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ABSTRACT 

This thesis addresses two areas of research relating to limited overs cricket using 

statistical analysis. First, we investigate the issue of resetting targets in interrupted 

matches and propose an alternative, new method to this end. Second, we address the 

problem of in-play forecasting match outcome.   

In regards investigating methods for resetting targets, we provide a thorough 

overview of methods previously used. These methods also include the official ICC 

method, Duckworth-Lewis approach, and its alternatives, including the VJD method of 

Jayadevan (2002). The highly topical debate on which is the best method available, is 

addressed. Based on statistical analysis, it is shown that the Duckworth-Lewis method is 

the most viable solution when compared to the currently available alternatives. In the 

course of our analysis, we develop an estimation method for the Duckworth-Lewis 

professional edition, a previously unpublished but essential component of the method. 

Further, we develop a new improved version of the Duckworth-Lewis method which is 

more flexible than the original Duckworth-Lewis method for resetting targets. Our key 

modification is to propose a new alternative model for the mean remaining runs at a 

given stage of the innings. We show that the newly proposed model provides a superior 

fit to data and has more intuitive properties than the current Duckworth-Lewis method. 

Regarding the in-play forecasting match outcome in cricket, we present a model that 

can be used to estimate match-win probabilities during any stage of a One-Day 

International match. Our model is a dynamic logistic regression model in that the 

parameters are allowed to evolve smoothly as the innings progresses. Further, the model 

utilises our modified Duckworth-Lewis model in measuring the wicket resources 

available to a team at any moment during the game. The covariates that we use in the 

model are categorized as either pre-match or in-play. From our dynamic forecasting 

model, we examine the overall and relative importance of the covariates. We assess how 

the effects of these covariates vary with respect to the progression of the innings. Further, 

some cross-validation techniques are used for the model selection and to assess in-play 

forecasting accuracies. Finally, we compare our „in-play‟ forecasting model with the 

betting market. The results show that our newly proposed model, for in-play probability 

forecasts, is performing well.  
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CHAPTER 1 INTRODUCTION  

1.1 Aims and Objectives 

The purpose of this research project is to use statistical analysis to shed light on 

various issues related to limited overs cricket. First, we aim to develop a statistical model 

that can be used by the cricketing authorities, for example, the international cricket 

council (ICC), when resetting targets in interrupted cricket matches, quantitatively and 

objectively fair. Second, we aim to develop models that can be used to forecast match 

outcomes while the game is in progress. Such a model could be of use to bookmakers 

and punters. Team coaches and captains can also use the model to assess the merits of 

certain strategies of play. Lastly, cricket analysts and media can use the model in post 

match analysis. We set the following objectives to achieve our aims             

 Review the literature on the problem of interruptions and forecasting in cricket. 

 Examine some commonly used methods for dealing with cricket interruptions.  

 To propose an estimation method for the latest version of the Duckworth-Lewis 

(D/L) method, the approach currently adopted by the ICC.  

 To compare the existing Duckworth-Lewis method with alternative procedures 

proposed in the literature.   

 To develop a new method (model) for resetting targets in interrupted limited 

overs matches, that provides a superior fit to data and has more intuitive 

properties than the current D/L method. 

 To develop a simple in-play forecasting model that is dynamic and takes account 

of the stage of the innings. 

 To identify factors that is indicators of match outcome during any stage of the 

game, and to asses and analyse how the effects of these factors vary with respect 

to as innings progress.    
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1.2 History of the Limited Overs International (LOI) cricket 

The history of cricket dates back to the sixteenth century in England. However, at 

international level, matches (in the form of test cricket) started around 1877. Cricket‟s 

governing body, the International Cricket Council (ICC), has sought to make cricket 

more popular. In order to achieve, one strategy the ICC adopted was to introduce limited 

overs cricket (a shorter format of the game) with the intention of making cricket a faster, 

and more exciting spectacle that might attract a new audience. The limited overs cricket 

was introduced in the late 1960's, however at the international level the first game of such 

format were played in 1971. Presently, two types of limited overs international (LOI) 

matches are played. These are Twenty-20 International (T20I) and One-Day International 

(ODI).    

The idea of limited overs cricket was not appreciated in the early decades after its 

introduction and therefore only eighty-two international matches were played until 1980. 

However, in the following decade, the game had achieved some popularity and five 

hundred and thirteen matches were played during 1980-1990. As of now, at the 

international level, more than three thousand and six hundred LOIs (One-Day and 

Twenty-20 International) have been played among the ICC recognized teams 

(www.Espncricinfo.com).   

The International Cricket Council is responsible for organizing cricket matches at the 

international level. Currently, the ICC full members are Australia, Bangladesh, England, 

India, New Zealand, Pakistan, South Africa, Sri Lanka, West Indies, and Zimbabwe.  The 

most important tournament in limited overs cricket organised by the ICC, is the world 

cup. The world cup for One-day International is scheduled once every four years, whilst 

the Twenty-20 International  world cup is held once every two years. Presently, India is 

the ODI 2011 world champion, whereas West Indies is the T20I 2012 world cup winner. 

Previously, twice West Indies, once India, four times Australia, once Pakistan, and once 

Sri Lanka were the world champions for the ODI cricket. For T20I, India, Pakistan, and 

England, have each been a world champion once.   

1.3 The Game of cricket 

Cricket is a hugely popular sport around the world. An estimated three billion people 

are cricket fans, a figure that is larger only for soccer, which has an estimated 3.5 billion 
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fans (www.digalist.com). Broadly speaking, at international level cricket can be played 

professionally in two formats: limited overs and non-limited overs games, also known as 

time limited cricket. A non-limited over matches at the professional level typically last 

for several days. For example, in the case of international games between major cricket 

playing countries, a „test match‟ lasts for five days. Limited overs matches on the other 

hand, are designed to start and finish on the same day. For example, ODI matches are 

limited to fifty overs per side, whilst T20I matches are limited to twenty overs per side. 

The twenty overs a side cricket is the shortest format of international cricket, with 

matches typically lasting for three hours, bringing the game closer to the time span of 

other popular spectator sports, for example football. 

Cricket is played between two teams, each of eleven players. Each team has one 

captain that leads the remaining ten players. Each team bats in succession, known as an 

innings. A LOI match consists of two innings. However, a time limited match may have 

several innings, for example, broadly speaking a test cricket match consists of four 

innings. Regardless of the format, the game starts with tossing a coin between the two 

captains, a winner of which decides the choice of to bat or to field first. 

The game is played on a round or oval-shaped grassy field known as cricket ground. 

The borderline of the ground is known as a boundary. The central part of the ground is 

known as pitch. The pitch is a rectangular 22 yards long clay strip with stumps at each 

end. The stump consists of three standing stakes that are usually made of wood. On top 

of the stumps are two bails- wooden crosspieces. Each set of three stumps along with the 

two bails, are known as the wicket. The Pitch should be about 55m from one boundary 

square of the pitch. Inside the pitch is marked with lines at 1.22m from each wicket, 

which are known as the creases. Figure 1.1 describes a wicket (right panel) and a 

standard pitch (left panel) of cricket ground.  

Each player of the fielding team takes a location on the ground. One player always 

takes position as a wicket keeper (behind the wicket of the batsman at the striker's end of 

the pitch), and one must be selected as a bowler. The remaining nine players take 

different positions. The team captain is responsible for assigning fielding positions to the 

players. Figure 1.2 shows a typical set of players‟ positions on the cricket ground.  
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Figure 1.1 The images of the ICC's standard pitch (left panel), and a wicket that stake on 

each of the pitch (right panel) 

 

 

Figure 1.2 A cricket ground show the players and umpires’ positions for right handed 

batsman at the striker end. Note that the mirror image of this figure will show the fielding 

positions for left hand batsman. 

 

Two players from the batting team, known as batsmen, play in partnership to score 

runs against the bowling of the fielding side. The fielding side aims to restrict runs scored 

and to get wickets in one of the ways described in the rules of cricket (details are 

available on http://icc-cricket.yahoo.net/rules_and_regulations.php). Bowled, caught off 

the bat, leg before wicket (lbw), stumped by the wicketkeeper, and run-out are the 
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common ways for a batsman to be 'out'. When a batsman is „out‟, another player takes his 

place from the batting team. 

From the fielding side a bowler bowls an “over”- of six over-arm deliveries. No 

bowler can bowl two overs in succession. The maximum number of overs a bowler is 

allowed to bowl depends upon the format of the game. For example, a bowler can  bowl 

a maximum of ten overs in a one-day international (ODI) , whilst a maximum of four 

overs can be bowled in T20I cricket. The fielding captain is responsible for appointing 

bowlers to bowl. Lastly, overs are delivered alternately from each end of the pitch.  

Score is counted in the form of “runs”. Runs can be scored by the batting team in 

different ways. For example, runs are awarded as a result of the number of times the 

batsmen run from end to end of the pitch. Broadly speaking, the batting team obtains 

runs by hitting the bowler‟s ball with the bat; a hit outside the boundary gives the batting 

team four runs if the ball touches the ground before crossing the boundary, or otherwise 

the batting team is awarded six runs.  

At the international level, a match consists of one or two innings by each side. In test 

cricket matches, the side scoring the highest aggregate of runs wins, if the opponent team 

has completed its two innings of batting. If the match is not played to a finish then the 

result is a draw. In the case of the limited overs games the winning side is the one that 

scores most runs during its share of the overs. The innings can be ended in different 

ways, depending upon the format of the game. For example, innings in limited overs 

games are ended when all wickets are down, or when the pre allotted overs for batting 

team have been bowled or when the team batting second passes the target runs.  

1.4 Thesis structure and contribution   

This thesis is structured as follows. This chapter, CHAPTER 1, contains an 

introduction to and describes the purpose of our research project. A brief history and 

some fundamental standard cricket rules to play cricket are described. In the next chapter, 

CHAPTER 2, we give an overview of the problem of interruptions in limited overs 

cricket. Some simple and more-advanced methods to tackle the issue are discussed. The 

major shortcomings of the simple methods and its consequences are highlighted. A brief 

description of more-advanced methods and their advantages over simpler methods are 

provided.   
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In CHAPTER 3 we give overview of the Duckworth and Lewis (1998, 2004) (D/L) 

method for dealing with cricket interruptions, which has been adopted by the 

international cricket council (ICC). To our knowledge, it is for the first time in literature 

that an estimation method for the D/L model is presented. In the course of our analysis, 

we show that there is little evidence of a difference in the run scoring patterns of One-

Day International (ODI) cricket and Twenty-20 International (T20I) cricket. Further, we 

also discuss the advantages of using a single model for both formats of the game. Some 

of the contents of this chapter have been published in McHale and Asif (2013)  

In CHAPTER 4 we identify some properties that a method to be used for resetting 

targets in interrupted limited overs cricket should have. Based on these properties, we 

investigate the appropriateness of some high profile methods for resetting targets 

following on interruption. We compare the Duckworth-Lewis method, with the methods 

of Jayadevan (2002), Stern (2009), and Bhattacharya, Gill, and Swartz (2011) and 

conclude that the D/L method is more viable. We published this work in McHale and 

Asif (2013).   

In CHAPTER 5 we present a new statistical model for resetting targets in interrupted 

limited overs cricket. We show that the model has a superior fit to data as compare to the 

existing D/L model. Further, we demonstrate graphically that the new model represents a 

more intuitive runs scoring pattern than the current D/L model. Again, we published this 

work in McHale and Asif (2013) . 

In CHAPTER 6, we give overview on in-play forecasting in cricket. A Generalized 

Linear Models (GLMs) are been briefly described. Some model diagnostics and models 

selection methods are been discussed. For example, some information-criteria and cross-

validation based methods are discussed.  

In CHAPTER 7, we present a forecasting model for estimating match outcome 

probabilities during any point of a game. The model is dynamic in its parameters, which 

are evolving smoothly as the innings progresses. Further, we assess the factors that are 

indicative of the match outcome during the game. We demonstrate graphically how the 

effects of these factors vary with respect to the stage of the innings. Finally, we compare 

our model forecasts with that of betting market.  

In CHAPTER 8, we describe the summary of the work done during this research 

project and description of the future potential research work is provided.      
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CHAPTER 2 THE PROBLEM OF INTERRUPTION IN LIMITED OVERS 

CRICKET  

This chapter describes the problem of interruptions to play during limited overs 

cricket. Some standard methods for resetting targets, for the team batting second, 

following an interruption to play, are presented and discussed. Broadly speaking, these 

methods are divided into two categories: simple ad-hoc methods and advanced methods. 

In simpler methods, the targets are revised in an ad-hoc way. On the other hand more 

advanced methods are based on statistical models. We note that a major shortcoming of 

the simpler methods is that they do not account the wickets lost when resetting targets. 

With the help of some real and hypothetical examples, we demonstrate that such methods 

are easily exploitable by one or both teams. 

2.1 Introduction 

In comparison to other sports, limited overs cricket is particularly vulnerable to 

inclement weather – when it rains, or becomes too dark, cricket becomes too dangerous 

to play. Consequently, when a One-Day International (ODI) or Twenty-20 International 

(T20I) match is interrupted by rain or bad light, either or both of the competing teams 

can often not complete their allotted overs. Incomplete games are unsatisfactory for the 

players and fans alike and, to some extent negate the purpose of the shorter formats since 

an abandoned match offers minimal levels of excitement. Furthermore, to enable 

knockout tournament play, such as the ODI and T20I World Cups, games must reach a 

positive conclusion. Therefore, the cricket authorities have adopted quantitative methods 

to adjust scores and reset targets in order to ensure interrupted matches are concluded 

with positive results. 

Since the first limited overs match was played in 1962, cricket analysts have 

searched for a fair method to reset targets in interrupted matches. The issue was elevated 

to higher importance following the introduction of the ODI world cup tournament in 

1975. The ICC has tried several methods. These methods are also known as a rain rule 

for limited overs cricket. The current rain rule, the Duckworth-Lewis (D/L) method 

(Duckworth and Lewis, 1998) is now widely accepted as the fairest method available and 

has been in operation since 1997 
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In the next section, we briefly overviewed some simple ad-hoc methods for resetting 

targets following interruptions to play. Section 2.3 provides brief description of the more 

advanced methods that are proposed in literature. Finally, the summary of the chapter is 

given in the section 2.4. 

2.2 Brief overview of some simple methods 

2.2.1 Run rate method 

In the past, the average run-rate (runs per over) was a commonly used method by 

International Cricket Council (ICC) to tackle the issue of interruptions to play. In this 

method the run-rate of each of the competing sides are compared, and the team with the 

higher run rate is declared as the winner. The run-rate method is simple to implement, 

but could unfairly favour either side, depending upon the situation. Other versions of this 

method, for example the maiden ignored run-rate method and the factored run-rate 

method, were also experimented by the ICC (CricketArchive, 2012). However, the 

fundamental problems with the run rate based methods remained unresolved. The major 

flaws of the run-rate based methods are to ignore the wicket-lost effect and to value (in 

the term of runs scoring potential) all the overs equally. The subsequent examples show 

how the method could be exploited as consequence of these anomalies.  

Suppose a team batting second (team 2) chases a target 251. After 30 overs of the 

second innings, this team has scored 155 and lost nine wickets. Rain then interrupts the 

match and no further play is possible. Clearly, in such a situation team 2 is in weak 

position given it only has one wicket remaining and would likely lose the match. 

However, using the run-rate method for resetting targets meant a revised target of 151 in 

30 overs was set and therefore team 2 would be declared the winner. In such cases, team 

2 has an unfair advantage following the interruption if the target is reset using the run-

rate method.   

In regards to the situation where the run-rate method favours the team batting first ( 

team 1), suppose team 2 is chasing the same target of 251, and has lost just two wickets 

in 45 overs. Further, assume that team 2 requires just 28 runs to win in the remaining five 

overs. Suppose, rain interrupts the match and team 2 is not able to bat for the rest of the 

innings. In this case, team 2 is in winning position, but using the run-rate method meant 

to be team 1 is the winner.    
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In both hypothetical examples, we note that the run-rate method ignored the number 

of wickets lost at the time of play was halted and therefore favoured team 2 in the first 

example and team 1 in the second example respectively.  

2.2.2 Highest Scoring Overs (HSO) method 

To eliminate the shortcomings in run-rate method the ICC adopted the highest 

scoring overs (HSO) method in the world cup in 1992. The method is also known as 

most productive overs (MPO) method. In this method team 1‟s over-by-over runs are 

arranged in descending order and then the sum of runs in the first x ordered overs is 

considered as a par score, where x is the number of overs available to team 2 in the 

second innings. In the implementation of this method, only team 2 could be unfavourably 

affected by this method. The best example in which team 2 was suffered, was the 1992 

World Cup semi-final match between England and South Africa. 

In the semi-final of the ICC World Cup 1992, England batted first and scored 252. 

Play was halted in the second innings when South Africa required 22 runs in the 

remaining 13 balls with four wickets in hands. Upon resumption the play, only one ball 

was remaining in the second innings. The HSO method had been applied and the target 

was revised such that South Africa required 21 runs to win on remaining one ball. 

Clearly, an impossible target off just one ball. However, before the interruption the 

required runs to win was not an impossible target.    

To some extent, the highest scoring method (HSO) overcomes the shortcomings of 

the run-rate method. However, the problem of not accounting for a wicket lost effect 

remains unresolved. In addition, the method is dependent on the run scoring pattern of 

the team 1, which caused some unwanted consequences. This is especially evident when 

team 1 scores few runs in some overs and many runs in some others in a given match.    

Some modified versions of the highest scoring overs (HSO) method were also 

experimented. For example, the consecutive highest scoring overs method (CHSO)- 

compares the maximum runs scored in x consecutive overs of team 1, where x is the 

number of overs team 2 is deprived, and the adjusted highest scoring overs method 

(AHSO)- the target is reset by the HSO method, but is then adjusted by reducing it down 

by a factor 0.5% for each over team 2 is deprived. Despite such modifications to the HSO 

method, we believe that the fundamental anomalies remain unresolved, for example 
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number of wickets lost is not been accounted. Therefore, the method is not fair for 

resetting targets following interruptions in limited overs cricket matches.     

2.2.3 Equivalent Point (EP) method 

This method was adopted by the England and Wales cricket board (ECB) for their 

domestic cricket during late 1960's. In this method, team 2's runs are compared to the 

equivalent point of team 1's runs. For example, on May 18
th

 1969 in the second innings 

of the Player's County League match, play was halted after Essex scored 40 runs and lost 

three wickets in first ten overs. At the equivalent point of the first innings, Derbyshire 

had scored 38 runs and therefore using EP method, Essex was awarded victory by 2 runs 

(http://cricketarchive.com/Archive/Scorecards/30/30029.html). Another version of this 

method is to compare each team's runs per wicket at equivalent points. The EP method is 

also simple to implement, but can have unwanted consequences. This is especially 

evident when an interruption happens prior to the start of the second innings or when 

teams are deprived of some overs in the middle of an innings. Moreover, the method is 

impossible to use in situation of multiple interruptions in the match.   

2.2.4 PARAB method  

This method is proposed by do Rego (1995) and is based on the parabola,  ( )  

             , where  f x  represents the runs obtainable in x overs. This method 

was adopted by the ICC in the World Cup 1996. In this method the proportion of 

expected runs obtainable by team 1 is calculated using     (  )  ( )⁄ , where x1 is the 

overs available to team 1 and N denotes the number of pre-allotted for each teams. The 

proportion of expected runs obtainable for team 2 is calculated in a similar manner. The 

par score, T, for the team batting second is then calculated as        ⁄ .  

This method also has the same problems as in the methods discussed above. For 

example, the number of wickets lost at the time of interruption is not accounted by the 

PARAB method. Further, the parabola has a maximum at about 63 overs (see Figure 2.1), 

which results in an unintuitive relationship between runs and overs.  
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Figure 2.1 Runs obtainable, f(x), against the number of overs, x, in PARAB method 

2.3 Brief overview of the advanced methods  

2.3.1 The Duckworth-Lewis (D/L) method 

In 1997, two British statisticians, Frank Duckworth and Tony Lewis, proposed a 

method for resetting targets for the team batting in the second innings in interrupted 

matches. Duckworth and Lewis (1998) describes their method for revising targets that 

accounts for the situation of the match in terms of number of wickets lost and the overs 

remaining at the time of interruption. The method is known as D/L method and is 

currently adopted by the ICC. The fundamental idea behind the D/L method is to 

estimate the resources available,  , to each team. In an uninterrupted match, each team 

will have 100% of its resources available and no target adjustment is necessary. 

However, if there is an interruption and the resources of team 1,   , are not equal to team 

2‟s resources,   , then the target for team 2 must be adjusted. Let   be the total runs 

scored by team 1 (the team batting first), then the D/L method states that the par score for 

team 2 (the team batting second)  , is given by 

   {
      ⁄                                   

   ( )(     )              

 2.1 
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where  ( ) is the average first innings total number of runs in an  -over match (  is 

typically either 50 or 20). The target for team 2 is then the next integer above  . 

To measure each team available resources, Duckworth and Lewis (1998) developed 

a resources table which is based on exponential type model (will be discussed in the 

section 3.2). The two dimensional table describes the resources remaining for each overs 

remaining, u, and given wicket lost, w , and is denoted by  (   ). Table 2.1 is the 

extract of the latest D/L resources table published in 2002.  

 

Table 2.1 Extract of the Duckworth-Lewis resources (%) table, published in 2002.  

u, 

overs 

left 

w, wicket(s) lost 

0 1 3 5 7 9 

50 100 93.4 74.9 49.0 22.0 4.7 

45 95.0 89.1 72.5 48.4 22.0 4.7 

40 89.3 84.2 69.6 47.6 22.0 4.7 

35 82.7 78.5 66.0 46.4 21.9 4.7 

30 75.1 71.7 61.5 44.7 21.8 4.7 

25 66.5 63.9 56.0 42.2 21.7 4.7 

20 56.6 54.8 49.1 38.6 21.2 4.7 

15 45.2 44.1 40.5 33.5 20.2 4.7 

10 32.1 31.6 29.8 26.1 17.9 4.7 

5 17.2 17.0 16.5 15.4 12.5 4.6 

0 0 0 0 0 0 0 
 

To understand how the Duckworth-Lewis can be implemented, consider the 

hypothetical example in the section 2.2.1. That is, while chasing the target of 251, team 2 

is deprived of the remaining twenty overs with a score of 155 for the loss of nine wickets 

at the time of interruption. It can be seen in the Table 2.1, for this example, that team 2 

has lost 4.7% resources in the remaining twenty overs and therefore the total resources 

consumed by team 2, R2, is equal to 95.4%. Using equation 2.1 the par score for team 2, 

T, is equal to 238.5 (greater than team 2‟s score) and hence, using the D/L method means 

that team 1 is the winner. 

