THE USE OF GENETIC MARKERS TO REVEAL DYNAMIC PROCESSES IN A COMMON TOAD (BUFO BUFO) POPULATION

Robert COLES

School of Environment and Life Sciences
University of Salford, Salford, UK

Submitted in Partial Fulfilment of the Requirements of the Degree of Doctor of Philosophy, August 2013

Table of Contents

List of Tables IV
List of Figures V
Acknowledgements VI
Declaration VII
Abstract VIII
CHAPTER 1: 1
Introduction 2
1.1. Long-term individual-based population studies 2
1.2. Biodiversity and conservation 4
1.3. Amphibians and conservation 6
1.4. The common toad (Bufo bufo) 8
1.5. Rationale 12
1.6. Aims 13
1.7. Objectives 15
CHAPTER 2: 22
Materials and Methods 17
2.1. Study site 18
2.2. Recording and selection of individuals 19
2.3. Tissue samples 20
2.4. Tissue digestion and DNA extraction 21
2.5. Polymerase Chain Reaction (PCR). 22
2.6. Genotyping 25
2.7. Screening of genotypic data 26
CHAPTER 3: 28
Measuring the effective population size over two generations in a wild common toad population 28
3.1. Introduction 29
3.2. Aims 34
3.3. Methods 35
3.4. Results 38
3.5. Discussion 43
CHAPTER 4: 50
Parentage inference of a wild common toad population from multilocus genotype data 50
4.1. Introduction 51
4.2. Aims 61
4.3. Methods 62
4.4. Results 65
4.5. Discussion 75
CHAPTER 5: 81
Assessing evolutionary and ecological responses to changing environmental conditions in a wild common toad population 81
5.1 Introduction 82
5.2. Aims. 91
5.3. Methods 92
5.4. Results 94
5.5. Discussion 104
CHAPTER 6: 110
General Discussion 111
CHAPTER 7: 116
References 117
7.1. References 117
CHAPTER 8: 131
Appendices 131
8.1. Dilution of DNA extractions. 132
8.2. Routine PCR plates configuration 135
8.3. Unbinned genotypes 137
8.4. Genepop results: HWE probability test 146
8.5. Tables of allelic frequencies for each locus 151
8.6. Allele frequency/null alleles. CERVUS 153
8.7. Kinship Matrix 154

List of TABLES

Table 2.1. Toe-clippings as per year 20
Table 2.2. Microsatellite primers 23
Table 2.3. PCR profiles for the touch-down 24
Table 2.4. Microsatellite names 26
Table 3.1. Total number of toe-clippings 35
Table 3.2 Effective breeding size. 38
Table 3.3 Pearson product moment 38
Table 3.4 Precision of N_{b} estimates 42
Table 4.1. Parentage publications 55
Table 4.2. Results from genotyping data 65
Table 4.3. Expected and observed heterozygosity 67
Table 4.4. Inference of parentage 69
Table 4.5. Results from parentage analysis 72
Table 5.1. Numbers of individuals 93

List Of Figures

Figure 1.1. Distribution of the common toad 8
Figure 1.2. Male (attached dorsally) and female 10
Figure 1.3. Left: Change in the mean maximum 13
Figure 2.1. The breeding pond 18
Figure $3.1 N_{\mathrm{b}} / N$ and N \& sampling year (SA) 39
Figure $3.2 N_{\mathrm{b}} / N$ and $N \&$ sampling year (HE) 39
Figure $3.3 N_{\mathrm{b}} / N$ and N \& sampling year (LD) 40
Figure $3.4 N_{\mathrm{b}}$ \& expected heterozygosity (SA) 40
Figure $3.5 N_{\mathrm{b}}$ \& expected heterozygosity (LD) 41
Figure $3.6 N_{\mathrm{b}}$ \& expected heterozygosity (HE) 41
Figure 4.1. Scored alleles for Bbuf $\mu 24$ 66
Figure 4.2. Number of progeny assigned 70
Figure 4.3. The number of male and female 71
Figure 4.4 Relatedness coefficients 73
Figure 4.5 Proportion of parents sampled 74
Figure 5.1. Midparent BCI regression 94
Figure 5.2. Mother-offspring BCI regression 95
Figure 5.3. Father-offspring BCI regression 96
Figure 5.4. Parent-offspring body size regressions 97
Figure 5.5. Parent-offspring weight regressions 98
Figure 5.6. N_{b} \& mean female BCI (SA) 99
Figure 5.7. N_{b} \& mean female BCI (HE) 100
Figure 5.8. N_{b} \& mean female BCI (LD) 101
Figure 5.9 Inbreeding and expected heterozygosity 101

Acknowledgements

It is a pleasure to thank all of the people who made this doctoral thesis possible. Foremost, I owe my deepest gratitude to my supervisor Dr. Robert Jehle for the continuous support of my research, for his patience, enthusiasm, motivation, inspiration and immense knowledge.

My sincere thanks also go to many of my associates such as Dr. Jackie Hughes, Dr. Belgees Boufana, Prof. Geoff Hide, Dr. Anthony Bodell, and Dr. Darren Brooks for their laboratory support and expertise.

I would like to acknowledge the financial, academic and technical support of the University of Salford, particularly in the award of the Graduate Teaching Assistantship that provided the necessary financial source for this research. I would also like to thank Dr. Chris Reading of the NERC Centre for Ecology and Hydrology, Oxford, without whom, this research project could not exist.

Last, but by no means least, I thank my friends and colleagues Dr. Nicole Dodd, Wai-San Li, Patrick Kiloran, Thomas Roedl, and my family for their support, encouragement, and healthy bouts of procrastination throughout.

DECLARATION

I hereby declare that the work that is presented in this thesis is my own work unless otherwise stated. Details are given in each chapter where any of the results are produced in collaboration with other members of the research group.
\qquad

Robert Coles
August 2013

Abstract

In contrast to birds and mammals for example, amphibian population studies only rarely capture information based on genealogical relationships among individuals. As a consequence, we only have very limited knowledge about individual fitness measures such as lifetime reproductive success and the consequences of such variation on the linkage between generations of amphibians in the wild. The present thesis makes use of an existing long-term study on the common toad (Bufo bufo) in southern England (Dorset) to genetically identify parent-offspring relationships among approximately 850 individual toads, representing two successive generations (2004/2005/2006 and 2008/2009). The dataset enabled the comparison of measures of effective population size as well as effective breeding size, revealing ratios between 0.07 and 0.26 . These data also showed an increasing trend with time and were (by some estimators) confirmed by the cross-generational parentage analysis which revealed a high reproductive skew among individuals. Forty-five percent of offspring could be assigned to a least one parent; in total, 6% of male parents and 30% of female parents were inferred. The pedigree information was also used to identify a possible hereditary basis for an observed decrease in female body condition and fecundity correlated to increased environmental temperatures. There was no indication for heritability of body size, body weight and body condition, suggesting that the documented decrease is based on phenotypic plasticity rather than evolutionary adaptation. However, kinship data that shows the population is less inbred with time coupled with the effective breeding number estimates showing an increasing trend with time suggest that despite the absence of evolutionary change, this population may still be able to circumvent the adverse effects associated with decreased body condition.

CHAPTER 1:

Introduction

1.1. Long-term individual-based population studies

Some of the most valuable insights into animal ecology and evolutionary biology have come through the employment of long-term, individual-based population studies (CluttonBrock \& Sheldon, 2010). They are able to observe some of the most significant processes that affect demographic and evolutionary responses over multiple generations. Whereas population studies solely based on count data are restricted to revealing, for example, population size fluctuations without the potential to elucidate the underlying adaptive forces. In order to predict underlying mechanisms that alter population numbers and investigate environmental effects on particular life history stages, individual-based data spanning at least two generations are required to estimate parameters such as lifetime reproductive success. Seminal studies of long-term individual-based research include the ones on passerine birds (tits, Paridae) in Holland (Kluijver, 1951) and Britain (Lack, 1964). During research spanning more than a decade, Lack (1964) studied fluctuations in numbers of breeding pairs in a population of great tits. The ground breaking study revealed the relationship between the most commonly observed clutch sizes and the optimum brood size for reproductive success when considering survival rates of juveniles. It also showed that clutch-size and the production rate of fledglings was reduced when breeding densities were higher and that this did not affect fluctuations in the size of the breeding population. Many similar studies of birds (Harris, 1970; Dunnet et al., 1975; Newton, 1985) ensued from the research by Kluijver and Lack, although the majority were restricted because individuals were seldom habituated to close observation. Subsequent research on mammals also for example began to habituate individuals to close observation (Douglas-Hamilton, 1973; Festa-Bianchet, 1989), whereas follow-up studies on birds focused on the costs and benefits of different phenotypic traits, behavioural strategies, and
social groups. Clutton-Brock \& Sheldon (2010) have identified six characteristics of individual-based studies of ecology and evolution which encompass the reliable provision of recording age-related changes in life history parameters, the ability to study the causes of variation in growth, breeding success and survival, social structure and kinship, the differences in breeding success between individuals and their offspring, measurements of the strength and direction of selection, and the study of quantitative genetics. Breeding success, selection, and quantitative genetics have direct relevance to the current study.

Cross-generational studies on breeding success reveal the impact that specific mating strategies have on the structure of subsequent stages of the lifespan or individual survival (Clutton-Brock, 1988). They also determine the costs and benefits of specific mating patterns that have led to the wide range of animal mating systems. Measures of the strength and direction of selection are very important when investigating the ecology and evolutionary dynamics of wild populations since selection is a central process of evolution. Changes in the temporal variation, strength, direction and form of selection have been studied (Moorcroft et al, 1996; Coltman et al, 2005; Siepielski et al, 2009) with varying environmental conditions frequently shown to be significant (Wilson et al, 2006; Robinson et al, 2008). For example, a study of the relationship between a secondary sexual trait (male horn length) and fitness, in Soay Sheep, showed that the association can change from positive to negative with changing environmental conditions. Individuals within this population experience a very heterogeneous environment that causes changes to the strength of selection for associations between reproductive success and male horn length generating fluctuating selection. This fluctuation of selection has been suggested as a mechanism by which genetic variance can be maintained for secondary selected traits. Furthermore, studying the temporal dynamics of, and responses to, selection can reveal information about the mechanisms maintaining variation within populations (Sasaki \&

Ellner, 1997) and the potential adaptive rate which can parallel changing environmental conditions (Siepielski et al., 2009; Phillimore et al., 2010).

Quantitative genetics is concerned with the genetic basis of traits governed by multiple genes and their interactions with the environment. Since many traits in natural populations may be quantitative and the mechanisms controlling genetic variation within these traits are not fully understood (Kruuk et al., 2008), insights into quantitative genetics are therefore crucial for our understanding of evolution (Barton \& Keightley, 2002). Moreover, the study of quantitative genetics is fundamental to our understanding of the response of phenotypic traits to selection and thus how populations will respond to global environmental changes (Ellegren \& Sheldon, 2008). More specifically, studies of quantitative genetics have provided insights into inbreeding (Collevatti et al., 2007; Szulkin \& Sheldon, 2008), herita bility (Charmantier et al., 2006; Kruuk et al., 2008), the covariance between traits (Robinson et al., 2008), and gene flow (Zeyl et al., 2009). Understanding these genetic forces requires information about the genetic composition and genealogical relationships within populations that can be generated via genetic markers and can in turn provide tools for studies into animal conservation.

1.2. Biodiversity and conservation

The natural ecosystems and habitats of the world continue to be destructed and disturbed which is causing the widespread decimation of species. Efforts to reduce such destruction and conserve current biodiversity and genetic diversity, especially since many species remain undescribed, are therefore imperative (Bickord et al., 2006). Biological diversity can be defined as the variation in both phenotypes and underlying genotypes of all plants
and animals and of the ecosystems in which they exist. There are three currently recognisable units of diversity, the genetic diversity, species richness, and ecosystem diversity (variation in communities and their environment) (Ramanatha \& Hodgkin, 2002). Many areas of conservation interest have focused on the maintenance and investigation of levels of genetic diversity within populations. Due to the adaptive ability of species with high levels of genetic diversity, it is those that are more able to undergo evolutionary change and genetically adapt to changing environments that may be adverse. Genetic variation therefore plays an important role in conservation of many species as studies seek to understand losses of variation, disentangle the effects of environmental and evolutionary responses, and unravel phylogenetic or genealogical relationships.

In order to investigate such processes, means by which individuals can be identified within populations are required. These can be achieved via the genetic identification of individuals by using molecular markers such DNA barcodes or DNA fingerprints. DNA fingerprinting can for example, unambiguously identify individuals within populations and as a result enable the reconstruction of genealogical relationships and the placement of individuals into discreet familial relationships.

These inferences of genealogical relationships of individuals (pedigrees) in wild animal populations can address many questions of evolution, ecology, and conservation (Blouin, 2003). Before the genetic inferences of such relationships could be achieved, however, the field underwent a significant developmental process. Initially, this began with the introduction of chromosomal polymorphism studies (Levine et al., 1980) and later with allozyme electrophoresis (Hanken \& Sherman, 1981). However it was not until DNA fingerprinting (Jeffreys, 1985a,b) emerged, allowing the unambiguous identification of individuals, that there was genuine scope for genetic parentage analysis. Although there was a subsequent surge in the number of studies (Jones \& Ardren, 2003), it was the
technical and statistical constraints of DNA fingerprinting applications that restricted applications to mostly mammals and birds (Gibbs et al., 1990; Westneat, 1990). However, several years after the utilisation of minisatellites, microsatellites were discovered (Tautz, 1989) and soon became the molecular marker of choice for inferring parentage (Jones et al., 2010). Microsatellites became the preferred markers because they were the first singlelocus, co-dominant, hypervariable markers (Avise, 2004), for which much of the statistical framework had already been formulated (Jones et al., 2010). Microsatellites have become one of the most useful tools in molecular ecology and are key to providing insights into the ecology and evolution of wild animal populations and, therefore, for conservation efforts.

1.3. Amphibians and conservation

The literature is replete with studies assessing, reviewing, and detailing the causes and interacting forces of amphibian declines (Blaustein \& Wake, 1990; Berger et al., 1998; Lips, 1999; Alford \& Richards, 1999; Houlahan et al., 2000; Blaustein et al., 2001; 2011; Stuart et al., 2004; Beebee \& Griffiths, 2005; Pounds et al., 1999; 2006; Halliday, 2008; Allentoft \& O’Brien, 2010). This is because, within the vertebrates, amphibians are the group that are most severely affected by the current biodiversity crises, with 32% of the currently known species under threat (Stuart et al., 2004). Conservation of amphibians is important because their current threat indicates the extinction of a diverse taxonomic group with many unique characteristics such as their life-history traits. This loss will not only significantly affect global biodiversity and genetic diversity, but will also result in a loss of benefits to humans. For example, amphibians have contributed to the study of antibiotic and anti-tumour properties, analgesics, anti-inflammatory compounds, and
natural adhesives. Moreover, 10% of Nobel prizes for research in physiology and medicine have been awarded for the study of frogs (Tyler et al., 2007). Furthermore, critical and deleterious ecological effects could emerge signifying a collapse of the global ecosystem (Halliday, 2008).

Due to their environmental sensitivity, amphibians are generally considered as indicator species, and can therefore provide insights into subtle environmental problems (Hopkins, 2007). This sensitivity can be caused by their central place in the food chain, their utilisation of both aquatic and terrestrial environments, and their unique feeding ecologies at each different life-cycle stage (Allentoft \& O’Brien, 2010). It is because of this environmental sensitivity that they are more susceptible than other vertebrates to the threats associated with a changing environment. The threats faced by amphibians range from the molecular to the community level (Blaustein et al., 2011) and include habitat destruction and fragmentation, increased UV-radiation due to ozone depletion, predation or competition by non-native species, sensitivity to pollutants or toxins, road-kill, overexploitation, diseases such as chytridiomycosis, and climate change (Allentoft \& O’Brien, 2010; Blaustein et al., 2011).

As well as the detrimental effects from anthropogenic activities such as the destruction of terrestrial and aquatic habitats, environmental pollution due to fertilizers and industrial waste, recreation and general urbanisation (Kuzmin, 1999), amphibians are also suffering from anthropogenically-induced climate change (Blaustein et al., 2011). For example, alterations to the levels of precipitation as a result of recent climate change have been reported to increase susceptibilities to the pathogen Saprolegnia ferax (Blaustein et al., 2011). Similarly, the widespread decline of amphibian populations due to Batrachochytrium dendrobatidis is made worse as climate change appears to afford optimal conditions for the spread of the disease (Pounds et al., 2006). Amphibians also
face threats, associated with climate change, to their breeding and reproductive success. For example, due to higher cloud coverage over the mountains of Costa Rica, forests can become drier and less suitable for successful reproduction (Pounds et al., 1997). Furthermore, as a result of early spring temperatures, many amphibian species have had their breeding phenology disrupted and breed earlier than usual (Beebee, 1995; Blaustein et al., 2001; Tryjanowski et al., 2003).

1.4. The common toad (Bufo bufo)

The common toad is the most populous amphibian in the UK and widespread throughout Europe (Figure 1.1), and debatably one of the most successful vertebrates on the globe with distributions also in central Asia and North Africa (Beebee, 1996).

Figure 1.1. Distribution of the common toad, Bufo bufo, throughout Europe (Kuzmin, 1999).

The taxonomy of the genus Bufo is complex. Until 2006, the genus contained over 280 species before being divided into several genera (Frost et al., 2006). Bufo bufo has been recently acknowledged as to have a distinct western and eastern European species with some eastern European species now formally recognised, such as B. gargarizans and B. japonicas (Recuero et al., 2011; Garcia-Porta et al., 2012).

Recent evidence based on molecular markers now also suggests that B. bufo in western Europe can be divided into two separate species due to a zone of sharp mitochondrial DNA divide running through central France; Britain would remain inhabited by B. bufo, whereas populations in South-Western France and the Iberian peninsula would need to become recognised as B. spinosus (Recuero et al., 2011). However, despite a further study confirming the patterns of genetic divergence using different mitochondrial regions (Garcia-Porta et al., 2012), the taxonomy of B. bufo in Europe still remains undefined.

Individuals of Bufo bufo have warty skin, distinct bulges located at the back of the head known as the parotoid glands, and a yellow/golden brown iris with a horizontal pupil. Although colour variation exists, with some individuals observed with red brick spots, individuals tend to be a brown/greenish grey to a dirty speckled beige colour, from their dorsum to ventrum respectively. Unlike other British anurans such as the common frog (Rana temporaria) and the natterjack toad (B. calamita), individuals tend to walk not jump (Herpetofauna, 2010). As with other toads, B. bufo is active primarily during twilight. Individuals hibernate singularly or as a group and usually on land between September/November to March/June, depending on latitude and altitude, before migrating to their breeding pond. Hundreds or even thousands of toads arrive at their breeding ponds every spring to enter explosive periods of reproduction that last over several days (Beebee,
1996). Males amplex females with the aid of nuptial pads on their forearms (Figure 1.2) and do so for up to a few days until the female releases her spawn. Breeding may take place in lakes, ponds, ditches, large puddles and streams (Kuzmin, 1999).

Males reach sexual maturity around one year before females (average, around 3 years), and also enter the breeding ponds earlier and remain there longer (Davies \& Halliday, 1979). Also because females do not breed annually, males outnumber females at breeding sites to cause male-biased operational sex ratios (OSR) typical for toad species (Arak, 1983). This leads to intense scramble competition between males and results in situations of pronounced sexual conflict, including the occasional drowning of females by competing males.

Figure 1.2. Male (attached dorsally) and female common toads in amplexus at the study site.

Females tend to be larger than males, reaching up to 13 cm and 8 cm respectively, with female fecundity being proportional to body mass. That body size is a measure of female fitness creates the possibility that female body size will play a role in male mate selection. Larger males might be at an advantage during situations when, dorsally attached in amplexus, they are forced to defend female mates from mating attempts by other males.

Due to the male biased OSR and scramble competition, male common toads have often been considered almost unlimited in their reproductive potential because they do not contribute anything to the offspring other than sperm. In an experimental investigation of sperm stores, fertilisation success, and sexual motivation, of Bufo bufo over the course of repeated matings, Hettyey et al. (2009), however, demonstrated the existence of sperm depletion after multiple matings related to body size. However, while other studies have reported body size to be important in mating success for both males and females (Davies \& Halliday, 1977; Reading \& Clarke, 1983), others have found no evidence (Hoglund \& Robertson, 1987).

Despite still being a rather abundant amphibian, the common toad has been shown to suffer from adverse environmental effects and declines (Hitchings \& Beebee, 1998; Beebee \& Griffiths, 2000; Carrier \& Beebee, 2003; Cooke \& Sparks, 2004; Wilkinson et al., 2007) and is now on the Joint Nature Conservation Committee's (JNNC) UK Biodiversity Action Plan (UKBAP) priority species list (JNNC, 2007). It has been estimated that toad populations in rural areas of south-east and central England have declined by about 50\% (Carrier \& Beebee, 2003).

Examples of studies on adverse effects of environmental change to B. bufo populations include Hitchings \& Beebee (1998) who used allozymes and minisatellite genetic markers
to demonstrate a marked difference in genetic diversity between rural and urban populations in Britain. These authors found low levels of observed heterozygosity for both genetic markers, and high levels of genetic differentiation (F_{ST}) for populations associated with urban development linked to a loss of fitness as measured by tadpole survival rates. In a study of B. bufo population declines in Jersey, Wilkinson et al. (2007) reported measures of genetic diversity which were not be at critically low levels, but also found high levels of population structure which suggested that further urban development pressures might cause further declines. In fact, populations of Jersey common toads have been in decline for the past 40 years (Le Sueur, 1968; Beebee \& Griffiths, 2000). Despite the finding that anthropogenic land use can cause reductions to heterozygosity and fitness, increased population differentiation, and general population declines, other studies have found no apparent causative agent for common toad declines. Carrier \& Beebee (2003) conducted a nation-wide survey of B. bufo populations and found population reductions of at least 50% for south-east and central England. The study also showed that in comparison to the common frog, the common toad was faring worse, and in the absence of significant alterations to the land surrounding these populations the decline had an inexplicable cause.

1.5. Rationale

A continuous 30-year study of common toads by Dr Chris Reading (Reading, 1983; Reading, 1986; Reading, 1998; Reading \& Clarke, 1995; Reading \& Clarke, 1999; Reading, 2001; Reading, 2003; Reading, 2006; Reading, 2007; Reading, 2009 a,b; Reading \& Clarke, 2009) based at the NERC Centre for Ecology and Hydrology, Oxford, has indicated a link between climate change and a reduction in body condition, survival, and female fecundity (Reading, 2007, Figure 1.3).

The study encompasses an extensive dataset with yearly data collection, and known individual parameters such as the sizes and weights of toads and the knowledge of which individual pairs were found mating (i.e., in amplexus). However, while long-term population studies of this kind do exist for amphibians (Pechmann et al., 1991; Reading, 2007) very few currently exist that are pedigree-based and focus on a single population spanning several generations (Kruuk \& Hill, 2008; Clutton-Brock \& Sheldom, 2010).

Figure 1.3. Left: Change in the mean maximum, mean and mean minimum temperatures $\left({ }^{\circ} \mathrm{C}\right)$ between the $1^{\text {st }}$ of April each year, and the beginning of breeding season the following year for Bufo bufo (1982-2004). Right: Change in mean female and male body condition index (BCI). Reading, (2007).

1.6. Aims

Therefore, the aim of the current study is to make use of this information and create one of the first long-term pedigree-based datasets for an amphibian species. This is to be accomplished by inferring genealogical relationships via genetic data derived from tissue samples from individuals spanning two consecutive generations. Moreover, by combining the genetic data with the recorded demographic data, the aim is to quantify the heritability of fitness in the form of body condition. This is particularly important because understanding the interplay between genes and the environment and disentangling
evolutionary and plastic responses is crucial for our efforts to conserve wild animal populations faced with the threat of climate change.

1.7. Objectives

- To extract DNA from Bufo bufo toe clippings from individuals collected in 2004/2005/2006 and 2008/2009 (forming two successive generations).
- To optimise PCR conditions for specific primers (characterised in Brede et al, 2001).
- To perform PCRs on extracted DNA.
- To genotype all products that underwent PCR amplification on the Applied Biosystems ABI3130 genetic analyser.
- To score alleles from the genotyping data using the software Peakscanner.
- To convert the allele sizes (bps) from 2 decimal places to usable integers using the software Tandem.
- To perform analysis to check for errors in the data using the software Genepop, Microchecker \& Tandem.
- To perform parentage analysis using the software Colony.
- To compare parentage inferences with parental relationships observed in the field
- To calculate pairwise relatedness and inbreeding coefficients using the program KINGROUP.
- To estimate the effective population size using different methods: linkage disequilibrium, heterozygote excess, and sibship assignment.
- To regress the BCI data of the parents against the BCI data (BCI data available from Fig. 1.3) of the offspring, as per the relationships inferred by Colony, to obtain an estimate of heritability for body condition.
- To regress the N_{e} / N data with BCI data/inbreeding coefficients to test for patterns in the data.
- To discuss the results of chapters 3-5 independently to interpret the parentage and N_{e} data and to assess the evolutionary responses of this wild common toad population.
- To form a general discussion, compiling interpreted results from all chapters.

CHAPTER 2:

Materials and Methods

2.1. Study site

The study site is a pond, formed from a flooded clay pit, located to the north of the Purbeck Hills in South Dorset, southern England (Figure 2.1). It spans approximately 0.34 hectares and is flanked by dense rhododendron wood, mature deciduous woodland, wet scrub woodland dominated by birch, mature Scots pine, pasture and heathland dominated by Calluna vulgaris and Ulex europaeus.

Figure 2.1. The breeding pond, and study site. Dorset, UK.

2.2. Recording and selection of individuals

Annually, since 1980, the daily number of sexually mature male and female toads was recorded by Dr Chris Reading (e.g., Reading, 1983; Reading, 2007). Toads arriving at the pond did so from a period between January and April (Reading, 2007). The toads were also captured and marked to denote year of capture by a single toe-clipping. The size (snout-vent length, SVL, in mm) and weight (body mass, in gms) of each individual arriving at the pond was also recorded and these data were used to calculate the body condition index (BCI). For full descriptions and calculations of BCI see the methods section in Chapter 5.

Data from all individual toads (census size, N) required for the sampling years used in the study were obtained from Dr Chris Reading (pers. comm. 2010). The individuals were selected from the population based on known life-history traits of common toads and factors that would optimise statistical power when using computer software programs. For example, it is well known that male common toads reach sexual maturity before females and partly for this reason the operational sex ratio (OSR) at breeding sites is male biased. In the current study, the OSR is male biased by approximately 3:1 and for this reason toads were selected if they were found in amplexus. This was done to try and circumvent the problem associated with excess males in the population. By selecting male and female toads found breeding we therefore assumed that these paired individuals had a higher chance of being a mating pair and thus more chance of producing offspring. Therefore, many male toads from each parental cohort (2004, 2005, and 2006) were not sampled. Furthermore, based on the known ages at which males (3-5 years) and females (4-6 years) reach sexual maturity, individuals from the years 2008 and 2009 were selected to form the offspring cohort. Thus, individuals from the years 2004 - 2006 were used as the
first generation and individuals from 2008 and 2009 as the second generation. Individuals from 2007 were not included in the study since that year had a very high number of adult individuals present for that year (census, $N=900$). This would have resulted in many more potentially breeding individuals and would in turn have generated results that were statistically less reliable.

2.3. Tissue samples

In total, 898 toe-clippings (Table 2.1.) have been used for the current study. The number of samples, including single toads and pairs, varies between the years due to population size fluctuation. Individuals were selected based on the premise that pairs (males and females in amplexus) of toads used from 2004, 2005 and 2006, are the parents of toads in the later years of 2006, 2008 and 2009 (common toads reach sexual maturity at around 3-4 years).

Table 2.1. Toe-clippings as per sampling year and sex of toad.

Sex								
Year	δ^{λ}		Q	$]$ Total	2004	95	96	191
:---:	:---:	:---:	:---:					
2005	58	59	117					
2006	52	52	104					
2008	99	99	198					
2009	188	100	288					
			898					

2.4. Tissue digestion and DNA extraction

All toe clippings from 2004 to 2009 were dissected in preparation for digestion, using approximately $2 / 3$ of the toe. The remaining third was stored in ethanol to be used in the future if required. Tissue samples were transferred to a digestion solution of $500 \mu \mathrm{l}$ of $1 x T N E, 50 \mu \mathrm{l}$ of 1 M Tris HCI pH 8.0, \& $24 \mu \mathrm{l}$ of 25% SDS, along with $5 \mu \mathrm{l}$ of $20 \mathrm{mg} / \mathrm{ml}$ proteinase K (Kramel Biotech, UK) and left overnight at $37^{\circ} \mathrm{C}$ to digest. A total of 898 samples were prepared for digestion and were ready for extraction when the solution was homogenous in texture and colour.

The DNA extractions were performed by initially adding $300 \mu \mathrm{l}$ of phenol/chloroform/iso-amyl alcohol to the digested samples (Sambrook et al, 1989). Each sample was then mixed vigorously until forming a milky emulsion and centrifuged for 5 minutes at $13,000 \mathrm{rpm}$. After centrifugation the supernatant was transferred to a labelled 1.5 ml Eppendorf. This procedure was repeated with $300 \mu \mathrm{l}$ of chloroform/Iso-amyl alcohol. The DNA was then precipitated by adding 1 ml of 100% ethanol to the supernatant and inverting the tube several times. After the samples were centrifuged for 10 minutes at $13,000 \mathrm{rpm}$, the ethanol was discarded. This procedure was repeated with $500 \mu \mathrm{l}$ of 70% ethanol. With the DNA pellet remaining at the bottom of each Eppendorf, the samples were left horizontally with the tube lids open overnight at $21^{\circ} \mathrm{C}$. This step was to ensure that any ethanol residue had completely evaporated since this can inhibit the PCR reaction. When the DNA pellet was dry it was suspended in $50 \mu \mathrm{l}$ of Tris-EDTA buffer (10 mM Tris, 1 mM EDTA, pH 8.0) and, with occasional gentle agitation, was dissolved at $37^{\circ} \mathrm{C}$ for 30 minutes. After the DNA pellets had fully dissolved, they were subject to spectrophotometric quantification to reveal the DNA yield for each extraction.

DNA extractions were quantified using the Beckman Coulter nanoVette for use with the Jenway 6305 UV/visible range spectrophotometre. By pipetting $2 \mu \mathrm{l}$ of template DNA onto the nanoVette and placing it into the spectrophotometre, the concentrations of DNA, in $\mu \mathrm{l} / \mathrm{ml}$ were recorded. This figure was then corrected for by the factor of the pathlength lid of the nanovette, and thus multiplied by 10 to give the DNA concentration in $\mathrm{ng} / \mathrm{ml}$.

Quantified DNA was diluted with specific amounts of $\mathrm{H}_{2} \mathrm{O}$ accordingly to adjust the concentration to around $10 \mathrm{ng} / \mathrm{ml}$. For example, if a particular DNA extraction was quantified at $50 \mathrm{ng} / \mathrm{ml}$, then 50 (quantified concentration) / 10 (desired concentration) x50 (the volume of extracted DNA)-50 (1 x the volume of extracted DNA) would equal $200 \mu \mathrm{l}$ of $\mathrm{H}_{2} 0$ to be added to the DNA extraction.

2.5. Polymerase Chain Reaction (PCR)

Approximately 840 template DNA extractions derived from the tissue samples were prepared for PCR amplification. Initially, standard PCR reactions were set-up as follows: 30 seconds each at $94^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C} \& 72^{\circ} \mathrm{C}$ for 35 cycles, and 10 minutes at $72^{\circ} \mathrm{C}$ for 1 cycle. However, since these conditions resulted in weak amplifications and many failures, the touchdown program as published by Brede et al. (2001) was used to see if this would increase amplification success. This program was successful with many more DNA extractions amplifying, and producing brighter electrophoretic bands. The touchdown PCR program works by the elimination of nonspecific PCR products. This is achieved via $2^{\circ} \mathrm{C}$ incremental steps applied to the annealing temperatures of the PCR primers. Since the earliest phase of the program has the highest annealing temperature, and since annealing temperature is related to primer specificity, this earliest amplified sequence (the sequence of interest) is then further amplified during the next incremental phases and out-competes
the other non-specific sequences in the process. The last phase can then amplify the sequence of interest via further cycles at a final annealing temperature (Don et al., 1991).

Table 2.2. Microsatellite primers selected for the current study from Brede et al. (2001).

Locus	Repeat unit	Primer sequence (5'-3')
Bbufu11	$(\mathrm{CA})_{19}$	GTCACATGGATAATAAATGAGACC TCTAATATTGATGACCAGACAACC
Bbufu15	(CA) ${ }_{16}$	TCAATATAGGAGTCCCAGAATGTC AATCCCCTAGCGTACACAAGATAC
Bbufu24	$(\mathrm{CA})_{13}$	TTTGGAGAGGGGAAAACTTCACAC CGGATTCTGTTGGGGGTGCTC
Bbufu46	(TG) ${ }_{15}$	GATTTCCTGCCGTGAGCCCAGTG CGCCCGCCAAACCTTCCTGAAC
Bbufu49	$(\mathrm{GT})_{29}$	GATCTGGGCAGTGTTGGATTG ATTCCGTCTGCTAAATGTCTCTTG
Bbufu54	(CA) ${ }_{17}$	CATTGCGCTGCTGTCAGATTACAC TTAGGGATTGCCGTCCAGTTGTC
Bbufu62	$(\mathrm{GT})_{18}$	GCACATTCCTGTGTCCGTGTATAG ATTCCGAAAACGAAAAGAAAAGAG
Bbufu65	$(\mathrm{GT})_{29}$	GGATCTAAGCGCTGTGAGAGTGA CGGTCCGTGTTACCACTGATGC

The choice of microsatellite markers (Table 2.2) was defined based on the fifteen dinucleotide primers characterised for Bufo bufo by Brede et al. (2001). Table 2.2 outlines the set of loci used, along with the repeat unit and repeat sequence. All PCR runs were prepared on 96-well PCR plates, compatible with the Applied Biosystems 2720 thermal cycler PCR machine, each with an adhesive sheet attached over the top to cover the reactions and prevent evaporation. Locus specific PCR profiles are given in Table 2.3.

Table 2.3 PCR profiles for the touch-down program employed per microsatellite locus.

Locus	Denaturation temp $\left({ }^{\circ} \mathrm{C}\right)$	Incremental annealing temp $\left({ }^{\circ} \mathrm{C}\right)$			Final annealing temp $\left({ }^{\circ} \mathrm{C}\right)$	Extension temp $\left({ }^{\circ} \mathrm{C}\right)$	
	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7
Bbuf 11	94	52	50	48	46	44	$60(2)$
Bbuf $\mu 24$	94	64	62	60	58	56	$60(2)$
Bbuf 46	94	71	69	67	65	63	$70(2)$
Bbuf $\mu 54$	94	61	59	57	55	53	$70(2)$
Bbuf $\mu 49 \& 6594$	60	58	56	54	52	$70(1)$	
Bbuf $415 \& 6294$	58	56	54	52	50	$70(1)$	

For all loci the PCR reaction volume was $10 \mu \mathrm{l}$ and contained $4.3 \mu \mathrm{l}$ of $\mathrm{H}_{2} 0,1 \mu \mathrm{l}$ of template DNA, $1 \mu \mathrm{l}$ of 10 x reaction buffer (Bioline Ltd, UK, $160 \mathrm{mM}\left(\mathrm{NH}_{4}\right) 2 \mathrm{SO}_{4}, 670 \mathrm{mM}$ Tris- $\mathrm{HCl}\left(\mathrm{pH} 8.8\right.$ at $25^{\circ} \mathrm{C}$), 0.1% stabilizer), $1 \mu \mathrm{l}$ of 25 mM of each dNTP, $0.6 \mu \mathrm{l}$ of 25 mM $\mathrm{MgCl}_{2}, 1 \mu \mathrm{l}$ of $10 \mathrm{pmol} / \mu \mathrm{l}$ of each primer, and $0.1 \mu \mathrm{l}$ of $\mathrm{Taq}(5$ units $/ \mu \mathrm{l})$.

Before genotyping the PCR products, gel electrophoresis was performed to visualise the PCR products to assess the quality and success of reactions by preparing a 1% agarose Tris Borate EDTA (TBE) gel. This was achieved by adding 0.3g of agarose (Bioline Ltd, UK) to 30 ml of 1x TBE (89mM Tris-borate, 2mM EDTA, pH 8.3, Severn Biotech, UK) in a conical flask and heating on full power in a 700 W microwave for about 1minute. After leaving the agarose to cool to around $50^{\circ} \mathrm{C}, 30 \mu \mathrm{l}$ of $\mathrm{GelRed}^{\mathrm{TM}}$ (Biotium, Hayward, CA, USA) was added and mixed into the conical flask. GelRed ${ }^{\mathrm{TM}}$ is used to help visualise the DNA since it works as an intercalating agent, binding the DNA and fluorescing under UV light. The agarose was then poured into a gel tray containing a 1.5 mm comb within a gel electrophoresis unit. After around 30 minutes the gel was set, the comb was removed and approximately 200 ml of 1 x TBE was added to the unit immersing the gel within the buffer. Preparation of the PCR products to be run on the gel involved pipetting out $5 \mu \mathrm{l}$ of
the contents of several randomly selected wells as a sample of each 96-well PCR plate. Each one of these, along with $5 \mu \mathrm{l}$ of the negative control were added to individual 0.2 ml PCR tubes in addition to $5 \mu \mathrm{l}$ of loading buffer (30% glycerol containing Orange G dye). After mixing the dye with the products, the contents of each PCR tube, along with $3 \mu \mathrm{l}$ of 1Kb plus DNA marker (Invitrogen Ltd, UK) were then transferred to individual wells of the agarose gel. The unit was then connected to the power supply and run at 70 V until the DNA had migrated approximately $2 / 3$ through the gel. The PCR products were then visualised under UV light on an Alpha imager тм 1220 (Alpha Innotech corporation, USA).

2.6. Genotyping

PCR products to be genotyped had their DNA concentrations altered by diluting them with distilled $\mathrm{H}_{2} 0$. This is due to the sensitivity of the genetic analyser and was calculated by observing the DNA band intensity on the gel images from tested PCR products to estimate DNA quantity. The dilutions involved transferring $5 \mu \mathrm{l}$ of each PCR product into separate wells of a PCR 96-well plate. Since PCR was performed using the 96 -well plates, the products were transferred into new PCR plates correspondingly. Thus, PCR plates with products arranged in a specific order were ordered in exactly the same way when genotyped. This was done to restrict confusion or misidentification of the products on the plates when scoring them after genotyping. In order to be more efficient with resources and time, each individual well of each plate contained three individual PCR products with different fluorescent labels. These labels were used in order for the genetic analyser to detect which specific loci were to be analysed. For example, for the locus Bbufu11 to be modified either the forward or reverse primer becomes fluorescently labelled with a
specific dye and given a code. Thus, in this case the forward primer for Bbufu11 is labelled with a dye named 'HEX' which when detected by the genotyper fluoresces green when visualised.

Table 2.4. Microsatellite names and the 5' modification, along with the colour of fluorescence when genotyped.

