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Abstract 

 

Oxidised bases in DNA are removed by a number of DNA glycosylases in the first 

step of base excision repair. These include 8-oxoguanine DNA glycosylase (OGG1), 

endonuclease III-like 1 (NTH1) and the Nei-like proteins, NEIL1, NEIL2 and NEIL3. 

While NEIL1 and NEIL2 are relatively well characterized, the function of NEIL3 is still 

not fully understood. Although all three proteins show homology to the Escherichia 

coli Fpg/Nei family, NEIL3 is the largest member with an extended C-terminal domain 

and contains a valine instead of the highly conserved proline residue at amino acid 

position two. While it has been reported that recombinant murine NEIL3 shows DNA 

glycosylase and AP lyase activities in vitro, its biological role remains unclear. 

Therefore, to gain an insight into the function of NEIL3 in vivo, the full-length human 

NEIL3 cDNA has been expressed in Saccharomyces cerevisae as a prelude to 

undertake a yeast 2-hybrid screen to determine specific protein-protein interactions. 

To date, cDNA library screenings for potential hNEIL3 interactors have been 

completed and clones expressing potential interactors have been isolated, 

sequenced and analysed. This data, along with the results of other confirmatory 

experiments are presented in this thesis. Furthermore, clones of Pichia pastoris 

harbouring an expression cassette with full-length human NEIL3 or mouse NEIL1 or 

truncated versions of hNEIL3 with amino acid length 1-394 and 1-502 cDNA have 

been generated in preparation for its overexpression in a eukaryotic system. It is 

envisaged that the expression of 6XHis tagged hNEIL3 in P. pastoris will enable the 

purification of hNEIL3 protein that can be used in enzyme assays and for further in 

vitro investigations of putative protein interactions discovered by yeast two-hybrid 

(Y2H) screen.  
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1 Abbreviations 

3′P    3′-phosphate 

3′PUA    3′-phospho α,β-unsaturated aldehyde 

5′dRP    5′-deoxyribonucleotide phosphate 

5′P    5′-phosphate 

5-OH-U   5-hydroxyuracil 

5-OH-C   5-hydroxycytosine 

6XHis    polyhistidine tag 

2-oxoA    2-oxo-1,2-dihydroadenine 

8-oxoA    8-oxo-7,8-dihydroadenine 

8-oxoG   8-oxo-7,8-dihydroguanine 

ADH    alcohol dehydrogenase 

AP    apurinic/apyrimidinic 

APE1    apurinic/apyrimidinic (abasic) endonuclease 

APE2    apurinic/apyrimidinic (abasic) endonuclease 2 

APNG    alkylpurine DNA-N-glycosylase 

APS    ammonium persulphate 

APTX    forkhead-associated domain histidine triad-like protein  

AmpR    ampicillin resistance sequence 

ATM    ataxia telangiectasia mutated 

ATR    ATM and Rad3-related 

BER    base excision repair 

BLAST    basic local alignment search tool 

bp    base pair(s) 

cDNA    complementary DNA 

cfu    colony forming unit(s) 

conc.    concentration 

DDR    DNA-damage response 

DSB(s)    DNA double strand break(s) 

DHT    dihydrothymine 

DHU     dihydrouracil 

DNA-BD   DNA binding domain 

DMSO    dimethylsulfoxide 

DR    direct reversal 

dRPase   deoxyribophosphodiesterase 

dsDNA    double-stranded DNA 
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FapyA    4,6-diamino-5-formamidopyrimidine 

FapyG    2,6-diamino-4-hydoxy-5-formamidopyrimidine 

FEN1    Flap endonuclease 1 

GAPDH   glyceraldehyde-3-phosphate dehydrogenase 

Gh    guanidinohydantoin 

H2TH motif   helix-two turn-helix motif 

HDAC1   histone deacetylase-1 

HhH motif   helix-hairpin-helix motif 

HR    homologous recombination 

HRP    horseradish peroxidase 

hN3-394   truncated version of human NEIL3, amino acids 1-394 

hN3-502   truncated version of human NEIL3, amino acids 1-502 

hNEIL3   human NEIL3 

IPTG    isopropyl-β-D-thiogalactopyranoside 

LacZ    LacZ gene 

LB-Carb   Lysogeny broth - agar plate with carbenicillin 

LB-Carb-broth   Lysogeny broth with carbenicillin 

Leu2    leucine coding gene (Leu2) 

LexA    LexA – repressor 

LigI    DNA ligase I 

LigIIIα    DNA ligase III alpha 

M1dG    pirymido-[1,2 α ]purine-10(3H)-one-2′-deoxyribose 

M2H    mammalian two-hybrid 

Me-FapyG   2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine 

MGMT    O6-methylguanine-DNA methyltransferase 

mNEIL3   mouse NEIL3 

mNTH1   mouse NTH1 

MMEJ    microhomology-mediated end joining 

MMR    mismatch repair 

MOLT4   human acute lymphoblastic leukaemia cells 

MutS, MutL, MutH  methyl-directed mismatch repair proteins 

NaOAc    sodium acetate 

NEIL/Neil   nei-like 

NER    nucleotide excision repair 

NHEJ    non-homologous end joining 

NLS    nuclear localization sequence 

NTH1    endonuclease III-like 1  
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OGG1    8-oxoguanine DNA glycosylase 

PARP-1   Poly (ADP-ribose) polymerase 1 

PCR    polymerase chain reaction 

pEG202   bait vector used in yeast two-hybrid 

pEG202-N3   pEG202 containing hNEIL3 cDNA 

pEG202(-NLS)  pEG202 and pEG202-NLS 

pEG202(-NLS)-N3  pEG202 and pEG202-NLS containing hNEIL3 cDNA 

PNK    polynucleotide kinase  

Pro2    proline at amino acid position two (N-terminal) 

Polβ    DNA polymerase β 

Polδ    DNA polymerase δ 

Polε    DNA polymerase ε 

ROS    reactive oxygen species 

SDS-PAGE   sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SMUG1    single-strand selective monofunctional uracil DNA glycosylase 

SNP    single nucleotide polymorphism 

SOD    superoxide dismutase 

Sp    spiroiminodihydantoin 

SSB(s)    DNA single-strand breaks 

ssDNA    single-stranded DNA 

TDG    thymine DNA glycosylase 

Tg    thymine glycol 

TEMED   tetramethylethylendiamine 

TopoIIIα   DNA topoisomerase IIIα 

UAS    upstream activation sequence 

UDG/UNG   uracil-DNA glycosylase 

UvrD    DNA helicase II 

Val2    valine at amino acid position two 

vDNA    viral DNA 

X-gal    bromo-chloro-indolyl-galactopyranoside 

Y2H    yeast two-hybrid 
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2 Introduction 

 

DNA damage in aerobic cells is mainly caused by reactive oxygen species (ROS). 

ROS are formed as by-products of electron transport in mitochondria or by exposure 

to environmental agents. At low concentrations ROS are mediators of specific 

physiological processes such as cell proliferation and inflammatory responses. 

However, if the concentrations become too high, the negative effects of these 

oxidants are increased including DNA damage which can cause various changes in 

the chemistry of bases, sugars and phosphates resulting in mutagenesis or cell death 

(Nakabeppu et al., 2004; Uchida, 2003; Winczura et al., 2012). One of several DNA 

repair mechanisms, base excision repair (BER) is a major pathway that can 

recognize and replace damaged DNA bases (David & Williams, 1998). BER is 

initiated by DNA glycosylases. The oxidative damage-specific DNA glycosylases in 

bacteria have been extensively studied and in Escherichia coli, formamidopyrimidine 

[fapy]-DNA glycosylase (Fpg), endonuclease VIII (Nei), and endonuclease III (Nth) 

act on overlapping sets of modified DNA bases (Wallace, 2002). Nth and the 

mammalian homologues 8-oxoguanine DNA glycosylase (OGG1) and nth 

endonuclease III-like 1 (NTH1) have an internal lysine (Lys) residue at the active site, 

while Fpg and Nei use an N-terminal proline (Pro) residue. Nth and Nei in E. coli act 

as DNA glycosylases that remove oxidized pyrimidines, including free radical - 

damaged thymines and cytosines. Fpg, also known as MutM, can recognize and 

repair oxidized purines such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-

4-hydroxy-5-formamidopyrimidine (FapyG) (Tchou et al., 1994; Hazra et al., 2002a; 

Wallace, 2002). NEIL1, NEIL2 and NEIL3 are mammalian proteins of the Nei-like 

(NEIL) family. Nei-like is designated in this way, because Nei, encoded by the nei 

gene of E. coli, is homologous to NEIL1, NEIL2 and NEIL3. However, NEIL2 is the 

only protein of these three which recognizes oxidized pyrimidines exclusively while 
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NEIL1 is a functional hybrid of Fpg and Nei as it can repair oxidized purines and 

pyrimidines. NEIL3 has recently been shown to act on oxidized purines such as 

FapyG, 4,6-diamino-5-formamidopyrimidine (FapyA), and the hydantoin lesions 

guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), preferentially on single-

stranded DNA (ssDNA) (Liu et al., 2013). 

 

2.1 DNA damage 

 

Under aerobic conditions, a cell of any origin has the potential to be under oxidative 

stress, the level of which can vary dramatically depending on different factors such 

as environmental stress levels (e.g. radiation or heat exposure). Oxidative stress is 

the imbalance between oxidants and antioxidants in favour of the oxidants that can 

lead to cell damage and death. Such oxidants can either enter a cell exogenously in 

the form of oxidising agents or are produced endogenously as by-products from 

mitochondria during oxidative phosphorylation (Devasagayam et al., 2004). Oxidants 

and radiation can lead to various types of DNA damage which include single- and 

double-strand DNA breaks, DNA inter-, intra-strand and protein cross-links, DNA 

adduction and oxidation, covalent dimer formation and spontaneous hydrolysis of a 

base leaving an abasic, an apurinic/apyrimidinic (AP) site (Bernstein et al., 2002; 

Drablos et al., 2004). 

 

One major reason for DNA damage caused by oxidants are ROS, chemically reactive 

molecules containing oxygen that are formed as a natural by-product during aerobic 

respiration (Devasagayam et al., 2004). ROS can attack and alter the chemical 

nature of cellular components. However, over time cells have developed an 

incredible diversity of defence mechanisms to either neutralize such threats before 

any damage has occurred or to recognize and repair or replace cellular 
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macromolecules (Pierce, 2012; Izumi et al., 2003). In particular the maintenance of 

genomic integrity plays a crucial role for the survival of any organism. A loss of 

genomic stability often leads to an increased risk of genetic diseases, premature 

aging and the formation of malignant diseases. The integrity of the genome is 

ensured by a strictly coordinated regulation of different cellular processes such as 

DNA replication, DNA repair, senescence and apoptosis. These processes are 

controlled and coordinated by DNA damage checkpoints (Shiotani & Zou, 2009). 

 

The activation of checkpoint signals can lead to an arrest of the cell cycle in G1 thus 

preventing DNA replication. This process allows the cell to remove lesions from its 

genomic DNA, and therefore hinders the rise of mutations or the collapse of the 

replication fork. The latter can lead to the formation of DNA double-strand breaks 

(DSBs) which can result in chromosomal damage and cell death. In many cases, 

checkpoint-signals stimulate the cellular DNA repair machinery and therefore greatly 

contribute to minimize the toxic effects of DNA damage (Li & Zou, 2005). 

 

Cell-cycle progression, DNA repair, DNA replication, transcription and apoptosis are 

coordinated by the DNA-damage response (DDR). Studies on genes involved in 

DDR have revealed that their deletion can lead to lethality, premature aging 

syndromes, cancer and neurodegenerative disorders (Nam & Cortez, 2011). 

Although to date the mechanism of DNA damage sensing within a cell remains 

unclear, it has been proposed that Rad1, Rad9 and Hus1, all fission yeast proteins, 

form a trimeric protein complex, a damage sensor clamp known to interact with DNA 

polymerase β (Polβ) and increasing its efficiency in DNA repair (Toueille et al., 2004). 

The structure of this complex is similar to the conformation of the eukaryotic DNA 

sliding clamp proliferating cell nuclear antigen (PCNA) a cofactor for DNA 

polymerase δ (Polδ). Therefore, PCNA is likely to have a similar function to that of 
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the Rad9/Rad1/Hus1 complex and thus increases the processivity of DNA replication 

in eukaryotes (Lowndes & Murguia, 2000; Venclovas & Thelen, 2000). 

 

If the integrity of the genome in mammalian cells is compromised, the activation of 

DDR is coordinated by three major protein kinases, ataxia telangiectasia mutated 

(ATM), DNA-dependent protein kinase (DNA-PK) and ataxia telangiectasia and 

Rad3-related (ATR) (Brown & Baltimore, 2003; Nam & Cortez, 2011). These 

serine/threonine-specific protein kinases belong to the phospho-inositol-3-kinase-like 

protein kinase family and share similar domain structures. However, while ATM and 

DNA-PK are activated primarily by DSBs, ATR can additionally be activated by a 

much wider spectrum of DNA lesions such as base adducts, stalled replication forks 

and DNA cross-links (Nam & Cortez, 2011). When activated, ATR phosphorylates 

the kinase Chk1 and this way initiates a signal transduction cascade that leads to G1 

cell cycle arrest that gives the cell time to repair the DNA damage before DNA 

replication is restarted (Brown & Baltimore, 2003). The tumour suppressor p53 is also 

regulated by the DDR and is one of the most important proteins involved in the 

maintenance of genomic integrity. In the cell, p53 plays an essential role in the 

regulation of cell cycle progression, apoptosis and DNA repair in response to various 

stress signals resulting from oxidative stress (Harris & Levine, 2005). 

 

2.1.1 Oxidation of DNA bases 

 

ROS are generated as by-products of the mitochondrial electron transport chain, 

such as superoxide (O2
●-), hydrogen peroxide (H2O2) and the highly reactive hydroxyl 

radical (●OH) (Figure 1). 
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Figure 1: Example for ROS formed during aerobic metabolism. 

The unpaired orbits of dioxygen can accept single electrons to 

form the superoxide radical (1) which then can accept more 

electrons to form hydrogen peroxide (2) and further reduction 

leads to the highly reactive hydroxyl radical (3). 

 

The most abundant oxidized DNA purine base, 8-oxoG, is generated by ROS and 

ionizing radiation where an additional oxygen is added to the C8 position of guanine  

(Figure 2). Furthermore, the frequency of 8-oxoG generation is increased in 

organisms with a higher metabolic rate and in mitochondrial DNA rather than in 

nuclear DNA (Beckman & Ames, 1998). Because of its abundant nature 8-oxoG is 

often used as an indicator for oxidative stress in a cell. 8-oxoG can lead to G  T 

transversions and is therefore highly mutagenic. Guanine can also be oxidized to 

FapyG (Figure 2) another abundant form of abnormal guanine that can lead to G  T 

base transversions and other base mutations (Jena & Mishra, 2012; Krwawicz et al., 

2007; Izumi et al., 2003; Morland et al., 2002). The levels of FapyG lesions in cells is 

significantly (6.5 fold) higher than the levels of 8-oxoG and FapyA and therefore new 

methods using FapyG to quantify the oxidative stress level have been developed  

(Hu et al., 2005). However, the best way to measure cellular oxidative stress might 

be to include several types of DNA lesions in such assays as the type of base 

oxidation varies depending on the type of oxidative stress the cell undergoes 

(Kanvah et al., 2010).  

 

Me-FapyG, the methylated analogue of FapyG, is the result of alkylation of guanine 

in DNA with subsequent oxidative attack or UV radiation (Figure 3) (Asagoshi et al., 
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2002). Furthermore, Me-FapyG is able to significantly block DNA synthesis in E. coli 

(Hu et al., 2005). Due to the fact that Me-FapyG is chemically distinct from FapyG, 

extrapolating results obtained with Me-FapyG to FapyG must be interpreted with 

care, although it is commonly done by several groups (e.g. Asagoshi et al., 2002; 

Graziewicz et al., 2000). 

 

Further oxidation of 8-oxoG caused by various oxidizing agents results in the 

hydantoin lesions Sp or Gh respectively while the pyrimidine ring of guanine is 

opened in Gh and closed in Sp (Figure 2) (Niles et al., 2004; Jena & Mishra, 2012). 

 
Figure 2: Examples of oxidations of guanine. O in grey is the oxidized site. N in grey is the  

β-N-glycosidic binding site. 

 

 
Figure 3: Oxidation of 7-methyl guanine (7mG) forms 
Me-FapyG. (Image taken from Asagoshi et al., 2002). 

Me-FapyG 7mG 
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Like 8-oxoG and FapyG, FapyA (Figure 4) is another very abundant oxidised base 

lesion generated by ionizing radiation or ROS. FapyA can be a toxic lesion due its 

ability to block DNA synthesis (Graziewicz et al., 2000). The oxidized adenine 

residue 8-oxo-7,8-dihydroadenine (8-oxoA) causes no mutagenic incorporation, does 

not block DNA synthesis by the E. coli DNA polymerase I and the DNA duplex 

conformation stays intact which implies that 8-oxoA has limited or no biological effect 

on DNA replication (Guschlbauer et al., 1991; Figure 4). However, a more recent 

study showed that 8-oxoA in mammalian cells can induce AC transversions and 

AG transitions at a rate comparable to that of 8-oxoG (Kamiya et al., 1995a). 

However, as other research showed that the AC transversion rate caused by  

8-oxoA is at least four times lower than for 8-oxoG, the real biological significance of 

8-oxoA remains to be determined (Tan et al., 1999). The C2 position in adenine is 

also prone for oxidation via ionizing radiation and various ROS resulting in 2-oxo-1,2-

dihydroadenine (2-oxoA; Figure 4). Although, 2-oxoA generally still pairs with thymine 

it can also pair with cytosine resulting in an AG transition (Hori et al., 2010; Kamiya 

& Kasai, 1995b). The 2-oxo-dATP nucleotide can be misincorporated opposite G 

during DNA synthesis resulting in a GT transversion (Inoue et al., 1998). 

 

 
Figure 4: Examples of oxidation of adenine. O in grey is the oxidized site. 
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Cytosine can be oxidized to 5-hydroxycytosine (5-OH-C; Figure 5) which has a weak 

C  T mutagenic activity. However, 5-OH-C can be deaminated to 5-hydroxyuracil 

(5-OH-U; Figure 6) which is a highly mutagenic lesion and responsible for C  T 

transition mutations (Kreutzer & Essigmann, 1998). 

 

 
Figure 5: Examples of oxidation and further deamination of cytosine. NH in grey is the 

deoxyribose binding site. OH in grey is the oxidized site. 

 

As a result of ionizing radiation and oxidative stress thymine can be transformed to 

thymine glycol (Tg; Figure 6) an abundant DNA lesion known to block DNA 

replication and also to form a Tg:G mismatch resulting in a TC transition (Krwawicz 

et al., 2007; Kusumoto et al., 2002; Yoon et al., 2003). 

 

 
Figure 6: An example of the oxidation of thymine. OH in 

grey is oxidized site. 
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2.1.2 Spontaneous DNA damage formation 

 

Two major forms of spontaneous DNA damage exist, deamination of bases and 

depurination. Depurination is the spontaneous DNA hydrolysis of the purines adenine 

and guanine at the β-N-glycosidic bond resulting in an AP site that can block DNA 

synthesis and is therefore cytotoxic (Breen & Murphy, 1995). It has been estimated 

that every day, between 2,000 – 10,000 DNA purine bases are lost due to 

depurination in a human cell (Lindahl, 1993). 

 

Base deamination, is the hydrolytic removal of an amine group from cytosine, 

adenine or guanine. Deamination of cytosine results in uracil that can lead to CT 

transition as uracil pairs with adenine during DNA replication (Figure 7).  

 
Figure 7: Deamination of cytosine (left) to uracil (right). 

 

2.1.3 UV damage 

 

The ultraviolet (UV) light spectrum includes the wavelengths in the range  

100-380 nm. This area is subdivided into UV-A (315-380 nm), UV-B (280-315 nm) 

and UV-C (100-280 nm). UV-B is the most mutagenic component of the UV spectrum 

that can lead to bipyrimidine photoproducts such as the toxic and mutagenic 

cyclobutane-pyrimidine dimers (Figure 8) and 6-4-photoproducts that are formed at 

5′-T-C-3′, 5′-C-C-3′, 5′-T-T-3′ DNA sequences (Figure 9) (Sinha & Häder, 2002; 

Cadet et al., 2005). 
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Figure 8: Formation of cyclobutane-pyrimidine dimers: thymine-thymine  

dimer (A) and thymine-cytosine dimer (B). (Image adapted from Sinha and Häder, 

2002). 

 

 
 

Figure 9: Formation of a 6-4 photoproduct, in this case 6-4 TT from 5′-T-T-3′.  

(Image adapted from Sinha and Häder, 2002). 

 

If these DNA lesions are not removed from DNA they can affect genomic integrity 

which subsequently can affect cell and tissue homeostasis and cause mutations in 

oncogenes and tumour-suppressor genes leading to carcinogenesis or apoptosis of 

the cell (Cadet et al., 2005). 
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2.1.4 Lipid peroxidation 

 

There is evidence that many damaging effects on cellular components under 

oxidative stress are caused by the products of lipid degradation. This process of 

peroxidative degradation of polyunsaturated fatty acids is called lipid peroxidation 

and is a result of a free radical chain reaction (Uchida, 2003). Lipid peroxidation 

includes three steps, the initiation, propagation and the termination step. The 

oxidative chain reaction is initiated by ROS such as ●OH attacking the double bonds 

of the polyunsaturated fatty acids which then leads to a lipid radical that reacts with 

O2 producing a lipid peroxyl radical (1 in Figure 10). This lipid peroxyl radical is highly 

reactive oxidizing further lipids and propagating a chain reaction (2 in Figure 10). This 

chain reaction carries on until a lipid radical reacts with another lipid radical or an 

antioxidant such as γ-tocopherol (vitamin E) terminates the process by transferring a 

hydrogen atom that renders the lipid peroxyl radical into a lipid peroxide that can be 

further processed either enzymatically or spontaneously into an inert hydroxy fatty 

acid or other stable products (4 in Figure 10) (Uchida, 2003; Sattler et al., 2006; 

Winczura et al., 2012). 
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Figure 10: The three steps of the lipid peroxidation chain reaction. Initiation step (1) renders a 

polyunsaturated fatty acid into a lipid peroxyl radical. This radical can react with further 

polyunsaturated fatty acids in the propagation step (2). Only if neutralized by an antioxidant 

such as γ-tocopherol or another lipid peroxyl radical is the chain reaction terminated (3). 

Further enzymatic or spontaneous conversion changes the lipid peroxide into a more stable 

product such as hydroxy fatty acid (4). (Image adapted from Sattler et al., 2006). 

 

The lipid peroxyl radical can cyclize and subsequently be further oxidized by O2 to 

form an isoprostane (Figure 11) (Winczura et al., 2012). The so formed isoprostane 

is highly unstable and either spontaneously rearranges to form other types of 

isoprostanes or it decays into fragments, releasing malondialdehyde (MDA;  

Figure 11) (Sattler et al., 2006; Winczura et al., 2012). 
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Figure 11: Formation of Isoprostane and MDA. (Image adapted from Sattler et al., 2006). 

 

In DNA, MDA reacts with guanine, adenine and cytosine to form several pre-

mutagenic adducts. The major adduct is the cyclic pirymido-[1,2 α ]purine-10(3H)-

one-2′-deoxyribose (M1dG; Figure 12) which can induce GT transversions or GA 

transitions at a similar frequency to 8-oxoG (Valko et al., 2006). 

 

 
Figure 12: Chemical structure of M1dG.  

(Image adapted from Winczura et al., 2012). 

 

Further DNA lesions caused by lipid peroxidation products, but also by exposure to 

carcinogens such as vinyl chloride, are etheno adducts where a five membered 

exocyclic ring is attached to DNA bases leading to 1,N2-ethenoguanine (1,N2-εG), 

N2,3-ethenoguanine (N2,3-εG), 3,N4-ethenocytosine (3,N4-εC) and  

1,N6-ethenoadenine (1,N6-εA). How the formation of etheno adducts exactly occur  

in vivo is not fully understood to date and remains to be determined (Winczura et al. 
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2012). However, exocyclic bases can be mutagenic. After DNA replication, 1,N2-εG 

can lead to GT and GC transversions (Langouet et al., 1997) and N2,3-εG is 

prone to base pair with cytosine and thymine leading to GA transitions if the latter 

(Cheng et al., 1991). 3,N4-εC can mismatch with thymine and adenine resulting in 

CA transversions and CT transitions (Moriya et al., 1994). If paired with adenine 

or cytosine, 1,N6-εA can lead to AT tranversions or AG transitions respectively 

(Pandya & Moriya, 1996). 

 

 
Figure 13: Structures of 1,N

2
-ethenoguanine (1,N

2
-εG), N

2
,3-ethenoguanine  

(N
2
,3-εG), 3,N

4
-ethenocytosine (3,N

4
-εC), 1,N

6
-ethenoadenine (1,N

6
-εA).  

(Image adapted from Winczura et al., 2012). 
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2.1.5 Alkylation DNA damage 

 

A very common form of alkylation is the methylation of DNA. Depending on the 

position of the methyl group, the nucleotide can be rendered pre-mutagenic or toxic. 

However, methylation of cytosine on C5 that forms 5-methylcytosine (5meC) is 

crucial for several functions within a cell such as regulation of gene expression and 

chromatin modification in eukaryotic cells (Jair et al., 2013). 

 

Figure 14 shows a summary of positions that are susceptible to methylation and 

alkylation in general whereas the different positions either cause toxicity, 

mutagenesis or spontaneous depurination. 

 
Figure 14: Summary of positions prone to methylation (Me) in 

thymine, adenine, cytosine and guanine. Me with a star 

represents toxic lesions, with a triangle pre-mutagenic lesions 

and with a circle lesions that are susceptible to spontaneous 

depurination. (Image adapted from Wyatt and Pittman, 2006). 

 

Commonly known agents that can cause DNA alkylation are cytotoxic anti-cancer 

drugs, N-nitroso compounds found in tobacco, methane gas released from industry 

and N-nitrosamines that are consumed with smoked meat (Hecht, 1999; Lijinsky, 

1999). 
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2.1.6 DNA strand breaks 

 

Double-strand breaks can be generated by blocking lesions that stop DNA replication 

and can lead to a collapse of the replication fork. Such blocking lesions are generally 

generated, either directly or indirectly by radiation, ROS or other chemical agents that 

cause oxidative damage to C1 or C4 of the deoxyribose in the phosphate backbone 

of DNA. Although, DSBs are essential for meiotic recombination they also can be 

indirectly lethal to cells by inducing mutations, deletions or translocations to the 

chromosomal DNA that can lead to apoptosis or cancer whereas apoptosis is 

controlled by the ATM-ATR signalling pathway that arrests cell cycle in G1 phase 

allowing DSBs repair mechanisms to resolve DNA damage (Kaina, 2003). Ionising 

radiation and ROS generate single-strand breaks (SSBs) and if these breaks lie in 

close proximity on opposite strand this will result in in double-stranded DNA (dsDNA) 

breaks (DSB). If unrepaired, DSBs can trigger apoptosis (Demple & DeMott, 2002). 

 

2.2 Antioxidants: the first instance of DNA protection 

 

Antioxidants are molecules and enzymes that can prevent other molecules from 

being oxidised and either are taken up from the environment (e.g. certain essential 

vitamins) or produced in the cell itself. One example is the enzyme superoxide 

dismutase (SOD) that can dismutate the radical superoxide (O2
−) to oxygen (O2)

 and 

hydrogen peroxide (H2O2) (Peter et al., 2006). Superoxide is a highly reactive ROS 

that is generated as a by-product of the mitochondrial respiration pathway. If not 

neutralized by antioxidants such as SOD it can lead to chain-reactions that oxidise 

cellular macromolecules such as DNA (Keyer & Imlay, 1996).  
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2.3 DNA repair pathways 

 

To maintain genomic integrity, living organisms have developed several DNA repair 

pathways that include, direct reversal (DR), mismatch repair (MMR), nucleotide 

excision repair (NER), BER, homologous recombination (HR), and non-homologous 

end joining (NHEJ) (Hakem, 2008; Figure 15). 

 

 

Figure 15: Overview of DNA-repair pathways for different DNA lesions. DR = Direct reversal; 

MMR = mismatch repair; NER = nucleotide excision repair; BER = base excision repair;  

HR = homologous recombination; NHEJ = non-homologous end joining (examples for DNA 

damage shown in this picture are O
6
-methylation of guanine (DR pathway), A/A mismatch 

(MMR pathway), UV light damage produced pyrimidine dimers (NER pathway), oxidation of 

guanine to 8-oxoG (BER pathway). 
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2.3.1 Direct reversal (DR) 

 

The DR pathway repairs DNA base alterations such as pyrimidine dimers induced by 

UV radiation (Section 2.1.1) or O6-methylguanine produced by alkylating agents that 

transfer methyl- or other alkyl-groups to DNA bases (Section 2.1.5). Pyrimidine 

dimers are a type of intrastrand crosslink whereby either two thymines or cytosines 

that are next to each other on the same DNA strand are linked by covalent bonds. In 

many species including bacteria, fungi and non-placental animals, these lesions can 

be repaired by the enzyme photolyase in a process known as photoreactivation 

(Sancar et al., 2006). The O6-alkyl adduct O6-methylguanine (Figure 16), on the other 

hand, is repaired in E. coli by the enzymes Ada and Ogt and in mammalian cells by 

O6-methylguanine-DNA methyltransferase (MGMT). 

 

 

Figure 16: The guanine derivative 

O
6
-methylguanine bears a methyl 

group on its oxygen (dotted box). 