2.3.2 The Jayadevan ( VJD) method 

Jayadevan (2002) proposed a method which takes account of the situation at the time 

of the interruption in terms of number of overs and wickets. He referred to his method for 

resetting targets as the VJD system. This method was adopted by the Indian Cricket 

League (ICL 2007-2009), an Indian domestic cricket league run by private companies. 
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The VJD system is based on two types of resources, which Jayadevan describes as the 

'normal' and 'target' scores. The „normal‟ scores are modelled as function of percentage 

of the overs and wickets used. Whereas, the „target‟ scores is modelled as a function of 

percentage of overs available. Strictly speaking these scores are the proportion of runs; 

however we refer it as resources (a term that is used in the D/L method). In the VJD 

system, the resources consumed by the batting team,  , at the time of an interruption to 

play, are measured from 'normal' resources. However, when play is resumed, the 

proportion of the available resources,  , as compare to the total remaining resources (one 

less 'normal' resources as at the time of interruption) are measured from the 'target' 

resources. Table 2.2 is an extract of the resources table for the VJD system.  

 

Table 2.2 The extract of the VJD resource table, taken from Jayadevan (2002).  

v, percentage of 

overs (%) 

t, 'target' 

resources 

(%)  

Q, 'normal' resources (%) for give w, wicket(s) lost 

0 1 3 5 7 9 

0 0 0 0 0 0 0 0 

10 15.7 8.8 12.0 35.0 60.0 79.0 95.0 

20 29.8 16.9 20.8 35.0 60.0 79.0 95.0 

30 42.3 24.7 27.2 35.0 60.0 79.0 95.0 

40 53.5 32.4 34.7 39.7 60.0 79.0 95.0 

50 63.4 40.4 42.0 44.3 60.0 79.0 95.0 

60 72.3 49.2 50.1 51.7 64.3 79.0 95.0 

70 80.3 59.2 59.7 60.4 69.8 79.0 95.0 

80 87.6 70.7 70.7 71.1 74.7 83.6 95.0 

90 94.3 84.1 84.1 84.1 84.1 89.2 95.0 

100 100 100 100 100 100 100 100 
 

To calculate the par score for the team batting second, Jayadevan (2002) divides the 

type of interruption into three categories: type A- team 2 is deprived of some overs 

before the start of the second innings, type B- an interruption in the second innings after 

team 2 bat for some overs, and type C- the first innings is interrupted. The step-by-step 

procedure of the application of the VJD system is provided in Appendix I as taken from 

the Jayadevan (2002) research article. However, in section 4.3 we simplify this method 

and transform the procedure into a single formula.  

2.3.3 The Probability Preservation method 

The fundamental notion of this method is to revise the target such that the 

probabilities of each team winning the match, as calculated before and after the 
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interruption, are preserved. Preston and Thomas (2002) were the first authors to present a 

method for adjusting targets that preserves the probability of victory for each team as it 

stood before the interruption took place. Carter and Guthrie (2004) follow a similar ethos 

and present algorithms to preserve the probability of victory across interruptions during 

an ODI game.   

Specifically, Carter and Guthrie (2004) estimate the distribution of the runs to be 

scored in remaining u overs given  w wickets already lost. Let,  (     )  be the 

distribution function for the random variable runs remaining, x, to be scored such that u 

overs are remaining and w wickets have already been lost. Let S denote the total runs 

team 1 has scored in the first innings, and y denote the number of runs team 2 has scored 

at u overs remaining given w wickets already lost. Then team 2's probability of winning 

the match is given by 

      (       ) 2.2 

Suppose,    and    are the overs remaining at and after the interruption respectively 

such that w wickets already lost. Then the par score (T) of the Carter and Guthrie (2004) 

method is calculated such that   (        )   (        ). The functional form 

for F is given in their paper. 

2.4 Summary 

We have given an overview of some simple ad hoc methods that have been used by 

official cricketing authorities, for example the International Cricket Council (ICC). We 

have examined the run-rate, HSO, EP, and PARAB methods. It is argued that all these 

methods have undesirable properties and consequently can result in unfair rest targets.  

Similarly, in regards to the more advanced methods, we overviewed the Duckworth-

Lewis method proposed by Duckworth and Lewis (1998), the VJD system, a similar 

resources based method proposed by Jayadevan (2002), and the Probability Preservation 

(PP) method, firstly proposed by Preston and Thomas (2002) and then by Carter and 

Guthrie (2004). The revised targets using these more advanced methods take account the 

overs and wickets at the time of interruption to play.  



15 

 

CHAPTER 3 THE DUCKWORTH-LEWIS (D/L) METHOD 

In this chapter, we present an estimation method for the latest version (Professional 

Edition) of the Duckworth/Lewis (D/L) method. Further, we analyse and compare the 

runs scoring pattern of the one-day international (ODI) and Twenty20 International 

(T20I) formats of cricket. The results suggest that it is reasonable to use a single model 

for both the formats. Some of the content of this chapter is published in McHale and Asif 

(2013). 

3.1 Introduction 

The Duckworth-Lewis method has been through two incarnations. The first was 

adopted by the ICC in 1997 and is described in Duckworth and Lewis (1998). This 

version of the D/L method is known is Standard Edition. The second version, known as 

the Professional Edition, was introduced in 2003 (see Duckworth and Lewis, 2004) so 

that the method produced fairer adjusted targets in high scoring interrupted games. 

Currently, the Duckworth-Lewis Professional Edition is in operation and is being used by 

the ICC for all interrupted  ODI and T20I cricket matches.  

Some research in literature on limited overs cricket is closely related to the 

Duckworth-Lewis method. For example, Clarke and Allsopp (2001) use the D/L method 

to estimate teams‟ rankings in a tournament. They measured teams performances in the  

ICC World Cup 1999. de Silva, Pond, and Swartz (2001) use the Duckworth-Lewis 

method to estimate the runs margin of victory for the team batting in the second innings. 

Lewis (2005) proposed a method, based on Duckworth-Lewis model, to estimate a 

player‟s contribution in the match. Lewis (2008) further extended this work and proposed 

a ranking system for players in One-Day International cricket. O‟Riley and Ovens (2006) 

use the Duckworth-Lewis resource table as a forecasting tool to predict total runs in the 

first innings. They show that the Duckworth-Lewis method has better predictive ability 

than the following three methods: VJD system of Jayadevan (2002), the Run Rate (RR) 

method, and the PARAB method of do Rego (1995). Bailey and Clarke (2006) use the 

D/L method in an ad hoc way in their pre-match forecasting models to forecast match 

outcomes during the course of a game.   
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The next section describes the existing D/L method. Section 3.3 describes the data 

that we have used for estimating the D/L model. In section 3.4 the runs scoring patterns 

of ODI and T20I are analyzed and compared. In section 3.5 we present the method of 

estimation for the latest version of the D/L method. In section 3.6, the D/L model fit 

results are presented. Lastly, the summary of the chapter is provided in section 3.7.    

3.2 The Duckworth-Lewis Model 

To estimate the resources available to a team, the Duckworth and Lewis (1998) 

method uses a model of the average runs remaining to be scored,   . The Duckworth-

Lewis model for the expected runs in the remaining u overs and given w wickets already 

been lost, is given by 

  (   )     ( ){       ( )⁄ } 3.1 

where     is the asymptotic average runs with no wickets lost in hypothetically an infinite 

number of overs.  ( ) is a positive decreasing step function with  ( )    and is 

interpreted as the proportion of runs that are scored with w wickets lost compared with 

that of no wickets lost, and hypothetically infinitely many overs available. That is, 

 ( )         (   )  (   )⁄ . The ratio  

   (   )   (   )  (   )⁄  3.2 

gives the average proportion of runs still to be scored in an innings with u overs 

remaining and with w wickets lost, which Duckworth and Lewis (1998) present as the 

proportion of remaining resources. For brevity, we refer to this as remaining resources, 

although strictly speaking it is a proportion. Using equations 3.1 and 3.2  to estimate the 

revise targets in an interrupted match is known as D/L Standard Edition. 

Duckworth and Lewis (2004) modified the original 1998 model for high runs scoring 

matches. The idea being that the resources remaining, for a given number of wickets lost, 

decrease linearly when a team is chasing a well above average target. In other words, 

each over has equal value and so the over-by-over runs scoring pattern tends to be 

uniform, if the number of wickets lost remains the same. For this purpose, they include 

an extra parameter that they call the match factor and is denoted by λ. In matches with 

well above average targets, the parameter  scales down the rate parameter b and scales 

up the parameter   . As a result,   tends to relate more linearly to u, overs left. The D/L 

upgraded model is given by 
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  (     )     
 ( )   ( )[     {     ( ) ( )⁄ }] 3.3 

where  ( ) is a positive decreasing function with n(0) = 5. The updated version of the 

D/L method is known as Professional Edition. Strictly speaking, we should not be 

conditioning only on . However, to distinguish   in equation 3.3 from   in equation 3.1, 

we follow this notation of Duckworth and Lewis and continue with it throughout the 

thesis. In innings i (i = 1,2), following    interruptions (the      interruption stops play 

when      overs remain and    wickets have been lost and play is resumed when      

overs remain), the resources available is given by 

      ∑ {  (      )    (      )}
  

   
 3.4 

Duckworth and Lewis (1998, 2004) did not disclose the estimates and the estimation 

method for their model parameters. Therefore, in section 3.5 we propose a method of 

estimating the parameters for the Duckworth-Lewis model.  

3.3 Cricket data for the D/L modelling    

Estimation of the parameters was facilitated by collecting over-by-over data on 463 

ODI uninterrupted matches from January 2008 to October 2011, and 198 uninterrupted 

T20I matches from the start of these games in February 2005 to September 2011. The 

data were obtained from the ESPN cricinfo website (www.espncricinfo.com). Purpose 

written code was used to estimate all parameters of the D/L model using standard 

optimisation routines in R (R Development Core Team, 2012). 

Table 3.1 gives an extract of the average runs remaining to be scored with u overs 

remaining and when w wicket have been lost, as denoted by  ̅(   ), for ODIs (right 

panel) and for T20Is (left panel). Some matches in our original data set were reduced to 

shorter matches before the first innings started. We include these matches in our 

estimation sample, as the match was not interrupted during play. As such, the sample 

sizes for the start of the innings given in Table 3.1 are 458 (not 463) for ODI and 191 

(not 198) for T20I. 

Before we fit the D/L model in equation 3.1 on the combined data of ODIs and 

T20Is, first we analyse and compare the runs scoring pattern of the two formats of 
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cricket. The subsequent section describes whether it is justifiable to combine the data of 

the two formats and fit a single model for both ODI and T20I cricket interruptions.   

 

Table 3.1 The observed means of remaining runs, x̄(u, w), with corresponding standard 

deviations, s(u, w), and number of cases, n(u, w),  for T20Is (left panel) and ODIs (right 

panel). 
 

T20I (Feb 2005- September 2011) 

 

 

ODI (Jan 2008 to October 2011) 

w     

 

u 

 

0       1       3      5      7 

w     
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     0       1       3       5      7 
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5 

 

 

 

2 

 

 

 

3 

 

 

 

1 

   

 

151.79       *       *      *      *   

 34.01       *       *      *      *   

   191       0       0      0      0   

 
128.45  115.24  106.33  67.00      * 

 27.98   28.25   32.32      *      * 

    47      79      15      1      0 

 
90.38    88.50   82.16  45.00  58.00 

17.85    21.84   20.02  21.13      * 

   13       30      49     12      1 

 
46.50    57.83   47.76  45.81  29.42 

17.68    14.74   17.17  11.55  11.09 

    2        6      41     48     12 

 
    *    34.00   33.16  27.52  23.65 

    *     9.64   11.92   9.39  11.33 

    0        3      25     48     20 

 
    *    24.00   23.00  21.26  17.58 

    *     2.83    9.89   7.52   7.63 

    0        2      16     46     31 

 
    *     8.00   10.00  10.75   9.39 

    *        *    5.61   4.33   4.12 

    0        1       8     36     36 
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245.43       *       *       *      * 

 63.09       *       *       *      * 

   458       0       0       0      0 

 
236.26  202.89  147.09  130.67      * 

 38.39   49.99   52.98   24.91      * 

   109     178      44       3      0 

 
189.64  184.95  154.19   99.40  67.25 

 26.01   40.18   40.82   40.42  45.10 

    25      81     100      30      4 

 
145.29  143.38  121.84   96.76  65.09 

 24.34   30.49   29.32   34.19  31.11 

     7      32     114      62     23 

 
91.00    87.00   85.81   68.18  46.93 

 4.24    10.47   19.39   19.82  24.43 

    2        6      64     104     44 

 
    *    45.00   51.77   44.67  33.38 

    *     2.83   11.71   15.17  16.26 

    0        2      26      98     61 

  
    *        *   12.14   10.02  10.39 

    *        *    6.59    3.59   5.23 

    0        0       7      50     75 

 

 

3.4 Runs scoring pattern (ODI and T20I)   

To test for whether combining the data of the ODI and T20I is reasonable for 

estimation purposes, we tested for equality in means between  ̅   (   )  and 

 ̅   (   ). To do this, at each   overs remaining (ranging from twenty to one), for each 

value of w (ranging from 0 to 9) we obtained 131 means for T20I. Of these, we have data 

on 94 means for the corresponding ODI data on means that possibly be tested. 

Performing 94 independent t-tests produced just three statistically significant differences 

in means at the 5% level. To further justify combining the ODI and T20I data, we next 

made the Šidák  and Bonferroni corrections (see Abdi (2007)) to the significance level in 

order to take account of performing multiple independent tests on a data set and found 

that no cells were significantly different at an overall significance level of 0.05.  
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It seems there is little evidence of a difference between the scoring patterns in the 

two forms of the game. In addition to the evidence provided by the statistical tests 

performed above, we believe it is more appropriate, in an idealistic sense, to have one 

model for resources in cricket, regardless of the format. For example, suppose a ODI 

match is reduced to twenty overs per side. If two models are in existence (one for ODI 

and one for T20), which model would best be suited? In this case, having one overall 

model for scoring patterns in cricket is more attractive than having separate models.  

3.5 Estimation of the Duckworth-Lewis method (Professional Edition)   

We estimate the Duckworth-Lewis model parameters using the data presented in 

section 3.3. The D/L parameters are estimated in two stages. First, we estimate   ,    and 

 ( ) , and next we estimate λ given team 1‟s total runs, S. We note that the parameter λ 

is estimated on match-by-match basis.    

3.5.1 Estimation of Z0, b and F(w) 

Let   (   ) be the observed runs scored in the remaining u overs of the first innings 

of match i when w wickets have been lost. Similarly, let  ̅(   ) be the observed mean 

runs scored in the remaining first innings. We use first innings data because the target 

will affect the scoring pattern in the second innings. The first innings run scoring pattern, 

on the other hand, represents the true scoring pattern of a team trying to maximise its 

runs total, rather than a team trying to score enough runs to meet a target and win a game. 

To estimate   ,    and  ( )                     in equation 3.1, we minimise a 

weighted sum of squared errors, WSSE , given by 

      ∑ ∑  (   )  

  
(   ) 3.5 

where,  (   )   (   )   (   ) and ( , )k u w  is a weighting function that is intended 

to account the heteroskedasticity and consistency of the  (   ). We propose to weight 

the observations using a weighting function ( , )k u w , given by  

                        (   )  √ (   )  (   )⁄  3.6 

where, n is the number of data points and s is the standard deviation of the remaining 

runs in the innings. Further, for k to be finite and  ̅(   ) to be reliable, we discarded 

means calculated using fewer than five observations. 



20 

 

3.5.2 Estimating λ and n(w) 

The Duckworth-Lewis Professional Edition requires an estimate of λ when team 1 

scores ( ) well above average runs. For average and below average of  ,    . In our 

experimentation with the resource tables provided by Duckworth and Lewis (2004) we 

note that  ( )      ( ) with     and    . The λ depends on  , team 1‟s 

score, the number of overs allotted before team 1 starts its innings, N, and and . In a 

match in which team 1‟s innings is uninterrupted, is estimated such that, 

  ( )    (     )       3.7 

If team 1 faces n interruptions in team 1‟s innings then is optimised by minimizing 

the following function  

  ( )  | (     )  ∑    

 

   
  | 3.8 

where,     is the expected runs loss in i
th 

interruption and can be defined as  

      (        )   (        ) 3.9 

where,     are the number of  wickets lost, and       and     are the number of overs 

remaining at and after the i
th 

interruption respectively.  

To our knowledge, no work has been done so far that provides statistical evidence to 

justify that the D/L Professional Edition is an improved version of the D/L method. We 

test whether using the D/L Professional Edition model for high scoring matches improves 

the model fit in section 5.3.4. Further, a computer program CODA, only available to the 

official cricketing authorities, is required to estimate λina given match. We developed R 

code for optimizing λ for any given type of interrupted limited overs cricket match. 

3.6 The D/L model fit result  

Following the estimation procedure, described in the section 3.5, we fit the 

Duckworth-Lewis model in equation 3.1. Purpose R code was written using standard 

optimization function optim() to fit the model. Table 3.2 provides the estimated values 

for the D/L model. It is to be noted that the parameters  ( ) are estimated under the 

constraint  ( )    and ( )   (   )            . Further, from Figure 3.1 the 

fitted curves can be compared with the observed scatter plots. For example, Figure 3.1a 

shows the curves for the observed mean,  ̅(   ), whereas Figure 3.1b show the 

corresponding D/L fitted means,  . 
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Table 3.2 The Duckworth-Lewis estimated model parameters  

Parameter Z0 b F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7) F(8) F(9) 

Estimate 295 0.03706 1 0.840 0.738 0.577 0.477 0.374 0.279 0.195 0.095 0.033 
 

Some improvements, over the D/L original estimates, are immediately gained by 

using these updated parameters. For example, the average runs scored in the first innings 

of the fifty over matches in our sample is approximately 245. Duckworth and Lewis state 

in their original paper (Duckworth & Lewis, 2004) that the average runs scored in the 

first innings, as implied by their model parameter estimates, is 235 runs. However, 

refitting their original model to our updated data set we find the model implies the 

average runs to be around 247 runs – closer to the observed average.  

 
Figure 3.1 The plot of mean remaining runs against u, overs remaining, for (a) x̄(u, w), 

observed means, and (b) Z(u, w), D/L model means. Top line is for zero wickets lost, and the 

bottom line is for 9 wickets lost. 
 

3.7 Summary 

This chapter begin with literature review related closely to the Duckworth-Lewis 

method for revising targets for the team batting second in interrupted limited overs 

cricket matches. Further, the latest version of the Duckworth-Lewis method, known as 

D/L Professional Edition, is also overviewed.    

In regards to the research contribution in this chapter, we compare the scoring 

pattern of One-Day and Twenty-20 International cricket formats. The results show that 

there is no statistical significant difference between the scoring patterns in the two forms 

of the game. Further, we propose a method of estimation for the D/L Professional 
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Edition. To our knowledge this component of the existing D/L method is unpublished. 

The Duckworth-Lewis model parameters are estimated by minimizing the weighted sum 

of squared error. The weight function accounts the heteroskedasticity of the means. 

The estimation process for Duckworth-Lewis method is performed in two stages. In 

the first stage, the D/L model is fitted for the Standard Edition of D/L method. Next, we 

estimate the match factor, λ, for the D/L Professional Edition for given estimated 

parameters of the D/L model for Standard Edition and the runs scored by the team 

batting first in the match. It implies that the parameter, λ, is estimated on match-by-match 

basis.  

Moreover, we fit the D/L model on the combined data of the T20I and ODI data. 

Apart from statistical justification to combine the data of the two formats and fit a single 

model, we argue that from an ideological viewpoint it is preferable to have a single 

model for resetting targets in interrupted matched in both of the formats. The data that 

facilitate the D/L model fit is obtained from the espncricinfo.com website.  
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CHAPTER 4 THE DUCKWORTH-LEWIS METHOD COMPARED TO 

ALTERNATIVES  

In this chapter, we contribute to the highly topical debate on which is the best 

method for resetting targets. Based on statistical analysis, we find that the Duckworth-

Lewis method is the most viable solution when compared to some currently available 

alternatives. We investigate the VJD system of Jayadevan (2002), Stern's adjusted D/L 

method of Stern (2009) and Bhattacharya's version of the D/L method for T20I as 

proposed in Bhattacharya et al. (2011). In addition, we identify some standard desirable 

properties that a method for resetting targets following an interruption should satisfy. 

Some of the contents of this chapter have been published in McHale and Asif (2013). 

4.1 Introduction 

The Duckworth and Lewis (1998, 2004) method is heavily scrutinised and 

academics continue to propose improvements and alternatives. Several academic papers 

have appeared attempting to improve upon the D/L method and these can be split into 

two categories: resources based methods and probability-preserving based methods. 

Possibly the highest profile alternative is the VJD method of Jayadevan (2002) which can 

be interpreted in terms of resources. Stern (2009) proposes an adjusted D/L method by 

changing the resources table of the D/L original method in the second innings. The 

notion of this adjustment is to better reflect how teams batting second are able to adopt a 

different strategy from the team batting in the first innings. Bhattacharya et al. (2011) 

present an alternative resources table for the D/L method based on a non-parametric 

approach for Twenty-20 cricket. Regarding the probability based methods, Preston and 

Thomas (2002) were the first authors to present a method for adjusting targets that 

preserves the probability of victory for each team as it stood before the interruption took 

place. Carter and Guthrie (2004) follow a similar ethos and propose a method for 

resetting targets which they referred to as an Iso-Probability (IP) method.  

In the next section, we present our standard desirable properties for a method to reset 

targets for the team batting second in interrupted matches. In section 4.3 we test the 

viability of the Jayadevan (2002) method and compare its performance with  that of the 

Duckworth-Lewis method. Section 4.4 presents and highlights some issues related to the 



24 

 

Bhattacharya et al. (2011) version of the Duckworth-Lewis method. In section 4.5, we 

investigate Stern‟s version of the D/L method. In section 4.6 we examine the Iso-

Probability (IP) method of Carter and Guthrie (2004). Lastly, the summary of the chapter 

is given in section 4.7.      

4.2 The standard desirable properties of a method to revise targets 

Let   denote the expected runs obtainable in the remaining overs of an innings. 

Suppose, the number of overs remaining is denoted by u, whilst the number of wickets 

lost is denote by w. Let, there is a method   that fundamentally accounts for the stage 

and the state of the innings by u overs remaining and w wickets lost. Then at any given 

stage and state of the innings the team‟s expected remaining runs obtainable,  , by means 

of method  , should have the following properties.    

I.   should be a non-decreasing function of u, overs remaining , so that   
    , 

provided that all other factors remain constant.   
 , is the first order partial 

derivative of   with respect to u. For example, in the D/L method for any 

given match factor, λ, and wickets lost, w, the mean remaining runs,  , is 

decreasing with respect to as the innings progresses (equally,   is an 

increasing function of u).  

II. The rate of change of Z, denoted by   
 , with respect to u should be a non-

increasing function of u so that     
     provided all other factors remains 

constant. For example, in the D/L method for any given match factor, , and 

wickets lost, w, the ball-by-ball runs value is increasing with respect to the 

progression of the innings.    