Locus	Forward or Reverse	Modification	Colour of fluorescence
Bbuf $\mu 11$	Forward	5' - HEX	Green
Bbuf $\mu 15$	Reverse	5' - AT550	Black
Bbuf $\mu 24$	Forward	5' - HEX	Green
Bbuf $\mu 46$	Reverse	5' - HEX	Green
Bbuf $\mu 49$	Reverse	5' - HEX	Green
Bbuf $\mu 54$	Reverse	5' - AT550	Black
Bbuf $\mu 62$	Forward	5' - FAM	Blue
Bbuf $\mu 65$	Forward	5' - FAM	Blue

All primer modifications can be seen in Table 2.4. The PCR products were then further diluted by transferring $1 \mu \mathrm{l}$ of the PCR product mixture (three individuals combined) to a $9 \mu \mathrm{l}$ master mix of $\mathrm{H}_{2} \mathrm{O}$, formamide, and Liz standard. Thus, $10 \mu \mathrm{l}$ reactions were prepared and loaded onto the ABI3130 96-well genetic analyser. The data from the genetic analyser was then analysed using the software Peak Scanner ${ }^{\text {TM }}$ to determine allele sizes and zygosities of each successful PCR reaction.

2.7. Screening of genotypic data

After all the data were acquired from Peakscanner, they were further processed using several software programs. This is performed to check for errors associated with
genotyping data that include the non-amplification of alleles (null alleles), and scoring errors caused by stutter bands. Firstly, the software Tandem v1.08 (Matschiner and Salzburger, 2009) was used to convert the alleles scored by visual inspection, which contained non-integer values, to workable integers in a process known as 'allele binning'. Allele binning in Tandem is an automated process that sorts allele sizes into discrete classes and is more accurate than manual binning that can result in errors due to the miscalling of some allele sizes. Upon completion of the analysis from Tandem, an output file is generated containing all of the data points converted to integers and ready for all other software programs.

The software Microchecker (Oosterhout et al., 2004) was used after Tandem to detect errors due to alleles being incorrectly scored in Peakscanner and the presence of null alleles indicated by homozygote excess. Once the data were checked for such errors they were processed in the program Genepop On The Web v4.0 (Raymond and Rousset, 1995) for the estimation of Hardy-Weinberg proportions. The 'probability test' was used with the null hypothesis that the data was in Hardy-Weinberg Equilibrium (HWE), to calculate deviations from HWE, data not in HWE reflected all P values of <0.05. The data were also analysed in Genepop v 4.0 for basic data for each locus in each population, which comprised allele and genotype frequency data, the observed and expected heterozygosities and homozygosities and allele size ranges.

CHAPTER 3:

Measuring the effective population size over two generations in a wild common toad population

3.1. Introduction

The effective population size $\left(N_{\mathrm{e}}\right)$ is the number of breeding individuals in an idealised population exhibiting the same characteristics as the census population (the actual number of animals present, N, (Frankham, 2002). The concept was introduced by the geneticist Sewall Wright who stated that based on the assumptions of an idealised population, N_{e} would show the same distribution of alleles under genetic drift and the same levels of inbreeding as the actual population under observation. In the idealised population, there are equal numbers of both sexes and all individuals are in panmixia with equal chances of successfully reproducing. However, since wild animal populations do not meet such criteria, deviations from the idealised population will usually cause the effective population size to decrease relative to the census size. Such considerations are important, because only the effective population size determines the amount of genetic drift and inbreeding, and the rate of loss of genetic diversity per generation (Frankham, 2002). Therefore, the effective population size is important for conservation considerations because a loss of genetic diversity will limit the adaptability of a population to changing environmental conditions (Soule, 1986). It is for these reasons that the effective population size is often regarded as the most important genetic parameter in conservation genetics (Ovenden et al., 2007).

The effective population size is often considered in relation to the census size $\left(N_{\mathrm{e}} / N\right)$ since it is the deviation from the ideal ratio of 1:1 from which we can measure change. The major variables affecting N_{e} / N ratios are unequal sex-ratio (SR), variance in family size (VFS), mating system, and fluctuations in population size (FPS) (Frankham, 2002). Factors that may cause changes to such variables include different life history aspects such as polygamy, fecundity, or mating success. Species exhibiting high fecundity for example,
due to high variance in family size, and possibly increased fluctuations in population size over generations, may have reduced N_{e} / N ratios. While polygamous species, due to high variance of paternal gametic contributions, would also be expected to have reduced N_{e} / N ratios than monogamous species (Frankham, 2002).

In order to test the hypotheses that SR, FPS, VFS and life history characteristics affect N_{e} ratios and that taxonomic groups differ in ratios, Frankham (1995) reviewed 192 published ratios from 102 species. The review concluded very wide ranging estimates of the effective population size/actual population size ratio with comprehensive estimates averaging between 0.10 and 0.11 . The lowest (0.0009) and highest (1.07) estimates of N_{e} were for insects exhibiting high fecundity (Butlin \& Day, 1989; Nozawa, 1970). Highly fecund amphibians, with the possible exception of one study (Berven \& Grudzien, 1990) all showed expected low N_{e} ratios. Despite some anomalies, the analysis revealed the effect of fecundity on N_{e} is less important than that of fluctuating population size (Frankham, 2002).

Early studies reported predictions of N_{e} ratios based on demographic models with values expected to be usually greater than 0.25 (Nunney \& Campbell, 1993), but special circumstances required for values of much less than 0.5 (Nunney, 1993) and values of less than 0.1 expected for small organisms (Nei \& Tajima, 1981). These values were contrasted further with empirical estimates of 0.5 - 0.8 (Falconer, 1989), 0.2 - 0.4 (Denniston, 1978), and, 0.25 - 1.0 (Nunney \& Campbell, 1993). Furthermore, more recent estimates have been reported of 0.11 (Frankham, 1995) for demographic estimates and 0.14 for genetic estimates (Palstra \& Ruzzante, 2012) with these values further still be incongruent with more contemporary findings. In a meta-analysis of 233 studies of N_{e} / N ratios, only 33 could be considered corrected linked ratios. Many estimates have been incorrectly linked in previous studies and the median value of N_{e} / N ratio from the correct
ones was 0.231 . Therefore, despite the recent findings that N_{e} / N ratios can be correctly linked, many ratios are not and demographic expectations are often dissimilar to genetic estimates. Hence, there exists a lot of inconsistency and conflict between reports of N_{e} / N ratios meaning significant improvements are required (Palstra \& Ruzzante, 2008).

Calculation of the effective population size depends upon which of the three approaches is taken: inbreeding ($N_{\mathrm{e}}(\mathrm{inb})$), variance ($N_{\mathrm{e}}(\mathrm{var})$) or eigenvalue ($N_{\mathrm{e}}(h e t)$). Other forms of $N \mathrm{e}$ have been developed but N_{e} (inb), $N_{\mathrm{e}}($ var $)$ and $N_{\mathrm{e}}($ het $)$ are the most evaluated and widely used (Luikart et al., 2010; Crow \& Denniston, 1988). The eigenvalue Ne expresses the loss of heterozygosity to that of the ideal population. Similarly, $N_{\mathrm{e}}(\mathrm{inb})$ and $N_{\mathrm{e}}($ var $)$ express the increase in inbreeding and the increase in variance of allele frequency to that of the ideal population respectively. However, when a single isolated population is not changing in size, $N_{\mathrm{e}}(\mathrm{inb})$ and N_{e} (var) can be regarded as either very similar or identical (Hedrick, 2011; Luikart et al, 2010). Different time frames are also considered since, depending on the specific questions asked, N_{e} estimators maybe be used for historical, ancient or contemporary temporal scales. However, it is the contemporary time scale estimates most commonly used since these are the most viable and accurate and are the most important ones in the context of conservation science (Luikart et al., 2010).

A parameter related to the effective population size is N_{b}, the effective number of breeders. Whereas N_{e} is the effective number of breeders within a population that requires the breeding parental generation and the sired offspring generation to be sampled, N_{b} requires only a single sample of the population to be analysed. This results in the effective number of breeding adults that sired the single sample of individuals in a given breeding season, as opposed to over two season for N_{e}. Therefore, genetic estimation of effective population size can be broadly separated into either one-sample or two-sample estimators yielding estimates of either N_{b} or N_{e} respectively. Two sample estimators include the
temporal method, a powerful approach that measures changes in allele frequencies (Luikart et al, 2010) over time and is based on the premise that genetic drift increases as N_{e} decreases. Samples of at least two, but ideally several, consecutive generations are required (Frankham, 2002) for estimation and it also requires highly polymorphic codominant molecular markers such as microsatellites. The temporal method, along with others such as gametic disequilibrium and heterozygote excess, is known as a moment estimator (Leberg, 2005; Pudokvin et al., 1996; Bartley et al., 1992; Waples, 1989).

Due to the limitation for the two-sample estimators of obtaining two samples (generations), that for many species may be somewhat spaced apart, the requirement for estimators based on one sample of the population was apparent. One sample estimators measure the effective breeding size and methods include the linkage disequilibrium (LD) approach, the heterozygote excess method, the sibship assignment method and Bayesian methods. The linkage disequilibrium method is based on the expected increase in LD due to genetic drift producing non-random associations between unlinked loci, with this being more pronounced in small than large populations (Beebee, 2009). The heterozygote excess method is based on the chance deviations of genotype frequencies over generations. Due to genetic drift, the frequencies of genotypes differ and deviate from Hardy-Weinberg expectations and this causes an excess of heterozygotes in the offspring generation. This is due to sampling error of the male and female parents in the population causing stochastic differences in genotype frequencies (Wang, 2005). The sibship assignment method works by estimating N_{b} from the relatedness of individual offspring in the sample. The concept is based around the number of associations of full or half siblings and the more frequent occurrences of such relationships in populations with smaller N_{b}.

The temporal method has been widely used to infer N_{e} and N_{e} / N ratios (Palstra \& Ruzzante, 2008; Fraser et al., 2007; Ovenden et al., 2007; Palstra \& Fraser, 2012).

However, a single statistical estimator which can provide a comprehensive measure of estimation does not exist (Araki et al., 2007). This is primarily due to an incomplete understanding of the usefulness of different approaches when using different numbers of samples and loci in populations with varying effective sizes (Aspi et al., 2006; Palstra \& Fraser, 2012). Moreover, due to parametric assumptions that are commonly violated, such as non-overlapping generations, panmixia, or the absence of gene flow, some estimators can be inappropriate for particular studies and required statistical refinement (Waples \& Yokota, 2007). To test the efficiency and consistency of the different statistical estimators, Aspi et al. (2006) employed several approaches to perform temporal analysis on a Finnish wolf population. To determine $N_{\mathrm{e}}(\mathrm{var})$ of the population, analysis was performed using Moment based, Coalescence MCMC (Monte-Carlo Markov-Chain), MC likelihood and Pseudo-Likelihood approaches. The analyses estimated N_{e} to be 39.5, 40.0, 43.0 and 37.8 respectively, averaging in an effective population size of approximately 40 individuals. The study also concluded that the population was in decline despite past increases in N. Thus, the findings from the study have implications for the prevention of further decline or extinction of the population (Aspi et al, 2006), and highlight the potential for comprehensive estimates of N_{e}.

The precision and accuracy of N_{e}, for the temporal approach, depends on the number of alleles examined across all loci, the overall sample size, and the number of generations between temporal samples. Obtaining more than two sets of temporal samples also increases the precision of $N_{\mathrm{e}}($ var $)$. However, sampling more than twice in a temporal series or increasing time frames will often prove difficult since many wildlife species have long generation times. In many cases obtaining samples spanning more than one generation will be not be feasible unless the use of a long-term population study is employed (Leberg,
2005). For precision and accuracy of single sample estimators, N_{b} should correlate with N, the number of polymorphic loci should be increased, and N_{b} should correlate nonlinearly but positively with genetic diversity (Beebee, 2009).

In conclusion, the effective population size $\left(N_{\mathrm{e}}\right)$, is the idealised population exhibiting the same genetic characteristics as the actual population under study. While the effective breeding size, N_{b} is the number of breeding adults in a given breeding season. There is a well-developed and refined history of statistical background for $N_{\mathrm{e}}\left(N_{\mathrm{b}}\right)$ estimates and many studies have reported success using various methods. Estimates of effective population size (or N_{b} size) provide crucial insights into the ecology and evolution of wild animal populations and have important applications in biodiversity management and conservation (Crandall et al, 1999).

3.2. Aims

The current research makes use of an on-going study of a common toad population in Dorset that has indicated a link between a reduction in body condition, female fecundity, and survival of the toads and increased environmental temperatures. By using genetic data derived from individual tissue samples, the aim of the current study was to investigate the effects of the observed reduction in body condition on the effective population size, and effective breeding size of this common toad population. Moreover, given that the study population is a good model to investigate the effective population size due to availability of several hundred samples encompassing data both within and between generations, the aim was to estimate and compare measures of two distinct means estimating the total number of breeding individuals in the population.

3.3. Methods

Tissue samples of Bufo bufo (Table 3.1.) were obtained from the ongoing study of the common toad population in Dorset (see Chapters 1 and 2). DNA was extracted from tissue samples using a standard phenol/chloroform procedure and PCR conditions were performed as per the touchdown program described in Brede et al. (2001). Genotyping was performed on the ABI3130 genetic analyser and errors in the data checked for by using various software programs. These techniques are detailed in full in Chapter 2.

Table 3.1. Total number of toe-clippings as per sampling year and sex of toad.

Sex			
Year	λ §		Total
2004	95	96	191
2005	58	59	117
2006	52	52	104
2008	99	99	198
2009	188	100	288
			898

Single sample effective population size estimates were calculated using the programs Colony (Wang, 2009) and NeEstimator (Peel et al., 2004). Colony uses a unique approach of estimating N_{b} by inferring sib-ships from a single sample of offspring. It is based on the premise that N_{e} is directly related with the number of half and full sibs found in a population. An important assumption is that the sample of individuals is randomly drawn from the same cohort. If several cohorts have been sampled simultaneously then the sample may contain parent-offspring relationships. This can lead to false sib-ship assignment given that both parents-offspring arrays and full sibs share half of their
genome with each other. However, since the sampling in the current study is well defined by each year, there is no risk that any two cohorts will be mixed and thus that this assumption will be violated. Confidence intervals of 95% are calculated by bootstrapping.

The program NeEstimator employs the commonly used linkage disequilibrium method, also with a single sample of the population. It is based on the idea that N_{e} determines the degree of non-random associations at independent loci. Low N_{e} increases genetic drift which in turn increases linkage disequilibrium in the population. Confidence levels are calculated at 95\% using bootstrapping and jackknifing. This same program also estimates effective breeding size via the heterozygote excess method. This method is based on the chance differences, due to genetic drift, of the genotypes between male and female parents causing an excess of heterozygotes in the offspring generation.

The temporally based effective population size estimate was calculated using the program NeEstimator. The temporal method works by calculating the change in allele frequencies caused by genetic drift over at least two generations. The calculation of the temporal approach for this study was based on the equations of Waples (2007).

Therefore, the software program Colony was used to employ the sibship assignment method and the program NeEstimator for the linkage disequilibrium method, heterozygote excess method and the temporal method.

Precision of the N_{b} estimators was calculated as the variance (V) defined as the difference between the confidence limits, obtained with each estimate, as a percentage of the N_{b} estimate. Variance was calculated as follows:
$\mathrm{V}=\underline{100 x(\mathrm{C} 2-\mathrm{C} 1)}$
E

Where, C2 equals the upper 95\% confidence limit and C1 equals the lower 95\% confidence limit, and E equal the N_{b} estimate (Beebee, 2009).

3.4. Results

The results from the single sample effective breeding size estimates are displayed in Table 3.2. Estimates of N_{b} were calculated via three different methods: sibship assignment (SA), linkage disequilibrium (LD) and the heterozygote excess (HE) methods. Table 3.2 shows the estimates of N_{b} as calculated via each method along with the lower and upper confidence limits of N_{b} at 95%. Results of Pearson product moment correlations between the sex-ratio and N_{b} and N and N_{b} / N are also displayed. Table 3.2 also shows the estimate of effective population size calculated via the temporal method.

Table 3.2 Effective breeding size estimates and census size, and N_{b} / N ratios.

	N	Sex Ratio	Effective breeding number/ N_{b} and N ratios		
		q: ${ }^{\text {¢ }}$	SA	LD	HE
2004	593	0.35	69 (51-99)/0.116	$\infty(1004.3-\infty)$	1.4/0.002
2005	473	0.18	73 (52-102)/0.154	35.6 (29.7-43.7)/0.075	1.5/0.003
2006	538	0.14	85 (63-119)/0.158	162.3 (118.9-247.5)/0.302	5.5/0.010
2008	785	0.36	116 (89-149)/0.148	320.2 (229.8-509.3)/0.408	5/0.006
2009	572	0.26	149 (117-187)/0.260	282.4 (229.4-361.5)/0.494	6.9/0.012
Mean $N_{\text {b }}$			98.4	200.13	4.06
TM $=99.7$					
SR vs. N_{b}			-0.14	0.59	0.028
N vs. N_{b} / N			0.39	0.83	0.3

$N=$ population census size, numbers in parentheses $=95 \%$ confidence limits, SA = sibship assignment, LD = linkage disequilibrium, $\mathrm{HE}=$ heterozygote excess, $\mathrm{TM}=$ temporal method, SR = Sex Ratio.

Table 3.3 Pearson product moment correlations between the three single sample estimates of Nb .

$N b$	r	P
SA vs. HE	0.85	>0.05
SA vs. LD	0.83	>0.05
HE vs. LD	0.8	>0.05

All but one estimate (N_{b} from 2004 via the LD method) yielded N_{b} values encompassed within the lower and upper 95% confidence limits of the corresponding method. The correlation between any two of the methods yields in a correlation coefficient greater than 0.8 , at however non-significant p values largely due to the low sample size (Table 3.3).

Figure 3.1 Effective breeding size, and effective breeding size and census size ratio against time for SA estimates. Left axis $=N_{\mathrm{b}}$, right axis $=N_{\mathrm{b}} / N$. Open symbols $=N_{\mathrm{b}}$, closed symbols $=N_{\mathrm{b}} / N$.

Figure 3.2 Effective breeding size, and effective breeding size and census size ratio against time for LD estimates. Left axis $=N_{\mathrm{b}}$, right axis $=N_{\mathrm{b}} / N$. Open symbols $=N_{\mathrm{b}}$, closed symbols $=N_{\mathrm{b}} / N$.

Figure 3.3 Effective breeding size, and effective breeding size and census size ratio against time for HE estimates. Left axis $=N_{\mathrm{b}}$, right axis $=N_{\mathrm{b}} / N$. Open symbols $=N_{\mathrm{b}}$, closed symbols $=N_{\mathrm{b}} / N$.

Figure 3.4 Expected heterozygosity and N_{b} estimates of the SA method
N_{b} estimates further increase from 2004 to 2009, Fig. 3.1 - 3.3). However, none of these were significant. Figures 3.1, 3.2, and 3.3 show N_{b} as a function of time for the estimates calculated via the SA, LD and HE method, respectively.

The figures also show the relationships between the effective breeding population size and census size ratios over the sampling period. Pearson product moment correlations were significant for sibship assignment method against time ($r=0.97, P=0.0067$), linkage disequilibrium method/census size against time ($r=0.95, P=0.048$) and the heterozygote excess method and time ($r=0.89, P=0.04$). Levels of expected heterozygosity were also related to N_{b} estimates for each method (Figures 3.4, 3.5, and 3.6).

Figure 3.5 Expected heterozygosity and N_{b} estimates of the LD method.

Figure 3.6 Expected heterozygosity and N_{b} estimates of the HE method.

The relationships between the three different $N b$ estimates and expected heterozygosity show positive but nonlinear relationships ((a) $r=0.79$, (b) $r=0.62, \&$ (c) $r=0.41$), at however non-significant ($P>0.05$) associations.

Table 3.4 Precision of N_{b} estimates for the SA and LD methods.

Sampling		Precision (V)	
year	N	SA	LD
2004	593	69.56522	-
2005	473	68.49315	39.32584
2006	538	65.88235	79.23598
2008	785	51.72414	87.28919
2009	572	46.97987	46.77762
Nb vs.V		-0.54	0.72

Precision increases (i.e. variance decreases) over time and is negatively correlated with N for the SA method, whereas precision of the LD method shows a positive correlation with N (Table 3.4., neither show a significant relationship at $P>0.05$).

Regressions of the relationship between population census size and effective breeding size showing non-significant positive correlations (SA method, $r=0.38$, HE method, $r=0.30$, LD method, $r=0.83$).

3.5. Discussion

The effective population size $\left(N_{\mathrm{e}}\right)$ is that of an idealised population that exhibits the same characteristics as the population under observation (Wright, 1931). While the effective breeding size, N_{b} is the number of breeding adults in a given breeding season (Phillipsen et al, 2008). Estimation of N_{e} is particularly important because, unlike adult census size (N), it provides measures of key population genetic parameters such as, genetic drift and inbreeding which determine heterozygosity and genetic diversity (Frankham et al., 2002). The different methods of genetic estimation of N_{b} using the single sample estimators used in the current study vary in their underlying theoretical approaches. The underlying theories are based on life histories and different population aspects and assumptions. One such assumption for the heterozygote excess method that may cause questionable values of N_{b}, for example, is the requirement of random mating. All N_{b} estimators (and N_{e} estimators) require random mating but the HE method may be a particularly incorrect or an exaggerated assumption of this method (Beebee, 2009) when applied to most empirical scenarios. It has been suggested that due to this requirement, this method may be better applied to 'broadcast spawners' such as coral (Schwartz et al., 1998). This is to say that due to the nature of spawning for coral, the random mating may be sufficient to fulfil the assumption of the HE method. Due to this possible violation for one of the principles of this method, results using this approach are often inconsistent or incongruous with other single sample estimators. Beebee (2009) found that this method was in fact the least satisfactory in terms of congruency with other methods and was also unable to produce confidence intervals on many occasions. This lack of confidence limits precludes the calculation of variance estimates and therefore the comparison of estimators based on precision. This method also occasionally produces very wild estimates many orders of
magnitude different, or even 'infinity', from the other methods for the same set of data. For example, Beebee (2009) found that, while there were a few populations of British B. calamita that showed N_{b} estimates similar to other methods for the HE method, an N_{b} estimate of 17,000 was generated, compared to $N_{\mathrm{b}}=18,16$, and 16 for the LD, Bayesian, and SA methods respectively. These data are similar to estimates from the current study for N_{b} values using the same method. For example, like Beebee (2009), the HE method was problematic at yielding confidence limits. In fact, in all sampling years, no confidence limits were produced. Similarly, values were wildly different between estimators. For instance, estimates from the HE method produced values in the order of approximately twenty times lower than other methods. Despite this method being the least satisfactory in terms of precision and comparisons with other methods and producing very low values, unlike Beebee (2009) it did not produce excessively high N_{b} estimates.

Estimates of N_{b} from the other single sample estimators are varied across, but relatively consistent within methods. These results are similar to those of other studies of N_{b} estimates of anuran species (Beebee, 2009; Phillipsen et al., 2011), however somewhat differing between individual methods. For example, Phillipsen et al. (2011) yielded results that varied 3 or 4 fold between the SA and Bayesian methods compared to an approximate twofold difference between the SA and LD methods in the current study. However, despite large discrepancies between the LD, HE, SA and Bayesian estimates, those generated from Bayesian and SA estimation were very congruent for Beebee (2009). Other studies that have estimated N_{b} or N_{e} in Bufonidae have shown similar values of effective size for single sample estimation and the temporal method of estimation respectively. In a study of British populations of B. calamita (Beebee, 2006) using the LD method, N_{b} sizes of 110 and 170 were found for populations in Holme and Sandy respectively. These compare to
the current study of N_{b} values for the sampling years of 2008 and 2009 (respectively) using the same method of estimation. Using the temporal method of estimation, Brede \& Beebee, (2006) revealed N_{b} measures of 34 and 49 for two different populations that are similar to certain estimates obtained from current analyses (Table 3.2). Other results from the temporal method of estimation are somewhat different, such as the results obtained by Scribner et al. (1997) that was based on adult-tadpole arrays for generational times. Their results from several B. bufo populations revealed a range of N_{b} values from 16 to 60 across 3 populations, compared to a temporal method N_{b} value of 99 for the current study.

When analysed alongside the values of census size, the above studies show some differences when comparing N_{b} / N ratios to the current study. Scribner et al. (1997) showed effective breeding size and census size ratio to range from 0.007 to 0.012 using the temporal method. This is congruent with data obtained in the current study albeit for data derived from the HE method. The HE method yielded a range of values from 0.003 to 0.012 with an average of all sampling years of 0.007 , exactly that of the range minimum for Scribner et al. (1997). However, Brede \& Beebee (2006) revealed N_{b} / N ratios of 0.040; despite this value being close to the estimates from the HE method it is far lower than estimates obtained from the LD and SA methods in the current study.

For wildlife species in general, the 'universal' N_{e} / N ratio of between 0.11 (Frankham et al., 2002) and 0.14 (Palstra \& Ruzzante, 2008) is a resemblance to the data obtained for at least one N_{e} estimator from the current study, the SA method. The mean N_{b} / N ratio from the sibship assignment method is 0.16 and returned the greater precision over the heterozygote excess method (as calculated as variance, see methods). These data, therefore, are in accordance with expectations as stipulated by Frankham et al. (2002). Furthermore, even values at the higher end of the scope of N_{b} values for the current study can be paralleled by more recent findings of N_{b} / N values. These findings come from a
meta-analysis of nearly 100 studies into N_{e} / N or N_{b} / N that found empirical data to be in the order of 0.22 (Palstra \& Fraser, 2012).

These estimates of effective breeding size do, therefore, show some agreement with other data from empirical studies for Bufonidae species (B. bufo, and B. calamita). Furthermore, congruency can also be seen between the temporally based estimates and the single sample estimates and that this the first time that such a comparison has been made for B. bufo. Owing to the system of the ongoing study by Reading (e.g. 2003; 2007) the sampling range and number of samples per year were sufficient to encompass both the temporal estimates and one-sample estimates of N_{e} or N_{b} respectively. These data (Table 3.2) show that the temporal method estimation of N_{e} is 99.7 which is very close to the average N_{e} from the sibship assignment method mean which $=98.4$. When compared against the LD and HE methods, however, the data is somewhat dissimilar between the temporal and single sample estimates. However, mean N_{b} values from both the SA and LD methods can be encompassed within the range of the confidence limits for temporal method (mean $\mathrm{SA}=98.4$, mean $\mathrm{LD}=200.13$, temporal method CI at $95 \%=55.5-216.8$). Moreover, the temporal method of estimation, $N_{\mathrm{e}}=99.7$ fits into each CI obtained from the N_{b} estimates of the SA method (minimum = 51, maximum = 187).

The findings from the correlations of N_{b} and sampling period, and N_{b} / N and sampling period (Figures $3.1-3.3$) indicate that there is a temporal trend to the data. Such a trend is visible for all the N_{b} estimators and denotes that over the sampling period from 2004 to 2009 the effective number of breeders has been, in general, increasing over time. This finding, on a temporal scale, cannot be seen elsewhere in the literature but spatial differences and increases to effective sizes have been observed (Phillipsen et al., 2011).

What could cause an increase in the effective number of breeders in this population of common toads? The fundamental contributing forces that affect N_{e} and N_{e} / N ratios in order of importance are fluctuations in population size, variation in reproductive success, and unequal sex ratio (Crow \& Kimura, 1970). These impacts reduce N_{e} below N by increasing the variance of the number of gametes contributed per individual to the next generation. This is because the idealised population assumes a Fisherian sex-ratio (1:1) and a Poisson distribution of offspring numbers. However, this is never the case in wild populations. Indeed, the sex-ratio of the current study population is male-biased by approximately 3:1 and therefore it would seem intuitive to suggest that such biases have some degree of a relationship between the estimates of N_{b}. However, as it can be seen from Table 3.2, sex ratio changes are not related to the changes in effective breeding number, and only the LD method yielded a relatively strong correlation of 0.59 . Correlations between N and N_{b} / N (Table 3.2) for the SA and HE methods are very weak negative and positive correlations respectively and all methods yielded non-significant relationships. Therefore, given these weak and nonsignificant correlations, there is no indication that a fluctuation in population size has affected N_{b} / N in this population. However, this is probably not too unexpected given that fluctuations in population sizes are usually much more drastic between years (than observed in the current study) (Frankham, 1995).

The results from the correlations of genetic diversity and N_{b} show the data conforms to that of other another study of the common toad that assessed genetic diversity and N_{b} (Beebee, 2009). The neutral theory of evolution predicts that genetic diversity (measured as heterozygosity/allelic richness) should correlate positively, albeit nonlinearly, with effective population size (Soule, 1979). Such positive correlations would also provide evidence for the accuracy of N_{b} estimators (Beebee, 2009), but to the best of my knowledge have not yet been revealed in previous studies. Figures $3.4-3.6$ shows the
positive trend indicating that the three different measures of N_{b} estimation (SA, LD and the heterozygote excess) are rather congruent. Despite these data showing such a trend, in all cases, the correlation did not yield statistical significance. However, this is most likely due to the small sample size of the five considered years (5 each for Figures $3.4 \& 3.5$ and 4 for Figure 3.6). A dataset showing statistical significance with an n of at least 10 can be seen in Beebee (2009) and when compared to the current data it shows a very similar pattern for two of the N_{b} estimators used (LD \& SA). However, this was a spatial analysis of approximately 20 populations and not, like the current study, a temporal one.

Other evidence for reliability of effective breeding size estimation is provided by the correlations between the different estimators. If data between estimators are similar, then the estimates for each sampling year should show a positive correlation. Table 3.3 shows that all correlation coefficients are above 0.8, albeit they were all non-significant. Philpsen et al. (2011) also showed that estimates from the LD and SA methods were positively correlated for four anuran species with strong positive correlations and statistical significance found for two of these species. Similarly, Beebee (2009) found statistically significant positive correlations for the same estimation methods (LD and SA) for 16 British natterjack toad populations.

The N_{b} estimates from the sibship assignment method are the most precise. This is seen by the lower degree of variance for estimates in every sampling year compared to those of the linkage disequilibrium method. When the data are regressed with census size, the negative relationship for the SA data shows that this precision increases (i.e. variance decreases) with increasing N. However, contrary to that finding is the precision estimate data for the LD method which shows a positive relationship of variance and N. However, despite neither correlation being statistically significant, the low variance associated with the SA estimates is congruent with findings from other studies. In several anuran species,
precision of the SA method was shown to be greater than the LD method (Phillipsen et al., 2011; Beebee, 2009), and like the current study the SA method was negatively correlated with N for B. calamita (Beebee, 2009).

In summary, for all three methods of effective breeding size estimation there is evidence that N_{b} follows an increasing temporal trend. This is particularly interesting since it provides evidence that this population might be well equipped to circumvent the observed adverse effects to fitness, or future perturbations to the population, caused by recent climate change (See Chapters 5, and 6 for further discussion).

CHAPTER 4:

Parentage inference of a wild common toad population from multilocus genotype data

4.1. Introduction

The inference of genealogical relationships of individuals (pedigrees) in wild animal populations can address many questions of evolution, ecology, and conservation (Blouin, 2003). However, field observations of such relationships alone are often not sufficient and can in many cases be difficult to obtain (Wang \& Santure, 2009). This problem was overcome with the development of studies and the subsequent discovery of microsatellites (Jeffreys, 1985b) which allowed the unambiguous identification of individuals within populations.

Many studies have used parentage analyses covering a number of animal groups (comprehensive list given in Harrison et al., 2012) via many different computer software programs that include: CERVUS (Kalinowski et al., 2007), COLONY (Jones \& Wang, 2009), gerud (Jones, 2005), PARENTE (Cercueil et al., 2002), PAPA (Duchesne et al., 2002), PEDIGREE (Herbinger et al., 2006), PROBMAX (Danzmann, 1997), and MASTERBAYES (Hadfield et al., 2006), to employ the various methods and approaches available. These methods of parentage analysis can be classified into six categories which encompass exclusion, categorical allocation, fractional allocation, parental reconstruction, fullprobability parentage analysis and sibship reconstruction (Jones \& Ardren, 2003; Jones et al., 2010).

Exclusion analysis is based on the fact that in sexually reproducing diploid organisms, given the rules of Mendelian inheritance, putative parents and offspring will have at least one allele in common per locus for a co-dominant marker (Chakraborty et al., 1974). A pool of candidate parental genotypes is compared with that of the pool of offspring genotypes and true parents can be excluded if they do not share an allele with a given offspring. However, certain markers can cause problems with the simple underlying logic to this approach. Mutations, null-alleles (i.e. non-amplifying alleles), and scoring errors
cause markers to appear non-Mendelian in inheritance. For example, null-alleles can make the true parent and offspring of a dyad appear homozygous for different alleles at the same locus. Similarly, germ line mutations can result in an allele present in an offspring to be absent in the parent. Thus, along with scoring errors, null-alleles and mutations cause mismatches between genetic data of parents and offspring, and thereby result in incorrect exclusions in the analysis. Despite these inherent problems of the method, full exclusion parentage is the current paragon of parentage studies. However, when experimental conditions do not favour exclusion, other approaches are used to infer parentage such as the most commonly used approach, categorical allocation (Meagher \& Thompson, 1986; Jones et al., 2010).

Categorical allocation was developed to circumvent the problems associated with exclusion approaches that resulted in some candidate parents not being fully excluded. If for instance there were many candidate parents and low levels of polymorphism within microsatellite loci, the power of a given statistical approach to achieve complete exclusion for a given individual putative parent will be low. As a result, the analysis will yield more than one non-excluded candidate parent and thus no certainty can be assigned to any one individual parent (Jones et al., 2010). Since different parental genotypes will differ in their probability of having produced the focal offspring genotype (Meagher \& Thompson, 1986), the determination of the single most likely putative parent from the pool of nonexcluded candidate parents is required (Jones et al., 20120). Categorical allocation achieves just that by using a likelihood or Bayesian approach (Neff et al., 2001), based on the Mendelian-transition probabilities (Marshall et al., 1998), which is the probability of acquiring a particular offspring genotype given specified parental genotypes (Jones et al., 2010).

Other methods of parentage analysis have been developed for different empirical scenarios. The fractional allocation approach allows different statistical properties to accommodate for different population-level variables such as variance in reproductive success. Similarly, the full-probability approach also incorporates population-level variables of interest that can be simultaneously calculated with parentage. Or, in the case where parental genotypes are not known but the genotypes of offspring are, parental genotypes may be reconstructed from the known genotypes of offspring in full or half-sib families (Jones, 2001). And, finally, if neither candidate parents nor sib-ship families are known then the sib-ship reconstruction approach (Wang, 2004; Ashley et al., 2009) can be used to infer parentage. Parentage is inferred when sib-ships are identified before the reconstruction of parental genotypes (Jones et al., 2010). This particular method is often considered to be based on one of the most powerful approaches of parentage inference. It is the nature of many approaches that do not account for information that is lost from genetic marker data and uninferred relationships that renders them not as powerful. The sibship method, however, takes full advantage of this by employing a simultaneous assignment approach by basing the inferences on information from full/half sibships and parental assignments.

Examples of parentage studies of amphibians employing one, or a combination, of these six methods to investigate aspects of life-history (mentioned further on) include the study by Tennesen \& Zamudio (2003). This research used the strict exclusion approach and assumed no mutation or genotyping errors and only paired individuals if their genotypes matched 100%. Similarly, Byrne \& Keogh (2008), using approximately 100 individuals, performed exclusion using the program CERVUS. They deduced maternal genotypes by subtracting paternal alleles from offspring genotypes and also would only assign parentage to individuals who matched genotypic data perfectly. These approaches are rarely
performed due to stringent nature in which individuals are assigned parentage. However, for these studies, relatively few individuals were sampled (around 100 each) and were subject to controlled mating experiments.

However, using the more commonly chosen method of the categorical allocation approach, Adams et al. (2009) sampled 27 females each with egg clutches and reconstructed paternal genotypes from known maternal and offspring genotypes using the program GERUD. In another study by Richards-Zawacki et al. (2012) a multi-faceted approach was employed whereby they conducted likelihood based allocation approaches in CERVUS, Bayesian approaches in MASTERBAYES and sibship assignment methods in COLONY. The sibship assignment method has also been used, to assign paternity to egg clutches in the frog Kurixalus eiffengeri (Cheng et al., 2013), and to infer parentage for Allobates femoralis (Ursprung et al., 2011).

Table 4.1. Parentage publications of amphibians in the literature and the computer programs used to employ the various methods

Amphibian group	Computer software	Method	Authors
Anurans			
	CERVUS, Manually	Allocation, Exclusion	Byrne \& Keogh, 2008
	COLONY, PROBMAX	Exclusion, Sibship	Cheng et al, 2013
	Manually	Exclusion, Kinship	Laurila \& Seppa, 1998
	Manually	Exclusion	Lodé, \& Lesbarrères, 2004
	CERVUS, COLONY, MASTERBAYES	Bayesian, ML, Sibship	Richards-Zawacki et al, 2012
	COLONY	Sibship	Ringler et al, 2012
	Manually	Exclusion	Roberts et al, 1999
	CERVUS, GERUD, Manually	Allocation, Exclusion, Reconstruction	Sztatecsny et al, 2006
	COLONY	Sibship	Ursprung et al, 2011
Salamanders \& Newts			
	GERUD, Manually	Allocation, Reconstruction	Adams et al, 2005
	PEDIGREE, Manually	Allocation, Reconstruction	Gopurenko et al, 2007
	Manually	Exclusion	Jehle et al, 2007
	CERVUS, GERUD, Manually	Allocation, Exclusion, Reconstruction	Jones et al, 2002
	GERUD, Manually	Allocation, Reconstruction	Liebgold et al, 2006
	GERUD, Manually	Allocation, Reconstruction	Steinfartz et al, 2005
	Manually	Exclusion	Tennessen \& Zamudio, 2003
	CERVUS, PAPA	Allocation, Exclusion	Williams \& DeWoody, 2009
Caecilians			
	Manually	Exclusion	Kupfer et al, 2008

However, these studies of parentage/pedigree inferences in amphibian species are rather limited within this field when compared to mammals and birds. This is because amphibians exhibit certain life-history traits such as high fecundity, lifelong growth, and high variance in reproductive success, making it difficult to obtain tissue samples and reliable demographic data. Nevertheless, they have revealed important insights into amphibian genetic mating systems and life history.