 

Instead of replacing damaged bases DR changes them back into their original state. 

Therefore, unlike BER it is a one-step pathway which does not require the excision of 

the damaged base. However, because MGMT repairs O6-methylguanine-DNA by 

transferring the alkyl group from the oxygen in the DNA to its own amino acid residue 

cysteine in its active site, it can only be used once before it becomes inactivated and 

subsequently degraded by the proteasome (Pierce, 2012; Hakem, 2003).  
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2.3.2 Mismatch repair (MMR) 

 

If, after DNA replication an incorrect base was incorporated and not corrected by the 

proofreading activity of the replicating DNA polymerase, the base mismatch is 

repaired by the MMR complex. It is known that in bacteria the subsequent 

methylation of a GATC sequence in the newly replicated strand is delayed and 

therefore the methyl group on the parental strand can be recognised and identified by 

the MMR proteins. Then the complementary strand is nicked before the guanine in 

the GATC sequence. This allows the MMR complex to bend the DNA and to bring 

the mismatched bases close to the methylated CTAG sequence. Subsequently 

exonucleases remove nucleotides from the new strand just before the 5′ guanine of 

the GATC sequence and the 3′ end of the nucleotide just after the mismatched base 

pair. Finally DNA polymerase closes the gap with bases complementary to the 

parental strand and nicks in the deoxyribose-phosphate backbone are sealed by 

DNA ligase (Pierce, 2012). Several enzymes are known that are involved in the MMR 

complex. In E. coli it is the homodimer MutS that binds to a mismatched base, while 

MutL recognises the binding and identifies the new DNA strand by binding to the 

methyl group on the CTAG sequence in the old strand. Then MutH nicks the nascent 

strand, the helicase II (UvrD) separates the double-stranded DNA, exonucleases 

remove the oligonucleotide that contains the DNA lesion and finally polymerase III 

resynthesizes the excised DNA (Iyer et al., 2006). 

 

Although several proposals have been made about the function of MMR in eukaryotic 

cells, the mechanism of recognition of a mismatched base remains unclear (Hsieh & 

Yamane, 2008; Iyer et al., 2006; Jiricny, 2006). However, it is known that different 

types of base mismatch specific homologs of the methyl-directed mismatch repair 

proteins in E. coli exist in eukaryotes. MutS binds to single base-base mismatches 

and 1-2 base insertion/deletion. If more than two bases are inserted/deleted then 
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MutSβ will recognize it instead of MutS. The three eukaryotic heterodimers MutLα, 

MutLβ and MutLγ have a similar function to that of MutL in E. coli, but in addition, 

MutLα and MutLβ have an endonuclease activity and therefore can nick the dsDNA 

(the role performed by MutH in E. coli). Pluciennik et al., (2010) discovered that 

interaction of PCNA with MutLα orientates this endonuclease in the direction on the 

dsDNA that is needed for correct incision on the oligonucleotide that contains the 

DNA lesion. 

 

Beside its exonuclease activity, necessary for the final excision of this 

oligonucleotide, Exo1 can carry out the prior separation of the dsDNA and therefore 

no helicase such as the UvrD in E. coli is needed. The resulting gap is then closed by 

DNA Polδ (Larrea et al., 2010; Iyer et al., 2006). 

 

2.3.3 Nucleotide excision repair (NER) 

 

NER removes bulky DNA lesions such as UV radiation-induced thymine dimers and 

6-4-photoproducts, inter- and intra-strand crosslinks formed by DNA reactive 

substances, large-volume adducts and ring systems such as benzo[a]pyrene and 

aflatoxin residues (Friedberg, 2001; Hoeijmakers et al., 1990). Like in MMR, in NER 

an oligonucleotide containing the lesion is removed and replaced by DNA synthesis. 

Due to the change of conformation of the DNA structure (helix distortion) caused by 

the DNA lesion the NER enzyme complex is able to recognize the DNA damage. 

Subsequently, the double-stranded DNA is separated and the single strands are 

stabilized by single-strand binding proteins. Then, in eukaryotic NER, the strand that 

carries the lesion is cleaved and as oligonucleotide of 25-30 nucleotides removed, 

the gap filled by a DNA polymerase and the phosphodiester bond sealed by a DNA 

ligase (Pierce, 2012; Hakem, 2008). Two sub-pathways of NER exist, global genome 
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NER (GG-NER) and transcription-coupled NER (TC-NER). GG-NER guards the 

whole genome while TC-NER repairs actively transcribed genes. However, except 

from different proteins involved in the recognition of the damaged DNA the repair 

pathways are the same (Hakem, 2008). 

 

2.3.4 Homologous recombination (HR), Non-homologous end-joining (NHEJ) 

 

In order to repair DSBs, cells have two major pathways, homologous recombination 

(HR) and non-homologous end-joining (NHEJ). All proteins involved in this repair 

process are closely linked to the ATM-ATR signalling pathway described in Section 

2.1 (Shrivastav et al., 2008). NHEJ ligates the break ends directly and uses short 

homologous DNA sequences that are present in ss overhangs on the ends of DSBs. 

Only if the overhangs are compatible, will NHEJ repair the DSB without loss of DNA 

sequence (Moore, & Haber, 1996). Incorrect NHEJ can lead to carcinogenesis due to 

translocations and telomere fusion (Espejel et al., 2002). HR on the other hand 

needs a second, homologous DNA molecule that can act as a template for the repair 

process and is therefore much more precise than the NHEJ pathway. Furthermore, 

HR uses the homologous DNA from the sister chromatid and therefore incorporates 

new genetic information into a chromosome during mitosis (Moynahan & Jasin, 

2010). 

 

 

 

 

 

 



 Thomas ROEDL – PhD Thesis – Salford 2013 22 

2.3.5 Base excision repair (BER) 

 

The BER is a highly conserved pathway from bacteria to mammals that combats 

oxidative and alkylation damage occurring in the DNA molecule. Substrates include 

chemically modified bases, AP sites generated by spontaneous depurination and 

SSBs. Two types of BER exist, short patch (SP-) and long patch (LP-) BER. In  

SP-BER a DNA glycosylase, specific for the type of base lesion, flips the base 

outside the DNA helix and releases the damaged base from the β-N-glycosidic bond 

resulting in an AP site (Figure 17, Figure 18 and Figure 19). The DNA glycosylases 

involved in BER fall into two main groups, monofunctional and bifunctional, regarding 

their mechanisms of action.  

 

Bifunctional DNA glycosylases such as NTH1 and OGG1 have an AP-lyase (DNA-

(apurinic or apyrimidinic site) lyase) activity and can perform β-elemination which 

cuts at the C-O-P bond 3′ to the AP-site resulting in a 3′-phosphate unsaturated 

aldehyde (3′PUA; Figure 17, 2 in Figure 18). The 3′PUA will then be removed by 

apurinic endonuclease 1 (APE1; Figure 17, 2 in Figure 18) which results in a 3′OH 

and a 5′P site. The NEIL proteins on the other hand are bifunctional DNA 

glycosylases that can perform β,δ-elimination and therefore cut the AP-site also on 

its 5′ site leaving a 3′-phosphate (3′P). This phosphate group will then be further 

processed by the polynucleotide kinase (PNK) forming a 3′OH site (Figure 17, 3 in 

Figure 18). The resulting gap with 5′P and 3′OH overhangs is ready to be filled with 

the correct base by Polβ that uses the opposite DNA strand as template (Date et al., 

1992; Sandigursky & Franklin, 1992). The final step in SP-BER is ligation by DNA 

ligase III α (LigIIIα) which joins the 3′OH end to the 5′P (Figure 17) (Brown, 2002). 

 

Monofunctional DNA glycosylases on the other hand are not able to process the 

resulting AP site after release of the damaged base. Therefore, APE1 is needed 
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which can due to its endonuclease activity cut the AP site resulting in a 3′OH and a 

deoxyribose phosphate (5′dRP) overhang (Figure 17, 1 in Figure 18). Because of the 

high affinity of poly(ADP-ribose)polymerase-1 (PARP-1) for DNA SSBs it binds to this 

SSB intermediate generated by APE1 before any other downstream protein can bind. 

This way PARP-1 regulates DNA repair activity by binding to DNA strand breaks 

allowing other repair enzymes such as Polβ and LigIIIα to act on the lesion while 

XRCC1 acts as a scaffold for these proteins (Parsons et al., 2005; Woodhouse et al., 

2008). The 5′dRP is released by Polβ resulting in a 3′OH and 5′P gap that can be 

filled by the DNA polymerase activity of Polβ and sealed by LigIIIα (Figure 17). 
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Figure 17: Scheme for the mammalian short patch (SP) BER. 
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Figure 18: A comparison of reactions catalysed by monofunctional and bifunctional 

DNA glycosylases. In the first step, DNA glycosylases recognise, bind to and then flip 

the damaged base lesion out of the DNA helix. Monofunctional DNA glycosylases such 

as uracil DNA glycosylase (UDG; 1) catalyse an one-step removal of the damaged base 

leaving an AP site which is then further processed by APE1 and Polβ. Bifunctional DNA 

glycosylases, such as OGG1 (2) and NEIL1 (3) are able to attach to the AP site by their 

nucleophilic active site residue and cleave either at 3′ via their β-lyase activity (OGG1; 

2), or at 3′ and 5′ via their β,δ-lyase activity (NEIL1; 3) which results in a DNA single-

strand break for OGG1 and a gap for NEIL1. The unsaturated aldehyde produced by 

OGG1 is further processed by APE1 and the 3′-phosphate produced by NEIL1 is 

excised by PNK. 

 

The LP-BER pathway on the other hand shares enzymes that are involved in DNA 

replication such as Polδ, DNA polymerase ε (Polε), Flap endonuclease 1 (FEN1), 

PCNA and DNA ligase I (LigI) (Izumi et al., 2003). LP-BER removes and 

resynthesizes a patch of 2 – 15 nucleotides. Interestingly there are overlapping 
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substrates within the SP- and LP-BER which might increases the overall protection of 

the genome against oxidative damage (Figure 19) (Hegde et al., 2008b). 

 
Figure 19: Scheme for the mammalian long patch (LP) BER. 

Due to the fact that in each step of BER a potential toxic lesion is generated such as 

an AP site, it is suggested that proteins work tightly together in big complexes during 

the BER process where they “hand over” each product until the resynthesized DNA 

strand is ligated (Campalans et al., 2005). 
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2.3.5.1 DNA glycosylases in E. coli 

 

Due to their overlapping substrate specificity it is difficult to identify new DNA 

glycosylases on the basis of their activity in cell extracts. Hence, most of the human 

DNA glycosylases where cloned on the basis of functional complementation or 

sequence homology with E. coli or yeast homologs already discovered (Hazra et al., 

2003). 

 

In E. coli the enzyme Fpg is essential for the repair of oxidized purines, such as  

8-oxoG, FapyA (Wiederholt et al., 2002) and FapyG (Wiederholt et al., 2003). Fpg is 

a bifunctional DNA-glycosylase with a β/δ AP lyase activity leading to a 3′P blocking 

residue and a 5′P site at the DNA strand break (Zharkov et al., 2003). The activity of 

Fpg is accomplished by the amino acid residue proline at amino acid position two 

(Pro2). This N-terminal residue of the Fpg/Nei family acts as a nucleophile in the 

DNA-glycosylase/AP lyase reaction (Saparbaev et al., 2002). 

 

Nei encoded by the nei gene in E. coli excises various oxidized pyrimidines such as 

5-OH-C and 5-OH-U and the oxidized purine FapyA (Wallace et al., 2003). Like Fpg, 

the active residue Pro2 plays a major role as a nucleophile in its activity as a DNA 

glycosylase (Saparbaev et al., 2002). However, although its sequence is similar to 

that of Fpg its function is homologous to that of Nth (described underneath). 

Furthermore, it has been shown by site directed mutagenesis studies that the 

removal of the Glu3 and Glu174 residues in Nei resulted in a loss of activity on 5-OH-

U substrates indicating that these residues are essential for the function of the DNA 

glycosylase domain in Nei (Burgess et al., 2002). 
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Nth encoded by the nth gene in E. coli is a DNA glycosylase essential for the removal 

of Tg (Alanazi et al., 1997). This bifunctional DNA glycosylase contains an internal 

Lys residue crucial for its β-lyase activity. 

 

The monofunctional adenine glycosylase MutY is expressed in E. coli and excises 

adenine that is mispaired with 8-oxoG, guanine or cytosine. If MutY excises A 

mispaired with 8-oxoG the following DNA replication cycle may result in an 8-oxoG:C 

DNA base pair that can then be repaired by Fpg/MutM (Krokan et al., 1997, Williams 

& David, 1998), or it may result in another 8-oxoG:A mispair. 

 

2.3.5.2 DNA glycosylases in mammalian cells 

 

Like the E. coli Fpg, OGG1 releases oxidized purines such as 8-oxoG and FapyG 

from dsDNA (Hazra et al., 2002a; Takao et al., 2002; Hitomi, Iwai, & Tainer, 2007). 

OGG1 is a bifunctional DNA glycosylase belonging to the E. coli Nth type that 

contains, like NTH1, an internal Lys residue at its active site (amino acid position 

249; Hazra et al., 2002b). Its expression is cell cycle independent (Dhenaut et al., 

2000). 

 

The localization of OGG1 depends on the isoform and the level of oxidative stress 

present in the cell. Isoform 1a is known to be located to the nucleus because of its 

NLS at the C-terminus and isoform 2a which has a unique C-terminus and a 

mitochondrial targeting signal is located in the mitochondria (Nishioka et al., 1999; 

Campalans et al., 2007). OGG1 belongs to the E. coli Nth family that features a 

conserved helix-hairpin-helix (HhH) motif. This protein structure is required for 

interaction with phosphate and oxygen atoms of the DNA backbone and is essential 

for DNA binding in these enzymes (Huffman et al., 2005). 
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After OGG1 removes 8-oxoG it remains bound to the resulting AP site until APE1 

releases it from the 5′P (Hill et al., 2001). Recent studies have also revealed that 

NEIL1 can stimulate OGG1 activity similar to APE1 (Mokkapati et al., 2004). 

 

NTH1, the human ortholog to E. coli endonuclease III, is like OGG1 a bifunctional 

DNA glycosylase that contains a Lys residue at its active site (amino acid position 

220) and a HhH motif for DNA interaction. Its β AP lyase activity results in a 3′PUA 

residue that has to be further processed by APE1. However, unlike OGG1, instead of 

oxidized purines, it can release pyrimidine lesions such as dihydrouracil (DHU),  

5-OH-U and Tg from dsDNA (Hazra et al., 2002a; Takao et al., 2002). Mouse NTH1 

(mNTH1) was shown to be active in the nucleus and mitochondria and contains 

transport signals for both organelles in its N-terminal region (Takao et al., 1998). 

 

MUTYH, also known as hMYH, is the human ortholog of the E. coli MutY DNA-

glycosylase and is localised in the nucleus and mitochondria (Takao et al., 1998). 

hMYH removes misincorporated adenine or 2-oxoA from 8-oxoG or G prior to DNA 

replication (Ohtsubo et al., 2000; Ushijima et al., 2005). There is evidence that the 

resulting AP site is then processed by proteins involved in LP-BER as hMYH 

interacts with APE1, PCNA and RPA (Parker et al., 2001). 

 

To investigate their biological significance, NTH1 and OGG1 genes have been 

knocked out in mice. However, because no obvious phenotype such as cancer 

caused by unrepaired DNA lesions has been observed in these mice the assumption 

arose that there must be a backup pathway or enzyme(s) that is/are able to 

recognize and neutralize DNA lesions that are usually substrates for NTH1 and 

OGG1. This was confirmed when the Nei-like proteins NEIL1, NEIL2 and NEIL3 were 

discovered. Like Fpg, Nei contains a helix-two turns-helix (H2TH) DNA binding motif 

that is also found in all three NEIL proteins. Similarly, the substrate specificities of 
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NEIL1, NEIL2 and NEIL3 overlap with that of Fpg and Nei (Hazra et al., 2003). 

Furthermore, although the NEIL proteins are different to NTH1 and OGG1 in both 

domain structure and reaction mechanism, they act on many of the same substrates 

which confirmed the assumption that at least NEIL1 and NEIL2 act as backup 

proteins in NTH1/OGG1 knockout mice (Das et al., 2007a). 

 

2.3.5.2.1 NEIL1 

 

Extracts from NTH1 knockout mice were still able to repair Tg lesions after exposure 

to 8 Gy X-Ray radiation. As mNTH1 is known to be a major DNA glycosylase in the 

repair of Tg lesions it was suggested that another protein, NEIL1, acts as backup 

DNA glycosylase thus having a complementary function to that of NTH1 (Takao et 

al., 2002). 

 

NEIL1 is mainly expressed during the S-phase of the cell cycle and is a bifunctional 

DNA glycosylase with a β/δ AP lyase activity and is a functional hybrid of Fpg and 

Nei. It excises oxidized purines as well as pyrimidines from single-stranded (ss) DNA 

and dsDNA such as 8-oxoG, FapyA, FapyG, Tg and 5-OH-U (Dou et al., 2003). 

Unlike Fpg, NEIL1 shows nearly no activity against 8-oxoG in dsDNA when paired to 

cytosine. However, it can stimulate the enzyme activity of OGG1 and catalyses the 

incision of resulting AP site with its β/δ AP lyase activity (Mokkapati et al., 2004). 

 

Furthermore, although NEIL1 is not as efficient as OGG1 in the removal of the  

8-oxoG, the excision of the 8-oxoG derivatives Gh and Sp is more than 100-fold 

faster than that of Tg and 5-OHC, especially if paired with T, G or C. Hence, these 

hydantoin lesions are the most preferred substrates for NEIL1 in vitro (Krishnamurthy 

et al., 2008). 
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Structural comparison of NEIL1 with Fpg and Nei reveals that in total, the amino acid 

sequence is more homologous to Nei than Fpg, but the conserved H2TH domain 

shows a higher correlation to Fpg than to Nei. In addition, a “zinc-less finger” also 

known to be a DNA binding motif is found uniquely in NEIL1 in place of the highly 

conserved zinc finger motif found in Fpg (Doublié et al., 2004). However, while Fpg 

and Nei feature a C-terminal zinc finger motif needed to stabilize DNA binding, NEIL1 

does not. Therefore, the extended C-terminal of NEIL1 features its own unique DNA 

binding motif (Doublié et al., 2004). Unlike NEIL2 and NEIL3, NEIL1 has a lysine 

residue at amino acid position 54 that is highly conserved in Fpg and Nei and 

essential for their function together with Pro2 (Rosenquist et al., 2003; Takao et al., 

2002). 

 

Furthermore, NEIL1 has been shown to interact through its C-terminal residue 

(amino acid position 288-349) with the Werner syndrome protein (WRN) a DNA 

helicase (Das et al., 2007a). This interaction is enhanced when intracellular oxidative 

stress is increased. NEIL1 is active in a BER protein complex that involves several 

proteins such as Polβ, LigIIIα, PNK and x-ray repair cross-complementing 1 protein 

(XRCC1) (Dou et al., 2003). 

 

Interestingly, NEIL1-/- mice cells show a significant accumulation of (5′R) – and (5′S)-

8,5′-cyclo-2′-deoxyadenosine DNA lesions, which was not observed in OGG1-/- mice 

cells used as control. As this kind of DNA damage is normally removed by NER 

rather than by BER it might be an indicator that NEIL1 is also involved in NER 

(Jaruga et al., 2010). 
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2.3.5.2.2 NEIL2 

 

Like NEIL1, NEIL2 has a Pro2 as the active site to fulfil its function as a DNA 

glycosylase. Interestingly, except for a few conserved domains such as the DNA 

glycosylase and H2TH domains, NEIL1 and NEIL2 show no other significant 

homology and whereas NEIL1 is cell cycle dependent NEIL2 is not. However, both 

act as bifunctional DNA glycosylases with βδ AP lyase activity and excise various 

oxidized pyrimidines such as 5-OH-U and 5-OH-C with preference for a DNA bubble 

structure (Dou et al., 2003). NEIL2 in its function as a DNA glycosylase excises  

5-OH-U and other oxidized derivatives of cytosine that are similar to substrates for 

NTH1. Compared to NEIL1, only weak excision activity of NEIL2 on dsDNA was 

observed. The preferred substrate of NEIL2 is ssDNA (Bandaru et al., 2007). 

However, in complex with the Y box-binding (YB-1) protein its activity on dsDNA was 

increased by 7-fold (Das et al., 2007b).  

 

2.3.5.2.3 NEIL3 

 

The nucleophile Pro2 residue present in E. coli Fpg and Nei is only preserved in 

NEIL1 and NEIL2 (Section 2.3.5.2.1 and 2.3.5.2.2). Instead, NEIL3 has a valine 

residue at amino acid position 2 (Val2) which, nevertheless, acts in the same way as 

Pro2 in the DNA glycosylase reaction by forming a Schiff base intermediate with the 

C1 atom of the damaged DNA (Liu et al. 2010). Site-directed mutagenesis studies on 

Pro2 in NEIL1 and NEIL2 showed the functional importance of this residue for the 

activity of these proteins (Bandaru et al., 2002). Because of problems to recover 

active full-length NEIL3, the possible biological functions of NEIL3 remain unclear 

and thus are the focus of this project. 
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Conserved domains of hNEIL3 

 

Several parts of the NEIL3 protein have been characterized as they are highly 

conserved in other proteins such as in E. coli Fpg/Nei and NEIL1/NEIL2. This 

structural information can be seen in Figure 20, Figure 27 and Figure 105 and have 

been assembled via the use of the basic local alignment search tool (BLAST), 

InterPro and publications from Morland et al. (2002), Torisu et al. (2005), Liu et al. 

(2010) and Krokeide et al. (2009) as described in detail below. 

 

 
Figure 20: Summary of conserved domains in human NEIL3 and their positions within the 

protein. 

 

As mentioned above, NEIL3 has a Val2 residue at the active side in place of the Pro2 

residue more commonly found in homologs. However, Liu et al. (2010) recently 

showed that the N-terminal Val2 residue in mNEIL3, like Pro2, also forms an imine 

intermediate (Schiff base) by using a borohydride-dependent “trapping assay” which 

can reduce the transient Schiff base intermediate to a covalent protein-DNA complex 

(Figure 21). 
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Figure 21: An example of a Schiff base intermediate and the 

chemical reaction of borohydride-dependent “trapping assay” that 

Liu et al. (2010) used to produce a covalent bond between the 

DNA backbone and the protein. OGG1 forms a Schiff base 

intermediate during processing an 8-oxoG lesion (1). If 

borohydride is added once the Schiff base intermediate is formed 

(2) then an irreversible cross-linking (trapping) of the enzyme to 

the DNA will result (3). (Image adapted from Bruner et al., 1998). 

 

Torisu et al. (2005; Figure 105) and BLAST studies carried out in this project with the 

hNEIL3 protein sequence compared with the human proteome (Figure 22) show, that 

the C-terminus of NEIL3 has homology with the C-terminus of AP-endonuclease 2 

(APE2) and the C-terminus of DNA topoisomerase IIIα (TopoIIIα). The N-terminal 

region (amino acids 1-313) of APE2 is homologous to the Xth-like AP endonuclease 

family that includes APE1 (Tsuchimoto et al., 2001). Like APE1, APE2 has the ability 

to recognize and bind specifically to AP DNA (Hadi & Wilson, 2000). Furthermore, 

the C-terminal domain of APE2 is homologous to a region in human TopoIIIα 

(Zumstein et al., 1986). This C-terminal sequence (amino acids 314-518) is 

conserved in many proteins which are involved in nucleic acid metabolism. This gives 

an indication that NEIL3 is also acting in nucleic acid metabolism. Recent studies 

have shown that NEIL3 excises DNA lesions preferentially from ssDNA (Liu et al., 

2012; Liu et al., 2013). However, because only truncated versions of NEIL3 were 
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used in these studies, it might be the case that the additional GRF zinc fingers at the 

C-terminal end also found in other DNA binding proteins, might affect the affinity of 

NEIL3 for different DNA structures including ssDNA and dsDNA. 

 

 
Figure 22: BLAST result of the amino acid sequence of hNEIL3 

compared with the human proteome. Correlations of hNEIL3 

sequence to other proteins are shown as followed:  = ATP binding 

cassette (unknown domain);  = RanBP binding protein (or RanBP 

binding domain);  = TopoIIIα (GRF zinc finger domain);  = APE2 

(GRF zinc finger domain). 

 

In addition to the BLAST results an InterProScan revealed an FPG zinc finger at 

amino acid position 247-281 (highlighted in Figure 23) in addition to the already 

known domains. 

 
 

 
 
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Figure 23: InterPro signature analysis for human NEIL3 protein sequence. 

 

NLS motif 

 

The location and existence of a putative NLS in hNEIL3 has been a matter of debate. 

For example, Morland et al. (2002), Torisu et al. (2005), Takao et al. (2009) and Liu 

et al. (2010 and 2012) stated that human NEIL3 has a putative nuclear localization 

signal (NLS) motif. However, Liu et al. (2010 and 2012) and Takao et al. (2009) did 

not mention any exact amino acid position while Torisu et al. (2005) only mention the 

position between amino acids 463 and 470 (Figure 27) but without stating a 

reference. Furthermore, the existence of an NLS could not be confirmed; neither via 

BLAST (NCBI; Figure 22) nor by further bioinformatical research via the European 

Bioinformatics Institute webpage (http://www.ebi.ac.uk; Figure 23) nor GeneCards 

(http://www.genecards.org) nor UniPort (http://www.uniprot.org/). However, the NLS 

in hNEIL3 was initially shown on NCBI – Conserved domains in 2008 (personal 

observation). Furthermore, Morland et al. (2002) did show via fluorescence 

experiments in living HeLa S3 cells that NEIL3 is located to nuclei after translation 
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and that NEIL3 contains a putative NLS at amino acid position 462-469 predicted by 

the PSORTII algorithm. 

 

GRF-zinc finger motifs in NEIL3 

 

Zinc finger (Znf) domains are relatively small protein motifs that allow the protein to 

bind DNA, RNA, other proteins or lipid substrates (Hall 2005; Matthews & Sunde 

2002). How the protein binds to a particular sequence of DNA depends on the amino 

acid sequence of the Znf motif. The Znf domains can be present in clusters, where 

the Znf can have different binding specificities. Because of the many different types 

of Znf motifs with different sequences resulting in different structures, the functions 

also vary. For example, they can function in zinc sensing, chromatin remodelling, 

gene transcription and protein folding (Laity et al., 2001). Although there is no recent 

study which characterizes the zinc finger domains in NEIL3, another study by Das et 

al. (2004) confirmed that NEIL2 has a zinc finger domain crucial for its structure and 

enzyme activity. This information about zinc finger domains, leads to the conclusion, 

that it is necessary to express NEIL3 in full-length to obtain its correct structural 

integrity and enzyme activity. This is confirmed by the recent study of Liu et al. (2010) 

who showed that full-length mouse NEIL3 has a DNA glycosylase activity in vitro 

while other groups expressed NEIL3 to a maximum amino acid length of 300 and 

were not able to detect DNA glycosylase activity (Krokeide et al., 2009; Takao et al., 

2009). NEIL3 contains two additional zinc finger motifs at the C-terminal end which 

were not expressed in the truncated versions of Krokeide et al. (2009) and Takao et 

al. (2009) and are not present in other Nei/Fpg homologs, but could be essential for 

NEIL3 to interact with the correct DNA substrates or with other proteins (Figure 27; 

Figure 105). 
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A BLAST analysis to search for conserved domains in hNEIL3 revealed conservation 

of these domains in the C-terminus of hNEIL3 between amino acid position 813 and 

943 (Figure 22). The duplicated GRF-zinc finger motif in NEIL3 (Figure 27 and Figure 

105) is also conserved in the human APE2 and TopoIIIα. 

 

TopoIIIα contains two GRF zinc finger domains, one at amino acid position 811-852 

and one at amino acid position 895-939 (Figure 24). Further BLAST results showed a 

correlation between the hNEIL3 C-terminus and APE2 at amino acid position 242-

291, which includes a putative AP binding site, and amino acid position 466-515 

which includes a GRF zinc finger domain (Figure 25). 

 

 
Figure 24: Conserved domains in human TopoIIIα. 

 

 
Figure 25: Conserved domains in human APE2. 
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RanBP zinc finger motif 

 

Between amino acid position 317 and 345 is a conserved, putative Ras-related 

nuclear protein binding protein (RanBP) zinc finger motif, in this case from RanBP2 

(also known as Nup-358). RanBP1 can diffuse into the nucleus due to its small size  

(23 kDa) and as it also carries an N-terminal nuclear export sequence it is actively 

transported back to the cytoplasm (Seewald et al., 2003). RanBP2 on the other hand, 

is a large protein (358 kDa) that is located in the nuclear pore complex and is known 

to interact with various protein partners. However, its zinc fingers are known to bind 

to RanGDP, another protein that is needed for an active transport of cargo into the 

nucleus where it is transformed to RanGTP that acts as a nuclear export protein. 

Thus, as already suggested by Morland et al. (2002) this conserved RanBP zinc 

finger motif in NEIL3 might play a role in its nuclear transport. 

 

Fpg-like zinc finger motif 

 

There is a highly conserved Fpg-like zinc finger domain at amino acid position  

247 – 281 (KVYKRPNCGQCHCRITVCRFGDNNRMTYFCPHCQK; Figure 23). This 

zinc finger motif acts in Fpg as a DNA binding motif and might also play an important 

role in the ability of NEIL3 to interact correctly with DNA structures to fulfil its specific 

biological functions (Tchou et al., 1993). 

