has been 

demonstrated which allows focused sources to be angled in a chosen direction, 

additionally the criterion also prevents asymmetric propagation of virtual sources. 

The concept of focal point shift has also been presented and the derivation of a 

geometrical correction that can be applied in the driving function to better position 

focused source particularly in the low frequency region or when the rendering is 

done with short arrays. This chapter also analysed and quantified some of the errors 

and characteristics specific to focused sources including spatial aliasing, truncation, 

colouration and amplitude errors. The spatially aliased field is analysed and a 

formula for predicting the un-aliased region of focused source reproduction is given. 

An analysis of pre-echoes is given with the derivation of the direct-to-pre-echo ratio 

which can be used as a rough metric of the localisation performance of a given 

source, this is used for an analysis of the use of large arrays for the virtual source 

reproduction. Other issues such as the phase response, focal spot size, the rendering 

of multiple focused sources and moving sources are also covered. 

 

Chapter 5 reviewed the perceptual characteristics of focused sources and described a 

series of perceptual tests that were undertaken to determine the localisation accuracy 

of focused source with respect to listener angle. It is further shown that 

improvements to the rendering can be made by including first order image sources 

into the WFS rendering as virtual point sources. This technique has been shown to 

greatly increase the range of listener angles at which the virtual source can be 

accurately localised. 

 

Chapter 6 covered the rendering of focused sources in compromised (non-ideal) 

scenarios. Much of the analysis was done using the finite difference time domain 

method of which the theory is presented. The effects on focused source reproduction 

in real rooms are presented. It is shown that pre-echo artefacts cause more reflections 

and increase the reflection density of the reproduced sound field. It is however 

shown that room acoustic parameters are similar for both the real and virtual source 

cases when modelled in a real room. Results do however suggest that there is a 

decrease in clarity resulting from the rendering of focused sources with respect to 
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real sources. Colouration artefacts are shown to be averaged out by the room’s 

reflections, making the perception of focused sources in real rooms better than in an 

anechoic environment. This chapter also covers the rendering of focused sources 

using elevated loudspeakers and demonstrates how this limits the possible positions 

of the source. Also covered is the scattering of the reproduced field with a scattering 

object in both the convergent and divergent field of the source. It is shown that to 

some extent the scattering in the convergent region can be corrected for using time 

reversal methods. The theory is extended to scattering objects with more complex 

geometry with the finite difference time domain model being used to generate the 

time reversed signals and subsequent re-radiation to correct for the scattering. 

 

7.2 Further work 

- More work should be carried into the optimal method of rendering moving 

focused sources and the resulting subjective preferences. 

 

- Further perceptual tests are needed, especially in real room environments and 

to quantify the perceptual effects of colouration in the reproduced wave field. 

 

- New methods of pre-echo reduction should also be investigated 

 

- An analysis of the perceptual effects of elevated loudspeakers and possible 

methods of reducing the localisation errors inherent in the rendering. 

 

- More work is also required on the combining time reversal methods to help 

alleviate reproduction errors resulting from the scattering of objects with 

complex geometry. 
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