Insights into the behaviour, reproductive strategies, and general life history of amphibians for anurans (Lodé, \& Lesbarrères, 2004; Byrne \& Keogh, 2008; Ursprung et al., 2011; Cheng et al., 2013), salamanders and newts (Tennessen \& Zamudio, 2003; Adams et al., 2005; Steinfartz et al., 2005; Liebgold et al., 2006; Jehle et al., 2007), and caecilians (Kupfer et al., 2008) have been obtained through parentage/pedigree based analyses (Table 4.1). These insights into life-history include, for example, the occurrence of multiple paternities (polyandry). Adams et al. (2005) showed that the need for sperm competition to be accounted for by females mating with multiple males was fulfilled. Moreover, evidence exists to suggest that within this natural population of salamander Desmognathus ocoee, as females mate on multiple occasions they may actually manipulate insemination and mating frequency by rejecting males. They also found that for the females that engaged in polyandry, there was one male that had a tendency to sire the majority of offspring per clutch from that female. Furthermore, these males were largely the first to inseminate the female suggesting that sperm precedence is operating. This could impact male reproductive strategies and create pressures for the play off between being the first male to mate and having sperm held in storage for longer periods. In a study by Tennessen \& Zamudio, (2003) the spotted salamander Ambystoma maculatum showed evidence of multiple paternities due to the storage of sperm. Although
this was based on experimental data, this is a potential occurrence of natural mating aggregations. Moreover, they found that the success of the mating males was dependent upon their early arrival to the pond. Thus, providing the risks of mortality associated with freezing in early spring temperature fluctuations are exceeded, this could help to explain the early migration of males to the breeding site. In summary, the study provided several insights into the reproductive strategies of the spotted salamander and male reproductive fitness by showing that, the earliest arriving males, males that encounter females first, and males having sperm stored from the previous breeding season (or mating site) are at an advantage. In extreme cases, females are promiscuous to the extent that every female within the population mates with multiple males. In fact, Byrne \& Keogh (2008) showed that sequential polyandry, whereby females mate sequentially with multiple males through the duration of one breeding season, was operating as females partitioned their eggs between two and eight males. This strategy may have evolved as a mechanism of reducing variance in reproductive success and enhancing fitness. The variance in reproductive success is reduce as more males get to successfully mate while at the same time females get to receive genetic benefits from being polygamous. A number of hypotheses (albeit they were not formulated for amphibians) have been suggested to explain these benefits, such as safeguarding against mating with: infertile males (the fertility insurance hypothesis), poor fathers (paternal care hypothesis), genetically inferior males (intrinsic male quality hypothesis), or genetically incompatible males (genetic incompatibility hypothesis) (Byrne \& Keogh, 2008). Since terrestrial breeding in this species carries huge risks causing nest failure, these proposed hypotheses help to ameliorate the costs associated with such failures. However, these costs account for only around 10% of all egg losses compared to the 90% of failures that occur due to desiccation caused by the poor location or quality of nests in which eggs are deposited. Therefore, females that engage in
such polygamous behaviour are doing so, primarily, to ensure improved fitness chances of their offspring by depositing eggs into multiple nests. Besides other studies of frog species revealing the extent of polyandry (Ursprung et al., 2011; Zhang et al., 2012) and sequential polyandry (Blackwell \& Passmore, 1990), this study has discovered the highest levels of sequential polyandry in a vertebrate species and was the first to show that it can help reduce the damaging environmental effects of nest failures. Conversely, male polygamy, polygyny has also been observed in a few studies of amphibian species (Ficetola et al., 2009; Cheng et al., 2013). The study by Cheng et al. (2013) on the tree frog Kurixalus eiffengeri, revealed sequential polygamy resulting in males using a form of parental care as a means to attract females with whom to mate. Females of this species deposit egg clutches in bamboo stumps or tree hollows, while the males are territorial at the opening of them and call to attract females. Females approach the males and matings occur that causes the new egg clutch to be deposited with the existing one, resulting in overlapping egg clutches in a nest. These overlapping egg clutches may be a reproductive strategy employed by the males to counterbalance the effects of limited breeding activity while guarding egg nests. The benefit of such behaviour is twofold, since males can ensure the survival of existing and future occurring egg clutches while remaining available to receptive females.

Other studies using parentage analyses as means to reconstruct pedigrees have revealed insights into different aspects of genetic mating systems. Such as, the study by RichardsZawacki et al. (2012) that looked at mate choice with respect to colour variation. In the study species, the strawberry dart frog (Dendrobates pumilio) matings have previously been shown to be based on colour variation, that is, that females prefer males of the same colour morph. The results showed that under experimental conditions females may mate with males of the same colour morph (red colour morph) but selection was less specific for
females of the yellow colour morph. Despite the preference for yellow females to mate with their own colour morphs, this less specific selection was likely due to the fact that these variants occur at different frequencies in the wild. Given the differences in these frequencies of the colour morphs in the wild, individuals of the yellow phenotype incur higher costs to mate assortatively (due to longer periods exposed to threats such as predation, competition from other females etc). This could therefore explain the disparity between the experimental data and occurrences in the field.

Insights into reproductive strategies have also been observed in the common toad. Under experimental conditions and in naturally breeding populations, polyandry was detected in 22% and 30% of cases respectively (Sztatecsny et al., 2006) with these figures for polyandry similar to those of other studies on anurans (for, e.g. Lodé, \& Lesbarrères, 2004). Multiple paternities arose as a result of toads forming a 'mating ball', in which multiple males mount a female (multiple amplexi) with no evidence to suggest fertilisation via free-swimming sperm. These instances of multiple paternities are most likely to arise under condition in which there are high population densities and male biased OSRs (Operational Sex Ratio). Given the nature of multiple amplexi, where females struggle to fight off males and may even drown as a result, female polyandry might arise unintentionally as a means by which they can avoid drowning. Therefore, unlike the cases where females are inclined to breed with multiple males (e.g. Byrne \& Keogh, 2008), the case of the common toad indicates that polyandry is possibly a derivative of the heavily skewed sex ratio in favour of males.

The use of genetic markers to provide unambiguous identification of individuals (i.e. genetic fingerprints) can not only be employed to infer parentage within a population but
the genetic data can also to be used to provide estimates of relatedness and inbreeding. Relatedness and inbreeding can simply be defined as the sharing of homologous alleles that are identical-by-descent (IBD) between and within individuals, respectively (Ritland, 1996). The idea of identity-by-descent forms the basis for the estimates of the 'coefficients of relatedness’ (or kinship) to be calculated. This estimate is indicated as r, and is the probability of IBD when sampling homologous alleles. The coefficient, in outbred populations, increases with genetic dissimilarity, for example for $r=1 / 4$ for parentoffspring and full-sib relationships, $1 / 8$ for half-sibs and $1 / 16$ for first cousins.

Examples of studies that have performed kinship analyses include that of Ringler et al. (2012) who estimated pairwise relatedness using the program KINGROUP. Specifically, the study examined the distribution of pairwise relatedness between parental dyads observed in the field with those of simulated data for 'full-sibs', 'half-sibs', and 'unrelated' individuals. The study showed that the parental dyads observed in the field had a mean pairwise relatedness coefficient of zero, matching that of the overall population mean of zero. Thus, the parental dyads observed were neither more nor less related than would be expected from random mating. Furthermore, the relatedness coefficients for full and halfsibs identified in the field, $r=0.41$ and 0.21 were within the ranges obtained from the simulated full and half sibs, $r=0.489$ and 0.236 respectively.

4.2. Aims

The current study makes use of part of an existing dataset encompassing nearly three decades of research of a common toad (Bufo bufo) population in Dorset (for more details see Chapter 2). By using genetic data derived from available tissue samples, the aim of the study was to infer parentage within the population of individuals spanning two generations. Furthermore, the parental relationships inferred from genetic data were compared with recorded information about parental pairs observed in the field.

4.3. Methods

Tissue samples of Bufo bufo were obtained from the ongoing study of the common toad population in Dorset. DNA was extracted from tissue samples using a standard phenol/chloroform procedure and PCR conditions were performed as per the touchdown program described in Brede et al. (2001). Genotyping was performed on the ABI3130 genetic analyser and errors in the data checked for by using various software programs. These techniques are detailed in full in Chapter 2.

The program colony (Jones \& Wang, 2009) was used to perform parentage analysis with the multilocus genotyping data. COLONY employs a maximum likelihood method to assign parentage and sibship jointly and in doing so considers the likelihood over the whole pedigree rather than for just relationships between paired individuals. This improves the power and accuracy of the inferences, utilising the information that is normally lost with other current methods of parentage inference ((Jones \& Wang, 2010). For example, in a pairwise approach to inference, a single offspring provides information for a single allele with regards to inferring and locating parental genotypes from a given dataset. However, the sibship method employed by COLONY considers multiple offspring in the sample increasing the probability that the full parental genotype (i.e. both alleles) can be inferred from the pool of offspring genotypes. Furthermore, by considering more individuals in the sample and designating them into groups (clusters) offspring that do not share ancestry can still provide information for other individual offspring. For example, if an offspring does not share the same parentage (either by full or half-sibship) with another offspring they may still provide information by their presence in the cluster because they may be linked via another individual offspring (Jones \& Wang, 2010).

Initially, individual candidate parents from the same cohorts were used to establish full parentage of offspring from the 2008 and 2009 cohorts. New projects for each were created but each had the same set parameters. The mating system was set to 'male monogamy' and 'female monogamy' and set 'without inbreeding'. The 'species’ options were set to 'dioecious' and 'diploid' and the length of run set to 'short'. The analysis method was set to 'full-likelihood (FL)', no 'sibship prior' and the 'run specifications' were set to 'do not update allele frequencies' with a random number seed of 1234 , with the number of runs set to ' 1 '. Allele frequencies were not updated since there was no prior expectation that family sizes would be large and since it makes the runs substantially more computationally intensive (see COLONY manual). The marker types and error rates input file required to indicate the level of type 1 and type 2 errors associated with microsatellite marker data was provided. The type of marker was set to ' 0 ' to represent co-dominant for all markers and the type 1 error rate (errors associated with allelic dropout) was set to the default of 0.05 . The type 2 errors (errors associated with other forms of homozygote excess such as mutations) were set to the values given by MICROCHECKER (Oosterhout et al., 2004), as per the 'Brookfield 1’ method of null allele estimation. The allele frequencies were not added during set up of the run and were selected to be calculated by COLONY.

Offspring genotypes were added from individuals within the 2008 and 2009 cohorts while maternal and paternal genotypes were added from individuals from the 2004 cohort. Known maternal and paternal sibs, excluded maternity and paternity and excluded maternal and paternal sibs were all set to zero. This procedure was repeated using females and males as candidate parents from 2005 and 2006 to form another two separate runs per cohort. A further 6 runs were performed to establish full parentage of the candidate offspring by combing the sexes from different cohorts to account for cases in which a
father, or mother, was not sampled in the same year as its mating partner. Runs to estimate maternities and paternities for each parental cohort were also conducted and these were then compared to maternities from parental pairs to support assignments. If an offspring assigned full parentage was not assigned the same mother from the maternity analyses then these data were discarded as 'untrue’ or 'unreliable’ inferences. Similarly, the maternity assignments from all of the aforementioned parentage runs were also compared with assignments from the maternity runs alone from the corresponding cohort and also discounted if there was incongruence.

The program KINGROUP (Konovalov et al., 2004) was used to calculate relatedness coefficients between all individuals within the sampling period (2004-2009). An input file containing all of genetic data available of all individuals was used for the analysis and allele frequencies were calculated within the program. Pairwise relatedness was estimated based on the calculations of Queller \& Goodnight, (1989), and Goodnight \& Queller, (1999) by selecting the 'kinship’ pairwise estimator. The relatedness coefficients between any two dyads could then be found from a relationship matrix generated by the program.

4.4. Results

A total of 898 DNA extractions encompassing all sampling years underwent PCR amplification and genotyping. Table 4.2 shows the total number of individuals successfully genotyped per sampling year and per locus. The size ranges of microsatellite alleles, along with the number of alleles per locus are also shown. The fewest number of alleles was 7 (for Bbuf $\mu 15$), while the most polymorphic locus was Bbuf $\mu 49$, yielding 25 alleles. The mean number of alleles per locus was 14 .

Table 4.2. Results from genotyping data

Locus	Allele size range (bps)	Alleles per locus	No. of individuals per sampling year					Total no. of Individuals Genotyped
			2004	2005	2006	2008	2009	
			191	117	104	198	288	
Bbuf 111	103-131	14	103	58	60	165	223	609
Bbuf $\mu 49$	160-216	25	87	100	81	137	169	574
Bbuf $\mu 62$	163-203	13	96	94	53	98	230	571
Bbuf $\mu 65$	158-202	23	48	19	67	135	229	498
Bbuf $\mu 24$	128-158	13	136	110	99	179	172	696
Bbuf $\mu 46$	132-154	10	112	54	96	174	233	669
Bbuf $\mu 54$	166-190	10	95	107	97	168	251	718
Bbuf $\mu 15$	158-174	7	148	93	85	168	235	729

Figure 4.1 shows a visualisation of the PCR products after genotyping and subsequent analysis in the software program Peakscanner. The tall green peak represents the fluorescently labelled locus Bbufu24, with the singular peak denoting that this individual at this locus is a homozygote. Similarly, the two tall blue peaks indicate that this individual is heterozygous for the locus Bbufu65. The smaller peaks, at both loci, are the stutter bands that precede the taller peaks that are the microsatellite alleles. The RFU on the y axis indicates the Relative Frequency Units and shows the intensity of the microsatellite peaks as detected by the genetic analyser. The x axis gives the length of the
microsatellite fragments in base-pairs (bps) and therefore it can be seen that this individual has the homozygous genotype 151 bps and 151 bps for locus Bbufu24 and the heterozygous genotype 182 bps and 186 bps for locus Bbufu65.

Figure 4.1. Scored alleles for Bbufu24 (green) and Bbufu65 (blue) for the same individual from 2009. RFU = Relative Fluorescence Units.

Table 4.3. Expected and observed heterozygosity, the Hardy-Weinberg test, and the number of individuals tested per locus for each sampling year.

Locus	2004				2005				2006				2008				2009			
	n	$\mathrm{H}_{\text {E }}$	H_{0}	P	n	H_{E}	H_{0}	P	n	H_{E}	H_{0}	P	n	H_{E}	H_{0}	P	n	H_{E}	H_{O}	P
Bbuf 11	103	84	93	0.496	58	50	56	0.482	60	52	52	0.323	165	139	137	0.647	223	193	201	0.021
Bbuf 449	87	82	74	0.106	100	94	88	0.006	81	77	71	0.025	137	129	110	0	169	159	157	0.018
Bbuf $\mu 62$	96	69	60	0.005	94	73	59	0.007	53	40	39	0.014	98	75	67	0.583	230	172	190	0.009
Bbuf $\mu 65$	48	43	36	1E-04	19	18	18	0.007	67	62	58	0.091	135	124	115	0.04	229	212	184	6E-04
Bbufu24	136	106	103	0.378	110	86	80	0.484	99	74	69	0.886	179	142	141	0.11	172	128	116	0.07
Bbuf $\mu 46$	112	68	61	0.114	54	33	29	0.189	96	58	55	0.267	174	106	106	0.101	233	154	151	0.303
Bbufu54	95	70	75	0.379	107	76	70	0.067	97	72	69	0.22	168	125	135	0.925	251	188	180	0.064
Bbuf $\mu 15$	148	104	93	0.017	93	64	57	0.049	85	59	50	0.347	168	117	98	0.008	235	165	136	0

$\mathrm{H}_{\mathrm{E}}=$ expected heterozygosity, $\mathrm{H}_{\mathrm{O}}=$ observed heterozygosity, $P=$ exact value estimated by the Markov Chain method (Guo \& Thompson, 1992), $n=$ number of individuals tested.

The results from the Hardy-Weinberg test (Table 4.3) show the estimates close to, and departures from, HWE (P values at $0.05 \dot{\alpha}$). Most years show estimates close to HWE for 4 or more loci while 2009 shows 5 loci deviating from HWE. Loci Bbufu24, Bbuf $\mu 46$ and Bbufu54 are in HWE for all sampling years. All estimates were based on an exact P value test (Raymond and Rousset, 1995) calculated from a Markov Chain method (Guo \& Thompson, 1992).

Parentage analyses were inferred using the software COLONY (Jones \& Wang, 2009) on all individuals genotyped at a minimum of six loci. Table 4.4 shows the parentage inferred where a mother and a father were assigned to at least one offspring, and where the maternal data were congruent with separate tests of maternity. Male and female parents from 2004 are displayed first and are denoted with the prefix ' E '. Individual parents from 2005 and 2006 (prefixed with ' D ' \& ' C ' respectively) are subsequently shown, followed by the combinations of sexes from different sampling years (for example, after parents from 2006 were analysed, females from 2004 were analysed with males from 2005, and so on). Of a total of 31 parental pairs that were assigned offspring, 17 were assigned to one individual, while the highest number of offspring (6) was the inferred progeny of female D254f and male E356m.

Table 4.4. Inference of parentage as performed by COLONY (Jones \& Wang, 2009) for individuals from the parental generation in 2004, 2005 \& 2006 and the offspring generation in 2008 and 2009.

Mother	Father	Offsp						Probability
A363f	A298m	E537						1
A375f	A395m	E341	D471					0.99
A501F	A261m	E122						1
A102f	A376m	E293	D322	D537				
B239f	B080m	E012	E096	E299				0.97
B152f	B286m	E179	D474					0.99
C130f	C131m	E571	D385	D724				1
C136f	C314m	E400						1
C217f	C168m	D530						1
C454f	C133m	D495	D576					1
A362f	B324m	E497						0.8
A241f	B155m	E172						0.8
A466f	C067m	E040						0.97
A241f	C262m	D156	D540					0.97
A108f	C241m	D194	D317					1
A433f	C166m	D437	D632					1
A106f	C168m	D725						0.98
A150f	C275m	D015						0.91
A229f	C021m	E136						1
B059f	A221m	D665						1
B061f	A458m	D325	D710	D777				0.99
B254f	A356m	E017	E257	E511	D041	D052	D538	0.83
B059f	C330m	E332						0.99
B092f	C431m	E070						0.94
B246f	C224m	E317						1
B336f	C262m	E393	D275					
B447f	C222m	E408	D081					
C369f	A125m	D624						1
C074f	B406m	E424						1
C213f	B062m	E491						1
C327f	B324m	D294	D499					1

$\mathrm{A}=$ individuals from 2004, $\mathrm{B}=$ individuals from 2005, $\mathrm{C}=$ individuals from 2006, $\mathrm{D}=$ individuals from 2008, and $\mathrm{E}=$ individuals from 2009, $\mathrm{m}=$ males, $\mathrm{f}=$ females.

The probabilities of the inferred relationships are also given in Table 4.4, using 0.8 as the threshold. A total of 3 parental pairs, marked by asterisks, were inferred by comparing offspring assignments of maternity and paternity and were not inferred conjointly, as parentally paired, offspring triads. For example, when offspring assigned to female E102f were compared with offspring assigned to male E376m, 3 of those assignments (A293,

B322 \& B537) were paired with both individual parents. These genetically inferred parental pairs were compared with the parental pairs observed in the field resulting in only 1 case of congruence between the two sets of paired individuals. Toad numbers C130f and C131m, inferred to have sired 3 offspring, are the only two individuals to be assigned offspring that were also observed to be paired together in the field.

The complete data obtained from inferences of maternity and paternity are summarised in Figure 4.2. The number of individual offspring assigned to a maternal and paternal parent can be seen, with the majority of assignments being 1 and 2 offspring per parent while the highest number of offspring (10) was assigned to a female (C027f).

Figure 4.2. Number of progeny assigned parentage from paternity (dark bars) and maternity (light bars) analyses in COLONY.

A total of 116 and 95 offspring were assigned to 48 mothers and 40 fathers respectively. However, after comparison of these offspring assignments between sexes, 20 of which were shown to be allocated both a mother and a father. These individuals were omitted
since it required categorising them as either maternally or paternally assigned or grouping them with the offspring allocated full parentage (as per Table 4.4). The new total was 96 offspring assigned to 43 mothers and 75 offspring assigned to 34 fathers and thus, the total number of offspring assigned either maternity or paternity was 171 . In addition to the number of offspring allocated full parentage, which was 54, (see Table 4.4) the number of offspring assigned either maternity or paternity was 175.

Figure 4.3. The number of male and female parents (x axis) assigned offspring (y axis), from separate analyses of paternity and maternity in COLONY. Black bars = males, Light bars = females

This therefore results in a total of 229 (47\%) individuals from 2008 and 2009 used as candidate offspring assigned either full or singular parentage. Figure 4.3 shows the paternity and maternity assignments from the parental perspective, representing the number of males and females to sire offspring and size of progeny array per parent. Thus, the total number of parents per progeny array is illustrated.

For example, 1 female sired 4, 1 female sired 6, and another female sired 10 offspring each. Similarly, 3 male parents sired 3 offspring, and so on. The mode of offspring assigned parentage is 1 for paternity and maternity, with 1 offspring being assigned a single father on 11 occasions, and 19 occasions for maternity assignments. The total number of individuals inferred as parents along with the total number of offspring they sired are displayed in Table 4.5.

Table 4.5. Results from parentage analyses and the number of individuals inferred as parents, comparative to numbers of individuals sampled and population census size, per sex and per year.

	Candidate Parents Parents parents typed at inferred sampled min 6 loci			Females	Offspring Proportion assigned parentage of inds. Sampled			Population Proportion census parentage of size N census size		
Parents			Males			Male	Female		Male	Female
2006	105	79	20	14	87	0.36	0.29	538	0.04	0.21
2005	119	66	7	12	38	0.12	0.2	473	0.018	0.16
2004	196	59	6	16	46	0.06	0.16	593	0.0014	0.1
Total	420	204	33	42	171	0.15	0.2		0.026	0.14

The proportion of total number of individuals sampled and total number of individuals in the population (census size, N) that were inferred as parents are also displayed. These data are also divided between male and female toads. The highest number of parents inferred and offspring assigned are from the parental cohort of 2006 with the lowest in 2005. The proportion of individuals inferred parentage of the population census size increases from 2004 to 2006 for both sexes. The proportion parentage of individuals sampled was calculated by dividing the number of inferred parents for each sex with the total number of individuals sampled for that sex. These latter values are not present in the table and are as follows: the total number of males sampled is 213 , and the total number of females sampled is 207. The data from Table 4.5 are for paternity and maternity assignments only and do not include cases of offspring assigned full parentage (see Table 4.4).

The pairwise relatedness calculated in KINGROUP (Konovalov et al., 2004) generated a kinship matrix (see Appendix) giving the relationship coefficients of any two individuals. All parental pairs, assigned offspring through the parentage analyses in COLONY (see Table 4.4) were used to create a boxplot to visualise the distribution of relatedness.

Figure 4.4 Relatedness coefficients as calculated by KINGROUP with a boxplot showing the distribution of values for all parental pairs that were assigned offspring. Grey bar = mode.

The data conforms close to a normal frequency distribution and the modal coefficients are distributed within the $0-0.1$ quantile (Figure 4.4). Approximately 53\% the coefficients are distributed in quantiles below zero, with zero being set as the default population average value of pairwise r in KINGROUP. The mean pairwise r for inferred parental dyads was $\mathrm{r} \pm \mathrm{SD}=-0.067 \pm 0.2$ and therefore below the population mean of zero. Pairwise values of r for the upper and lower quartiles are 0.078 and -0.23 respectively. Inbreeding
coefficients F, were calculated in the program Coancestry (Wang, 2011) giving F for individuals from all sampling years, totalling 898 individuals. An average of F was taken for each sampling year and graphically represented in Figure 4.5, along with data of the proportion of parents sampled that were inferred familial relationships (see Table 4.5). The figure shows the proportion of parents sampled that were assigned offspring increases from 2004 to 2006 (as mentioned above) and that the level of inbreeding shows a general decreasing trend at the same time.

Figure 4.5 Proportion of parents sampled that were inferred as mothers (light bars) and fathers (dark bars) along with the inbreeding coefficient, F, (grey/light bars) for all years. Inbreeding estimates at 95\% confidence.

4.5. Discussion

The allelic data derived from the current study (Table 4.2) are similar to that of other studies (Brede et al., 2001; Wilkinson et al., 2007; Martinez-Solano \& Gonzalez, 2008) whereby high levels of polymorphism for Bufo bufo microsatellite markers were found. Although these findings correspond to the relative levels of polymorphism between loci in Brede et al. (2001), I found the highest numbers of alleles compared to previously published levels. Brede et al. (2001) found that Bbufu49 \& Bbufu65 were the most polymorphic loci with 17 alleles each, whereas the current study found 25 and 23 alleles, respectively, for these loci. However, Brede et al. (2001) studied a population in Sussex, as opposed to Dorset, which may explain some variation in polymorphism between the two sites. The sample size of Brede et al. (2001) was also smaller than the current study which could have resulted in some rare alleles not being sampled. Martinez-Solano \& Gonzalez (2008) used two (at a total of five loci) of the microsatellite loci used in the current study, and found high levels of polymorphism for Bbufu49 and Bbufu11, with 21 and 24 alleles respectively, for populations in Spain. The study found that these were the most polymorphic loci as did the current study, with Bbufu49 closely matching the number of alleles found in the current study to that of Martinez-Solano \& Gonzalez (2008) with 25 alleles.

The results from the Hardy-Weinberg tests (Table 4.3) reveal that, with the exception of 2009, estimates are significantly close to HWE at the 5% confidence level for most of the eight loci used. In practice, genotypes are rarely in exact HWE since natural populations are exposed to at least one of the disturbing influences proposed by the Hardy-Weinberg law. Moreover, the deviations from HWE are within the expected norms and most likely
are due to the presence of null alleles and/or scoring errors within certain loci and finite population size. For example, the data are out of HWE most frequently across loci and specifically for loci Bbuf $\mu 49, B b u f \mu 62, B b u f \mu 65$, and Bbuf $\mu 15$. The deviation from HWE, therefore, shows this within loci pattern as opposed to being more spread across the whole population for all years. These deviations from HWE, as derived from the program GENEPOP, are congruent with null allele frequency rate as calculated by MICROCHECKER and CERVUS. However, such errors were corrected for by reassessing erroneous alleles, as indicated by the program Tandem, and accounting for the rate of null alleles and errors associated with stutter bands before using the data for parentage analyses.

Very few pedigree based studies of amphibians exist owing to certain life-history traits such as life-long growth, high variance in reproductive success and high fecundity. These factors can make it difficult to capture information based on genealogical relationships among individuals of an amphibian population. However, analyses within the current study were able to ascertain parentage for 229 offspring out of a total of 486 individuals using 8 polymorphic microsatellite loci. This is similar to studies of other anuran species that also used 7 (Ursprung et al., 2011) and 10 microsatellite loci (Cheng et al., 2013) with similar levels of polymorphism to conduct parentage analyses in the program COLONY. This shows, therefore, that these (similar) levels of loci used and polymorphisms yielded have been sufficient to successfully infer parentage in this program for published studies on other anurans. Parentage assignments of at least one parent could be achieved for approximately 60% of offspring in the study by Ursprung et al. (2011), similar to the assignment rate in the current study that was close to 50% of the sampled offspring.

The results from the parentage analyses whereby offspring were assigned a father and a mother (Table 4.4) shows some variation in reproductive success. A total of 16 parental pairs sired one offspring and 10 pairs sired two offspring, whereas four pairs sired three
offspring and two pairs sired four and six offspring each, respecitvely. Moreover, the results from the singular parentage analyses also show some degree of variation among successfully reproducing individuals. For example, data from the maternity tests indicates that an individual mother (C02f) has sired 10 offspring, whereas the highest number of offspring sired by any single male is five. These data denote differences in reproductive success between the sexes and would suggest some level of polyandry was operating within the population. Polyandry in Bufo bufo, has been observed where 30\% (in the field), and 22% (experimentally) produced egg strings were sired by more than one male (Sztatecsny et al., 2006). However, various runs via COLONY to test for such a mating system by selecting the 'polygamous' option did not yield any evidence to suggest multiple paternity and hence this could be an artefact of incomplete sampling of the males. At many amphibian breeding foci, there is a bias in the operational sex ratio (OSR) in favour of males especially for explosively breeding species where it can be as high as 10:1 (Wells, 1977). This is apparent at the breeding population of the current study as males outnumber females by approximately 3:1. Despite the difference in the individuals available to sample, members of the population were sampled based on their association with mating partners. That is to say, male and female toads that were found in amplexus together in the field were sampled as 'mating partners' and thus providing a means to circumvent the problem of having many males unsampled. However, as the results from the parentage analyses show, only one parental pair inferred by COLONY matched with the parental pairs observed in the field (numbers shown in italics in Table 4.4). Therefore, given the relative accuracy of parentage analyses, it is likely that the individual toads observed in amplexus do not represent the true mating partners. This could have resulted from the manner in which the toads actually pair up. For example, some female toads at the breeding site changed males several times and the male classified as the breeding
individual was recorded as the last male with whom the female was associated (pers. comm. Chris Reading, 2009). Therefore, the last male to be associated with a given female may have been usurped by a different male following the recording due to the separation of the toads from amplexus. Male and female toads in amplexus are separated to be measured and weighed and then regrouped before being placed back in the pond. Furthermore, given the strong intrasexual competition from males (Wells, 2007) in the common toad, the act of 'scrambling' (scramble competition) for a female mate could make this situation more likely. Thus, as the toads are replaced into the pond, scramble competition results in the recorded male being supplanted by another male as many males try to gain access to a female mate.

Biases to the operational sex ratio can cause greater variance in reproductive success for the limited sex (Emlen \& Oring, 1977), in this case the female. This bias in OSR could help explain differential success between the sexes, for example the additional 20 offspring that were assigned to female parents as opposed to male candidates. Because of the bias, the numbers of female parents of the total number of breeding adults sampled were close to 70% but the males were closer to 20%. This skewed sex ratio could account for the higher number of offspring assignments to maternal parents since many males from the population remain unsampled.

The results from the KINGROUP pairwise relatedness coefficients (Figure 4.4) show that mean r for inferred parental pairs (-0.06) is below the population mean of zero and that 56% of individuals are 'unrelated'. The mean r data derived from these analyses are similar to that of another study on an anuran species. Ringler et al. (2012) showed mean relatedness coefficients of $r \pm \mathrm{SD}=0.003 \pm 0.127$ for observed parental dyads. However, 82.4\% of these dyads were classed as 'unrelated individuals' and probably reflects the greater n (100) for that study. With $r=-0.06$, the genetically inferred parental dyads are
therefore less related to one another than would be expected by random chance. However, with $\mathrm{SD}=0.2$, the variance around the mean is high representing a wide distributional spread and with $n=32$, this might not be indicative of the actual mean of genetically inferred paired parents. Nevertheless, a mean $r=-0.06$ indicates that the highest levels of reproductive success is for parental pairs of less than intermediate genetic relatedness. This therefore means that there is, from a genetic perspective, a degree of viability for this population of common toads since inbreeding appears to not be prevalent. Explanations for this lack of inbreeding could be based around the notion of mate choice. Mate choice, as it is most commonly referred to from the female perspective, can be defined as the choice of sperm to fertilise an egg (Eberhard, 1996). Thus, for a number of reasons, females chose to mate with specific males (Halliday, 1983). However, due to scramble competition of Bufo bufo and the inability for most females to dislodge unwanted males, this sexual selection mechanism would be absent as females appear to be somewhat limited in their choice of males (Davies \& Halliday, 1979). Even though it has been argued that males may be selected for by females by choosing those individual males that are most persistent (Kokko et al., 2003), it is not equivalent to the actual choosing of males from a wider subset of the male population. Thus, as inbreeding requires some level of choice of females with which males to mate, this lack of choice could explain the lack of inbreeding. Indeed, when the results of Figure 4.5 are considered, it can be seen that inbreeding (as shown through the coefficient of inbreeding measures, F) shows a decreasing trend from the years 2004 to 2005 and thus indicates that inbreeding has recently been somewhat reduced. Inbreeding has been shown to cause an increase in the number deleterious alleles through the decrease in heterozygosity, reducing fitness in a number of species (Keller \& Waller, 2002). It has been indicated to be a key component of fitness and directly affect population persistence making it an integral area of research in
conservation biology. However, given the evidence to suggest that inbreeding has been reduced in this population, its effects might not be as detrimental in this study. One mechanism to explain a reduced effect of inbreeding could be due to 'purging' (Keller \& Waller, 2002). Purging is a process whereby the deleterious alleles accumulated through inbreeding are selected against, reducing the mutational load (Boakes et al., 2006). This could, therefore, emerge in harsh environmental conditions that cause the reduction in fitness or other life-history traits, such as the reduction in BCI and survival of both sexes and the reduction of fecundity in females as observed in the current study. If these effects begin to cause an increased rate of inbreeding then the process of purging could ameliorate these adverse effects by removing the deleterious alleles in the population. Therefore, this finding that inbreeding has been somewhat reduced on a contemporary scale, (and thereby mitigating the associated adverse effects) is promising evidence for the well-being and viability of this population. Particularly, since the adverse effects that have been reported for this population might indicate an increased risk of the deleterious effects of inbreeding and that it might be more pervasive. This is because, populations with reduced fitness and survival might be expected to become smaller and smaller populations are more susceptible to environmental and demographic stochasticity. And, this can in turn lead to the population becoming further affected by reduced survival and fecundity as well a further increased vulnerability to inbreeding (Keller \& Waller, 2002).

In summary, the results show that for two parental years, females were assigned offspring more often than males and that from 2004 to 2006 there was an increase in the number of parental-offspring dyad assignments. Data from the relatedness coefficients show that the population does not appear to be suffering from inbreeding as confirmed by the inbreeding coefficients which interestingly show a temporal trend.

CHAPTER 5:

Assessing evolutionary and ecological responses to changing environmental conditions in a wild common toad population.

5.1 Introduction

Current climate change, involving the rise in temperature associated with alterations in precipitation and atmospheric CO_{2} concentrations is considered to have been instrumental in the estimated global biodiversity decline of more than 25% over the last 35 years (Collen et al., 2008). As a result of changing climate, species have responded by altering their physiology, phenology and distribution (Hughes, 2000). Alterations in atmospheric CO_{2} levels directly affect the metabolism and development of many organisms, while life cycle events can be affected when environmental cues such as photoperiods are altered (Ellis et al., 1997).

Shifts in distributional ranges have been observed in many animals, such as flying insects, birds, marine invertebrates and terrestrial mammals (Parmesan et al., 1999; Beever et al., 2003) and involve individuals moving upwards and polewards in response to shifting isotherms. Indeed, a $3^{\circ} \mathrm{C}$ increase in mean annual temperature equates to an approximate shift in isotherms of $300-400 \mathrm{~km}$ in latitude or 500 m in altitude (Hughes, 2000).

The concept of an alternative state in phenotype in response to changing environmental conditions for a given genotype has a historical basis. The ancient philosophical debate of the roles of 'nurture versus nature' is the basis for the study of the relative contributions of genes and the environment (Pigliucci, 2001). Phenotypic plasticity is the modern embodiment of the environmental aspect. The first evidence provided for the idea of phenotypic plasticity came from Woltereck (1909), who showed that a range of phenotypic outcomes can result from changed environmental stimuli for clones of Daphnia. Using the trait 'helmet length' the study showed that when subjected to the presence of a predator, clones of Daphnia cucullata expressed different helmet length
sizes and 'neck teeth'. These phenotypes, the presence of which is effective at reducing predation pressure, spanned a range of traits from low to intermediate to high and were named 'reaction norms'. Since the seminal study of Woltereck (1909), further empirical evidence and key developments for plasticity were provided by Schmalhausen (1949), Waddington (1952), Bradshaw (1965), Via \& Lande (1985), Schlichting \& Smith (2002).

Phenotypic plasticity has been observed in amphibian species such as the parsley frog Pelodytes punctatus. In a study by Jourdan-Pineau et al. (2012), frogs were shown to change their breeding behaviour, and breed in the autumn in some years and in the spring in others, according to the specific environmental conditions under which they were naturally subjected. Examples of phenotypic plasticity causing changes to phenotypes as a result of climate change include causing an advancement of parturition dates in: the red squirrel Tamiasciurus hudsonicus (Reale et al., 2003), the great tit Parus major (Charmantier et al., 2008), and the collared flycatcher Ficedula albicollis (Przybylo et al., 2000).

Evolutionary adaptations can also occur in response to environmental change, whereby genetic alterations causing evolutionary change arise at the level of a species or population. For example, in Darwin's Finches, beak shape and body size were altered in response to the effects of climate change on food resources (Grant \& Grant, 2002). Similarly, pitcher plants mosquitoes (Wyeomyia smithii) have shifted their genetically controlled photoperiodic response toward shorter, more southern day lengths over the last 30 years in response to a longer growing season (Bradshaw \& Holzapfel, 2001). Another study has revealed that whole chromosomal shifts within Drosophila robusta is an evolutionary response to climate change (Levitan \& Etges, 2005). Microevolutionary adaptations not only occur at the level of the species or population but also in subpopulations (demes) that confer the highest fitness to a specific habitat patch of their
environment. When other forces and constraints are absent each local population, usually by means of divergent selection, new traits that are beneficial within the new local environment can evolve.

These fundamental responses shown by populations due to climate change, physiological or phenological change, range shifts, or adaptive change, are all well documented (Hughes, 2000; Postma \& Van Noordwijk, 2005; Visser, 2008; Phillimore et al., 2010). However, discerning the magnitude of each response, especially plastic versus evolutionary change (Gienapp et al., 2008) is essential for our understanding of how populations will respond to anticipated climate change.

The selection pressures imposed upon wild animal populations as a result of climate change are causing these responses of range shifts, plasticity, and evolution. However, distributional range shifts are likely to only provide a very short term solution for many taxa. Similarly, plastic responses will also only be a short term solution and like shifting ranges are limited in their ability to mitigate long-term effects of continued environmental change. Evolutionary responses, however, can provide the means of successful and lasting adaptation through Darwinian natural selection. This is not attainable for plastic responses because they are unable, from the plastic genotype, to produce an extreme phenotype as required in the new environmental conditions. Evolutionary responses can produce such genotypes and overcome the adverse effects on fitness that plastic responses cannot mitigate. It is, therefore, important to disentangle the responses of plasticity and evolution as many organisms face threats associated with environmental change.

One way in which this can be achieved is with the concept of heritability. Heritability is defined by the measure of the proportion of phenotypic variation within a species that is
due to genetic factors. However, in order to discern between the relative contributions of additive genetic variance $\left(V_{A}\right)$ and the effects of epistatic interactions $\left(V_{I}\right)$ and dominance $\left(V_{D}\right)$, heritability can be classified as either broad-sense $\left(H^{2}\right)$ or narrow-sense heritability $\left(h^{2}\right)$ (Allendorf et al, 2012).

Broad sense heritability is a measure of the proportional variance that is a result of the total genetic differences between individuals. For example, if genetic variance $\left(V_{G}\right) /$ phenotypic variance $\left(V_{P}\right)=H^{2}$, then $H^{2}=V_{A}+V_{I}+V_{D} / V_{P}$, allowing for the effects of epistasis and dominance to be measured. However, since only additive genetic variance is the variance upon which natural (and artificial) selection can act, measures of H^{2} do not permit the response to selection to be estimated. For example, in a hypothetical scenario, species X has a two allele system $\left(A_{1} A_{2}\right)$ that determines body length. The heterozygous state $\left(A_{1} A_{2}\right)$ whereby individuals are the longest in length occur at a frequency of 0.50 (2pq) and both homozygous states $\left(A_{1} A_{1}\right.$ and $\left.A_{2} A_{2}\right)$ that produce smaller individuals occur at the frequency 0.25 each (p^{2} and q^{2}) and the allele frequencies are therefore equal. If the longest individuals were desired and to be artificially selected then this would thus result in all heterozygous individuals being chosen for breeding. However, given the laws of Mendelian segregation, the progeny sired as a result of an all heterozygous parental generation would contain the same genotype frequencies. Thus despite H^{2} being 1 , due to all of the phenotypic differences resulting from genetic differences, the response to selection will be 0 due to the fact that the genetic effects are caused by dominance. Narrow sense heritability, meanwhile, estimates the response of a trait to selection by measuring the proportion of phenotypic variation that is due only to additive genetic variation. Thus, narrow sense heritability is given by $h^{2}=V_{A} / V_{P}$ (Allendorf et al., 2012).

There are a number of methods used to estimate heritability that all rely upon the comparison of phenotypes between relatives, either from known pedigrees or genetic
inferences (Allendorf et al., 2012). Methods include the ‘animal model’ (Kruuk, 2004) that evaluates the quantitative genetic variation and breeding value of parents by assessing phenotypic similarity of half, or full-siblings (Visscher et al., 2008) Alternatively, the additive genetic value of individual animals as opposed to related groups can be estimated by partitioning variance components (environmental and genetic) using best linear unbiased prediction models (BLUPs) (Allendorf et al., 2012). One of the most commonly used methods to estimate heritability is a parent-offspring regression whereby phenotypic values of a specific trait for offspring and parents are linearly regressed. Heritability in the narrow sense can be estimated by the slope of the regression of the mean progeny values on the mean of the mother and father trait values (mid-parent value). However by regression of the values of either the mother or the father alone on female or male progeny values, h^{2} is given by twice the value from the slope of the regression (Frankham et al., 2009).