 

Unique domain in hNEIL3 

 

All NEIL3 proteins identified so far contain a highly conserved domain at amino acid 

position 362 - 403 (LMKYPCNTFGKPHTEVKINRKTAFGTTTLVLTDFSNKSSTL) 

(Figure 26). However, to date no biological role has been linked to this domain and it 

is not found in any other of the Nei homologs (Krokeide et al., 2009). 
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Figure 26: Unique motif on NEIL3 found to be highly conserved amongst several 

species. (Image taken from Krokeide et al., 2009). 

 

Conserved moieties in NEIL proteins 

 

The Glu3 moiety, essential for the DNA glycosylase activity of the E. coli Nei and Fpg 

(Burgess et al., 2002, Lavrukhin et al., 2000), is conserved in all three NEIL proteins. 

Furthermore, site directed mutagenesis studies have shown that the Glu3 residue 

plays an important role in the activity of NEIL1 and NEIL2 (Bandaru et al., 2002). All 

three NEIL proteins also contain a lysine residue (Lys55 in NEIL1, Lys51 in NEIL2, 

Lys82 in NEIL3) that corresponds to the Lys52 and Lys56 residues in Nei and Fpg, 

respectively. These motifs in Nei and Fpg are necessary to coordinate the 5′P group 

of the damaged deoxynucleotide (Zharkov et al., 2003). Gly4 is preserved in all NEIL 

proteins and in E. coli Nei but not in Fpg where leucine is substituted. The Gly4 

residues in the NEIL proteins and Nei and the Leu4 residue in Fpg are thought to be 

part of the active site (Pro2 and Glu3) of these proteins (Zharkov & Grollman, 2002). 

 

Predicted structure of NEIL3 

 

NEIL3 contains a H2TH domain which is a typical motif for all proteins from the 

Fpg/Nei superfamily including all NEIL proteins. Liu et al. (2013) was the first group 

to solve the crystal structure of a truncated version of mouse NEIL3 (N-terminus with 

324 amino acids). They discovered that unlike the bacterial Fpg, NEIL3 has no  

αF-β9/10 loop that can hold 8-oxoG. This would explain why, to date, no excision 

activity on 8oxo-G for NEIL3 has been observed. Furthermore, NEIL3 not only lacks 
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two of three motifs essential for the stabilisation of the DNA strand opposite the base 

damage, but even contains negatively charged residues that do not allow proper 

binding of the phosphate backbone of the undamaged, template strand. This fact 

correlates well with the discovery that NEIL3 prefers ssDNA substrates (Liu et al. 

2010, 2012 and 2013). 

 

 
Figure 27: Neil3: full-length mNEIL3; ∆324Neil3: truncated version of 

mNEIL3 containing the conserved DNA glycosylase domain; NEIL1: 

human NEIL1; NEIL2: human NEIL2; Nei: E. coli Nei (endonuclease 

VIII); Fpg: E. coli Fpg (MutM). The schematic representation of mouse 

NEIL3 in this diagram is the same as for human NEIL3 including the 

first amino acids shown above the N-terminal end (Figure 105). 

(Image adapted from Liu et al., 2010). 

 

Expression patterns of NEIL3 

 

NEIL3 is mainly expressed in haematopoietic tissues, thymus and testes (Morland et 

al., 2002; Torisu et al., 2005; Takao et al., 2009; Figure 28). Although Takao et al. 

(2009) did not find expression of NEIL3 in adult mouse brain cells, Hildestrand et al. 

(2009) found expression during embryonic mouse brain development where 

expression levels were highest during the E12.5 stage (Figure 29).  
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Figure 28: Tissue expression patterns of human 

NEIL3 relative to GAPDH. He, heart; Br, brain; 

Sp, spleen; Lu, lung; Li, liver; SM, skeletal 

muscle; Ki, kidney; Te, testis. (Image taken from 

Takao et al., 2009). 

 

 
Figure 29: Quantified mRNA levels of NEIL3 

normalized to GAPDH. The mRNA was obtained 

from mouse brain extracts at four different 

developmental stages. (Image taken from 

Hildestrand et al., 2009). 

 

Further expression patterns have been published in several tumour and healthy 

tissues and in macrophages and activated T-lymphocytes where the highest 

expression levels were found in activated CD4-positive T-lymphocytes (Zhou et al., 

2008, Figure 30). 

 

 
Figure 30: Cell and tissue expression patterns of human NEIL3. (Image taken from Zhou et 

al., 2008). 

 

Furthermore, it has been shown that the expression levels of NEIL3 are cell cycle 

dependent. The expression of NEIL3 is upregulated in cells that leave the G0 phase 
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and start dividing. This, and the fact that the expression pattern of NEIL3 is related to 

that of FEN1, a protein active on replication forks during S phase, which might be an 

indicator for the activity of NEIL3 in replication associated DNA repair (Neurauter et 

al., 2012). Metastatic cancer cells also show a high level of NEIL3 expression, 

although this is not the only protein involved in BER to be upregulated (Figure 31) 

(Kauffmann et al., 2008). 

 

 
Figure 31: Standardized mean differences 

of log(ratio) between tumours that will 

metastzie within 4 years and tumours that 

will not for genes involved in DNA repair. 

(Image taken from Kauffmann et al., 2008). 

 

In general it can be said that expression levels of NEIL3 are elevated in tumour cells 

compared to normal cells except for testes (Figure 32) (Hildestrand et al., 2009). 

NEIL3 
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Figure 32: This image of a transcript profile of mNEIL3 was taken from Hildestrand et al. 

(2009). Amounts were normalized to β-actin and mNEIL3 mRNA levels are shown relative to 

the stomach cancer sample which showed the lowest expression level of mNEIL3 

Abbreviations: Adr G, adrenal gland; Bre, breast; Cer, cervix; Col, colon; End, endometrium; 

Eso, esophagus, Kid, kidney; Liv, liver; Lun, lung; Lym N, lymph node; Ova, ovary; Pan, 

pancreas; Pro, prostate; Sto, stomach; Tes, testis; Thy G, thyroid gland; Uri B, urinary 

bladder; Ute, uterus. 

 

DNA glycosylase activity of NEIL3 

 

The ability of NEIL3 to act as a DNA glycosylase has now been confirmed by several 

groups. The first indication came from Morland et al. (2002) who observed the 

removal of Me-FapyG lesions from [3H]-methyl-faPy-poly(dG:dC) by full-length 

mouse NEIL3 expressed in a baculovirus Sf9 insect cell system. However, no active 

NEIL3 was recovered from expression in E. coli or in a cell-free system. Hence, the 

group assumed that posttranslational modifications might be necessary for the DNA 

glycosylase activity of NEIL3 and this could be one explanation for activity only being 

observed in mammalian and insect cells Morland et al. (2002). Further evidence in 

support of this is indicated from the work of Takao et al. (2009) who could not confirm 

a DNA glycosylase activity of NEIL3 expressed in E. coli. On the other hand Krokeide 

et al. (2009) had no problem expressing full-length NEIL3 in a cell-free system in the 

presence of [35S] methionine. However, although the translated protein was 

confirmed via western blotting no activity on 8-oxoG or Me-Fapy lesions could be 



 Thomas ROEDL – PhD Thesis – Salford 2013 45 

detected. Furthermore, they tried to express full-length NEIL3 in and a truncated 

version in E. coli and although expression was successful no activity on dsDNA and 

ssDNA containing 8-oxoG, 5-ohU, Me-Fapy or abasic sites was observed. However, 

more recently both full length mNEIL3 and a truncated version of hNEIL3 have been 

found to act as DNA glycosylases on oxidized purines such as Sp, Gh, FapyA, 

FapyG and the oxidized pyrimidine Tg on ssDNA and dsDNA (Liu et al., 2010, 2012). 

Subsequently it was shown that overall DNA glycosylase activity in NEIL3-/- mouse 

tissue extracts from brain, heart, thymus and spleen tissues was nearly 2 fold lower 

on Sp or Gh ssDNA substrates compared to dsDNA substrates and to extracts from 

NEIL3+/+. This suggests that NEIL3 is the main DNA glycosylase in mammalian cells 

for the excision of Sp and Gh from ssDNA (Rolseth et al., 2013). Thus, in general the 

activity of mNEIL3 might be more similar to that of NEIL1 as it repairs oxidized 

purines and pyrimidines, preferentially from ssDNA.  

 

Liu et al. (2010) expressed the DNA glycosylase domain of a truncated version of 

mNEIL3 in an E. coli mutant. This mutant lacked Fpg, Nei, and MutY glycosylase 

activities and interestingly, the truncated version of mNEIL3 decreased the level of 

FapyG lesions about two fold more than a control expressing NEIL1. The fact that Liu 

et al. (2010) found that mNEIL3 prefers lesions in single-stranded DNA, fork and 

bubble substrates, might be an indicator that mNEIL3 is active during DNA replication 

similar to NEIL1. 

 

AP lyase activity of NEIL3 

 

Takao et al. (2009) reported that mNEIL3 has an AP lyase activity which is specific 

for ssDNA. This group used a truncated version of mNEIL3 (amino acids 1-290) that 

only contained the conserved DNA glycosylase domain and expressed it in E. coli. 

Therefore, they concluded that the C-terminal domain could be responsible for the 
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regulation of enzyme activity or function to direct the appropriate repair in vivo via 

interactions with other proteins (Takao et al., 2009). Subsequently, Liu et al. (2010) 

determined that mNEIL3 acts as bifunctional DNA glycosylase under in vitro 

conditions.  

 

NEIL3 and its role in human immunodeficiency virus integration 

 

Recent siRNA studies have revealed that BER proteins play an important role in 

retroviral integration into the host genome (Espeseth et al., 2011a; Yoder et al., 2011; 

Zhou et al., 2008). Zhou et al. (2008) used a siRNA screen to identify six genes 

coding for essential host factors for HIV DNA integration: AKT, PRKAA1, CD97, 

BMP2K, SERPINB6 and NEIL3. The protein kinases AKT1 and PRKAA1 are 

important proteins involved in many cellular processes including glucose transport, 

glycolysis, fatty acid and protein synthesis. They might support HIV replication and 

integration by their capability of inhibiting cell apoptosis. Like SERPINB6 and NEIL3 

the protein kinase BMP2K, involved in the regulation of bone mineralization, is also 

able to aid HIV replication and integration although their functional role remains 

unclear and is under investigation. CD97 on the other hand seems to play a role after 

HIV was integrated which needs to be determined (Zhou et al., 2008). 

 

Espeseth et al. (2011a) made additional screens using siRNA targeting other 

essential BER proteins and discovered that knockdown of NEIL3 decreased HIV 

infection efficiency by 70%. After reverse transcription, the viral DNA is located to the 

nucleus and integrated into the chromosomal DNA. While HIV reverse transcription 

and the localization into the nucleus seem to be unaffected in cells lacking BER 

proteins, the integration into the host chromosome is significantly decreased (Yoder 

et al., 2011). Furthermore, Espeseth et al. (2011a) showed that HeLa P4/P5 cells 
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transfected with siRNAs targeting MUTYH, NTH1 or Polβ also decreased HIV 

integration up to 70% compared to control cells transfected with luciferase siRNA. 

 

Before Zhou et al. (2008) published their results instead of BER it was NHEJ that 

was frequently linked to HIV replication (Daniel et al., 2004, Kilzer et al., 2003, Li et 

al., 2001). However, only one of the proteins found in the siRNA screening carried 

out by Espeseth et al. (2011a) was related to NHEJ while 23% of the hits were linked 

to BER. Furthermore, other groups have already shown, that the HIV-1 transactivator 

of transcription (Tat) protein which is responsible for efficient viral transcription 

(Debaisieux et al., 2012), induces expression of BER proteins such as Polβ 

(Srivastava et al., 2001) and OGG1 (Imai et al., 2005). As large protein complexes 

are very important for the efficiency of BER, it is likely that the knockdown of 

essential proteins involved in BER such as the scaffold protein XRCC1, decreases 

the integration efficiency of HIV due the loss of functionality of other proteins that rely 

on XRCC1. 

 

NEIL3 and the brain 

 

While NEIL1, NEIL2, OGG1 and NTH1 have been found to show similar expression 

levels regardless of the age of the brain, NEIL3 protein was only observed during 

embryonal brain development and then only in regions that contain stem cells such 

the subventricular zone, the rostral migratory stream, and the hilar region of the 

hippocampal formation (Rolseth et al., 2008). Sejersted et al. (2011) confirmed these 

findings from another perspective. They investigated the expression levels of NEIL3 

in damaged mouse brains and examined an increase in NEIL3 during regeneration of 

damaged brain regions leading to the conclusion that expression of NEIL3 is 

triggered in rapidly proliferating cells. 
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Regnell et al. (2012) demonstrated that in neural/progenitor stem cells lacking NEIL3, 

the proliferation rate was reduced resulting in learning and memory deficits of the 

tested mice as well as decreased anxiety-like behaviour. Although there was no 

obvious difference between brain phenotypes of Neil3+/+ and Neil3-/- mice, Rolseth et 

al. (2013) confirmed the results by Regnell et al. 2012. They found a reduced self-

renewal capacity of neural/progenitor stem cells in Neil3-/- mice while the 

differentiation capacity was not affected. 

 

Other proteins involved in BER 

 

APE1 is the mammalian ortholog of E. coli Xth (exonuclease III) and plays a role as a 

transcriptional co-factor, as a suppressor of ROS via a redox site and in DNA repair 

where it incises AP sites (Tell et al., 2005). More recently it was found that APE1 also 

plays a major role in neuroprotection when its expression is induced by PACAP and 

its downstream mediators CREB and ATF2 (Stetler et al., 2010). The AP site 

substrates for APE1 are generated spontaneously or by monofunctional DNA 

glycosylases. APE1 cuts the deoxyribose backbone which results in a 3′OH and a 

5′dRP moiety. Due to their β AP-lyase activity, OGG1 and NTH1 leave a 3′ PUA 

group after they cut an AP site. This blocking residue is removed by the  

3′ phosodiesterase activity of APE1 in preparation for the next step in BER, the gap 

filling by Polβ. In addition, APE1 acts as a stimulator for OGG1 by releasing it from 

the AP site and therefore increasing its turnover (Hill et al., 2001). 

 

It is known that XRCC1 is an important protein involved in the repair of indirect SSBs 

(caused by BER) and direct SSBs (caused by DNA damaging agents). Although it 

has no enzymatic activity itself, it is an important scaffold protein for other DNA repair 

proteins. It stabilizes protein complexes involved in BER and is usually found in 
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complex with DNA ligase III (Vidal et al., 2001b). Which proteins these are and how 

XRCC1 interacts will be discussed in Section 2.3.6 in more detail. 

 

PNK is a downstream protein for bifunctional DNA glycosylases with β/δ AP lyase 

activity such as NEIL1 and NEIL2. After excising an oxidized base from DNA 

bifunctional DNA glycosylases cut the resulting AP site which leaves a 3′P blocking 

residue. This phosphate is then removed by PNK generating a 3′OH group that 

enables Polβ to fill the resulting gap. 

 

FEN1 is active during DNA replication where it processes the 5′ ends of the Okazaki 

fragments via its ribonuclease activity on displaced RNA-DNA primers generated 

during discontinuous DNA replication on the lagging DNA strand (Neurauter et al., 

2012; Turchi et al., 1994; Bambara et al., 1997). FEN1 is also essential for the repair 

of reduced AP sites that cannot be processed by β-elemination or occurred during 

long-patch BER (Klungland et al., 1997). 

 

PCNA plays an important role as a sliding clamp in DNA replication and repair. In 

long patch BER, PCNA acts as a DNA polymerase processivity factor for Polδ which 

thereby stays attached to DNA (McConnell et al., 1993). Interestingly, its structure 

resembles that of the 9-1-1 complex, containing Rad9, Rad1 and Hus1 which is 

involved in the ATR-mediated detection of DNA damage in yeast (Section 2.1) (Li & 

Zou, 2005; Dou, et al., 2008).  

 

Poly(ADP-ribose)polymerase 1 (PARP-1) is involved in SSB repair and catalyses the 

attachment of poly(ADP-ribose) polymers to itself as well as to histones, nuclear 

proteins, DNA repair proteins, transcription factors and chromatin modulators using 

NAD+ as a donor of ADP-ribose units (Hooten et al., 2011).  
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Polβ is an essential protein in SP BER where it can process the 3′dRP overhangs 

produced by APE1 and then resynthesizes the missing nucleoside. Polδ/ε on the 

other hand are involved in DNA synthesis of the repair products of NER but also of 

the LP BER pathway.  

 

RPA stimulates LP BER. It can enhance functionality of FEN1 and unwinds dsDNA in 

preparation for BER (DeMott et al., 1998). LigIIIα seals the phosphate backbone by 

synthesising the phosphodiester bonds between the 3′OH and 5′P groups of the 

repaired DNA in the last step of SP and LigI in LP BER (Section 2.3.5) (Lehman, 

1974; Chen et al., 1995). 

 

2.3.6 Reported protein interactions with mammalian BER proteins 

 

Table 1 and Figure 33 summarize proteins related to BER known to interact with 

each other during different stages of the pathway. It has been shown that PARP-1 

binds directly to BER proteins such as OGG1 (Hooten et al., 2011) and NEIL1 

(Hooten et al., 2012) through its BRCA1 C-terminal domain. This domain is 

comprised of around 100 amino acids and is conserved in several proteins that play 

a role in DNA repair, recombination and cell cycle control. The BRCA1 C-terminal 

domain is known to be essential for various protein-protein interactions and as a 

phospho-protein binding domain (Zhang et al., 1998, Yu et al., 2003). 

 

XRCC1 interacts with the DNA glycosylases OGG1 (Marsin et al., 2003), NEIL1 

(Wiederhold et al., 2004) and NEIL2 (Das et al., 2006) but also with other BER 

proteins including APE1 (Vidal et al., 2001b), LigIIIα and Polβ (Caldecott et al., 1995; 

Whitehouse et al., 2001), PARP-1 (Leppard et al., 2003; Caldecott, Aoufouchi, 

Johnson, & Shall, 1996), PNK (Whitehouse et al., 2001, Wiederhold et al., 2004) and 
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PCNA (Fan et al., 2004). The interaction with PARP-1 and DNA glycosylases 

indicates the involvement of XRCC1 in the SSB repair process and BER pathway. 

However, PARP-1 might also play a role in BER in searching for indirect SSBs 

caused by DNA glycosylases. Once PARP-1 recognized a SSB it binds to XRCC1. 

XRCC1 on the other hand acts as a stabilizing protein for LigIIIα necessary to seal 

the SSB. In addition XRCC1 can recruit further proteins such as PNK, Polβ and 

APE1 in order to prepare the gap for ligation (Leppard et al., 2003).  

 

Table 1: Summary of known protein interactions of important BER proteins. 

 
APE1= apurinic/apyrimidinic (abasic) endonuclease; YB1= Y box binding protein 1; PKC= 

protein kinase C; XRCC1= X-ray repair complementing defective repair in Chinese hamster 

cells 1; APTX= aprataxin, forkhead-associated domain histidine triad-like protein; PNK= 

polynucleotide kinase 3′-phosphatase; Polβ= human DNA polymerase β; LIG3α= human 

ligase 3 alpha; FEN-1= flap structure-specific endonuclease; PCNA= proliferating cell 

nuclear antigen; WRN= Werner syndrome ATP-dependent helicase; CSB= Cockayne 

syndrome B protein; RPA= replication protein A; NTH1= endonuclease III-like 1 (E. coli); 

OGG1= 8-oxoguanine DNA glycosylase; NEIL1= nei endonuclease VIII-like 1 (E. coli); 

NEIL2= nei endonuclease VIII-like 2 (E. coli); MUTYH= mutY homolog (E. coli); UNG= uracil-

DNA glycosylase; PARP-1= poly(ADP-ribose) polymerase 1. 
1 

Vidal et al. (2001a); 
2 

Yang et al.(2001); 
3 

Marenstein et al. (2003); 
4 

Xia et al. (2005); 
5 

Kavli 
et al.(2002); 

7 
Caldecott et al. (1995); 

8 
Vidal et al. (2001b); 

9 
Whitehouse et al. (2001);  

10 
Clements et al. (2004); 

11 
Leppard et al. (2003); 

12 
Klungland & Lindahl, (1997); 

13 
Parker et 

al. (2001); 
14 

Otterlei et al. (1999); 
15 

Fan et al. (2004); 
16 

Caldecott et al. (1996); 
17 

Hegde et al. 

(2008a); 
18 

Mokkapati et al. (2004); 
19 Sidorenkoa et al. (2008); 

20 
Wiederhold et al. (2004);  

21 
Das et al. (2006); 

22 
Dou et al. (2008); 

23 
Das et al. (2007a); 

24 
Marenstein et al. (2001);  

25 
Muftuoglu et al. (2009); 

26 
Das et al. (2007b); 

27 
Marsin et al. (2003); 

28 
Dantzer et al. (2002); 

29 
Hazra et al. (2002a); 

30
Hooten et al. (2012); 

31
Hooten et al. (2011). 

 
 

NTH1 APE(3) YB1(24)

OGG1 XRCC1(27) APE(1, 19) PARP-1(31) PKC(28)

NEIL1 LIG3α(20) Polβ(20) PNK(20) XRCC1(20) CSB(25) PCNA(22) FEN-1(17) PARP-1(30) OGG1(18) WRN(26)

NEIL2 LIG3α(21) Polβ(21) PNK(21) XRCC1(21) YB1(23)

MUTYH APE(2,4,13) PCNA(13) RPA(13)

UNG PCNA(14) RPA(14)

XRCC1 LIG3α(7,9,16) NEIL1 (20) NEIL2(21) PNK(9, 20) APE(8) PCNA(15) FEN-1(12) PARP-1(11,16) OGG1(27) Polβ(9) APTX(10)

LIG3α NEIL1(22) NEIL2(21) XRCC1(7,9) PARP-1(11)

Polβ NEIL1(22) NEIL2(21) XRCC1(9)

PARP-1 LIG3α(11) NEIL1(30) XRCC1(11, 16) OGG1(31)

PCNA NEIL1(22) XRCC1(15)

PNK NEIL1(22) NEIL2(21) XRCC1(9, 20)

Other BER proteins

DNA-Glycosylases



 Thomas ROEDL – PhD Thesis – Salford 2013 52 

 
Figure 33: Known interactions between several BER proteins (references see Table 1). 

 

2.4 Theoretical background to methods used in this thesis 

2.4.1 Yeast Two-Hybrid assay 

 

To investigate the biological role of hNEIL3 a yeast two-hybrid (Y2H) assay, a system 

that allows the examination of protein-protein interactions was carried out. In Y2H, 

the chosen ‘bait’ protein (hNEIL3) is expressed in the Saccharomyces cerevisae 

strain EGY48 fused to the DNA-binding domain of a bipartite transcription factor 

(LexA; Figure 34), while the second protein (the prey) is expressed from a cDNA 

library, bound to the activation domain (B42; Figure 34) which, in combination with 

LexA activates transcription. Neither LexA nor B42 alone are able to activate the 

transcription; only if they are in close proximity due to interaction of the bait protein 

with a prey protein, will transcription of a downstream reporter gene occur. In this 

project the LexA-operator is responsible for the expression of two genes; Leu2, which 
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is involved in leucine biosynthesis and LacZ (Figure 34). The use of two reporter 

systems allows a double selection, which decreases the number of false negatives 

(Muelhardt, 2009).  

 

 
Figure 34: Theory of the yeast two-hybrid assay used in this project. Here LacZ is shown as 

an example for a reporter gene. 

 

Molecular cloning of hNEIL3 cDNA into two bait vectors, pEG202 and pEG202-NLS 

(Appendix, Figure 98 and Figure 99) was necessary to carry out the Y2H assay. The 

vectors contain an ampicillin resistance gene (AmpR) and there is a LexA region 

before the multiple cloning site. This region allows expression of a fusion protein 

featuring LexA as the DNA-binding domain and hNEIL3 as the bait protein (Bait in 

Figure 34; Lewis et al., 1994). The expression of this fusion protein is controlled by 

the alcohol dehydrogenase (ADH) promoter and ADH terminator region (Appendix 

Figure 98 and Figure 99) which starts and stops the transcription in yeast. 

Furthermore, Figure 99 shows that pEG202-NLS contains a NLS in the multiple 

cloning site that ensures the expressed bait fusion protein will be located into the 

nucleus. 
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As recent protein interaction studies with NEIL1 and NEIL2 carried out by Wiederhold 

et al. (2004) and Das et al., (2006) showed that there are genuine interactions with 

both human Polβ and LigIIIα the Y2H assay was also used to estimate if LigIIIα and 

Polβ is also interacting with NEIL3. The fact that nothing was published regarding 

interaction studies with NEIL3 might be due to problems in expressing NEIL3 in full 

length. However, as it was possible in this project to express full length NEIL3 fused 

to LexA in the Y2H system it was also tested for interaction with these two proteins 

using Y2H. 

 

2.4.2 Protein overexpression in Pichia pastoris 

 

Although E. coli is a commonly used expression system, overexpression of 

recombinant full length hNEIL3 in E. coli has not been successful (Section 2.3.5.2.3). 

Therefore, it was decided to use methylotrophic yeast, P. pastoris, which are 

commonly used for the expression of recombinant proteins (Daly & Hearn, 2005) and 

thus is more likely to process the nascent polypeptide chain of hNEIL3 correctly 

following translation. Posttranslational modifications may be essential to study the 

role of NEIL3 in vivo. Furthermore, higher yields of protein can be obtained than with 

other yeast strains such as S. cerevisae and P. pastoris is amenable for use in large 

scale fermentation. In this project pGAPZαA (Invitrogen) was the overexpression 

vector of choice. This vector is designed for high-level protein expression in  

P. Pastoris and employs a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

promoter for constitutive expression of the protein of interest and therefore no 

manual induction of gene expression is needed by adding methanol. Furthermore, 

this vector contains an α-factor secretion signal sequence that is fused to the  

N-terminal of the expressed protein. A myc epitope and a polyhistidine tag (6XHis) 

are fused to the C-terminal end of the expressed protein, which simplifies protein 
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purification and identification with tag-specific antibodies. Following site-specific 

linearization with AvrII and electroporation into P. pastoris, the plasmid DNA 

integrates into the yeast genome via homologous recombination at the GAPDH 

promoter locus. In this project cloning of the hNEIL3 cDNA sequence and truncated 

versions into the pGAPZαA vector and subsequent integration it into the yeast 

genome was successfully performed. 
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3 Materials 

3.1 Media preparation for bacterial methods 

 

Lysogeny broth (LB)-broth was prepared at a concentration of 8 g LB-broth powder 

(Sigma-Aldrich) in 400 ml dH2O and used for liquid cultures. LB-agar was prepared 

by adding 14 g of LB-agar powder (Sigma-Aldrich) to 400 ml dH2O. The mixtures 

were autoclaved at 121°C for 20 min to dissolve the powder and sterilise the 

medium. After the LB-agar had cooled to ~50°C, carbenicillin or kanamycin sulphate 

was added to obtain an antibiotic concentration of 50 µg/ml and plates were poured 

and allowed solidify before use, or stored at 4°C. For liquid cultures, carbenicillin or 

kanamycin sulphate was added to LB-broth to a final conc. 50 µg/ml just before 

inoculation.  

 

3.2 X-Gal and IPTG Preparation 

 

X-Gal stock solution: 

50 mg/ml X-Gal: 25 mg X-Gal powder was dissolved in 500 µl of  

N,N′-dimethylformamide and stored at -20°C. 

 

IPTG stock solution: 

100 mM IPTG: 12 mg of IPTG powder was dissolved in 500 µl dH2O, filter sterilized 

and stored at -20°C.  

Treatment of LB-Agar plates (Carb.) with X-Gal/IPTG: 

100 µl (100 mM) IPTG and 20 µl X-Gal (50 mg/ml) were spread evenly on each LB-

agar plate. 
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3.3 Ethylenediaminetetraacetic acid (EDTA) stock solution 

To obtain a 0.5 M ethylenediaminetetraacetic acid (EDTA) stock solution, 18.61 g 

EDTA-disodium-salt was dissolved in 70 ml of dH2O and the pH adjusted to pH 8.0 

by adding NaOH and adjusted with dH2O to a total volume of 100 ml. 

 

3.4 TE-Buffer (Tris-EDTA-Buffer) 

To prepare Tris/EDTA (TE) buffer, 10 ml of 1 M Tris-HCl pH 7.5 and 2 ml of 500 mM 

EDTA were mixed and pH was adjusted to 8.0 with NaOH. 

 

3.5 5X TBE 

5X Tris/Borate/EDTA (TBE) stock solution: 54 g of Tris base (Trizma base, Sigma-

Aldrich) and 27.5 g of boric acid was dissolved in 900 ml of dH2O. 20 ml of 0.5 M 

(4.65 g) EDTA was added and the solution was adjusted with dH2O to a final volume 

of 1 L. 

 

3.6 Loading buffer for agarose gel electrophoresis (Loading dye) 

Twenty-five milligrams of bromophenol blue, 4 g sucrose and 2.4 ml of 0.5 M EDTA 

were mixed and made up to 10 ml with dH2O. 

 

3.7 Buffers for SDS-PAGE 

3.7.1 Acrylamide stock solution  

The premade acrylamide stock solution (Protogel, National Diagnostics) contained 

30% acrylamide and 0.8% bis-acrylamide. 
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3.7.2 “Lower Tris” (4x stock solution) 

To prepare 4x stock solution of lower Tris buffer, 1.5 M Tris-HCl pH 8.8, 0.4% (w/v) 

SDS, 18.17 g Tris base and 2 ml of 20% (w/v) SDS were added to 80 ml of dH2O. 