III.   should be non-increasing function of w, wickets lost, provided that all other 

factors, for example λ and u in the D/L model, remain constant. This is 

intuitively appealing: at any given stage of the innings a team having more 

wickets in hand should have more (or equal) resources than a team with fewer 

wickets in hands. This property will be satisfied in the D/L method if the 

function  ( ) is a positive non-increasing function of w. 

IV. The first order derivative of Z with respect to u should be a non-increasing 

function of w provided that all other factors in the method remain fixed. This 

implies that at any given stage of an innings, a team having more wickets in 
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hand should have more resources allocated to the current ball (or over). This 

property also ensures that the resource value lost (     (   )  

 (     )) for the loss of current wicket is decreasing with respect to the 

progression of the innings. This property can be satisfied if there exists a real 

number, r, such that   
  at u=r should be independent of all other factors in the 

model. For example, in the D/L method    
  at u=0 is independent of λ and w.  

We use this list of desirable properties as criteria by which to assess each of the 

alternative methods for resetting targets below. We note that  Further, we eventually 

propose a modification to the D/L method, which satisfies these properties.  

4.3 Jayadevan’s (VJD) method 

Jayadevan (2002) proposed a method also known as the VJD system. In this method, 

the target to be revised for the team batting second depends on each of the competing 

teams available resources. Similar to the Duckworth-Lewis method, these resources 

depend on overs, wickets and the runs that are scored in the first innings. In print and via 

electronic media the topic of which method is better, has been extensively discussed. 

However, to our knowledge it is not been proved which method has more viable solution 

to the problem. Here we show that the VJD method has some serious flaws and that the 

D/L method has superior properties over the VJD system. 

Before comparing the VJD and D/L methods we simplify the Jayadevan (2002)  

method by reducing the complicated step-by-step procedure (see Appendix I) into a 

single formula for calculating the par-score. Suppose,    and   , are the resources 

available to team 1 and team 2 respectively. Let    be the number of overs remaining 

when the play is halted in the given innings (first or second), and    be the number of 

overs remaining upon resumption to play. We show that the team available resources (  ) 

in the i
th

 innings, using the Jayadevan (2002) approach, can be written simply as 

     (    )  *   (    )+ (  ) 4.1 

where  (    ) is the 'normal' resources corresponding to the    ( 
    

 
) percentage of 

overs played at u1 overs to go, whereas  (  ) is the 'target' resources corresponding to the 

       ⁄   percentage of available overs (see Table 2.2). The 'normal' resources ( ) is 

based on two separate regression models with independent variables: overs (as measured 

in percentage) and wickets respectively. However, the „target‟ resources (t) are based on 
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one regression model with overs (as measured in percentage) as an independent variable. 

Jayadevan refers these resources as normal scores based on 'normal' curves and target 

scores based on 'target' curve. Jayadevan (2002, 2004) did not provide sufficient 

information about how the resources table (Table 2.2) for the VJD system has been 

constructed from such models. However, the availability of these resources table and the 

detailed procedure for calculating the par-score using the VJD system, means that we are 

able to investigate the runs scoring pattern implied by the VJD method. Finally, the par 

score for the team batting second can be determined as         ⁄ . Where   is the 

total runs scored by team 1 in the first innings.       

Jayadevan (2004) updated the method for the well above average runs scoring 

situation. He constructed separate resources tables for different  , the total runs scored in 

the first innings. Six independent resources tables are proposed, one for each   

              . Fundamentally, in VJD system, the notion of resources' adjustment to 

well above average runs scoring matches is similar to the Duckworth and Lewis (2004). 

That is, for well above average target the relationship between the 'normal' resources ( ) 

and overs tends to more linear. Hence, it can be observed that like the D/L method, the 

resources ( ) based on VJD system is a function of    (team 1 total runs), u (overs 

remaining) and w (wickets lost). Details of testing the viability and fairness of the VJD 

system are provided in the subsequent sections.       

4.3.1 First and Third desirable properties for the VJD system  

We contrast  ,  the expected remaining runs, of the D/L method (as depicted in 

Figure 3.1b) with the inferred   of the VJD system. Suppose, in an N (typically equal to 

50 or 20) overs match, team 1 scores, S, an average runs of the first innings (≈ 250). Now 

suppose no play is possible for the remaining u overs of the second innings at a time 

when team 2 had lost w wickets. Further, suppose there is no interruption in team 1's 

innings. Therefore,       (team 1‟s total available resources), and  (  )    (the 

proportion of available resources after the interruption, as compare to the total remaining 

resources before the interruption). From equation 4.1 the total resources available to team 

2,   ,  at the time of  interruption is  (   ), where      

 
. Therefore, using the VJD 

system, the expected remaining runs in remaining u overs given that w wickets have 

already been lost, is given by  
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  (   )   *   (   )+ 4.2 

Figure 4.1 shows the remaining runs, using the VJD system, that one would expect 

from the team batting second chasing an average target of 250. In other words team 2 is 

compensated with  (   ) runs for the loss of remaining u overs provided that w wickets 

already been lost.  

     
Figure 4.1 Curves of the team 2's expected remaining runs in u overs as measured using the 

VJD system of Jayadevan for S=250 (team 1's scores). Top solid line is for no wicket lost 

and bottom dashed line is for nine wickets lost   
 

It can be observed from Figure 4.1 that the first and third properties are satisfied. 

However, in contrast to the Figure 3.1b (the   plot of the Duckworth-Lewis method) the 

curves in Figure 4.1 are relatively non-smoothed and for most region the curves are flat. 

This is especially evident for non-zero w. This implies that there are many situations 

where the overs are zero valued in the VJD system. The consequences of this are 

unattractive. For example, suppose a team is chasing an average target of 250 and has 

lost six wickets and the innings is ended after 10 overs. This team would be compensated 

with the same number of runs as a team chasing the same target and lost the same 

number of wickets but could not play the final twenty overs. It means that with four 

wickets in hand, the overs 10 to 30 contribute zero resources to the team‟s innings. It can 

be argued that with such few wickets in hands (four in this example) there should not be 

a significant difference in the mean remaining runs in twenty overs and forty overs. 
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However, contradictorily, given the same number of wickets in hands if a team loses 

overs 10 to 30 and then play resumes, the same VJD method compensates these overs 

with 27 runs. 

The above contradictory behaviour of the VJD system is because of using additional  

'target' curve in the situation if play is possible after the interruption. The 'target' curve is 

used to estimate the proportion of a team's available resources as compared to the total 

remaining resources as estimated by 'normal' curve  before the interruption to play. Such 

a shortcoming can be overcome in the VJD system by eliminating the 'target' resources 

and to use only the 'normal' curve to estimate remaining resources before and after 

interruption. Further, we note that the VJD system will be reduced to the Duckworth-

Lewis method if only 'normal' resources table is used to estimate each team available 

resources. We further note that one less the VJD's normal resources can be interpreted as 

D/L's remaining resources. In the next section, we use the above hypothetical example 

for a single interruption to estimate the over-by-over runs value by VJD method.       

4.3.2 Second and Fourth desirable properties for the VJD system 

To see if the VJD method satisfies the second and fourth desirable properties, we 

examine the over-by-over runs value. The VJD system estimates the runs value of the 

next over (or overs) depending on the type of interruption. For example, suppose  S=250  

in an N (fifty or twenty) overs cricket match, then in the second innings there are two 

possible ways in VJD system to estimate the runs value for the u
th 

remaining over, given 

w wickets have already been lost. 

 First, team 2 is deprived of the next over (u
th

 remaining overs). Then the runs value 

for the next over by the VJD method can be calculated as  

       (    ) 4.3 

where     (as described in equation 4.1) is the total resources available to team 2 after the 

one over interruption. Let u and u-1 denote the remaining overs before and after the 

interruption such that w wickets have already been lost. Assume there is no interruption 

in the first innings so that     . Then,       

 
  is the proportion of overs, consumed 

by team 2, as compared to total allotted overs, N, and       

 
 is the proportion of overs, 

available to team 2 after the one over interruption, as compared to the total remaining 
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overs, u. From equations 4.1 and 4.3 we have the following relation of expected runs 

value for u
th

 remaining overs 

       (   (    ))(   (  )) 4.4 

where,       

 
 and       

 
 . Given S=250, we use equation 4.4 for each   

           and             to estimate the over-by-over runs value.  

In regards to the second possible way of estimating the next over runs value 

following the VJD approach. We take the difference between the expected remaining 

runs in u overs and expected remaining runs in u-1 overs provided that the number of 

wickets lost, w , remains the same. Let  (   ) denote the VJD expected remaining runs, 

or the runs a team is compensated with after being deprived of the remaining u overs 

given w wickets already lost, as given in equation 4.2. Then the u
th

 remaining over runs 

value can be measured as  

       (   )   (     ) 4.5 

Figure 4.2a  and Figure 4.2a show the plots of over-by-over runs value against u using 

equations 4.4 and 4.5 respectively. Visual inspection of  Figure 4.2 shows that the VJD 

system does not follow the second and third desirable properties as defined in section 4.2.  

 

 
Figure 4.2 Plots for over-by-over expected runs value using the VJD system for a team 

chasing a target of 250, as measure using (a) equation 4.3 for a type 1 interruption and (b) 

equation 4.4 for a type 2 interruption, for each given w=0 (top solid line),...,9(bottom dashed 

line)  
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Despite of not satisfying the third and fourth properties, it is also shown in the Figure 

4.2 that resources allocated to the next over (or next few overs) by the VJD method are 

also unintuitive dependent on the type of interruption. For example, Figure 4.2a describes 

the next over runs value for the interruption of the next over. In contrast, Figure 4.2b 

describes the same quantity of next over runs value, but the interruption is taken place for 

all remaining overs. We refer to these interruptions as type 1 and type 2 interruptions. 

We note that the reason of such contradictory results is the use of additional  'target' 

curve for estimating the resources after the interruption to play. Whilst before 

interruption the remaining resources are estimated by the use of 'normal' curves only. 

Therefore when there is no play is possible after the interruption  the VJD method not 

requires the use of the 'target' resources in the estimation of resources available to each 

competing teams. As a consequence, the resources for the similar quantity of next overs 

are different for a given situation (given u, w and S).   

4.4 Bhattacharya’s version of the D/L method for T20I 

Bhattacharya et al. (2011) claim that the Duckworth-Lewis method is not suitable for 

Twenty-20 International (T20I) cricket. Their claim was based on a few real examples 

where the revised targets, by means of their method, seem to be better. However, they 

could not justify theoretically or empirically for large set of data that how such 

improvements are achieved in those examples. They proposed an independent resources 

table that could be used for T20I cricket. In this version of D/L method the resources 

table is estimated by non-parametric way for Tewenty-20 cricket.     

We identify two major shortcomings of the Bhattacharya's version of the D/L 

method. First, the method does not account for the well above average runs scoring 

situation. Second, like the VJD system, this method also does not satisfy the second and 

fourth desirable properties. Figure 4.3 shows the over-by-over runs value,    , as 

calculated from the resources table given in Bhattacharya et al. (2011) for S=150.  
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Figure 4.3 Plot of next over runs value, as calculated by Bhattacharya’s version of the D/L 

method for a team batting second and chasing a target of 150 in T20I cricket. Top solid line 

is for no wicket lost and bottom dashed line is for nine wickets lost 
 

We note that Bhattacharya's version of the D/L resources is estimated under the two 

constraints: the resources must be non-decreasing with respect to overs remaining, and 

the resources must be non-increasing with respect to wickets lost whilst no constraint is 

placed on the resources allocated to the (N-u)
th

 over. Consequently, the erratic and 

unintuitive behaviour of the over-by-over runs value shown in Figure 4.3 results. 

4.5 Stern’s adjusted D/L method 

Stern (2009) proposed an adjusted Duckworth-Lewis method for resetting targets 

following interruptions in limited overs cricket. He proposed an adjustment to the D/L 

resources if used for estimating team 2's resources. In contrast to the Duckworth-Lewis 

remaining resources, Stern's adjusted remaining resources are given by  

    (     )     (     (     )) 4.6 

where    (     ) is the remaining resources as calculated by the Duckworth-Lewis 

method, and   is the beta cumulative distribution function with parameters  ( ) and 

 ( ) to be estimated, and are given in Stern (2009), by 

  ( )                and  ( )              4.7 
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where   is the match factor of the Duckworth-Lewis method and could be estimated as 

we presented in the section 3.5.2.   

 Our experimentation lead us to believe that Stern's adjustment with the D/L method 

results in more unintuitive behaviour of the runs scoring pattern during the second 

innings. Figure 4.4a shows how the runs awarded for the loss of the (N-u)
th

 over do not 

behave intuitively with respect to as innings progress. For example, as shown in the top 

curve of the Figure 4.4a, given no wicket lost, the next over runs value is decreasing with 

respect to the progression of the innings. This is an undesirable property of Stern's 

adjusted method.  

 
Figure 4.4  (a) The next over runs value for each given w=0 (topped line),1,..,9(bottom line) 

and (b) The average change in the runs value of consecutive overs for given w=0,2,4 , using 

the Stern's adjusted D/L method, for a team batting second given S=250  
 

Moreover, the change in the over-by-over expected runs value is unreasonably more 

rapid in the Stern's version of the D/L as compared to the existing D/L method. This is 

especially evident during the final stage of the second innings (see Figure 4.4b in the 

region       ) . As a consequence, for example, a team which has lost five wickets 

is compensated with 12.6 runs for the loss of the 49
th

 over, and this rises to 22.4 runs for 

the loss of the final over. However, for five wickets lost, the observed average runs 

scored in the 49
th

 and 50
th

 overs are 10.6 and 10.3 respectively. These means are based 

on 99 and 86 observations respectively. Hence, we believe that when compared to Stern's 

adjusted D/L method, the existing Duckworth-Lewis method better represents the scoring 

patterns.   
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4.6 Iso-Probability (IP) method 

Preston and Thomas (2002) were the first authors to consider the idea of resetting 

targets so that the match outcome probability is remained same before and after an 

interruption. After Preston and Thomas, Carter and Guthrie (2004) present a method 

based on this idea, and claim that their  probability based method resets targets for the 

team batting second in interrupted cricket matches better than does the Duckworth and 

Lewis (1998) method. In response, Duckworth and Lewis (2005) demonstrate that the 

Carter and Guthrie (2004) approach for resetting targets produces contradictory revised 

targets in similar situations. To see this, we overview the subsequent example as given in 

Duckworth and Lewis (2005). 

Suppose on two adjacent grounds A and B, team 1 has scored 250 runs in fifty overs. 

Let, on both grounds the overs be reduced to forty overs following an interruption after 

team 2 has batted for twenty overs and have lost three wickets. Suppose on ground A 

team 2 scores 120 whilst on ground B team 2 scores 50 runs at the time of interruption. 

The IP method meant on ground A team 2 is awarded 23 runs for the loss of ten overs, 

whilst on ground B the awarded runs for team 2 are 35 for the loss of ten overs. Hence 

despite these being similar situations, that is the team batting second is chasing the same 

target, the stage of the innings and the number of wickets lost for team 2 are same, the IP 

method compensates team 2 with more runs on ground B.  

In response to the Duckworth and Lewis (2005) critical analysis, Carter and Guthrie 

(2005) extended the example and assume ground C with the same situation as of ground 

B, but the team batting first (team 1) has scored 180 instead. They argued that in such 

situation the Duckworth and Lewis (1998) compensates team 2 with 22 runs which is 

different from ground A and B. Table 4.1 shows the summary of  resetting targets for 

each A, B, and C grounds using the D/L and IP approaches.  

We believe that runs should have a different value when chasing different targets. 

For example, consider the above hypothetical example, we believe that the 22 runs 

relative to the 180 runs target on ground C should not have significantly different value 

to the 30 runs relative to chasing the 250 runs target on grounds A and B. For example, 

the proportion of runs that team 2 is compensated with, as compared to the target runs are 

same on all three grounds by means of the D/L method. However, using the IP method 

these runs proportions are different on all grounds of A, B, and C. 
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Table 4.1 Runs award with corresponding resources lost (in brackets) to the team batting 

second for the lost of next ten overs interruption after playing first twenty overs on each A, 

B, and C grounds using both the Duckworth-Lewis method and Iso-Probability methods.  

Ground 

S, team 1's 

total runs 

Position of the team batting 

 second at the time  of  

interruption (runs/wickets) 

Runs awarded to team 2 

for the loss of 21-30 overs 

D/L method IP method 

A 250 120/3 30 (12%) 23 (9%) 

B 250 50/3 30 (12%) 35 (14%) 

C 180 50/3 22 (12%) 23 (13%) 
 

Moreover, it is noted that in the IP method the runs awarded to team 2 for the next 

interrupted overs are inversely proportion to runs scored so far in the second innings. For 

example, as shown in Table 4.1 that using the IP method meant a team chasing a target 

250 and lost three wickets in the first twenty overs, is awarded with more runs for the 

next ten overs interruption when team 2 scores fifty (35 runs awarded chasing 250 target 

runs), as compared to the runs award to team 2 for the same interruption but scores 120 

(23 runs are awarded chasing 250 target runs). This is somewhat counterintuitive; 

normally it is expected to perform better in the remaining innings, if the team is 

performing well so far. On the other hand the Duckworth-Lewis method is independent 

of how many runs team 2 has scored at the point of an interruption, but rather it depends 

on how many overs are remaining, how many wickets have already been lost and what is 

the target. 

Apart from the shortcomings that are identified in the IP method of Carter and 

Guthrie (2004), this method was not adopted by official cricketing authorities; therefore 

we do not further investigate its appropriateness for resetting targets in interrupted 

limited overs cricket matches. However, future research might be of interest where this 

method is tested for the standard properties we have identified (see section 4.2) for a 

method to be used as resetting targets following cricket interruption.  

4.7   Summary  

This chapter is started with the identification of four desirable properties for a 

method to be used to revise targets following interruptions. The existing Duckworth-

Lewis method is compared with some high profile alternatives that are existed in 



35 

 

literature. It is shown that the existing Duckworth-Lewis method is a more viable 

solution for resetting targets following an interruption when compared to other, high 

profile, resources based methods proposed in the literature. 

 Firstly, the VJD system of Jayadevan (2002) is investigated. With the help of the 

graphical demonstration, it is shown that the second and fourth desirable properties are 

not satisfied. Further, the VJD system produces contradictory results. It is argued that the 

contradictory behaviour of the VJD system can be resolved by discarding the 'target' 

resources table, and only the 'normal' resources table is used for estimating each team 

available resources. By doing such modification in VJD system, the method would 

reduce to the D/L existing approach for resetting targets.  

Secondly, Bhattachary's version of the D/L method for T20I is examined and 

graphically it is demonstrated that the third and fourth desirable properties are not 

satisfied by this method. Further, it is argued that this version of the Duckworth-Lewis 

method does not account for the well above average runs scoring situation. As a result of 

these deficiencies, we believe that estimating the resources for D/L method in Twenty-20 

cricket using the Bhattachary‟s approach is not appropriate.   

Thirdly, the adjusted Duckworth-Lewis method proposed by Stern (2009) is 

analyzed critically. The results are evident that the runs scoring pattern in the second 

innings become more unintuitive after the Stern's adjustment to the D/L resources for the 

second innings. For example, the rate of change in over-by-over resources becomes 

extremely rapid during the final ten overs of the innings.  

Finally, the Iso-Probability (IP) method of Carter and Guthrie (2004) is compared to 

the Duckworth-Lewis method. It is argued that the IP method for resetting targets 

produces different results in similar situations. Further, it is noted that the number of runs 

a team compensated with (after an interruption to play) is inversely related to the team 

performance (in term of runs scored) so far. Consequently, the interruption to play may 

have an advantage to a batting team who is performing poorly until the interruption. It is 

to be noted that we do not further investigate the probability preservation method, as the 

official cricketing authorities, for example the International Cricket Council, have not 

adopt it. However, future research might of interest where this method is tested for our 

identified desirable properties.    
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CHAPTER 5 A MODIFIED DUCKWORTH-LEWIS METHOD 

In this chapter, we present a modified Duckworth-Lewis method for adjusting 

targets, for the team batting second, in an interrupted limited overs cricket. The key 

modification is to propose an improved alternative model for estimating a team‟s 

resources. Our newly proposed model provides a superior fit to data. Further, we 

demonstrate graphically that the proposed model has an improved intuitive runs scoring 

pattern for limited overs cricket. Some of the contents of this chapter are published in 

McHale and Asif (2013). 

5.1 Introduction 

The Duckworth-Lewis (D/L) method for adjusting targets in interrupted limited 

overs cricket matches is widely accepted as the fairest method available and is a great 

success story of operational research and applied statistics in practice. Despite its 

widespread use, there remains some doubt about the appropriateness of the D/L method. 

Firstly, it is because controversial adjusted targets continue to occur. Secondly, with the 

advent of Twenty-20 cricket, several stakeholders, including players and coaches have 

questioned whether a further adjustment should be made to the D/L method to adapt it to 

this shorter format.    

In the next section, we identify issues related to the existing Duckworth-Lewis 

method. Section 5.3  describes a new proposed model for estimating resources available 

to each team. In section 5.4 avenues for future research in the D/L method is discussed. 

The summary of the chapter with some concluding remarks are given in section 5.5.  

5.2 Issues in Duckworth-Lewis method 

The Duckworth-Lewis method is widely accepted as a fair approach for dealing with 

interruptions in limited overs cricket. However, we believe there is a possibility to 

improve the latest version of the D/L method. Here we identify some issues in the 

scoring pattern inferred by existing D/L model.  

Firstly, using the nine estimated parameters (one for each w, w>0) has consequences 

on the effect of wicket lost on the remaining runs. For example, we examine the expected 

runs value of each wicket partnership, as defined by      (   )   (     ) , for 



37 

 

the D/L model at some given stages of the innings. Figure 5.1 is the graphical 

demonstration of the behaviour of the expected runs value loss in the remaining innings 

for lost of the current wicket, for each given             overs remaining. It can be 

seen that the first desirable property (see section 4.2) is satisfied by the existing 

Duckworth-Lewis method. However, the erratic pattern that is evident for the expected 

runs value lost with respect to successive wickets has some unwanted consequences. For 

example, until around the five overs left point (first forty-five overs), the second wicket 

partnership is valued with fewer runs than the first and third wicket partnerships. 

Similarly, the fourth wicket partnership is valued with fewer runs than the third and fifth 

wicket partnerships. In brief, for each given stage of an innings the relative importance of 

wicket partnerships is unintuitive.   

 

Figure 5.1 : The plot of ΔZw, expected runs lost in the remaining inning for the lost of 

current wicket for u = 50, 45,..,5 using the D/L model for  λ =1 

 

Secondly, as a consequence of the exponential type function for the D/L method, the 

rate of change in over-by-over (or ball-by-ball) expected runs value, as measured by   

                (where,      (   )   (     ) ), increases exponentially 

regardless of the situation. Figure 5.2 shows the curves of       for             . 