Evidence from the fossil record provides clear indications of the relationship between periods of past global warming and organism size. The Paleocene-Eocene Thermal Maximum (PETM), a period of around 10,000 to 20,000 years occurring over 55 million years ago (Bralower et al, 1997), was associated with rapid global warming, biotic extinction and migration, and fundamental perturbations to the carbon and hydrological cycle (Rodriguez-Tovar, 2011). Evidence for this period indicates that, during the warming phase, invertebrates such as ants, bees, beetles, spiders and wasps shrank in size by 50-75\%. Similar evidence can be found, but during different periods of past warming, for diatoms, pocket gophers (Hadley, 1997), California squirrels and woodrats (Smith et al., 1995, Finkel et al., 2005).

Since climatic changes during the PETM, such as temperature increases of between 3$7^{\circ} \mathrm{C}$ and precipitation decreases of approximately 40%, are comparable to expected global climate change over the next century, such information could be valuable in attempts to estimate anticipated changes to organism size. Despite current climate change occurring much faster than previous periods of warming, contemporary reductions in growth rates and body size (Sheridan \& Bickford, 2011) as well as alterations to the distribution, phenology and behaviour of many organisms (Hughes, 2000; Bradshaw \& Holzapfel, 2006), have been observed due to environmental change.

It is, however, only until recently that studies have focused on the effects of climate change on development and growth, and therefore organism size (Sheridan \& Bickford, 2011). Since development and growth are affected by temperature and water availability (Irie \& Fischer, 2009; Parolin et al, 2010) climate change will affect organism size. Daufresne et al, (2009) were one of the first studies to suggest that, at least for aquatic taxa, the reduction of body size as an ecological response to climate change and many types of wild animals such as amphibians (Reading, 2007), reptiles (Wikelski et al., 2000) mammals (Smith et al., 1998; Ozgul et al., 2009), birds (Gardener et al., 2009), and fish (Desai et al., 2009) have shown reduced growth rates and body size as a result. For example, Ozgul et al. (2009) showed that environmental change has resulted in a reduced growth rate of Soay sheep in St. Kilda, explaining the observed reduction in body size. Similarly, mean body mass of woodrat populations was shown to have decreased significantly over several years in correlation with increasing temperatures (Smith et al., 1998). Further evidence is provided by laboratory experiments on marine molluscs (Jokiel et al., 2008), and marine invertebrates (Daufresne et al., 2009) that have shown similar negative effects due to alterations to temperatures and CO_{2} concentrations.

There are numerous mechanisms proposed for the observed reduction in organism size for a number of different taxa, however, the most pronounced types appear to be related to increased metabolism and quicker development (Sheridan \& Bickford, 2011). Particularly for ectotherms, metabolic rate is dependent primarily on temperature and body size (Gillooly et al., 2001). Therefore, with an estimated global temperature increase of 1.1$6.4^{\circ} \mathrm{C}$ by 2100 (Solomon et al, 2007), ectothermic metabolic rate is expected to increase 10-75\% (Bickford et al., 2010) if metabolic demands are not met. Alternatively, the temperature-size rule suggests that organisms that develop at higher temperatures will be small relative to individuals at lower temperatures (Angiletta et al., 2004). This is due to the inverse relationship between temperature and duration of development (Jarosık, et al., 2002) and has been evidenced in multiple taxa (Ray, 1960). Another empirical generalisation of temperature and body size is Bergmann's rule (Bergmann, 1847) in which it is proposed that, due to the smaller surface area to volume ratio of larger individuals, evolution favours the reduction of heat loss in colder climates (Walters \& Hassal, 2006). Thus, individuals of a particular species tend to be larger in body mass in colder regions. While Bergmann's rule was initially considered primarily a generalisation for endotherms, many ectotherm groups have also shown such temperature-size trends (Ray, 1960)

Evolution will also be a fundamental force in the reduction of organism size. Historic periods of global warming that affected the body size of many mammal species have seen genetic responses for smaller body size in woodrats (Smith et al., 1995) and horses (Secord et al., 2012). The effects of shrinking body size are apparent due to the risks of desiccation from evaporative heat loss in amphibians, for example (Sheridan \& Bickford, 2011) and can for most organisms affect their physiology, anatomy, behaviour, ecology, life history and survival (Walters \& Hassall, 2006). Therefore, the need for evolutionary
responses to emerge due to shrinking body size is apparent. Moreover, as evident from the fossil record, evolution is expected to play a significant role if organisms are to circumvent the adverse effects associated with a reduced body size (Hoffmann \& Sgro, 2011; Sheridan \& Bickford, 2011).

The measure of energy reserves is intimately related to the health of an animal and is functional to a variety of ecological observations, such as environmental stress, parasite load and reproductive investment (Blas et al., 2005; Castellano et al., 2000; Narayan et al., 2013; Neff \& Cargnelli, 2004; Whiteman and Parker, 2004). However, some measures are destructive such as estimating fat deposits which is undesirable especially in the field of conservation research. The use of the body condition index (BCI) as a management tool was proposed by Anderson and Neumann (1996), subsequently providing a nondestructive and relatively straightforward way to compare energy reserves among populations. Common BCIs used are residuals from a linear regression of body mass against body size indicator (BSI) and, ratios between body mass and linear measures of BSI. The use of BCI, however, is not without contention even though numerous ecological studies have been carried out utilising these approaches and the results have been considered highly reliable by many authors. Bancila et al. (2010) compared three BCI methods using body mass data from 24 populations of yellow-bellied toad Bombina variegata. The three BCIs used were Fulton's index, relative body condition mass index and residual index. Fulton’s index (Sztatecsny and Schabetsberger, 2005) uses the Fulton’s factor to compare populations based upon the assumption that those with a higher K (weight/length ${ }^{3}$) contain more energy reserves, and thus have a better body condition, than those with a lower value of K. While the relative mass condition index $\left(\mathrm{W}_{\mathrm{r}}\right)$ was calculated as $\mathrm{W}_{\mathrm{r}}=100 \times \mathrm{W} / \mathrm{W}_{\mathrm{S}}$, where W_{S} is the body mass predicted from the linear regression of
body mass on SVL. Lastly, the residual index uses the residuals of the linear regression of SVL against weight. Many data assumptions exist when using these methods in order to gain an accurate interpretation of the results and should not be violated where possible. However some assumptions cannot be verified which is one of the reasons that their reliability have been questioned (Green, 2001). Bancila et al. (2010) states these assumptions as follows: body mass increases linearly with BSI (following any data transformation), BCI is independent of $\mathrm{BSI}, \mathrm{BSI}$ is an accurate measure of structural size, there is no correlation between BCI and other structural components, and BSI is measured without bias. Bancila et al. (2012) tested the three indices for statistical independence of SVL and normality of distribution. They found that when using the Fulton’s index, BCI was not independent of SVL and data using the relative body condition mass index was not normally distributed. The residual index, however, did not violate either of these assumptions and, therefore, was considered to be the most reliable method of analysis for these data and the application of this index was recommended as a tool in analysing data of amphibians. Green (2001), however, tested a residual index using the ordinary least square (OLS) linear regression of body mass against a linear measure of size in an avian morphometric data set. The purpose of the analysis was to illustrate how this method can easily lead to Type I and Type II errors by the violation of data assumptions. The paper states that significant relationships are particularly vulnerable to being spurious when the correlation coefficient and BSI is low. Although in the current study this was not the case, other caveats need to be drawn attention to, such as the presumption that BCI accurately correlates with the size of energy stores.

5.2. Aims.

The current research makes use of an existing long term study a common toad population in Dorset. By employing data derived from chapters 3 and 4, the aim is assess evolutionary responses of the population by using measures of effective population size and heritability. In doing so, the aim is to acquire an understanding into the genetic mechanisms underlying the adverse effects of climate change in a wild common toad population. Specifically, by performing regression analyses of known phenotypic values of parents and their offspring (as per the inferred relationships of Colony, see Chapter 4), the aim is to estimate heritability of a trait adversely affected by climate change: body condition index (BCI). Moreover, by combining data of effective breeding size estimates and BCI, the aim is to investigate any relationship between these two parameters.

5.3. Methods

The mean BCI data used was calculated from the data obtained from the on-going population study (Reading, 2010, pers. comm.) and by following methods performed previously for this population (residual index, Reading, 2012 pers. comm.). It was calculated by firstly transforming the size and weight data to $\log (10)$ for all individuals of the population for which both measurements were available, for all sampling years (2004, 2005, 2006, 2008 \& 2009) and separated by sex. Subsequently the $\log (10)$ values of size and weight were regressed returning residuals and it was from these residuals that the average BCI was calculated by taking the mean for each sampling year. Table 5.1 shows the number of individuals used for BCI calculation and the number of individuals forming census sizes per year and per sex. The table also shows the mean BCI separated by each year and sex.

For the heritability regressions, the same method of BCI determination was performed and for the midparent BCI and mean offspring BCI regression a scaling factor was applied to the BCI calculation for male toads. The scaling factor was the difference in the average snout-vent length of female toads compared to male toads and used so that the average male sizes could be multiplied by this value. This was performed to account for the size differences between the sexes (female toads are usually much larger than males).

The effective breeding size data used for the N_{b} / N and BCI regressions were obtained from the estimates presented in Chapter 4.

Table 5.1. Numbers of individuals used for calculation of BCI, and mean BCI for each sampling year and sex.

	Females			Males		
Year	n used	N	BCl	n used	N	BCl
2004	150	153	0.003003	439	440	0.002068
2005	71	73	-0.00026	398	400	0.002671
2006	65	67	-0.00273	471	471	0.004066
2008	193	212	-0.0023	573	573	-0.00196
2009	113	117	-0.00601	455	455	-0.00609

$N=$ population census size (Reading, 2006), $n=$ number of individuals used (that had available size \& weight data).

5.4. Results

Estimates of heritability, for those individuals of which pedigree information was obtained (see Chapter 4), were performed and are shown in Figures 5.2 to 5.4 . They represent parent-offspring regression of mean $\mathrm{BCI}, \mathrm{BCI}$ of female parents and mean BCI of female offspring and BCI of male parents and mean BCI of male offspring respectively.

Figure 5.1. Parent-offspring regression of the mean BCI of parental pairs (midparent value) and the mean BCI of their offspring, as inferred by Colony.

The Pearson product-moment correlation was used to obtain all correlation coefficients, with the midparent and offspring regression (Figure 5.1) having $r=0.16,(P=>0.05, \mathrm{df}=$ 29) and a slope, and thus the narrow sense heritability h^{2}, of 0.16 . The data for mothers
and daughters (Figure 5.2) and fathers and sons (Figure 5.3) are both negatively correlated, with correlation coefficients of $-0.17(P=>0.05, \mathrm{df}=25)$ and $-0.033(P=>$ $0.05, \mathrm{df}=26$) respectively.

Figure 5.2. Mother-offspring regression of mean BCI values of relationships as inferred by Colony.

Figure 5.3. Father-offspring regression of mean BCI values of relationships as inferred by Colony.

To see if the size or weight of individual offspring and inferred parents showed heritable variation for these traits, mean female and male offspring values were regressed on either maternal or paternal parental values respectively. Figure 5.4 shows the heritability of snout-vent length in (a) mothers and daughters and (b) fathers and sons, showing weak negative and positive correlations respectively. Pearson product moment correlation coefficients were $r=$ $-0.22(P=>0.05, \mathrm{df}=14)$ for females and $r=0.2(P=>0.05, \mathrm{df}=26)$ for males and thus the narrow sense heritability of snout-vent length for males is $h^{2}=0.4$. Similarly, Figure 5.6 shows the heritability of body weight for (a) females and (b) males and $r=-0.11$ ($P=$ $>0.05, \mathrm{df}=14)$ and $0.10(P=>0.05, \mathrm{df}=26)$ respectively (male $\left.h^{2}=0.2\right)$.

Figure 5.4. Parent-offspring regressions of inferred relationships from maternity and paternity tests in Colony for the estimation of heritability of snout-vent length in Bufo bufo: (a) mothers-female offspring regression; (b) father-male offspring regression.

Figure 5.5. Parent-offspring regressions of inferred relationships from maternity and paternity tests in Colony for the estimation of heritability of body weight in Bufo bufo: (a) mothers-female offspring regression; (b) father-male offspring regression

Results from the effective breeding size estimates for sibship assignment (SA), linkage disequilibrium (LD), and heterozygote excess (HE) methods (see Chapter 3) show an increasing trend with time (sampling year). Since the data for BCI also show a similar trend (see Chapter 1 for background) the two sets of data were regressed to visualise the relationship. Significant correlations can be seen for effective population size/census size and mean female BCI regressions (Figures $5.6-5.8$). N_{b} estimates calculated via the sibship assignment (SA), linkage disequilibrium (LD), and heterozygote excess (HE), methods show mean female BCI is negatively correlated with effective breeding size/census size ratio ($N_{\mathrm{b}}(\mathrm{SA}) r=-0.88, P=0.048, N_{\mathrm{b}}(\mathrm{LD}) r=-0.92, P=0.02, \& N b(\mathrm{HE})$ $r=-0.78, P=>0.05$). Thus, when mean female body condition index is low as per relatively later sampling years (e.g. 2008/2009) the N_{b} / N ratio is highest.

Figure 5.6. Effective breeding size/census size data regressed on mean female body condition index for N_{b} estimates calculated via the sibship assignment method.

Data for 2004 obtained from the linkage disequilibrium method were omitted from Figures 5.7 and 5.8 because the N_{b} value computed by NeEstimator was infinity (∞) and thus could not be correlated with other data.

Data for BCI were divided by sex to account for the differences in body mass since females have up to an additional 30% of weight when captured and processed due to egg masses. Mean male BCI and effective population size/census size correlations also show negative relationships, indicating a similar trend for that of females.

Figure 5.7. Effective breeding size/census size data regressed on mean female body condition index for N_{b} estimates calculated via the heterozygote excess method.

Figure 5.8. Effective breeding size/census size data regressed on mean female body condition index for N_{b} estimates calculated via the linkage disequilibrium method.

Figure 5.9 Inbreeding and expected heterozygosity as per sampling year.

All correlations were, however, insignificant with $r=-0.78$ for the sibship assignment and linkage disequilibrium methods and -0.51 for the heterozygote excess method (all $3, P=$ >0.05). Since effective population size/census size ratios increase with decreasing body condition index, and since a reduction in fitness, and fecundity and increased mortality (see Chapter 1) are associated with an increase in inbreeding, a correlation of inbreeding, F and N_{b} / N was obtained. An average for inbreeding of all individuals in each sampling year that were given inbreeding coefficients in the program Coancestry was calculated. Figure 5.9 shows the significant negative correlation ($r=-0.91, P=0.031$) between average inbreeding coefficients calculated by the program Coancestry and expected heterozygosity.

Figure 5.10. Mean female BCI and inbreeding as per sampling year.

Furthermore, mean body condition index and inbreeding should therefore conversely show a positive correlation (given the increasing effect of N_{b} / N with decreasing BCI). For mean male BCI and inbreeding, like that of BCI and N_{b} / N is not significant but is nevertheless a positive relationship ($r=0.65, P=>0.05$). However, mean female BCI and inbreeding (Figure 5.10) shows a significant and positive correlation ($r=0.92, P=0.028$).

5.5. Discussion

A number of studies have investigated heritability of traits in wild animal populations but have been focused on birds such as the collared flycatcher (Merilä et al, 2001a, b), the great tit (Boyce \& Perrins, 1987), the snow goose (Cooch et al, 1999), the barnacle goose (Larsson et al, 1998), and mammals such as the red deer (Kruuk et al, 2000 \& 2001) and Soay sheep (Milner et al, 1999; 2000). At present there are no such studies that exist for amphibians due to the difficulties associated with obtaining tissue samples and reliable measures of traits such as body mass and length relative to mammals and birds. Moreover, other factors such as the ectothermic nature and lifelong growth of amphibians and their large genomes with few genetic resources do not make the study systems optimal. Therefore, since no studies currently exist that have performed heritability estimates in amphibians, there is no data to which the current study can be compared. However, within studies of birds and mammals, heritable genetic variation for body size has been found for lesser snow geese (Davies et al., 1988), Soay sheep (Milner et al., 1999) and humans (Maes et al, 1997). Heritability of body weight in Soay sheep has been shown to be as low as 0.054 (Milner et al., 1999) and in humans as high as 0.93 (Maes et al., 1997) compared to the narrow sense heritability of 0.16 for this population of common toads. This, $r=0.16$, illustrates a small fraction of variance shared between parental and offspring BCI and that h^{2} is very low for this population. Furthermore, the results from the mothers and daughters and fathers and sons regressions (Figures 5.2 \& 5.3 respectively) show slopes of negative correlations which are to be interpreted as a lack of heritable variation for body size in this population. The data from Figures 5.4(a) and 5.5 (a) showing the heritability estimates for mothers and daughters of snout-vent length and body mass respectively are also congruent with heritability estimates of BCI for both males and females. These data support the interpretation that heritability is very
low in this population, despite the positive correlations for male length and weight (Figures 5.4(b) \& 5.5(b)) since these were very weak and not significant ($P=>0.05$).

The results from the heritability analyses therefore show that there is no correlation between parents and offspring for BCI or traits associated with BCI. The absence of any heritable variation for body condition is an indication that the observed declined of this trait is largely, if not completely, due to environmental causes. Therefore, phenotypic plasticity has occurred within the population in response to increased temperatures as a function of the temperature-size rule (Angilletta et al., 2004). These findings indicate that there is no heritable variation for body condition meaning that there is no evolutionary potential for this population of common toads. Since genetic adaptation is thought to be the most sufficient mechanism of circumventing the adverse effects on fitness associated with increased temperatures, this population therefore lacks the ability to track current climate change.

Since the results from the effective breeding size estimates (see Chapter 3) and the body condition index (see Chapters 1 and 2) both showed a trend with time, correlating the two variables seemed logical. Thus, is there evidence for a functional relationship between BCI and N_{b} ? The data from the mean female body condition index and effective breeding size/census size ratios show a negative relationship for all three of the N_{b} estimates (Figures 5.6 to 5.8). Thus, at times when BCI is high the N_{b} / N ratio is low and vice versa. This is particularly interesting since, given the observed decline in female fecundity and BCI for both sexes as well as increased mortality (Reading, 2007), N_{b} might be expected to decrease. This reduction in female fitness and increased mortality would result in pressures within the population for reproduction. These pressures would be associated with aspects such as fewer female mating partners (in a population already naturally male biased) and a reduction in the number of viable eggs per strings in a system whereby egg
strings are vulnerable to desiccation and predation. Therefore, with reductions in the potentially available female (and male) mating partners and available female gametes, it would be expected that fewer individuals would be available to successfully contribute to reproduction. As a result, this would cause a reduction in the effective breeding size due to further changes to the sex ratio and potential changes to family size and changes to the population size associated with increased mortality. However, despite these adverse effects (such as body size reduction) having the potential to cause a reduction in N_{b}, the effective population size could actually increase under this scenario. In the presence of sexual selection pressures, the effective population/breeding size can be reduced as a result of a portion (usually males) of the population being limited in their reproductive contribution (Moller \& Birkhead, 1994) Thus, in systems with naturally male biased sex ratios and intense male competition (such as scramble competition), as with the current study, many males do not successfully reproduce and therefore do not contribute. However, if these pressures are reduced, sexual selection can become less important and a less instrumental force driving reproduction. For instance, in the current study, both sexes could, arguably, be subject to sexual selection for body size as for example, large females are more fecund and large males may benefit when competing with other males or forming amplexus (or both). However, the observed reduction in body size of both male and female toads (Table 5.1 \& Figures 5.6 to 5.8) could make the pressures associated with, for example, male competition less intense. This could emerge as a result of female toads being less selective about body size of the male toads. Conversely, the same could occur for male toads when selecting female partners and under certain circumstances could even prevent the detrimental effects (such as death of the female due to drowning) associated with multiple males amplexed with one female. Therefore, since sexual selection can reduces N_{e} or N_{b} (Moller \& Birkhead, 1994), a reduction in sexual
selection could increase N_{e} or N_{b} by removing, in the case of the current study, the need for a trait such as body size to be selected for.

Other factors that could adversely affect body condition index values in amphibians include those associated with, for example, nutritional deficiencies (Krause et al., 2011) or habitat change (Karraker \& Welsh, 2006). For example, since nutritional intake is vital for metabolism which is directly linked to body condition, individual toads that have a poorer nutritional intake will have reduced assimilation of energy reserves and therefore a reduced body size. However, although individual toads within the study population have been shown to suffer from the reduced ability to assimilate, and increased depletion rate of, energy reserves, these factors have been associated with increased temperatures during the spring and summer months and the occurrence of more mild winters. Thus, these effects to energy reserves are more likely to be related to increased environmental temperatures as opposed to a change to the dietary intake of the population since there is no documented evidence of any reported changes to the surrounding habitat or the breeding pond itself that may have caused changes to nutritional intake.

The data from Figures 5.6 to 5.8 that shows effective breeding size increases with decreasing body condition index, therefore, indicates a mechanism by which this population can offset the effects of reduced body size and fecundity. However, although studies have shown that sexual selection can reduce N_{e}, no such results exist in the current literature that can show a reduction in body condition to be correlated with higher levels of N_{e} (or N_{b}) or increases in N_{e} / N (or $N_{\mathrm{b}} / \mathrm{N}$). In fact, very few show that N_{e} can be increased within populations. Temporal (Lage \& Kornfield, 2006) and spatial (Phillipsen et al, 2011) studies on vertebrate species have shown alterations to N_{e} but these are typically reductions and associated with populations suffering from ecological
perturbations such as habitat destruction or fragmentation and given obstructions to gene flow for example, would be expected to lose genetic diversity and thus have reduced N_{e}.

Furthermore, studies tend not to report findings that support increases in N_{e} in response to adverse environmental or ecological alterations. Those few studies that report such cases have noted that when the population census size is low, increases in N_{e} / N are apparent and this phenomenon has been termed 'genetic compensation'. Beebee (2009) describes genetic compensation as 'manifest as a nonlinear relationship between $N_{\mathrm{b}} / N_{\mathrm{c}}$ ratios and N_{c} ' and was evident in that same study. Other studies of amphibian species (Jehle et al., 2005; Palstra \& Ruzzante, 2008) have also shown such correlations. Jehle et al. (2005) showed a negative but nonlinear relationship between population census size, N and N_{b} / N. The study found that when effective breeding size and census size ratios were lowest, the population census size was at its highest and vice versa. For example, when N_{b} / N ratios were around 0.1 , population census size was between 150 and 225 individuals and conversely when N_{b} / N ratios were between 0.5 and 0.65 , census size was below 25 individuals. This therefore means that at times of very low N the majority of individuals within the population reproduce and it is this characteristic for which the term 'genetic compensation' is required. This phenomenon, albeit manifested in a different manner, may be applied in the current study to explain the findings that show increased $N e / N$ (or N_{b} / N) ratios correlated negatively with decreased BCI.

To summarise, the data from the heritability estimates show that there is no evidence for the existence of significant heritability for BCI. This is concerning for the long-term viability of this population of common toads since responses emerging from plastic genotypes are not sufficient to circumvent the adverse effects associated with climate change. However, the data for effective breeding size shows an increasing temporal trend which is negatively correlated with the body condition suggesting that the observed
detrimental effects to fitness (i.e. fecundity and body size reduction) may be offset by the ability of individuals to increase the effective breeding number possibly by reducing the variance in reproductive success due to decreased sexual selection pressures.

CHAPTER 6:

General Discussion

Despite the common toad (B. bufo) being the most populous amphibian in the UK and widespread throughout Europe, with populations in decline (e.g., Beebee \& Griffiths, 2000) it is now listed as a priority species (JNNC, 2007). A loss of genetic diversity and fitness, (Hitchings \& Beebee, 1998) and surveys showing that toad populations fare worse than those of common frogs (Carrier \& Beebee, 2003), have provided some insights into the decline of the common toad in the UK. Furthermore, a long-term population study has indicated that increased temperatures are linked to the reduced body condition, fitness and survival of a common toad population in Dorset, UK (Reading, 2007). While survey-based or population-level studies can contribute to the revealing of population density, distribution, size fluctuations and other demographic processes, they are limited in their ability to elucidate the underlying forces for observed declines. In order to document and predict the mechanisms that alter population numbers and investigate environmental effects on particular life history stages, individual-based data spanning at least two generations aid to estimate parameters such as lifetime reproductive success. By combining data derived from the study by Reading (e.g., Reading, 1983; 2007) with data on individually recognisable members of the population and their paternity share in successive generations, the current study could elucidate some underlying forces contributing to population dynamic processes, including the observed decline in fitness and survival of the studied population.

Data from the effective breeding size estimates in Chapter 3 reveal that there is an upward trend for the effective breeding number from 2004 to 2009. This temporal trend was also apparent when analysed as the N_{b} / N ratio and was produced by all three N_{b} estimators used. The comparison of this data with the data from the parentage analyses in Chapter 4 indicates some level of congruency. The data can only be compared for the years of 2004, 2005 and 2006, since these were the years covering the parental
generations. However, the number of individuals contributing to reproduction appears to have increased both for the N_{b} estimates and parentage assignments. Therefore both sets of data add support to the inference that there is an increase in the effective number of breeders in this population. Furthermore, the average number of breeders relative to the adult census size (N) as inferred by the parentage assignments (see Chapter 4, Table 4.4) is 0.16 and the average number of breeders relative to census size $\left(N_{\mathrm{b}} / N\right)$ as inferred by the N_{b} estimate via the sibship assignment (SA) method is also 0.16 . The fact that the value from the SA method matches the parentage figure of 0.16 is promising, since estimates of N_{b} derived from the SA method have been shown to be the most accurate when compared to HE and LD estimates (also for anuran species, Beebee, 2009; Phillipsen et al., 2011). Similarly, when the effective population size estimate inferred via the temporal method (using 2004 as generation 0 and 2009 as generation 1) is analysed relative to the average adult population census size, the $N_{\mathrm{e}}(T M)$ /mean N ratio is also 0.16. $\left(N_{\mathrm{e}}(т м)=98.4\right.$, mean $\left.N=592.2\right)$. Thus, from different methods of inference, different statistical means, and theoretical assumptions, these data all converge on a ratio of effective population size to census size of approximately 0.16 . This, therefore, shows some level of accuracy and reliability of the data and confidence that this value is likely to be the true N_{e} / N ratio.

The most influential forces that affect the ratio of effective population size to adult census size are fluctuations to population size, the sex-ratio, and variance in reproductive success (the former two of which are discussed in Chapter 3). Variance in reproductive success alters N_{e} / N ratios by affecting the number of gametes each individual contributes to the next generation. For example, an ideal Wright-Fisher population with a sex-ratio of 1:1 and a Poisson distribution of gametes would produce no variation as the average number of gametes equals 2 . However, given that this is never the case for wild animal
populations, deviations from an idealised population are observed allowing the effects of variance in reproductive success to be investigated. In the current study, therefore, evidence of variation in reproductive success would indicate some effects to the effective population/breeding size. The results from Chapter 4 show that apart from a single female assigned 10 offspring (Figure 4.2), the data show no significant variance in reproductive success for either sex of the toads or sampling year. These data (Chapter 4), therefore, could help explain an increase in N_{b} (Chapter 3, as opposed to a decrease associated with increase reproductive variance). Furthermore, although the variance in reproductive success in terms of family size does not show a decreasing trend with time (indeed, the 10 offspring assigned to one female were observed in 2009), in terms of differential success between the sexes the data is more revealing. From the results of Chapter 4 (Table 4.4) it is apparent that there is a difference between the reproductive success of males and females. In 2004, there are 10 females more than males that were assigned parentage and in 2009 the difference is only 6 additional males. Moreover, the sex-ratio data (Chapter 3, Table 3.2) is in accordance with the differential parentage assignment data (Chapter 4, Table 4.4) in that it shows a decrease in the sex-ratio resulting in a less biased ratio from 2004 to 2006. If fewer males, relative to females are present in the population then this could help explain a reduction in reproductive variance and thus an increase in N_{b}.

The results from the body condition index and N_{b} / N regression data of Chapter 5 might also help explain the low variance in reproductive success as observed from the parentage data (Chapter 4) and as implicated from the N_{b} data (Chapter 3). The regression analyses show that mean BCI per sampling year is negatively correlated with estimates of N_{b} / N per sampling year (Figures 5.8 to 5.10). Thus, when the effective breeding size is highest (i.e., in 2009) the body condition is lowest. This is statistically significant for two of the N_{b} estimators (SA and HE, $P=<0.05$). This means that the reductions to body size and
fitness as observed (reading, 2007) appear to have not led to a decrease, but an increase, in the average contribution to reproduction by each individual in this population. If the reduction in body size reduces pressures associated with sexual selection, then this could have emerged as individuals mating less selectively. In the absence of body condition as an important determining factor of sexual selection, other individuals may achieve reproductive success and thereby increase the number of breeding individuals in the population. This would therefore explain the increase in N_{b} estimates (Chapter 3/5) and the increase in parentage assignments (Chapter 4). Moreover, the data from the inbreeding coefficients (F) in Chapter 3 (Figure 4.4) show that inbreeding has been reduced (see also Chapter 5, Figure 5.12), which means that F increases with increasing body condition. Thus, when the toads are of a smaller BCI they are less inbred. If this is due to an increase in the breeding number of individuals in the population then it may have emerged as those individuals whose mating chances are reduced due to increased selective pressure (due to larger toads) may then have become less choosy and thus less effective at avoiding inbreeding. However, inbreeding avoidance often leads to a loss of potential breeding opportunities (Kokko \& Otts, 2006), which may as a result reduce the number of breeders in the population. Nevertheless, this increase in breeding success in spite of a reduction in body size and fitness would therefore denote that this population might be well equipped to overcome the adverse effects of increased environmental temperatures.

If body condition is an important factor in the breeding of individuals in this population then evolutionary change would be required to select for body size. The results from the heritability estimates of BCI (Chapter 5, Figures 5.2 to 5.4), however, indicate that the reduction in body size appears to be a plastic response and not a genetic one.

In conclusion, despite the lack of evidence to suggest that the observed reduction in body size of individual toads in this population is due to evolutionary change, the population has shown that it may be capable of circumventing the adverse effects associated with a reduction in body size as evident from the increase in effective breeding number. Data from the measures of genetic parameters such as a reduction in inbreeding, an increase in genetic diversity and effective breeding size, coupled with an increase in parentage assignments over time suggest that reductions in BCI, fecundity and survival have not been detrimental. However, if the observed reduction in body condition and fecundity continues then the effects of reduced reproductive competition for example, such as an increase in N_{b}, might not be enough to counteract the effects of an increasingly less fecund population suffering from increased mortality. For that, adaptive genetic change would be required that can be measured through estimates of heritability over longer period of time to disentangle the effects of environments from genes. The need for such analyses in future studies of conservation genetics in amphibians and all wildlife species is becoming more urgent.

CHAPTER 7:

References

7.1. References

Adams, E.M., Jones, A.G. \& Arnold, S.J. (2005) Multiple paternity in a natural population of a salamander with long-term sperm storage. Molecular Ecology 14, 1803-1810.
Alford, R. A. \& Richards, S.J. (1999) Global amphibian declines: a problem in applied ecology. Annual Review of Ecology and Systematics 30, 133-165.
Allendorf, F.W., Luikart, G.H. \& Aitken, S.N. (2012) Conservation and the genetics of populations. Wiley-Blackwell, UK.
Allentoft, M.E., \& O’Brien, J. (2010) Global amphibian declines, loss of genetic diversity and fitness: A review. Diversity 2, 47-71.
Anderson, R.O. \& Newmann, R.M. (1996) Length weight and associated structural indices. In: Murphy B.R., Willis, D.W, editors. Fisheries techniques. 2nd ed. Bethesda (MD): American Fisheries Society. p 447-481.
Angilletta, M. J. Jr., Steury, T. D. \& Sears, M. W. (2004) Temperature, Growth Rate, and Body Size in Ectotherms: Fitting Pieces of a Life-History Puzzle. Integrative and Comparative Biology 44(6), 498-509.
Arak, A. (1983) Male-male competition and mate choice in anuran amphibians. In P Bateson ed. Mate choice. Cambridge, UK: Cambridge Univ. Press, pp. 181-210.
Araki, H., Waples, R. S. \& Blouin, M. S. (2007) A potential bias in the temporal method for estimating Ne in admixed populations under natural selection. Molecular Ecology 16, 2,261-2,271.
Ashley, M. V., Caballero, I. C., Chaovalitwongse, W., Dasgupta, B., Govindan, P., Sheikh S. I. \& Berger-Wolf, T. Y. (2009) Molecular Ecology Resources 9(4), 1127-1131.

Aspi, J., Roininen, E., Ruokonen, M., Kojola, I. \& Vila, C. (2006) Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Molecular Ecology 15, 1561-1576.
Avise, J. C. (2004) Molecular Markers, Natural History and Evolution. Chapman \& Hall, New York.
Balloux, F., Amos, W. \& Coulson, T. (2004) Does heterozygosity estimate inbreeding in real populations? Molecular Ecology 13, 3021-3031.
Bancila, R.I., Hartel, T., Plaiasu, R., Smets, J. \& Cogalniceanu, D. (2010) Comparing three body condition indices in amphibians: a case study of yellow-bellied toad Bombina variegata. Amphibia Reptilia 31, 558-562. doi: 10.1163/017353710X518405.
Bartley, D., Bagley, M., Gall, G. \& Bentley, M. (1992) Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations. Conservation Biology 6, 365-375.
Barton, N.H. \& Keightley, P.D. (2002) Understanding quantitative genetic variation. Nature Reviews Genetics 3, 11-21.
Beebee, T.J.C. (1995) Amphibian breeding and climate. Nature 374, 219-220.
Beebee, T.J.C. (1996) Ecology and Conservation of Amphibians. Chapman and Hall, UK.
Beebee, T.J.C. (2009) A comparison of single-sample effective size estimators using empirical toad (Bufo calamita) population data: genetic compensation and population size-genetic diversity correlations. Molecular Ecology 18, 4790-4797.
Beebee, T.J.C. \& Griffiths, R. (2000). Amphibians and reptiles. London: HarperCollins.
Beebee, T.J.C. \& Griffiths, R. (2005) The amphibian decline crisis: A watershed for conservation biology? Biological Conservation 125(3), 271-285.
Beever, E.A., Brussard, P.F. \& Berger, J. (2003) Patterns of apparent extirpation among isolated populations of pikas (Ochotona princeps) in the great basin. Journal of Mammalogy 84, 37-54.

Berger, J. (1987) Reproductive fates of dispersers in a harem-dwelling ungulate: the wild horses. In: Chepko-Sade, B. D.; Halpin, Z. T. (eds), Mammalian Dispersal Patterns: the Effects of Social Structure on Population Genetics. University of Chicago Press, Chicago, IL, USA. pp. 41-54.
Berger, L., Speare, R., Daszak, P., Green, E., Cunningham, A.A., Goggin, C.L., Slocombe, R., Ragan, M.A., Hyatt, A.D., McDonald, K.R., Hines, H.B., Lips, K.R., Marantelli, B. \& Parker, H. (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Nat. Acad. Sc. Am 95(15), 9031-9036.
Bergmann, K.G.L.C. (1847) Über die Verhältnisse der wärmeokönomie der Thiere zu ihrer Grösse. Göttinger Studien 3, 595-708.
Berven, K. A. \& Grudzien, T. A. (1990) Dispersal in the Wood frog (Rana sylvatica) Implications for genetic population structure. Evolution 44, 2047-2056.
Bickford, D., Howard, S. D., Ng, D. J. J. \& Sheridan, J. A. (2010) Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodiversity Conservation 19, 1043-1062.
Blackwell, P.R.Y. \& Passmore N. I. (1990) Polyandry in the Leaf-Folding frogs, Afrixalus delicatus. Herpetologica 46(1), 7-10.
Blas, J., Baos, R., Bortolloti, G.R., Marchant, T. \& Hiraldo, F. (2005) A multi-tier approach to identifying environmental stress in altricial nestling birds. Functional Ecology 19(2), 315-322.
Blaustein, A.R, Han, B.A., Relyea, R.A., Johnson, P.T., Buck, J.C., Gervasi, S.S. \& Kats, L.B. (2011) The complexity of amphibian population declines: Understanding the role of cofactors in driving amphibian losses. Ann N Y Acad Sci 1223, 108-119.
Blaustein, A.R. \& Wake, D.B. (1990) Declining amphibian populations: a global phenomenon? Trends in Ecology and Evolution 5, 203-204.
Blaustein, A.R., Belden, L.K., Olson, D.H., Green, D.M., Root, T.L. \& Kiesecker, J.M. (2001) Amphibian breeding and climate change. Conservation Biology 15, 18041809.