Then, the pH was adjusted with HCl until pH 8.8 and dH2O added to bring the 

solution up to 100 ml. 

 

3.7.3 “Upper Tris” (4x stock solution) 

To prepare 4x stock solution of upper Tris buffer, 0.5 M Tris-HCl pH 6.8, 0.4% (w/v) 

SDS, 6.06 g Tris base, 2 ml of 20% (w/v) SDS were added to 80 ml of dH2O. Then, 

the pH was adjusted with HCl until pH 6.8 and dH2O added to bring the solution up to 

100 ml. 

 

3.7.4 Separating gel (10 %) 

For 12 ml of separating gel mix (enough for two mini gels, Labnet), 4 ml of Protogel 

(30% acryl, 0.8% bis), 3 ml of 4x Lower Tris (Section 3.7.2) and 5 ml of dH2O were 

mixed. Just before pouring, 80 µl of 10% (w/v) APS (ammonium persulphate) and 8 

µl TEMED (tetramethylethylendiamine, 0.10%) were added to catalyse 

polymerisation. 

 

3.7.5 Stacking gel (5 %) 

For 6 ml of stacking gel mix (enough for two mini gels, Labnet), 1 ml of Protogel (30% 

acryl, 0.8% bis), 1.5 ml of 4x Upper Tris (Section 3.7.3) and 3.5 ml of dH2O were 

mixed. Just before pouring, 80 µl of 10% (w/v) APS and 8 µl TEMED (0.13%) were 

added to catalyse polymerisation. 
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3.7.6 SDS-running buffer (10x stock solution) 

To prepare a 10x stock solution of SDS-running buffer, 15 g Tris base (final conc. 

250 mM), 72 g glycine (final conc. 1.92 M), 5 g SDS (or 50 ml of 10% (w/v) SDS) 

were dissolved in a final volume of 500 ml of dH2O.  

 

3.7.7 SDS-running buffer (1x) – Bio-Rad 

To prepare a 1x stock solution of SDS-running buffer, 50 ml of 10x Tris/glycine stock 

solution (Bio-Rad), 5 ml of 10% (w/v) SDS (0.1% (w/v) final conc.) and 445 ml dH2O 

were mixed (enough to fill the Labnet tank) to give a final conc. of 25 mM Tris and 

192 mM glycine. 

 

3.7.8 SDS-PAGE sample buffer (5x stock solution) 

Two millilitres of 100% glycerol (20% final conc.), 3ml of 1 M Tris-HCl pH 6.8 (300 

mM final conc.), 5 ml of 20% (w/v) SDS (10% (w/v) final conc.), 0.386 g of DTT (0.25 

M final conc.) and 5 mg bromophenol blue (0.05% (w/v) final conc.) were mixed 

together to obtain a 5x stock solution of SDS-PAGE Sample Buffer. 

 

3.7.9 Coomassie blue staining solution 

The stain was prepared by mixing 1.25 g Coomassie blue R250 (0.25% (w/v) final 

conc.), 200 ml methanol (40% (v/v) final conc.), 50 ml acetic acid (glacial, 10% (v/v) 

final conc.) and 250 ml dH2O to obtain a final volume of 500 ml. The Coomassie stain 

was reused several times. 

 

3.7.10 Destain solution 

The destain solution was prepared by mixing 100 ml of methanol (20% (v/v) final 

conc.), 25 ml of acetic acid (glacial, 5% (v/v) final conc.) and 375 ml of dH2O to 

obtain a final volume of 500 ml.  
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3.8 Buffers for Western Blotting 

 

3.8.1 Western blot transfer buffer 

The transfer buffer contained 6.05 g Tris base (25 mM final conc.), 28.8 g glycine 

(final conc. 192 mM), 400 ml methanol (20% (v/v) final conc.) and 1600 ml dH2O and 

was stored at 4°C. 

 

3.8.2 10x TBS 

To prepare 500 ml of 10X TBS buffer, 30.25 g of Tris base and 43.8 g of NaCl was 

added to 450 ml of dH2O. The pH adjusted to pH 7.5 with conc. HCl (~15 ml), made 

up to 500 ml with dH2O and stored at 4°C. 

 

3.8.3 TBS(T) 

To prepare 500 ml of TBS(T), 50 ml of 10x TBS (50 mM Tris-HCl final conc.; 150 mM 

NaCl, Section 3.8.2) and 0.5 ml Tween-20 (0.1% (v/v) final conc.) was mixed, the 

volume made up to 500 ml with dH2O and stored at room temperature. 

 

3.8.4 5% blocking buffer 

To prepare blocking buffer, 5% (w/v) non-fat milk (Marvel) was mixed with TBS(T) 

(Section 3.8.3). 

 

3.8.5 Antibody dilution buffer 

To prepare 0.5% blocking buffer, used as dilution buffer for antibodies, the  

5% Blocking Buffer (Section 3.8.4) was diluted 1:10 with TBS(T) (Section 3.8.3). 
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3.9 Buffers and solutions for Y2H 

 

3.9.1 10X TE 

To prepare 10X TE, 50 ml of 1 M Tris-HCl pH 7.5 and 10 ml of 0.5 M EDTA pH 8.0 

were added to 440 ml dH2O, mixed and autoclaved.  

 

3.9.2 10X LiOAc (Lithium acetate) 

Fifty-one grams of lithium acetate (1 M final conc.) was made up to a total volume of 

500 ml with dH2O, mixed until dissolved and autoclaved. 

 

3.9.3 50% PEG-3350 

Two-hundred and fifty grams of polyethylene glycol-3350 were made up to a total 

volume of 500 ml with dH2O, mixed until dissolved and autoclaved. 

 

3.9.4 1x TE/LiOAc/H2O 

Just before use, 1 part 10x TE (Section 3.9.1), 1 part 10x LiOAc (Section 3.9.2) and 8 

parts dH2O were mixed together. 

 

3.9.5 1x TE/LiOAc/PEG-3350 

Just before use, 1 part 10x TE (Section 3.9.1), 1 part 10x LiOAc (Section 3.9.2) and 8 

parts 50% PEG-3350 (Section 3.9.3) were mixed together. 
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3.9.6 Glucose/galactose/raffinose 

 
To obtain 20% (w/v) glucose, 10 g of glucose was dissolved in 50 ml dH2O. 

To obtain 20% (w/v) galactose, 10 g of galactose was dissolved in 50 ml dH2O. 

To obtain 10% (w/v) raffinose, 5 g of raffinose was dissolved in 50 ml dH2O. 

All solutions were mixed in 50 ml Falcon tubes by warming (not boiling) in a 

microwave at medium power, followed by shaking at 260 rpm for few minutes. Once 

all ingredients were dissolved, the solution was filter sterilized and stored at 4°C. 

 

3.9.7 Amino acid (and pyrimidine) solutions 

Fifty-millilitre (4 mg/ml) stock solutions of tryptophan, uracil, leucine and histidine 

were prepared by filter sterilizing and stored at 4°C. If a precipitate formed (especially 

uracil), the tubes were heated briefly in a microwave oven to aid dissolution before 

use. 

 

3.9.8 YPD broth/agar plates 

Twenty-five grams of YPD powder (Sigma-Aldrich) were weighed into 500 ml dH2O 

and autoclaved. For YPD agar plates, 10 g agar powder (Invitrogen) was added prior 

autoclaving. 

 

3.9.9 YNB broth/agar plates 

To prepare YNB broth, 3.35 g yeast nitrogen base without amino acids but including 

ammonium sulphate (MP/Anachem) and 0.3 g his-/ura-/trp-/leu- dropout mix 

(MP/Anachem) were weighed into 500 ml dH2O and autoclaved. For YNB agar plates 

10 g agar powder (Invitrogen) was added prior autoclaving. 20% (w/v) glucose 

(Sigma-Aldrich) or 20% (w/v) galactose (Fisher) and 10% (w/v) raffinose (Alfa Aesar), 

respectively were added when autoclaved media reached ~50°C to avoid 

caramelisation. 
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3.9.10 YNB selective liquid cultures 

To prepare 10 ml selective liquid YNB-Broth, the following ingredients were pipetted 

per universal tube: 

 
1 ml, 20% (w/v) glucose stock or  

1 ml, 20% (w/v) galactose + 1 ml, 10% (w/v) raffinose 

 

50 µl, 4 mg/ml histidine solution (0.02 mg/ml final conc.) 

50 µl, 4 mg/ml uracil solution (0.02 mg/ml final conc.) 

150 µl, 4 mg/ml leucine solution (0.06 mg/ml final conc.) 

100 µl, 4 mg/ml tryptophan solution (0.04 mg/ml final conc.) 

 

Appropriate amino acids were left out for selection and the volume made up to 10 ml 

with YNB-Broth. Subsequently, the prepared liquid media were inoculated with one 

colony from a plate or with 100 µl from another liquid culture. Usually, the liquid 

cultures were incubated at 30°C in a table top shaker at 220 rpm overnight. 

Sixty millilitres (required for small scale transformation) and 300 ml (required for large 

scale transformation) liquid cultures were prepared with the same ratio of ingredients 

as described above. 

 

3.9.11 YNB selective plate preparation 

To prepare selective YNB-Agar plates, the following amounts of ingredients (as 

required) were pipetted into 50 ml Falcon tubes (25 ml per plate) and YNB-Agar  

(~ 50°C) added to a volume of 50 ml: 

 

5 ml, 20% (w/v) glucose stock or 5 ml, 20% (w/v) galactose + 5 ml, 10% (w/v) 

raffinose 

 

The medium was mixed by inversion and ~25 ml poured into each petri dish. 
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3.9.12 LB-medium  

Ten grams of LB-Broth (Sigma-Aldrich) were dissolved in 500 ml of dH2O by 

autoclaving. In order to prepare plates, 7.5 g of agar (Invitrogen) was added before 

autoclaving. 

 

3.9.13 LB-(ampicillin)-medium (LBA) 

The LB-medium (500 ml) prepared in Section 3.9.12 was allowed to cool to around 

50°C and 1 ml of 50 mg/ml carbenicillin (prepared in dH2O and filter sterilised) was 

added prior to pouring the plates or inoculation of liquid cultures. 

 

3.9.14 LB-(kanamycin)-medium (LBK) 

The LB-medium (500 ml) prepared in Section 3.9.12 was allowed to cool to 50°C and 

500 µl of 50 mg/ml kanamycin sulphate (prepared in dH2O and filter sterilised) was 

added prior to pouring the plates or inoculation of liquid cultures. 

 

3.9.15 Trp- bacterial minimum medium for electroporation  

In order to prepare a trp- bacterial minimum medium, 5.25 g K2HPO4 (potassium 

phosphate, dibasic), 2.25 g KH2PO4 (potassium phosphate, monobasic),  

0.5 g ammonium sulphate and 0.25 g sodium citrate were dissolved in 80 ml dH2O 

and autoclaved along with 7.5 g agar in 400 ml dH2O. After autoclaving, the two 

solutions were mixed together and when the solution cooled to ~50°C, 0.5 ml of 20% 

(w/v) MgSO4, 5 ml of 4 mg/ml uracil, 5 ml of 4 mg/ml histidine, 5 ml of 4 mg/ml 

leucine, 5 ml of 20% glucose, 0.5 ml of 50 mg/ml kanamycin sulphate and 0.5 ml of 

1% thiamine HCl (all filter sterilized) were added. 
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3.9.16 X-Gal plates for blue/white screening 

For blue white selection, X-Gal plates were prepared by adding 50 ml phosphate 

buffer (4.40 g sodium phosphate (2xH2O; dibasic) and 1.95 g sodium phosphate 

(2xH2O; monobasic) in 50 ml dH2O, mixed and autoclaved just before use, no pH 

adjustment was necessary) and 0.4 ml of 100 mg/ml X-gal to autoclaved 450 ml 

YNB-Agar at ~50°C. 

 

3.10 Buffers and solutions for overexpression in P. pastoris 

 

3.10.1 YPD(S) broth/agar plates (Zeocin selection) 

Twenty-five grams of YPD powder (Sigma-Aldrich) were weighed into 500 ml dH2O 

and autoclaved. For YPD agar plates, 10 g agar powder (Invitrogen) was added prior 

autoclaving. For Zeocin selection 0.5 ml of 100 mg/ml Zeocin was added and stored 

at 4°C. For YPDS broth/agar plates containing 1 M sorbitol, 91.1 g sorbitol was 

added prior to autoclaving. 
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4 Methods  

4.1 Transformation into NovaBlue cells 

 

Transformation of the two plasmid vectors, pEG202-NLS and pEG202 (OriGene; a 

generous gift of Dr. Ian Hampson, University of Manchester) as well as the other 

vectors pGEM-T (Promega) and pJET1.2/blunt (Fermentas), was carried out as 

described in the NovaBlue manual (Novagen). All these plasmids contain an 

ampicillin-resistance gene. For the transformation of pEG202(-NLS), 1µl (~10 ng) of 

the DNA was added to 20 µl NovaBlue-cells and incubated on ice for 5 min followed 

by a heat-shock at 42°C for 30 s and incubation on ice for 2 min. The bacteria were 

then plated out onto LB-Agar plates with 50 µg/ml carbenicillin (LB-Carb). Two plates 

were prepared for each transformed plasmid, one with 10 µl and the other with 40 µl 

of the transformation mixture. To make sure the plates were sterile, a control with no 

bacteria was also incubated overnight at 37°C. This confirmed the competent E. coli 

must have been transformed correctly.  

 

4.2 -80°C stock preparation of yeast and bacterial cultures 

4.2.1 Yeast -80°C stocks 

 

All yeast culture stocks were prepared by adding 400 µl glycerol to 600 µl of a fresh 

overnight liquid culture and stored at -80°C. 

 

4.2.2 Bacterial -80°C stocks 

 

All bacterial culture stocks were prepared by adding 80 µl DMSO to 920 µl of a fresh 

overnight liquid culture and stored at -80°C. 
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4.2.3 KC8 -80°C stock preparation 

 

The bacterial E. coli strain KC8 was used in the Y2H method to recover library 

plasmid DNA. The library plasmid (pJG4-5) contains a tryptophan gene that allows 

cells to produce tryptophan and to survive on media lacking this amino acid. To 

prepare electroporation-ready KC8 cells, some of the purchased cells were streaked 

onto an LB agar plate (Section 3.1) containing 50 µg/ml kanamycin sulphate and 

incubated at 37°C overnight. The next day a single colony was picked to inoculate 5 

mL of LB-Broth (Section 3.1) containing 50 µg/ml kanamycin sulphate. This liquid 

culture was incubated at 37°C overnight with shaking at 260 rpm. All of the 5 mL 

were used to inoculate 500 ml LB-Broth containing 50 µg/ml kanamycin sulphate. 

This liquid culture was grown at 37°C, 260 rpm until the OD600 reached 0.5. The 

culture was put on ice for 30 min followed by a centrifugation at 5,000 rpm (3,500 x g) 

for 10 min at 4°C. The supernatant was poured off and the pellet resuspended in 300 

ml of ice-cold 10% (v/v) glycerol. Then the culture was centrifuged again as above, 

the supernatant poured off and the pellet resuspended in 150 ml of ice-cold 10% (v/v) 

glycerol. Centrifugation was repeated as above, the supernatant poured off, the pellet 

resuspended in 10 ml of ice-cold 10% (v/v) glycerol, centrifuged again and the 

supernatant aspirated carefully. The pellet was resuspended in 2 ml of ice-cold 10% 

(v/v) glycerol. Working aliquots of 75 μl per tube were prepared and stored at -80°C. 

 

4.3 Plasmid DNA extraction 

 

The plasmid DNA extraction (miniprep) was carried out as described in the QIAprep 

Miniprep (Qiagen) or the Pureyield Plasmid Miniprep Kit Handbook (Promega At 

least two colonies were picked to inoculate 5 ml of LB-broth containing 50 µg/ml 

carbenicillin or kanamycin sulphate. After overnight incubation in a shaker at 37°C 
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(220 rpm), 1.5 ml (3 ml for Pureyield Plasmid Miniprep Kit) of the liquid cultures was 

used for plasmid DNA extraction. After analysing the quantity and purity of the DNA 

obtained, it was stored at -20°C. To obtain large quantities of plasmid DNA the 

Qiagen Plasmid Maxi Kit was used according to the manufacturer’s instructions. 

 

4.4 Quantification of DNA  

 

The DNA life science analyser (Jenway-Genova) in combination with a TrayCell 

cuvette (Hellma) and subsequently the Nanodrop 2000 system (Thermo scientific) 

were used to quantify the conc. and determine the quality of plasmid DNA obtained.  

 

4.5 Digestion with restriction endonucleases 

 

All digestions were carried out by incubating the DNA with experiment dependent 

restriction endonucleases under the conditions recommended by the supplier (New 

England Biolabs Ltd, UK).  

 

4.6 Agarose gel electrophoresis  

 
One per cent and 0.8% agarose (Bioline) gels were prepared in 0.5x TBE 

electrophoresis buffer (Section 3.5) by heating the mixture in a microwave 

oven. After the agarose had dissolved and the solution cooled to around 

50°C, GelRed was added (2 µl per 100 ml). Two microlitres of loading 

buffer were added to the DNA samples before loading the gel. The DNA 

was subjected to electrophoresis at 80 - 100 V for 45 to 90 min. The DNA 

bands were imaged and recorded using the G:BOX gel documentation 

system and GeneSnap software (Syngene). The molecular size marker, 

HyperLadder I (Bioline) was included to gauge the size of bands obtained. 

Figure 35: 

HyperLadder I  

(Bioline). 
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4.7 Polymerase chain reaction 

 

Several different DNA polymerases (Taq, Dream Taq (Fermentas), Phusion (NEB), 

BioXAct-short and MyTaq (Bioline)) were used for the polymerase chain reaction 

(PCR) throughout the project and the manufacturer’s instructions were followed 

where appropriate. Individual reaction conditions were determined empirically as 

required.  

 

4.8 DNA Ligation 

4.8.1 Insert:Vector molar ratio calculation  

 

In most cases a 3:1 (insert:vector) ratio was used. The amount of insert DNA 

required was calculated using the following formula: 

 

 

4.8.2 Ligation of hNEIL3 into pGEM-T vector (Promega) 

 

After hNEIL3 was obtained by PCR with BioXAct-short, it was ligated into the pGEM-

T vector following the manufacturer’s instructions. 

 

4.8.3 Ligation of hNEIL3 into pJET1.2/blunt vector (Fermentas) 

 

Phusion DNA polymerase generates blunt end products. Therefore, the CloneJET 

PCR Cloning Kit (Fermentas) was used and carried out as according to the 

manufacturer’s instructions.  
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4.9 DNA sequencing 

 

For DNA sequencing, BigDye v1.1 (Applied Biosystems) together with the provided 

5x buffer (obtained from the DNA sequencing Facility at the University of 

Manchester) was used in the reaction mix. Table 2 and  

Table 3 show the amounts of each constituent and the conditions used for DNA 

sequencing reactions of plasmid DNA. 

Table 2: Reaction mix used for the DNA sequencing reaction. 

Primer 1.0 µl (4-10 pmol/µl) 

Template DNA 1.0 µl (300 – 500 ng DNA) 

BigDye v1.1 1.0 µl 

5 X Buffer 3.5 µl 

H2O 13.5 µl 

Total 20.0 µl 

 
Temp. Time 

96°C 5 min 

96°C 10 s 

35 Cycles 50°C 5 s 

60°C 4 min 

4°C hold 

 
Table 3: Reaction mix used for the DNA sequencing reaction. 

Primer 1.0 µl (4-10 pmol/µl) 

Template DNA 1.0 µl (300 – 500 ng DNA) 

BigDye v1.1 1.0 µl 

5 X Buffer 3.5 µl 

H2O 13.5 µl 

Total 20.0 µl 

 

Temp. Time 

96°C 5 min 

96°C 10 s 

35 Cycles 50°C 5 s 

60°C 4 min 

4°C hold 

 
After the DNA sequencing reaction was finished an ethanol precipitation was carried 

out (protocol provided by sequencing facility, Manchester University). 
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Ethanol Precipitation Protocol: 

Twenty microlitres of the sequencing reaction were transferred to a 1.5 ml 

microcentrifuge tube. Then, 2 µl of 3 M sodium acetate pH 4.5, 44 µl 100% ethanol 

and 1 µl of BlueDye (GlycoBlue) were added followed by incubation at room 

temperature for 10-30 min. After centrifugation at 17,000 x g for 10 min the 

supernatant was aspirated and 100 µl of 80% (v/v) ethanol was added and the 

mixture incubated at room temperature for 2 min. Subsequently, the tubes were 

centrifuged briefly, the supernatant aspirated and the lid left open for evaporation of 

the ethanol (>20 min). A little blue point was visible at the bottom of the tube which 

indicated the position of the DNA pellet. After ethanol precipitation the tubes were 

taken for sequencing at the DNA sequencing Facility at the University of Manchester. 

 

4.10 Bradford assay 

4.10.1 Protein extraction for Bradford assay 

 

Yeast colonies (one per extraction) were used to inoculate 10 ml YNB (Glu) ura-/his- 

medium and the culture placed in a shaking incubator at 30°C and 250 rpm 

overnight. Subsequently, 1.5 ml of each liquid culture was transferred to sterile 1.5 ml 

centrifuge tubes and centrifuged at maximum speed (17,000 x g) for 2 min. The 

supernatant was discarded, each pellet resuspended in 1.5 ml dH2O and spun at 

maximum speed for a further 2 min. The supernatant was again discarded and each 

pellet resuspended in 100 µl TBS(T) buffer (Section 3.8.3) followed by sonication on 

ice at full power (highest amplitude and frequency possible) for 15-30 s to break open 

the yeast cell walls. After sonication the suspension was centrifuged at maximum 

speed for 2 min, the supernatant transferred to fresh 1.5 ml centrifuge tube and 

stored at -20°C. 
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4.10.2 BSA standard dilutions 

 
Five milligrams per millilitre of BSA stock solution (5 mg BSA in 1 ml TBS(T)-buffer) 

was prepared and stored at -20°C until needed. To obtain a standard curve for the 

Bradford reagent, the stock solution was diluted 1:2 with TBS(T) (250 µl stock 

solution + 250 µl TBS(T) buffer) to obtain 2.5 mg/ml BSA solution (considered 

Dilution 1). Dilution 1 was diluted five more times (Dilution 2-6, Table 4). Dilution 7 

contained 500 µl of TBS(T) buffer only without BSA added and was used to blank the 

spectrophotometer. 

 
Table 4: Final concentrations of BSA protein standards. 

BSA 

(Final conc.) 
Dilution number 

5 mg/ml Undiluted 

2.5 mg/ml Dilution 1 

1.25 mg/ml Dilution 2 

0.625 mg/ml Dilution 3 

0.3125 mg/ml Dilution 4 

0.15625 mg/ml Dilution 5 

0.078125 mg/ml Dilution 6 

0 mg/ml Dilution 7 (blank) 

 

4.10.3 Bradford reagent assay method 

 
The Bradford reagent was mixed in the bottle prior to use and brought to room 

temperature. The BSA standards were prepared as described in Section 4.10.2 and 

50 µl of each standard dilution was pipetted into a disposable plastic cuvette and  

1.5 ml of Bradford reagent added. Each sample was incubated at room temperature 

for approximately 5 min (max. 45 min) prior to measuring. The absorbance of each 

sample was measured at 595 nm within 10 min of each other. From the data 

obtained a standard curve was plotted. Then, 10 µl of unknown protein solution was 

combined with 1.5 ml of Bradford reagent and the OD595 measured. Two more 

different dilutions of unknown protein were measured to decrease failure and the 

mean, considering the dilution factor, was calculated.  
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4.11 SDS-PAGE 

4.11.1 Protein extraction from yeast for direct SDS gel loading  

 
To extract proteins from yeast a modified method described by Kushnirov (2000) was 

performed. Therefore, 1.5 ml of a fresh overnight liquid culture was transferred to a 

sterile 1.5 ml centrifuge tube and spun at maximum speed (17,000 x g) for 1 min. The 

supernatant was discarded and the pellet resuspended in 100 µl of dH2O and 100 µl 

0.2 M NaOH. The mixture was incubated at room temperature for 5 min and then 

centrifuged at maximum speed for 1 min. The supernatant was discarded, the pellet 

resuspended in 50 µl (1x) SDS-PAGE sample buffer (Section 3.7.8) and heated at 

95°C in a heating block for 3 min. The tube was centrifuged at maximum speed for 1 

min and supernatant transferred to a sterile 1.5 ml centrifuge tube. 20 µl of the 

soluble protein mixture was loaded directly into a well of an SDS-PAGE gel (Section 

4.11.3). 

 

4.11.2 Casting of SDS-PAGE gels 

 
The gel plates were assembled, a comb placed in position and a mark made 

approximately 1 cm below the bottom of the comb after which the comb was 

removed. The separating gel mixture (Section 3.7.4) was poured and carefully 

overlaid with 200 µl of water saturated 2-propanol. After the gel had polymerised (10 

to 30 min) the 2-propanol was rinsed off and the plates dried by passing Whatman 

filter paper between them. The stacking gel mixture (Section 3.7.5) was then poured 

directly onto the separating gel. After polymerisation (5 to 10 minutes) the gel was 

transferred to the electrophoresis tank (Labnet). The inner chamber was filled with 1x 

SDS-running buffer (Section 3.7.7) to the top and the outer chamber only until 1 cm 

over lower edge of the gel glass plate. Then the combs were removed and the wells 

loaded with the denatured protein samples. 
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4.11.3 SDS gel loading 

 
Protein samples were prepared as described in Table 5. After mixing the samples 

were heated at 95°C for 5 min and 20 µl (~15-30 µg) loaded in each well. If the wells 

were blocked by gel fragments a syringe needle was used to empty the wells. SDS-

PAGE was carried out at 200 V for 45 min or until the tracking dye reached the 

bottom of the gel. The protein ladder used was a Full-range Rainbow Marker (GE 

Healthcare, Figure 36). 

Table 5: Sample preparation scheme for SDS gel loading. 

Cell-Lysate/ 
Protein mixture 

x µl (30-60 µg) 

 Calculated by Bradford assay  

    (Section 4.10) 

TE-buffer x µl (up to 40 µl) 

Sample buffer (4x) 10 µl 

Total 40 µl 

 

 
Figure 36: Full-range Rainbow 

Marker (GE Healthcare, Image 

taken from: http://bit.ly/wVQsay). 
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4.11.4 Coomassie blue staining dye 

 

Because SDS-PAGE was performed in duplicate it was possible to stain one gel with 

Coomassie blue while the other was used for western blotting. The gel was stained in 

Coomassie blue dye (Section 3.7.9) with gentle agitation for  

20 - 60 min. Then the gel was destained in destain solution (Section 3.7.10) for 3 x 

15 min followed by incubation overnight.  

 

4.12 Western blot 

 

Proteins separated by SDS-PAGE were transferred to a nitrocellulose membrane 

(Hybond ECL, GE Healthcare) using a Mini Trans-Blot Electrophoretic Transfer Cell 

(Bio-Rad).  

 

4.12.1 Blotting 

 

The transfer buffer was prepared as described in Section 3.8.1 and stored at 4°C. 

Two hours before use the bottles were chilled at -20°C to ensure as cold conditions 

during blotting are provided as possible. The fibre pad, filter paper (two per gel), SDS 

gel and membrane were pre-wetted in western blot transfer buffer and the gel 

sandwich assembled as shown in Figure 37. 
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Figure 37: Gel sandwich assembling (Image taken from: 

Mini Trans-Blot Electrophoretic Transfer Cell instruction 

manual, Bio-Rad). 

 

The cassette was closed and slotted into a module. The module then was placed in a 

tank (black side to negative cathode) along with a frozen cooling unit and filled with 

Western Blot transfer buffer (Section 3.8.1). A magnetic stirring bar was added and 

the tank put onto a magnetic stirrer. Electrophoretic transfer was carried out for one 

hour at 100 V. 

 

4.12.2 Western blotting 

 

After transfer, the membrane was transferred to a plastic container and blocking 

buffer (Section 3.8.2) was added until the membrane was fully covered. Blocking was 

performed at room temperature for one hour or overnight. Afterwards, the blocking 

buffer was discarded, the membrane transferred into a polythene bag made from a 

piece of autoclave bag heat sealed on three sites. Five millilitres of primary antibody 

(1/10000 to 1/25000 rabbit monoclonal anti LexA ,Abcam) diluted in 0.5% blocking 

buffer, was added and the bag heat sealed. The membrane was incubated at room 

temperature on a rocking table for about 1.5 hours. The membrane was then 

transferred to a plastic container, washed 3 x 10 min in TBS(T), transferred to a fresh 

polythene bag and incubated with 5 ml of 1/3000 horseradish peroxidase (HRP) 

conjugated secondary antibody (diluted with TBS(T)) on a rocking table at room 
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temperature for about 45 minutes. Following this, the membrane was again washed  

3 x 10 min with TBS(T). After the last wash the TBS(T) was drained off by dipping 

one side of the membrane onto a paper tissue. Subsequently, the membrane was 

transferred to cling film (protein side up) and 5 ml of enhanced chemiluminescence 

(ECL) reagent, prepared according to the manufacturer’s instructions, poured on the 

membrane and incubated at room temperature for 1 min. Excess ECL reagent was 

drained off and the membrane wrapped in cling film. The wrapped membrane was 

placed in the G:BOX and continuous pictures with 30 s, 1 min and 2 min exposure 

times were taken. Depending on the results of the initial pictures taken, the exposure 

time was increased or decreased, as appropriate. 