Hence, the D/L model implies that irrespective of the number of the overs remaining and the 

number of wickets lost, the batters are expected to score at an ever increasing run-rate. 
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However, suppose a team has two overs remaining and has lost no wickets. Averaging all 

other factors, for example the quality difference in two bowlers, the two batsmen are 

most likely already batting at maximum capacity and it seems unreasonable to expect 

them to score at an ever-increasing rate.  

 
Figure 5.2 Plot for expected additional runs value, -Δ


Zu, against the stage of the innings, u 

overs left, for w=0, 2, and 4, using the D/L model in equation 3.1 

 

Thirdly, we believe that the decay towards the asymptotes,    ( ), is very rapid for 

the D/L model. As a consequence, in some situations, particularly when a team has lost 

wickets in the early stage of the innings, losing overs provides very little (sometimes 

zero) compensation and hence the revised target will remain unchanged. For example, 

suppose a team is chasing a target of 250 and has lost six wickets after five overs. The 

existing D/L model provides almost no compensation (actually it provides 0.55 runs) to 

the team if it is deprived of the next ten overs. With the advent of longer batting line-ups, 

it may be the case that this level of compensation is no longer reasonable. 

Finally, we believe that the method of calculating par score, defined in equation 2.1, 

for the team batting second should be independent of  ( ). Duckworth and Lewis 

(1998) argue that in situation when team1's resources, R1, is greater than team 2's 

resources, R2, then the direct scaling results in unfair revised targets. We believe that this 
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is because of how the mean remaining runs are modelled and not because of direct 

scaling of the resources available to each competing teams in a match.  

5.3 A new model for the D/L method 

We propose an improved version of the Duckworth-Lewis method, which uses an 

alternative model for the mean remaining runs. This is done in stages, first we search for 

a model for  ( ) so that the wicket lost effect on the remaining runs is smoothed and 

intuitive. Next we developed a different model for  (   ) 

5.3.1 Model for the F(w) 

In the Duckworth-Lewis model, the function  ( ) is interpreted as the proportion of 

the mean remaining runs in hypothetically infinite overs remaining given that w wickets 

have already been lost. In order to satisfy the third desirable property for a method (see 

section 4.2),  ( ) should be a positive non-increasing function of w and intuitively 

should range from 0 to 1. We note that the properties associated to function  ( )  are 

similar to a truncated survival function. Therefore, we experimented with some survival 

functions. These are based on the Cauchy, Gamma, Negative Binomial, Normal, 

Geometric, and , Weibull distributions. However, the survival function based on a 

truncated normal distribution gives a superior fit to the data for the Duckworth-Lewis 

model. The function  ( ) can be written as,  

  ( )  
 (         )   (        )

 (         )   (        )
 5.1 

where    is the normal cumulative distribution function, and             are the location 

and scale parameters respectively. We refer the D/L model using equation 5.1 for  ( ) 

as Adjusted D/L model.   

We note that using a smoothed  ( ) does not improve the goodness-of-fit of the 

model, but of course, the main objective for using a smoothed  ( ) function was not to 

improve the goodness-of-fit, but to produce a more intuitive and well-behaved wicket 

lost effect on the remaining runs. Figure 5.3 shows the expected runs lost in the 

remainder of innings for the loss of current wicket using the Adjusted D/L model. It is 

noticeable that in contrast to the wicket lost effect in the Figure 5.1, the wicket lost effect 

in Figure 5.3 is well behaved and more intuitive. Further, we note that using equation 5.1  

in the D/L model reduces in the number of parameters to be estimated. 
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Figure 5.3 The plot of ΔZw, expected runs lost in remainder of innings for the loss  of 

current wicket at u = 50 (top line), 45,..,5 (bottom line) overs-remaining stage, using the D/L 

model for our proposed F(w) in equation 5.1 

 

Finally, as can be seen in Figure 5.3 that for each number of wicket lost the expected 

runs lost in the remaining innings decreases as the innings progresses. That means that 

even after smoothing  ( ), the method still satisfies the fifth desirable property. 

However, the relationship between 'expected runs lost in the remaining innings' and w, 

wickets lost, is not only smoothed for each u stage of the innings, but also the variation in 

the shape of relationships with respect to the progression of an innings become more 

intuitive. For example, it can be seen that in the final stages of the innings (for example, 

u=10 and 5)  the runs value lost in remaining innings for lost of the top order wicket 

partnerships is smaller, as compared to the lower order wicket partnership. This is 

intuitively reflects a common strategy of limited overs cricket. For example, in limited 

overs cricket normally a team with enough wickets in hand will play aggressively in final 

stages of an innings as the risk/reward payoff is attractive during final stages compared to 

the early stages of an innings.   

5.3.2 Model for the Z(u, w)  

Having identified an objective way to obtain a smoothed  ( ) that produces a well-

behaved function, we now propose an alternative functional form for  (   ). 
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Cumulative distribution functions provide a wide range of curves that can be used to 

model  (   ) for given w. Since the distribution functions are positive non-decreasing, 

the fundamental shape of Figure 3.1b can be preserved. This implies that the first 

desirable property for the new model will be satisfied. In regards to the second desirable 

property, we need a model such that its second order derivative with respect to u should 

be negative. Here again we have wide range of cumulative distributions of which the 

second order derivative remains negative in the positive range, for example exponential 

distribution. The curves need to be truncated at or above zero so that the domain is the 

positive real line. We note that using the exponential cumulative distribution function 

leads to the derivation of the existing Duckworth-Lewis model.  

In regards to overcoming the second issue (as discussed in section 5.2) in the D/L 

model, we note that it is because there is no inflection point in the curves of   
  in the 

D/L exponential type model. In other words for the D/L model for any given w, the 

second order derivative of  (   ), with respect to u, is a maximum for u=0 (see Figure 

5.2 which reflects the shape of   
   for w=0, 2, and 4 ). It is to be noted that the point of 

inflection is a point in a monotonic curve at which the curve changes from concavity to 

convexity and vice versa. Hence, the second issue can be resolved if we choose a density 

function which has a point of inflection in its positive range. For example, there exists  

point of inflections for Normal and Cauchy distributions. Finally, the third issue can be 

resolved by selecting the distribution with a tail heavier than exponential distribution.   

We experimented with several cumulative distribution functions, including the 

Normal,   ex-Gaussian, t-distribution, Gamma and Cauchy distributions. The following 

model, based on the Cauchy distribution not only overcame the shortcomings of the D/L 

model, but also provided a better fit to the data. We propose that the average number of 

runs scored in the remaining u  overs once w  wickets have been lost be given by 

  (   )     ( ){
     (     

   ( )
)       (    

   ( )
)

 
 
      (   

  
)

} 5.2 

 where                         are the model parameters. The function 

 ( ) is as described in section 5.3.1. In contrast to the exponential type D/L model, our 

proposed model might be referred as arc-tangent type model for the mean remaining 
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runs. We call our proposed model in equation 5.2  a modified form of the D/L model or 

simply a modified D/L model.    

In contrast to Figure 5.2, the rate of change in over-by-over expected runs value is 

graphically demonstrated in Figure 5.4. It reflects the curves of    
   for our proposed 

model in equation 5.2, for w=0, 2, and 4. Strictly speaking, Figure 5.4 shows the curves 

of       , the additional expected runs value allocated to the next over compared with 

the current over, for 0 (solid line), 2 (dashed line) and 4 (dotted line) wickets lost, for our 

modified D/L model of  (   ). We show these curves as the negative of      , so that 

the plot provides the change in runs allocated to consecutive overs as the innings 

progresses from left to right. It is noticeable that for each given number of wickets lost 

the rate of change of over-by-over runs value, with respect to the progression of the 

innings, tends to decline at some point of the innings. For example, keeping all other 

factors constant and given two wickets lost, the change in value of consecutive overs 

tends to decline after about forty overs (u=10)  (see the dashed line in Figure 5.4).  

       
Figure 5.4 The plot for expected additional runs value, -Δ


Zu , against, u overs left, for w=0, 

2, and 4, using our modified D/L model in equation 5.2 

 

Mathematically, it can be shown for our model that for each given w, there exists a 

point of inflection in the curves for   
 . Further, Figure 5.5 shows the curves of expected 

next over runs, measured as      (   )   (     ), that reflect the shape of    
  for 
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the adjusted D/L model (Figure 5.5a) and for our modified D/L model (Figure 5.5b). It is 

seen in Figure 5.5b that for each of the curves, one associated to each w, there exists a 

point at which the curves of the over-by-over runs-value changes from concavity to 

convexity as u approaches to zero. However, such runs scoring pattern is not observed in 

Figure 5.5a for the D/L model.  

 
Figure 5.5 A plot of expected runs value , ΔZu, for the next over against overs left, u, for 

w=0, 1,..,9  using, (a) Adjusted D/L model (b) Modified D/L model. 
 

Moreover, once again it is demonstrated in Figure 5.5, that how our model allows for 

the rate of increase of the over-by-over runs to slow down for low wickets lost with few 

overs remaining as overs remaining decreases. Similarly, as seen in Figure 5.5b, there is 

a slower decay towards asymptotes (see the curves from right to left) that implies a 

heavier tail, which is especially evident when there are many wickets down in early stage 

of the innings. 

5.3.3 Goodness of fit 

In regards to the goodness of fit of the two models: the adjusted D/L model and our 

modified model, it is observed that our proposed modified D/L model has a lower 

weighted sum of squared errors (WSSE). Recall that weighting function accounts the 

heteroskedasticity and consistency of the mean remaining runs. Table 5.1 shows the 

estimated parameters and goodness-of-fit measures for both of these models. Further, 

Figure 5.6 show plots for observed mean remaining runs, and the fitted lines for the  D/L 

model (solid lines) and our modified D/L model (dashed lines). In addition to the smaller 

WSSE, it can also be observed visually in Figure 5.6 that our modified D/L model more 
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closely resembles the data. This is especially evident in plots (d), (e), and (f) of the 

Figure 5.6.  

 

Table 5.1 Estimated parameters for Adjusted and Modified Duckwort-Lewis models.  

Parameter Adjusted D/L model  Modified D/L model 

  Z0 291.9 340.0 

0, (=1/b) 26.69 22.64 

 NA -1.46 

1 6.027 23.66 

 0.896 -33 

WSSE 1735.9 1607.1 

 

 

 

     

   
Figure 5.6 Plot of Z(u,w) against u for given (a) w=0, (b) w=1 and (c) w=3 (d) w=5, (e) w=7 

and (f) w=9, using  the adjusted D/L model (solid lines) and modified D/L model (dashed 

lines). The circles represent the observed mean remaining runs, denoted by x̄(u, w).       
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Interestingly, although the choice of the functional form of  ( ) changes the WSSE 

a great deal for the original D/L model, we found that it did not have large effect on the 

WSSE for our proposed modified D/L model. For example using different  ( ), for 

example as presented in equation 5.3,  in the modified D/L model gives a WSSE  equal to 

1606, whereas using the same  ( ) in the  D/L model gives a  WSSE of 1851. Hence, 

changing the function  ( ) in our modified D/L model reduces the value of the error 

function, WSSE, by 1, whilst for the D/L model it is increased by 116.  The function, 

 ( ), based on the Weibull distribution is given by, 

  ( )  
 

 (   
⁄ )

  

  
 (  

  
⁄ )

  

   
 (  

  
⁄ )

  
 5.3 

where the parameters,       and       , are scale and shape parameters associated to 

the Weibull distribution. We experimented with several functions for  ( )  and in 

regards to the goodness-of-fit, it is noted that the existing D/L model is highly sensitive 

to changes in the functional form of  ( ). However, in contrast, we note consistency in 

the goodness-of-fit when experimenting with different functions,  ( ), in our modified 

D/L model in equation 5.1.    

   Model adjustment for high scoring matches

Having developed a model which provides an improved fit to the data, and has more 

intuitive properties than the D/L model, we now incorporate an adjustment to our 

proposed modified D/L model that accounts for matches with well above average first 

innings totals. Using the same notation and interpretation of Duckworth and Lewis 

(2004), we introduce a match factor parameter, to our proposed modified D/L model.  

As Duckworth and Lewis (2004) assume, in high scoring matches  the relationship 

between Z and u tends to become linear and the runs value of each wicket tends to zero. 

To understand this latter point, consider a match in which a team has 50 overs to bat and 

is chasing a target of 1800, so that six runs is required from each ball in the innings. This 

requirement is constant throughout the innings so that each ball has a constant value to 

the batting team irrespective of the number of wickets lost. In fact, for well above 

average run scoring matches the D/L method tends to approach the run-rate method.  
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In order to account for this effect, we scale up the parameters  and Z0 in equation 

5.2. This scaling allows the relationship between  (   )  and u to be more linear in the 

range 0<u≤50 for well above average runs. Hence, the model in equation 5.2 is altered to 

the following model given by    

 (     )     
 ( )   ( ){

     (    

    ( ) ( )
)       (   

    ( ) ( )
)

 
 
      (  

  
)

}  5.4 

 

We estimate the parameter match factor ( )  in a similar fashion as we described in 

section 3.5.2 for the D/L model. Further,   depends on team 1's total runs, S. Figure 5.7 

shows the visual demonstration of   curves for different values of  ( )   Note that 

we use the function  ( )      ( ), the same as for the existing D/L method. Figure 

5.7 shows how  , the mean remaining runs, changes for different first innings total runs, 

S. We note that for large S the relationship between   and u tends to linear.   

 
Figure 5.7 Modified D/L model, mean remaining runs (a) against u for w=0, and (b) against 

w for u=25. The solid lines are for (246.5)=1 , the dashed lines are for (350)=1, and the 

dotted lines  are for (450)=1.172  
 

5.3.5  Testing the model adjustment  

In ideological point of view, the variation in the resources pattern with respect to S is 

intuitive. However, to our knowledge no statistical evidences are existed in literature that 

justifies the ad hoc addition of the parameter λ to the D/L model. To show that the 
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introduction of the parameter  significantly improves our modified D/L method, we do 

the following numerical experiment.  

 Consider LOI matches, assume    (   ) is team 1‟s runs when u overs are remaining 

and w wickets have been lost, where,           (   ). Let  (   ) be the number of 

innings that are not ended by the time u overs remain given that w wickets have already 

been lost (see Table 3.1). Suppose in the i
th

 match,  ,,ˆ wuSi  is team 1's total runs, as 

predicted by our modified D/L model with u overs remaining and w wickets lost. We 

estimate  for each i and each given u and w, using the methodology described in section 

3.5.2 for the modified D/L model. The projected runs is thus given by  

  ̂ (      )    (   ) *    (      )+⁄  5.5 

where   (      )   (      )  (      )⁄ , is the remaining resources. Now let Si be 

the actual runs the team scores in the completed first innings. Than for each given u and 

w, the mean absolute error is written as   

    (   )  ∑ | ̂(      )     |
 (   )

   
 (   )⁄  5.6 

To estimate the total error we use a weighted sum of the mean absolute error (WSMAE) 

       ∑ ∑  (   )   (   )
  

 5.7 

where  (   ) is defined in equation 3.6. Table 5.2 gives WSMAE for ODI and T20I 

matches with forecasts based on the model with and without  (which is equivalent to 

setting  = 1). The addition of the  parameter clearly improves the forecasting power of 

the modified D/L model since the WSMAE is considerably lower for both ODI and T20I 

cricket. 

 

Table 5.2 Goodness of fit measures for forecasted innings totals with and without in 

our newly proposed modified Duckworth-Lewis model. 

Error function 
Without λ, 

using Eq. 5.2 

With λ, using 

Eq. 5.4 

Number of 

matches 
Number of forecasts 

WSMAEODI 5311.1 3039.6 458 19844 

WSMAET20I 966.9 823.3 191 2844 
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Lastly, we address the issue that the D/L method uses an ad hoc way of calculating 

the par score, T, in the situation when team 1's available resources are greater than team 

2's total available resources (see section 5.2). We note that in addition to the empirical 

evidence for using λ, such a modification corrects the shortcoming of revising a target by 

direct scaling. Consider the example given by Duckworth and Lewis in which a team 

batting first scores 80 runs for the loss of no wickets in 10 overs when play is interrupted 

and the match is reduced to ten overs per side. For this example, using the D/L model 

gives           and          . Hence, the revised target              

            , an impossible high target in just ten overs. As a result of this, 

Duckworth and Lewis (1998, 2004) suggest that in situations when team 2‟s available 

resources are greater than team 1‟s available resources, the revised target can be 

determined by     (     ) ( ). Since, in the given example,      , therefore  

     (             )             . 

We believe that the above shortcoming is not a consequence of using direct scaling, 

but rather, it is because no adjustment was made in the Duckworth and Lewis (1998) 

model to account for high scoring matches. For the above example our estimate of  is 

 Using this value for our proposed model, gives                        , 

and therefore, the revised target is                         , which is a more 

acceptable revised target in ten overs. Hence, given the addition of the λ parameter to 

take account of high scoring matches, there is no need to use an ad-hoc scaling as 

suggested for D/L method in equation 2.1. Thus, we use  

         ⁄                        5.8 

to calculate par scores for the team batting second in interrupted matches. 

5.4 Modified D/L model and future research work 

Our new model overcomes some shortcomings of the existing D/L model, however 

there remain some issues with the model that might be addressed in future research. 

 Firstly, like the existing D/L model, our modified model does not account for 

fielding restrictions during the power-play overs. As a consequence, a team that does not 

take the batting power-play before the interruption would be in an unfavourable situation 

as compare to a team which did take their power-play before the interruption.   
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Secondly, similar to the existing D/L model, the modified D/L model takes account 

of the order of the wicket partnerships, but does not account of the order of the striker 

and non-striker batsmen. Consequently, in some situations, an interruption to play can be 

advantageous and in some cases, it can be a disadvantage to the batting team. For 

example, let a team has lost eight wickets and then be deprived of the final five overs. 

Using the D/L method (or even the modified D/L method) means that the revised target 

is independent of the orders of the two batsmen. Clearly, in such situation the batting 

team would get advantage if the two batsmen are playing at numbers 9 and 10, and 

would be in unfavourable situation if the batsmen were at positions 1 and 10.  Future 

research work might focus on developing a model that differentiates between such cases.    

5.5 Summary 

This chapter begins with identifying and highlighting issues related to the existing 

Duckworth-Lewis method. First, it is graphically demonstrated that for each given stage 

of an innings the relationship between wicket-resource-value and wicket lost is non-

smoothed and unintuitive in the current D/L method. Second, for a given number of 

wickets lost the rate of increase in the runs value of consecutive overs is exponentially 

increasing irrespective of the situation. Third, the decay towards the asymptotes are very 

rapid, and as consequence a zero runs value is awarded for the loss of some overs during 

an innings. Finally, it is argued the par score should always be calculated by the direct 

scaling of each teams available resources, and therefore the revised target should be 

independent of G(N), the average first innings total runs.   

An improved version of the Duckworth-Lewis method is proposed that uses an 

alternative model to estimate the resources. The model is based on the Cauchy 

distribution and is more representative of the data. We refer to the Duckworth-Lewis 

method that uses our newly proposed model as the modified Duckworth-Lewis method. 

Further, it is shown that our proposed model provides a superior fit to data and, in 

addition, has a more intuitive behaviour in regards to the runs scoring pattern of the 

limited overs cricket. Further, we note that the modified D/L model is more flexible 

when compared to the existing D/L model in that, if the existing D/L model better 

reflects the runs scoring pattern in cricket, our modified D/L model would achieve the 

same, however the reverse is not necessarily true.  
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 Moreover, it is shown empirically that it is appropriate to take account of high 

scoring matches in a similar way to Duckworth and Lewis (2004) do for their original 

model. We test the forecasting accuracies of our proposed modified form of the D/L 

model with and without the ad hoc adjustment to the model. It is observed that the 

addition of an extra parameter, λ, to the model improves the predictive accuracy of first 

innings total runs. Hence, it is argued that adjustment in the model for well above runs 

scoring situation is justifiable, not only on ideological point of view, but also on 

statistical results. Finally, we highlight future work for further improvement in the 

Duckworth-Lewis method.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 

 

CHAPTER 6 IN-PLAY FORECASTING IN CRICKET AND 

GENERALIZED LINEAR MODELS  

In this chapter, a literature review on forecasting in cricket is given. Further, the 

class of generalized linear models (GLMs) is briefly described. The GLMs provide basis 

of our own in-play dynamic logistic regression model. Some model diagnostics are also 

described and we use these later for the model identification in CHAPTER 7.      

6.1 Introduction 

Unlike soccer, American football, baseball and tennis, relatively little work has 

been published on forecasting in cricket. This seems especially strange given there is 

known to be a huge betting market on cricket. The work that has been done on 

forecasting in cricket has largely been concerned with pre-match forecasting. For 

example, Brooks, Faff, and Sokulsky (2002) propose a method to estimate test match 

outcome probabilities (pre match) using an ordered response model. However, in recent 

times, the growth in the popularity of in-play betting in all sports, where punters place 

bets during a game (or match), has meant that models that enable forecasts to be made as 

the game progresses are in high demand. Cricket is a sport that particularly lends itself to 

betting in-play: unlike soccer for example, the discrete nature of the game means 

bookmakers and punters alike have ample opportunity to be active in markets during the 

game and as such, cricket attracts extremely large in-play betting volumes. For example, 

total volume bet during a major One-Day International (ODI) involving Pakistan or India 

is of the order of $1bn.  

Previous chapters of this thesis, have focussed on the problem of interruption to play. 

Indeed, this is mirrored in the academic literature, with several papers appearing 

discussing ways to deal with interruptions in play. Further, a considerable large work in 

literature is also available on strategies to play in cricket. For example, Clarke (1988), 

Preston and Thomas (2000), Norman and Clarke (2007), and, Scarf and Akhtar (2010) 

mainly focus on optimum strategies in cricket. However, there has been relatively little 

work has done that directly focussing on the problem of forecasting. Of the work that 

does exist, Preston and Thomas (2002) proposed a method to estimate match outcome 

probabilities using dynamic programming techniques. Allsopp and Clarke (2004) 
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forecast teams total runs in an innings to measure each team‟s relative strengths. 

Similarly for test cricket, using a multinomial logistic regression model, Scarf and Shi 

(2005) forecast match outcome probabilities with the specific aim of helping team 

management to decide on the most appropriate time to declare in an innings. Akhtar and 

Scarf (2012) further extend this work and developed in-play, session-by-session, 

forecasting models. The work most related to ours is that of Bailey and Clarke (2006) 

who developed a forecasting model for limited overs cricket to predict the margin of 

victory before the match begins, but, with the help of Duckworth and Lewis (1998) 

method, update these predictions in an ad hoc way whilst the game is in progress. 

In the next section we give overview about the Bailey-Clarke and Akhtar-Scarf 

approaches to estimate match outcome probability forecasts in-play. Section 6.3 

describes the basic idea of generalized linear modelling. In section 6.4 some standard 

model diagnostics are described. Lastly, the summary of the chapter is given in the 

section 6.5.  

6.2 Bailey/Clarke and Akhtar/Scarf approach for in-play forecasts  

Bailey and Clarke (2006) propose a method, the B/C method, of estimating in-play 

probabilities while the game is in progression. They proposed two regression models. 