Blouin, M. S. (2003) DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends in Ecology \& Evolution 18, 503-511.
Boakes, E.H., Wang, J. \& Amos, W. (2007) An investigation of inbreeding depression and purging in captive pedigreed populations. Heredity 98, 172-182.
Boyce, M.S. \& Perrins, C.M. (1987) Optimizing Great Tit Clutch Size in a Fluctuating Environment. Ecology 68, 142-153.
Bradshaw, A.D. (1965) Evolutionary significance of phenotypic plasticity in plants. Advanced Genetics 13, 115-155.
Bradshaw, W. E. \& Holzapfel, C. M. (2006) Evolutionary responses to rapid climate change. Science 312, 1477-1478.
Bradshaw, W.E. \& Holzapfel, C.M. (2001) Genetic shift in photoperiodic response correlated with global warming. Proceedings of the National Academy of Sciences of the United States of America 98, 14509-14511.
Bralower, T. J., Thomas, D. J., Zachos, J. C., Hirschmann, M. M., Rohl, U., Sigurdsson, H., Thomas, E. \& Whitney, D. L. (1997) High-resolution records of the late Paleocene thermal maximum and circum-Caribbean volcanism: is there a causal link? Geology 25, 963-966.
Brede, E. G. \& Beebee, T. J. C. (2006) Large variations in the ratio of effective breeding and census population sizes between two species of pond-breeding anurans. Biological Journal of the Linnean Society 89, 365-372.
Brede, E.G., Rowe, G., Trojanowski, J. \& Beebee, T.J.C. (2001) Polymerase chain reaction
primers for microsatellite loci in the common toad Bufo bufo. Molecular Ecology Notes 1, 308-310.
Butlin, R. K. \& Day, T. H. (1989) Environmental correlates of inversion frequencies in natural populations of seaweed flies (Coelopa frigida). Heredity 62, 223-232.
Byrne, P.G. \& Keogh, J.S. (2008) Extreme sequential polyandry insures against nest failure in a frog. Proceedings. Biological sciences / The Royal Society 276, 115-120.
Carrier, J.A. \& Beebee, T.J.C. (2003) Recent, substantial, and unexplained declines of the common toad Bufo bufo in lowland England. Biological Conservation 111, 395-399.
Castellano, S., Cucco, M. \& Giacoma, C. (2004) Reproductive investment of female green toads (Bufo viridis). Copeia 3, 659-664.
Cercueil, A.E., Bellemain. \& Manel, S. (2002) PARENTE: Computer Program for Parentage Analysis. Journal of Heredity 93(6), 458-459.
Chakraborty, R., Shaw, M. \& Schull, W. J. (1974) Exclusion of paternity: the current state of the art. American Journal of Human Genetics 26, 477-488.
Charmantier, A., Mccleery, R.H., Cole, L.R., Perrins, C., Kruuk, L.E.B. \& Sheldon, B.C. (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800-803.
Charmantier, A., Perrins, C., McCleery, R.H. \& Sheldon, B.C. (2006) Quantitative genetics of age at reproduction in wild swans: support for antagonistic pleiotropy models of senescence. Proc. Natl Acad. Sci. USA 103, 6587-6592.
Cheng, W.C., Chen, Y.H., Yu, H.T., Roberts, J. D. \& Kam, Y.C. (2013) Sequential Polygyny During Egg Attendance is Rare in a Tree Frog and Does not Increase Male Fitness. Ethology, 119, 286-295.
Clutton-Brock, T. \& Sheldon, B.C. (2010) Individuals and populations: The role of longterm, individual-based studies of animals in ecology and evolutionary biology. Trends in Ecology \& Evolution 25, 562-573.
Collen, B., Mcrae, L., Kothari, G., Mellor, R., Daniel, O., Greenwood, A., Amin, R., Holbrook, S. \& Baillie, J.E.M. (2008) 2010 and beyond: Rising to the biodiversity challenge. World Wide Fund Gland, Switzerland.
Collevatti, R.G., Leite, K.C.E., De Miranda, G.H.B. \& Rodrigues, F.H.G. (2007) Evidence of high inbreeding in a population of the endangered giant anteater, myrmecophaga tridactyla (myrmecophagidae), from emas national park, brazil. Genetics and Molecular Biology 30, 112-120.
Coltman, D.W., O'Donoghue, P., Hogg, J. T. \& Festa-Bianchet, M (2005) Selection and genetic (co)variance in bighorn sheep. Evolution 59, 1372-1382
Cooch, E. G., Blank, D.B., Rockwell, R.F. Cooke, F. (1999) Body size and age of recruitment in snow geese Anser c. caerulescens. Bird Study 46, 112-119.
Cooke, A.S. \& Sparks, T.H. (2004) Population declines of Common Toads (Bufo bufo): the contribution of road traffic and monitoring value of casualty counts. Herpetological Bulletin 88, 13-26.
Crandall, K.A., Bininda-Emonds, O.R.P. \& Mace, G.M. \& Wayne, R.K. (2000) Considering evolutionary processes in conservation biology. Trends In Ecology \& Evolution 15, 290-295.
Crow, J.F. \& C. Denniston. (1988) Inbreeding and variance effective population effective numbers. Evolution 42, 482-495.
Crow, J.F. \& Kimura, M. (1970) An Introduction to Population Genetics Theory. Harper \& Row, USA.
Danzmann, R.G. (1997) PROBMAX: A computer program for assigning unknown parentage in pedigree analysis from known genotypic pools of parents and progeny. Journal of Heredity. 88, 333.

Daufresne, M., Lengfellner, K. \& Sommer, U. (2009) Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788-12793.
Davies, J.C., Rockwell, R.F. \& Cooke, F. (1988) Body-size variation and fitness components in lesser snow geese (Chen caerulescens caerulescens). Auk 105, 639648.

Davies, N.B. \& Halliday, T.R. (1977) Optimal mate selection in the toad, Bufo bufo. Nature 269, 56-58.
Davies, N.B. \& Halliday, T.R. (1979) Competitive mate searching in male common toads, Bufo bufo. Animal Behaviour 27, 1253-1267.
Denniston C. (1978) Small population size and genetic diversity. Implications for endangered species. Endangered Birds: Management Techniques for Preserving Threatened Species, edited by TEMPIX, S.A. University of Wisconsin, Madison.
Desai, A. S. \& Singh, R. K. (2009) The effects of water temperature and ration size on growth and body composition of fry of common carp, Cyprinus carpio. Journal of Thermal Biology 34, 276-280.
Don, R.H., Cox, P.T., Wainwright, B.J., Baker, K. \& Mattick, J.S. (1991) Touchdown PCR to circumvent spurious priming during gene amplification. Nucleic Acids Research 19, 4008-4008.
Douglas-Hamilton, I. (1973) On the ecology and behaviour of the lake manyara elephants. East African Wildlife Journal 11, 401-403.
Duchesne, P., Godbout, M.H. \& Bernatchez, L. (2002) Papa (package for the analysis of parental allocation): a computer program for simulated and real parental allocation. Molecular Ecology Notes 2, 191-193.
Dunnet, G.M., Ollason, J.C. \& Anderson, A. (1979) A twenty-eight year study of breeding Fulmars fulmarus glacialis (1.) in Orkney. Ibis 121, 293-300.
Eberhard, W.G. (1996) Female Control: Sexual Selection by Cryptic Female Choice. Princeton University Press, Princeton.
Ellegren, H. \& Sheldon, B.C. (2008) Genetic basis of fitness differences in natural populations. Nature 452, 169-175.
Ellis, W.N., Donner, J.H. \& Kuchlein, J.H. (1997) Recent shifts in phenology of microlepidoptera, related to climatic change (lepidoptera). Entomologische Berichten (Amsterdam) 57, 66-72.
Emlen, S.T. \& Oring, L.W. (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197, 215-223.
Falconer, D.S. (1960) Introduction to quantitative genetics. New York, USA, Ronald Press.
Festabianchet, M. (1989) Individual-differences, parasites, and the costs of reproduction for bighorn ewes (Ovis-canadensis). Journal of Animal Ecology 58, 785-795.
Ficetola, G.F., Padoa-Schioppa, E., Wang, J. \& Garner, T.W.J. (2010) Polygyny, census and effective population size in the threatened frog, Rana latastei. Animal Conservation 13, 82-89.
Finkel, Z. V., Katz, M. E., Wright, J. D., Schofield, O. M. E. \& Falkowski, P. G. (2005) Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proceedings of the National Academy of Sciences USA 102, 89278932.

Frankham, R. (1995) Effective population size/adult population size ratios in wildlife: a review. Genetical Research 66, 95-107.
Frankham, R., Ballou, J. \& Briscoe, D. (2002) Introduction to Conservation Genetics. Cambridge University Press, UK.
Fraser, D. J., Hansen, M. M., Østergaard, S., Tessier, N., Legault, M. \& Bernatchez, L.
(2007) Comparative estimation of effective population sizes and temporal gene flow in two contrasting population systems. Molecular Ecology 16, 3866-3889.
Frost, D.R., Grant, T., Faivovich, J., Bain, R.H., Haas, A., Haddad, C.F.B., de Sa', R.O., Channing, A., Wilkinson, M., Donnellan, S.C., Raxworthy, C.J., Campbell, J.A., Blotto, B.L., Moler, P., Drewes, R.C., Nussbaum, R.A., Lynch, J.D., Green, D.M. \& Wheeler, W.C. (2006) The amphibian tree of life. Bull. Am. Mus. Nat. Hist. 297, 1-370.
Garcia-Porta, J., Litvinchuk, S.N., Crochet, P.A., Romano, A., Geniez, P.H., Lo-Valvo, M., Lymberakis, P. \& Carranza, S. (2012) Molecular phylogenetics and historical biogeography of the west-palearctic common toads (Bufo bufo species complex). Molecular Phylogenetics and Evolution 63(1), 113-130.
Gardner, J.L., Heinsohn, R. \& Joseph, L. (2009) Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines. Proc. R. Soc. B 276, 3845-3852.
Gardner, J.L., Peters, A., Kearney, M.R., Joseph, L. \& Heinsohn, R. (2011) Declining body size: a third universal response to warming? Trends in Ecology and Evolution 26, 285-291.
Gibbs, H.L., Weatherhead, P.J., Boag, P.T., White, B.N., Tabak, L.M. \& Hoysak, D. J. (1990) Realized reproductive success of polygynous red-winged blackbirds revealed by DNA markers. Science 250, 1394-1397.
Gienapp, P., Teplitsky, C., Alho, J.S., Mills, J.A. \& Merila, J. (2008) Climate change and evolution: Disentangling environmental and genetic responses. Molecular Ecology 17, 167-178.
Gillooly, J.F., Brown, J.H., West, G. B., Savage, V.M. \& Charnov, E. L. (2001) Effects of size and temperature on metabolic rate. Science 293, 2248-2251.
Gilpin, M.E. \& Soulé, M.E. (1986) Minimum viable populations: The processes of species extinctions. In M. Soulé (Ed.). Conservation biology: The science of scarcity and diversity, pp. 13-34. Sunderland Mass: Sinauer Associates.
Goodnight, K.F. \& Queller, D.C. (1999) Computer software for performing likelihood tests of pedigree relationship using genetic markers. Molecular Ecology 8, 1231-1234.
Gopurenko, D., Williams, R.N. \& DeWoody, J.A. (2007) Reproductive and mating success in the small-mouthed salamander (Ambystoma texanum) estimated via microsatellite parentage analysis. Evolutionary Biology 34, 130-139.
Grant, P.R. \& Grant, B.R. (2002) Unpredictable evolution in a 30 -year study of Darwin's finches. Science 296, 707-711.
Green, A.J. (2001) Mass/length residuals: measures of body condition or generators of spurious results? Ecology 82, 1473-1483.
Guo, S. \& Thompson, E.A. (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48, 361-372.
Hadfield, J.D., Richardson, D.S. \& Burke, T. (2006) Towards unbiased parentage assignment: combining genetic, behavioural and spatial data in a Bayesian framework. Molecular Ecology 15(12), 3715-3730.
Hadley, E.A. (1997) Evolutionary and ecological response of pocket gophers (Thomomvs talpoides) to late-Holocene climate change. Biological Journal of the Linnean Society 60, 277-296.
Halliday, T.R. (1983) The Study of Mate Choice. Cambridge University Press, UK.
Halliday, T.R. (2008) Why amphibians are important. International Zoo Yearbook 42, 714.

Hanken, J. \& Sherman, P. W. (1981) Multiple paternities in Belding's ground squirrel litter. Science 212, 351-353.

Hansson, B., Westerdahl, H., Hasselquist, D., Akesson, M. \& Bensch, S. (2004) Does linkage disequilibrium generate heterozygosity-fitness correlations in great reed warblers? Evolution 58, 870-879.
Harris, M.P. (1970) Territory limiting size of breeding population oystercatcher (Haematopus-ostralegus) - a removal experiment. Journal of Animal Ecology 39(3), 707-713.
Hedrick, P.W. (2011) Genetics of Populations, 4th Edition. Jones and Bartlett, Sudbury, Massachusetts.
Herbinger, C.M., O’Reilly, P.T. \& Verspoor, E. (2006) Unravelling first-generation pedigrees in wild endangered salmon populations using molecular genetic markers. Molecular Ecology 15, 2261-2275.
Herpetofauna. (2010) Reptiles and amphibians of the UK. [Online]. Herpetofauna. Available: http://www.herpetofauna.co.uk/common_toad.htm [Accessed 18/01/ 2011].
Hettyey, A., Vagi, B., Hevizi., G. \& Torok., J. (2009) Changes in sperm stores, ejaculate size, fertilization success, and sexual motivation over repeated matings in the common toad, Bufo bufo(Anura: Bufonidae). Biological Journal of the Linnean Society 96, 361-371.
Hitchings, S.P. \& Beebee, T.J.C. (1998) Loss of genetic diversity and fitness in common toad (Bufo bufo) populations isolated by inimical habitat. Journal of Evolutionary Biology 11, 269-283.
Hoffmann, A.A. \& Sgro, C.M. (2011) Climate change and evolutionary adaptation. Nature 470, 479-485.
Hoffmann, A.A. \& Willi, Y. (2008) Detecting genetic responses to environmental change. Nature Reviews Genetics 9, 421-432.
Höglund, J. \& Robertson, J. (1987) Random mating by size in a population of common toads (Bufo bufo). Amphibia Reptilia 8, 321-330.
Hopkins, W.A. (2007) Amphibians as models for studying environmental change. ILAR Journal 48, 270-277.
Houlahan, J.E., Findlay, C.S., Schmidt, B.R., Myer, A.H. \& Kuzmin, S.L. (2000) Quantitative evidence for global amphibian population declines. Nature 404, 752755.

Houle, D. (1989) Allozyme-associated heterosis in Drosophila-melanogaster. Genetics 123, 789-801.
Hughes, L. (2000) Biological consequences of global warming: Is the signal already apparent? Trends in Ecology \& Evolution 15, 56-61.
Irie, T. \& Fischer, K. (2009) Ectotherms with a calcareous exoskeleton follow the temperature-size rule-evidence from field survey. Mar Ecol Prog Ser 385, 33-37.
Jarosik, V., Honek, A. \& Dixon, A.F.G. (2002) Developmental rate isomorphy in insects and mites. American Naturalist 160, 497-510.
Jeffreys, A.J., Wilson, V. \& Thein, S. L. (1985) Hypervariable 'minisatellite' regions in human DNA. Nature 314, 67-73.
Jeffreys, A. J., Wilson. V. \& Thein, S. L (1985) Individual-specific 'fingerprints' of human DNA. Nature 316(6023), 76-9.
Jehle, R., Arntzen, J. W., Burke, W. T., Krupa, A.P. \& Hodl, W. (2001) The annual number of breeding adults and the effective Communicating editor: J. B. Walsh population size of syntopic newts (Triturus cristatus, T. marmoratus).Molecular Ecology 10, 839-850.
Jehle, R., Burke, T. \& Arntzen, J. W. (2005) Delineating fine-scale genetic units in amphibians: probing the primacy of ponds. Conservation Genetics 6, 227-234.

Jehle, R., Sztatecsny, M., Wolf, J. B. W., Whitlock, A., Hodl, W. \& Burke, T. (2007) Genetic dissimilarity predicts paternity in the smooth newt (Lissotriton vulgaris). Biology Letters 3, 526-528.
Join Nature Conservation Commitee. UKBAP Priority Species. (2007) http://jncc.defra.gov.uk/page-5166, Date accessed: 11/05/2013
Jokiel. P.L., Rodgers, K.S., Kuffner, I.B., Andersson, A.J., Cox, E.F. \& Mackenzie, F.T. (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27, 473-483.
Jones, A.G. \& Ardren, W.R. (2003) Methods of parentage analysis in natural populations. Molecular Ecology 12, 2511-2523.
Jones, A.G., Arguello, J. R. \& Arnold, S. J. (2002) Validation of Bateman's principles: a genetic study of sexual selection and mating patterns in the rough-skinned newt. Proc. R. Soc. B 269, 2533-2539.
Jones, A.G., Small, C. M., Paczolt, K. A. \& Ratterman, N. L. (2010) A practical guide to methods of parentage analysis. Molecular Ecology Resources 10, 6-30.
Jones, A.G. (2001) Gerud1.0: a computer program for the reconstruction of parental genotypes from progeny arrays using multilocus DNA data. Molecular Ecology Notes 1, 215-218.
Jones, O. and Wang, J. (2009) COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources 10: 551-555.
Jones, O.R. \& Wang, J. (2010) Molecular marker-based pedigrees for animal conservation biologists. Animal Conservation 13, 26-34.
Kalinowski, S.T., Taper, M.L. \& Marshall, T. (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16, 1099-1106.
Keller, L.F. \& Waller, D.M. (2002) Inbreeding effects in wild populations. Trends in Ecology \& Evolution 17, 230-241.
Kluijver, H.N. (1951) The population ecology of the great tit Parus m. major (l). Ardea 39, 1-135.
Kokko H., Brooks, R., Jennions M.D. \& Morley, J. (2003) The evolution of mate choice and mating biases. Proc. R. Soc. Lond. B. Biol. Sci. 270, 653-664.
Konovalov, D.A., Manning, C. \& Henshaw, M.T. (2004) KINGROUP: a program for pedigree relationship reconstruction and kin group assignments using genetic markers. Molecular Ecology Notes 4(4), 779-782.
Kruuk, L. E. B., Merilä, J. \& Sheldon, B. C. (2001) Phenotypic selection on heritable size traits revisited. American Naturalist 158, 557-571.
Kruuk, L.E.B. \& Hill, W.G. (2008) Introduction. Evolutionary dynamics of wild populations: The use of long-term pedigree data. Proceedings of the Royal Society B-Biological Sciences 275, 593-596.
Kruuk, L.E.B. (2004) Estimating genetic parameters in wild populations using the 'animal model'. Phil. Trans. Royal Soc. London Series B 359, 873-890.
Kruuk, L.E.B., Clutton-Brock, T.H., Slate, J., Pemberton, J.M., Brotherstone, S. \& Guinness, F.E. (2000) Heritability of fitness in a wild mammal population. Proc. Natl. Acad. Sci. USA 97, 698-703.
Kruuk, L.E.B., Slate, J. \& Wilson, A.J. (2008) New answers for old questions: The evolutionary quantitative genetics of wild animal populations. Annual Review of Ecology Evolution and Systematics 39, 525-548.
Kupfer, A., Wilkinson, M., Gower, D. J., Müller, H. \& Jehle, R. (2008) Care and parentage in a skin-feeding caecilian amphibian. J. Exp. Zool., 309A, 460-467.
Kuzmin, S.L. (1999) Bufo bufo, common toad [Online]. California, USA, Amphibiaweb.

Available: http://amphibiaweb.org/ [Accessed 18/01/ 2011].
Lack, D. (1964) A long-term study of the great tit (Parus major). Journal of Animal Ecology 33, 159-173.
Lage, C., \& Kornfield, I (2006) Reduced genetic diversity and effective population size in an endangered Atlantic salmon (Salmo salar) population from Maine, USA. Conservation Genetics 7, 91-104.
Larsson, K., Forslund, P., Gustafsson, L. \& Ebbinge, B.S. (1988) From the high Arctic to the Baltic: the successful establishment of a barnacle goose population on Gotland, Sweden. Ornis Scand 19, 182-189.
Laurila, A. \& Seppä, P. (1998) Multiple paternity in the common frog (Rana temporaria): genetic evidence from tadpole kin groups. Biological Journal of the Linnean Society 63, 221-232.
Le Sueur, F. (1968) Out of doors - le crapaud. Jersey Evening Post, 31 May 1968.
Leberg, P. (2005) Genetic approaches for estimating the effective size of populations. The Journal of Wildlife Management 69, 1385-1399.
Levine, L., Asmussen, M., Olvera, O., Powell, J R., De La Rosa, M. E., Salceda, V. M., Gaso. M. I., Guzman, J. \& Anderson, W. W. (1980) Population genetics of Mexican Drosophila. V. A High rate of multiple insemination in a natural population of Drosophila pseudoobscura. American Naturalist 116, 493-503.
Levitan, M. \& Etges, W.J. (2005) Climate change and recent genetic flux in populations of Drosophila robusta. BMC Evolutionary Biology 5, Art, No.4.
Liebgold, E.B., Cabe, P.R., Jaeger, R.G. \& Leberg, P.L. (2006) Multiple paternity in a salamander with socially monogamous behaviour. Molecular Ecology 15, 41534160.

Lips, K.R. (1999) Mass mortality and population declines of anurans at an upland site in western Panama. Conservation Biology 13(1), 117-125.
Lodé, T. \& Lesbarrères, D. (2004) Multiple paternity in Rana dalmatina, a monogamous territorial breeding anuran. Nature wissenschaften 91, 44-47.
Luikart, G., Ryman, N., Tallmon, D., Schwartz, M. \& Allendorf, F. W. (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA based approaches. Conservation Genetics 11, 355-373.
Maes, H. H., Neale, M. C. \& Eaves, LJ. (1997) Genetic and environmental factors in relative body weight and human adiposity. Behavioural Genetics 27, 325-351.
Marshall, T. C., Slate, J., Kruuk, L. E. B. \& Pemberton, J. M. (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7, 639-655.
Martinez-Solano, I. \& Gonzalez, E.G. (2008) Patterns of gene flow and source-sink dynamics in high altitude populations of the common toad Bufo bufo (Anura: Bufonidae). Biological Journal of the Linnean Society 95, 824-839.
Matschiner, M. \& Salzburger, W. (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25, 1982-1983.
Millennium Ecosystem Assessment. (2005) Millennium ecosystem assessment Ecosystems and Human Well-being. Island Press. Washington, DC, USA.
Meagher, T.R. \& Thompson, E.A. (1986) The relationship between single and parent pair genetic likelihoods in genealogy reconstruction. Theoretical Population Biology 29, 87-106.
Merilä, J., Kruuk, L. E. B. \& Sheldon, B. C. (2001) Natural selection on the genetical component of variance in body condition in a wild bird population. Journal of Evolutionary Biology 14, 918-929.
Merilä, J., Kruuk, L.E.B. \& Sheldon, B.C. (2001) Cryptic evolution in a wild bird
population. Nature 412, 76-79.
Milner, J.M., Albon, S.D., Illius, A.W., Pemberton, J.M. \& Clutton-Brock, T.H. (1999) Repeated selection of morphometric traits in the Soay sheep on St. Kilda. Journal of Animal Ecology 68, 472-488.
Milner, J.M., Pemberton, J.M., Brotherstone, S. \& Albon, S.D. (2000) Estimating variance components and heritabilities in the wild: a case study using the 'animal model' approach. Journal of Evolutionary Biology 13, 804--813.
Mitton, J.B. (1993) Theory and data pertinent to the relationship between heterozygosity and fitness.Thornhill, W.M.The natural history of inbreeding and outbreeding. Theoretical and empirical perspectives. The University of Chicago Press. Chicago, USA.
Møller, A.P. \& Birkhead, T.R. (1994) The evolution of plumage brightness in birds is related to extra-pair paternity. Evolution 48, 1089-1100.
Moorcroft, P.R., Albon, S. D., Pemberton, J. M., Stevenson, I. R. \& Clutton-Brock, T. H. (1996) Density-dependent selection in a cyclic ungulate population. Proc. R. Soc. London B Biol. Sci. 263, 31-38.
Moss, R., Watson, A. \& Ollason, J. (1982) Animal population dynamics. J.W. Arrowsmith Ltd. Bristol, UK,
Narayan, E.J., Cockrem, J.F. \& Hero, J.M. (2013) Repeatability of baseline corticosterone and short-term corticosterone stress responses, and their correlation with testosterone and body condition in a terrestrial breeding anuran (Platymantis vitiana) testosterone and body condition in a terrestrial breeding anuran (Platymantis vitiana). Comp Biochem Physiol A Mol Integr Physiol. 165(2), 30412.

Neff, B. \& Cargnelli, L. (2004) Relationships between condition factors, parasite load and paternity in bluegill sunfish, Lepomis macrochirus. Environmental Biology of Fishes 71 (3), 297-304.
Neff, B. D., Repka, J. \& Gross, M. R. (2001) A Bayesian framework for parentage analysis: the value of genetic and other biological data. Theoretical Population Biology 59, 315-331.
Nei, M. \& Tajima F. (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97, 145-163.
Newton, I. (1985) Lifetime reproductive output of female sparrowhawks. Journal of Animal Ecology 54, 241-253.
Nozawa, K. (1970) Estimation of the effective size in Drosophila experimental populations. Drosophila Information Service 45, 117-118.
Nunney, L. \& Campbell, K. A. (1993) Assessing minimum viable population size: demography meets population genetics. Trends in Ecology and Evolution 8, 23423.

Nunney, L. (1993) The influence of mating system and overlapping generations on effective population size. Evolution 47, 1329-1341.
Oosterhout, C., Hutchinson, W.F., Wills, D.P.M. \& Shipley, P. (2004) Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535-538.
O'Ryan, C., Bruford, M. W., Beaumont, M., Wayne, R. K, Chery, M. I. \& Harley, E. H. (1998) Genetics of fragmented populations of African buffalo (Syncerus caffer) in South Africa. Animal Conservation 1, 85-94.
Ovenden, J. R., Peel, D., Street, R., Courtney, A. J., Hoyle, S. D., Peel, S. L. \& Podlich, H. (2007) The genetic effective and adult census size of an Australian population of tiger prawns (Penaeus esculentus). Molecular Ecology 16, 127-138.

Ozgul, A., Tuljapurkar, S., Benton, T. G., Pemberton, J. M., Clutton-Brock, T. H. \& Coulson, T. (2009) The Dynamics of Phenotypic Change and the Shrinking Sheep of St. Kilda. Science 325, 464-467.
Palstra, F.P. \& Fraser, D. J. (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecology and Evolution 2(9), 2357-2365.
Palstra, F.P. \& Ruzzante, D.E. (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Molecular Ecology 17, 3428-3447.
Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W.J., Thomas, J.A. \& Warren, M. (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579-583.
Parolin, P., Waldhoff, D. \& Zerm, M. (2010) Photochemical capacity after submersion in darkness: How Amazonian floodplain trees cope with extreme flooding. Aquatic Botany 93, 83-88.
Pechmann, J.H.K., Scott, D.E., Semlitsch, R.D., Caldwell, J.P., Vitt, L.J. \& Gibbons, J.W. (1991) Declining amphibian populations - the problem of separating human impacts from natural fluctuations. Science 253, 892-895.
Peel, D., Ovenden, J. R. \& Peel, S. L. (2004) NEESTIMATOR: software for estimating effective population size. Version 1.3. Queensland Government, Department of Primary Industries and Fisheries.
Pemberton, J. (2004) Measuring inbreeding depression in the wild: The old ways are the best. Trends in Ecology \& Evolution 19, 613-615.
Pemberton, J.M. (2008) Wild pedigrees: The way forward. Proceedings of the Royal Society B-Biological Sciences 275, 613-621.
Phillimore, A.B., Hadfield, J.D., Jones, O.R. \& Smithers, R.J. (2010) Differences in spawning date between populations of common frog reveal local adaptation. Proceedings of the National Academy of Sciences of the United States of America 107, 8292-8297.
Phillipsen, I.C., Funk, W.C., Hoffman, E.A., Monsen, K. J. \& Blouin, M.S. (2011) Comparative analyses of effective population size within and among species: ranid frogs as a case study. Evolution 65, 2927-2945.
Pigliucci, M. (2001) Phenotypic Plasticity: Beyond Nature and Nurture. Johns Hopkins University Press, Baltimore, USA.
Postma, E. \& Van Noordwijk, A.J. (2005) Gene flow maintains a large genetic difference in clutch size at a small spatial scale. Nature 433, 65-68.
Pounds, J.A., Bustamante, M.R., Coloma, L.A., Consuegra, J.A., Fogden, M.P.L., Foster, P.N., La Marca, E., Masters, K.L., Merino-Viteri, A., Puschendorf, R., Ron, S.R., Sanchez-Azofeifa, G.A., Still, C.J. \& Young, B.E. (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161-167.
Pounds, J.A., Fogden, M.P.L. \& Campbell, J.H. (1999) Biological response to climate change on a tropical mountain. Nature 398, 611-615.
Pounds, J.A., Fogden, M.P.L., Savage, J.M. \& Gorman, G.C. (1997) Tests of null models for amphibian declines on a tropical mountain. Conservation Biology 11, 13071322.

Przybylo, R., Sheldon, B.C. \& Merila, J. (2000) Climatic effects on breeding and morphology: Evidence for phenotypic plasticity. Journal of Animal Ecology 69, 395-403.
Pudovkin, A., Zaykin, I. D. V. \& Hedgecock, D. (1996) On the potential for estimating the effective number of breeders from heterozygote-excess in progeny. Genetics 144,

383-387.
Queller, D. C. \& Goodnight, K.F. (1989) Estimating relatedness using molecular markers. Evolution 43, 258-275.
Ray, C. (1960) The application of Bergmann's and Allen's rules to the poikilotherms. Journal of Morphology 106, 85-108.
Raymond, M. \& Rousset, F. (1995) Genepop (version-1.2) - population-genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248-249.
Reading, C.J. \& Clarke, R.T. (1983) Male breeding behaviour and mate acquisition in the common toad, Bufo bufo. Journal of Zoology 201, 237-246.
Reading, C.J. \& Clarke, R.T. (1995) The effects of density, rainfall and environmentaltemperature on body condition and fecundity in the common toad, Bufo-bufo. Oecologia 102, 453-459.
Reading, C.J. \& Clarke, R.T. (1999) Impacts of climate and density on the duration of the tadpole stage of the common toad Bufo bufo. Oecologia 121, 310-315.
Reading, C.J. (1984) Interspecific spawning between Common frogs (Rana temporaria) and Common toads (Bufo bufo). Journal of Zoology 203, 95-101.
Reading, C.J. (1986) Egg-production in the common toad, Bufo-bufo. Journal of Zoology 208, 99-107.
Reading, C.J. (1998) The effect of winter temperatures on the timing of breeding activity in the common toad Bufo bufo. Oecologia 117, 469-475.
Reading, C.J. (2001) Non-random pairing with respect to past breeding experience in the common toad (Bufo bufo). Journal of Zoology 255, 511-518.
Reading, C.J. (2003) The effects of variation in climatic temperature (1980-2001) on breeding activity and tadpole stage duration in the common toad, Bufo bufo. Science of the Total Environment 310, 231-236.
Reading, C.J. (2007) Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia 151, 125-131.
Reading, C.J., Loman, J. \& Madsen, T. (1991) Breeding pond fidelity in the common toad, Bufo bufo. Journal of Zoology 225, 201-211.
Reale, D., Berteaux, D., Mcadam, A.G. \& Boutin, S. (2003) Lifetime selection on heritable life-history traits in a natural population of red squirrels. Evolution 57, 2416-2423.
Recuero, E., Canestrelli, D., Vörös, J., Szaboó, K., Poyarkov, N.A., Arntzen, J.W., Crnobrnja-Isailovic, J., Kidov, A.A., Cogalniceanu, D., Caputo, F.P., Nascetti, G. \& Martinez-Solano, I. (2011) Multilocus species tree analyses resolve the radiation of the widespread Bufo bufo species group (Anura, Bufonidae). Molecular Phylogenetics and Evolution 62, 71-86.
Reed, D.H. \& Bryant, E.H. (2001) Fitness, genetic load and purging in experimental populations of the housefly. Conservation Genetics 2, 57-62.
Reed, D.H. \& Frankham, R. (2003) Correlation between fitness and genetic diversity. Conservation Biology 17, 230-237.
Reich, D.E., Cargill, M., Bolk, S., Ireland, J., Sabeti, P.C., Richter, D.J., Lavery, T., Kouyoumjian, R., Farhadian, S.F., Ward, R. \& Lander, E.S. (2001) Linkage disequilibrium in the human genome. Nature 411, 199-204.
Richardson, D.S., Komdeur, J. \& Burke, T. (2004) Inbreeding in the seychelles warbler: Environment-dependent maternal effects. Evolution 58, 2037-2048.
Richards-Zawacki, C.L., Wang I. J. \& Summers, K. (2012) Mate choice and the genetic basis for colour variation in a polymorphic dart frog: inferences from a wild pedigree. Molecular Ecology 21, 3879-3892.
Ritland, K. (1996) Estimators for pairwise relatedness and inbreeding coefficients. Genetical. Research 67, 175-186.

Roberts, J.D., Standish, R.J., Byrne, P.G. \& Doughty, P. (1999) Synchronous polyandry and multiple paternity in the frog Crinia georgiana (Anura: Myobatrachidae). Animal Behaviour 57(3), 721-726.
Robinson, M.R., Pilkington, J.G., Clutton-Brock, T.H., Pemberton, J.M. \& Kruuk, L.E.B. (2008) Environmental heterogeneity generates fluctuating selection on a secondary sexual trait. Current Biology 18, 751-757.
Rodríguez-Tovar, F.J., Uchman, A., Alegret, L. \& Molina, E. (2011) Impact of the Paleocene-Eocene Thermal Maximum on the macrobenthic community: Ichnological record from the Zumaia section, northern Spain. Marine Geology 282, 178-187.
Sambrook, J., Fritsch, E.F. \& Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual 2nd Edition, Vol. 3, pages E3-E4; Cold Spring Harbor Laboratory Press. USA.
Sasaki, A. \& Ellner, S. (1997) Quantitative genetic variance maintained by fluctuating selection with overlapping generations: Variance components and covariances. Evolution 51, 682-696.
Schlichting, C. D. \& Smith, H. (2002) Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evolutionary Ecology 16, 189-211.
Schmalhausen, I. I. (1949) Factors of Evolution. Blakiston. Philadelphia, USA.
Schwartz, M.K., Tallmon, D.A. \& Luikart, G. (1998) Review of DNA based census and effective population size estimators. Animal Conservation 1, 293-299.
Scribner, K.T., Arntzen, J.W. \& Burke, T. (1994) Comparative-analysis of intrapopulation and interpopulation genetic diversity in Bufo-bufo, using allozyme, single-locus microsatellite, minisatellite, and multilocus minisatellite data. Molecular Biology and Evolution 11, 737-748.
Scribner, K.T., Arntzen, J.W. \& Burke, T. (1997) Effective number of breeding adults in Bufo bufo estimated from age-specific variation at minisatellite loci. Molecular Ecology 6, 701-712.
Secord, R., Bloch, J.I., Chester, S.G.B., Boyer, D.M., Wood, A.R., Wing, S.L., Kraus, M.J., McInerney, F.A. \& Krigbaum, J. (2012) Evolution of the earliest horses driven by climate change in the Paleocene-Eocene thermal maximum. Science 335, 959-962.
Sheridan, J. A. \& Bickford, D. (2011) Shrinking body size as an ecological response to climate change. Nature Climate Change 1, 401-406.
Siepielski, A.M., Dibattista, J.D. \& Carlson, S.M. (2009) It's about time: The temporal dynamics of phenotypic selection in the wild. Ecology Letters 12, 1261-1276.
Smith, F. A., Betancourt, J. L. \& Brown, J. H. (1995) Evolution of body-size in the woodrat over the past 25,000 years of climate change. Science 270, 2012-2014.
Smith, F. A., Browning, H. \& Shepherd, U. L. (1998) The influence of climate change on the body mass of woodrats Neotoma in an arid region of New Mexico, USA. Ecography 21, 140-148.
Solomon, S. D., Qin, M., Manning, Z., Chen, M., Marquis, K. B., Averyt, M., Tignor. \& Miller, H. L. (2007) The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007. Summary for policymakers. Cambridge University Press, Cambridge, New York, USA.
Soule, M. (1979) Heterozygosity and developmental stability another look. Evolution 33, 396-401.
Soulé, M. E. (1986) Conservation biology: the science of scarcity and diversity: Sinauer Associates. Sunderland, MA, USA.

Steinfartz, S., Stemshorn, K., Kuesters, D. \& Tautz, D. (2006) Patterns of multiple paternity within and between annual reproduction cycles of the fire salamander (Salamandra salamandra) under natural conditions. Journal of Zoology 268(1), 18.

Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S.L., Fischman, D.L. \& Waller, R.W. (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783-1786.
Sztatecsny, M. \& Schabetsberger, R. (2005) Into thin air: vertical migration, body condition, and quality of terrestrial habitats of alpine common toads, Bufo bufo. Can. J. Zool. 83, 788-796.
Sztatecsny, M., Jehle, R., Burke, T. \& Hödl, W. (2006) Female polyandry under male harassment: the case of the common toad (Bufo bufo). Journal of Zoology 270, 517-522.
Szulkin, M. \& Sheldon, B.C. (2008) Dispersal as a means of inbreeding avoidance in a wild bird population. Proceedings of the Royal Society B-Biological Sciences 275, 703-711.
Szulkin, M., Bierne, N. \& David, P. (2010) Heterozygosity-fitness correlations: A time for reappraisal. Evolution 64, 1202-1217.
Tautz, D. (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research 17, 6463-6471.
Tennessen, J.A. \& Zamudio, K.R. (2003) Early-male reproductive advantage, multiple paternity, and sperm storage in an amphibian aggregate breeder. Molecular Ecology 12, 1567-1576.
Teska, W.R., Smith, M.H. \& Novak, J.M. (1990) Food quality, heterozygosity, and fitness correlates in Peromyscus polionotus. Evolution 44, 1318-1325.
Tryjanowski, P., Rybacki, M. \& Sparks, T. (2003) Changes in the first spawning dates of common frogs and common toads in Western Poland in 1978-2002. Annales Zoologici Fennici 40, 459-464.
Tyler, M.J., Wassersug, R. \& Smith, B. (2007) How frogs and humans interact: influences beyond habitat destruction, epidemics and global warming. Applied Herpetology 4, 1-18.
Ursprung, E., Ringler, M., Jehle, R. \& Hodl, W. (2011) Strong male/male competition allows for nonchoosy females: high levels of polygynandry in a territorial frog with paternal care. Molecular Ecology 20(8), 1759-71.
Ursprung, E., Ringler, M., Jehle, R. \& Hodl, W. (2012) The Female Perspective of Mating in A. femoralis, a Territorial Frog with Paternal Care - A Spatial and Genetic Analysis. PLoS ONE 7(6), e40237.
Vazquez-Dominguez, E., Pinero, D. \& Ceballos, G. (1998) Heterozygosity patterning and its relation to fitness components in experimental populations of liomys pictus from tropical forests in Western Mexico. Biological Journal of the Linnean Society 65, 501-514.
Via, S. \& Lande, R. (1985) Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39, 505-522.
Visscher, P.M., Hill, W.G. \& Wray, N.R. (2008) Heritability in the genomics era concepts and misconceptions. Nature Reviews Genetics 9, 255-266.
Visser, M.E. (2008) Keeping up with a warming world; assessing the rate of adaptation to climate change. Proceedings of the Royal Society B-Biological Sciences 275, 649659.

Waddington, C. H. (1952) Selection of the genetic basis for an acquired character. Nature 169, 625-626.

Walters, R.J. \& Hassall, M. (2006) The temperature-size rule in ectotherms: may a general explanation exist after all? The American Naturalist 167, 510-523.
Wang, J. \& Santure, A. (2009) Parentage and sibship inference from multilocus genotype data under polygamy. Genetics 181, 1-16.
Wang, J. (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160, 1203-1215.
Wang, J. (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166, 1963-1979.
Wang, J. (2009) A new method for estimating effective population sizes from a single sample of multilocus genotypes. Molecular Ecology 18, 2148-2164.
Wang, J. L. \& Whitlock, M. C. (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163, 429-446.
Wang, J. L. (2011) COANCESTRY: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Molecular Ecology Resources 11(1), 141145.

Wang, J.L. (2005) Estimation of effective population sizes from data on genetic markers. Philosophical Transactions Of The Royal Society B-Biological Sciences 360, 1395-1409.
Waples, R.S. \& Yokota, M. (2007) Temporal estimates of effective population size in species with overlapping generations. Genetics 175, 219-233.
Waples, R.S. (1989) A Generalized Approach for Estimating Effective Population Size From Temporal Changes in Allele Frequency. Genetics 121, 379-391.
Weir, B. S. \& Cockerham, C. C. (1973) Mixed self and random mating at two loci. Genetical Research 21(3), 247-262.
Wells, K.D. (1977) The social behaviour of anuran amphibians. Animal Behaviour. 25, 666-693.
Westneat, D. F. (1990) Genetic parentage analysis in the indigo bunting: a study using DNA fingerprinting. Behavioural Ecology and Sociobiology 27, 67-76.
Whiteman, N.K. \& Parker, P.G. (2004) Body condition and parasite load predict territory ownership in the Galápagos Hawk. Condor 106, 916-922.
Wikelski, M. \& Thom, C. Marine iguanas shrink to survive El Niño. Nature 403, 37-38.
Wilkinson, J.W, Trevor J.C. Beebee. \& Richard A. Griffiths. (2007) Herpetological Journal 17, 192-198.
Williams, R.N. \& DeWoody, J.A. (2009) Reproductive Success and Sexual Selection in Wild Eastern Tiger Salamanders (Ambystoma t. tigrinum). Evol. Biol. 36, 201-213.
Williamson, E. G. \& Slatkin, M. (1999) Using maximum likelihood to estimate population size from temporal changes in allele frequencies. Genetics 152, 755-761.
Wilson, A.J., Pemberton, J.M., Pilkington, J.G., Coltman, D.W., Mifsud, D.V., CluttonBrock, T.H. \& Kruuk, L.E.B. (2006) Environmental coupling of selection and heritability limits evolution. Plos Biology 4, 1270-1275.
Woltereck, R. (1909) Weitere experimentelle Untersuchungen über Artveränderung, speziell über das Wesen quantitativer Artunterschiede bei Daphnien. Verhandlungen deutschen zoologischen. Gesellschaft 19, 110-173.
Wright, S. (1931) Evolution in Mendelian populations. Genetics 16, 97-159.
Zeyl, E., Aars, J., Ehrich, D. \& Wiig, O. (2009) Families in space: Relatedness in the barents sea population of polar bears (Ursus maritimus). Molecular Ecology 18, 735-749.
Zhang, L., Yang, J., Lu, Y., Lu, X. \& Chen, X. (2012) Aquatic eggs are fertilised by multiple males not engaged in amplexus in a stream-breeding frog. Behavioural Processes 91(3), 304-307.