 

4.13 Yeast two-hybrid 

 

4.13.1 Small scale transformation 

 

Prior to transformation, a 60 ml liquid culture was inoculated with the appropriate 

amount of an overnight 10 ml liquid culture to obtain an OD600 of 0.15 (calculation 

used: OD600 wanted / OD600 got x final volume = volume to inoculate). The 60 ml 

liquid culture was incubated at 30°C and 220 rpm until the OD600 reached 0.7-1.0 

(after 5-7 h). Then the culture was transferred into two 50 ml Falcon tubes (30 ml 

each). The tubes were centrifuged at 3000 rpm (1500 x g) for 5 min, the supernatant 

was discarded and the pellet resuspended in 30 ml (15 ml each tube) of sdH2O. The 

suspensions were brought together into one tube, centrifuged at 3000 rpm (1500 x g) 

for 5 min and as much supernatant as possible was aspirated and the pellets stored 

on ice (for up to 2 hours). 1 ml of 1xTE/LiOAc/dH2O and 2 ml of 1xTE/LiOAc/PEG-

3350 were freshly prepared (Sections 3.9.4 and 3.9.5) and 50 µg of carrier DNA 

(from salmon sperm) was added to sterile 1.5 ml centrifuge tubes. Afterwards, the 
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pellets were resuspended in 0.3 ml 1xTE/LiOAc/dH2O and 100 µl of this mixture, 100 

ng of the appropriate plasmid and 300 µl of 1xTE/LiOAc/PEG-3350 were added to 

the 1.5 ml tube containing the carrier DNA. The tubes were mixed by inversion and 

placed in a petri dish at 30°C in a table top shaker at 63 rpm for 30 min. After 

incubation, 70 µl of DMSO was added to each tube and mixed by inversion followed 

by a heat shock. For this, the tubes were placed in a preheated water bath at 42°C 

for 5 min, then immediately centrifuged at 1,000 rpm (65 x g) for 1 min. The 

supernatant was discarded and each pellet resuspended in 500 µl sdH2O. One 

hundred microliters of each transformation mixture was carefully spread onto 

appropriate plates and transferred to an incubator at 30°C for a 30 min incubation 

with the plates not inverted. Finally, the plates were inverted and left in the incubator 

at 30°C overnight. 

 

4.13.2 Large scale transformation of library cDNA 

 

The large scale transformations were carried out with cDNA libraries obtained from 

placental tissue (generous gift from Dr. Ian Hampson, University of Manchester) and 

Jurkat T-Cells (OriGene) as followed. 

 

Day1 

For the large scale transformation of a cDNA library, 10 ml YNB (Glu) ura-/his- 

medium was inoculated with one colony of EGY48 yeast carrying pEG202-N3 and 

pRB1840 plasmids and incubated at 30°C and 250 rpm for 7 hours. Next, this culture 

was transferred into 50 ml YNB (Glu) ura-/his- medium and incubated at 30°C and 

250 rpm overnight.  
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Day2 

The next day, the OD600 of the 60 ml culture was measured and, depending on the 

results, 300 ml of YNB (Glu) ura-/his- medium was inoculated with a volume of culture 

to obtain an OD600 of 0.2. The culture was incubated at 30°C and 250 rpm until an 

OD600 of 1 was reached (approx. 4 hours). Meanwhile, 31 x 1.5 ml sterile centrifuge 

tubes were put into a bag and stored at -20°C (one tube was labelled as control). 

Once the 300 ml culture reached OD600 of 1, it was transferred into 6 x 50 ml Falcon 

tubes and the cells were harvested by centrifugation at 3,000 rpm (1,500 x g) for  

5 min. The supernatant was poured off and the pellet resuspended in 5 ml sterile 

dH2O. All six solutions were poured together into one 50 ml Falcon tube and the cells 

harvested again by centrifugation at 3,000 rpm (1,500 x g) for 5 min. The supernatant 

was poured off and the pellets put on ice (up to 2 h). The 31 x 1.5 ml centrifuge tubes 

were taken out of the freezer and 50 µg of (pre-boiled) salmon sperm carrier DNA 

was pipetted into each tube and fresh 5 ml and 10 ml aliquots of 1xTE/LiOAc/H2O 

and 1xTE/LiOAc/PEG-3350 respectively were prepared (Sections 3.9.4 and 3.9.5). 

 

The cell pellet was resuspended in 1.5 ml of 1xTE/LiOAc/H2O and 50 µl aliquots 

were pipetted into the 30 pre-chilled sterile 1.5 ml microcentrifuge tubes. To ensure 

each yeast cell obtained just one copy of the plasmid a maximum of 1 g of pJG4-5-

based library plasmid DNA was aliquotted into each of the thirty microcentrifuge 

tubes, followed by 300 µl of 1 x TE/LiOAc/PEG-3350, mixed by inversion and 

incubated at 30°C and 63 rpm for 30 min. Subsequently, 40 µl of DMSO was pipetted 

into each tube and mixed by inversion followed by a heat shock at 42-45°C for 5 min. 

To estimate the transformation efficiency a control plate was prepared: 10 µl of one 

transformant was diluted 1:10 with 990 µl of sdH2O into a fresh 1.5 ml centrifuge tube 

and 100 µl of the dilution was spread onto a YNB (Glu) ura-/his-/trp- plate followed by 

incubation at 30°C overnight (this plate was for estimation of total transformants 
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described in Section 4.13.3). In addition, 100 µl of the same transformant was used 

to inoculate 10 ml of YNB (Glu) ura-/his-/trp- liquid medium and incubated at 30°C and 

220 rpm overnight. A plate and liquid culture was also prepared for the control tube 

that lacked the library vector. Finally, the remaining transformants were poured into  

3 x 300 ml YNB (Glu) ura-/his-/trp- medium (10 transformants per 300 ml culture) and 

incubated at 30°C and 280 rpm overnight. 

Day3 

After it was confirmed that the controls did not show any growth, neither on plates nor 

in liquid cultures, and that the 300 ml cultures only contained yeast (checked via 

microscope for bacterial contamination) the 3 x 300 ml YNB (Glu) ura-/his-/trp- 

cultures were poured in equal amounts into 50 ml Falcon tubes, centrifuged at 2500 

rpm (1000 x g) for 10 min and the supernatant decanted. Next, all pellets were 

resuspended in a total volume of 200 ml sdH2O. Then the suspensions were split 

among four Falcon tubes followed by centrifugation at 2,500 rpm (1000 x g) for 5 min. 

The supernatant was decanted, the pellets resuspended in equal volumes of sdH2O 

(~2.5 ml) and brought together into one 50 ml Falcon tube. The total volume was 

estimated and an amount of sterile 50% (v/v) glycerol equalling half that volume was 

added. The suspension was split into 1 ml aliquots and stored at -80°C. 

 

4.13.3 Library cDNA screening (placental cDNA library) 

 

The number of colony forming units (cfu) in the frozen 1 ml aliquots prepared on Day 

3 in Section 4.13.2 was estimated (2.8 x 10
8 cfu/ml) by incubating 100 µl of this 

aliquot on YNB (Gal,Raf) ura-/his-/trp- plates at 30°C for three days and the number of 

total transformants (1.47 x 107) was estimated (therefore the plate for examination of 

total transformants prepared in Section 4.13.2 (Day 2) was used).  
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A YNB (Gal,Raf) ura-/his-/trp-/leu- liquid culture containing 1x107 cfu/ml of viable 

transformants was incubated at 30°C and 150 rpm for 4 hours to induce prey protein 

production. Next, 100 µl of culture was spread onto YNB (Gal,Raf) ura-/his-/trp-/leu- 

plates (~1x106 cfu/plate). After colonies appeared they were transferred onto 

separate YNB (Gal,Raf) ura-/his-/trp-/leu- master plates and incubated at 30°C 

overnight. Each colony from these master plates was resuspended in 100 µl sdH2O 

and then (2 µl) spotted onto each plate as shown in Table 6. 

Table 6: Media used for testing colonies during Y2-H screening. 

Plate Selection Positives 

YNB (Glu) ura-/his-/trp-/leu- No growth 

YNB (Gal,Raf) ura-/his-/trp-/leu- Growth 

YNB (Glu) ura-/his-/trp- + X-gal No blue colonies 

YNB (Gal,Raf) ura-/his-/trp- + X-gal Blue colonies 

 

After incubation at 30°C for 1-2 days all positives estimated were picked from the 

YNB (Gal,Raf) ura-/his-/trp-/leu- plate to inoculate 5 ml YNB-(Glu) trp- liquid cultures 

followed by incubation at 30°C at 250 rpm overnight. Finally, 600 µl of each overnight 

culture was transferred into 2 ml tubes containing 400 µl of 80% glycerol and stored 

at -80°C until needed for subsequent plasmid extraction. 

 

4.13.4 Library plasmid DNA extraction of potential positives 

 

Initially, the standard method described in the DupLEX-A application guide (OriGene) 

was used to extract pJG4-5 plasmids, carrying a library cDNA insert, from the EGY48 

yeast strain. However, after low efficiency was experienced a new PCR method was 

developed that allowed a highly specific and much faster analysis of inserts in 

potential positive pJG4-5 plasmids. 

 

 



 Thomas ROEDL – PhD Thesis – Salford 2013 82 

4.13.4.1 “Modified” standard method 

 

Plasmid extraction from yeast 

In this method, potential positive clones were grown in 3 ml YNB (Glu) trp- liquid 

medium at 30°C and 250 rpm overnight. If growth was observed the next day, 10 ml 

of fresh YNB (Glu) trp- liquid medium was inoculated with 100 µl of the 3 ml overnight 

culture and incubated at 30°C and 250 rpm overnight. On day three, 2 ml of each 

culture was transferred into 2 ml centrifuge tubes and spun at 17,000 x g for 30 s. 

The supernatant was discarded and a further 2 ml of the 10 ml overnight culture 

added, spun again at 17,000 x g for 30 s and the supernatant discarded. This was 

repeated until all of the 10 ml overnight culture was used. Each pellet was then 

resuspended in 600 µl TE-buffer and sonicated on ice at maximum amplitude and 

frequency for 30 s. Plasmid DNAs were extracted using a miniprep kit (Pureyield 

Plasmid Miniprep System, Promega) and the concentration and purity of the DNA 

was measured in the Nanodrop. 

 

Electroporation of extracted plasmid DNA into KC8 E. coli 

Following the testing of different electroporation conditions, the parameters listed in 

Table 7 resulted in the highest transformation efficiency of E. coli KC8 cells using a 

Micro Pulser (Bio-Rad) instrument. 

 

Table 7: Electroporation conditions used to transform E. coli KC8 cells. 

Volume competent cells (KC8) 40 µl 

Yeast plasmid DNA 10 µl (>20 ng) 

Voltage 2.5 kV 

Time constant ~5 ms 

SOC medium for recovery 1 ml 
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After electroporation and recovery in super optimal broth with added glucose (SOC) 

the cultures were spread onto trp- bacterial minimum plates (Section 3.9.15) and 

incubated at 37°C overnight. The next day, at least one colony from each plate was 

transferred into 5 ml LB-Broth containing 50 µg/ml kanamycin and incubated in a 

shaking incubator at 37°C and 250 rpm overnight. Following incubation, plasmid DNA 

was extracted and the concentration/purity of the DNA was measured. 

 

4.13.4.2 “PCR Method” 

 

Because the use of the “modified” as well as the unmodified standard method 

described in the DupLEX-A application guide (OriGene) had given unsatisfactory 

results (Section 5), a new method was developed to allow a much faster and more 

specific analysis of library cDNA carried by potential yeast clones. The initial 

extraction of the plasmid DNA from yeast was performed as described in Section 

4.13.4.1. However, instead of transforming the obtained plasmid DNA into KC8 cells 

by electroporation a PCR with Taq DNA polymerase was performed followed by 

direct sequencing. Therefore, PCR conditions as shown in Table 8 and the following 

primers were used: 

 
pJG4-5 forward primer: 5′-CTG AGT GGA GAT GCC TCC-3′  

pJG4-5 reverse primer: 5′-GCC GAC AAC CTT GAT TG-3′  

 
Table 8: PCR conditions for library cDNA inserts with Taq DNA polymerase. 

 Temperature Time 

Pre-Denaturation 94°C 1 min 

Denaturation 94°C 30 s 

Annealing 55°C 30 s 

Extension 72°C 2 min 

Final-Extension 72°C 5 min 

30 Cycles   
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4.13.5 Mating assay to confirm potential interaction partners for hNEIL3 

 

The mating assay was used to confirm the potential positive findings of the placental 

cDNA library screen by transforming pEG202-N3 and the reporter pRB1840 (or 

pSH18-34) into yeast strain RFY206 and the isolated potential positive library vector 

pJG4-5 back into EGY48. These two clones were then cross streaked onto YPD 

plates for mating (Figure 38). 

 

Figure 38: Cross streak method for transformed 

mating strains RFY206 (horizontal arrow) and 

EGY48 (vertical arrow) 

 

The plate was incubated at 30°C overnight and three parts (start of horizontal arrow, 

start of vertical arrow and the crossed part in Figure 38) were transferred onto 

selective media (YNB (Glu,X-Gal), ura-, his-, trp- and YNB (Gal,X-Gal), ura-, his-, trp-) 

for LacZ selection. 

 

4.13.6 Interaction studies with LigIIIα and Polβ 

 

To estimate if the interacting protein partners LigIIIα and Polβ found for NEIL1 and 

NEIL2 (Das et al., 2006; Wiederhold et al, 2004) are also interacting with NEIL3 the 

CDS cDNA of both proteins where cloned into the library vector pJG4-5 to make Y2H 

studies. The only restriction sites available in the multiple cloning site of pJG4-5 were 

EcoRI and XhoI. However, as both restriction sites were also present in LigIIIα and 

Polβ it was not possible to use the pGEM-T method as described in Section 4.8.2. 
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Therefore, a workaround was established that made it possible to clone the cDNA 

directly into the pJG4-5 vector. Firstly, the pJG4-5 vector was linearized with EcoRI 

and XhoI and then the sticky overhangs were blunted by the blunting enzyme mung 

bean nuclease (NEB). After blunting the linearized vector it was possible to ligate the 

PCR product of either LigIIIα or Polβ into pJG4-5. At this point it was important, that 

the primers used for amplification were designed in a way that the 3′ G on the EcoRI 

and the 5′ G on the XhoI site of the vector were excluded. This way, only if the insert 

is ligated the right way around the final restriction sites for EcoRI and XhoI in the 

insert stay intact and can be targeted and digested by EcoRI and XhoI. If the insert 

was ligated the wrong way around the restriction sites were destroyed and therefore 

restriction digest with EcoRI and XhoI failed (Figure 39). 

 

 
Figure 39: Cloning method used for insertion of either LigIIIα or Polβ 

into the library vector pJG4-5. For more details see text. 
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4.14 Overexpression in Pichia pastoris 

 

The P. pastoris strain X-33 used in this project was a generous gift of Dr Natalie 

Ferry. The pGAPZαA vectors containing either full length mNEIL1 or hNEIL3 cDNA, 

or truncated versions of hNEIL3 with amino acid length 1-394 or 1-502 (hN3-394 or 

hN3-502) were generated by Mengxin Yin and Constantina Stylianou (2010). Primers 

used to construct the hNEIL3 clones are shown in Table 9 (Yin, 2010). 

 

Table 9: Primers used for hNEIL3, hN3-394 and hN3-502 generation (Yin, 2010). 

hNEIL3 Forward 5′-CTC GAG AAA AGA ATG GTG GAA GGA CCA GGC TG-3′ 

hNEIL3 Reverse 5′-GC GGC CGC GCA TCC AGG AAT AAT TTT TAT TCC TGG C-3′ 

hN3-394 Reverse 5′-GC GGC CGC ATC AGT CAA GAC AAG AGT TGT AGT TCC-3′ 

hN3-502 Reverse 5′-GC GGC CGC AGG ATT TAA GGT ACG AGG GCC ATC-3′ 

 

4.14.1 Electroporation of pGAPZαA constructs into P. pastoris 

 

Electroporation was used to transfect P. pastoris with linearized pGAPZαA 

constructs. Therefore, 5 ml of YPD was inoculated with P. pastoris and incubated at 

30°C at 250 rpm overnight in a 50 ml conical flask. Next day, 500 ml YPD broth was 

inoculated with 0.1 ml of the overnight culture and incubated at 30°C and 250 rpm 

until the OD600 reached 0.8 - 1.1. Then the culture was centrifuged in a cooled 

centrifuge at 3,000 rpm (1,500 x g) for 5 min and the pellet resuspended in 500 ml of 

ice-cold sdH2O. The suspension was centrifuged again at 3,000 rpm (1,500 x g) for 5 

min, the supernatant discarded and the pellet resuspended in 250 ml of ice-cold 

(<4°C) sdH2O. Centrifugation was repeated as before and the pellet was 

resuspended in 20 ml of ice-cold (<4°C) 1 M sorbitol solution. Then, following another 

centrifugation step, the pellet was resuspended in 1 ml of ice-cold (<4°C) 1 M sorbitol 

solution to obtain a final volume of approximately 1.5 ml (if the pellet was large more 
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1 M sorbitol was used). About 10 µg (dissolved in nuclease free sdH2O) of linearized 

pGAPZαA DNA construct was pipetted into 80 µl of the cell solution prepared before 

and transferred to an ice-cold (<4°C) 2 mm electroporation cuvette. The mixture was 

incubated on ice for 5 min and then pulsed in accordance with the manufacturer’s 

instructions (Micro Pulser, Bio-Rad). For P. pastoris, the programme chosen was pic 

and the resulting conditions observed after pulsing were always around 1.98 kV for 

5.1 ms. Directly after pulsing 1 ml of 1 M ice-cold (<4°C) sorbitol was added and the 

sample transferred to a 15 ml sterile tube and incubated at 30°C without shaking for 

1 h. After incubation, 10, 20, 50, 100, 200 and 500 µl were spread onto YPDS plates 

containing 100 µg/ml Zeocin and incubated at 30°C for three days. Once colonies 

appeared, two clones were picked and restreaked onto fresh YPD plates containing 

100 µg/ml Zeocin. 

 

4.14.2 Extraction of chromosomal DNA from P. pastoris using LiOAc-SDS 

 

In preparation for PCR analysis of homologous recombined constructs in P. pastoris 

clones, the chromosomal DNA was first extracted. Therefore, 4 ml of a 10 ml YPD 

culture that had been incubated at 30°C and 250 rpm for two days was centrifuged at 

maximum speed (~13,000 x g) for 30 s. Then the supernatant was discarded and the 

pellet resuspended in 300 µl of LiOAc-SDS solution (200 mM LiOAc and 1% SDS). 

This mixture was incubated for 10 min at 70°C with mixing every 2.5 min, after which 

900 µl of 96-100% ethanol was added, the sample mixed vigorously and centrifuged 

at 13,000 x g for 3 min. The supernatant was discarded and 70% ethanol was added 

to wash the pellet (twice) followed by centrifugation at 13,000 x g for 15 s. After the 

supernatant was discarded, the pellet containing precipitated proteins, cell debris and 

chromosomal DNA was dissolved in 100 µl dH2O. Insoluble cell components and 

debris were spun down by centrifugation at 13,000 x g for 15 s. Finally, the 
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supernatant which contained dissolved chromosomal DNA was transferred to a fresh 

1.5 ml centrifuge tube and the DNA concentration was measured prior to use as 

template DNA in the subsequent PCR. 

 

4.14.3 PCR of incorporated pGAPZαA inserts extracted from P. pastoris 

 

To confirm correct integration of the linearized pGAPZαA plasmid DNA into the 

chromosomal DNA of P. pastoris, PCR was carried out with primers shown in Table 

10. Reaction components shown in Table 11 and PCR conditions in  

 

Table 12. For this method, MyTaq Red Mix (Bioline) was used. This mix contains a 

Taq DNA polymerase, dNTPs and buffer and only the DNA template, primers and 

water had to be added in order to perform the PCR. 1000, 500, 250 and 125 ng of 

template DNA were used for PCR and although all worked, 500 ng seemed to give 

the best visual result in terms of band thickness. 

 

Table 10: Primer sequences for PCR of pGAPZαA insert. 

pGAP-Forward 5´-GCAAATGGCATTCTGACATCC-3´ 

3′ AOX1 5´-GTCCCTATTTCAATCAATTGAA-3´ 

 

Table 11: Components for the PCR of pGAPZαA inserts from extracted chromosomal DNA. 

DNA template x µl ~500 ng 

3′ AOX1 primer 2 µl 

pGAP Forward primer 2 µl 

dH2O x µl 

MyTaq Red Mix (Bioline) 25 µl 

Total 50 µl 
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Table 12: Conditions for PCR of pGAPZαA inserts from extracted chromosomal DNA. 

 Temperature Time 

Initial denaturation 95°C 3 min 

Denaturation 95°C 15 s 

30 cycles Annealing 55°C 15 s 

Extension 72°C 1 min 

Final Extension 72°C 5 min 

Soak while end 4°C -- 

 

4.14.4 Overexpression conditions 

 

For the overexpression of mNEIL1, full length hNEIL3 and its truncated versions 394 

and 502 different conditions were used for incubation to estimate the best 

parameters for optimal expression: 

 

Table 13: Overexpression conditions in P. pastoris 

Condition No. Temp. Time Volume 

Condition 1 28°C Up to 120 h 10 ml, 50 ml, 250 ml 

Condition 2 29°C Up to 120 h 10 ml, 50 ml, 250 ml 

Condition 3 30°C Up to 120 h 10 ml, 50 ml, 250 ml 

 

In addition all three conditions were repeated with baffled flasks for the 250 ml 

volume which showed a slightly faster growth confirmed via OD. The shaker speed 

used for incubation was 180 rpm. Every 24 h of incubation 1 ml samples were 

transferred from each flask to sterile 1.5 ml centrifuge tubes and centrifuged at 

17,000 x g. The supernatant was then transferred to a fresh sterile 1.5 ml centrifuge 

tube. Subsequently, the pellet and the supernatants were shock frozen in liquid 

nitrogen and stored at -80°C. This way it was possible to load all different stages of 

incubation times onto the same SDS-PAGE gel at once. 



 Thomas ROEDL – PhD Thesis – Salford 2013 90 

5 Results 

5.1 Y2H Summary 

 

The bait vectors, pEG202 and pEG202-NLS, containing hNEIL3-cDNA were 

generated and autoactivation tests to check if hNEIL3 autoactivates the reporter 

gene transcription on its own were carried out. Once the results of these preliminary 

tests were confirmed to be negative, the pEG202-hNEIL3 bait vector was used in 

Y2H studies to screen cDNA libraries obtained from placental tissue and Jurkat  

T-Cells. Subsequently, 60 potential positive clones obtained from the placental and 

27 potential positive clones from the Jurkat T-cell cDNA library screen were 

sequenced and subjected to bioinformatic analysis. 

 

5.2 Y2H bait vector preparation  

5.2.1 Preparation of hNEIL3 cDNA insert 

5.2.1.1 Designing primers for PCR of hNEIL3-cDNA 

 

For the PCR of the hNEIL3-cDNA (full length) it was necessary to design specific 

oligonucleotide primers. This was achieved by comparing the hNEIL3 cDNA 

sequence with the restriction-sites in the multiple cloning sites of pEG202 and 

pEG202-NLS (Appendix 8.2, Figure 98 and Figure 99). To make it possible to use 

one sort of primers for both vectors, the restriction-sequences for EcoRI and BamHI 

were chosen and added to the 5′ end of each primer. This is necessary to clone the 

hNEIL3 cDNA after amplification into the plasmids pEG202 (Figure 98) and pEG202-

NLS (Figure 99). Both vectors have restriction-sites for EcoRI and BamHI in their 

multiple-cloning-region. As the full length hNEIL3 cDNA contains a stop codon, it was 

not necessary to add one to the hNEIL3_stop_BamHI primer. However, if primers for 
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amplification of truncated versions of hNEIL3 are needed a stop codon must be 

included. 

 

Partial reverse Primer: hNEIL3_1538_Reverse (Tm= 63.33ºC) 
 

5′ - CAC AAC TCG GAG AAT GCA GA – 3′ 

 

Full Primer1:  hNEIL3_stop_BamHI (Tm= 69.79ºC) 

 

5′ - GGA TCC TTA GCA TCC AGG AAT AAT TTT TAT TCC TGG C – 3′ 

 

Full Primer2:  hNEIL3_start_EcoRI (Tm= 68.41°C) 

 

5′ - GAA TTC ATG GTG GAA GGA CCA GGC TGT AC – 3′ 

 

Tm-calculator provided by Finnzyme was used to calculate the annealing 

temperatures (can be found at http://www.finnzymes.com/tm_determination.html). 

 

5.2.1.2 PCR of pCMV6-AC/hNEIL3 with BioXAct-short 

 

Initially, the BioXAct-short DNA polymerase from Bioline was used for the 

amplification of the full length coding sequence (CDS) of hNEIL3. However, no bands 

were obtained (not shown). Taq polymerase was then used as a control and a band 

of the correct size was obtained (Figure 40). Therefore, it was assumed that the long 

(31 bases) full length reverse primer (hNEIL3_stop_BamHI, Section 5.2.1.1) could 

have caused problems and to test this, the PCR was repeated with a shorter reverse 

primer that annealed to bp 1538 – 1557 in hNEIL3 CDS (hNEIL3_1538_Reverse, 

Section 5.2.1.1) giving rise to a truncated version of NEIL3. Interestingly BioXAct-

short was able to amplify this truncated version of the hNEIL3 cDNA with the full 

forward (hNEIL3_start_EcoRI, Section 5.2.1.1) and the hNEIL3_1538_Reverse 

primer (Figure 41).  
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Figure 40: Agarose gel electrophoresis of hNEIL3 PCR products. The PCR of full length 

hNEIL3 with Taq polymerase did work, but with BioXAct-Short it did not. The lanes were 

loaded in duplicate. 

 

 
Figure 41: Agarose gel electrophoresis of truncated hNEIL3 (1538 bp) PCR products. The 

PCR worked for all conditions (68°C and 72°C extension temperature) as well as for both 

enzymes BioXAct-short and Taq polymerase. The lanes were loaded in duplicate. 

 
The PCR was repeated with the full length primers until the right conditions for the 

DNA polymerase BioXAct-Short were found to amplify the full length hNEIL3 cDNA 

(Table 14 and Table 15). This made it possible to obtain PCR products of hNEIL3 

shown in Figure 42 and A-NEIL3 and C-NEIL3 were used for further cloning. 

 
Table 14: PCR-Mix and conditions for the first PCR (ANEIL3). 

DNA 0.5 µl 

10x Buffer 5 µl 

50 mM MgCl2 2.5 µl  

100 mM dNTPs 1 µl Temp. Time 

10 µM Full Primer1 0.5 µl 95ºC 5 min 

10 µM Full Primer2 0.5 µl 95ºC 30 s 

30 Cycles BioXAct (short) 1 µl 54ºC 30 s 

H2O 39 µl 68ºC 5 min 

Total 50 µl 68ºC 10 min 

Obtained ANEIL3 (40 ng/µl) 
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Table 15: PCR-Mix and conditions for the second PCR (BNEIL3 and CNEIL3). 

DNA 1 µl 

10x Buffer 5 µl 

50 mM MgCl2 2 µl  

100 mM dNTPs 0.5 µl Temp. Time 

10 µM Full Primer1 0.5 µl 94ºC 1 min 

10 µM Full Primer2 0.5 µl 94ºC 30 s 

30 Cycles BioXAct (short) 0.5 µl 54ºC 45 s 

H2O 39 µl 68ºC 2 min 

Total 50 µl 68ºC 5 min 

 Obtained BNEIL3 (10 ng/µl) and CNEIL3 (30 ng/µl). 

 

 
Figure 42: Agarose gel electrophoresis of amplified NEIL3 PCR products. For A-NEIL3 

the PCR conditions in Table 14 were used, while for B-NEIL3 and C-NEIL3 those in 

Table 15 were used but with different amounts of template DNA (10 ng for B-NEIL3 and 

30 ng for C-NEIL3) 

 

5.2.1.3 Cloning of hNEIL3 (A-NEIL3 and C-NEIL3) into pGEM-T 

 

After A-NEIL3 and C-NEIL3 were ligated into pGEM-T (Table 16), a transformation 

with blue/white selection into NovaBlue E. coli cells was performed.  

 

Table 16: Scheme for the ligation of hNEIL3 into pGEM-T vector. 

2x Rapid Buffer 5 µl 

pGEM-T vector 1 µl 50 ng 

PCR product 1 µl ~35 ng 

T4 DNA Ligase 1 µl 

Deionized H2O 2.25 µl 

Total 10 µl 

The ligation was carried out at an incubation temperature of 4°C overnight.  
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White colonies from plates of ANEIL3 and CNEIL3 were picked and liquid cultures (LB-

Carb) were set up at 37ºC overnight. Plasmid purification and digestion with EcoRI 

and BamHI was performed and Figure 43 shows the sizes obtained for pGEM-T and 

the hNEIL3 insert. In some lanes a third band is visible which is likely to be 

incompletely digested plasmid DNA. However, the bands are all the expected size 

and samples A2 and C1 were then gel purified to obtain the hNEIL3 insert with EcoRI 

and BamHI overhangs. 

 

 
Figure 43: Agarose gel electrophoresis of pGEM-T/NEIL3 digested with EcoRI and BamHI. 

C1 - C4 and A1 - A4 are plasmids obtained from four different liquid cultures each. C1 - C4 

indicates that the PCR product C-NEIL3 is contained and A1 - A4 indicates that the PCR 

product A-NEIL3 is contained in the pGEM-T vector. 