One regression model forecasts the margin of victory (MOV), and another forecasts the 

team total runs (TTR) in total pre allotted overs (N) for an innings. The covariates that 

were used in these models are, home venue advantage (a categorical variable), reference 

team past performance against the opposition (difference in the averages), and the current 

form of the team (based on last ten matches). In case when team team 2 wins the match, 

the value of the two response variables are than be calculated using the Duckworth and 

Lewis (1998) model. These regression models only account the pre-match effects and 

therefore can be considered as pre-match forecasting models. Further, to estimate the in-

play MOV forecasts they use the following equation,   

                                                        6.1 

where the in-play TTR is the predicted team total runs that are estimated using the 

Duckworth-Lewis model. From equation 6.1, it is clear that the only term that varies with 

respect to the progression of the innings is the Duckworth-Lewis predicted team total 

runs. The other two terms, the pre-match MOV and TTR, remain constant as the innings 



53 

 

progresses. The in-play MOV can further be used to estimate the match outcome 

probability. It is to be noted that the negative value for MOV indicates the reference team 

(the batting team) loses the match. In regards to the in-play probability forecasts, Bailey 

and Clarke (2006) suggest dividing the predicted MOV by its standard error and 

comparing with the standard Normal distribution. However, it is unclear how the 

standard errors of the in-play MOV can be estimated.  

There are two main issues remaining with Bialey-Clarke approach of the in-play 

forecasts. First, the in-play estimated probabilities are updated, with respect to the 

progression of the game, by an ad hoc way. Second, the effects of various factors, runs 

scored for example, on the in-play MOV are constant throughout the game.   

Akhtar and Scarf (2012) adopt the approach of fitting a series of independent 

multinomial logistic models for test cricket with response variable (Win/Draw/Loss). 

They estimated 15 separate multinomial logistic models that can be used at 15 particular 

stages of a test match (at the end/start of each session). Such an approach allows the 

effects of the covariates to vary with respect to the session-by-session progression of the 

game. A number of in-play and pre-match covariates are used as predictor in each these 

models. In regards to the pre-match covariates, the win percentage difference (wd), the 

ICC test cricket ratting difference (rd), home advantage (home) and ground effect (g, 

quantified as the proportion matches that were drawn as compared to total matches 

played on the ground) were used. Whilst, regarding the in-play covariates, wickets and 

lead were used that quantify the position of a team prior to a particular session. Further, 

the covariate wickets was transformed into wicket resources (wr). It is noted in the A/S 

method, the relationship between wr and wickets is non-smoothed and static with respect 

to the progression of a test match. We believe that this relationship should account the 

stage of the innings and therefore should vary with respect to the progression of the 

match (This point will be explained further in the section 7.2.2). In addition, we note that 

at any point during a session, the pre-session model of the Akhtar and Scarf cannot be 

used to estimate win probabilities. Rather one has to wait until the session has ended. 

Moreover, if such approach is used for limited overs cricket the non-smoothed variation 

in effects of the covariates can result in unstable probability forecasts in-play (ball-by-

ball or over-by-over).  
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Our approach of modelling for in-play forecasts (described in CHAPTER 7) is 

different to both the Bailey-Clarke (B/C) and Akhtar-Scarf (A/S). Comparing our 

approach of estimating in-play probability forecasts with the B/C approach, we note that 

they fit regression models with continuous response variables; however, we fit binary 

response models that are dynamic in its parameters. Further, unlike the B/C approach for 

in-play forecasting, we do not update the estimated probability in an ad hoc way after 

each ball of the game. Rather, in our dynamic logistic regression model the estimated 

parameters are allowed to evolve smoothly with respect to the progression of an innings.  

In regards to comparing our approach of modelling for in-play ODI cricket with that 

of Akhtar and Scarf (2012) method for test cricket, we note that partially our approach is 

similar to the A/S method. However, unlike A/S approach we do not use a series of 

independent models to forecast probabilities in play, but we use a single dynamic logistic 

regression model to forecast match outcome probability at any point of given ODI 

innings. Further, their 15 models estimate match outcome probabilities at fifteen distinct 

moments during a test match, namely in-between each session. Our two models, one for 

each innings of ODI cricket, can be used to forecast the match outcome probability after 

each ball of the game (from first to last ball of an ODI game).      

6.3 Generalized Linear Model  (GLM) 

Nelder and Wedderburn (1972) generalizes the analysis of the variance model and 

introduces the class of generalized linear models (GLMs). The GLM is an extension of 

the classical linear model that does not require the assumption of normality for 

disturbance term. Further, the predictor in GLM needs not necessarily have to relate 

linearly to the response, but can have linear relationship with some function of the 

response variable. Moreover, it can be applied to categorical and discrete data where the 

classical linear regression model is not applicable (McCulloch & Searle, 2001). 

The generalized linear model is defined as modelling the conditional mean of 

response variable that belongs to the exponential family via a link function. This allows 

for regression modelling for a non-normal and non-continuous response variable with 

some degree of non-linearity in the model structure (Dobson, 2001).  

Trevor. Hastie and Tibshirani (1986) further extend the class of GLMs by 

transforming the linear form of the predictor into the sum of smoothed splines. This class 
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of models is known as generalized additive models (GAMs). Generalized additive 

models usually provide better fit to data as compared to the GLMs. However, it can often 

result in over-fitting problem. Cross-validation techniques facilitate detection and 

reduction of over-fitting. However, generally speaking, GLMs may be preferable to 

GAMs unless the GAM improve the forecasting power significantly for the application 

under consideration (T. J. Hastie & Tibshirani, 1990; Wood, 2006).   

The class of the GLMs can be specified by identifying the three components. A 

random component indentifies the response variable, Y, and its distribution function. A 

systematic component, which identifies the covariates included in the model and a link-

function which relates the mean of the response to the systematic component (Agresti, 

2002, 2007). For instance, consider the match outcome; Y (Win/Loss) is a binary 

response variable. Assuming the binomial distribution, let the probability of a success (a 

win) is denoted by p. Taking the logistic function as a link-function that equates to the 

linear predictor X (vector of covariates with first element as 1 if the model involves 

intercept term). Further, let the response variables are independent, then the class of 

GLMs known as binary logistic models. The basic mathematical structure for such a 

model can be written as   

  (     )   (       )    6.2 

    (
 

   
)       ( )      6.3 

where the function      ( ) is the link function and  is the vector of parameters. Table 

6.1 describes some link-functions that are used commonly in the class of generalized 

linear regression models (GLMs).  

Table 6.1 Some link functions for the GLMs 
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6.4 Model diagnostic measures 

6.4.1 Test the significance of association    

In the literature, there are various standard statistical procedures available to test the 

significance of the relationship between predictor and response variables in regression 

models. For example, D. W. Hosmer and Lemeshow (1980) proposed a procedure that is 

used to test the goodness of fit for the binary logistic model. The test identifies subgroups 

as deciles of the predicted probabilities and compares these with the observed rate. The 

test statistic asymptotically follows the Chi-square distribution (Hosmer and Lemshaw, 

2000).  

Some other methods, for example the Wald test (Wald, 1943) and Log-likelihood 

ratio test (Wilks, 1935, 1938), also test the statistical significance of association in the 

GLMs. These methods are based on the log-likelihood function and are valid for large 

sample sizes. The test statistic for the log-likelihood ratio test is given by  

         (    ⁄ )    (     ) 6.4 

where    and     are the maximum log-likelihoods for the null and candidate models 

respectively. Wilks (1935) shows that LR asymptotically follows the null chi-squared 

distribution. 

6.4.2 The strength of association  

The procedures, as describe in previous section, identify only the statistical 

significance of the associations. However, in practice one needs to know the strength of 

such associations, which are expressed normally in percentages. In the classical linear 

regression modelling, the multiple coefficient of determination (R
2
) provides the 

percentage of explained variability in response variable by the predictor. However, the 

same statistic is not applicable for the models with categorical response variables. 

Therefore, Cox and Snell (1989) proposed the pseudo R
2
, which could be used to 

measure the strength of association in categorical response model. The Cox-Snell statistic 

is based on the maximum likelihood function and is defined for a candidate model as 

    
    (

  

  
)
  ⁄

 6.5 

where,    is the maximum likelihood with all selected covariates, and    is the maximum 

likelihood with only intercept term. The maximum value of Cox and Snell‟s pseudo R
2
 is 
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  (  )
  ⁄ . Nagelkerke (1991) generalizes the definition of the coefficient of 

determination and proposed a Nagelkerke‟s R
2
 which is a modified form of the Cox-Snell 

pseudo R
2
 that ranges from 0 to 1. It is defined as  

 
    

  
  (

  

  
)
  ⁄

  (  )  ⁄
 

6.6 

The Nagelkerke's R
2
, as given in equation 6.6 can be expressed in percentage by 

multiplying it by one hundred. In the broad sense,     
  

 shows the percentage of 

variability in the response variable that is been explained by the predictor. The     
  can 

also be interpreted as the percentage of explanatory power of the candidate model as 

compared to the model with only an intercept term. We will use this statistic to measure 

the strength of the association between match outcome and the covariates during any 

point of the game. 

6.4.3 Model selection 

In statistics, model selection is an important branch of any data analysis. The data 

can be used for modelling in many different ways. So, what form of a model is best 

among the class of other available models? Similarly, if there are many covariates which 

potentially have an effect on the dependent variable, should all of these covariates be 

included to make a model best? A model that is rich enough to explain the relationships 

present in the data, but on the other hand is simple enough to easily explain these 

relationships, is known as a parsimonious model. Many procedures for model selection 

are existed in literature. However, none of them attributed as a best in general. Many of 

these methods are defined in terms of information criterion (IC). The IC is basically a 

score associated with the candidate model that is based on data and complexity of the 

model (Agresti, 2002; Claeskens & Hjort, 2008).  

Akaike information criterion (AIC) (Sakamoto, Ishiguro, & Kitagawa, 1986)  and 

Bayesian information criterion (BIC) of (Schwarz, 1978) and (Akaike, 1977, 1978) are 

the two commonly used procedures that are based on data. Both the AIC and BIC are 

defined in penalised log-likelihood form. Suppose, there is a candidate model C , then the 

AIC is defined as  

    ( )                     ( )       ( ) 6.7 
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whereas the BIC is defined as  

    ( )                     ( )  (    )    ( ) 6.8 

where    ( ) is the length of the vector of parameters,  . The second terms in both 

criterions are referred as penalty terms. Equations 6.7 and 6.8 show that both procedures 

are capable of keeping the balance between  simplicity and complexity (a model with too 

many parameters). The model with largest AIC or BIC value is ranked as the preferred 

model (Claeskens & Hjort, 2008).  

The values of the AIC and BIC are meaningless when looked at in isolation. 

Therefore many authors, for example Agresti (2002) and Congdon (2005) describe the 

procedures as the negative of equations 6.7 and 6.8. The R built-in functions for these 

measures also return the value in similar fashion (R Development Core Team, 2012). 

Therefore, we use these measures in similar way, and would rank 'one' a model with 

smallest value of AIC/BIC. 

There are various advantages and disadvantages that are associated with AIC and 

BIC. The choice of selection between these criterions is subjective. For example, if 

simple model is desirable than BIC is preferred to use as it has greater penalty for adding 

model parameters, provided that sample size is greater than 8 (log 8=2.08). In our 

analysis, the sample sizes are always greater than 8, therefore BIC would always produce 

a simple model when compared to the AIC. Claeskens and Hjort (2008, p.70) stated that 

"the BIC successfully addresses one of the shortcomings of AIC, that the latter will not 

succeed in detecting 'the true model' with probability tending to 1 when sample size 

increases". This property of the model selection criteria is known as consistency. On 

other hand, Claeskens and Hjort (2008) argue that if efficiency is required, the AIC is 

preferable, as it is more associated with precise prediction than BIC. Yang (2005) tries to 

combine the consistency strength of the BIC with the efficiency strength of AIC, but fails 

to do so.  

One of the problems related to the above procedures is to use the same data for 

model fit and model selection criterion. This would especially be an issue if the model is 

used for future forecasts. Therefore, other commonly used methods are Cross-Validation 

(CV) techniques. In such methods, the model with the best forecasting ability is selected 

from the candidate models. In this method, the data is divided into two parts. One part of 

the observations is used for model fit and is known as training set of data. Another part of 
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data is used to assess the model forecasting accuracy and is known as validating set of 

data. The model with the greatest forecasting accuracy among the candidate models is 

considered to be the best model. There are many types of Cross-Validation techniques 

available in literature. However, the Delete-d Cross-Validation (CVd) of Shao (1993) and 

K-folds Cross-Validation (CVKF), as described in  (Trevor Hastie, Tibshirani, & 

Friedman, 2009), are two commonly used techniques.  

Shao (1993) proposes a Cross-Validation method, which he refers as Delete-d Cross-

Validation. In this method, a random sub-sample of size d is deleted from the sample 

data prior to fitting model. The deleted d observations are then used as the validating set 

to assess model forecasting accuracy. The process of sub-sampling is repeated many 

times, and an average prediction error of sub-samples, also known as cross validation 

score, is calculated. Further, Shao (1997) suggests using d= n(1-1/(log n - 1)). 

In regards to the K-folds Cross-Validation (CVKF) method, a sample data are 

partitioned randomly in K folds or clusters. Then each one-fold data cluster is used as the 

validating set whilst the remaining data in K-1 folds are used as the training set. This 

process is continued until all folds are used once as the validating set to measure 

forecasting errors. Once all the K-fold data have been used exactly once as a validating 

set then the value of the prediction error is determined. To get a consistent estimated 

cross validation prediction error, the process of random partitioning of the sampled data 

should be repeated for some number of times. In regards to the model selection using the 

CVKF method, generally a one-standard-deviation rule is used. In this procedure of model 

selection, a most parsimonious model whose cross-validation error is not greater than one 

standard deviation of smallest cross-validation error of a model is than selected. Further, 

the leave-one-out cross validation (LOOCV) is a special case of CVKF model selection 

method, if the number of folds are equal to the size of the sample, n. Typical choices for 

the number of folds are 5 or 10 (Trevor Hastie et al., 2009). 

The question of which of the above four methods is best for model selection is 

dependent upon the purpose of the modelling and the list of candidate models. For 

example, Shao (1997, p.223) argues that the crucial factor that determines the asymptotic 

performance of almost every model selection method is whether or not the candidate list 

of models contain some correct models. Further, if the aim is to use a model as a 

forecasting tool, and to avoid model complexity and over-fitting, it is appropriate to use a 
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Cross-Validation technique. The detailed answer to the question, which method to adopt 

for model identification, is beyond the scope of this thesis. Therefore, we use all the 

above-mentioned methods for our model selections in the next chapter to decide which 

covariates should be included in our final forecasting model.   

6.5 Summary 

This chapter starts with the overview of the work in the literature that mainly focuses 

on forecasting in cricket. It is noted that in limited overs cricket, most of the research 

focuses on interruption and strategy to play. However, some work directly relates to 

forecasting in cricket. Most of it is been related to pre-match forecasting, and little work 

is available regarding in-play forecasting in cricket. For example, Bailey-Clarke and 

Akhtar-Scarf attempt to generate in-play forecasts in ODI and 'test' cricket respectively.  

Further, the generalized linear model (GLM) is overviewed briefly. The GLM is an 

extension of the classical linear model that does not require the assumption of normality. 

Further, in GLM the predictor does not necessarily have to relate linearly to a response 

variable. Moreover, unlike in classical linear regression models, the response variable in 

GLMs might be discrete or categorical.  

Lastly, in this chapter, some model diagnostics are briefly described. These include, 

the Hosmer-Lemshow, and Likelihood-Ratio (LR) tests for significance of association. 

Further, to measure the strength of association between the covariates and response 

variable, some pseudo R
2
 statistics are discussed. The model selection procedures, AIC, 

BIC, and some Cross-Validation methods are also overviewed. Further, the advantages 

and disadvantages of these methods are also briefly discussed.       
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CHAPTER 7 IN-PLAY FORECASTING OF WIN PROBABILITY IN ONE-

DAY INTERNATIONAL CRICKET: A DYNAMIC LOGISTIC 

REGRESSION MODEL  

This chapter presents a model for forecasting the outcome of One-Day International 

cricket matches whilst the game is in progress. This „in-play‟ forecasting model is 

dynamic in that the parameters of the underlying logistic regression model are allowed to 

evolve smoothly as a match progresses. Using our proposed dynamic logistic regression 

(DLR) model not only allows the parameters to evolve smoothly, but also less number of 

parameters are required to estimate as compared to the series of independent models (one 

for each ball of the game). With the help of our DLR models (one for each first and 

second innings), we analyse how the effect of covariates vary with respect to the 

progression of an innings. The model identification is done using the model selection 

methods as discussed in the previous chapter. Further, the forecasting accuracies of  our 

proposed models are assessed using the cross validation approach. We demonstrate the 

use of our model using two matches as examples, and compare the match result 

probabilities generated using our model with those from the betting market. The forecasts 

are quantitatively similar; in fact, the probability forecasts using our DLR models can be 

considered to be 'correct' at an earlier point in the games than the probabilities inferred 

from the betting market. These results we take as additional evidence that our modelling 

approach is appropriate.    

7.1 Introduction 

In regards to in-play probability forecasts, two dynamic logistic regression (DLR) 

models are developed, one for each innings of ODI cricket. Two types of covariates are 

used as predictors in our DLR models. These are referred to as pre-match and in-play 

covariates. In regards to our approach of modelling, first, we identify and fit a series of 

'best' logistic models, one for each ball of the game. For this purpose, we use four 

different methods for model selection. Namely, Akaike's Information Criteria (AIC), 

Bayesian's Information Criteria (BIC), Delete-d Cross-Validation (CVd) method, and K-

folds Cross-Validation (CVKF) methods are used. These model selection methods have 

been briefly described in section 6.4.3. Second, we transform the series of independent 
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logistic models into two single DLR models, one for the first innings and one for the 

second innings.  

In the next section, the data and covariates are described. In section 7.3, we present 

the modelling procedure to develop a dynamic logistic regression (DLR) model that 

forecasts probabilities of match outcome, in-play (ball-by-ball). Section 7.4 describes the 

results for model identification, fits, and diagnostics. In section 7.5, we use two recent 

out-sample matches to compare our predicted probabilities with those of the betting 

market. In section 7.6, we highlight an issue related to our DLR models and possible 

future research in this regards. Finally, we provide a summary of the chapter with some 

closing remarks in section 7.7 

7.2 Data and covariates    

We obtained ball-by-ball data for ODI matches played from January 2004 to 

February 2010 from the Espncricinfo website. We do not include matches, for which data 

were incomplete, or in which one of the teams had played less than five matches, or in 

which play was interrupted due to rain or bad light. In total, we fit our model to data from 

606 ODI matches. In addition to ball-by-ball information, for ground analysis, we use the 

statguru application on the Espncricinfo website to collect summary statistics from data 

for ODI matches from January 1992 to February 2013. 

 We have collected data for a number of variables, which can be used as covariates. 

These covariates are divided into two categories: pre-match covariates (to be measured 

prior to the start of the match) and in-play covariates (to be measured only during the 

play). The subsequent sections explain how the covariates describe the pre-match and in-

play position of a team quantitatively. Further, the intuition of variable transformation is 

also been discussed.  

7.2.1 Pre-match covariates    

Pre-match covariates are those quantitative measures that could be determined prior 

to the start of the game. There are number of factors that might affect the probability of 

match outcome before the play has commenced. For example, home venue advantage, 

winning a toss, day-night effect, team's experience, and team's current form can 

considered as pre-match situation. 
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 In any format of the cricket game, it is a common opinion that a team might have 

home venue advantage if playing on the home ground. It is because the home team will 

typically have played many matches at the home venue, and therefore they are well 

familiar with the home venues condition. For example, considering the ODI matches 

played during 1992-2013, Sri Lanka‟s win percentage on their home ground is about 

70%, which is reasonably higher than their win percentage on „away‟ and „neutral‟ 

grounds that is approximately equal to 48%. Similarly, during the same period (1992-

2013), India‟s win percentages on 'home', 'away', and 'neutral' grounds are 63.2%, 45.2%, 

and 54.6% respectively. Therefore, to account for home venue advantage, we use a 

categorical variable that takes values on home, away, and neutral venues.  

Similarly, winning a toss (to decide to bat in first or second innings) in cricket is also 

considered as an advantage to a team. However, in the literature its effect on the match 

outcome has been found to be statistically insignificant  (see, for example, Allsopp and 

Clarke (2004), Bailey and Clarke (2006) and Akhtar and Scarf (2012)).  We experiment 

with including the dichotomous variable toss, taking the value 1 if a reference team won 

the toss and 0 otherwise, in our models. The results show that the main effect of the 

covariate toss is found to be statistically insignificant, however, its interaction effect with 

a binary variable day-night (dn), is observed to be statistically significant. In addition to 

experimenting with an interaction effect of the variables toss and dn, as denoted by dnt, 

we also experimented with all other two factor interaction effects between the categorical 

variables, but none of them were found to be statistically significant.   

In regards to the general strength of reference team, we measure experience and 

performance against the opposition team. We use the difference in the ICC official ODI 

ratings (rd) for the two teams, as at the time of the match. The ICC official ratings reflect 

a team‟s performance based on the matches that are played in last three years. These 

ratings are calculated as the total points a team has earned divided by the total number of 

matches they have played in the last three years. Further, it is noted that matches that are 

played in the most recent year are weighted more than matches played a year before. In 

fact, the last three years are weighted as one-third, two-third, and a unit respectively. A 

team earns points at the end of each match. These points depend on the result of the 

match, and the strength of the opposition. For example, a team can get higher points if 
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they win against a higher ranked opposition team (for more details, see the ICC official 

website).   

The ICC official ratings go some way to measuring a team's quality, but do not 

explicitly indicate team's current form. For example, a weaker team might be in good 

'form' and could have high potential to win against some reasonably strong teams. For 

instance, Bangladesh, with an ICC rating equal to 62 at the time of play, was in good 

form in the ICC Asia Cup 2012 tournament. They had won against India, (with the ICC 

ratings 117 at the time of play), had won against the Sri Lanka (with the ICC ratings 

equal to 113 at that time) and had lost in the final competition in a close match against 

Pakistan. Therefore, we calculate a team‟s form as a weighted mean of match outcomes 

in the last five games. Specifically, let yt = 1 if a team won the match and 0 otherwise, 

then we define the team‟s current form as,    

      ∑  (   )  
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where,  (   )   (   )                      7.2 

The form of a team as defined above is ranges from 0 to 1. A team will be in 100% 

form (form=1) if they won all the last five matches, and would have in 0% form 

(form=0) if none of the match is won in the last five matches. The function  (   ) is a 

discounting factor, so that the most recent match could get the highest weight. This 

implies that for given two teams with same number of wins, in the last five matches, 

might have different form's value depending upon the order of wins and θ>0. Further, it 

is noted that as θ tends to unity the weights for most recent matches tends to larger. For 

example, the reference (a batting team) and opposition team with series of last five 

results LLLWW (last two matches are won after losing the first three matches) and 

WWLLL (first two matches are won before losing the last three matches) respectively. 