CHAPTER 8:

Appendix

8.1. Dilution of DNA extractions

2009	\#	DNA	T.E															
Row	1			2			3			4			5			6		
A	448	59	360	341	36	258	502	32	224	407	51	410	460	48	382	462	44	338
B	496	34	235	388	67	572	417	51	408	22	68	584	320	34	239	487	41	314
C	401	82	722	538	40	300	537	45	347	475	26	157	224	115	1051	326	95	854
D	465	33	234	507	47	280	512	64	135	287	45	352	447	11				
E	386	20		273	48	377	390	69	587	428	34	240	315	103	931	330	10	
F	346	89	715	503	26	150	550	159	1340	531	40	265	329	43	295	569	32	200
G	454	27	150	525	55	448	458	38	245	398	113	930	540	66	500	509	22	105
H		5			6			12			21			42			105	

	7																	
Row				8			9			10			11			12		
A	452	48	383	345	41	306	321	27	175	368	101	910	325	41	310	530	36	260
B	539	37	271	522	60	503	443	45	349	317	61	511	561	31	207	384	30	200
C	339	58	484	331	80	701	488	32	219	444	29	187	335	116	1056			
D	306	52	421	380	23	80							491	77	674			
E	397	32	223	455	22	120	450	37	272	359	55	400	372	34	241			
F	348	64	490	451	31	190	456	4		323	35	225	311	37	266			
G	342	24	125	565	33	205	322	76	600	564	17	-	493	26	164			
H	6																	
2008	\#	DNA	T.E															
Row	1			2			3			4			5			6		
A	76	23	33	51	1	-	20	20	-	16	40	90	50	3	-	15	-2	-
B	218	24	41	149	9	-	151	9	-	146	18	-	111	5	-	44	0	-
C	496	-5	-	322	26	63	374	18	-	321	4	-	326	7	-	375	3	-
D	468	5	-	436	-1	-	665	26	62	588	31	85	614	-4	-	503	33	94
E	639	46	145	500	10	-	640	23	52	670	13	-	435	11	-	554	31	83
F	121	-6	-	168	14	-	458	14	-	471	10	-	485	27	152	592	-2	-
G	89	9	-	100	7	-	162	5	-	310	24	126	327	79	621	775	12	-
H	4			14			14			18			36			108		

Row	7			8			9			10			11			12		
A	400	122	838	432	130	902	440	93	621	444	103	557						
B	435	135	935	96	41	232	124	29	144	51	74	478						
C	391	122	839	499	89	591	416**			483	115	788						
D	204	22	77	465	10	-	237	901	6681	322	133	922						
E	101	-3	-	260*	220	1573	502	92	613	360	60	372						
F	127	164	1159	142	101	680	219	674	4981	456	133	923						
G	668	117	800	624	-4	-	695	83	544	776	-21	-	626	-30	-	582	64	408
H		-15																

2004	$\#$	DNA	T.E																	
Row	$\mathbf{1}$			$\mathbf{2}$			$\mathbf{3}$					$\mathbf{4}$			$\mathbf{5}$		$\mathbf{6}$			
A	258	50	240	474	20	60	49	10	-	363	30	170	447	20	85	292	20	85		
B	239	20	85	409	30	170	229	20	85	396	10	-	469	10	-	351	10	-		
C	42	20	85	291	40	255	174	10	-	142	10	-	375	10	-	133	50	340		
D	496	20	60	99	20	85	482	50	340	262	10	-	245	50	340	265	70	510		
E	98	10	-	290	20	85	355	0		295	10	-	92	10	-	126	50	340		
F	331	10	-	361	30	100	352	20	85	54	20	85	235	20	85	5	10	-		
G	157	50	340	430	10	-	94	10	-	188	20	85	438	70	510	107	20	85		
H	269	10	-	487	40	180	238	20	60	263	80	420	240	120	660	327	30	120		

Row	7			8			9			10			11			12		
A	203	10	-	392	10	-	433	10	-	264	10	-	317	120	935	111	20	85
B	177	10	-	104	40	255	34	10	-	247	0		412	30	170	393	50	340
C	216	10	-	102	20	85	304	30	170	242	10	-	125	130	1020	103	40	255
D	189	20	85	88	60	425	37	10	-	417	10	-	150	260	2125	87	20	60
E	156	10	-	100	30	170	321	20	85	209	30	120	356	30	170	413	10	
F	218	40	180	90	10	-	127	50	340	300	10		236	30	170	466	20	60
G	335	10	-	376	10	-	197	30	170	501	10	-	219	40	255	9	60	300
H	55	10	-	457	10	-	484	10	-	340	10	-	58	30	170	323	50	240
2004	\#	DNA																
Row	1			2			3			4			5			6		
A	394	20	60	105	20	60	39	10	-	431	20	60	362	20	60	231	60	300
B	498	10		401	130	720	365	130	720	302	90	480	297	70	360	411	40	180
C	233	30	120	146	100	540	503	40	180	207	60	300	296	120	660	95	80	420
D	175	40	180	436	20	60	414	10	-	220	20	60	221	30	120	110	20	60
E	358	10		224	60	300	398	10	-	155	10	-	62	30	120	223	10	
F	441	30	120	256	30	120	475	20	60	298	30	120	458	30	120	330	90	480
G	8	120	660	36	80	420	442	10	-	294	70	360	402	130	720	53	190	1080
H	187	20	60	359	20	60	13	50	240	439	20	60	38	40	180	257	20	60

Row	$\mathbf{7}$			$\mathbf{8}$			$\mathbf{9}$			$\mathbf{1 0}$				3	$\mathbf{1 1}$			$\mathbf{1 2}$
A	241	20	60	128	30	120	443	30	120	271	10	-	130	70	360	303	40	180
B	63	60	300	35	60	300	60	0		399	30	120	205	120	660	147	40	180
C	261	40	180	395	150	840	324	80	420	50	70	360	191	80	420	48	100	540
D	397	20	60	106	20	60	208	70	360	29	60	300	56	60	300	416	180	1020
E	52	10	-	316	80	420	59	130	720	28	80	420	437	30	120	43	30	120
F	108	10	-	149	80	420	217	20	60	89	70	360	329	90	480	486	40	180
G	328	210	1200	7	90	480	227	100	540	366	50	240	326	110	600	202	60	300
H	32	10	-	446	10	-	333	30	120	93	10	-	123	80	420	459	40	180

Routine PCR plates												
A	1	2	3	4	5	6	7	8	9	10	11	12
A	448	341	502	407	460	462	452	345	321	368	369	449
B	496	388	417	22	320	487	539	522	443	317	310	350
C	401	538	537	475	224	326	339	331	488	444	495	445
D	465	507	512	287	447	325	306	380	561	335	355	
E	386	273	390	428	315	330	397	455	450	359		
F	346	503	550	531	329	569	348	451	456	323		
G	454	525	458	398	540	509	342	565	322	564		
H	387	457	461	491	372	311	493	530	384	506		
B	1	2	3	4	5	6	7	8	9	10	11	12
A	76	51	20	16	50	15	25	52	29	23	434	695
B	218	149	151	146	111	44	24	22	49	3	525	776
C	496	322	374	321	326	375	582	333	286	275	532	626
D	468	436	665	588	614	503	721	488	707	705	537	- ve
E	639	500	640	670	435	554	538	442	440	472	380	
F	121	168	458	471	485	592	593	627	710	735	474	
G	89	100	162	310	327	775	439	539	720	395	668	
H	152	215	233	381	502	540	594	664	774	309	624	
C	\#											
Row	1	2	3		5	6	7	8	9	10	11	12
A	427	292	404	320	448	409	22	249	321	365	336	358
B	28	359	459	141	281	152	253	237	432	129	333	154
C	400	182	362	150	252	337	256	155	243	61	457	135
D	151	357	413	322	411	236	59	181	324	57	460	157
E	278	369	156	339	444	412	335	458	54	368	97	405
F	58	64	161	217	279	283	286	332	338	401	62	251
G	102	136	180	323	239	331	364	407	410	233	184	190
H	92	183	230	280	329	346	363	406	254	285	87	179
D	1	2	3	4	5	6	7	8	9	10	11	12
A	217	27	21	452	275	132	370	325	496	273	454	
B	287	334	89	72	498	333	368	375	222	366	337	
C	467	224	74	314	213	286	168	262	25	40		
D	133	131	266	254	373	221	86	274	167	68		
E	572	330	135	369	372	374	163	165	455	122	340	
F	332	338	496	272	164	425	270	327	431	371	212	
G	453	130	28	136	377	73	339	134	269	124		
H	513	495	67	422	128	75	137	268	88	166		
E	1	2	3	4	5		7	8		10	11	12
A	265	497	384	43	153	42	433	175	544	269	251	272
B	198	197	220	575	31	495	281	480	724	26	82	546
C	80	32	759	604	467	522	392	194	164	216	268	725
D	81	160	53	41	628	317	760	217	318	445	632	669
E	28	283	77	40	214	581	386	387	777	204	726	491
F	576	595	704	679	313	113	39	529	264	727	487	530
G	163	274	736	27	54	245	325	778	244	156	99	108
H	261	499	88	437	441	543	260	145	165	438	479	neg
G	1	2	3	4	5	6	7	8		10	11	12
A	258	474	49	363	447	292	203	392	433	264	317	111
B	239	409	229	396	469	351	177	104	34	247	412	393
C	42	291	174	142	375	133	216	102	304	242	125	103
D	496	99	482	262	245	265	189	88	37	417	150	87
E	98	290	355	295	92	126	156	100	321	209	356	413
F	331	361	352	54	235	5	218	90	127	300	236	466
G	157	430	94	188	438	107	335	376	197	501	219	9
H	269	487	238	263	240	327	55	457	484	340	58	323

A	394	105	39	431	362	231	241	128	443	271	130	303
B	498	401	365	302	297	411	63	35	60	399	205	147
C	233	146	503	207	296	95	261	395	324	50	191	48
D	175	436	414	220	221	110	397	106	208	29	56	416
E	358	224	398	155	62	223	52	316	59	28	437	43
F	441	256	475	298	458	330	108	149	217	89	329	486
G	8	36	442	294	402	53	328	7	227	366	326	202
H	187	359	13	439	38	257	32	446	333	93	123	459
I	1	2	3	4	5	6	7	8	9	10	11	12
A	333	318	435	497	250	471	556	405	432	424	164	316
B	38	563	393	570	446	510	336	505	243	453	150	67
C	177	485	136	282	365	459	86	225	274	349	76	93
D	57	21	171	238	15	254	293	92	157	438	504	377
E	251	137	479	294	190	400	70	426	338	394	344	73
F	280	154	192	399	332	334	28	199	96	162	402	319
G	34	292	275	90	227	131	337	123	17	40	233	358
H	133	147	244	234	532	265	286	7	248	74	135	Neg
J	$\#$											
Row	1	2	3	4	5	6	7	8	9	10	11	12
A	163	343	207	97	172	340	127	79	3	23	466	257
B	100	63	107	231	72	249	18	266	144	288	12	281
C	252	347	219	218	71	327	246	141	357	545	408	276
D	389	116	395	555	554	62	85	29	179	477	295	134
E	396	571	122	472	283	239	304	128	94	10	105	9
F	35	272	145	255	278	56	61	289	371	101	82	363
G	166	508	543	410	296	229	526	517	255	514	104	20
H	140	149	39	11	232	170	411	223	511	195	277	neg
K	1	2	3	4	5	6	7	8	9	10	11	12
A	260	96	444	178	93	80	153	284	445	428		
B	447	149	240	433	88	241	250	327	408	118		
C	255	334	403	402	246	360	194	330	331	426		
D	324	267	220	214	126	329	367	233	376	328		
E	127	424	456	123	319	226	335	336	80	120		
F	142	219	114	758	250	403	385	404	2	492		
G	157	545	706	531	132	191	109	299	513	16		
H	58	533	564	77	176	53	194	242	neg			

8.3. Unbinned genotypes

npops $=5$																
$\text { nlocl }=8$																
$\text { pop }=$							Bbutu65				Bbutu46		Bbutu54		Bbutulb	
	Bbutull		Bbutu49		Bbutu62				Bbutu24							
PopA	116.4	125.9	180.2	183.9	196.1	198.2	170	170	151.8	151.8	131.9	144.2	166.4	188.9	166.6	166.6
PopA	118.3	127.9	?	?	183.6	197.8	163.9	177.4	146.1	157.5	132	144.2	166.6	173	166.9	169
PopA	103.4	106.2	1/8.1	193.5	183.8	183.8	183.1	189.8	$14 / .2$	158.4	144.2	146.4	166.5	185	166.6	166.6
PopA	116.3	118.2	210.4	212.2	183.8	196	164.1	169.7	139	147.5	131.9	144.2	176.6	184.8	171	171
PopA	110.1	121.1	166.5	1/8.2	198	204	169.8	183.1	146.9	151.6	141.1	144.2	184.	184.1	$6 / .1$	69.3
PopA	? ?	?	?	?	183.7	196	164	164	147.2	147.2		?	166.3	166.3		
PopA	116.2	121.1	$18 \% .4$	$18 / .4$?	?	164	16/.9	154	154	135.9	146.6	188	190.2		
PopA	?	?	?	?	?	?	?	?	?	?	131.8	144.1	166.3	166.3	170.3	172.3
PopA	106.4	126		?	?	?	184.1	186	152.3	152.3	144.4	146.5			169	1/1.1
PopA	106.1	125.9	185.8	181.1	183.1	198.1	15/.8	184	151.1	153.9	$13 / .8$	144.2	$1 / 2.5$	1/6.5	166.1	1/1
PopA	106	118.2	1/8.3	180.1	183.6	198	151.1	163.8	138.8	151.1	144.2	146.4	166.3	186.9	168.9	168.9
PopA	118.3	125.8	$1 / 4.2$	189.4	183.5	19.1	186.1	199.8	150.	150	144.	144.5	184.	184.	158	1/1.2
PopA	103.6	109	189.8	191.6	184	198.4	160.2	169.9	146.1	150.9	132	144.1	166.3	1/2.5	$1 / 0.8$	1/5. 5
PopA	125.9	121.9	1/8.4	200.9	183.8	198	164.2	1/1./	138.9	151.1	135.8	146.4	186.9	190.9	$1 / 0.9$	$1 / 0.9$
PopA	?	?	193.5	204.6	183.7	198	167.7	196.4	125.9	150.9	131.9	146.5	166.2	184.6	166.9	169
PopA	102.4	125.1	200.9	202.8	191.9	191.9	$1 / /$	$1 / 1$?	146.4	146.4	166.2	184.1	166.5	166.5
PopA	108.8	125.7	197	202.4		?	160	163.9	143.4	145.8	132.2	138	166.5	185	167.2	171.4
PopA	118	118	181.6	195.1	183.1	183.1	$1 / 9$	182.8	131.5	151.6	135.9	148.5	166.2	166.2	$16 /$	61
PopA	106.2	121.8	174.6	187.9	183.6	197.9	183.9	183.9	145.9	150.7	132.1	144.5	166.5	185		
PopA	103.2	129.5	166.4	189.4	196	198	163.9	163.9	151.6	153.8	132	144.2	185	189.1	166.6	168.1
PopA	118.3	121.9	201.4	203.2	183.1	198	164.3	166.3	143.1	150.9	144.3	144.3	?		1/3.1	1/3.1
PopA	?	?	?	?	184.4	199.9		?	?	?	?	?	185	189.1		
PopA	110.6	121.1	181.8	210.3	198.1	202	161.1	$1 / 1.1$	151.1	151.1	144.2	144.	166.6	166.6	170.9	1/0.9
PopA	103.4	121.9	1/8.4	180.2	183.1	198	169.6	171.6	146	150.1	140.2	144.1	166.6	$18 / .1$		
PopA		?	?	?	?	?	$16 / .2$	185.6		?	144.2	144.2	166.2	188.8	169.3	$1 / 1.3$
PopA	118.1	122	158.8	178.3	200.1	204.1	159.9	183.4	151.8	151.8	144.1	144.1	184.7	186.8	169.4	171.4
PopA	116.2	121.1	164.5	1/4.1	197.9	204.1	15/.6	185.3	138.9	151.6	144.2	146.4			158.4	170.9
PopA	106	106	179.9	198.9	183.7	200	169.3	186.9	151.6	151.6	131.9	144.2	184.6	184.6	169.4	171.5
PopA	103.1	128	186.2	186.2	183.1	200	$1 / 1.8$	198.2		?	131.9	144.2	166.1	1/3.3		
PopA	118.2	125.9		?	183.8	198.1	189.8	189.8	144.8	158.5	137.8	144.3	166.6	166.6		
PopA	106	116.2	185.1	181.5	198	204.1	159.1	1/1.6	146.9	151.6	139	139	166.3	166.3	168.1	$1 / 0.9$
PopA	118.1	121.8		?	162.8	185.9	15/. 1	189.6	$13 /$	151.1	131.8	144.2	185	189.1	169.3	. 3
PopA		?	1/4.5	188.	183.1	$18 / .8$	1/8	190	?	?	?	?	?	?	169	1/1.1
PopA	125.9	121.9	?	?	183.6	198		?	?	?	144.3	144.3	166.3	166.3	169	1/1
PopA	?	?	193.4	200.9		?	164.2	181.2	?	?		?		?	166.1	10.9
PopA	?	?	?	?	183.4	197.1	163.1	163.1	?	?	146.4	146.4	166.2	184.8		
PopA	122	125.	187.7	193.4	198.2	198.2	160.1	187.2	151.8	160.4	146.3	146.3	166.3	166.3	166.6	170.9
PopA	118.2	122	1/8.3	181.9	196	200.1		?	156.3	156.3	131.8	146.4			169.2	169.2
PopA	103.3	125.7	189.5	195.2	183.6	200	178.1	194	153.9	158.3		?	166.5	166.5	168.8	168.8
PopA	118.2	122	158.8	191.5		?	160	160	152	160.6	131.9	144.4	166.4	166.4	166.1	168.9
PopA	106.2	128	164.6	174.3	183.5	197.8	169.8	177.7	146	146	144.3	144.3	166.3	185.8	166.8	168.9
PopA	118.2	125.8	1/0.4	197.1	183.6	193.1	162	164	?	?	144.3	146.4	184.8	184.8	168.9	170.9
PopA	106.4	111	182.2	189.9	?	?	165.1	186.9		?	?	?	185.1	185.1	$1 / 1.5$	1/1.5
PopA	106.2	125.8	159	182	196.1	200.2	160	164.1	141.2	156.2	131.1	131.1	166.3	184.8	166.1	166.1
PopA	122.3	126.2		?	183.8	196	$1 / 0.2$	186	146.6	146.6		?	166.5	88.9	166.9	69
PopA	103.3	125.8		?	200.1	200.1	1/8	198.1	131.5	151.6	135.9	144.2	166.3	184.8	166.1	$1 / 1$
PopA	121.6	129.6		?	192.1	198.2	1/1.6	185.8	151.8	154	131.9	144.2	185	185	168.8	$1 / 2.9$
PopA	125.8	127.7	185.9	187.8	196	198	164	177.6	151.9	151.9	?	?	166.3	166.3	168.9	173
PopA	121.8	125.8	189.6	195.2	183.1	183.7	189.8	189.8	141.2	141.2		?	?	?	169.4	169.4
PopA	125.8	127.7	176.3	178.3	183.7	183.7	186.3	194.1	151.9	151.9	131.8	144.1		?	168.9	168.9
PopA	123.9	125.1	164.6	181.6	198.1	204.1	158.1	190	?	?	146.4	146.4	166.2	184.1	169.3	169.3
PopA			?	?	?	?	?	?	?	?	146.4	146.4	172.5	188.9		
PopA	121.9	125.1	180	181.6	188	196.1	159.1	189.5	139	151.6	131.9	131.9	166.5	185.1	169.2	1/1.3
PopA	106	129.6	?	?	183.1	183.1	164	193.4	141	151.1	131.8	144.2	166.2	188.1	169.3	1/1.3
PopA	116.3	118.2		?	183.6	200	184.1	186	?	?	132	144.4	166.6	188.4	1/1.1	1/1.1
PopA	121.8	125.8	164.1	191.5	183.8	183.8	164.2	196.8	139	141.5	131.1	146.4	180.6	188.8	$16 / .1$	16/.1
PopA			185.8	181.8	196.1	198.1	164	189.8	151.8	154	131.9	146.4	185	185	166.1	$1 / 1$
PopA	116.4	125.9	1/6.1	198.9		?	164.1	193.5	151.8	151.8	144.3	146.4	166.4	166.4		
PopA	?	?	?	?	197.8	197.8	171.4	185.5			144.2	144.2	166.4	188.9	167.3	169.2
PopA	118.1	125.8	?	?	183.5	197.8	?	?	?	?	132.2	144.5	166.5	185	$16 / .3$	1/1.6
PopA	118.1	127.7	172.4	187.5		?	187	196.1	151.7	151.7		?	166.3	184.7	166.5	170.8
PopA	103.1	103.1	?	?	?	?	162.2	186		?	131.9	144.2		?	168.9	1/1
PopA	118.3	118.3	164.6	185.8		?	169.7	189.6	150.7	150.7	146.5	146.5	172.7	185	?	?
PopA	106.1	122.1		?	183.5	199.9	162.1	162.1	151.8	158.4	144.3	14	166.5	184.9		?
PopA	?		185.7	193.2	183.9	200.4		?	147	153.9	?	?	184.9	189.1		?
PopA	108.8	. 1	197.1	199	196	202	161.6	193.5	153.9	158.		?	166.3	184.8	$1 / 0$.	70.
PopA	102.9	106.5	?	?	183.5	191.8		?	?	?	?	?	166.6	189.2		
PopA	118.2	125.9	180.1	202.1	183.8	196.1	1/9.6	198.8	151.8	151.8	144.2	144.2	184.1	184.1	166.1	$1 / 1$
PopA	118.1	129.6	?	?	162.8	198	155.8	163.9	151.6	151.6	131.9	144.2	166.3	184.1	166.4	166.4
PopA	118.2	125.8		?	183.5	197.8		?	147	151.7	144.4	146.7		?	167	167
PopA	116.	125.1	187.5	189.5	196	198.	186.9	186.9	153.8	15	144.2	144.2	166.2	184		
PopA	?	? ?	?	?	?	?	191.8	191.8		?	131.9	144.4		?	166.9	168.9
PopA	?	?	?	?	?	?	$15 / .6$	151.6	150.1	150.1	144.3	144.3		?	169	$1 / 1$
PopA	?	?	?	?	183.9	196.3	167.7	189.8	147.3	151.9	144.3	144.3		?	168.8	171
PopA	118.4	126	182.3	195.1	183.8	194	1/1.2	184	?	?	144.2	146.4		?	166.8	$1 / 3.1$
PopA	?	?	?	?	198.4	198.4	189.6	194.3	147.2	147.2	146.4	146.4	166.5	189.1	166.6	170.9
PopA	126.2	128.1	$18 / .9$	201.1	?	?	186.1	189.		?	144.2	146.5	181	191.2		
PopA	118.1	121.6	180	193.3	198.3	204.4		?	144.1	151.6	144.2	146.4		?	169.2	169.2
PopA	106	$125 . /$	1/4.3	1/6.3	183.1	198					144.2	144.2	166.3	189.1	$1 / 0.8$	170.8
PopA	125.9	125.9	?	?	183.5	191.9	159.1	163.6	$14 / .1$	151.1	144.5	144.5		?	166.8	166.8
PopA	118.1	125.8	180.1	193.3	183.8	183.8	162.1	171.6	137.5	147	135.8	144.2	?	?	166.6	168.8
PopA	?	?	?	?	200.2	200.2		?	?	?	144.2	144.2	184.8	188.9		?
PopA	102.5	128	166.8	166.8	?	?	?	?	?	?	132.4	146.8	?	?	171.3	173.3
PopA	116.3	129.8	$1 / 8.1$	178.1	?	?	164	169.5	141	151.1	144.2	144.2	166.3	184.1	168.8	$1 / 0.8$
PopA	106.2	127.	17	174	183.7	200.1	164.2	184.2	151.8	151.8		?	166.5	189.2	169	171.2
PopA			?	?	?	?	193.1	193.1		?	131.8	131.8	1/2.5	1/2.5	169.3	169.3
PopA	125.9	127.8		?	183.5	197.8	160.2	160.2	150.8	153	144.4	144.4	185	189.1	166.8	169
PopA	?	?	?	?	?	?	160.2	186.3	?	?	131.9	144.2	166.3	184.1	162	168.3
PopA	103.3	116.3	?	?	183.1	193.9	1/1.6	190.1	$14 / .1$	154	131.9	144.2	166.3	166.3	166.6	$1 / 0.9$
PopA	?	?	?	?	183.1	191.9	161.8	189.8	150.9	155.4		?	166.4	184.9		
PopA	116.3	121.6	?	?	183.8	183.8		?	141	151.1	144.2	144.2	166.4	166.4	168.8	$1 / 0.8$
POPA	106	125.1		210.	183.1	195.9	169.8	189.6	$13 / .4$	151.6	146.4	146.4	166.3	1/2		?
PopA		?	208.3	210.2	198	200		?	144.5	146.9	144.2	144.2		?	169.3	171.3
PopA	?	? ?	?	?	183.7	196	184	189.2	151.6	151.7	144.2	144.2	188.8	188.8	167.1	169.3
PopA	?	?	?	?	?	?	?	?	?	?	144.3	146.4	166.2	184.1	168.9	1/1
PopA	106.2	126	197.1	200.9	183.7	197.9	183.3	186.9	150.9	159.6		?	166.6	166.6		?

 $\begin{array}{lllllllllllllllllll}\text { PopA ? ? } & 183.8 & 191.4 & 198 & 200 & 164.4 & 194 & 147.1 & 151.7 & 137.8 & 144.2 & 166.5 & 185 & 167.2 & 169.3\end{array}$ $\begin{array}{lllllllllllllllll}\text { POpA } & 116.2 & 125.7 & 181.8 & 187.6 & 183.7 & 200.1 & \text { ? } & \text { ? } & 147 & 147 & 144.2 & 148.5 & 166.5 & 185 \text { ? } & \text { ? } \\ \text { PopA } & 126.1 & 126.1 & 189.7 & 210.6 \text { ? ? } & 193.7 & 193.7 \text { ? ? ? ? } & \text { ? } & \text { ? } & 166.7 & 166.7\end{array}$ PopA 116.4121 .8 ? ? $\quad 183.5$ 197.8 163.9189 .6 145.9 145.9144 .3 PopA 103.3127 .8180 .2187 .8 ? ? $\quad 169.4191 .5143 .5143 .5144 .3146 .5$? ? 168.9168 .9 PopA 103.4 106.2? ? 183.7200 .1186 .3186 .3144 .7151 .7 ? ? $\quad 166.5$ 181 $171 \quad 171$ PopA ? ? ? ? ? ? 169.7189 .4 ? ? 131.9141 .1180 .6184 .8171 .5171 .5 PopA 116.5 126 185.9 193.5 184.1198 .4162 .2166 .2146 .2150 .9 ? ? ? ? PopA 125.9127 .7 ? ? $\quad 183.6197 .8$? ? $\quad 146 \quad 153132.1146 .4186 .1186 .1171 .4171 .4$ PopA 103.3103 .3176 .3178 .2179 .6198164 .2167 .9 ? ? ? ? ? ? 168.8168 .8 POPA 103. 1116.6 ? ? $\quad 183.6197 .9164 .3$ 1/8 152.3152 .3 ? ? $\quad 166.6160 .6168 .9168 .9$
 $\begin{array}{llllllllllllllllll}\text { POPA } & 112.4 & 128 & 184 & 204.7 & 183.9 & 198.1 & 164.2 & 195.5 & 150.8 & 150.8 & 144.3 & 144.3\end{array}$? $\quad 166.8171 .1$ PopA ? ? ? ? ? ? $164 \quad 164$? ? 146.5146 .5166 .5172 .8 ?
$\begin{array}{llllllllllllllllllll}\text { PopA } & 106.1 & 125.8 & 187.5 & 195.2 & 196.5 & 198.4 & 167.5 & 175.3 & 139 & 151.7 & 146.4 & 146.4 & 166.4 & 185 & 166.6 & 168.8\end{array}$ PopA 103.4 127.8 ? ? 183.6197 .9 ? ? 151.7151 .7144 .4144 .4 ? ? 166.8168 .9 $\begin{array}{lllllllllllllllllllll}\text { PopA } & 106.3 & 118.4 & 187.8 & 189.8 & 198.1 & 198.1 & 157.8 & 157.8 & 147.3 & 152 & 144.1 & 146.4 & 166.3 & 166.3 & 171 & 171\end{array}$ POPA 122 12/.9? ? ? ? $\quad 159 . / 185.6$ 151./ $151 . / 144.3$ 146.5 166.5 181./ $168.91 / 0.9$ PopA $103.3125 .8 \quad 182 \quad 199183.7200 .1162 .2164 .1 \quad 139162.5137 .8146 .4$? ? 158.4158 .4 PopA 10106 PopA 125.9127 .9180 .3182 .2183 .9198 .3160 .4164 .3136 .7 151 146.3146 .3166 .2166 .2166 .6166 .6 PopA 109127.9 ? ? $\quad 184.1204 .4 \quad 186$ PopA ? ? $\quad 164.7189 .6183 .5197 .8163 .9163 .9$ $\begin{array}{lllllllllllllllllllllll}\text { PopA } & 118.2 & 125.8 & 187.6 & 191.5 & 195.9 & 195.9 & 164.1 & 186.9 & 139 & 154 & 144.2 & 146.3 & 174.4 & 174.4 & 170.9 & 172.9\end{array}$
 $\begin{array}{lllllllllllllllll}\text { PopA ? ? } & 170.5 & 187.6 & 198.2 & 198.2 & 153.3 & 179.6 & 129 & 156.1 & 144.2 & 146.4 & 174.8 & 189.1 & 168.8 & 171\end{array}$ PopA 125.8127 .8180 .1180 .1 ? ? $\quad 180.1183 .9150 .5150 .5144 .4146 .6$? ? 166.8166 .8 PopA $106.1129 .7164 .7189 .6198204 .1157 .8177 .2147 .2147 .2137 .7 \begin{array}{ll}146.4 & 166.2 \\ 176.5 & 168.8 \\ 168.8\end{array}$
PopA 103.4 127.8 ? ? $\quad 183.6 \quad 202163.6189 .7145 .9150 .7144 .3146 .5166 .5 \quad 185$?

$\begin{array}{lllllllllllllllllll}\text { PopA } & 106.1 & 122 & 166.6 & 187.7 & 196 & 198.1 & 167.5 & 181.1 & 147 & 151.6 & 144.2 & 144.2 & 166.4 & 184.9 & 166.6 & 170.9\end{array}$ | POPA | 102.6 | 127.8 ? | $?$ | $?$ | $?$ | $?$ | $?$ | 144.8 | 151.8 | 144.3 | 144.3 | 166.3 | 188.9 | ? | ? |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PopA | 118.4 | 126.1 | 174.3 | 191.5 | 183.9 | 198.3 | 160 | 177.8 ? | $?$ | 132 | 144.3 | 188.8 | 188.8 | 168.9 | 168.9 | PopA ? ? ? ? $\quad 183.8 \quad 198 \quad 164187.4147 .2151 .8131 .9 \begin{array}{llllllllllll}144.1 & 185 & 185 & 169.3 & 169.3\end{array}$

 PopA ? ? ? ? ? ? $\quad 164 \quad 164150.7150 .7144 .4144 .4167 .5177 .1166 .9171 .2$ PopA 102.5125 .9187 .6187 .6 ? ? $\quad 169.8189 .7147 .2151 .8$ 132 146.5

 PopA? ? ? ? 200.1204 .1177 .9186 .3137 .4146 .9 ? ? $\quad 166.5180 .9168 .7170 .7$
$\begin{array}{lllllllllll}\text { PopA ? } & \text { ? } & & 163.8 & 185.6 & \text { ? } & \text { ? } \\ \text { POpA } & 103.4 & 116.4 & 191.5 & 202.8 & 183.8 & 183.8 & 15 / .8 & 1 / 9.2 & 14 / .1 & 154 \text { ? }\end{array}$
PopA $102.9102 .9193 .8212 .5192 .6 \quad 204.8$?
PopA 127.8127 .8180 .3 201.1 198.1198 .1190 .2190 .2146 .1146 .1144 .2146 .3184 .9186 .9171 .2171 .2
PopA 106.4128180 .2195 .4198 .5198 .5162 .3169 .8 ? ? $\quad 131.9144 .2176 .5188 .8166 .5166 .5$
PopA 118.4 126? ? 198.5198 .5 ? ? ? ? ? ? $180.7188 .9 \quad 167169.2$
PopA $118.5126 .1188 .1 \quad 190183.8183 .8164 .3167 .8$? ? $\quad 144.2146 .5186 .5188 .6$?
$\begin{array}{llllllllllllllllll}\text { PopA } & 102.7 & 118.3 & 170.6 & 182.2 & 196.2 & 200.3 & 159.9 & 167.7 & 146.1 & 146.1 & 141.1 & 144.2 & 166.3 & 190.9 & 166.8 & 166.8\end{array}$

PopA 115.6 127? ? $\quad 183.7198164 .2164 .2$? ? $\quad 131.9144 .3177 .5186 .4167171 .3$
PopA 116.6122 .2176 .6212 .6180198 .5186 .3196 .6 ? ? $\quad 137.8144 .2184 .8184 .8166 .5171$
PopA 116.5129 .8210 .4212 .4 ? ? ? ? $\quad 136.8146 .4144 .1144 .1172 .6184 .8166 .7169$
PopA $116.5129 .9189 .7191 .5196 .2200 .2 \begin{array}{lllllllllllll} & 171.9 & 187.3 & 146 & 150.8 & 137.8 & 144.2 & 166.5 & 184.9 & 169.1 & 169.1\end{array}$ PopA 106.2 125.9 ? ? 183.8198 .1164 .4164 .4 ? ? ? ? 166.4172 .6167 .1169 .2 PopA 116.6 118.4? ? $\quad 198.4200 .5164 .2164 .2$? ? $\quad 144.2144 .2180 .7186 .8171 \quad 171$
POPA 118.4126 .1180 .2 181.8 184204.6 ? ?

| PopA | 125.8 | 127.7 | 174.2 | 197.1 | 197.9 | 197.9 | 183.9 | 185.9 ? |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

PopA $111.1116 .6165178 .5198 .5 \quad 200.6160 .1 \quad 190$?
PopA 106.5118 .5180 .5182 .3184 .1196 .6179 .5198 .5 ?
PopA $106.2127 .7170 .4172 .3198 \quad 198 \quad 177.9190 .1$?