 

5.2.2 Preparation of pEG202 and pEG202-NLS vectors 

 

A large scale double-digestion with EcoRI and BamHI and 4 X ~5 μg template DNA 

in a total volume of 50 μl was performed for pEG202 and pEG202-NLS. The 

linearized plasmids were purified from an agarose gel and a DNA concentration of 

~30 ng/µl was obtained for pEG202 and ~50 ng/µl for pEG202-NLS in a total volume 

of 300 μl for each vector. Figure 44 shows bands for the linearized plasmids 

pEG202-NLS and pEG202 at the predicted size (~10.2 kb). 
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Figure 44: Agarose gel electrophoresis of linearized pEG202 and pEG202-NLS after 

digestion with EcoRI and BamHI and gel purification. 

 

The linearised vectors were stored at -20ºC until they were used for the ligation with 

hNEIL3 cDNA. 

 

5.2.3 Cloning of hNEIL3 (A2) into pEG202 and pEG202-NLS 

 

The gel purified hNEIL3 DNA (A2, Figure 43) with EcoRI and BamHI overhangs was 

used to perform the ligation into both the pEG202 and pEG202-NLS vectors followed 

by a transformation into NovaBlue competent cells. Six colonies from each of the two 

plates were picked to inoculate 12 liquid cultures. All the liquid cultures grew and 

miniprep plasmid purification was performed. 

To confirm the insert was cloned into the yeast vectors successfully a digest with 

EcoRI and BamHI was carried out and an agarose gel ran to visualize the results. In 

Figure 45 it can be seen, that all clones have the correct size and thus were used for 

DNA sequencing. 
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Figure 45: Agarose gel electrophoresis of pEG202-N3 and pEG202-NLS-N3 double-digested 

with EcoRI and BamHI. 

 

5.2.4 DNA sequencing 

 

Because the DNA sequence of hNEIL3 in the pCMV6-AC vector from OriGene is 

different to the hNEIL3 cDNA sequence found on NCBI (http://www.ncbi.nlm.nih.gov/ 

nuccore/NM_018248.2), the DNA sequences were analysed for known single 

nucleotide polymorphisms (SNPs) using the SNP search tool available at 

http://www.ncbi.nlm.nih.gov/projects/SNP/. Several SNPs were found and are shown 

in Appendix 8.4. 

 

5.2.4.1 Primers used for DNA sequencing reactions: 

 

N3_641 (Tm=60.6°C): 5′ - CAG ATG AAC AGA TCC ATC ACC TC - 3′ 

N3_793r (Tm=62.4°C): 5′ - GGC ACA CAG TTA TTC TGC AGT GG - 3′ 

N3_1249 (Tm=60.3°C): 5′ - CAA AAC TCT CCT CCT GCT AGT G - 3′ 

hNEIL3_1538 Reverse (Tm= 57.3ºC): 5′- CAC AAC TCG GAG AAT GCA GA - 3′ 

 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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- To sequence the hNEIL3 insert in the pGEM-T vector the standard primers T7 

and Sp6 were used as well as N3_641. 

 

- To sequence the hNEIL3 insert in the pJET1.2/blunt vector standard primer 

T7, a reverse primer supported in the CloneJET kit, the N3_641 and the 

N3_1249 primers were used. 

 

5.2.4.2 DNA sequencing of pEG202(-NLS)-N3-(A2) (BioXAct-short) 

 

pEG202-N3 (A2) and pEG202-NLS-N3 (A2) shown in Figure 45 were used for 

sequencing. Unfortunately, as it is shown in Table 17, point-mutations developed 

during the cloning process. All of these point-mutations were confirmed by comparing 

the amplified hNEIL3 DNA with the DNA sequence provided by OriGene (see 

Appendix 8.2). To check if the observed mutations had arisen during the amplification 

and cloning process, the hNEIL3 DNA in pCMV6-AC was sequenced and showed no 

variation to the DNA sequence provided by the supplier (Appendix 8.2). Therefore, 

these mutations must have occurred during amplification of the hNEIL3 cDNA from 

pCMV6-AC by the BioXAct-short DNA polymerase. The same mutations were found 

in both vectors used (pEG202 and pEG202-NLS). 

 

Table 17: Point-mutations (not SNPs in hNEIL3) in the pEG202/N3 (A2) and pEG202-NLS/N3 
(A2) DNA sequence. 
 

Codon-Position (bp) 426 1014 1219 1639 1787 

OriGenSequence GAA (Glu) GAT (Asp) AAG (Lys) GCA (Ala) GGG (Gly) 

DNA sequencingResult GAG (Glu) GGC (Asp) GAG (Glu) GTA (Val) GAG (Glu) 

(grey: no change in resulting amino acid; black: change in resulting amino acid) 
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5.2.4.3 DNA sequencing of pEG202(-NLS)-N3(-C1) (BioXAct-short) 

 

Because, the hNEIL3 cDNA C1 shown in Figure 43 (obtained from another PCR) was 

also ligated into pEG202 and pEG202-NLS, DNA sequencing was performed to 

check if point mutations were also present in this sequence. However, like A2, many 

point mutations appeared (data not shown) and the constructs could not be used for 

further studies. 

 

5.2.4.4 DNA sequencing of pGEM-T-hNEIL3 ( BioXAct-short) 

 

From the DNA sequencing results of pEG202(-NLS)-N3 (A2 and C1) it was likely the 

base pair changes occurred during the initial PCR. Therefore, the PCR was repeated 

with BioXAct-short and the PCR products have been cloned into pGEM-T. To avoid 

loss of time, this construct was directly DNA sequenced. However, the hNEIL3 cDNA 

sequence again showed various point mutations, despite the presence of a 

proofreading activity on the DNA polymerase (data not shown). 

 

5.2.4.5 DNA sequencing of pGEM-T-partial-hNEIL3 ( BioXAct-short) 

 

The three DNA sequencing results showed that the BioXAct-short from Bioline, 

designated as a proofreading polymerase mixture, was not able to amplify hNEIL3 

cDNA without causing base changes. However, given the initial inability of this 

enzyme mixture to amplify full length NEIL3, (Section 5.2.1.2) it was decided to check 

if a truncated version of hNEIL3 (1000-1818bp) amplified with BioXAct-short and 

cloned into pGEM-T, also contained a significant number of base changes. However, 

analysis of this truncated NEIL3 clone again showed point mutations (data not 

shown). Interestingly, when all the DNA sequencing results were compared, apart 

from the random point mutations in the sequence, there was always one point 
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mutation which appeared in all four constructs, where guanine was changed to 

adenine at base pair position 1787 in the hNEIL3 sequence resulting in an altered 

amino acid (Figure 48). The significance of this is not known. 

 

5.2.5 PCR of pCMV6-AC/hNEIL3 (Phusion) 

 

To carry on with Y2H it was essential to obtain the hNEIL3 sequence without any 

base changes. Therefore, a new proofreading DNA polymerase called Phusion from 

Finnzymes was purchased (NEB). However, this DNA polymerase produces DNA 

fragments with blunt ends. Therefore, in place of pGEM-T, which has single  

T-overhangs to aid the ligation of Taq-generated amplicons, the CloneJET PCR 

Cloning Kit (Fermentas) was chosen for Phusion – generated ligation products. The 

conditions for the recommended two step PCR used for amplification of full length 

hNEIL3 are shown in Table 18. 

 
Table 18: Conditions for PCR of full length hNEIL3 with Phusion DNA polymerase. 

DNA   1.0 µl (10 ng) 

5x Buffer 10.0 µl 

100 mM dNTPs   0.4 µl (200 µM) Temp. Time 

10 µM Full Primer1   1.0 µl (0.2 µM) 98ºC 30 s 

10 µM Full Primer2   1.0 µl (0.2 µM) 98ºC 10 s 
30 Cycles 

Phusion   0.5 µl 72ºC 1 min 

H2O 36.1 µl 72ºC 10 min 

Total 50.0 µl 4ºC Hold 

 

The PCR product was then ligated into the pJET1.2/blunt vector (for vector map, see 

Appendix 8.1, Figure 97) using the conditions shown in Table 19 at a 3:1 insert to 

vector ratio. 
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Table 19: Scheme for the ligation of NEIL3 into pJET1.2/blunt vector. 

2x Reaction mix 10 µl 

pJET1.2/blunt vector 1 µl 50 ng 

PCR product 5 µl ~100 ng 

T4 DNA Ligase 1 µl 

Deionized H2O 3 µl 

Total 20 µl 

The ligation was carried out at an incubation 

temperature of 22.5 °C for 30 min.  

 

The pJET1.2/blunt vector has a size of 2974 bp and hNEIL3, including EcoRI and 

BamHI overhangs, 1830 bp. Figure 46 shows a digestion with EcoRI and BamHI of 

the miniprep of pJET1.2/blunt containing the hNEIL3 insert and the bands are of the 

expected sizes. 

 

 
Figure 46: Agarose gel electrophoresis of single- and double-digests with BamHI and EcoRI 

of pJET1.2/blunt vector containing NEIL3. 

 

A large scale digestion was performed and gel purified to obtain the pure hNEIL3 

fragment (data not shown) followed by ligation into pEG202 and pEG202-NLS. 

Figure 47 shows that hNEIL3 was cloned correctly into pEG202 and pEG202-NLS 

and the hNEIL3 insert was then subjected to DNA sequencing. 
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Figure 47: Agarose gel electrophoresis of a double-digest of  

pEG202(-NLS)-NEIL3 with EcoRI and BamHI. 

 

5.2.6 DNA sequencing of pEG202(-NLS)-N3 (Phusion) 

 

The DNA sequencing results showed no point mutations in the hNEIL3 DNA (data 

not shown). Now it was possible to perform a large scale plasmid extraction 

(Maxiprep) of pEG202-N3 and pEG202-NLS-N3 and to prepare for the Y2H 

screening. 

 

To sequence the whole of the hNEIL3 cDNA insert in pEG202 and pEG202-NLS and 

to ensure no mutation is present, the primers N3_641, N3_1538r, N3_793r and 

N3_1249 were used to perform the four sequencing reactions required. No base 

changes were obtained and as indicated in Figure 48 the point mutation that was 

induced when BioXAct Short was used (Section 5.2.4.5) was not obtained with 

Phusion DNA polymerase. 
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Figure 48: Summary of sequencing results. (Only the part is shown which represents the 

significant point mutation at bp 1787.) 

 

5.3 Small scale transformation of pEG202(-NLS)-N3 into EGY48 

 

The bait vectors pEG202-N3 and pEG202-NLS-N3 along with the other reporter 

plasmids (pRHFM1, pJK101, pSH17-4, and pEG202-Max) needed for the 

autoactivation tests and the repression assays were used to transform the yeast 

strain EGY48 (Figure 49). For more details on the vectors see Section 5.4 and  

Table 20. 
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Table 20: Summary of vectors used in Y2H. 

 

 

 
Figure 49: YNB (Glu) ura

-
 (pJK101) and YNB (Glu) his

-
 plates (all other vectors) with high 

colony number, showing high transformation efficiency of all necessary plasmids. pEG202-N3 

and pEG202-NLS-N3 = Bait vectors; pRHFM1 and pSH17-4 were used for the LacZ 

autoactivation test; pJK101 and pEG202-Max were used for the LexA repression assay. 

 

Vector name Genotype Description

pEG202-NLS-N3 HIS3, Ampr Bait vector containing hNEIL3 CDS fused to LexA and an additional NLS

pEG202-N3 HIS3, Ampr Bait vector containing hNEIL3 CDS fused to LexA only

pEG202-Max HIS3, Ampr Bait vector containing Lex A fusion protein sequence. Used as positive control in the 

repression assay and western blot.

pJG4-5 TRP1, Ampr Prey vector containing a random protein cDNA

pRHFM1 HIS3, Ampr Bait protein used as a negative control in LacZ autoactivation test along with pJK101

pSH17-4 HIS3, Ampr Bait protein used as a positive control in LacZ autoactivation test along with pJK101

pJK101 URA3, Ampr, GAL1-2 ops.-LacZ LacZ reporter plasmid used in repression assay

pRB1840 URA3, Ampr, 1 op.-LacZ Low sensitivity LacZ reporter plasmid used in cDNA library screen

pSH18-34 URA3, Ampr, 8 ops.-LacZ High sensitivity LacZ reporter plasmid used in cDNA library screen

pBait HIS3, Ampr Used as positive control in mating assay in combination with pTarget.

pTarget TRP1, Ampr Used as positive control in mating assay in combination with pBait.
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5.4 Autoactivation tests and repression assay 

 

To test that the full length hNEIL3 fused with LexA (hNEIL3-LexA) protein is not 

autoactivating the leucine coding gene (Leu2) and LacZ expression on its own, 

autoactivation assays were carried out. If hNEIL3-LexA is able to interact with the 

activation domain of the transcription factor on its own and in absence of the prey 

fusion protein that contains the actual activating domain B42, it would cause false 

positive results. In addition, a repression assay was performed to show that, after 

translation, the hNEIL3-LexA fusion protein is able to enter the nucleus and bind to 

LexA operators in the genomic DNA of EGY48 or the reporter vectors used in this 

project, respectively.  

 

The following combinations of plasmids were transformed into yeast strain EGY48 as 

described in Section 4.13.1: 

 
For the Leu2 expression autoactivation test: 

- pEG202-N3  

- pEG202-NLS-N3 

 
For the LacZ expression autoactivation test: 

- pEG202-N3 or pEG202-NLS-N3 and pRB1840 (test) 

- pSH17-4 and pRB1840 (positive control) 

- pRFHM1 and pRB1840 (negative control) 

 
For the repression assay: 

- pEG202-N3 or pEG202-NLS-N3 and pJK101 (test) 

- pEG202-Max and pJK101 (positive control) 

- pJK101 only (negative control) 

 

The results of each of these tests and details about the function of each vector will be 

described in the following sections. 
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5.4.1 Autoactivation test of Leu2 expression by hNEIL3-LexA 

 

Before carrying out a large scale transformation with the cDNA library plasmids, the 

plasmid vectors pEG202-N3 and pEG202-NLS-N3 were tested for autoactivation of 

the leucine coding gene (Leu2). Therefore, clones containing either pEG202-N3 or 

pEG202-NLS-N3 where plated onto YNB (Glu) his-/leu-, or YNB (Glu) his- agar 

plates, respectively. No growth on YNB (Glu) his-/leu-, but on YNB (Glu) his- was 

observed which indicates full length hNEIL3-LexA did not activate Leu2 expression 

on its own (Figure 50).  

 

 
Figure 50: Plating EGY48 containing either pEG202-NLS/hNEIL3 or pEG202/hNEIL3 onto 

YNB (Glu) his
-
/leu

-
 or YNB (Glu) his

-
 agar respectively showed that full length hNEIL3 does 

not activate leucine expression on its own. 
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5.4.2 Autoactivation test of LacZ expression by hNEIL3-LexA 

 

In addition to Leu2, the potential of the hNEIL3-LexA fusion protein to autoactivate 

LacZ gene expression had also to be tested, in order for a correct interpretation of 

the results obtained by the subsequent cDNA library screening. The ADH promoter in 

pRFHM1 expresses a LexA-Bicoid homeodomain fusion that is not able to activate 

LacZ gene expression on its own, whereas the ADH promoter in pSH17-4 expresses 

a LexA-GAL4 activation domain fusion that activates LacZ gene expression. Hence, 

pRFHM1 clones were used as a negative and pSH17-4 clones as a positive control 

in the LacZ autoactivation test (Section 5.4.2). 

 

Figure 51 shows that neither pEG202-N3 (Figure 51, 2) nor pEG202-NLS-N3 (Figure 

51, 1) results in autoactivation of LacZ gene expression, indicated by the yellowish 

colour of the colonies that is the same as for the negative control (Figure 51, 3). The 

negative controls are EGY48 yeast cells that contain the pRFHM1 plasmid, and the 

positive controls are EGY48 cells containing the pSH17-4 plasmid (Figure 51, 4). 

 

 
Figure 51: Testing the LacZ gene autoactivation 

potential of pEG202-NLS-N3 (1) and pEG202-N3 

(2). No autoactivation of the LacZ gene occurred. (3) 

pRFHM1 as negative control and (4) pSH17-4 as 

positive control. 
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5.4.3 Repression assay 

 

To test if the bait vectors pEG202-N3 (Figure 52, 2) and pEG202-NLS-NEIL3 (Figure 

52, 3) were able to enter the nucleus and bind LexA operators, repression assays 

using the pJK101 reporter plasmid were performed (Figure 101). pJK101 contains a 

LexA operator between its upstream activation sequence (UAS) and the TATA box of 

the GAL1-10 promoter. pEG202-Max is a vector that expresses a LexA fusion protein 

known to tightly bind to LexA operators in pJK101 and therefore was used as a 

positive control in this repression assay that results in white colonies, while clones 

that contain pJK101 alone will not be repressed in the production of β-galactosidase 

and thus colonies turn blue on X-Gal containing plates. Hence, if hNEIL3-LexA fusion 

protein binds to the LexA operators it will reduce or abolish LacZ gene expression by 

disrupting the UAS-TATA box signalling in pJK101. 

 

 
Figure 52: Result of the repression assay. pEG202-N3 (2);  

pEG202-NLS-N3 (3); negative (1) and positive (4) control. 

 

Compared with the negative (Figure 52, 1) and positive (Figure 52, 4) controls, same 

levels of repression of LacZ expression was observed for both pEG202-N3 and 

pEG202-NLS-N3. This result indicated that NEIL3-LexA was able to enter the 

nucleus and therefore an additional NLS was not needed in this Y2H assay. 

 

1 

2 

3 
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5.5 Western blot of hNEIL3-LexA expression 

 

To further check that the autoactivation tests were genuine, a western blot was 

performed to confirm hNEIL3-LexA expression in EGY48. Therefore, actual 

screening conditions where prepared, i.e. the clones were transformed with the bait 

vectors along with the LacZ reporter plasmid pRB1840 that was needed for 

subsequent blue/white screening once potential positive clones were identified via 

leucine selection (Section 5.6.3). Therefore, three 10 ml cultures were prepared, the 

first, (YNB (Glu) his-/ura-) was inoculated with an EGY48 colony containing pEG202-

N3 and pRB1840 reporter plasmid, the second (YNB (Glu) his-/ura-) with an EGY48 

colony containing pEG202-Max and pRB1840 plasmids (positive control) and finally 

(YNB (Glu) ura-) with EGY48 containing pRB1840 only (negative control) and 

incubated at 30°C and 250 rpm overnight or until OD600= ~3.0. The proteins were 

extracted as described in Section 4.11.1 and then separated by SDS-PAGE. The 

subsequent western blot was probed with a polyclonal anti-LexA antibody and the 

results showed a band at 91 kDa (61 kDa hNEIL3 + 30 kDa LexA, Figure 53, 1) as 

predicted for pEG202-N3. Lower molecular mass bands were also visible, probably 

representing different degradation states of the hNEIL3-LexA fusion protein. The 

negative control (Figure 53, 2) showed no band at 91 kDa and pEG202-Max, used as 

a positive control (Figure 53, 3), showed expression of a LexA fusion protein at  

~45 kDa. 
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Figure 53: Western blot of hNEIL3-LexA fusion protein expressed  

from pEG202-N3 (1), a negative (2) and a positive control (3). 

 

5.6 Y2H screening with a human placental cDNA library 

5.6.1 Large scale transformation of library cDNA 

 

As the autoactivation tests, the repression assay and the western blot showed 

encouraging results, it was likely that full length hNEIL3 could be used to screen a 

cDNA library by Y2H. Therefore, a large scale transformation of a placental cDNA 

library into EGY48 containing pEG202-N3 was performed as described in Section 

4.13.2. To estimate the transformation efficiency the control plate (made out of one of 

the 30 transformations and used in a 1:1000 dilution, Section 4.13.2) was examined 

after two days of incubation and 70 colonies were counted. Using the formula 

“colonies counted (70) x dilution factor (1000) x number of transformation tubes (30)” 

a total number of 2.1 x 106 transformants were calculated. To perform a successful 

screening 1.47 x 107 (= 7 x 2.1 x 106) transformants were needed to ensure full 

coverage of the cDNA library for the subsequent screening. Due to the fact that each 

of the 1 ml aliquots contained 2.8 x 108 cfu (estimated by plating and colony counting 

one 1 ml aliquot) a 52.5 µl volume (~1.47 x 107 cfu) was used to inoculate ~1.42 ml 

~45 kDa 

52 kDa 

38 kDa 

1 2 3 
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YNB (Gal,Raf) ura-/his-/trp-/leu- liquid media to obtain a 1 x 107 cfu/ml culture. After 

incubation at 30°C and 150 rpm for 4 h, to induce prey production by the presence of 

galactose, 100 µl aliquots were spread onto YNB (Gal,Raf) ura-/his-/trp-/leu- plates 

(~1 x 106 cfu/plate) and left at 30°C for more than 7 days.  

 

5.6.2 Screening of transformants for potential positive interactors 

 

The cDNA library screening was carried out in duplicate to ensure that as many 

potential interacting protein partners for hNEIL3 as possible would be found. 

Although the growth of first colonies started after five instead the expected two days, 

the results were assumed to be genuine as it was still within the timeframe indicated 

in the DupLEX-A application guide (OriGene, Figure 54), especially as negative 

control plates (clones containing either prey or bait and reporter vector only) showed 

no growth over ten days incubation at 30°C. Therefore, 216 colonies were picked on 

day seven and spotted onto YNB (Gal,Raf) ura-/his-/trp-/leu- master plates followed by 

incubation at 30°C for two days. On these plates, 190 colonies grew (see in 

Appendix, Figure 106) and were used for further tests. 

 

 
Figure 54: One out of 28 YNB (Gal,Raf) ura

-
/his

-
/trp

-
/leu

-
 plates as example for showing 

growth of 100 µl of induced transformants (~1 x 10
6
 colony forming units) per plate over a  

72 h period. 

 

 

Day 5 Day 6 Day 7 
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5.6.3 Galactose/Glucose tests with potential positive clones 

 

In the pJG4-5 vector, library fusion protein expression is induced by a Gal1 promoter 

(for more details see Appendix - Figure 100). Therefore, yeast carrying potential 

protein partners for hNEIL3 should only be able to grow on Gal+ but not on Gal-/Glu+ 

plates and the 190 potential positive colonies were spotted onto YNB (Gal,Raf) ura-

/his-/trp-/leu- and YNB (Glu) ura-/his-/trp-/leu- plates and grown over night at 30oC. 

Unfortunately, growth for all 190 colonies occurred on both selective media. It was 

assumed the use of the most sensitive yeast strain, EGY48, that contained six LexA 

operators had resulted in autoactivation of leucine expression by hNEIL3, even 

although autoactivation tests were negative (Section 5.4.1). To double check this 

result, 190 x 2 ml tubes containing 1 ml Glu+ liquid media were prepared and 

inoculated with all 190 colonies from the Gal+ master plates. After overnight 

incubation at 30°C and 200 rpm, 20% of the cultures grew. On the second day 40% 

had grown and on the third day >80% had grown (data not shown). Because the 

DupLEX-A application guide (OriGene) for the Y2H assay suggested that growth on 

plates should be checked after 1-2 days, a final test was performed. All 190 colonies 

were picked again from Gal+ master plates, inoculated into 600 µl YNB (Gal,Raf) ura-

/his-/trp-/leu- liquid medium and grown at 30°C and 200 rpm for 2 days. Then 2 µl of 

each culture was spotted onto both Gal+ and Glu+ plates. This method ensured the 

same concentration of colony forming units on both plates. These plates were then 

incubated at 30°C. After 24 hours the first examination showed equal growth on both, 

Gal+ and Glu+ plates (some spots even grew faster on Glu+ plates, Figure 55). 
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Galactose plates        Glucose plates 

 
Figure 55: Galactose/Glucose test of potential positive interactors on leucine lacking YNB 

medium. 
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5.6.4 X-Gal test of potential positive interactors 

 

Although, results from the Galactose/Glucose test (Section 5.6.3) indicated that non-

specific activation of Leu2 expression had occurred in these clones, the X-Gal 

screening was performed to confirm this. This assay is to check if the potential 

positive clones obtained from the initial Leu2 screen show the same behaviour in an 

alternative reporter gene assay that uses LacZ gene expression instead of Leu2. 

This test was performed on YNB (Gal, Raf, X-Gal) ura-/his-/trp- and YNB (Glu, X-Gal) 

ura-/his-/trp- plates as indicated in the manual (Figure 56) but additionally on YNB 

(Gal, Raf, X-Gal) ura-/his-/trp-/leu- and YNB (Glu, X-Gal) ura-/his-/trp-/leu- plates to 

determine if the lack of leucine affected the ability of the clones to metabolise X-Gal 

(Figure 57). 

 

Following incubation at 30°C overnight, growth was observed on both Glu+ and Gal+ 

plates lacking leucine, which is the same result as obtained for the initial 

Galactose/Glucose test (Section 5.6.3). If growth on glucose plates was due to a 

non-specific interaction, it would be expected that all colonies would turn blue in the 

presence of either glucose or galactose. However contrary to this, and unexpectedly, 

a differential response was observed with 60 colonies turning blue and the remainder 

(30 colonies) remaining colourless on galactose containing medium. Encouragingly, 

very few colonies turned blue on glucose plates (5 out of 65 colonies; red circles in 

Figure 57) and similar results were obtained independent of the presence of leucine 

in the media (Figure 56, Figure 57). Therefore, this result suggested that the protein-

protein interactions might be genuine in this screen and the isolation of the library 

plasmids from colonies that turned blue on Gal+ but remained white on Glu+ plates for 

DNA sequencing was carried out. 
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Figure 56: Potential positve clones spoted onto YNB (Gal,Raf,X-Gal) his

-
/ura

-

/trp
-
 (left) and YNB (Glu,X-Gal) his

-
/ura

-
/trp

-
 (right). Grey doted circles indicate 

clones were chosen for further experiments, yellow circles indicate clones that 

showed to be potential genuine clones after plasmid extraction (Section 5.6.7). 
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Figure 57: Potential positve clones spotted onto YNB (Gal,Raf,X-Gal) his

-
/ura

-

/trp
-
/leu

-
 (left) and YNB (Glu,X-Gal) his

-
/ura

-
/trp

-
/leu

-
 (right). Grey doted circles 

indicate clones were chosen for further experiments, yellow circles indicate 

clones that showed to be potential genuine clones after plasmid extraction 

(Section 5.6.7), red circles indicate clones where X-Gal degradation was higher 

on Glu
+
 plates than on Gal/Raf

+
 plates, an indicator for false positives. 
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5.6.5 Library plasmid DNA identification – “modified” standard method 

 

In this method the library plasmid pJG4-5 (Figure 100) was extracted from yeast as 

described in Section 4.13.4.1. Although, plasmid DNA was obtained from all clones, 

a digestion with EcoRI and XhoI of these vectors revealed that some vectors 

contained a band around 2000 bp (Figure 58). DNA sequencing of these vector 

inserts confirmed, the bands were hNEIL3 inserts and the band around 10,000 bp 

was the pEG202 vector (sequencing data not shown). Only the clones 14, 41, 59, 63 

and 200 were pJG4-5 vectors carrying a random cDNA insert from the library (see 

BLAST results in Appendix 8.6.1). 

 

 
Figure 58: Agarose gel electrophoresis of potential positive clone plasmid extractions. Clones 

15, 21, 28, 33, 50, 57, 64 and 208 were pEG202 plasmids carrying a hNEIL3 cDNA insert. 

Clones 14, 41, 59, 63, 200 show different sizes of inserts and were potential positives. 

 

This result was unexpected, as the bacterial KC8 strain used for electroporation is 

trp- and as pJG4-5 enables tryptophan production only clones carrying this plasmid 

should grow on media lacking tryptophan. This shows that pEG202-N3 was also 

electroporated into the bacterial trp- KC8 strain instead of, or along with, the library 

plasmid pJG4-5 and that tryptophan selection did not work as was intended. 

Therefore, the experiment was repeated with the original method described in the 

DupLexA manual (OriGene) but the efficiency was even lower. Out of 22 clones used 

for extraction and electroporation into KC8 cells only 6 were transformed successfully 

and subsequent restriction enzyme digest with EcoRI and XhoI revealed that only 

three contained the library vector (clones 28, 89 and 99 in Figure 59).  
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Figure 59: Agarose gel electrophoresis of potential positive clones 15, 28, 89, 91, 

99 obtained by the standard plasmid extraction method described in the DupLexA 

application guide (OriGene). 

 

Therefore, a more specific method was designed (Section 4.13.4.2) that allowed 

direct DNA sequencing of PCR products obtained from the cDNA library inserts 

without the need for separation of the extracted plasmid mixture (pEG202-N3, pJG45 

and pRB1840) from yeast. 

 

5.6.6 Library plasmid DNA identification – “PCR Method” 

 

An initial test of the alternative method using direct PCR from yeast plasmid 

extractions on four clones, confirmed that the same insert sequences were obtained 

by PCR by both methods. DNA fragments obtained by the PCR method from clone 

15 (negative control) and clones 14, 28 and 63 showed the same size (Figure 60) as 

previously obtained by using the standard method (Figure 58, Figure 59). 

Furthermore, DNA sequencing of these PCR products revealed that they had the 

same sequence as obtained from the products in Section 5.6.5. In addition, it was 

even possible to sequence the cDNA of clone 28 for the first time. Hence, it was 

confirmed that the alternative method was highly specific and with a higher efficiency 

that made it possible to sequence the cDNA of all potential positive clones quickly. 
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Figure 60: Agarose gel electrophoresis of PCR 

products (cDNA inserts from clones 14, 15, 28, 63) 

amplified from pJG4-5 library plasmids extracted 

from potential positive clones. 