For this example, as shown in Figure 7.1a, the form value of the reference team is a 

positive increasing function, whilst the form value for the opposition team is a positive 

decreasing function of θ. To incorporate the reference team‟s current form against the 

opposition, we use the covariate fd(θ), simply the difference in the forms for the two 

competing teams, for some suitable choice of θ. The solid line in Figure 7.1a shows the 

relationship between fd and θ for our last hypothetical example. Experimentations led us 
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to use θ=0.2 (see section 7.4.2). Figure 7.1b demonstrates the geometric decay in 

'weights' towards older matches for θ =0.2. It is to be noted that a win percentage 

difference (wd) is a special case of fd for θ=0.   

  

Figure 7.1 (a) Plots of the 'form' against θ and (b) Bar plot of the weighting function w(t, 

θ=0.2). Note that the  batting team is set as a reference team.  

7.2.2 In-play covariates 

In regards to the in-play covariates that describe the changing state of play (or the 

position of a team) with respect to the progression of an innings, we need to incorporate 

three pieces of information. First, the number of runs being scored, (or the number of 

runs required to win in the second innings). Second, the number of wickets being lost, 

and third the number of balls, k, (or overs, u) remaining. We note that after each ball of 

the game these variables are changing. Regarding runs being scored, in the first innings, 

this is described by the run rate (runs per over) and is denoted by rpo, whilst in the 

second innings, the required run-rate (rrpo, the number of runs per over needed in 

remaining innings to win the match) replaces the run rate as the major in-play predictor 

of match-win probability. Note that rpo a function of runs scored and overs played, 

whilst rrpo is a function of runs scored, overs remaining, and the target score.    

In regards to wickets, we transform the 'number of wickets lost' into the wicket 

resources lost (wrl). We believe that the value of losing a wicket should depend on which 

wicket has been lost and when in the match the wicket was lost. This is partly a 

consequence of teams putting higher quality batsmen at the top of the order. Further, as 

an innings progresses the relative importance of each wicket partnership changes. For 
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example, suppose there are five overs left and the batting team has already lost eight 

wickets. Then losing the next wicket should have larger impact on the expected 

remaining runs (and therefore on their win probability), when compared to a team that 

has lost only one wicket at the stage when there are just five overs remaining. We believe 

that in such a situation the value of losing the next wicket should intuitively have 

different values depending upon which wicket has been lost. In this regard, we define a 

covariate wicket-resources-lost (wrl) as the proportion of the expected runs value lost in 

the remaining innings for the loss of w wickets, as compared to expected runs with no 

wicket lost in remaining u overs. It can be written as  

     
 (   )   (   )

 (   )
 7.3 

where Z(u, w) is defined in equation 5.2 and can be interpreted as the expected runs in 

remaining innings such that u overs remaining and w wickets has already been lost. From 

equations 5.2 and 7.3 we have the following relationship between wrl and w, 
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where F(w) is given in equation 5.1 and can be interpreted as the proportion of runs that 

are scored with w wickets lost compared to no wickets lost in hypothetically infinite 

remaining overs.  

In regards to further discussion upon the intuition of the covariate wrl, we note that it 

is a continuous variable ranging from zero to one. We multiply it with 10 before using as 

a covariate in our model, since this has an intuitive meaning, as there are ten wickets 

available to each team in cricket. Further, we note that the relationship curves of wrl and 

w are dynamic and evolve smoothly with respect to the progression of the innings. Figure 

7.2a demonstrates the relationship between wrl and w for each stages u=50, 45, …,5 

overs remaining. It can be seen that in the early stages of an innings (50 overs remaining 

for example), the relationship between wrl and w is more linear compared to the later 

stages of the innings. This implies that losing top order wicket partnerships in the later 

stages of the innings has a smaller wicket resources value compared to the losing a 

wicket of a lower order batting wicket partnership. This is somewhat intuitive as in the 

limited overs cricket a common strategy of the ODI cricket is to play defensive in the 
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early stages to save wickets, in preparation of playing more aggressively in the later 

stages of the innings. For example, recall the hypothetical example where a team is 

losing a wicket at a stage when five overs remaining. Given the stage of five overs 

remaining, using equation 7.4 meant the ninth wicket partnership resources value is 2.76, 

which is clearly greater than the second wicket partnership resources value (=0.148) at 

the stage of five overs remaining. It is implied that in latter case the team should intend to 

play with an aggressive strategy, as the risk-reward payoff is small. Figure 7.2b shows 

the plot of wicket resources value against the wicket number at the stage when five overs 

remaining. It can be seen that at this stage, losing a wicket number in 1-6 partnerships 

has a value smaller than a single wicket lost, and losing a wicket number in 7-10 

partnerships has the value greater than a single wicket lost.    

  

Figure 7.2 Plots of (a) curves for relationship of total wicket resources lost (wrl) and wickets 

lost (w) for each u=50(top line) ,40,..,10,5(bottom line) overs remaining, and (b) Δwrl= wrlw+1- 

wrlw, a wicket resource value and wicket number  at u=5 overs remaining  
 

In addition to the intuition of the wickets transformation as discussed above, using 

wrl as a covariate also reduces the correlation between wickets lost (w) and runs-per-over 

(rpo). This is especially evident in the later stages of the first innings. The problem of 

multicollinearity should be taken into consideration, if the model is used to explain the 

relationship between covariates and response variable (match outcome). However, if the 

aim is only to predict the match outcome, then the amount of multicollinearity is not a 

serious issue. Interestingly, the correlations between the w and rpo are negative for each 

stage of the first innings. This is somewhat counterintuitive, as a common believe in 
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cricket is, if a team is intending to play with higher run-rate, this will normally result in a 

high risk of losing wickets. For example, Preston and Thomas (2002) assume a positive 

convex increasing relationship of a hazard of dismissal and run rate. In our study, the 

observed negative correlations, between rpo and w, show that teams do not have full 

control over the covariate rpo. We believe that the reason we observed the negative 

correlations between w and rpo during the first innings, is that both of these measures are 

in-play performance indicators. We believe that if a team is performing well until some 

point of an innings, then it is more likely that they will score with a higher run-rate (rpo) 

by losing less number of wickets (w).          

 

Figure 7.3 Plot for the series of Pearson's correlation coefficients of the number of wickets 

lost and run-rate during last twenty five overs of the first innings.  
 

In experimenting with transformations of the variables, we note that a position of the 

reference team (runs scored and wickets lost in 50-u overs played) can also been 

quantitatively described by a single covariate. We denote this variable by rpr and is been 

interpreted as runs per unit of percentage resources lost. Mathematically, we define the 

rpr=runs/crl, where crl denotes the combined (wickets and overs) resources lost and can 
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be defined as the expected proportion of runs scored in 50-u overs, such that w wickets 

have already been lost, as compared to the expected total runs in the first innings of ODI 

cricket. Mathematically, the crl is written in simplified form as,  
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where N is the number of pre-allotted overs to each team for a complete innings.   

We note that the combined (wickets and overs) resources lost (crl), as defined in 

equation 7.5 is equal to 100% for u=0 or/and w=10. Further, the crl has a similar 

intuition to wrl, but it also accounts for the quantity of overs played. Figure 7.4 describes 

the relationship between the combined resources lost (crl) and wickets lost (w) for each 

given u=50, 40,..,10, 5 overs remaining.   

 

Figure 7.4 Plots of the relationships between the percentage of combined resources lost (crl) 

and wickets lost (w) for each u=50 (bottom line),40,..10,5(top line) overs remaining. 
 

Similarly, for the second innings the covariate rrpr, runs required per unit of the total 

remaining resources, replaces rpr as in-play covariate. The covariate rrpr could be 



70 

 

defined as runs-required-to- win/1-crl. Note that rpr is a function of runs, wickets, u, and 

N, whilst the covariate rrpr is a function of runs, wickets, u, N, and target.    

7.2.3 Organizing data for modelling  

To facilitate the modelling procedure, we need to organize the ball-by-ball data into 

a series of data matrices (one for each ball of the game). First, we split the complete ball-

by-ball data into two sub-data based on first and second innings. We next divide each 

sub-data into the series of data matrices by k, the balls remaining. For single innings (first 

or second) of ODI cricket, the data can be organized in 300 data matrices. Table 7.1 is an 

extract of the data matrix for k=150 (or u= 25 overs) balls remaining in the first innings 

of ODI.  

Table 7.1 The extract of the data matrix for the first innings given k=150 balls remaining,   

ODI# win toss home away dn fd rd w wrl rpo rpr 

2075 0 0 0 1 0 100 14 4 3.319840 3.16 1.544753 

2158 1 1 1 0 0 80.96 -1 5 4.401591 3.44 1.456323 

2248 1 0 0 1 0 100 5 2 1.453567 5.28 3.520864 

2322 1 1 1 0 1 3.05 14 2 1.453567 5.12 3.414171 

2426 0 1 0 0 1 13.09 -69 5 4.401591 4.4 1.862738 

2533 0 0 0 0 0 -29.75 0 2 1.453567 3.96 2.640648 

2627 1 1 1 0 0 -72.58 -21 1 0.676281 4.48 3.521384 

2707 1 1 0 0 1 -29.75 -3 1 0.676281 4.16 3.269856 

2803 1 1 0 1 1 -9.28 -7 1 0.676281 5.16 4.05588 

2884 1 1 1 0 1 16.71 -6 4 3.319840 2.72 1.329661 

2960 1 1 1 0 1 100 57 2 1.453567 5.56 3.707576 
 

In the data, we note that not all matrices are of the same number of rows (sample 

sizes). This is because not all innings (first or second) are necessarily ended by playing 

all the pre-allotted overs (N). Figure 7.5 shows the number of matches, n(k), reaching the 

stage at k balls remaining. Note that the x-axes for plots in Figure 7.5 are presented 

reversed (so that the plot view shows a match progressing from left to right). Further, 

traditionally, cricket analysts and fans think in terms of number of „overs‟ and so in the 

rest of plots we use the balls remaining (k) in a unit of overs remaining, u=k/6.  
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Figure 7.5 Plots of number of matches (sample sizes) against overs left for (a) first innings, 

and (b) second innings.    
  

From Figure 7.5b it is noticeable that roughly the decay in sample sizes with respect 

to the progression of the second innings is more rapid compared to the first innings. This 

is because additionally the second innings might be ended with reaching team 2's score to 

the target set by team 1. Modelling the distribution of number of balls played in an 

innings might be an interesting problem to address in future. 

7.3 Modelling procedure for the DLR models  

We adopt a logistic regression model to estimate the probability of the batting team 

winning the match. However, the model is dynamic in the sense that the parameters are 

been allowed to vary as the match progresses. We develop two forecasting models, one 

for each innings of the ODI cricket. The reason we fit separate models, one for each two 

innings, is twofold: firstly, the batting team (reference team) play with different strategies 

in different innings. For example, Preston and Thomas (2002) argue that a batting team 

in the first innings, play with the aim to score as many runs as possible to maximise their 

win chances. However, a team batting in the second innings play with the aim to reach 

the target before, either all their wickets down or all the pre allotted overs (N) consumed. 

Secondly, some covariates, for example runs required per remaining overs (rrpo) to win, 

are only possible to measure for the second innings.      
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7.3.1 Modelling match outcome 

For a given innings (first or second), let Yk be a response variable for a given k balls 

remaining. We define the response variable, Yk, as the match outcome and takes value 1 

if the reference team (batting team) wins the match, otherwise takes value 0. For each 

ball of an innings, we fit a binary logistic model to estimate the probability of the batting 

team winning the match, pk. Therefore, for a given k=300,…,1 balls remaining, we let  

      (  )    
       7.6 

where   
    ∑    

 
      , where mk  is the coefficient on the m

th
 covariate Xmk, and 

X0k=1 for each given k=300,…,1. In this way, for a given m, the coefficient mk  is 

allowed to vary independently with respect to the stage of an innings. Lastly, k is an 

error term. 

Suppose for a given innings (first or second) and k=300,..,1 balls remaining, the  y1k 

,…, yik,…,yn(k) are the data on the response variable. Let x1k ,,.., xik,…, xn(k) be the data on 

the corresponding vectors of covariates, where xik= [x0ik… ximk… xiM(k )]
T
 and M(k) is the 

number of covariates. Then from equation 6.3 the probability of the batting team winning 

the i
th

 match, at the stage when there are k balls remaining, is given by  
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where    [      ( )]
 
 is the vector of parameters. The likelihood for the logistic 

model for a given k balls remaining in an innings can then be written as,  
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where pik is the probability of the batting team winning the i
th

 (where i=1,2,..,n(k) ) match 

of a given innings at the stage when there are k (or u=k/6 overs left) balls remaining. 

From equations 7.7 and 7.8 the log-likelihood is thus written as,  
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In regards to our approach of modelling, we first identify the best subset of all 

possible pre-match covariates using the following model selection criteria: Akaike 

information criterion (AIC), Bayesian information criterion (BIC), Delete-d Cross-

Validation  (CVd) with random subsamples of size d= n(1-1/(log n - 1)) as the validating 

set of data, and the K-folds Cross-Validation. These model selection methods have been 
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briefly described in section 6.4.3. After identifying the best subset of pre-match 

covariates by fitting all possible models for first innings at k=300 we next include all of 

the pre-match covariates in the set of all possible in-play covariates and identify the 

series of best logistic models, one for each given k=299,..,1. A similar procedure is 

adopted for the second innings and a series of 300 best logistic models are identified. We 

note that it is appealing to fit the separate logistic regression models for each ball of a 

given innings. This is because; a value of the response variable (match outcome) does not 

change with respect to the ball-by-ball given one innings data, whilst the in-play 

covariates are updated after each ball in the same data. Further, this approach to 

modelling helps to understand how the effects of covariates vary with respect to as an 

innings progresses. Further procedure of our proposed modelling approach is described 

in subsequent section.  

7.3.2 Modelling the coefficients on the covariates: A recursive process 

Once it is decided what variables are to be included in our final DLR forecasting 

models, we then estimate the relationship between the series of estimates and the stage of 

a given innings, u (or k alike). In this way, the estimates are allowed to evolve smoothly 

with respect to as innings progresses. To allow the effect of each covariate to depend on 

the stage of the innings, one could simply use a series of independent separate logistic 

regression models (one for each ball of an innings) and forecast the probabilities in a 

standard way. However, this would lead to the unstable variation in probability of match 

outcome in play.    

Hence, instead of using separate models, we estimate the relationship between the 

estimated coefficients on the covariates (   ) and overs left (u=k/6) for each m=0,..,M. 

We denote this relationship by a function   (    ), where    is a vector of parameters 

to be estimated. In this way, the series of independent logistic models is reduced to a 

single dynamic logistic regression model in which the estimates themselves become a 

function of u, overs remaining (or k alike). The logistic model that uses the fitted 

functional values,   
 (    )     

 (    ), as estimated parameters is then referred to as 

a dynamic logistic regression (DLR) model. We note that in addition to smooth evolving  

the estimated parameters, the number of total estimates required to forecast the in-play 

match outcome are also been reduced dramatically. For example, if M+1 number of 
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parameters to be estimated for each k=300,..,1 model, then we need (M+1)×300 

estimates to forecast in-play match outcome for single innings. In fact, the large number 

of parameters that are being estimated is not really an issue. This is because, for each 

given k balls remaining model, the parameters are estimated from large sample sizes. 

This is especially evident during the early part of the both innings. However, any 

reduction in the number of parameters, at the cost of almost nothing, is an advantage in 

term of simplicity and usability. Finally, we believe that using a fitted functional values,  

  
 (    ), to the estimated parameters are more precise and consistent as compared to 

the non-smoothed original estimates. This because the fitted values not only depended on 

the data matrix associated to k balls remaining, but also depends on the entire sets of data 

matrices for a given innings.  

Suppose for a given innings, we fit a series of K independent logistic models, each 

model has M covariates. Further, for each k=K,K-1,…,1 let the estimated coefficient on 

the m
th

 (m=0,1,..,M) covariate be denoted by  ̂  . Then for any given m=0,1,..,M, we 

assume normality,  ̂    (      ̂  
), under the asymptotic property of estimates. 

Further, since the K logistic models are fitted independently, for any given m the series of 

estimates are independent (note that for any given k the parameters have not been 

estimated separately in a model). We then take expectations, so that  

  ( ̂  )   ( ̂   )    (     ), 7.10 

where    is a vector of parameters and u=k/6, where k is the number of balls remaining. 

Further, also note that  ( ̂  )     . Suppose, in the series of K independent logistic 

models (each with M covariates),  ̂    ̂ (   )    ̂    are the series of K estimates for 

the coefficients on the m
th

 covariate. Further, let    ( ̂  )    ( ̂ (   ))      ( ̂  ) 

be the corresponding series of estimated standard errors. Then we estimate the vector of 

parameter,   , by maximizing the following log-likelihood function  
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or equivalently, we minimize the following weighted sum of squared errors.  
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where   (     ) is an appropriate function of u and will be used as an estimate of 

(m+1)
th

 parameter in our DLR model to forecast the match outcome in-play. 

As mentioned above that for any given k, the M+1 parameters are not estimated 

separately. Therefore, it would be unappealing if we do not update the remaining M 

parameters, for each k, prior to the next fit of the estimates,  ̂(   ) . Therefore, we again 

fit the series of independent logistic models for each k=K,K-1…,1 but under the 

parameter constraint        
 (    ). Once the M estimates are updated for each 

k=K,K-1…,1 logistic models, we fit the next function      (       ) on the series of 

estimates associated to the next parameter. Afterwards, to update the remaining M-1 

parameters for each k, we again fit a series of K logistic models but this time under the 

two constraints,        
 (    )      (   )       

 (      ). We continue this 

process until all M+1 parameters are modelled as a function of u, overs remaining.  

We note that the identification of the functional form for   (    ) is subjective 

by examining the scatter plot and testing the statistical significances of the series of 

estimates. For example, polynomials of varying degrees proved to be an appropriate 

function to be used to smooth the estimated coefficients. One could also use a spline fit 

to get a better goodness, however this would lead to more complex model. Further, the 

spline fit might also cause to the over-fitting issue. In some cases, especially if a 

covariate is not statistically significant in all the models of an innings, then a polynomial 

fit or spline fit might not be appropriate to smooth the series of estimates. For example, 

CVKF based DLR model during the second innings, the covariate rd becomes statistically 

insignificant after about the first ten overs of the second innings. In such a case, we need 

a curve for estimated coefficients on rd such that the magnitudes are insignificant and 

have smoothed decays to zero with respect to as u approaches from 40 to zero. In our 

DLR model for the second innings, we use a Gamma distribution type function (see 

section 7.4.4) for estimated coefficients on rd.     
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7.4 The model fit results 

7.4.1 A model for estimating pre-match win probability 

Before fitting a series of independent logistic models, one after each ball of the first 

innings, we first identify the best subset of all possible pre-match covariates. The R 

package 'bestglm' of McLeod and Xu (2011), for each AIC , BIC, CVd (Delete-d Cross 

Validation) and CVKF (K-Fold Cross Validation), is used to select the best subset of the 

covariates. In regards to the CVd method, the sub-sampling of size d= n(1-1/(log n - 1)) 

is repeated 1000 times, and in the CVKF method, we use a 10 folds cross validation 

technique, which is repeated 100 times. The choice of repeating samplings is default in 

bestglm() function of R package.   

In our pre-match set of all possible covariates, we include the following variables: 

home (=1 if the reference team is at home, 0 otherwise), away (=1 if the opposition team 

is at home, 0 otherwise), toss (=1 if the reference team wins the toss, 0 otherwise), dn 

(day-night: a binary variable), fd(θ) (form-difference, where 0<θ <1), and rd (ICC 

rating difference). Further, the set of pre-match covariates also includes all possible two 

factor interactions between the categorical variables, for example dn:toss (dnt).  

We have written a purpose R code using the package 'bestglm'  for model selection 

and estimating θ in the covariate fd(θ). Further, the argument 'method' in bestglm()  is set 

to 'exhaustive' which ensures all possible models are fitted and the best model based on 

specified model selection criteria is chosen. Moreover, the θ  is optimized with respect to 

the model selection criterion value as obtained from the 'bestglm' routine. For example, 

using the AIC model selection criteria the best subset of covariates: dnt, home, rd, and 

fd(θ=0.23)). Table 7.2 describes the best subsets of the covariates, along with model 

diagnostic measures.  

 

Table 7.2 Best subsets of pre-match covariates for a logistic model as obtained by AIC, BIC, 

CVd and CVKF model selection methods.  

Method Best pre-match covariates  Model diagnostic measures 

AIC home, dnt, rd, and fd(θ=0.23) AIC=694.4, logL=-343.2 

BIC dnt, rd, and fd(θ=0.24), BIC=710.0, logL=-345.40 

CVd dnt, rd, and fd(θ=0.18) CVbest=0.2037, CVnull=0.2519, logL=-345.44 

CVKF rd 
(CV, sdCV, logL)null= (0.2503, 0.0011, -419.3) 

(CV, sdCV, logL)best= (0.2023, 0.0065, -352.9) 
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7.4.2 A series of models for estimating in-play win probabilities 

Once the best pre-match covariates are identified, we then identify the 'best' subset of 

all possible covariates (pre-match and in-play) for each given k balls remaining of an 

innings. From Table 7.2, we include the following subset of pre-match covariates: home, 

dnt, rd and fd(θ) along with the in-play covariates of a given innings. We use θ=0.20, an 

average of two optimized values as obtained by Information Criteria (IC) and Cross-

Validation Delete-d methods.    

First, we identify a series of best independent logistic models, one after each ball of 

the first innings. To do this we include the above list of covariates (home, dnt, rd, fd, wrl, 

rpo, and rpr) as an in-put of all possible covariates in the bestglm(). We run the function 

for each k=299,298,..,1 balls-remaining using each method (AIC, BIC, CVd, and CVKF). 

To analyse how the importance of covariates vary with respect to the progression of the 

first innings. We divided a complete innings into five stages, each of that is contained ten 

overs (sixty balls, and therefore sixty best models). Therefore, the first stage corresponds 

to u=50 to 40 overs remaining, the second stage corresponds to u=40 to 30, and so on, 

with the final stage corresponding to u=10 to 0.  

The results show that the significance of a covariate depends on the stage and model 

selection method. For example, based on AIC method, the effect of the covariate home 

after about the middle of the first innings becomes insignificant. Therefore, this covariate 

is appeared only in the first 160 best models for the first innings. Table 7.3 describes the 

number of time each covariate appeared in the best logistic models for each given stage 

of the first innings, using the AIC model selection method. It can be seen in Table 7.3 

that the covariate dnt becomes insignificant during the last two overs of the first innings. 

Moreover, the covariates fd and rd are appeared in all the series of best logistic models 

for the first innings.      