PopA 115.6125 .2185 .8191 .5183 .7204 .1162 .2189 .9 ?
PopA 125.9127 .8 ? ? $\quad 183.8$ 198 164 183 151.8 151.8 144.6144 .6
PopA 105.3116 .4170 .5189 .6183 .8198 .1164 .1189 .7 ? ? $\quad 144.2144 .2166 .4 \quad 186$?
PopA 103.5 118.3? ? $\quad 183.8198 .2$? ? ? ? $\quad 137.8144 .2166 .3166 .3166 .8171 .3$ PopA ? ? ? ? 183.6197 .9162 .1193 .5 ? ? $\quad 144.4144 .4174 .9 \quad 190$?
PopA 147.2147 .2 ? ? $\quad 183.6199 .9164 .1189 .8125 .9125 .9$? ? $\quad 166.4185 .8166 .8 \quad 169$ POpA 122.2126 .2 ? ? $\quad 183.7198 .1$? ? ? ? $\quad 131.9144 .2166 .6188 .4$?
PopA ? ? ? ? 184.4202 .9185 .6196 .5 ? ? ? ? 166.3174 .6 ?
PopA ? ? $\quad 189.6193 .4 \quad 196200.1183 .4193 .5$
PopA $103.6127 .9199 .1201 \quad 184198.3162 .4164 .3$? ? $\quad 144.2144 .2184 .7184 .7171 .3171 .3$ PopA 125.9 129.7? ? $\quad 198 \quad 200$? ? $\quad 143.6146 .1 \quad 132144.3186 .9188 .9166 .6171 .1$ PopA 116.1 125.7 ? ? $\quad 183.9196 .1161 .9189 .1151 .7151 .7137 .9144 .2$? ? $\quad 166.6170 .8$
POPA 106.4122 .2182 .4193 .8183 .8183 .8164 .3193 .7 ? ? $\quad 137.8144 .2166 .6176 .7158 .6$
PopA $103.5125 .9 \quad 182$ 183.9 $\quad 196 \quad 196$? ? 13 ? ? $\quad 144.2144 .2172 .5184 .8169 .1169 .1$
PopA 122.2126187 .8193 .5183 .8200 .3 ? ? 138 ? ? PopA ? ? $\quad 185.7187 .5183 .7198 .1157 .5161 .5142 .2160 .3$
PopA 125.9 129.7? ? $\quad 183.7$? 200160173.7 ? ? $\quad 144.2146 .2166 .3188 .9$ 169 169
PopA ? ? 180.2187 .7 ? ? $\quad 160$ 170? ? $\quad 137.8144 .3166 .5$ 185 166.8173 .1

PopA ?
85.5 187.5?
$146.9160 .3144 .2144 .2166 .5 \quad 185168.6168 .6$ PopA ? ? $\quad 181.9$ 202.6 183.8 183.8 $167.9196 .7144 .7158 .3131 .9144 .1166 .4 \begin{array}{lllllllllll} & 185 \text { ? ? }\end{array}$ PopA 116.3125 .9 ? ? $\quad 196 \quad 204169.7169 .7$? ? $\quad 131.9144 .2184 .8184 .8168 .9173 .2$ PopA 116.5126 .1180 .3182 .2 ? ? $\quad 190193.7$? ? $\quad 137.9144 .2166 .3188 .8$ 171 171
 PopA 103.512187 .71802 .8183 .9198 .1163 .6169 .7147 .2147 .2144 .2146 .5166 .6189 .2166 .9169 PopA 126.1 126.1 186.4188 .2 194.7 196.7 ? ? $\quad 146$ PopA ? ? ? ? ? ? 162.4168 .1 ? ? ? ? $\quad 166.5185 .1168 .9168 .9$ PopA 106.3 118.4? ? 183.7197 .9 ? ? ? ? $144.2146 .5 \quad 186190.3166 .8169$ PopA 106.4116 .5182 .1185 .9 ? ? ? ? $\quad 136.7153 .2144 .2146 .3166 .3176 .5166 .8169 .1$ $\begin{array}{llllllllllllllllllllll}\text { PopA } & 106.1 & 108.9 & 187.8 & 189.7 & 183.7 & 198 & 162.5 & 164.4 & 151.8 & 154 & 131.9 & 144.2 & 185 & 189.1 & 166.5 & 168.6\end{array}$

 $\begin{array}{llllllllllllllllllllllll}\text { PopA } & 116.5 & 127.9 & 164.8 & 189.8 & 184 & 196.3 & 160.4 & 186.2 & 146.1 & 146.1 & 137.9 & 146.2 & 174.5 & 184.7 & 170.5 & 170.5\end{array}$ PopA ? ? 178.2178 .2183 .8 200.1 ? ? ? ? $\quad 131.9144 .2$ 186 $188.4166 .8 \quad 169$
 PopA 116.4125 .9 ? ? $\quad 184.1200 .5194 .6196 .5 \quad 152154.2144 .3144 .3$

 PopA $118.4126182 \quad 201183.9200 .3159 .9184 .2 \begin{array}{lllllllllll} & 146 & 150.8 & 137.7 & 144.2 & 166.5 & 185 & 166.7 & 171.2\end{array}$ PopA $118.3118 .3187 .8 \quad 201183.7198 .1162 .4164 .3$? ? $\quad 131.9137 .7189 .1189 .1169 .1169 .1$ PopA 108.9116 .4164 .5189 .4183 .8204 .2193 .6193 .6 ? ? $\quad 131.9144 .3186 .1190 .4169171 .1$ PopA ? ? ? ? ? ? ? ? ? ? ? ? PopA $111.1126 .1190 .4192 .2198 .8 \quad 205157.9189 .9$? ? $\quad 146.3146 .3166 .3184 .8167 .1169 .2$
 PopA ? ? ? ? ? 177.6184 .1 ? ? ? ? 166.3188 .9166 .8169 .1 PopA 103.5103 .5193 .4195 .3196 .1198 .1 ? ? ? ? $\quad 144.1144 .1166 .3184 .8169 .2169 .2$ PopA 116.8128 .2191 .9193 .8184 .4198 .8169 .7169 .7 ? ? $\quad 144.2146 .3166 .5184 .9171 .2171 .2$ PopA ? ? 158.9210 .3 ? ? 157.9198 .3 ? ? 144.2144 .2185 .1189 .2166 .8166 .8 PopA 116.5118 .3187 .8189 .7183 .8196 .1 ? ? 150.9150 .9 ? ? $\quad 172.5186 .7167 .1169 .3$ PopA 103.5 124 ? ? $\quad 196.1198 .1164 .2170 .2$? ? $\quad 144.1144 .1166 .4184 .9168 .9170$ PopA 102.7102 .7189 .7202 .8198 .2198 .2189 .8198 .2136 .5150 .8141 .1144 .1166 .5184 .9169 .1169 .1 PopA 106.3129 .9187 .8187 .8200 .3202 .4 ? ? $\quad 143.7150 .9144 .1146 .4166 .2186 .7173 .3173 .3$ PopA $102.7118 .4182 .1 \quad 184179.7204 .5157 .9186 .2$? ? ? ? $\quad 184.7184 .7168 .9168 .9$ PopA 103.4 127.8 ? ? 183.6198177 .7185 .9150 .7155 .1141 .1146 .4 ? ? $\quad 160 \quad 171$ PopA ? ? 164.9170 .8 ? ? 167.9189 .5 ? ? $\quad 144.2144 .2184 .9189 .9168 .8168 .8$ PopA 106.2 125.9? ? 196.3198 .4164 .4164 .4 ? ? $\quad 144.3144 .3166 .2184 .6168 .8170 .9$ PopA 122.2 126.2 ? ? ? ? $\quad 164.1193 .9136 .7151 .1146 .4146 .4166 .3184 .8166 .7171 .1$ PopA 103.7126 .1176 .8 201.6 184.2200 .8 ? ? ? ? $\quad 144.2144 .2166 .6185171 .1171 .1$
 PopA 118.3 125.9 158.8 208.4 ? ? $\quad 170183.3 \quad 146 \quad 146$? ? $\quad 166.2185 .6166 .9169 .1$
 PopA ? ? $\quad 182.1202 .9$? ? $\quad 160.4187 .3146 .1146 .1146 .4146 .4184 .7188 .7168 .9 \quad 171$
 PopA 125.9 127.9? ? $\quad 183.6197 .9166 .3193 .9146 .2150 .9137 .8144 .3$? ? 169171.1 $\begin{array}{lllllllllllllllll}\text { PopA ? } & ? & ? & ? & \text { ? } & 183.4 & 199.7 & 164 & 189.5 & 147.1 & 158.5 & 144.4 & 144.4 & 166.5 & 166.5 \text { ? } \\ \text { PopA } & 106.4 & 126 & 193.6 & 197.4 & 184 & 198.5 & 164.3 & 196.5 \text { ? } & \text { ? } & 144.2 & 146.4 & 184.8 & 184.8 \text { ? }\end{array}$
PopA 118.3127 .9 ? ? $\quad 198.3198 .3164 .3196 .8136 .9136 .9144 .2144 .2184 .8186 .9169 .1169 .1$ PopA 109.1 127.9 183.9191 .6198 .4200 .5 ? ? ? ? $\quad 132137.9166 .3184 .7171173 .2$ PopA ? ? ? ? $\quad 193.9 \quad 202177.9190 .1 \quad 151 \quad 151144.2146 .4172 .4188 .8168 .9168 .9$ PopA 118.3125 .9187 .9193 .7183 .8198 .2161 .9184 .2150 .9155 .4144 .2146 .4166 .3172 .5166 .9169 .1 PopA 106.6128 .1182 .6184 .5198 .9198 .9164 .2186 .2136 .7153 .1 ? ? PopA ? ? ? ? $\quad 183.6197 .8171 .8198 .1150 .8155 .2146 .5146 .5166 .5166 .5169 .1171$
 PopA $126.1 \quad 128$? ? $\quad 183.9196 .3$ 170 170146.3146 .3144 .1144 .1166 .5 $\begin{array}{llllllllllllllllllllllll}\text { PopA } & 106.5 & 122.3 \text { ? } & \text { ? } & 183.8 & 198.1 & 160 & 201.9 & \text { ? } & ? & ? & ? & 166.5 & 186 & ? & ? \\ \text { PopA } & 102.6 & 118.2 & 182 & 182 & 183.6 & 197.8 & 177.7 & 189.8 & 146.2 & 155.3 & 131.8 & 144.4 & 166.6 & 166.6 & 166.8 & 168.9\end{array}$ PopA 122.1125 .9195 .3197 .2200 .1200 .1 ? ? ? ? $\quad 144.2144 .2166 .3188 .9166 .8166 .8$ PopA 106.3 106.3 ? ? $\quad 183.8198 .3164 .2 \quad 170$? ? $\quad 144.2146 .3166 .2184 .7173 .1173 .1$ $\begin{array}{llllllllllllllllllllllll}\text { PopA } & 105.9 & 125.7 & 189.4 & 193.2 & 183.8 & 200 & 168.2 & 183.5 & 147.1 & 151.6 & 141.1 & 144.3 & 176.6 & 189.1 & 169.4 & 171.4\end{array}$
 POpA $125.8127 .7185 .8195 .2183 .8 \quad 196169.9196 .4146 \quad 153$? ? $\quad 166.4172 .9$?
$\begin{array}{llllllllllllllllllll}\text { PopA } & 106.2 & 118.3 & 185.9 & 189.7 & 196 & 198.1 & 160 & 160 & 151.7 & 151.7 & 144.2 & 146.4 & 166.2 & 166.2 & 168.7 & 168.7\end{array}$ PopA 127.9 127.9? ? ? ? $\quad 164.2164 .2$? ? $\quad 137.7144 .2184 .6186 .7166 .6168 .9$ PopA ? ? ? ? ? ? ? ? ? 131.8146 .2166 .3166 .3 ? $\begin{array}{lllllllllllll}157.8 & 183.3 & 137.6 & 151.8 & 144.3 & 144.3 & 166.3 & 188.8 & 169.3 & 169.3\end{array}$
 POpA ? ? $\quad 180.2191 .6$? ? $\quad 1 / 0.21 / 0.2$? ? $\quad 144.2146 .4166 .3184 .9$ 166./ 168.9 PopA 118.4126185 .9187 .8198 .2204 .3 ? ? ? ? $\quad 132144.3166 .2166 .2166 .5168 .8$ PopA 106.1 106.1 164.6176 .2198 .1200 .1164 .4187 .4138 .8153 .9131 .9144 .1166 .3188 .7166 .6168 .6 PopA ? ? ? ? ? ? 196.5196 .5146 .1146 .1144 .2146 .4166 .3166 .3166 .5166 .5

PopB							16	167.5	146	151	144.2	146.4	184.7	186.8		
PopB	12	127.6	186	187.9	198.4	200.4	160.1	193.6	13	146.9	137.8	137.8	184.8	184.8	172	
PopB	116.3	118.1		？					137.6	1539					171.8	71.
PopB	122.	127.9				195			137.4	144		154	166.5	185	157	
pB	106	118	1／0．2	1／1					144.	146.	144.2	14			$16 / .8$	／2．
PopB	122.	12	17	193		83			151	153	144.	144.	2．6	185	169	169.9
pB	116.2	125.8		？	183	183.3	190	190	146	151	131	131	172.6	188	171.7	1717
pB	102.2	106	，		195.6	195.6	161	177.4	137.	151．	131.	144	66.2	84.	167.3	
PopB	106.	116.3	174.4	200.8			157.8	164	146	146.	138.	144.8			66	168.7
PopB	112.	129	174.3	176.			164.3	186.2	151.	151	144.	144.4		174	69	1.6
pB	105.8	118	187.	189.3	18	197.6	183.7	185.6	151		144.	46.	66.5	185	69.	
DB	125.9	125.9			183.4	195.6	16／	16／．9	151.	151.	131.	144	66.	188	66.	66.8
PopB	125	127.6			19	19	16	167.5	156	156	137.	144	166.	188.		73.7
opB				？							144	144	84.	88.	68.	171
PopB									151.	151.	144.	144	166.	184	67.7	172
	125	125.7		？	184	204	15	160	146.8	153.8	144	146	166.	84．	167.7	167.7
pB	125.6	125.6	186	187			185.9	185.9	146				166.3	172.5		
pB	125.	125.6		？	1	197.	183.	185	151				184.	86.		
РорВ	116.1	129.4		196	189.	191.			131.3	151.		148	166	184.1		
pB	118	125.7			183.3	197		189.	137.	46．	44.	146.5			67	67.4
pB	116.2	5．6		186	198.7	198.	166.	187.3	128.	151.	144	144.3	184.7	84	169	9
PopB	10	5.7	199.	199.			164.3	79，	137	151.4	144	146.5			167.	167.2
pB	103.3	5.7				197	160	163.9	137.4	151.5	131.	144.2	180.8	184.8	167	169.1
pB	105	108.7	164	187.	183.2	183.2					131.8	144.2			167.	5
PopB	106.	125.8	199	210.3	18	195			137	156	144	44			66	168.8
pB	127	127.9		210.1				159	146	153.	146	146.4	166.6	185	169	69.4
pB	117.	129.4 ？					163	190	146.	151.	137.	144	84.	188.	171．8．	1．8
pB	125.	127.6	205.	205.	19	199		？	151.	58.	144.	144	72.	184.8	69.8	74
PopB	102.	117.9	187.	189.			189.	198	151.	53.7	144.	144	66.2	188.8		
pB	116.	127.8	180.4	188.1		203.8	164.1	189.9	14	151	144	144.2	176.7	185		
PopB			182	195.4	183.9	183	160	160			144.	144.3			16	，
PopB	103	125.8	188.1	212.9		？	167	191	13	158.2	131	144.4	166.6	189	67	，
pB	106.	127.8	178.5	197					？		144	144.3	166.3	184.	70.	． 2
pB	125.5	27.4	193	205				185.8	146.	146.8	144.	144	84.	188	67	67.5
PopB	103.3	106		？			161.9	166.2	147.	1519	131	131.	174	184	166.	66.5
pB	？								137		144.2	144	184.	84	67．	7 5
pB	10	127.6							151	153	132	144	66.	88.	167.6	
PopB	10	127.7		？	18	196					131.9	141	66	72		
pB	106.3	120.1		195		？	157.5	189.6	151.	155	146.	146.5	184	186	16	
pB	103.	103.3			18	203	189.3	193.4			131.	137.6			167.5	171.7
PopB	03．	125.8	193.	19			162.	162.1	146.9	151.6	135	144	166.4	189	168.8	168.8
pB	118.	127.8		21		203	177.	196.3	152	152	146	146	66.3	184	171	
pB	105.8	127.5	170．	191		197	163	163	153.	155.9	144	144	166	172	67	
	125.7	7．							151.	160.2	144.	146			71.	， 73
PopB	103.	112.4				199.5	18	185	151.5	151	144.	144			69.3	
pB	106.	125.9		？				？	151.7	151.7	131	144	166.5	166.5	69	9． 7
	121.	129.5 ？			183.4	187.	162.2	164	152	15	144.	144	166.5	185	68.	170.7
PopB	122.	9.9	170.6	172.5	198	204	161.9	185.8	155.9	162.3	146.4	146	166.1	184.6	166.4	
opB	125.9	，	87．	9．6			168		144.	158.3	139	144	172.7	185	169	
－	106	5．8	178.1	0.2		203	164	67.8	151.	151.	144.	144	176.	189	71.7	
pB	116.1	5.6	179.9	185.7			161.5	169.6	128.8	137.3	131.8	144	166.2	166.2	169.5	
仡	125.	5	4．				164	175.7	156	156	4，	，	74.	184.9		
pb	118.2	，	188.	203			185.9	189.	137.	156.	144	，	66.	185	173.9	175.7
硡	125.8	127.7		？	183	199	163.9	183.9	137.4	151.6	131.8	146.5	184.9	184.9	69.	17.6
¢	118	118	164	178.2			177.	189	137.3	151.	，	，	66.	184.	167	71.8
рB	125.8	125.8	110	，		195.1		？	14	151.	131.	44.	166.	18	169.1	171．8
pB	？		183.	187.7			160.1	164	146.9	151	144.4	146.			69.	171.8
仡	105.9	127.6		？		198.6	177.5	196.1			132	144			171.	174
opB	？	？	174.2	180			164	164	146.8	146.	144.	144.2	166.2	188.	67	171.
pB	106.3	126	198.9	210.2	183.7	98.2			146.	151	137	144	186.4	186		
訨	103.3	120	178.2	19.		197.6	171.5	，	144.	151.9	144	144	166.	184．	168	，
opB	102.4	127.7	0．1	189.5			16.	193.4	144.	147	139.	144.	185		67.5	171.
硣	106.	16.4	188.1	190	185	198	$16 /$.	1／1．3	13／	151	146.	146	184.9	184	10	1／4．
Apb	118.	122.1	164.	178.3			177.7	183.3	147	56．	131.	144	166.	166.	69.	169.8
PopB	106.1	118.2	164.6	183.8	197.	197.7	162	167.8	146	146	144.	146.	166.	66.	析	171.
opB	116.1	118	211.	213.8	183.2	195.5	163.8	189.5	137.	151.	144.	144.	176.4	184.6	66.	70.5
pb	106.2	125.9		？	183	195	170.1	177.7	151.	151.	131	144.	166	166.5	167	69，
PopB	106.1	27.7	178.2	178.2			175		3.8	158.1	144.2	144.	180.7	184.9	169.	69．
PopB	？	？	178.2	178.2	183.	197.8			51.7	153.9	144.2	146.	166.4	174.6	169.	11.8
那	121.4	125.2	182.1	185.9			162.2	189.8	151.8	158.4	144.3	144	166.5	185	16／． 5	$16 / .5$
PopB	118.2	121.9	187.8	210.3	195.8	197.8	170	186	137.6	154.1		？	166.4	166.4	170	170
PopB	118	121.7	195.7	195.7	183.2	183.2		？	153.7	153.7	144.3	146.5	184.9	189	167.2	171.4
PopB	103.	105.9					161.9	161.9	146.9	151		？	166.4	188.	167.	170

 PopB POPB PopB 164.8 189.9 ? ? ? ? ? ? $\quad 137.5151 .5144 .3144 .3184 .8188 .9166 .7166 .7$ PopB 1225.6 127.5 210.6212 .5179 .6183 .7169 .8185 .1137 .4151 .6137 .7144 .3166 .4184 .9167 .7167 .7

 $\begin{array}{lllllllllllllllllllllll}\text { PopB } & 125.7 & 127.6 & 182 & 189.7 & 183.8 & 198.1 & 167.7 & 183.1 & 147.3 & 151.9 & 144.2 & 144.2 & 166.2 & 184.8 & 167.6 & 169.7\end{array}$ PopB $125 . / 12 / .6181 .8$ 18/.6? ? ? 163.9183 .2146 .8146 .8 146.5 146.5 ? ? ?

 $\begin{array}{lllllllllllllllll}\text { PopB } & 116.2 & 125.6 & \text { ? } & \text { ? } & 195.8 & 202 & 165.9 & 169.8 \text { ? } & ? & 144.3 & 148.7 & ? & ? & ? & ? \\ \text { PopB } & 108.9 & 125.7 & 182 & 189.5 & 187.5 & 199.7 & 164 & 181 & 129 & 137.6 & 144.2 & 146.5 & 166.3 & 184.8 & 166.5 & 170.8\end{array}$ $\begin{array}{lllllllllllllllllll}\text { PopB } & 116.2 & 121.9 & 185.8 & 187.6 & 195.7 & 197.8 & 164 & 177.1 & 137.5 & 160.4 & 144.3 & 146.5 & 166.5 & 187 & 171.7 & 171.7\end{array}$ $\begin{array}{lllllllllllllllllll}\text { POPB } & 106.3 & 12 / .8 & 1 / 4.5 & 1 / 6.3 & 184 & 184 & 160.1 & 164.2 & 13 / .4 & 151.5 & 131.8 & 131.8 \text { ? }\end{array}$ PopB ? ? ? ? $\quad 195.7$ 197.7 ? ? $\quad 137.6151 .8144 .3144 .3166 .5185 .1169 .8171 .9$ PopB ? ? $\quad 187.9195 .4183 .5197 .7177 .5189 .5137 .3151 .5$ PopB $106.3127 .9176 .4191 .6183 .5195 .8181 .5 \quad 194131.8151 .8131 .8144 .3166 .6185 .1169 .9169 .9$
 PopB 103.4118 .2174 .3200 .8183 .4183 .4157 .7163 .7137 .5151 .6 ? ? $\quad 166.6189 .1166 .5170 .8$ PopB 125.6125 .6 ? ? ? ? 165.9185 .7137 .3151 .4 ? ? ? ? 169.6171 .8
 PopB 106127.6164 .5198 .8 ? ? ? ? $\quad 151.5153 .7144 .3146 .5166 .6166 .6168 .5168 .5$

 $\begin{array}{llllllllllllllllllll}\text { PopB } & 106.2 & 125.8 & 182 & 187.7 & 195.8 & 203.8 & 164.1 & 167.6 & 151.7 & 160.5 & 141.1 & 144.2 & 172.5 & 184.8 & 171.9 & 171.9\end{array}$ PopB ? ? ? ? ? ? 163.6169 .1147 .3147 .3131 .8144 .2166 .3184 .8 ?
$\begin{array}{lllllllllllllllllllll}\text { PopB } & 103.1 & 125.7 & 188.2 & 211 & 196 & 198.1 & 163.8 & 169.9 & 147 & 151.5 & 144.3 & 144.3 & 166.4 & 172.5 & 167.6 & 173.9\end{array}$ PopB 102.7 125.1 180.2189 .7 ? ? $\quad 159.8169 .7151 .6153 .8144 .2146 .5184 .8186 .8$? ? $\begin{array}{lllllllllllllllllll}\text { PopB } & ? & ? & ? & ? & ? & ? & ? & 160.6 & 184.5 & 151.6 & 151.6 & 144.1 & 146.4 & 166.5 & 166.5 & ? & ? \\ \text { PopB } & 116.5 & 126 & 164.9 & 182.3 & 197.8 & 199.9 & 159.8 & 179.1 & 146.9 & 151.6 & 131.9 & 137.8 & 174.5 & 184.8 & 166.6 & 170.9\end{array}$ PopB ? ? ? ? $\quad 183.7183 .7162 .1185 .8146 .8158 .1135 .8144 .3166 .2188 .7167 .6171 .9$ PopB $\quad 126$ 126 182.4212 .9 ? ? ? ? $\quad 146.9146 .9144 .4144 .4184 .8188 .9168 .7170 .8$ PopB $108.8118 .2187 .8 \quad 210.3$? ? \quad ? $\quad 183.3191 .7137 .6147 .3144 .3146 .5166 .4186 .9169 .8169 .8$
PopB 106.2123 .9 ? ? ? ? 159.6 183.7 ? ? $\quad 146.3146 .3184 .8184 .8 \quad 171 \quad 171$
PopB 118.3127 .8187 .7210 .3183 .5195 .7 201.9 201.9138 .9147 .6144 .3146 .7166 .4172 .6169 .8171 .9

PopB 106106190212.8 ? ? ? ? 137.4151 .4131 .8144 .3 ? ? 171.6171 .6

$\begin{array}{lllllllllllllllllllllllllllll}\text { PopB ? ? } & 164.6 & 189.7 & 183.8 & 204.4 \text { ? ? } & 146.9 & 151.5 & 137.8 & 144.3 & 174.5 & 188.9 & 167.7 & 172\end{array}$

PopB 116.3125 .9178 .3178 .3 ? ? ? ? $\quad 137.3151 .5132144 .3166 .3190 .8167 .6171 .9$
PopB $102.3102 .3 \quad 190203.4183 .2197 .6$? ? $\quad 137.4151 .5131 .9141 .2$? ? $\quad 169.5169 .5$
$\begin{array}{llllllllllllllllllllll}\text { PopB } & 118.1 & 125.7 & 181.8 & 185.7 & 183.3 & 183.3 & 159.9 & 163.6 & 146.7 & 146.7 & 137.7 & 144.3 & 184.8 & 186.7 & 171.6 & 173.7\end{array}$
POpB ? ? 191.5193 .4198 .3 200.3 ? ? ? ?
PopB $\quad 126$ 126 184.2190 .1 ? ? ? ? $\quad 151.6$ 156 131.8144 .2166 .3184 .8166 .4166 .4
$\begin{array}{llllllllllllllllll}\text { PopB } & 108.6 & 127.6 \text { ? } & ? & ? & ? & & 160 & 189.6 & 147 & 153.8 & 144.3 & 144.3 & 184.9 & 184.9 & ? & \\ \text { PopB } & 118.3 & 127.9 & 180.3 & 193.5 & 198 & 204 & 171.9 & 198.4 & 144.9 & 151.9 & 144.2 & 146.4 & 166.3 & 188.9 & 169 & 169\end{array}$
PopB 106 106 ? ? ? ? $\quad 167.6169 .7146 .8$ 158 144.2144 .2166 .3166 .3167 .4171 .6
PopB 118.2121 .8164 .5164 .5197 .6197 .6 ? ? $\quad 151.7156 .1144 .2146 .3166 .4166 .4169 .5171 .7$
PopB 121.8 125.7 ? ? ? ? 177.4 189.6 ? ? 144.3146 .4 ?
$\begin{array}{llllllllllllllllllll}\text { POpB } & 106 & 121.6 & 180.2 & 182.1 & 183.8 & 183.8 & 185.8 & 185.8 & 128.9 & 153 . / & 132 & 144.3 & 184.8 & 184.8 & 1 / 1.8 & 1 / 3.9\end{array}$
$\begin{array}{llllllllllllllllll}\text { PopB } & 125.6 & 125.6 & 184 & 201 & 183.7 & 195.9 & 161.5 & 176.9 & 146.9 & 146.9 & 144.3 & 146.5 & 166.3 & 190.8 & 166 & 169.1\end{array}$
PopB 105.9129 .51818 .1191 .8 ? ? ? ? $\quad 137.3137 .3$? ? 166.3186 .6 ? ?

| PopB | 116.1 | 120 | 164.9 | 186.2 | $?$ | $?$ | 189.6 | 195.2 | 128.9 | 158.2 | 144.2 | 144.2 | 166.4 | 184.8 | ? | $?$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PopB | 103.6 | 116.5 | $?$ | 193.6 | 195.7 | 184 | 184 | 153.9 | 153.9 | 131.9 | 144.2 | 166.4 | 189 | 166.6 | 168.8 | | PopB ? ? ? ? ? ? ? ? 137.3151 .5131 .9144 .2184 .8 188.8 ?

 PopB 105.9127 .6185 .7187 .5 ? ? ? ? $\quad 137.4146 .9144 .2144 .2 \quad 189 \quad 189168.7168 .7$
PopB $103.1 \quad 118184.1195 .5$? ? $\quad 163.8167 .4137 .4146 .9144 .4144 .4$? ? 170.1170 .1

PopC							185.8	185.8								
	11	123.8	178		200.2	204.2	183	189.6	151.3		131.8	． 4	． 6			
PopC	112.3	118.2	159.2	178.6	183.7	200.	159.8	163.	146.	151.3	131.8	144	166.	184.8	169.8	
PopC	？	？	184.1	193.6		？	163.8	175.	147.2	147.2	144.2	146.3	166.4	188.9	67	
吹	？	？				192.3	183.3	193.4	146.	146.1	144.3	146.	166.5	185.1	169.1	
pC	122.2			180.5	183.7	198			151.9	156.2	144.3	44.	66.	166.	71.9	171.9
PopC	118	125.7	170.7	1.9		？			144.	146.	144	148.	66.2	66.2	169.7	
opC			170.7	187.9					156.3	156.3	144.	146.	166.4	186.		
PopC	102	118	174.7	18	196	198	17	198	151.5	153.7	131.8	144	166.5	186.9	187	167.8
PopC	？	？	174.4	189.7	198.5			190.1	146.	151.5	144	144	166.6	181	172	172
pC			189	7.4	190.4	9.7	188.2	198.3	137.	147.2	131.9	152.8	166.2	166.2	，	172.8
PopC	？	？	$1 / 2$	1／6．6		？			141.	152	144.	44．	184.8	184.8	$6 / .9$	$1 / 0$
PopC	124.1	126	187.	208.2		19	189.	191.5	137	137.	31.	1	84.	88.	67.5	171.8
pC	103.5	125.9					158.1	190	151	151.3	146.5	，	166.	172	67.5	179．8
C	？		180	189.	183.8	198.1	177.4	185.6	153.6	153.6	144.2	144.2	172.4	188.	167.3	171.6
pC	106	116	187.	189.8	4．2	198.6	169.9	177.	146.6	155.8	131.	144	84.	184.7	69.8	
pC	118	118	185.9	201	183.	3.7	158	183.4	137.	151.	144.2	44.	66.	188.7	169.7	171.8
C	11	121.8				？			146.7	151.3	44.	144				
pC	106.4	126	186		196.2	202.4	189.8	189	131	141．	131.8	44.2	166.2	184	，	
PopC	121.5	125.9	170.4	202.7	183.8	198.2	170	177.1	146.	151.3	131.8	46.3	166.6	189.2	\％	
pC	？	？	170.8	0.8	198	198	164	189.7	146.	155.	44.	146.4	185	189.	69	71.9
pC			176.6	191.8	188.5	202.2	184.	93.	151.	151.	131.9	44.2	166.3	184.8		
PopC			187	202.9	198	198	177.1	177.	146.8	151.4		1.9	187	187		
PopC	106	106	166.7	178.4		？	194.4	196.2	151.	53.	144.	46.	166.3	184.8		
	125.	125.8	182.2	187.9		183.9	159.8	170	146.	151.4	131.8	137.7	185	185	172	172
opC	118	122.	186.	201.2			181	184.2	151	151.4		44.3	166.2	184.7	66.	170.9
pC								？	146.	46.	131	44.	184.8	188.7	67.	71.
	？	？	187	187.7	196.3	198			137	151.	144.2	44.	166.	172.4	69.	171.8
pC	109	125	121.	127.9			162.4	177.4	142.		144	144.1	166	14.9	7．8	7．8
pC		？	184.2	193.5	，	198.	169.8	184	144.	51.	131	37.	184	184.7	71.	73.9
	10	126	178.	0.6	184.7	206.9	163.7	167.5	152	52.	144.2	144.2	176	188.8	71	171.2
opC	118.3	125.1	176.5	201	188	188	16	164.	146	160.2	141.	144.3	184.7	84.	67.	1.8
pC	102.	118.	199.	201.		？？			147.	152	144	44	184.	188.8	170	
	？	？				？					144	146	184	184.7		
pC				3.6	184	198			151	158	146	146	185	89	167.6	
PopC	109	127	159	180.4		？	164	187	15	151	144	144.	172.	188.8	66.	66.7
PopC	？	？											184	186.8	72	172.2
pC	110	117.	164	164.5						14		154.7	189.	191.	67．	9．6
PopC	103.	125.9	180.3	201.2		？	164.3	183.6	144	147	131	144.2	166.	188.	72.	172.2
	118.	129.8	174.7	1.9		20	160.1	160.1	51	151.	131.7	44	172	188.8	167.9	170.2
pC	103	103.3	193.5	193.5		？			146.7		144.2	崖．	166.4	188.8	69.9	69.9
pC		？	190	203	183.7				137	151	137	37.7	185	189	70.1	
			159.3	180.		？	163.5	163.	151	158.	144.3	146.4	166.4	166.		
che	116	121			198	200	163.	171	146.7	151.3	13	146.	166.3	184.8	0	
pC						？	？？	？	147.	51.8						
pC	116.3	125.7	89.	210			172.1	190	137	51.3	131.8	146	166	184.8	170	
pC	103.3	106			183.8		157.8	181.8	146.	151.3			166.3	166.3		
PopC		？	189.8	193.6	184	198.3	169.9	18	151	151.	137.7	144.1	166.	188.		
PopC		？	176.1	197	183.	183.		？	146.6	151.3			166	184	67	69
pC	106.1	122				?	158.2	162	146.	160	135.7	144	184	188.7	67.	71
opC	126	127.8	164.7	193.5	184.1	204.6	185.9	189.6	146.	151.2	144.3	46	186	190.	171	171.9
PopC	106.	125.2	165	1．8	196.1	198.1		？	146.	151.	144	144.3	188.	188.	59	167.8
PopC	103.2	105.1	164.7	187.7	196.	198.2	157.8	164	151.3	151.3	44.	46.	166.	188.8	67.	69.
PopC	102.	116.4	164.8	166.7			167.6	186.6	137.7	147.3	4，	44	84．	184.8	67.	167．
PopC	118.3	122.1	8.5	188		？	1．8	63.9	147	147	144	44.	189.1	8，	172.3	172
pC	103.6	125.3	180.2	204.8	196	198	$15 / .8$	62.	44.	151.4	135.1	44	，	188.	66.1	1／1
cop		？	191.	9．4	183.8	198.	162.2	62．	，	151.4		146.3	166.3	188.9	169.	169.
PopC	103.6	126	18	203.2			189	93	144	15	137．81	，	16．	188．8	67	
oc	？	？								？	137	144.2	176.	184.9		
訨	106	11	185	212.2	183	196	183	189.7	146.8	146	135	44			166	170
PopC	118	121	析			198.2	181.	177．	1513	，	131．8	，	184.7	188.8		
pC	？	？	166.9	66.			163.9	77.	51	51.	131.	，	，	184.8	69	171
訨	103.	125					189.1	193.4	151	L1．	144	146	1／2．4	188.6	16／	169.
PopC			186	188					147	14.	131.	144.	16.	172.7	67．	，
opC	？	？	191.7	193.7					137.	156.2	，	144	166.	166.4	67.	17
cop	106.3	125.9				？	158.1	164.3	151.5	151.5	144	146.	176.5	176.5	166.7	17
PopC	125.	125.6	4．9	4.9			181	185.9	151.8	51.8	144.3	144	180.	184.6	67	169.
opC	？	？	？	？	？	？？						？		？		
PopC	108.8	112.4	188.1	188.1	？	？	190.1	193．8＇4	442.4	147.4	131.8	144	184.8	190.9	171.9	171
PopC	106	106.2	180.2	9／．3	198.	198.3	154	59	144.	51	144.3	144.3	184.	188.8	16.1	16
PopC	？	？	？	？	？	？？					131.8	144.2	166.3	184.8		
opC	？	？	174.4	189.6	198.5	198.5			137.3	153.5	131.9	137.8	166	166.4		
opC	118.3	126	182	189.7	183.8	1？			137.	152			166.2	166.2	167.5	173

PopD	116.3125 .8	21	212.2	193.9	196		?	137.4	7.4	?	184.6	190.7	166.8	171
PopD	106118.1	178.3	195.3	195.9	197.9		?	144.4	151.5 ?	?	166	176.3	171	171
PopD	118.1127 .6	185.7	189.5	197.8	199.8		?	137.3	137.3146 .4	146.4	166.1	184.5	166.6	170.9
PopD	125.7129 .5	191.4	193.3	199.9	203.9		?	137.2	146.7 ?	?	166	166	170.1	172/2
PopD	106.1125 .8	166.5	1/6.2	191.9	201.9	?	?	153.1	155.9?	?	184.6	188.6	166.6	1/0.9
PopD	? ?	185.8	191.5	197.8	199.9		?	137.4	153.8137 .7	144.2	166.2	184.9	166.7	173.1
PopD	102.3121 .9	187.6	191.4	197.8	203.8		?	153.6	153.6137 .7	146.4	166.2	166.2	168.8	171
PopD	? ?	201.3	203.1	183.5	183.5	163.8	185.7	147.4	152.1131 .8	144.2	166.4	166.4	166.5	170.8
PopD	106118.2	180.1	187.6	183.5	195.8	?	?	151.5	155.9137 .8	144.3	184.7	188.8	166.6	170.6
PopD	? ?	?	?	184.8	184.8		?	151.9	158.4 ?	?	166.3	166.3	166.9	166.9
PopD	$105.9 \quad 118$	164.4	164.4	183.4	203.8	179.6	189.9	151.9	158.4144 .2	144.2	166	184.5	166.5	170.8
PopD	? ?	165.1	186.3		?	163.8	189.4	141.3	152144.2	146.4	166.4	1/6./	1/1.2	1/1.2
PopD	? ?	187.8	189.7	197.9	202		?	137.6	152 ?	?	184.9	189	171	173.1
PopD	106108.8	164.5	164.5	183.5	183.5	175.5	197.4	137.2	154131.9	146.4	188.6	188.6	168.8	70.8
PopD	? ?	191.7	193.6	183.8	198.2	165.8	185.7	152	152144.1	146.3	166.3	188.8		?
PopD	106.1118 .3	191.9	201.3			?	?	151.6	153.8 ?	?	172.7	172.7		?
PopD	? ?	185.9	187.7	183.6	195.9		?	137.4	147?		166.2	188.9	166.8	171
PopD	106.1106 .1	185.7	187.6	183.5	183.5	?	?	151.4	151.4144 .2	146.4	166.1	166.1	166.7	168.8
Popd	116.3118 .1	1/0.4	1/4.2	183.6	197.8		?	146.8	146.8144 .2	144.2	166	184.4	16/.9	1/2.1
PopD	? ?	164.8	174.6	183.5	197.9		?	144.8	147.2 ?	?	166.3	188.8	166.5	168.8
PopD	122127.7	164.6	200.8			?	?		? ?	?	184.4	188.5	170.9	70.9
PopD	103.2116 .2	199	210.2	183.5	199.8	?	?	151.8	151.8146 .4	146.4	166.2	185.2		?
PopD	125.8129 .7	178.2	178.2	195.9	199.9		?	137.2	137.2 ?	?	166	184.5	169.8	169.8
PopD	? ?	166.9	186.1 ?			?	?	151.8	154.1 ?	?	166.4	166.4	167.9	172.2
PopD	116.4125 .9	164.7	189.7	183.7	183.7	?	?	151.5	153.7 ?	?	166.2	166.2	167.7	167.7
PopD	106.1125 .7	166.5	180	183.6	197.8		?	137.6	147.3?	?	176.2	184.5	167.6	169.8
PopD	? ?	164.6	193.3	183.5	183.5	?	?	147.3	151.9 ?	?	176.2	184.5	169.9	171.9
PopD	? ?	174.3	193.4	197.9	197.9	?	?	147.1	147.1?	?	166.1	184.8	166.6	166.6
PopD	103.3127 .8	195.2	202.7	183.6	183.6		?	146.7	151.4144 .2	144.2	166.5	166.5	166.7	171
PopD	116.2125 .8	189.6	199	197.8	199.8		?	147.3	147.3146 .4	146.4	166.1	184.6	166.7	168.8
PopD	? ?	?	? ?	?		?	?		? ?	?	?	?		?
PopD	? ?	?	?	195.8	195.8		?	151.4	155.8 ?	?	166.2	188.6	166.6	168.9
PopD	? ?	?	?	186	202.4	?	?	146.7	151.4 ?	?	166.5	189.1	167.8	170
PopD	116.2121 .8	178.1	187.6	199.7	203.8	?	?	151.4	151.4146 .4	146.4	166	186.5	170.9	170.9
PopD	? ?	187.7	199.1	183.6	183.6		?	151.5	153.8144 .2	144.2	166.4	184.9	171	171
PopD	106.1125 .7	182	185.9	183.5	197.8	?	?	137.7	147.4?	?	186.6	186.6	169.9	172
PopD	? ?	193.9	201.4			?	?	152.1	152.1131 .9	137.8	166.3	184.9		?
PopD	118.1127 .6	162.6	185.8	183.5	183.5	?	?	151.4	153.6144 .2	144.2	166	184.5	166.6	171
PopD	? ?	180	202.7	197.8	201.8	?	?	144.4	146.7144 .3	144.3	184.5	184.5	166.5	166.5
PopD	? ?	164.6	191.6	202.4	204.4	189.9	193.8	146.8	146.8144 .2	146.4	166.1	172.2	168.9	170.9
PopD	? ?	184	185.8	183.5	183.5		?	144.8	151.8144 .2	144.2	165.9	184.4	170.1	172.2
PopD	103.3118 .1	199	204.7	183.6	197.9	?	?	128.8	156 ?	?	166.1	184.5	167.8	169.9
PopD	122127.7	191.4	193.3	195.8	197.7	?	?	144.2	146.6144 .2	146.4	166	188.5	166.7	168.8
PopD	?	?	?	?	?	159.6	169.7		131.8	144.1	166.3	166.3		
PopD	? ?	180.3	180.3	183.6	203.9	?	?	147.3	152.1144 .2	144.2	184.8	184.8		?
PopD	? ?	191.5	193.4	183.5	203.9		?	137.4	151.5 ?	?	184.5	188.6	166.6	166.6
PopD	? ?	170.7	193.7	200.5	202.7	159.6	169.4	147.3	156.4131 .9	144.2	166.2	166.2	167.9	170
PopD	103.4118 .2	186.3	186.3	183.6	183.6	?	?	146.8	153.7 ?	?	166.2	188.6	172	172
PopD	? ?	?	?	184.7	200.2	?	?	?	131.8	144.1	166.4	166.4	171.3	171.3
PopD	118.2123 .9	164.7	191.6	202	204.1	189.9	193.7	146.9	146.9 ?	?	166.3	172.5	166.7	168.9
PopD	118.1125 .7	174.3	193.3		?	?	?	146.7	151.3144 .2	146.4	166.1	186.5	172	72
PopD	? ?	?	?	?		?	?	144.3	151.4 ?	?	166.2	188.8		?
PopD	106.1122	185.8	187.7	195.8	195.8	?	?	151.4	151.4146 .4	146.4	166.1	186.6	158.4	170.9
PopD	? ?	?	?	198	200	169.8	193.3	137.6	147.2144 .2	144.2	185	185	169.8	169.8
PopD	? ?	170.9	170.9	197.8	203.9	175.5	197.6	146.7	153.6144 .2	144.2	166	166	174	174
PopD	120.1125 .8	1/4.2	191.4	183.8	183.8	?	?	152	156.4 ?	?	166.1	166.1	169.8	1/1.8
PopD	103.3121 .9	164.7	187.6	183.5	199.8	?	?	128.8	146.7 ?	?	166	166	166.8	168.8
PopD	118.2127 .7	187.9	191.7	183.5	199.8		?	144.3	151.3137 .8	141.1	184.5	184.5	166.7	168.8
PopD	? ?	?	?	183.9	183.9	?	?	147.3	147.3 ?	?	?	?		?
PopD	125.8127 .8	174.3	176.2	183.6	197.9	?	?	151.4	151.4144 .2	146.4	166.1	166.1		?
PopD	? ?	201.4	203.2		?	?	?	147.3	154.2144 .1	144.1	172.6	188.9	169.2	171.3
PopD	118.2127 .7	189.7	197.1	183.6	183.6	162.2	189.	146.8	153.8131 .9	144.3	180.5	188.5	166.6	171
PopD	116.2129 .6	1/0.5	1/8.3	183.1	191.9		,	146.8	151.4144 .3	148.6	166.1	$1 / 6.3$	158.5	1/
PopD	125.8127 .7	180	202.6	196.3	198.3		?	?	? ?	?	166.1	172.4		?
PopD	106.1125 .8	178.2	191.5	204	204		?	147.4	152.1 ?	?	184.6	184.6	170	172.2
PopD	103.4122		?	195.9	200		?	137.4	146.8 ?	?	185.1	187.1	169.1	169.1
PopD	? ?	166.4	166.4	197.8	197.8		?	152	154.1 ?	?	166.1	184.5	167.8	167.8
PopD	106118.1		?	197.8	197.8		?	146.7	153.6144 .3	146.4	180.4	184.4	167.5	171.8
PopD	106118.1	164.5	191.4	192.1	198.3		? 14	137.4	151.5 ?	?	166.2	166.2	167.6	8
PopD	? ?	164.9	203.2	184.8	184.8		?	138.9	145.4144 .1	144.1	1/2.6	1/4.6		?
PopD	118.1125 .7	164.6	164.6	183.5	183.5		?	151.9	156.4146 .4	146.4		?		?
PopD	.	208.7	210.6		?	?	?	139	139 ?	?	166.5	185.1	167.8	174.2
PopD	116.3125 .8	178.3	212.1	183.6	183.6		?	144.8	151.9 ?	?	166.2	184.6	167.8	167.8