 

As the functionality of the PCR method was successfully validated it was now 

possible to extract library plasmid DNA from the 60 potential positive yeast clones 

and to directly amplify the cDNA sequences with Taq polymerase for subsequent 

DNA sequencing. The quality of all PCR products, after purification was good enough 

to proceed with DNA sequencing without the need of further processing (Appendix 

8.5, Table 25). Figure 60 to Figure 66 show PCR products of all clones chosen 

through evaluation of the X-Gal test (Section 5.6.4) for the DNA sequencing step. 

Figure 61 shows that all PCR reactions worked except for clone 50. 

 

 

 
Figure 61: Agarose gel electrophoresis of PCR products (cDNA inserts from clones 

21, 33, 41, 50, 57, 64, 73, 74, 77, 78) amplified from pJG4-5 library plasmids and 

extracted from yeast strain EGY48. 
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Figure 62 shows that PCR worked for all clones. However, clones 89 and 91 showed 

several bands and subsequent DNA sequencing gave no results (Appendix 8.6.1). 

Furthermore, subsequent DNA sequencing revealed that clone 83, 86, 95 and 96 

were also not genuine PCR products. 

 

 
Figure 62: Agarose gel electrophoresis of PCR products (cDNA inserts from clones 83, 86, 

88, 89, 91, 95, 96, 97, 99) amplified from pJG4-5 library plasmids and extracted from yeast 

strain EGY48. 

 

Figure 63 shows PCR products for all clones tested. However, clone 121 did not give 

any result in subsequent DNA sequencing (Appendix 8.6.1). 

 

 

 
Figure 63: Agarose gel electrophoresis of PCR products (cDNA inserts from clones 111, 113, 

117, 120, 121, 123, 124, 125, 126, 127) amplified from pJG4-5 library plasmids and extracted 

from yeast strain EGY48. 
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Figure 64 shows that PCR products were obtained for all clones used except for 

clone 156. 

 

 
Figure 64: Agarose gel electrophoresis of PCR products (cDNA inserts from clones 131, 136, 

142, 147, 148, 149, 151, 156, 160, 162) amplified from pJG4-5 library plasmids and extracted 

from yeast strain EGY48. 

 

Figure 65 reveals that PCR products from clones 178 and 190 were apparently not 

amplified properly. However, while this was confirmed by DNA sequencing for clone 

190 it was not for 178 which showed to be correctly amplified by PCR with Taq 

polymerase indicating that the band around 500 bp was genuine (Appendix 8.6.1). 
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Figure 65: Agarose gel electrophoresis of PCR products (cDNA inserts from clones 163, 166, 

170, 178, 182, 185, 188, 189, 190, 191) amplified from pJG4-5 library plasmids and extracted 

from yeast strain EGY48. 

 

Figure 66 shows that PCR products were obtained for all clones. However, the band 

for clone 196 was blurred and although subsequent DNA sequencing revealed a 

sequence for that clone, it could not be identified by BLAST (Appendix 8.6.1). 

 

 
Figure 66: Agarose gel electrophoresis of PCR 

products (cDNA inserts from clones 193, 196, 199, 

200, 208) amplified from pJG4-5 library plasmids 

and extracted from yeast strain EGY48. 

 

5.6.7 DNA sequencing of potential clones 

 

DNA sequencing and subsequent BLAST analysis of the 60 PCR products obtained 

from potential positive plasmid extractions revealed several potential genuine 

interactors (i.e. they were considered genuine if the library sequences contained a 

coding sequence in the correct reading frame in the library vector). The growth 

hormones chorionic somatomammotropin hormone 1 (placental lactogen; CSH1), 
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chorionic somatomammotropin hormone 2 (CSH2) and chorionic gonadotropin, beta 

polypeptide 8 (CGB8) were found in more than one clone. In addition, a number of 

unique clones were discovered that coded for, proteoglycan decorin, the 

metallopeptidase inhibitor TIMP2, a homeobox protein domain (HOPX), the RNA-

binding protein ELAV1 (HuR), haemoglobin (gamma G, HBG2 and beta, HBB) and 

the translational-controlled tumour protein TPT1 (Appendix 8.6.1). 

 

5.6.8 Mating Assay 

 

After DNA sequencing of the potential positive clones was completed, a mating 

assay was performed to further confirm their ability to interact with hNEIL3. 

Therefore, all three plasmids present in each of the clones (the library, bait and 

reporter plasmid) were isolated and the mixture used to transform the yeast strain 

EGY48. In order to ensure that EGY48 cells contained only library plasmids, the 

transformants were streaked onto YNB (Glu) trp- plates ensuring that tryptophan 

would be the only selective factor (as required for the library vector pJG4-5). 

However, as the plasmid extractions used for this transformation also contained 

pEG202-N3 (enables histidine production) and pRB1840 (enables uracil production) 

it was necessary to further identify the transformants obtained via tryptophan 

selection and containing pJG4-5. Therefore, colonies were re-streaked onto YNB 

(Glu) his-/ura-/trp-, YNB (Glu) ura-/trp-, YNB (Glu) his-/trp- and YNB (Glu) trp- plates. 

This way it was possible to pick colonies only growing on YNB (Glu) trp- but not on 

one of the others, which confirmed that those clones only carry the cDNA library 

vector (pJG4-5). Transformants obtained this way contained library plasmids carrying 

cDNA inserts of either HOPX, SMC6, Phosphorylase 1, CSH1, CGB8, CSH2, TPT1, 

ELAV1, Decorin or Haemoglobin. These clones were then picked from the trp- plates 

and restreaked onto YPD plates with a vertical orientation (Figure 67). In addition, the 
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vector pEG202-N3 was transformed along with the reporter plasmid pRB1840 into 

the yeast mating strain RFY206. These transformants were streaked in a horizontal 

orientation onto YPD that crossed the vertical streak containing EGY48 

transformants carrying the cDNA library vector pJG4-5 (Figure 67). If mating occurs 

between the RFY206 and EGY48 strains in the middle of the cross, clones at this 

position should contain all three plasmids (pEG202-N3, pRB1840 and pJG4-5) while 

cells on the outside of the cross should remain in their initial state. Therefore, clones 

picked from the middle should be able to produce histidine, uracil and tryptophan. 

Only these clones were able to grow on YNB (Glu) ura-/his-/trp- plates (Figure 68). In 

addition a positive control was generated. The vector pBait expresses a LexA fusion 

protein that is known to interact with the B42 fusion protein that is expressed by 

pTarget. Therefore, this vector combination was used as a positive control in the 

mating assay and was generated the same way as described before. 
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Figure 67: “Mating crosses” of yeast strain RFY206 containing hNEIL3 and 

reporter plasmid (lane from left to right containing bait plasmid pEG202-N3 + 

reporter plasmid pRB1840) and strain EGY48 containing potential positive 

findings (library plasmids containing cDNA of HOPX (1); SMC6 (2); 

Phosphorylase 1 (3); CSH1 (4); CGB8 (5); CSH2 (6); TPT1 (7); ELAV1 (8); 

Decorin (9); Haemoglobin beta (10)) after two days of growth. 

 

In Figure 68 it can be seen that clones transferred from the junction of the “mating 

cross” grew on YNB (Glu,X-Gal) ura-/his-/trp- plates while clones picked from the 

outsides of the cross did not. This was as expected and was found for all mated 

clones. 
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Figure 68: Confirmation of successful mating between strains RFY206 and EGY48. 

Cells picked from top of “mating cross” were spotted onto down arrow in picture (↓), 

cells picked from left of “mating cross” were spotted onto right arrow location (→), 

cells picked from the centre of the “mating cross” were spotted onto +. 

 

The clones that grew (+ circle in Figure 68) were transferred onto YNB (Glu,X-Gal) 

ura-/his-/trp- and YNB (Gal,Raf,X-Gal) ura-/his-/trp- plates and incubated at 30°C for 5 

days in order to confirm LacZ gene expression that was observed in the initial 

screening (Section 5.6.4). However, only the mated clone containing CGB8 cDNA 

protein turned pale blue, all other clones remained white (Figure 69). This is a 

contradictory result (except for CGB8) to that obtained in Section 5.6.4, indicating 

that the initial results were most likely false positives. The positive control with pBait 

and pTarget show strong expression of the LacZ gene showing that the method itself 

works. 

 

 
Figure 69: Mating assay showed colour change of pBait/pTarget (+) 

and CGB8/pEG202-N3/pRB1840 (5) after 5 days of incubation at 37°C. 
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The next step would have been to repeat the mating assay without pEG202-N3 but 

with a bait vector such as pLexA-Max, pBait or pRHFM1 that should not interact with 

the prey proteins and therefore the clones should remain white. However, as the 

phenotype seen during the initial blue/white screening (Section 5.6.4) could not be 

repeated no further mating tests were performed. 

 

5.7 Y2H screening with a Jurkat T-Cell cDNA library 

 

Following the placental cDNA library screening, a second screening with a cDNA 

library obtained from a Jurkat T-Cell line (OriGene) was performed as this cell line 

was known to have different gene expression patterns for hNEIL3 compared to 

placental tissue. Therefore, EGY48 yeast cells were generated that carry the LacZ 

reporter plasmid pSH18-34 that has 8 LexA operators in front of the LacZ gene 

instead of 1 operator in the pRB1840 plasmid used in the first screening. This was 

expected to increase sensitivity in the X-Gal test. The large scale transformation 

efficiency was 1.38 x 105 cfu per µg library plasmid DNA and 4.14 x 106 total 

transformants were calculated. This was two fold higher total transformants than had 

been obtained for the placental library transformation (Section 5.6.1). The calculation 

and preparation of the plates was carried out as described before (Section 5.6.1). 

 

After three days of incubation at 30°C, the first colonies became visible (data not 

shown). This was two days earlier than for the placental cDNA library screening 

(Section 5.6.2). After the fifth day of incubation a total of 56 colonies were picked 

from YNB (Gal,Raf) ura-/his-/trp-/leu- screening plates and diluted in 50 µl YNB while 

4 µl of this solution was spotted onto YNB (Gal,Raf) ura-/his-/trp-/leu-, YNB (Glu) ura-

/his-/trp-/leu-, YNB (Gal,Raf,X-Gal) ura-/his-/trp- and YNB (Glu,X-Gal) ura-/his-/trp- 

plates for further analysis. 
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5.7.1 Galactose/Glucose test of potential positive interactors 

 

After 24 h, growth occurred on all plates. However, no or less growth was expected 

on the YNB (Glu) ura-/his-/trp-/leu- plate compared to the YNB (Gal,Raf) ura-/his-/trp-

/leu- plate (Figure 70) as there is no prey protein expression induced due to the lack 

of galactose, i.e. no interaction with hNEIL3-LexA should occur that enables the cells 

to express Leu2 and thus they should not grow on plates lacking leucine. This result 

is similar to that obtained from the first screening when using the placental cDNA 

library (Section 5.6.3). 

 

 
Figure 70: Fifty-six potential positive clones picked from 

screening plates and spotted onto YNB (Gal,Raf) ura
-
/his

-

/trp
-
/leu

-
 (left) and YNB (Glu) ura

-
/his

-
/trp

-
/leu

-
 (right) plates. 

 

5.7.2 X-Gal test of potential positive interactors 

 

Although there was strong growth of all 56 clones on the YNB (Glu) ura-/his-/trp-/leu- 

plates (Figure 70, right), the blue/white screening on X-Gal media and identification 

of the cDNA library insert by sequencing was still carried out. After two days of 

incubation on YNB (Glu,X-Gal) ura-/his-/trp- and YNB (Gal,Raf,X-Gal) ura-/his-/trp- a 

YNB(Gal,Raf)-all 

YNB(Gal,Raf)-all 

YNB(Glu)-all 

YNB(Glu)-all 
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colour change to blue of some colonies became visible. However, only clones 1, 2, 3, 

4, 5, 6, and 43 (green circles in Figure 71 to Figure 73) seemed to be genuine as 

they became blue on YNB (Gal,Raf,X-Gal) ura-/his-/trp- but remained white on YNB 

(Glu,X-Gal) ura-/his-/trp- plates. Colonies 16, 20, 28, 29, 38, 39 and 48 (red circles in 

Figure 71 to Figure 73) seemed to be false positives as the colour change only 

occurred on YNB (Glu,X-Gal) ura-/his-/trp- or on both YNB (Gal,Raf,X-Gal) ura-/his-

/trp- and YNB (Glu,X-Gal) ura-/his-/trp- plates. 

 

It must be mentioned that some colonies seemed not to grow properly in general. 

The reason could be that these colonies were very small compared to others when 

picked from screening plates and after dilution in the 50 µl YNB prior spotting only a 

low concentration of cfu remained in the 5 µl that was finally spotted. However, even 

after longer incubation these colonies did not seem to grow in size and therefore they 

were assumed to be false positive clones. 

 

 
Figure 71: On day 3 the colour change became 

more distinguishable. Green circled clones were 

used in further tests. Red circled clones were not 

used is in further tests. 

 

YNB(Gal,Raf,X-Gal)+leu 

YNB(Gal,Raf,X-Gal)+leu YNB(Glu,X-Gal)+leu 

YNB(Glu,X-Gal)+leu 
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Figure 72: On day 4 more colonies changed 

the colour from white to blue on Gal/Raf 

plates. Green circled clones were used in 

further tests. Red circled clones were not 

used is in further tests. 

 

     
Figure 73: On day 5 the colour change 

became more distinguishable. Green and 

yellow circled clones were used in further 

tests. Red circled clones were not used is in 

further tests. 

 

Since after five days incubation more clones (yellow circles in Figure 73) turned blue 

on YNB (Gal,Raf,X-Gal) ura-/his-/trp- and remained white on YNB (Glu,X-Gal) ura-/his-

/trp-, than was initially observed on day 3, those clones were also considered as 

potential positive. Hence, clones 1 - 10, 12, 13, 15, 17 - 19, 22, 23, 26, 33, 37, 43 - 

45, 51, 52 and 55 were picked to sequence their cDNA library inserts. 

 

YNB(Gal,Raf,X-Gal)+leu 

YNB(Gal,Raf,X-Gal)+leu YNB(Glu,X-Gal)+leu 
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YNB(Gal,Raf,X-Gal)+leu YNB(Glu,X-Gal)+leu 

YNB(Glu,X-Gal)+leu 



 Thomas ROEDL – PhD Thesis – Salford 2013 130 

To confirm if the potential positive clones that changed colour on YNB medium 

containing X-Gal + galactose but not on medium containing X-Gal + glucose 

expressed NEIL3 interacting polypeptides (Figure 71 to Figure 73), 10 ml YNB liquid 

cultures containing glucose or galactose respectively but lacking leucine were 

inoculated and incubated for 48 h at 260 rpm and 30°C. The liquid cultures 

containing glucose grew even faster than the ones that contained galactose/raffinose 

(Figure 74) and this phenotype was the same for all selected clones and is similar to 

the tests carried out in Section 5.7.1 and 5.6.3. This is the opposite of what was 

expected. However, as for the placental cDNA library screening, sequencing was still 

performed. 

 

1) After 24 h incubation at 30°C and 260 rpm. 

 

2) After 48 h incubation at 30°C and 260 rpm. 

 
Figure 74: Incubation of potential positive clones 

in YNB (Gal,Raf), leu
-
 or YNB (Glu), leu

-
 

respectively after 24 h (1) and 48 h (2) of 

incubation at 260 rpm and 30°C. 

 

5.7.3 DNA sequencing of potential positive clones 

 

DNA sequencing of the potential positive clones obtained after screening the Jurkat  

T-Cell cDNA library revealed that all the clones tested were false positive as their 

YNB(Gal,Raf), leu
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 YNB(Glu), leu

-
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cDNA library sequences were either not protein coding sequences or the DNA 

sequence was out of frame (Appendix 8.6.2). Therefore, further tests such as the 

mating assay were not carried out. 

 

5.8 Interaction studies of human LigIIIα and Polβ with hNEIL3-LexA 

 

As EGY48 clones containing pEG202-N3 and the LacZ reporter plasmid pSH18-34 

were already available, it was of interest to test proteins that were already known to 

physically interact with NEIL1 and NEIL2 (Section 2.3.6). Therefore, the BER 

downstream proteins LigIIIα and Polβ were chosen for this experiment and their 

cDNAs were transformed into the Y2H library plasmid pJG4-5 that had previously 

been used for the screening experiments. However, as only the restriction sites for 

XhoI and EcoRI were available in the multiple cloning site of the vector (Appendix 

Figure 100) and the fact that both, LigIIIα and Polβ, contain XhoI and EcoRI 

restriction sites in their CDS sequences it was necessary to perform an alternative 

method of cloning (for more details see Section 4.13.6). 

 

5.8.1 Preparation of library vectors containing either LigIIIα or Polβ 

 

The cDNAs of LigIIIα and Polβ were readily cloned into the vector pCMV-XL5 

(OriGene, Appendix Figure 95) and were ready to use in PCR. 

 

5.8.1.1 Designing primers for PCR of LigIIIα and Polβ cDNA 

 

As the multiple cloning site in the Y2H library vector pJG4-5 (Appendix Figure 100) 

only offers one pair of restriction sites for cloning (EcoRI and XhoI) the primers were 

designed accordingly. However, as discussed before, this resulted in a problem as 
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LigIIIα as well as Polβ contain both an EcoRI and a XhoI site in their CDS. Therefore, 

it was not possible to simply clone the PCR products into a pGEM-T vector and cut it 

out again with restriction enzymes to obtain an insert with cohesive ends that can be 

used to clone into pJG4-5. Therefore, a protocol was designed and carried out using 

mung bean nuclease to clone the PCR products directly into pJG4-5 (for more details 

see Section 4.13.6). To make this method work the 5′ base of each restriction site 

used in each primer was left out (Table 21). Furthermore, it was important to use a 

proofreading DNA polymerase that produces blunt end products. 

 

Table 21: Primers used for amplification of LigIIIα and Polβ cDNA. 

hLig3aEcoRI-5′G: Tm: 72.98°C (Finnzyme Tm)-- nt: 34 -- GC ratio: 35.92% 

5`- AA TTC ATG TCT TTG GCT TTC AAG ATC TTC TTT CC-3` 

hLig3aXhoI-5′C: Tm: 71.93 °C (Finnzyme Tm) -- nt: 26 -- GC ratio: 57.69% 

5`- TC GAG CTA GCA GGG AGC TAC CAG TCT -3` 

hPOLB-EcoRI-5′G: Tm: 76.29 °C (Finnzyme Tm)-- nt: 25 -- GC ratio: 52.00% 

5`- AA TTC ATG AGC AAA CGG AAG GCG CC-3` 

hPOLB-XhoI-5′C: Tm: 75.91 °C (Finnzyme Tm) -- nt: 24 -- GC ratio: 58.33% 

5`- TC GAG TCATTCGCTCCGGTCCTTG -3` 

 

Figure 75 shows the results of a PCR with the designed primers and that the 

expected band sizes were achieved (3030 bp for LigIIIα and 1008 bp for Polβ). 

 

                  
Figure 75: Agarose gel electrophoresis of  
PCR of LigIIIα (left) and Polβ (right). 
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5.8.2 Preparation of library vector pJG4-5 for blunt end cloning 

 

The size of the Y2H library vector pJG4-5 was checked by restriction enzyme digest 

using EcoRI and XhoI and separated on an agarose gel along with undigested 

plasmid DNA (Figure 76). 

 

 

 
Figure 76: Agarose gel electrophoresis 

of digested pJG4-5 (1, 2, 3) and 

undigested pJG4-5 (4) 

 

After it was confirmed that the linearized pJG4-5 DNA was the correct size (6449 bp), 

a large scale double-digest with EcoRI and XhoI was performed, separated by 

agarose gel electrophoresis and gel purified. The resulting DNA concentration of the 

linearized plasmid DNA was ~100 ng/µl in a total volume of 50 μl. 

 

5.8.3 Ligation of LigIIIα and Polβ into linearized pJG4-5 

 

As described in Section 4.13.6, prior to ligation it was necessary to blunt-end the 

pJG4-5 vector to allow the inserts to be integrated in frame. Therefore, mung bean 

nuclease was used under the conditions shown in Table 22.  

 
Table 22: Conditions for Mung Bean Nuclease blunting reaction 

Components Amount  

DNA (100 ng/µl) 26.5 µl 

10X mung bean nuclease Buffer 3.0 µl 

5 units of mung bean nuclease 0.5 µl 

Total 30.0 µl 
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The mixture was incubated at 30°C for 30 minutes followed by enzyme deactivation 

with 0.01% SDS. After blunting, the DNA was purified using the Wizard SV Gel and 

PCR clean up kit (Promega). The final concentration of linearised, blunt-ended  

pJG4-5 was 90 ng/µl in a total volume of 30 μl. It was possible to ligate LigIIIα or Polβ 

cDNA into the pJG4-5 vector using the conditions shown in Table 23. 

 
Table 23: Conditions for ligation of LigIIIα or Polβ cDNA, respectively, into pJG4-5. 

LigIIIα  pJG4-5 Polβ  pJG4-5 

Components Amount Components Amount 

10X T4 DNA Ligase Buffer 2.0 µl 10X T4 DNA Ligase Buffer 2.0 µl 

pJG4-5 vector (90 ng/µl) 2.4 µl pJG4-5 vector (90 ng/µl) 2.4 µl 

LigIIIα cDNA 3.8 µl Polβ cDNA 1.3 µl 

Nuclease-free water 10.8 µl Nuclease-free water 13.3 µl 

T4 DNA Ligase 1.0 µl T4 DNA Ligase 1.0 µl 

Total 20.0 µl Total 20.0 µl 

 

After the mixtures were incubated overnight at 16°C, transformation of the ligation 

mixtures into Novablue competent cells was performed as described in Section 4.1. 

After incubation of the transformations on LB-Agar containing 50 µg/ml carbenicillin 

at 30°C overnight >200 colonies per plate were obtained for further investigations. 

 

5.8.4 Confirmation of correct integration of LigIIIα and Polβ into pJG4-5 

 

As the ligation of LigIIIα or Polβ cDNA, into pGJ4-5 was performed with blunt end 

fragments, the integration could have occurred in two ways. Therefore, it was 

necessary to screen for a clone that contains pJG4-5 carrying LigIIIα or Polβ in the 

correct orientation for protein expression in later experiments. As pJG4-5, LigIIIα and 

Polβ each contain a XhoI restriction site, it was possible to perform single restriction 

digestions to obtain two fragments of known size for each plasmid if the insert was in 

the correct orientation. However, if the insert is ligated into pJG4-5 in the wrong 

direction the 5′ XhoI restriction site is destroyed and thus XhoI cuts only once which 
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results in only a single band on the agarose gel. Therefore, if the ligation was correct 

the resulting band sizes for pJG4-5 containing LigIIIα should be 7157 bp and 2310 bp 

and for pJG4-5 containing Polβ 6739 bp and 706 bp. 

 

For constructs, pJG4-5-LigIIIα and pJG4-5-Polβ, 30 clones were picked from each 

transformation plate to inoculate LB liquid cultures in preparation for plasmid DNA 

isolation. After plasmid DNA was recovered from each clone, 60 restriction digests 

with XhoI were performed in order to find a clone carrying the correct insert  

(Figure 77 to Figure 82). Interestingly, for each construct, pJG4-5-LigIIIα and pJG4-5-

Polβ, only one out of 30 picked clones was carrying the correct plasmid (clone L28 in 

Figure 80 and P21 in Figure 82). 

 

  HL1     L1  L2   L3   L4  L5  P1  P2 P3  P4 P5 

 
Figure 77: Agarose gel electrophoresis of restriction digest with XhoI of extracted 

pJG4-5 plasmid DNA from clones L1-L5 containing LigIIIα and P1-P5 containing Polβ 

cDNA. 

 

 HL1      P6     P7      P8    P9    P10     PU     LU     L6      L7      L8     L9     L10 

 
Figure 78: Agarose gel electrophoresis of restriction digest with XhoI of extracted 

pJG4-5 plasmid DNA from clones P6-P10 containing Polβ and L6-L10 containing LigIIIα 

cDNA. PU and LU are undigested P6 and L6 respectively. 
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 HL1        L11      L12      L13    L14     L15       L16     L17      L18      L19     L20 

 
Figure 79: Agarose gel electrophoresis of restriction digest with XhoI of extracted 

pJG4-5 plasmid DNA from clones L11-L20 containing LigIIIα cDNA. 

 

  HL1    L21     L22   L23    L24    L25    L26   L27    L28    L29   L30     LU 

 
Figure 80: Agarose gel electrophoresis of restriction digest with XhoI of extracted 

pJG4-5 plasmid DNA from clones L21-L30 containing LigIIIα cDNA. LU is undigested 

L21. L28 is a positive clone that was picked for further experiments. 

 

  HL1   P11    P12   P13   P14   P15   P16   P17   P18    P19   P20   PU 

 
Figure 81: Agarose gel electrophoresis of restriction digest with XhoI of extracted 

pJG4-5 plasmid DNA from clones P11-P20 containing Polβ cDNA. PU is 

undigested P11. 

 

 HL1   P21     P22    P23   P24   P25   P26   P27    P28   P29   P30    PU  

 
Figure 82: Agarose gel electrophoresis of restriction digest with XhoI of extracted 

pJG4-5 plasmid DNA from clones P21-P30 containing Polβ cDNA. PU is 

undigested P21. 
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In order to confirm the integrity of these two clones, further restriction digests with 

EcoRI and XhoI (either single- or double-digests) were performed. Agarose gel 

electrophoresis revealed the expected band sizes for these clones and therefore 

confirmed that the integration of LigIIIα and Polβ into pJG4-5 had been successful. 

The calculated band sizes for the restriction digest with XhoI for pJG4-5 containing 

LigIIIα were 7169 bp and 2310 bp (LX in Figure 83) and for pJG4-5 containing Polβ 

6751 bp and 706 bp (PX in Figure 83). The result of the restriction digest with EcoRI 

showed the expected band sizes 7117 bp and 2362 bp for pJG4-5 containing LigIIIα 

(LE in Figure 83) and 7011 bp and 446 bp for pJG4-5 containing Polβ (PE in Figure 

83). Finally, the double-digest with EcoRI and XhoI also resulted in the expected 

band sizes 668 bp, 720 bp, 1642 bp and 6449 bp for pJG4-5 containing LigIIIα (LDD 

in Figure 83) and 144 bp, 302 bp, 562 bp and 6449 bp for pJG4-5 containing Polβ 

(PDD in Figure 83) while the 144 bp band was not visible due to the resolution of the 

gel used. 

 

    HL1   LX  LE LDD LU     HL1 PX  PE PDD PU 

     
Figure 83: Agarose electrophoresis of restriction digest of 

L28 (left) and P21 (right) with XhoI (LX and PX), EcoRI (LE 

and PE) and XhoI and EcoRI (LDD and PDD). LU and PU 

was undigested DNA. 
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5.8.5 Small scale transformation of pJG4-5-LigIIIα and pJG4-5-Polβ into 

EGY48 

 

The constructs pJG4-5-LigIIIα and pJG4-5-Polβ generated in Section 5.8.1 to 5.8.4 

were transformed into EGY48 already containing pEG202-N3 and the LacZ reporter 

plasmid pSH18-34 using the small scale transformation protocol described in Section 

4.13.1. However, no transformants were obtained for the Polβ clone and only three 

colonies for pJG4-5-LigIIIα. Due to time limitations the transformation was not 

repeated, instead the interaction studies using X-Gal plates for blue/white selection 

and leucine lacking plates for Leu2 selection were performed. 

 

5.8.6 Testing LacZ and Leu2 gene expression for LigIIIα/hNEIL3 clone 

 

The three colonies obtained through transformation along with a negative control 

(EGY48 containing pEG202-N3, pSH18-34 and empty pJG4-5) were picked, added 

to 50 µl YNB, then 5 µl spotted onto either, YNB (Gal,Raf,X-Gal) ura-/his-/trp-, YNB 

(Glu,X-Gal) ura-/his-/trp-, YNB (Gal,Raf) ura-/his-/trp-/leu-, or YNB (Glu) ura-/his-/trp-

/leu- plates and incubated at 30°C for more than four days. After four days a strong 

colour change became visible for pJG4-5-LigIIIα on YNB plates containing X-Gal and 

galactose but remained white on YNB plates containing X-Gal and glucose. This 

would indicate a positive interaction result as the prey protein expression in this case 

of LigIIIα is only induced on X-Gal plates containing galactose and therefore should 

only interact here with NEIL3 that then can induce LacZ expression. However, the 

negative control carrying empty pJG4-5 showed a similar colour change indicating 

the results could be false positives (Figure 84). On YNB plates lacking the amio acid 

leucine, no growth was detected, which shows that there was no interaction between 

hNEIL3 and LigIIIα as this would have resulted in Leu2 gene expression and 

therefore in growth on the YNB plate containing galactose (bottom right in Figure 84). 
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Figure 84: YNB (Gal,Raf,X-Gal) ura

-
/his

-
/trp

-
 (top right),  

YNB (Glu,X-Gal) ura
-
/his

-
/trp

-
 (top left), YNB (Gal,Raf) ura

-
/his

-
/trp

-

/leu
-
 (bottom right), YNB (Glu) ura

-
/his

-
/trp

-
/leu

-
 (bottom left) plates 

spotted with three different pJG4-5-LigIIIα clones and a negative 

control. 

 

When the experiment was repeated, the LigIIIα/hNEIL3 clone 2 seemed to have a 

potential positive interaction as the colour change occurred earlier then for the 

negative control (Figure 85). 
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Figure 85: Repetition of interaction experiment showed in Figure 84. 

 

However, more evidence that there is an interaction between hNEIL3 and LigIIIα is 

required and a repeat of the small scale transformation with a higher efficiency 

(Section 5.8.5) must be achieved in the first place. 