Similarly, in regards to in-play covariates, the rpr is appeared in the AIC based best 

models during the first and last stages of the first innings. Contrary to the covariate rpr, 

the covariates wrl and rpo are appeared in the best models related to the middle stages, 

and are not appeared in some best models related to the first and last stages of the first 

innings. We have experimented to identify the best logistic models, based on AIC 

without listing the covariate rpr in the all-possible covariates. It is been observed that the 

covariates wrl and rpo are then appeared in all best models for the first innings, except 
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for the first few balls of the first stage. Similarly, we also experimented by excluding the 

covariates wrl and rpo, and it is found that the covariate rpr is appeared in all best series 

of models for the first innings, except for the first few balls of the first innings.  

 Table 7.3 Number of time a covariate is appeared in the series of best logistic models for 

each given five stages of the first innings as obtained using the AIC method 

 Covariate 

u home dnt fd rd wrl rpo rpr 

50-40 60 60 60 60 48 46 25 

40-30 60 60 60 60 60 60 0 

30-20 40 60 60 60 60 60 0 

20-10 0 60 60 60 59 59 1 

10-0 0 49 60 60 22 55 42 

Total 160 289 300 300 249 280 68 
 

Similar experimentation is performed using the BIC model selection method. It is 

noted that covariate home is not appeared in any of the BIC based series of best logistic 

models for the first innings. Further, the covariate dnt becomes insignificant after about 

the first seven overs. Moreover, the covariate form-difference (fd) is appeared in the best 

models at almost all given five stages. However, surprisingly for any given ten overs 

stage the fd is not appeared in all 60 best logistic models. For example, as shown in Table 

7.4 the covariate fd is included in 23 out of total of 60 best models for the first stage (50-

40 overs remaining) of the first innings. Similarly, during the last stage of ten overs the 

covariate fd is appeared in 43 out of total 60 best logistic models. Similar to the AIC 

based series of models, the BIC based series of best models also contained the covariate 

rd in all best logistic models for the first innings. In regards to the in-play covariates, the 

two covariates wrl and rpo are appeared during u=47-20 overs remaining stages. On the 

other hand the covariate rpr is appeared in the best models for the first few overs and 

again during the last twenty overs. Hence, similar to the AIC based models, the covariate 

rpr and the set of two covariates wrl and rpo can be used interchangeably.   
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Table 7.4 Number of time a covariate is appeared in the series of best logistic models for 

each given five stages of the first innings as obtained using the BIC method 

 Covariates 

u dnt fd rd wrl rpo rpr 

50-40 38 23 60 40 37 18 

40-30 0 20 60 60 60 0 

30-20 0 11 60 57 57 3 

20-10 0 36 60 4 4 56 

10-0 0 43 60 0 17 60 

Total 38 133 300 161 175 137 
 

Next, we apply the Cross-Validation Delete-d method to get the series of best 

logistic models for the first innings. We note that the models that are obtained using the 

CVd model selection technique are quite similar to the models that were been obtained 

using the BIC method. For example, Figure 7.5 that describes the number of time each 

covariates is appeared in the series of best logistic models for each given five stages, can 

be compared to Table 7.4.  

Table 7.5 Number of time a covariate is appeared in the series of best logistic models for 

each given five stages of the first innings as obtained using the CVd model selection method 

  Covariates  

u dnt fd rd wrl rpo rpr 

50-40 38 17 60 38 36 19 

40-30 6 34 60 60 60 0 

30-20 5 24 60 41 41 19 

20-10 0 29 60 3 3 57 

10-0 0 26 60 0 16 60 

Total 49 130 300 142 156 155 
 

Similarly, we also use the CVKF method to get the best series of logistic models for 

the second innings. It is observed that with the exception of few of the models in the first 

stage, in approximately all of the best models for the first innings, only two 

covariates rd and rpr are appeared. Further, if rpr is deleted from the set of all possible 

covariates then using the CVKF method, the best subset of covariates: rd, wrl, and rpo are 

observed for each best models related to the first innings. Table 7.6 describes the number 
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of time each given covariate is appeared in the best logistic models for each given five 

stages.  
 

Table 7.6 Number of time a covariate is appeared in the series of best logistic models for 

each given five stages of the first innings as obtained using the CVKF method 

 Covariates 

u rd wrl rpo rpr 

50-40 60 8 18 29 

40-30 60 0 11 49 

30-20 60 0 0 60 

20-10 60 0 0 60 

10-0 60 0 0 60 

Total 300 8 29 258 
 

Finally, in regards to what covariates to include in our final dynamic logistic 

regression (DLR) model for the first innings, it is dependent on which model selection 

method is been adopted. For example, based on AIC model selection method the 

covariates: home, dnt, fd, rd, wrl, and rpo should be included in our DLR model. 

However, based on BIC or CVd methods, it is found that the covariate home should be 

excluded from the best set of covariates as obtained by the AIC method. Similarly, based 

on CVKF with one-standard-deviation rule, the covariates rd and rpr should be included 

in our final DLR model for the first innings. 

In regards to further discussion on the subject matter, we note that CVKF method 

provides the most parsimonious series of models whom prediction errors does not exceed 

one standard deviation of the prediction errors of the models with smallest cross 

validation errors . This ensures the stability in the forecasting probabilities for each given 

ball of the first innings is highest in CVKF based models. However, note that the CVKF 

based DLR model does not ensure the stability in probability forecasts as vary with 

respect to the progression of the innings. Further, less forecasting accuracy is observed 

for the CVKF method as compared to the models based on CVd method. Moreover, we 

also note that the second best series of models, based on CVKF, are with the covariates: 

rd, wrl, and rpo. Hence, we develop two DLR models, one with covariates rd and rpr, 

and another with covariates rd, wrl and rpo for the first innings of ODI cricket. In next 
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section, we analyse and compare the forecasting accuracies of these models along with 

the forecasting assessment of the models as obtained using CVd method. 

In regards to the second innings, we perform similar experimentations as we did for 

the first innings to decide what covariates to be included in our DLR model for the 

second innings. We include the same pre-match covariates in the list of all possible 

second innings in-play covariates. The frequencies of the appearance of each covariate in 

the best logistic model for the second innings are presented in the Table 7.7. Here again 

to decide which covariates should be included in our final DLR model for the second 

innings is depended upon which method to be adopted for the model selection. For 

example, based on AIC method we use the covariates home, dnt, fd, rd, wrl, and rrpo in 

our DLR model for the second innings. Similarly, based on K-flods Cross-Valication 

model selection method, we use the covariates rd and rrpr in our DLR model for the 

second innings. Similar to the first innings, we develop two forecasting models: one with 

covarites rd and rrpr, and another with covariates rd, wrl, and rrpo for the second 

innings. Before developing our DLR models for the first and second innings, first we 

assess the forecasting accuracies of the series of models with the covariates that would be 

included in our final DLR forecasting models.   

 

Table 7.7 Number of times each covariates are appeared in the series of 300 best logistic 

models during the second innings, using the AIC, BIC, CVd and CVKF methods 

 Covariate  

Method home dnt fd rd wrl rrpo rrpr 

AIC 41 39 194 170 241 249 62 

BIC 0 0 36 142 109 121 185 

CVd 0 0 23 138 26 33 267 

CVKF 0 0 0 62 0 7 293 
 

7.4.3 Assessing forecasting accuracies 

In this section, we assess the forecasting accuracies and deterministic power of our 

proposed models. First, we examine the cross validation forecasting accuracies of CVd 

and CVKF based models for first innings. The CVd based model includes dnt, fd, rd, wrl, 

and rpo as covariates, whereas, the CVKF based model uses only rd and rpr as covariates. 

Further, we also examine the cross validation forecasting accuracies of the model with 



82 

 

covariates: rd, wrl, and rpo, which is the second best model based on CVKF method. 

Second, we do similar analysis for the second innings models.   

For each ball of the first innings, we examine the cross-validation forecasting errors 

of the three candidate models as mentioned above. We measure the relative forecasting 

errors (RFE), as determined by the ratio of leave-one-out-cross-validation (LOOCV) 

prediction error for each given candidate model (cvc) to the prediction error of the null 

model (cv0). A smaller the value of RFE the better a model would have forecasting 

accuracy. The RFE=1 show that the candidate model has similar forecasting accuracies 

to the null model. Figure 7.6 show the scatter plots of RFE against the overs-left for each 

of the three candidate models. It can be seen clearly in Figure 7.6 that during the last 

twenty overs of the first innings the average cross validation forecasting errors are 

approximately same for all the three models. Further, it is noticeable that during about 

first thirty overs of the first innings the cross validation forecasting errors of the models 

with covariates rd and rpr are the largest as compared to the other two candidate models.  

 

Figure 7.6 The plots of relative forecasting errors (RFE), as determined by the ratio of 

LOOCV prediction errors of the candidate model as compared to the null model, for the 

first innings.  
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In regards to the behaviour of the predictive power of the models as the first innings 

progresses, we note, for example in Figure 7.6, that the models' cross validation 

prediction errors are decreasing until about eighteen overs remaining but increasing 

during the last 18 overs. We believe such behaviour of the models' predictive power is 

the consequence of two reasons. First, the number of wickets lost becomes less 

informative during the final stages of an innings. For example, a team‟s position 

(winning or losing) can be predicted easily by the number of wickets lost at the stage 

when there are twenty overs remaining compared to the number of wickets lost on the 

final ball of the innings. In section 7.4.5 we analyse how the explanatory power or 

strength of each covariate varies with respect to the progression of the innings. Second, 

such behaviour of the forecasting accuracies might be because the matches that are more 

easily predicted will be ones in which the fifty overs allocated are not completed by the 

batting side. In such matches, the team batting second will tend to have a big advantage 

and so the prediction is easier to make. Since such matches are not included in the data 

matrices for the latter stages of the first innings, therefore the average cross validation 

forecasting errors are increasing during the last eighteen overs. Moreover, in regards to 

the performance of our model, it is observed that our proposed model perform best 

during the stage of 22-16 overs remaining as compared to the other stages of the first 

innings.  

In regards to assess the forecasting accuracy for the models during the second 

innings, we measure the cross validation RFE, based on LOOCV prediction errors, for 

the each of two candidate models. As seen in the Figure 7.7 the forecasting errors for 

model with covariates: rd and rrpr compared to the model with the covariates: rd, wrl, 

and rrpo are approximately same. Hence, both models are equally suitable (in term of 

forecasting accuracies) to be used to estimate ball-by-ball probability forecasts during the 

second innings.   
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Figure 7.7 The plots of relative forecasting errors (RFE), as determined by the ratio of 

LOOCV prediction errors of the candidate model as compared to the null model, for the 

second innings.  

  

The above figure show that the deterministic power of our model during the second 

innings is even greater than for the first innings, with a RFE of 0.65 at the start of the 

second innings. Further, it is noted that the cross validation forecasting error decreases 

throughout the second innings, except to rise during the last few balls. Our explanation 

for this is that matches which reach the final few balls are the ones in which the outcome 

is particularly uncertain. 

7.4.4 Smoothing the estimated coefficients: A dynamic logistic regression  

(DLR) model  

Once the best subset of covariates is finalized, we now start our recursive procedure 

to develop dynamic logistic regression (DLR) models, one for each two innings of ODI 

cricket. To be easily understood our proposed method; firstly, we fit the simplest 

dynamic logistic regression (DLR) models that are based on CVKF model selection 

method. For the first innings, we fit a DLR model with covariates:  rd, and rpr. We refer 

this model as DLR(u, rd, rpr). Similarly, we develop DLR(u, rd, rrpr) model for the 
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second innings that is based on CVKF method. Secondly, we apply the same method to 

develop DLR(u, rd, wrl, rpo) and DLR(u, rd, wrl, rrpo) to estimate in-play probability 

forecasts during first and second innings  respectively. Finally, we generalize our 

proposed approach of modelling for the more complex DLR models, for example, the 

AIC based DLR models.    

We start to fit a series of 299 independent logistic models each with covariates rd 

and rpr on the series of data matrices related to the first innings. We than smooth the 

series estimated coefficients on rpr by fitting a weighted polynomial. We use the inverse 

of the squared standard errors of the estimates as the weights. Figure 7.8a  shows the 

smoothed (fitted polynomial) and non-smoothed (original estimates) plots for the 

estimated coefficients, and Figure 7.8b shows the corresponding standard errors of the 

non-smoothed estimated coefficients in the series of 299 logistic models (each with 

covariates rd and rpr). It can be seen clearly that there is a strong deterministic evolution 

of the parameter value associated to the rpr covariate in the logistic model.  

   

Figure 7.8 The observed estimated (a) coefficients (points) on covariate rpr and the fitted 

polynomial curve (solid lines), and (b) standard errors for the series of 299 first innings 

logistic regression models with covariates rd and rpr 

 

As, in each any given k
th

 balls remaining logistic model, the coefficient on rpr is not 

estimated independently from the estimated coefficient on rd and intercept term. 

Therefore, after the weighted polynomial fit on the estimates related to rpr, we update the 

remaining estimates (related to the covariate rd and intercept term) by re-fitting the series 

of logistic models for first innings, but under the parameter constraint related to rpr. Note 
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that the constraint of the first parameter is to set the parametric value as a fitted 

polynomial value.  

Interestingly, we note that smoothing (polynomial fit) the estimated coefficients on 

rpr has approximately no effect on the magnitude of the estimated coefficients related to 

rd and vice versa.  Figure 7.9 shows the plot of estimated coefficients on rd before (black 

points) and after (red points) smoothing the estimated coefficients related to the covariate 

rpr. Next, we fit a weighted polynomial on the updated estimated coefficients on rd, to 

smooth the estimates. Afterwards, again we fit a series of 299 logistic models under the 

two-parameter (coefficients on rpr and rd) constraint to update the estimated intercept 

terms. Finally, we fit a weighted polynomial on the latest updated estimates of intercept 

terms. Purpose-written R code (R Core Team, 2012) utilising the standard glm() function 

has been developed to automate this process. 

 

Figure 7.9 The estimated coefficients (points) for the series of 299 first innings logistic 

regression models with covariates rd and rpr, and the fitted polynomial curves (solid line).  
 

 As a result of the above recursive procedure, we obtain a single logistic model to 

forecast match outcome in play (ball-by-ball). In such a DLR model the estimates 

themselves is a function of the stage of the innings. Recall that the stage of the innings is 
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described by the overs remaining (u). Table 7.8 describes the summary of model fit for 

the dynamic logistic regression model for first innings. The number of parameters 

estimated and the diagnostic measures for each three polynomial fits on the series of non-

smoothed estimates are given too. By using these fitted polynomials, we reduce the 299 

models, with a total 3×299 = 897 parameters (2 covariates plus an intercept term), to a 

single dynamic logistic regression model with 18 parameters. Clearly, this DLR model is 

more attractive than the less parsimonious alternative. Despite the smooth evolving of the 

size of estimated coefficients with respect to the progression of the first innings, there are 

practical advantages too – our model is easily set up in a spreadsheet for example. 

 

Table 7.8 Summary of the dynamic logistic regression (DLR) model to forecast match 

outcome in-play during the first innings. 

A DLR model for first innings   ( )  
   ( )   ( )      ( )    

     ( )   ( )      ( )    
 

Fitted function Estimates R
2
 WMSE 

  
 ( ),  coefficient on rpr 5

 
99.08% 0.00104 

  
 ( ),  coefficient on rd 8 99.81% 0.00084 

  
 ( ),  Intercept 5 99.99% 0.00018 

Total 18   
 

In regards to the dynamic logistic regression model for the second innings, we 

follow the similar procedure as for the first innings. However, in the second innings the 

polynomial fits for smoothing the estimated coefficients on all the covariates are not 

suitable. This is because; the effect of the covariate rd is not found to be statistically 

significant during all stages of the second innings. In this case, we need a curve such that 

it has a smoothed tendency towards zero after the stage when rd becomes insignificant. 

For example, after examining the scatter plot of the series of estimated coefficients on rd, 

we fit the following positive non-decreasing function of u on the series of estimates 

related to rd, 

    ( )   (    )(    )    (    ) 7.13 

where α0>50,  α1 >1, α2>0 and c>0 are the location, shape, scale, and constant 

parameters respectively. The intuition of using equation 7.13 is demonstrated in Figure 

7.10a, which plots the estimated coefficients on rd and the fitted curves using the 
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equation 7.13 (solid line), a quadratic curve (dashes) and a cubic curve (dots). As 

discussed in the section 7.4.2, that during the second innings the covariate rd is 

significant only during the first twenty overs. Further, as seen in Figure 7.10a, some 

instability in evolving the estimated coefficients, with respect to the progression of 

second innings, is also observed after about the twenty overs. Therefore, we fit equation 

7.13 and some polynomials (in contrast) on the estimated coefficients on rd that are 

related to the first twenty overs. Further, we note that using equation 7.13  not only 

facilitates extrapolation of the estimated coefficients on rd, but also after about 20 overs 

the curve tends to zero as u approaches to zero. Similar to the first innings, we found 

approximately no effect on the estimated coefficients on rrpr by smoothing the estimated 

coefficients on rd. Figure 7.10b shows the plots for the series of estimated coefficients on 

rrpr, before (black points) and after (red points) smoothing the estimates related to the 

covariate rd. Further, a smoothed curve in Figure 7.10b shows a fitted polynomial on the 

estimated coefficients on the covariate rrpr.   

  

Figure 7.10 The original non-smoothed estimated coefficients (points) and the fitted curves 

(lines) in the series of independent models each with covariates rd and rrpr. Note that in (a) 

the curves are fitted using equation 7.13 (solid line), quadratic (dashed line) and cubic 

(dotted line).  
 

After performing the recursive process for the second innings, we obtain the DLR 

model with covariates: rd and rrpr. Table 7.9 provides the summary of the DLR model 

fit for the second innings. Similar to the first innings models, the series of  300 

independent logistic models are reduced to just a single DLR model with a total 20 

parameters that are required to forecasts in-play probabilities during the second innings.  
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Table 7.9 Summary of the dynamic logistic regression (DLR) model to forecast in-play 

match outcome during the second innings. 

A DLR model for second innings   ( )  
   ( )   ( )      ( )     

     ( )   ( )      ( )     
 

Fitted function Estimates R
2
 WMSE 

  
 ( ),  coefficient on rrpr 8 94.50% 0.01281 

  
 ( ),  coefficient on rd 4 98.54% 0.00000018 

  
 ( ),  Intercept 8 99.84% 0.00460 

Total 20   
 

As discussed above that smoothing the estimated coefficients on a covariate has 

very little (approximately zero) effect on the estimated coefficients on the remaining 

covariates in the series of logistic models. In contrast, relatively larger effects are 

observed on the intercept terms. We note that after a fit on each given estimated 

coefficient on covariates, the estimated intercepts tend to become more stable and well 

behaved against u, overs remaining. For example, Figure 7.11 shows scatter plots of the 

estimated intercepts in the series of independent logistic models before (black points) and 

after (red points) modelling the coefficients on covariates as function of u. Therefore, we 

recommend fitting a model on the estimated intercept terms once all the covariates have 

been modelled (smoothed) as a function of u.  

  

Figure 7.11 The observed estimated intercepts, for (a) first innings, and (b) second innings, 

in the series of logistic regression models, before (black points) and after (red points) 

smoothing the estimated coefficients. 
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We now develop another two DLR models, one with covariates rd, wrl, and rpo for 

first innings, and another with covariates rd, wrl and rrpo for the second innings of ODI 

cricket. Figure 7.12 and Figure 7.13 demonstrate graphically the development of these 

two DLR models, following a similar procedure as discussed above.   

Hence, our approach for fitting a dynamic logistic regression model to forecast in-

play match outcome for even more complex models. For example, based on AIC model 

selection criterion, a DLR model for the first innings can be developed with covariates: 

home, dnt, fd, rd, wrl and rpo. Similarly, for the second innings a DLR model with 

covariates home, fd, rd, wrl, and rrpo can be obtained using the AIC model selection 

criterion.  

 

 

Figure 7.12 The observed estimated coefficients (points) for the series of 299 first innings 

logistic regression models with covariates rd, wrl, and rpo, and the fitted curves (solid lines).   

 

 

Figure 7.13 The estimated coefficients (pts) for the series of second innings logistic 

regression models with covariates rd, wrl, and rrpo, and the fitted curves.  

 

7.4.5 Strength of association (Nagelkerke's R
2
)   

To justify further this DLR model to forecast match outcome in play, we compare 

the Nagelkerke's R
2
 of the DLR model with a series of independent logistic models for 
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each given k (or u alike) of first and second innings. It can be seen clearly in Figure 7.14a 

that there is approximately no difference in Nagelkerke's R
2
 if the functional fitted values 

are used, as compared to use the original non-smoothed series of estimates in the series 

of likelihood functions.  

  

Figure 7.14 Plots of explanatory power, as determined by the Nagelkerke's R
2
 using the 

estimates from the series of independent logistic models (black points) and from our DLR 

model (red points) for (a) first innings and (b) second innings.  
 

To assess how the strength or explanatory power of each given covariate in our DLR 

model varies with respect to the progression of an innings, we use the difference between 

Negelkerke‟s R
2
 of the models with and without the covariate, which we denote by R

2
. 

Figure 7.15 shows the plots of explanatory power of the covariates for the first and 

second innings models.  

It is noticeable in Figure 7.15 that the strength of the pre-match covariate rd 

decreases with respect to as the game progresses. This is because, as the game 

progresses, the in-play covariates are updating and gathering more information on the 

state of the current match. For example, rating difference is very informative when 

making predictions in the early stages of the first innings. However, in the latter stages of 

the game the contribution of the rating difference made to predictions earlier on has, to 

some extent, been taken into account by the in-play covariate rpr in the first innings and 

by rrpr in the second innings. The decrease in the explanatory power of rd even 

continues in the second innings and by the mid-point of the innings the explanatory 

power of rd becomes approximately zero.     
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Figure 7.15 The plots of R
2
, the additional Nagelkerke’s R

2
 by covariates (a) rd and rpr in 

the first innings, and (b) rd and rrpr in the second innings, for the DLR forecasting models.  

 

Similarly, in regards to the in-play covariates it can be seen in Figure 7.15a that  

during the first thirty overs (u=50 to 20), roughly the explanatory power of rpr rapidly 

increases as compared to the last twenty overs of the first innings. However, in the 

second innings, it can be seen in the same figure that the explanatory power of covariate 

rrpr is consistently increasing as the second innings progresses, except for a fall for last 

few balls.   

7.5 Comparison with betting market 

Perhaps the sternest test of a forecasting model in sport is to compare it to the betting 

market. Numerous studies have shown that betting markets are, for the large part 

efficient in that it is not possible to systematically beat the market, see, for example 

Sauer (1998). Here, we compare the probability forecasts generated using our dynamic 

logistic regression models to in-play odds from the betting market (Bet365), for two ODI 

matches: the second ODI match of the NatWest series between England and South Africa 

played at the Rose Bowl ground in Southampton on August 28
th

 2012, and the second 

ODI of the series between Pakistan and Australia in UAE on August 31
st
 2012. It is to be 

noted that the ball-by-ball data of these two matches could be considered as 'test data for 

the model accuracy' as this data were not included in model fits nor were they included in 

validating sets during the cross validation for model selection.   