PopD		?	?	?	?	?	?	?	?			?	?	?		?
PopD	106	116.2	199.5	199.5	?	?	?	?	146.8	151.5	144.2	144.2	180.5	184.6	167.6	167.6
PopD	?	?	?	?	198.2	198.2	?	?	151.9	154.1		?	?	?	167.5	167.5
PopD	118.1	125.8		?	183.9	196.4	?	?	151.4	151.4		?	174.3	184.6	167.8	172
PopD	106	121.9	164.5	181.1	183.4	199.1	?	?	152	152		?	165.9	188.5	1/2.1	1/2.1
PopD	?	.	174.2	197.1	?	?	?	?	137.7	147.3		?	?	?	?	?
PopD	?	?	?	?	?	?	?	?	138.9	147.6		?	166.3	184.8	172.2	172.2
PopD	103.4	106.1	183.9	200.9	195.9	204	?	?	147.3	152		?	166.2	188.7	173.9	173.9
PopD	?	?	167	191.9	?	,	?	?	147.3	152	144.2	144.2	188.8	188.8		?
PopD	?	?	187.7	200.9	183.6	195.9	?	?	151.3	157.9		?	166.2	184.6	167.8	172
PopD	$?$?	167	197.5	183.8	198.2		?	147	151.6		?	?	?		?
PopD	?	?	164.9	190	182.7	197.1	167.7	169.2	151.8	151.8		?	166.5	166.5	166.8	166.8
PopD	?	?	172.4	193.4	183.6	195.8		?	142.4	152		?	?	?	167.8	172
PopD	108.9	127.8	164.7	199.1	197.8	197.8		?	151.5	156		?	166.5	185	166.7	166.7
PopD	?	?	164.8	200.9	184	184		?	149.7	152		?	188.6	188.6	167.8	167.8
PopD	?	?	?	?	183.9	183.9		?	147.2	151.8		?	?	?	169.9	171.9
PopD	?	?	164.6	185.8	183.9	183.9	175.6	197.5	151.5	151.5		?	184.9	184.9	168.8	168.8
pop $=$																
PopE	?	?	?	?	?	?	?	?	146.9	151.6	144.2	146.5	?	?	?	?
PopE	?	?	159.3	165	?	?	?	,	?	?	?	?	?	?	167.4	171.6
Popt	$?$?	1/2.1	1/4.1	?	?	?	?	146.1	151.4		?	?	?	?	?
PopE	?	?	?	?	?	?	?	?	?	?	144.2	144.2	166.4	180.6	169.8	171.8
PopE	118.2	125.8		?	?	?	?	?	137.3	151.3		?	?	?	167.3	171.6
PopE	?	?	165.1	203.2	197.9	197.9	178.1	190	?	?		?	?	?	167.6	171.9
PopE	$?$?	?	?	?	?	?	?	146.7	146.7	?	?	?	?	?	?
PopE	?	?	193.2	200.7	183.4	183.4	.	?	128.8	128.8		?	?	?	167.4	169.6
PopE	103.3	118.2	199.5	205.2	184	198.2	?	?	?	?	144.3	144.3	?	?	167.7	169.8
Popt	?	?	190.2	190.2	198.3	200.3		?	?	?	?	?	?	?	$16 / .5$	1/1.8
PopE	$?$?	?	?	197.6	203.7		?	128.7	144.3		?	166.3	188.8	173.7	173.7
PopE	?	?	?	?	196.3	196.3		?	?	?	?	?	?	?	?	?
PopE	103.3	118.2	?	?	197.6	197.6		?	151.4	151.4		?	166.3	188.9	167.3	167.3
PopE	?	?	?	?	?	?	?	?	137.3	146.8		?	?	?	171.7	171.7
PopE	$?$?	?	?	?	?	?	?	?	?	144.2	144.2	?	?	?	?
PopE	?	?	?	?	?	?	?	?	?	?	?	?	?	?	169.8	169.8
Popt	?	?	185.1	200.8	183.5	$19 / .8$?	?	151.5	151.5		?	?	?	16.5	16.5
PopE	$?$?	?	?	?	?	?	?	?	?	144.2	144.2	?	?	?	?
PopE	?	?	187.7	189.6	195.6	197.7	?	?	137.4	151.5		?	?	?	167.4	167.4
PopE	$?$?	?	?	183.4	183.4	?	?	?	?		?	?	?	?	?
PopE	$?$?	?	?	183.4	183.4	?	?	?	?	?	?	?	?	?	?
PopE	?	?	?	?	?	?	?	?	?	?	142.1	144.2	?	?	?	?
PopE	?	?	178.7	184.5	184	198.3	186.6	190.3	?	?	?	?	?	?	?	?
PopE	?	?	?	?	183.4	183.4	?	?	137.3	155.8	?	?	?	?	?	?
PopE	106	118.1	189.6	210.2	?	?	?	,	137.5	137.5	144.2	146.4	?	?	?	?
PopE	?	?	?	?	?	?	?	?	137.4	147		?	?	?	171.8	173.9
PopE	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
PopE	103.5	122		?	197.8	199.8	?		$?$?	?	?	?	?	169.7	171.8
PopE	112.7	125.9		?	183.4	183.4	162	189.7	?	?	132	144.4	?	?	169.7	171.8
PopE	?	.	?	?	?	?	?	?	?	?	131.9	131.9	166.3	184.8	173.9	173.9
PopE	116.3	125.8	174.2	180		?	?	,	146.9	151.6	137.9	144.2	166.2	186.7		?
PopE	122	126		?	183.5	183.5	?	?	151.5	151.5		?	?	?	171.8	171.8
Popt	?	,	1/4.1	193.1	204.1	204.1	164.4	190.2	?	?	?	?	?	?	169.8	$1 / 1.9$
PopE	106	125.7		?	?	?	?	,	$?$?	131.9	144.2	184.7	184.7	167.5	169.8
PopE	?	?	?	?	?	?	?	?	?	?	?	?	166.3	188.7		?
PopE	116	125.5	?	?	?	?	?	,	137.3	137.3	131.9	146.6	?	?		?
PopE	?	?	180	193.3	194.1	204.2		?	?	?	?	?	?		169.8	171.9
PopE	$?$?	?	?	198.4	200.7	?	?	146.8	151.5	146.4	146.4	166.4	172.5	169.7	169.7
PopE	$?$?	165.1	170.9	184	198.2	164.6	186.5	.	?	144.2	144.2	184.6	186.7	167.8	170
Popt	$?$?	165	1/8.6	191.9	197.9		,	?	?	?		?	,	16.4	1/1.8
PopE	?	?	?	?	?	?	?	?	?	?	144.3	146.5		?	?	?
PopE	103.2	116.3	158.7	187.6	?	?	?	?	151.6	151.6	144.3	146.4	184.7	184.7	169.7	171.7
PopE	?	?	199	210.3	?	?	?	,	147.1	151.7	144.3	146.4	166.3	184.7	?	?
PopE	$?$?	?	?	?	?	?	?	?	?	142.1	144.3	?	?	?	?
PopE	?	?	186.2	190.2	193.7	197.7	161.7	176.2	146.8	151.4	?	?	?	?	169.6	171.6
PopE	106.3	126	181.9	197	197.7	197.7	167.9	183.9	151.5	155.8	144.3	144.3	?	,	167.5	169.7
PopE	?	?	?	,	?	?	?	?	146.9	149.2	?	?	?	?	?	?
PopE	102.6	125.9	?	?	183.5	203.8	160.1	160.1	137.4	151.5	?	+	166.5	188.3	169.7	171.8
PopE	125.8	125.8	181.8	189.6	183.4	183.4		?	151.5	155.9	135.9	146.5	166.4	190.4	167.4	171.7
PopE	?	?	165	165	183.8	198.1	162.5	164,5	?	?	?	.	?	?	169.9	169.9
PopE	116.3	118.2		?	183.4	197.7		? 14	142.1	144.4	?	,	184.7	186.7	168.6	168.6
PopE	?	?	183.8	210	198.2	204.3	158.4	170.1		?	132	144.3	184.7	184.7	167.9	170.1
PopE	?	?	184.3	197.5	196	198		?	.	?	?	.	?	?	167.5	167.5
PopE	?	?	178.8	203.5	184	198.3		?	149.3	151.6	?	?	?	?	167.6	173.9
PopE	?	?		?	197.7	197.7	189.7	189.7	144.5	146.8		$?$?	?	167.5	169.7

Pope 106.2125 .9174 .3178 .2197 .7197 .7157 .7169 .6151 .5158 .1 ? ? $\quad 166.6186 .1166 .6168 .8$ PopE 118.1 120 ? ? ? ? ? ? $\quad 147$? 147 132146.4166 .2188 .8171 .8171 .8 POPE 121.9 125.8178 .2189 .6 ? ? ? ? $\quad 147151.7144 .3144 .3184 .8184 .8167 .7171 .9$

 PODE ? ? ? ? ? ? ? ? ? ? ? ? ? ? 169.7169 .7 PODE $118.2125 .8185 .8187 .6183 .3183 .3157 .6 \quad 162146.8146 .8$? ? $\quad 166.3184 .9170 .7170 .7$

 PopE 118.3127 .8 ? ? $\quad 183.4197 .7$? ? $\quad 146.8146 .8144 .3146 .5166 .3188 .9166 .4170 .7$ POPE ? ? $\quad 186.4186 .4198 .3$ 200.3 190.3190 .3144 .5151 .5144 .3146 .4166 .1188 .7 ? ? $\begin{array}{llllllllllllllllll}\text { PopE } & 116.3 & 127.8 & \text { ? } & ? & ? & ? & ? & ? & 144.6 & 153.9 & 144.2 & 146.5 & 172.4 & 184.7 & \text { ? } & ? \\ \text { POpE ? } & 172.1 & 211.9 & ? & ? & ? & ? & 137.3 & 137.3 & 146.3 & 146.3 & 166 & 184.6 & 169.6 & 169.6\end{array}$ PopE 103.2 125.7 187.6 198.9? ? ? ? ? $\quad 128.8$ 144.5 131.8 146.5 166.3186 .7169 .7169 .7 PODE 105.9 125.7? ? ? ? ? ? \quad ? \quad ? 7.3146 .9144 .3144 .3166 .1166 .1169 .7173 .8 PODE ? ? $\quad 193.3212 .1183 .5183 .5 \quad 162185.3$? ? $\quad 135.8144 .3166 .6186 .4167 .5171 .7$

 $\begin{array}{llllllllllllllllll}\text { Popt } & 125.9 & 125.9 & 181.5 & 193.2 & 183.4 & 183.4 & 163.9 & 163.9 & 146.8 & 151.4 \text { ? } & \text { ? } & 184 . / & 186.8 \text { ? } & \text { ? } \\ \text { PopE } & 106.2 & 125.8 & 191.4 & 198.9 & 197.7 & 199.7 & 169.8 & 185.3 & 146.8 & 155.9 & 144.3 & 144.3 & 166.6 & 166.6 & 171.7 & 171.7\end{array}$ PODE 105.9121 .8 ? ? ? ? ? ? 137.4146 .8144 .3146 .5 ? ? 169.8171 .9 PODE ? ? ? ? \quad ? 183.7 200 ? ? ? ? $\quad 144.2144 .2$ 167.5 184.9169 .9171 .9 | PODE | 122 | 129.8 | 164.6 | 185.8 ? | ? | 163.9 | 189.6 | 146.8 | 151.5 | 144.3 | 146.5 | 166.3 | 176.6 ? | ? | | |
| :--- | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PODE | 116.1 | 125.7 | 186.2 | 190 | 196 | 200.1 | 164.5 | 164.5 | $?$ | $?$ | 144.3 | 144.3 | $?$ | $?$ | 167.4 | 169.5 | PopE 105.9125 .6181 .7 210.1? ? ? ? $? ~ 137.4146 .8144 .3146 .4 \quad 166$

 POpE 117.9125 .6 ? ? ? ? ? ? ? $\quad 146.7155 .8144 .2144 .2166 .2184 .6171 .8171 .8$ PODE 106.3116 .5182197 .1183 .6197 .8164 .1175 .8146 .8153 .7 ? ? ? ? ? 168.8168 .8

 PopE 102.2125 .7172 .3181 .8 ? ? ? ? $\quad 144.5153 .7137 .9144 .2166 .2166 .2166 .5166 .5$ $\begin{array}{llllllllllllllllllll}\text { Popt ? ? } & 1 / 6.1 & 200.8 & 195 . / & 195 . / & 163.8 & 185.8 & 146.8 & 151.4 & 13 / .8 & 144.3 & 166.4 & 186.1 & 16 / .3 & 16 / .3\end{array}$ POPE 103.5127 .7187 .7210 .2195 .6195 .6177 .7190 .6144 .4151 .5137 .8144 .2 ? ? $\quad 169.8171 .8$ PopE $\quad 109118.3164 .6174 .3183 .4199 .7185 .8185 .8146 .8158 .1$? ? $\quad 166.6166 .6171 .7173 .9$ PODE ? ? $\quad 176.2187 .8$? ? ? ? $\quad 151.6153 .8131 .9144 .2166 .2184 .7171 .9 \quad 174$
 POpE 103.5118 .2 ? ? $\quad 183.5195 .8$ 164 187151.5151 .5 ? ? ? ? PopE 122125.7164 .6164 .6 ? ? ? ? $\quad 147151.6144 .3144 .3166 .2180 .7166 .6172 .9$ POPE $103.5127 .9180 .1180 .1195 .8201 .8 \quad 162185.8144 .4146 .9143 .5143 .5$? ? $\quad 167.4167 .4$
 PODE 103.3 118.2 ? ? ? ? ? ? 147 147 144.2144 .2172 .3172 .3 ? ? $\begin{array}{llllllllllllllllll}\text { PODE } & 125.8 & 125.8 & 181.9 & 187.7 & 183.4 & 183.4 & 163.9 & 185.9 & 151.5 & 151.5 & 145.5 & 145.5 & 169.6 & 169.6 & ? & ? \\ \text { PopE ? ? ? ? } & ? & 183.6 & 183.6 & ? & ? & ? & ? & ? & & 166.3 & 188.9 & 166.9 & 169.1\end{array}$
 PODE ? ? ? ? $\quad 197.7$ 197.7? ? $\quad 146.8155 .9135 .8144 .2166 .3176 .6166 .4170 .8$

PopE	106	125.8	?	?		?					146.4	146.4	166.2	184.7		
PopE	125.7	129.5		?		?			144.5	146.8	137.8	146.4	166.2	166.2	167.6	1.9
PopE	102.3	125.7	174.1	176		?			128.8	146.8	144.2	144.2	166.2	188.7	171.8	71.8
PopE	106	127.6				?			146.8	158	144.3	146.4	166.2	188.7	169.8	69.8
PopE	118.2	125.8	170.6	189.6		?	.		147	147	144.2	144.2	166.3	184.8	169.8	71.9
Popt	102.5	122	18/.5	202.6		!	$16 / .8$	183.2	131.3	146.8			166.4	184.9	168.6	168.6
PopE	125.8	125.8		?	199.7	203.8	185.8	185.8	128.7	151.3				?	166.3	170.6
PopE	?	?		.		?	?	?	146.7	151.4	144.2	144.		?	167.5	71.9
PopE	125.9	129.	185.7	200.8	183.5	197.7	198.1	199.9	151.5	155.8	137.9	146.6		?	171.8	171.8
PopE	?	?	192	195.7	184.1	198.2			153.7	160.2	132	144.3	184.6	188.7	167.6	169.
PopE	?	?	178.5	178.5	198.1	198.1	184.4	190.2		?		?		?		
PopE	?	?	191.4	199	179.4	199.7			137.4	151.5		?	166.6	166.6		?
Popt	103.1	125.5	185.6	200.1		?	?		151.5	155.9	144.3	146.4	184.1	188.6	169.6	1/1./
PopE	109.1	125.7	178.2	189.6		?	?	?	146.9	153.9	144.3	146.5	172.4	184.7	167.5	171.7
PopE	?	?	?	?	?	,	?	?	?	?	137.9	144.2	184.8	184.8	167.6	169.7
PopE	?		212.1	212.1	198.2	198.2	183.8	190.2	151.7	153.9	131.9	144.2	184.7	188.8	167.6	167.6
PopE	?	? ?		?	183	201		?	146	146		?	?	?	167.	169.7

8.4. Genepop results: HWE probability test

Results from GENEPOP

Tue Jan 22 08:38:53 WST 2013

Genepop version 4.2: Hardy-Weinberg test
File: 083853 (Bufobufo)
Number of populations detected: 5
Number of loci detected: 8

Estimation of exact P-Values by the Markov chain method.
Markov chain parameters for all tests:
Dememorization: 100
Batches: 1000
Iterations per batch: 1000
Hardy Weinberg: Probability test

==
\quad Results by
Results by locus
===

Locus "Bbufu11"

All (Fisher's method):
Chi2: 13.7589
Df : 10.0000
Prob: 0.1843
Locus "Bbufu49"
Fis estimates
POP P-val S.E. W\&C R\&H Steps
 B778 $0.00000 .0000 \quad 0.14730 .139960211$ switches
$\begin{array}{llllll}\text { C513m } & 0.0246 & 0.0036 & 0.0742 & 0.0674 & 31323\end{array}$ switches
D460m 0.00590 .00170 .06420 .058637507 switches

All (Fisher's method):
Chi2: Infinity
Df : 10.0000
Prob: High. sign.
Locus "Bbufu62"
Fis estimates
POP P-val S.E. W\&C R\&H Steps
A571m $0.00890 .0016-0.1035-0.026959480$ switches B778 0.58260 .00990 .10350 .023846404 switches C513m $0.01400 .0018 \quad 0.01770 .121159381$ switches D460m $0.00700 .0010 \quad 0.19020 .120699170$ switches E503 $0.00540 .0011 \quad 0.13330 .054466528$ switches

All (Fisher's method):
Chi2: 39.4193
Df : 10.0000
Prob: 0.0000

Locus "Bbufu65"
Fis estimates

All (Fisher's method):
Chi2: 54.8446
Df : 10.0000
Prob: 0.0000
Locus "Bbufu24"

Fis estimates					
POP	P-val		W\&C	R\&H	Step
A571m	0.07000 .00470 .09640 .050793121 switches				
B778	0.10970 .00550 .00460 .0010113603 switches				
C513m	0.88590 .00380 .06160 .0556138571 switches				
D460m	0.48430 .01040 .06940 .051654426 switches				
E503	0.37840 .00930 .02450 .024679160 switches				

All (Fisher's method):
Chi2: 13.3736
Df : 10.0000
Prob: 0.2035
Locus "Bbufu46"

Fis estimates

POP	P-val S.E. W\&C R\&H	Steps
A571m	0.30310 .00750 .01740 .0039103184 switches	
B778	0.10090 .00450 .00240 .0729	9101042 switches
C513m	0.26720 .00770 .05970 .036	6246951 switches
D460m	0.18890 .00490 .13040 .0	9867303 switches
E503	0.11430 .00530 .10780 .1	59353

All (Fisher's method):
Chi2: 17.2853
Df : 10.0000
Prob: 0.0683
Locus "Bbufu54"
Fis estimates
POP P-val S.E. W\&C R\&H Steps
A571m 0.06380 .00330 .04010 .0452192958 switches B778 $0.92490 .0029-0.0794-0.0267163216$ switches C513m $0.21970 .0060 \quad 0.04780 .0684109653$ switches D460m $0.06720 .0033 \quad 0.0780 \quad 0.0624113523$ switches E503 $0.37860 .0081-0.0652-0.018495433$ switches

All (Fisher's method):
Chi2: 16.0333
Df : 10.0000
Prob: 0.0987

Locus "Bbufu15"
Fis estimates
POP P-val S.E. W\&C R\&H Steps
A571m $\quad 0.00000 .0000 \quad 0.1778 \quad 0.1476148608$ switches B778 $0.00840 .0010 \quad 0.16250 .0633156794$ switches C513m 0.34660 .00370 .15430 .0751269986 switches D460m 0.04890 .00230 .11040 .1410151964 switches E503 0.01740 .00070 .10940 .1470601742 switches

All (Fisher's method):
Chi2: 46.2858
Df : 10.0000
Prob : 0.0000

Results by population

Pop : A571m
Fis estimates
locus P-val S.E. W\&C R\&H Steps

Bbufu11	0.0206	0.0024	-0.0406	0.0073	147808
Bbwitches					
Bbufu49	0.0181	0.0026	0.0108	0.0142	78795 switches
Bbufu62	0.0089	0.0016	-0.1035	-0.0269	59480 switches
Bbufu65	0.0006	0.0002	0.1308	0.1069	99155 switches
Bbufu24	0.0700	0.0047	0.0964	0.0507	93121 switches
Bbufu46	0.3031	0.0075	0.0174	0.0039	103184 switches
Bbufu54	0.0638	0.0033	0.0401	0.0452	192958 switches
Bbufu15	0.0000	0.0000	0.1778	0.1476	148608 switches

All (Fisher's method):

Chi2: 73.8355
Df : 16.0000
Prob : 0.0000
Pop : B778
Fis estimates
locus P-val S.E. W\&C R\&H Steps
Bbufu11 $0.64700 .0076 \quad 0.0121-0.0137161388$ switches Bbufu49 0.00000 .00000 .14730 .139960211 switches $\begin{array}{lllll}\text { Bbufu62 } 0.58260 .0099 & 0.1035 & 0.0238 & 46404 & \text { switches }\end{array}$ $\begin{array}{lllll}B b u f u 65 & 0.0398 & 0.0044 & 0.0745 & 0.098459875 \\ \text { switches }\end{array}$ Bbufu24 0.10970 .00550 .00460 .0010113603 switches Bbufu46 0.10090 .00450 .00240 .0729101042 switches Bbufu54 0.9249 0.0029-0.0794-0.0267 163216 switches Bbufu15 0.00840 .00100 .16250 .0633156794 switches

All (Fisher's method):
Chi2: Infinity
Df : 16.0000
Prob : High. sign.
Pop : C513m
Fis estimates
locus P-val S.E. W\&C R\&H Steps
Bbufu11 0.3234 0.0092-0.0047-0.0003 54273 switches $\begin{array}{lllll}\text { Bbufu49 } & 0.02460 .0036 & 0.0742 & 0.0674 & 31323 \text { switches }\end{array}$ $\begin{array}{llll}\text { Bbufu62 } 0.0140 & 0.0018 & 0.0177 & 0.1211 \\ 59381 & \text { switches }\end{array}$ $\begin{array}{llllll}B b u f u 65 & 0.09120 .0064 & 0.0630 & 0.0339 & 37889 & \text { switches }\end{array}$ Bbufu24 0.88590 .00380 .06160 .0556138571 switches $\begin{array}{llll}\text { Bbufu46 } 0.26720 .0077 & 0.0597 & 0.036246951 \text { switches }\end{array}$ $\begin{array}{lllll}B b u f u 54 & 0.2197 & 0.0060 & 0.0478 & 0.0684109653 \text { switches }\end{array}$ Bbufu15 0.34660 .00370 .15430 .0751269986 switches

All (Fisher's method):
Chi2: 31.0253
Df : 16.0000
Prob: 0.0134
Pop : D460m
Fis estimates
locus P-val S.E. W\&C R\&H Steps

| Bbufu11 | 0.4816 | 0.0079 | -0.1110 | -0.0670 | 87238 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| switches | | | | | |
| Bbufu49 | 0.0059 | 0.0017 | 0.0642 | 0.0586 | 37507 switches |
| Bbufu62 | 0.0070 | 0.0010 | 0.1902 | 0.1206 | 99170 switches |
| Bbufu65 | 0.0069 | 0.0015 | -0.0093 | -0.0008 | 34272 switches |
| Bbufu24 | 0.4843 | 0.0104 | 0.0694 | 0.0516 | 54426 switches |
| Bbufu46 | 0.1889 | 0.0049 | 0.1304 | 0.0198 | 67303 switches |
| Bbufu54 | 0.0672 | 0.0033 | 0.0780 | 0.0624 | 113523 switches |
| Bbufu15 | 0.0489 | 0.0023 | 0.1104 | 0.1410 | 151964 switches |

All (Fisher's method):
Chi2: 47.8134
Df : 16.0000
Prob: 0.0001
Pop : E503
Fis estimates
locus P-val S.E. W\&C R\&H Steps
Bbufu11 $0.49640 .0074-0.1021-0.0677153988$ switches Bbufu49 0.10570 .00720 .10140 .085640866 switches $\begin{array}{llll}\text { Bbufu62 } 0.00540 .0011 & 0.1333 & 0.0544 & 66528 \text { switches }\end{array}$ Bbufu65 0.00010 .00010 .17160 .150535732 switches $\begin{array}{lllll}\text { Bbufu24 } & 0.37840 .00930 .02450 .024679160 \text { switches }\end{array}$ $\begin{array}{lllll}\text { Bbufu46 } 0.11430 .00530 .1078 & 0.156959353 \text { switches }\end{array}$ Bbufu54 0.3786 0.0081-0.0652-0.0184 95433 switches Bbufu15 0.01740 .00070 .10940 .1470601742 switches

All (Fisher's method):
Chi2: 51.3871
Df : 16.0000
Prob: 0.0000
===10=1
All locus, all populations

All (Fisher's method) :
Chi2: Infinity
Df : 78.0000
Prob: High. sign.
Normal ending

8.5. Tables of allelic frequencies for each

locus:

Locus:
Bbufu11

Locus:
Bbufu49

Pop Alleles

Genes
$\begin{array}{llllllllllllllllllllll}160 & 166 & 168 & 172 & 174 & 176 & 178 & 180 & 182 & 184 & 186 & 188 & 190 & 192 & 194 & 196 & 198 & 200 & 202 & 204 & 206 & 208\end{array}$ 216
A571m $\quad 0.0150 .0530 .0180 .0240 .0060 .0360 .0270 .0530 .0680 .0620 .0240 .0590 .1540 .0740 .0590 .0650 .0300 .0240 .02$ B778 0.0070 .1130 .0070 .0330 .0110 .0360 .0220 .0470 .0620 .0690 .0290 .0770 .1060 .0910 .0220 .0400 .0220 .0290 .026 C513m $\quad 0.0190 .0740 .0310 .0560 .0060 .0490 .0310 .0310 .0620 .0310 .0250 .0560 .1170 .0860 .0620 .0800 .0060 .0310 .03$ D460m $\quad 0.0050 .1300 .0350 .0450 .0050 .0500 .0150 .0500 .0550 .0200 .0100 .0850 .0900 .0650 .0800 .0600 .0100 .0150 .04$ E503 0.0170 .0980 .0060 .0400 .0170 .0460 .0290 .0520 .0400 .0630 .0400 .1150 .0800 .0690 .0170 .0570 .0170 .0170 .040

Locus:
Bbufu62

Pop Alleles

Genes
$\begin{array}{llllllllllll}163 & 179 & 183 & 185 & 187 & 189 & 191 & 193 & 195 & 197 & 199 & 201\end{array}$
203
A571m $\quad 0.0040 .0090 .3500 .0020 .0040 .0020 .0110 .0150 .1040 .3220 .1130 .0130 .050460$
B778 0.0000 .0100 .3470 .0050 .0100 .0050 .0050 .0200 .1530 .2960 .0660 .0100 .071196
C513m $\quad 0.0000 .0000 .3680 .0280 .0280 .0090 .0090 .0000 .1040 .3210 .0750 .0280 .028106$
D460m $\quad 0.0000 .0000 .3620 .0370 .0050 .0000 .0050 .0050 .1120 .2610 .1010 .0370 .074188$ E503 0.0050 .0050 .3960 .0000 .0000 .0000 .0100 .0210 .0990 .3280 .0780 .0100 .047192

Locus:
Bbufu65

Pop Alleles

Genes
$\begin{array}{llllllllllllllllllllll}158 & 160 & 162 & 164 & 166 & 168 & 170 & 172 & 174 & 176 & 178 & 180 & 182 & 184 & 186 & 188 & 190 & 192 & 194 & 196 & 198 & 200\end{array}$ 202
A571m $\quad 0.0350 .0680 .0680 .1720 .0130 .0390 .0720 .0170 .0070 .0070 .0660 .0170 .0110 .0660 .0740 .0440 .0980 .0090 .04$ B778 0.0330 .0740 .0960 .1630 .0190 .0670 .0670 .0190 .0000 .0110 .0560 .0110 .0190 .0810 .0890 .0070 .1070 .0110 .026 C513m $\quad 0.0670 .0900 .0600 .1570 .0150 .0150 .0450 .0220 .0070 .0070 .0670 .0000 .0450 .0750 .0670 .0450 .1340 .0070 .05$ D460m $\quad 0.0000 .1320 .0530 .0530 .0530 .0790 .0790 .0000 .0000 .0790 .0530 .0530 .0000 .0000 .0790 .0000 .1320 .0000 .07$ E503 0.0420 .0520 .0940 .1460 .0210 .0520 .0310 .0000 .0000 .0310 .0420 .0000 .0100 .0520 .1670 .0420 .1770 .0000 .021

Locus:
Bbufu24

Pop Alleles

Genes
$\begin{array}{llllllllllll}128 & 136 & 138 & 140 & 142 & 144 & 146 & 148 & 150 & 152 & 154 & 156\end{array}$
158
A571m $\quad 0.0030 .0520 .0380 .0030 .0490 .2760 .0000 .4040 .0840 .0290 .0410 .0150 .006344$
B778 0.0200 .1510 .0060 .0080 .0390 .2040 .0000 .3600 .0890 .0730 .0360 .0110 .003358
C513m $\quad 0.0000 .0960 .0000 .0150 .0710 .2930 .0000 .3940 .0610 .0400 .0200 .0100 .000198$
D460m 0.0090 .1180 .0180 .0090 .0590 .2590 .0090 .3550 .0950 .0450 .0140 .0050 .005220
E503 0.0370 .1320 .0000 .0040 .0590 .2900 .0070 .3380 .0400 .0510 .0330 .0040 .004272

Locus:
Bbufu46
Pop Alleles
Genes
$\begin{array}{llllllllll}132 & 136 & 138 & 140 & 142 & 144 & 146 & 148 & 152 & 154\end{array}$
A571m $\quad 0.1440 .0150 .0900 .0150 .0060 .5210 .2020 .0040 .0000 .002466$
B778 0.1440 .0110 .0520 .0140 .0090 .5830 .1640 .0110 .0000 .011348
C513m $\quad 0.1610 .0160 .0680 .0050 .0000 .5830 .1510 .0050 .0050 .005192$
D460m $\quad 0.0930 .0090 .0650 .0090 .0000 .5560 .2590 .0090 .0000 .000108$
E503 0.089 0.018 0.067 0.004 0.013 0.576 0.2190 .0000 .0090 .004224

Locus:
Bbufu54
Pop Alleles
Genes
$\begin{array}{llllllllll}166 & 168 & 172 & 174 & 176 & 180 & 184 & 186 & 188 & 190\end{array}$
A571m $\quad 0.3920 .0040 .0480 .0200 .0280 .0160 .2730 .0720 .1290 .018502$
B778 0.3450 .0000 .0540 .0210 .0240 .0060 .3210 .0480 .1700 .012336
C513m $\quad 0.3560 .0000 .0410 .0050 .0310 .0150 .2890 .0360 .2060 .021194$
D460m $\quad 0.4530 .0000 .0420 .0140 .0280 .0140 .2520 .0470 .1400 .009214$
E503 0.4260 .0050 .0530 .0210 .0160 .0110 .2370 .0950 .1050 .032190
Locus:
Bbufu15

8.6. Allele frequency/null alleles. CERVUS

Allele	freq		5,	2013,	at	0.46111	pm					
****			$* * * *$									
Locus	k	N		HObs	HExp	PIC	NE-1P	NE-2P	NE-PP	NE-I	NE-SI	HW
F(Null)												
Bbufu11	14	609	0.885	0.854	0.838	0.452	0.289	0.121	0.037	0.333	NS	-0.0191
Bbufu49	25	574	0.871	0.943	0.939	0.209	0.117	0.024	0.006	0.281	NS	0.0389
Bbufu62	13	571	0.727	0.75	0.713	0.641	0.463	0.272	0.099	0.4	NS	0.0147
Bbufu65	23	498	0.825	0.923	0.917	0.271	0.157	0.04	0.011	0.292	NS	0.0553
Bbufu24	13	696	0.731	0.771	0.741	0.601	0.423	0.229	0.082	0.385	NS	0.0257
Bbufu46	10	669	0.601	0.629	0.589	0.772	0.597	0.405	0.178	0.48	NS	0.0186
Bbufu54	10	718	0.737	0.742	0.704	0.652	0.475	0.283	0.104	0.406	NS	0.001
Bbufu15	7	729	0.595	0.702	0.642	0.73	0.567	0.401	0.149	0.436	$* * *$	0.0817

	A003m	A007m	A009m	A010f	A011m	A012m	A015f	A016m	A017f	A018m	A020f	A021m	A022f
A003m	r												
A007m	-0.0623												
A009m	-0.0816	0.144											
A010f	-0.0305	0.0014	-0.1152										
A011m	0.104	-0.0192	0.1102	-0.0763									
A012m	-0.1015	0.451	0.2539	0.3446	-0.2161								
A015f	-0.1356	-0.0976	-0.2267	-0.0815	-0.1878	-0.0183							
A016m	0.0137	0.3615	-0.2934	0.0611	-0.4493	1	-0.5836						
A017f	0.0908	-0.4438	-0.1078	-0.2369	0.0379	-0.3299	-0.2508	0.217					
A018m	0.0251	-0.1434	0.0246	-0.0914	-0.1108	-0.314	0.0909	-0.4017	0.3442				
A020f	-0.0796	0.1712	-0.0053	-0.1155	-0.047	0.1669	-0.1225	0.2571	0.2909	-0.0599			
A021m	0.0336	-0.2027	-0.1147	0.089	0.1526	-0.3481	-0.3195	-0.2266	0.3497	0.0754	-0.0354		
A022f	0.1057	0.1021	-0.0649	0.0897	-0.1118	0.1466	-0.3096	0.4188	-0.0957	-0.0299	-0.1573	0.0747	
A023m	-0.1595	-0.0809	-0.1748	0.119	-0.1389	-0.0592	0.2177	-0.2069	0.1982	0.0187	0.1574	0.0289	-0.0715
A028f	0.226	-0.0049	0.1437	-0.2772	0.0905	-0.16	-0.0815	0.0821	0.3282	-0.0986	0.1689	0.1128	-0.0197
A029m	0.1638	0.129	0.2069	-0.3265	0.0534	-0.1397	-0.0593	-0.338	-0.059	-0.0429	-0.0718	-0.0761	-0.1075
A034f	-0.0444	0.0224	-0.0247	0.12	-0.1083	0.5132	-0.1722	0.117	-0.3543	-0.0932	-0.3257	-0.1479	0.1245
A035m	0.0834	0.1575	0.2826	-0.1295	-0.1441	0.2084	0.0072	0.0883	-0.1291	0.0563	0.03	-0.0656	-0.0897
A038m	-0.0098	0.0596	0.2902	-0.0408	0.2315	0.1028	-0.1441	0.5389	0.3631	0.2487	0.0008	0.1965	0.1118
A039m	0.1715	0.0851	-0.1433	-0.0031	0.1504	0.1556	0.1474	-0.2721	-0.1305	-0.1229	0.0305	0.0672	-0.0302
A040m	-0.0603	0.18	-0.1379	-0.0295	-0.0264	0.0765	-0.1005	-0.1562	-0.0905	-0.0838	0.1059	0.238	-0.0472
A053m	-0.3885	-0.4908	0.2672	0.1458	0.0622	-0.3958	0.2902	-0.6724	x	-0.2623	-0.5002	0.3087	-0.4908
A056m	0.0963	-0.0897	-0.2448	0.0125	-0.0725	-0.0088	-0.167	0.6268	0.3026	0.0699	-0.0324	0.2042	0.1468
A057m	0.2247	0.1202	0.1386	-0.107	0.1866	0.152	-0.205	0.2028	-0.1032	-0.1438	0.2885	-0.0352	0.2885
A058m	-0.0584	-0.0878	-0.3039	-0.0488	-0.2294	0.0541	-0.0787	0.4434	0.4391	-0.1659	0.0949	0.0825	-0.0022
A061m	-0.0667	-0.2642	-0.1512	-0.0198	0.2832	-0.406	-0.3056	-0.0549	0.4642	-0.0461	0.1756	0.3406	-0.047
A062m	-0.0237	-0.263	-0.2937	0.0172	0.0255	-0.3763	0.0466	-0.2542	0.2351	-0.0383	0.0725	0.2255	-0.1083
A063m	0.1275	-0.2549	-0.0095	0.1167	0.1787	-0.325	-0.2688	-0.0002	0.4909	0.0251	0.1517	0.3787	0.0243
A067f	-0.1286	0.4864	0.0286	-0.1119	-0.182	0.0823	-0.1688	0.5832	-0.3572	0.0987	-0.176	-0.1936	0.2