93 

 

For our first example, South Africa won the toss and elected to bat first and set 

England a target of 287 to win. South Africa went on to win the match. Figure 7.16 

shows the predicted probability of England winning the match during the first and second 

innings. 

 

Figure 7.16 Forecast probability of England winning versus South Africa (a) first innings 

and (b) second innings. The solid line represents the implied bookmaker probabilities, 

whilst the dotted lines represent the forecast probabilities for our DLR models. The circles 

indicate the loss of a wicket.    

 

In Figure 7.16, for the large part, our model forecasts follow a similar path to the 

bookmaker‟s forecasts, indicating our model is performing as one would hope. In fact, 

after around ten overs of the game, our model predictions are “more correct” than the 

bookmakers. Further, it is noticeable that approximately similar forecasts are obtained by 

the two DLR models (i.e. DLR(u, rd, rpr) and DLR(u, rd, wrl, rpo)) after about the first 

twenty overs of the first innings. However, during the first twenty overs of the game the 

probability estimates by DLR(u, rd, rpr) are more sensitive to runs and wickets compared 

to DLR(u, rd, wrl, rpo). Also, recall that during the first twenty overs, the series of 

models with covariates as used in the latter DLR model have better forecasting 

accuracies (see Figure 7.6). Therefore, we recommend a DLR model with covariates rd, 

wrl, and rpo should be used to forecast in-play match outcome probabilities during the 

first twenty overs of the first innings. Afterwards, both of our DLR models for the first 

innings are equally efficient. In regards to the second innings, we note that almost similar 

forecasts are obtained by both of DLR models and follow a similar path, but are “more 
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correct”, than the probability forecasts of the betting market. Of course, this is only a 

sample of size one.           

In regards to our second example (Pakistan versus Australia), Australia won the toss 

and decided to bat first, setting a target of 249 for Pakistan to win. Pakistan went on to 

win the game by seven wickets. Figure 7.17  shows the estimated ball-by-ball 

probabilities. 

  

Figure 7.17 Forecast probability of Pakistan winning versus Australia for (a) the first 

innings and (b) the second innings. The solid line represents the forecast probabilities for 

implied bookmaker, whilst the dashed and the dotted lines represent probabilities as 

obtained by our DLR models. 

 

As for the forecast probabilities for our second example, it is testament to the model 

that the two predictions follow similar trajectories. In fact, what is noticeable in this 

example is how the model suggests Pakistan‟s win probability is higher than that implied 

from the bookmaker‟s odds from around the midway point of the first innings. Similar to 

the first example, here again it is observed that during the first twenty overs the 

probabilities as obtained using the DLR model with covariates rd and rpr is less stable 

than the DLR model with covariates rd, wrl, and rpo.   

Although we only look at two matches, we believe there is enough evidence to 

suggest our model is performing well, and that events occurring during a match (like a 

wicket, or a period of high scoring by the batting team) are appropriately incorporated 

into the model. It would be interesting in the future to experiment with our model as a 

tool for betting on a large number of games to form the basis of a more complete test of 

market efficiency. 
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7.6 The DLR models and future research 

In regards to the shortcoming in our DLR models, we note an absentee: the pitch 

effect on runs scored. In cricket it is a commonly believed that some pitches are good for 

batting and some for bowling. One way to account for this effect is to use a covariate rrp, 

run-rate relative to pitch. The rrp could be defined as rpo/average rpo in that pitch or 

country. We initially experimented with such a variable, but found that there was not 

enough data to do this easily since not all teams have played on every ground in every 

country which would possibly result in a bias forecasts. For example, during 1992-2013 

there are 167 uninterrupted matches played in New Zealand. Out of these 167 matches, 

only seven matches were played on neutral grounds. Similarly, for the same period in Sri 

Lanka, out of total 197 uninterrupted matches, only 47 matches were played on the 

neutral grounds (statsguru, www.espncricinfo.com). Future work might look at 

developing a dynamic logistic model in which the covariate that describes the scoring 

ability of a team also takes account of the pitch effect.  

In addition to estimating probability forecasts, models like the one presented here, 

could also be used to help inform strategy during a game. Future research work in which 

our model is used to explain the optimum strategy of limited overs cricket would be an 

interesting project. Moreover, our DLR model can also be used as part of probability 

preservation methods for resetting targets in interrupted cricket matches, for example 

similar to the approach as proposed by Preston and Thomas (2002). However, in this 

regard the model should be tested for the standard properties that are presented in section 

4.2. Finally, our modelling approach could also be used to develop a team and/or players 

ranking system for ODI cricket.   

7.7 Summary  

In this chapter, an in-play model for forecasting the winner of One-Day International 

cricket matches during any point of a game has been presented. The modelling approach 

that has been taken is one in which the estimated coefficients on covariates are allowed to 

evolve smoothly as the game progress. We refer this model a dynamic logistic regression 

(DLR) model.  

In regards to the DLR model fit approach, first we fit a series of independent logistic 

models: one for each ball of the game. Four different methods for model selection are 



96 

 

applied. These methods are Akaike information criterion (AIC) (Sakamoto et al., 1986), 

Bayesian information criterion (BIC) of (Schwarz, 1978 and Akaike, 1977, 1978),  CVd 

(Delete-d Cross-Validation with random subsamples, Shao, 1997) and CVKF (Hastie et 

al., 2009, K-fold Cross Validation). Once it is decided which covariates are to be 

included in our final DLR model for a given innings, than each of the estimated 

coefficients on the included covariates are modelled as function of u, overs left, by our 

proposed recursive procedure. It is noted that the CVKF based DLR model is the most 

parsimonious with only two covariates in the model . On the other hand, AIC based DLR 

models are relatively more complex with five number of covariates in the model. The 

AIC based models are the DLR(u, home, dnt, fd, rd, wrl, rpo) for the first innings and the 

DLR(u, home,  fd, rd, wrl, rrpo) for the second innings of ODI cricket.  

For further justification of our approach of transforming the series of independent 

logistic models into a single DLR model for a given innings, we compare the 

Nagelkerke's R
2
, for each ball of the game. The results show that an approximately 

similar explanatory power of the covariates is obtained using the series of independent 

logistic models as compared to our single DLR models.  

Further, in regards to the predictive power of our DLR models, it is observed that the 

cross validation forecasting accuracies and the explanatory power of our DLR model 

depends on the stage of an innings. We use the leave-one-out-cross-validation method to 

assess the forecasting accuracies with respect to the progression of the innings. Broadly 

speaking, the forecasting accuracies and the explanatory power of covariates increase 

with respect to the progression of the game. We also examine how the strength or 

explanatory power of each covariate varies with respect to the progression of innings. To 

measure the strength of a covariate, we use the difference in Nagelkerke's R
2 

of the 

models with and without that covariate. It has been demonstrated graphically that in our 

DLR models the predictive power of pre-match covariates decreases, whilst the strength 

of the in-play covariates increases, with respect to the progression of the game.     

Lastly, we compare the ball-by-ball probability forecasts, as obtained by the 

proposed DLR models with those from the betting market, for two example matches. 

Roughly, similar forecasts are obtained from our DLR models and the betting market. 
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CHAPTER 8 SUMMARY AND FUTURE WORK 

8.1 Summary of the thesis 

The problems of interruptions to play and in-play forecasting are addressed in this 

thesis. Using statistical analysis, we investigate the issue of resetting targets in 

interrupted matches and propose an alternative, new method to this end. Further, we 

address the problem of in-play forecasting of match outcomes and propose a new 

approach of modelling in which the estimated parameters of the underlying models 

evolve smoothly with respect to the progression of the game.  

We start with CHAPTER 1 to describe our aims and to set the objectives to achieve 

those aims. A brief historical background of limited overs international cricket is given. 

Further, some standard rules for cricket, the equipment, and the ground are described 

briefly. Finally, we end the chapter by describing the structure of this thesis and the 

research contribution in each chapter.   

In CHAPTER 2, we give an overview of the literature about dealing with the 

problem of interruptions in limited overs cricket. The methods for resetting targets in 

interrupted limited overs cricket are broadly categorised in two parts: simple ad-hoc 

methods and more advanced methods that are proposed in the academic literature. For 

example, the run-rate based methods, the highest scoring overs (HSO) methods, 

equivalent point (EP) methods, and the PARAB method are investigated. It is argued that 

with the help of some real and hypothetical examples, that all of these methods are 

seriously flawed and can favour either of the two competing teams, depending upon 

situation. There are fundamentally two shortcomings in such methods. First, these 

methods do not account for the number of wickets the batting team has already lost at the 

time of interruption. Second, the stages of the interruptions are not been accounted for, 

and therefore all overs are considered to be of equal value in terms of run scoring 

potential. Similarly, a brief overview is given on more advanced methods for resetting 

targets in interrupted matches. For example, we describe briefly the Duckworth and 

Lewis (1998) method, Jayadevan (2002), and Carter and Guthrie (2004) method. It is 

highlighted that some of the major shortcomings of the simple ad hoc methods are 

resolved by these more advanced methods.  
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In CHAPTER 3, we present a procedure of estimating model parameters for 

Duckworth-Lewis Professional Edition for resetting targets. In regards to the D/L model 

estimation, Duckworth and Lewis (1998, 2004) did not disclose the parameter estimates 

or the estimation method. Further, to our knowledge there is no estimation method 

available in literature for the current D/L method. Moreover, we compare the runs 

scoring pattern of the Twenty-20 International and One-Day International cricket, and 

conclude that there is little evidence of a difference between the mean remaining runs for 

each given u, overs remaining and w, wickets lost. Further, it is argued that in addition to 

a statistical justification, it also appropriate from an ideological point of view that one 

single model is used for both formats of international cricket.  

  In CHAPTER 4 we investigate and compare the performance of some high profile 

methods including the existing Duckworth-Lewis method. The results have suggested 

that the current Duckworth-Lewis possesses more attractive properties than some other 

advanced methods that have been proposed in the literature. Further, we identified some 

standard desirable properties a method to reset targets should satisfy. In regards to this, 

first we investigate the runs scoring pattern of the VJD system of Jayadevan (2002) and 

showed that the second and fourth desirable properties, as presented in section 4.2, are 

not satisfied. Further, we demonstrated graphically that VJD system produces 

contradictory revised targets. Second, we examined Bhattacharaya's version of the 

Duckworth-Lewis method for T20I as proposed in Bhattacharya et al. (2011). This 

method also does not satisfy the second and fourth desirable properties and consequently 

results in unintuitive runs scoring pattern. Third, we investigated the runs scoring pattern 

of Stern's adjusted D/L method, as presented in Stern (2009). It is observed that in this 

method the rate of increase in the over-by-over runs value with respect to the progression 

of the innings is extremely rapid and therefore has some serious consequences. Finally, 

we overviewed the probability preservation method also known as Iso-Probability 

method of Carter and Guthrie (2004). The concept of probability preservation method  

was first proposed by Preston and Thomas (2002). Brief analysis of IP method shows 

that it compensates the teams for the interruption unreasonably different in similar 

situations. We note that further investigation of the IP method for appropriateness is 

beyond the scope of this thesis, partly because it has not been adopted by the ICC. 
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However, in this regards future research might be test this method for the properties we 

identified and presented in section 4.2.      

In CHAPTER 5 we present a new modified Duckworth/Lewis method for resetting 

targets following interruptions in limited overs cricket. The fundamental notion of the 

Duckworth-Lewis method remains the same, that is to estimate each teams' available 

resources in a complete innings. However, we propose a new model for estimating these 

resources. We proposed a model to estimate the mean remaining runs as function of u, 

overs remaining, and w, wickets lost. It was shown that our newly proposed model 

provides a superior fit to data. Further, we have demonstrated graphically that our model 

reflects a more intuitive runs scoring properties than the existing model used in the 

Duckworth-Lewis method. In the course of our analysis, we also have shown that the ad 

hoc model adjustment for well above average runs situation considerably improves the 

forecasting accuracies of predicting first innings total runs. Finally, some issues related to 

the newly proposed method have been highlighted; indeed these same issues exist for the 

current D/L model. 

In CHAPTER 6, we give an overview of in-play forecasting in cricket. It is 

highlighted that regarding the in-play forecasting, little work exists in the literature. A 

brief overview of generalized linear models is given. These models provide the basis for 

us to develop our in-play dynamic logistic models in chapter seven. Further, some model 

diagnostics and model identification criteria are discussed. Two types of model selection 

methods are been presented. First, the penalized log-likelihood function based methods, 

for example AIC and BIC are overviewed. Second, the cross validation forecasting 

accuracy based methods, for example, Delete-d Cross-Validation and K-folds Cross-

Validation are overviewed.   

 In CHAPTER 7, a new approach to modelling is presented for forecasting in-play 

match outcome in ODI cricket. The method of modelling that is adopted is the one in 

which the estimated coefficients on covariates in an ordinary logistic model are allowed 

to evolve smoothly as the game is in progression. One single such model could be 

developed for a complete innings (first or second). We refer to this model as a dynamic 

logistic regression (DLR) model. Two types of covariates, pre-match and in-play, are 

used in these DLR models. Different model selection procedures provide different set of 

best covariates that could be used in our final DLR model. For example, based on AIC, a 
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DLR model with covariates: home, dnt, fd, rd, wrl and rpo, is obtained for the first 

innings in-play forecasts. However, using K-folds Cross-Validation method a DLR 

model with covariates: rd, and rpr is obtained. Similarly, to improve the leave-one-out-

cross-validation (LOOCV) forecasting accuracies in the latter DLR model, during the 

first twenty overs of the first inning, the covariate rpr should be replaced with two 

covariates: wrl and rpo. Further, in our study it is to be noted that the DLR models that 

are based on BIC or CVd methods are similar. The meanings and descriptions of the 

covariates, that have been experimented with in our modelling, are provided in Appendix 

II. In regards to the explanatory power of the covariates, it is observed that the 

explanatory power of pre-match covariates is decreasing and the explanatory power of 

the in-play covariates is increasing, with respect to game progression. Further, the overall 

forecasting power of the DRL models is increasing. Finally, we compare the ball-by-ball 

probability forecasts for match outcome as obtained by our DLR models with that of the 

betting markets. Our forecasts are similar to those of the betting market, a testament to 

the accuracy of our model.  

8.2 Future work    

In this thesis, the statistical analysis that we have performed to tackle the two areas 

of research, resetting targets in interrupted limited overs matches, and estimating in-play 

probability forecasts for match outcome, suggests several avenues for future research 

work.  

In regards to our work on the resetting targets, first, our four desirableproperties 

could be used to assess a future method for resetting targets in interrupted matches. 

Further, our proposed modified D/L method could be used to estimate the runs margin of 

victory for a team batting second. Traditionally, in cricket a margin of victory for a team 

batting second is measured in term of wickets, whilst the margin of victory for a team 

batting first is determined in term of runs. Hence, it is not possible to compare the two 

margins of victories as both of these measures are in different units. Future research 

might be of interest where our proposed modified D/L model is used to estimate runs 

margin of victories for the teams batting second and compare the results with the margin 

of victories for the teams batting first. As such, the modified D/L model could also been 

used to rank teams and players performance. One of the shortcomings of the traditional 
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measures of performance of the players is that a batsman‟s performance cannot be 

compared with that of a bowler or an all-rounder. Our proposed modified D/L model 

facilitates comparison of the performances of  batsmen, bowlers, and all-rounders. For 

example, our modified D/L model could be used to examine how a player in a match 

utilizes the resources. Future research might be of interest in this regard.  

Our proposed modified D/L model can further be improved by taking account of the 

power-play overs and the order number of the two batsman. The power-play overs are 

those overs in which field positions are restricted. For detail, see the ICC official web 

site. For instance, it is a common opinion that the runs scoring potential in power-play 

overs are higher than the non-power-play overs. Similarly, a team would be in a better 

position if the minimum order of the two batsmen, in the current wicket partnership, is 

lower. This would especially be of greater importance during the final stages of an 

innings. For example, a team would be in stronger position if the current two batsmen 

were playing at numbers 1 and 11 rather than a team whose batsmen are playing at 

numbers 10 and 11. It can be observed that both teams have lost nine wickets (w=9), 

however, the former team has more wicket resources as a well-set quality batsman is at 

the crease. Future research might be of interest to modify our proposed model such that it 

accounts the power-play overs as well as the orders of the current batsmen.  

In regards to our work for in-play, ball-by-ball, forecasting match outcome, it is 

noted that in future such models could be used for revising targets in interrupted matches. 

However, further research is required to test this model for the properties presented in 

section 4.2. Lastly, our model could be used to assess different strategies during an 

innings. In this regard, future work is required where the effect of each covariate on the 

probability of match outcome is examined for each ball of the game.  
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Appendix I  

The Step-by-step description of application of the VJD system taken as it is from the 

'Appendix 1' of the Jayadevan (2002) 

"The whole problem of fixing target scores is broadly categorized under three cases: 

Case-A: The interruption is after team-1 has completed its innings and before team-2 

begins its innings. 

Case-B: The interruption comes after team-2 has batted through some overs in its 

innings. 

Case-C: The interruption is during the batting of team-1itself. 

Any problem related to fixing target scores can be included in one of the three 

categories or can be treated as a combination of two or all of these cases. 

 

Step-by-step procedure for case-A 

1. Find out the percentage of overs team-2 gets. 

2. Find out the corresponding target score percentage from the target table. 

3. Multiply the score made by team-1 with the value obtained in #2. 

 

Illustrative example-1: Team-1 scores 264 runs in 50 overs. Before team-2 starts 

batting, an interruption occurs and the match is reduced to a „42-over‟ one. Target 

score 

for team-2 is found as follows. 

 

Solution 

 „Percentage overs‟ to be played by team-2 = 42/50 ×100 = 84. 

 From target table, corresponding to 84% of overs, target percentage = 90.3. 

 Hence, the target score = 90.3 × 264 = 239 runs. 

 

Step-by-step procedure for case-B 

1. Find out the percentage of overs played up to the interruption. 

2. Find out the normal percentage of runs corresponding to #1 and the wickets 

fallen. 

3. Find out the PAR score (say PAR-1) as, normal score percentage multiplied 

by the score of team-1. 

4. Find out the percentage remaining overs with respect to the total overs 

remaining. 

5. Find out the corresponding target percentage. 

6. Multiply the target percentage of #5 with „the total score of team-1 minus 

PAR-1‟ to get the target score in the remaining overs. 

7. Add PAR-1 with the target obtained in #6 to get the net target. 
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Illustrative example-2: LOI# 1442: Australia vs West Indies (WI). Australia 252 in 

50 overs; WI, after 29 overs, 138/1. Ten overs are lost. What is the target for WI in 

40 overs. 

 

Solution 

 Percentage of overs played by WI at the time of interruption = 58. 

 Corresponding normal score = 48.3%. 

 PAR-1 = 48.3 × 252 = 121.7 (1). 

 Percentage of the remaining overs wrt the total remaining overs = 11/ 21 × 

100 = 52.4. 

 Corresponding target percentage = 65.6. 

 Target score for the remaining overs = 0.656 × (252–121.7) = 85.5 (2). 

 Net target in 40 overs (1) + (2) = 121.7 + 85.5 = 207.2 = 208 runs. 

 

Step-by-step procedure case-C 

1. Find out the percentage of overs played up to the interruption. 

2. Find out the normal percentage of runs corresponding to #1 and the wickets 

fallen. 

3. Find out the percentage of remaining overs with respect to the total overs, 

which was originally remaining. 

4. Find out the corresponding target percentage. 

5. Multiply the target percentage obtained in #4 with the 

6. Remaining score percentage (i.e. 100 – normal score calculated in #2). 

7. Add the percentages obtained in #2 and #5 to get the effective normal score 

(ENS) of team-1 in total percentage of overs played. 

8. Find out the target percentage for the total percentage of overs played. 

9. Target percentage in #7 divided by the ENS percentage in #6 will give the 

multiplication factor (MF). It is proposed to keep the lower limit of this MF 

as 1 for game-related reasons. 

10. Multiply the score made by team-1 with MF to get the target of team-2. 

 

Illustrative example-4: (Single interruption) LOI #1485 

Sri Lanka vs Australia. Australia were 110/3 in 23.1 overs when the interruption took 

place. Seven overs were lost. Australia make 206 in 43 overs. What is the target for 

Sri Lanka in 43 overs. 

 

Solution 
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 Percentage of overs played at the interruption = 46.2. 

 Normal percentage with 3 wickets lost = 42.8. 

 Remaining over percentage = 19.84/26.84 × 100 = 73.9. 

 Corresponding target percentage = 83.2. 

 ENS of Australia in 43 overs = 42.8 + (100–42.8) ×83.2% = 90.39%. 

 Target score percentage for 43 overs (86%) = 91.6. 

 MF = 91.6/90.39 = 1.0134. 

 Target for Sri Lanka in 43 overs = 1.0134 × 206 = 208.76 = 209 runs." 
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Appendix II  

A table describes the covariates, experimented for DLR models in CHAPTER 7 

Covariate Meaning  Description 

home home-vanue A binary variable taking the value 1 if the reference 

team is playing on home venue ground, otherwise 0. 

away Away-vanue A binary variable taking the value 1 if the reference 

team is playing on away venue ground, otherwise 0. 

dn  day-night A binary variable taking the value 1 if the match is a 

day-night game, otherwise 0. 

fd form-difference A continuous variable, ranging from -100% to 100% 

and describes the percentage difference between the form of 

the reference team and the opposition team. The 'form' of  a 

team is determined as, 

     ∑  (   )  
 
   ∑  (   ) 

   ⁄ , where  (   )  
 (   )                     . This covariate 

describes a performance difference, based on last five 

matches, between the two competing teams.  

rd ratings-

difference 

The difference in most recently available ICC official 

ratings of the reference and opposition teams. This 

covariate describes quantitatively the performance 

difference (as at the time of play), based on matches played 

in last three years, between the two competing teams.    

wrl wicket-

resources-lost 

A continuous positive increasing function, ranging from 

0 to 10, of two variables w, wickets lost, and u, overs 

remaining. It is defined as the proportion of runs lost in 

remaining innings for the loss of w wickets, compare to the 

expected remaining runs with no wicket lost, given u overs 

are remaining. Mathematically,        *   (   )+, 

where  (   )   ( ) {
     (    

   ( )
)      (   

   ( )
)

     (   
  

)      (  
  

)
} 

rpo runs-per-over Runs scored by the reference team, divided by number 

of overs played.  

rrpo required-runs-

per-over 

Runs required to win for reference team, divided by 

total number of overs remaining.  

rpr runs-per-unit-

resources-

consumed  

Runs scored by the reference team divided by the 

percentage of combined (wickets and overs) resources lost, 

crl. Where         *   (     )+, where 

  (     )   ( ) {
     (    

   ( )
)      (   

   ( )
)

     (   
  

)      (  
  

)
} 

rrpr required-runs-

per-unit-

resources-

remaining  

Runs required to win for the reference team, divided by  

the percentage of combined (wickets and overs) resources 

remeaining, 1-crl.  
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