 

5.9 Overexpression of hNEIL3 and mNEIL1 in Pichia pastoris 

 

It is of great interest to obtain purified and active hNEIL3 protein in order to perform 

assays that allow investigations of its DNA repair capabilities as well as protein-

protein or DNA-protein interactions in vitro. Therefore, it was decided to use a 

eukaryotic expression system based on the yeast P. pastoris and the constitutive 

expression vector pGAPZA in order to express full-length and truncated versions of 

hNEIL3. 
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5.9.1 Confirmation of pGAPZA clones obtained from bacterial stocks 

 

pGAPZA vectors containing either full length mNEIL1 cDNA (CDS) constructed by 

Constantina Stylianou (2010) or full length hNEIL3 cDNA (CDS) and truncated 

versions of hNEIL3 (394 and 502 amino acids) constructed by Mengxin Yin (2010) 

were used for protein overexpression in P. pastoris. 

 

To confirm that the pGAPZA clones carried the correct inserts a single and double-

digest with EcoRI and XhoI was performed (Figure 86). 

 
Figure 86: Agarose gel electrophoresis picture showing single and double-digests of 

pGAPZA containing either hN3-394 (A, B, C, D), hN3-502 (E, F, G, H) or mNEIL1 (I, J, K, L) 

inserts. EcoRI single digest is shown in lanes A, E and I. XhoI digest is shown in lanes B, F, J. 

XhoI and EcoRI double-digest is shown in lanes C, G, K. The lanes D, H and L contained 

undigested plasmid DNA. 

 

There are two XhoI restriction sites in the multiple cloning site of pGAPZαA and an 

EcoRI site in between these two sites. It was expected that EcoRI would not cut any 

of the plasmids as this restriction site was deleted during the cloning process. 

However, this was not the case for hN3-394 but for hN3-502 and mNEIL1 (A, E and I 

in Figure 86). Because EcoRI seemed to cut the used clone of hN3-394 (hN3-394-

Clone-3), four more clones obtained from frozen stocks of hN3-394 and full length 

hNEIL3 were digested with EcoRI and AvrII. As expected for hN3-394-Clone-3 two 

bands appeared after digestion. However, all the other clones (hN3-394-Clone- 1, 2, 

4, 5 and full length hNEIL3) seemed to be genuine as the plasmid was linearized and 
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not cut twice (Figure 87). Therefore, clone 1 of hN3-394 (1 in Figure 87) was used for 

electroporation into P. pastoris. 

 

 
Figure 87: Agarose gel electrophoresis of double-digest with EcoRI 

and AvrII. Full length hNEIL3 (N3), hN3-394-Clone1, (1) hN3-394-

Clone2 (2), hN3-394-Clone3 (3), hN3-394-Clone4 (4), hN3-394-

Clone5 (5). 

 

5.9.2 Linearization of pGAPZαA clones hN3-394, hN3-502 and mNEIL1  

 

After the correct insert integration was confirmed, three separate plasmid DNA 

extractions were performed for each clone and the three eluates combined and 

purified with the Wizard Gel and PCR purification kit (Promega) to increase final DNA 

concentration in a total volume of 150 μl (Table 24). This was necessary to perform 

electroporation at a high efficiency. 

 

Table 24: DNA concentration in 150 μl total volume after purification 

Clone Concentration 

hN3-394 725.9 ng/ul 

hN3-502 943.1 ng/ul 

mNEIL1 738 ng/ul 
 

To allow integration of each pGAPZαA clone into the chromosomal DNA of  

P. pastoris via homologous recombination, the plasmids had to be linearized. 

Therefore, each vector was digested with AvrII and linearization was confirmed on an 

agarose gel (Figure 88). Although shadow bands appeared on the agarose gel the 
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products were considered genuine as later PCR of genomic extracts will confirm 

(Section 5.9.4). 

 

 
Figure 88: Agarose gel electrophoresis of linearized  

pGAPZαA vectors containing hN3-394, hN3-502 or mNEIL1. 

 

5.9.3 Electroporation of pGAPZαA clones into P. pastoris 

 

P. pastoris cells were electroporated with pGAPZαA containing either, hNEIL3, hN3-

394, hN3-502 or mNEIL1 as described in Section 4.14.1. After electroporation the 

clones were spread onto YPD containing 100 mg/ml Zeocin in six different volumes 

(10 µl, 20 µl, 50 µl, 100 µl, 200 µl and 500 µl). In addition P. pastoris only (also 

electroporated but without DNA) was also plated in these volumes as a negative 

control. After three days of incubation at 30°C colonies appeared for hN3-394, hN3-

502 and mNEIL1 on each plate except the 10 µl plates. The electroporation with 

hNEIL3 resulted in one colony only on the plate with 200 µl of sample. However, this 

construct was prepared in a separate electroporation which might have caused 

different conditions which led to a low electroporation efficiency. For the negative 

control, plates that contained 10 µl – 200 µl sample showed no growth but the plate 

that contained 500 µl of electroporated sample of P. pastoris only (negative without 

DNA) showed strong growth. However, this can be explained by the high 

concentration of cfu plated that most likely caused a neutralization of Zeocin over 

time resulting in the survival of some cells. But as the other negative plates showed 

no growth colonies that grew on plates with 200 µl or less were used for subsequent 

manipulations. Two single colonies from two different plates from each 
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bp 

8000 

5000 

3000 

4000 



 Thomas ROEDL – PhD Thesis – Salford 2013 144 

electroporation were picked re-plated on YPD plates containing 100 mg/ml Zeocin. 

The plates the colonies were picked from are shown in Figure 89.  

 

 
 

 

 
 

 
Figure 89: YPDS plates containing electroporated clones 

after four days of incubation at 30°C. Colonies picked for 

further experiments are marked with a black circle. 

 

After colonies appeared, one from each plate was used to inoculate 10 ml of YPD 

broth and grown overnight at 30C at 250 rpm and frozen stocks (-80°C) were 

prepared as described in Section 4.2.1. 

 

5.9.4 PCR of chromosomal DNA extractions from P. pastoris 

 

To confirm correct integration of pGAPZαA carrying either, hNEIL3, hN3-394, hN3-

502 or mNEIL1, PCR using the primers pGAP-Forward and 3′ AOX1 was carried out 

hN3-394 50 µl 100 µl 

100 µl 

100 µl 

50 µl 

20 µl 

hN3-502 

mNEIL1 

200 µl 

hNEIL3 
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(for more details on primers see Section 4.14.3). In Figure 90 it can be seen that all 

clones picked from electroporation plates contain inserts that correlate to the 

expected sizes (including 540 bp the primers add to the insert, 1722 bp for hN3-394, 

2046 bp for hN3-502, 1710 bp for full length mNEIL1 and 2358 bp for full length 

hNEIL3 band size was expected; Figure 90).  

 

 
 

Figure 90: Agarose gel electrophoresis of PCR products amplified 

from P. pastoris clones carrying full length (1) and truncated 

versions of hNEIL3 (hN3-394 (2) and hN3-502 (3)) and full length 

mNEIL1 (4) cDNA. 

 

5.9.5 SDS-PAGE of cell lysates 

 

After P. pastoris with integrated pGAPZαA carrying full length hNEIL3 CDS cDNA 

and untransformed P. pastoris were incubated in 50 ml YPD for 96 h, a total protein 

extraction was performed using sonication as described in Section 4.10.1. 

Subsequently, protein quantification using the Bradford assay (Section 4.10.3), 15 to 

30 µg of total protein were separated through a 12% SDS-PAGE at 200 V for  

1 h (Figure 91). 

 

No distinguishable band was detected indicating that overexpression of NEIL3 within 

the cell had not occurred. As the pGAPZαA vector carries a protein secretion 

sequence that is fused to the expressed protein, another SDS-PAGE using the 

culture medium/supernatant of the liquid culture. After 48 h incubation there was no 

band for hNEIL3 overexpression visible on the gel. However the control, mNEIL1, 
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showed a band at the predicted size (~63 kDa) after 48 h (Figure 92). Thus, although 

further experiments are required to confirm the identity of the observed band, these 

preliminary results indicate that the P. pastoris overexpression system with 

pGAPZαA vector could be used to express the NEIL proteins. 

 

 
Figure 91: Coomassie blue staining of an SDS-PAGE gel of hNEIL3 (NEIL3) and 

untransformed P. pastoris (Con.) after different incubation times. 

 

 
Figure 92: Coomassie blue staining of an SDS-PAGE gel of secreted proteins from mNEIL1 

(mN1) and full length and truncated versions (394, 502 and full) of hNEIL3 after 24 h and 48 h 

incubation. 
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6 Discussion 

 

6.1 Yeast two-hybrid results 

 

The vectors pEG202 and pEG202-NLS containing the hNEIL3 cDNA sequence were 

successfully generated in preparation for the Y2H assay (Section 5.1). Expression of 

hNEIL3 fused to LexA (hNEIL3-LexA) was confirmed by western blot analysis 

(Section 5.5). Furthermore, autoactivation tests were performed and showed that full 

length hNEIL3 did not autoactivate any of the reporter genes used in this assay. 

hNEIL3 was also able to enter the nucleus after translation as shown by the 

repression assay results (Section 5.4). Therefore, based on these control 

experiments hNEIL3 seemed to be a suitable candidate for use as a bait protein in 

the Y2H assay. 

 

As proteins larger than ~60 kDa (NEIL3 = 68 kDa [Krokeide et al., 2009]) have been 

suggested to be expressed at low levels in yeast cells (Fashena et al., 2000), this 

might explain the delayed growth observed in the screening with the placental cDNA 

library. This is because, only if NEIL3 interacts with another protein leucine will be 

expressed and cells are able to grow on media lacking leucine as is the case in the 

large scale screening. Thus, if NEIL3 expression occurs only at a low level, the 

production of leucine, and therefore growth of yeast colonies during screening will be 

delayed (Section 5.6.1; Fashena et al., 2000). However, complicating the issue, the 

colonies that were obtained from the placental, as well as from the Jurkat T-Cell 

cDNA library screening, showed growth on medium lacking leucine, but containing 

glucose and because prey protein expression is only induced if galactose is present, 

this is suggestive of a false positive result. Contrary to this, however, the Y2H system 
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that was used in this project includes a second selection method, the LacZ selection 

allowing a blue/white screening. This second screening system uses a different 

selection method where positive interactions lead to expression of β-galactosidase 

from a reporter plasmid rather than leucine which is expressed from the genomic 

DNA. Hence, interactions that were negative in the first instance during leucine 

selection might be positive in the blue/white screening assay due to the different DNA 

substrate NEIL3-LexA is binding to (plasmid DNA). Using this assay, all potential 

positive clones from the initial screen also grew on plates lacking leucine but 

containing either glucose or galactose as before (Section 5.6.3). However, using 

blue/white screening on plates containing X-Gal different phenotypes were observed 

(Section 5.6.4), which led to the assumption that interaction between NEIL3 and 

those prey proteins might still be genuine. 

 

The following Sections discuss the results of potential positive protein partners for 

hNEIL3. However, as the Jurkat T-Cell screening revealed only out of frame or non-

coding prey cDNA sequences (Section 5.7.3) this screening will not be included in 

the discussion. 

 

6.1.1 Potential positive interactors 

 

The most promising finding was the homeobox protein (HOPX), because as for 

NEIL3, higher expression levels have been found in MOLT4 cell lines. In addition, 

HOPX is thought to be a tumour suppressor protein, which gives rise to the 

hypothesis that NEIL3 might play a role in its regulation and ability to bind to DNA 

(European Bioinformatics Institute, 2012e). Furthermore, this protein contains a 

conserved homeodomain that is known to be “involved in transcriptional regulation of 

key eukaryotic developmental processes” (NCBI, 2011). Although, the LacZ 
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phenotype could not be confirmed by the mating assay and the fact that it appeared 

only once during screening, this protein could still be worth investigating further, as it 

makes functional sense that it might interact with NEIL3. As explained later for 

CGB8, the recovered mRNA sequence encompassed the whole CDS and also large 

parts of the 5′ and 3′ UTR. Therefore, the CDS on its own could either be cloned into 

the library vector pJG4-5 and retested in Y2H, or it could be used in a pull-down 

assay for immunological interaction studies. Because of its small size (222 bp) it is 

not as expensive as many other protein coding DNA sequences to purchase  

(CDS sequence can be found here http://1.usa.gov/P5obYb). 

 

The chorionic somatomammotropin hormone 1 (placental lactogen, CSH1, European 

Bioinformatics Institute, 2012a), chorionic somatomammotropin hormone 2 (CSH2, 

European Bioinformatics Institute, 2012b) and chorionic gonadotropin, beta 

polypeptide 8 (CGB8, European Bioinformatics Institute, 2012c) were found several 

times, lending support to the idea that they might be genuine interactors. However, 

on performing mating assays (Section 5.6.8) only CGB8 showed the same 

phenotype as during blue/white screening (Section 5.6.4). Evidence of interaction 

could not be confirmed for any of the other clones. One possible reason for this could 

be that the yeast spontaneously mutated during growth and gained a LacZ 

expression phenotype independently of the prey protein. 

 

As a first step to confirm that the interaction between CGB8 and NEIL3 was genuine 

a further mating assay could be performed using bait proteins other than NEIL3 that 

are unlikely to interact with CGB8, such as those expressed by the Y2H bait vectors 

pLexA-Max, pBait or pRHFM1. If the resulting colonies remain white compared to the 

clones expressing NEIL3, a pull-down system using the CDS DNA of CGB8 should 

be performed for further confirmation that the interaction is genuine. It is crucial to 

make further tests as the DNA of the isolated library insert also covers parts of the  
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5′ and 3′ UTR of CGB8 in addition to the CDS, as mentioned previously. 

Furthermore, as the pJG4-5 library vector that CGB8 was expressed from carries an 

ATG start codon upstream relative to the insert, the 5′-UTR sequence will have been 

translated as well. This might have led to a random peptide that interacted with 

NEIL3, or bound to the LexA binding side on the reporter plasmid. 

 

As mentioned before, the protein hormones CSH1, CSH2 and CGB8 appeared more 

often than other proteins in the placental cDNA library screen. Although this could be 

a sign of genuine protein partners it also has to be considered that the number of 

these interactions could be due to the fact that the cDNA library used was not 

normalized and therefore that some cDNAs obtained by reverse transcription were 

present statistically more often than others. Giving credence to this, the protein 

hormones CSH1 and CSH2 are mainly expressed during pregnancy in placental 

tissue and are involved in lactation and foetal growth, while expression patterns for 

CGB8 are unknown. 

 

Other putative interactors found from the placental library Y2H screen included 

decorin, TIMP2, ELAVL1, haemoglobin subunit beta and the tumour protein TPT1. 

However, none of these proteins appears to be linked to NEIL3, given what we know 

about its cellular location and possible molecular function. The negative results in the 

mating assay and the fact that these proteins were found only once during screening 

increase the chance they are false positives. 

 

6.1.2 Reasons for false positive results 

 

Common false positive protein interaction partners found in most Y2H screens are 

ribosomal and proteasome specific proteins and these were also identified via DNA 



 Thomas ROEDL – PhD Thesis – Salford 2013 151 

sequencing during this Y2H screening with placental cDNA library. Golemis et al. 

(1999) suggest that if only individual cDNAs were found during sequencing of 

putative positive clones this might be due non-specific binding of the bait protein with 

false positives. On the other hand if several putative clones contained several cDNA 

of the same protein it is very likely that this clone is genuinely positive. 

 

Krokeide et al. (2009) found that when NEIL3 is overexpressed in mammalian cells, it 

results in extreme cytotoxicity. This might also be a problem when full length hNEIL3 

is expressed in yeast during Y2H. It is known that when bait proteins poison yeast, it 

almost always results in a high frequency of false positive clones in screens 

(Duttweiler, 1996; Serebriiskii et al., 2000). One indicator that shows this might have 

happened here is the delay in the start of colony growth during the screening. Instead 

of two days it took five days until growth of colonies was first detected (Section 

5.6.2). Therefore, during this time, the yeast may have evolved mutations in the host 

strain due to selective pressure by the leucine lacking media and the toxicity of 

NEIL3, allowing the cells to grow on selective media without interaction of bait and 

prey. Further evidence that the host yeast strain had mutated can be inferred from 

the fact that potential positive colonies, picked from the screening plates, grew on 

glucose medium lacking leucine (Section 5.6.3; MacDonald et al., 2001). That would 

also explain why the initial autoactivation test (Section 5.4.1) showed no 

autoactivation of Leu2 expression by full-length hNEIL3, because at that stage of the 

project, the yeast strain contained no mutations. 

 

In addition, the fact that for the Jurkat T-Cell library screen the colonies appeared 

after only three days but with the same phenotype as described above leads to the 

conclusion that the expression of the Leu gene caused by mutation happened only 

due to toxicity of overexpressed NEIL3 rather than selective pressure. 
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In contrast to this theory the phenotype of a negative control clone which expressed 

the bait, NEIL3-LexA, and the activation domain B42 on its own (without the prey) did 

not show any growth on plates lacking leucine suggesting that the hypothesis that a 

mutation led to leucine production and therefore growth of random cells was not 

correct. However, interestingly a colour change was observed for the same clones on 

the blue/white screening plates (‘negative’ in Figure 84). This was contradictory to the 

results from both Y2H library screenings. In these screenings some clones remained 

white on both plates which indicated that no interaction had occured. As clones 

expressing NEIL3-LexA on its own do not show this phenotype it leads to the 

conclusion that NEIL3-LexA might interact with B42 itself resulting in the observed 

colour change of the colonies to blue. In addition, if B42 is fused to another protein, 

the final product might fold in a way that hinders NEIL3-LexA binding to the B42 

domain and therefore does not allow LacZ gene expression. This would explain why 

the colonies remained white on X-Gal plates. The extended C-terminus of NEIL3 

might play a crucial role in this interaction as its function remains unknown. 

Therefore, it may be important to use truncated versions of NEIL3 for the negative 

control to confirm this hypothesis. On the other hand, the fact that no growth of 

negative control clones on plates lacking leucine was observed might indicate that 

NEIL3-LexA, or the prey fusion protein, was not able to enter the nucleus in the first 

place, whereas some prey was able to and activated leucine expression on their 

own. However, if the repression assay (used to confirm localization of bait NEIL3-

LexA into the nucleus after expression) performed in Section 5.4.3 is compared with 

the repression assay performed by Dr. Manal Shalaby (2009) the same grade of 

colour change can be observed (Figure 52 and Figure 93). Because of these 

contradictory results, it remains unclear if hNEIL3 was able to enter the nucleus or 

not. 
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Figure 93: Comparison between repression assay results. Top = Result of a repression 

assay performed by Manal Shalaby (2009); positive control (A); pEG202-Tip-1 (B); negative 

control (C). Bottom = result of repression assay from Section 5.4.3; negative (1); pEG202-N3 

(2); pEG202-NLS-N3 (3); and positive (4) control. 

 

As Liu et al. (2013) stated “Full-length mNeil3 is … prone to aggregation.” it might be 

possible that NEIL3 protein accumulated in the yeast and therefore allowed some 

proteins to bind depending on what structure was formed and what motifs were 

presented to the surrounding area. 

 

According to Serebriiskii et al. (2000), transcription of the LacZ gene can be activated 

by the expressed prey protein itself or if co-expressed with the bait protein. This 

would result in a colour change on media where the expression of the prey protein is 

induced by the galactose, while colonies on plates that contain glucose, where the 

prey protein is not expressed, would remain white, as observed in this project. This 

would also explain why not all clones showed this phenotype during screening and 

why autoactivation tests carried out with hNEIL3 did not show any activation of LacZ 

gene expression on its own (Section 5.4.2). 
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Degradation of hNEIL3 after expression cannot be ruled out as the western blot that 

was carried out in Section 5.5 was performed with a 24 h culture. This does not 

represent the conditions during a screening that took more than five days for the 

yeast to grow. Additional faint bands were observed when the western blot was 

performed after 24 h that might indicate degraded hNEIL3-LexA. If hNEIL3-LexA is 

degraded over time, perhaps one or more of the proteolytic products are able to 

interact with proteins expressed from the cDNA library and hence activating leucine 

expression. 

 

Regarding this project, the autoactivation tests appear to be correct, as 

autoactivation of leucine expression by hNEIL3 would have led to early growth (or 

high background growth) during screening on plates lacking leucine rather than a 

delay of growth. Furthermore, a more evenly distributed colour change during the 

blue/white screening would have been expected as NEIL3 should also autoactivate 

LacZ gene expression than was observed for both Y2H screenings performed.  

 

6.2 Overexpression in P. pastoris 

 

Before starting these experiments, a band of the expected size was obtained 

following western blotting with an anti-LexA antibody on lysates obtained from  

S. cerevisae strain EGY48 that expresses a hNEIL3-LexA fusion protein for use in 

Y2H (Figure 53). Therefore, having shown that expression of full length hNEIL3 was 

possible in yeast, it was decided to try to overexpress hNEIL3 using a P. pastoris 

system optimized for recombinant protein expression. 

 

Thus, several clones of P. pastoris each carrying either full length CDS cDNA of 

hNEIL3, full length CDS cDNA of mNEIL1 or truncated versions of hNEIL3 (amino 
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acid length 394 or 502) were successfully generated, correct DNA integration was 

confirmed by PCR and clones were stored at -80°C for further experiments. 

 

Coomassie blue stained SDS-PAGE gels of samples of culture medium that should 

contain secreted protein showed a band for mNEIL1 at the predicted size, whereas 

no band was visible for hNEIL3 (Figure 92). Although different temperatures (28°C 

and 30°C), incubation times (24 h to 120 h) and culture volumes (10 ml and 50 ml) 

were used to increase the likelihood of hNEIL3 protein expression, no recombinant 

protein was detected. However, western blotting with a monoclonal anti-His-Tag 

antibody did not recognize either protein indicating that the observed band was not 

his-tagged NEIL1 and the antibody was not binding as expected or was denatured. 

Unfortunately, no positive control was available to check the latter possibility. 

Similarly, a rabbit polyclonal anti-hNEIL3 antibody used in western blotting with cell 

lysates and liquid culture medium did not reveal the existence of any hNEIL3 protein. 

Further experiments would be needed to clarify the situation, but unfortunately time 

did not permit this. 

 

In addition, it has previously been reported that in E. coli, overexpressed full length 

hNEIL3 protein is very unstable and difficult to recover from cells in detectable 

quantities (Krokeide et al., 2009; Takao et al., 2009; Liu et al., 2010, 2012). Hence, 

hNEIL3 might be rapidly degraded after its expression and/or secretion into the 

medium from P. pastoris. However, since it was possible to isolate a full length 

hNEIL3-LexA fusion protein expressed in S. cerevisiae EGY48 cells, clearly hNEIL3 

was not completely degraded when expressed as a fusion protein. Therefore, either 

hNEIL3 was protected from degradation because it was part of a fusion protein, or 

the  

S. cerevisiae strain EGY48 has different cellular conditions than the P. pastoris 

strain, or the fact that hNEIL3 was not secreted in the S. cerevisae system might 
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explain the successful recovery. To confirm this latter hypothesis, further experiments 

would have to be carried out, e.g. expression of hNEIL3 in P. pastoris without the 

secretion signal to see if it is secreted in the first place and to determine if it stays 

intact if not secreted. 

 

Difficulty in expressing active full length NEIL3 could be related to the extended  

C-terminal domain and its tandem GRF-zinc finger motifs as, interestingly, both 

APE2 and TopoIIIα, which have this domain, have also been reported to be difficult 

to express and purify (Hanai et al., 1996; Hadi & Wilson, 2000). This was confirmed 

by Krokeide et al., (2009) who made truncated versions of mouse NEIL3 without the 

GRF-zinc finger motifs that showed a much more efficient expression of active 

protein, leading to the conclusion that GRF-zinc finger motifs probably hinder the 

correct expression and folding of NEIL3. In addition, recent studies show that 

processing of the N-terminal methionine in NEIL3 is crucial for its activity and 

underscores the importance of posttranslational modifications (Liu et al., 2012). This 

group co-expressed an E. coli methionine aminopeptidase Y168A variant with mouse 

and human NEIL3 to improve the N-terminal methionine processing. This way they 

were able to obtain a higher percentage of active full length and truncated mouse 

and truncated human NEIL3. Interestingly, 85% of the full length mouse NEIL3 

protein remained inactive and no active full length human NEIL3 protein was 

obtained. This indicates the difficulty encountered in expression of full length NEIL3 

and that the problem lies principally in its C-terminal region where amino acid 

residues 400 to 500 are predicted to be structurally disordered. This region of the 

NEIL3 polypeptide contains only a putative NLS domain (amino acid residues  

465-468). Based on this information, truncated versions of NEIL3 generated in prior 

studies (Krokeide et al. 2009; Liu et al., 2012) should also be used in future studies of 

hNEIL3 in comparison with the full length version, should this be achievable. 
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6.3 Future outlook 

 

It must be considered if it is useful to use a Y2H assay to search for NEIL3-

interacting proteins. NEIL3 is only expressed in vertebrate cells, which has led to the 

suggestion, that the biological function of NEIL3 is specific to higher eukaryotes 

(Takao et al., 2009). Therefore, this leads to the conclusion that NEIL3 may require 

mammalian cell - like conditions including specific posttranslational modifications, 

which may not be identical or appropriately controlled in yeast cells, to be fully 

functional. 

 

Mammalian two-hybrid as alternative to Y2H 

 

Although mammalian two-hybrid (M2H) systems have been used less than Y2H 

systems, the fact that yeast do not provide the full range, or correct control of 

posttranslational modifications as mammalian cells, gives the system an advantage. 

The functionality of the M2H system was verified by Luo et al. (1997), who confirmed 

the interaction of the mouse p53 tumour suppressor protein with the simian virus 40 

large T antigen. Furthermore, they showed that assay results can be obtained within 

48 h of transfection and also made the point that studying protein interactions in 

mammalian cells may be closer to the actual in vivo interactions in the cell of origin 

(Luo et al., 1997). The reason why Y2H is more commonly used is that M2H is not 

suitable to screen large numbers of prey proteins due its format and it is more likely 

to give false negative results, which means that potential protein partners for NEIL3 

may stay undiscovered (Dr. A.W. Oliver personal communication; Anon, 2007). 

Therefore, while Y2H is much more sensitive, results obtained should be confirmed 

in a M2H assay. However, as discussed in Section 6.1.2, it is important to consider 

that overexpression of hNEIL3 might be toxic to primary eukaryotic cells in general. 
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Co-immunoprecipitation 

 

Co-immunoprecipitation is commonly used to confirm potential protein-protein 

interactions in vivo. Because the protein of interest is expressed in its natural 

environment, post-translational modifications that may be necessary for interaction 

will occur and the proteins will be available in their native conformation. To this end, it 

would be interesting to use the MOLT4 lymphoblastic leukaemia cell line in these 

investigations, since recent studies have shown high gene expression levels for 

hNEIL3 in this cell line (Figure 104; Genomics Institute of the Novartis Research 

Foundation, 2009). Another system that may hold promise for future studies makes 

use of the HaloTag technology developed by Promega. This could be used to 

investigate the cellular localization of NEIL3 and possible protein interactions in pull-

down studies. The HaloTag system is a mammalian expression vector system that 

uses a tag that codes for a monomeric 33 kDa protein that is fused during expression 

to either the N-terminal or C-terminal end of the protein of interest. As NEIL3 showed 

extreme cytotoxic effects when overexpressed in mammalian cells, it is of special 

interest to express NEIL3 at low levels and with HaloTag it might still be possible to 

visualize or recover it within or from the cell (Krokeide et al., 2008).  

 

FRET/BRET 

 

The problem with co-immunoprecipitation is that the cell-content has to be extracted, 

which may cause an alteration in the conformation of the protein complex of interest. 

This may lead to a loss of interaction with a potential protein partner. To observe 

protein-protein interactions in situ, immunofluorescence methods such as 

fluorescence resonance energy transfer (FRET) and bioluminescence resonance 

energy transfer (BRET) can be used. However, these techniques are only suitable to 

confirm an interaction observed by another method and thus it is not useful for 
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screening large numbers of prey proteins. However, they maybe useful for confirming 

potential protein-protein interactions determined by in vitro assays in a mammalian 

cell environment and to reveal their location within the cell (Anon, 2007). 

 

6.4 Overall discussion 

 

Recent studies investigating DNA glycosylase and AP lyase activities of NEIL3 

suggest that this protein plays a role in BER (Krokeide et al., 2009; Takao et al., 

2009; Liu et al., 2010, 2012, 2013). Therefore, NEIL3 would contribute to the defence 

against ROS in a cell and in the maintenance of genomic stability. However, recent 

research also suggests that overexpressed BER enzymes play a vital role in the 

survival of tumour cells treated with genotoxic agents. For example, a high level of 

APE1 expression was linked to tumour cell resistance to chemo- and radiotherapy by 

several groups (Bobola et al., 2005; Freitas et al., 2003; Robertson et al., 2001). On 

the other hand, if APE1 was downregulated it sensitized these cells to anticancer 

drugs and induced apoptosis (Izumi et al., 2005; Robertson et al., 1997; Wang et al., 

2004). 

 

Although the common DNA oxidation product 8-oxoG has not been identified as a 

preferred substrate for NEIL3, other types of oxidized guanine, such as FapyG and 

the hydantoin lesions Sp and Gh (oxidised forms of 8-oxoG), were found to be 

released by the N-terminal DNA glycosylase domain of NEIL3 (Liu et al., 2012). In 

addition, studies on gene expression patterns in neoplastic cells revealed that 

expression of the NEIL3 gene is dramatically increased in metastatic cancer cells 

compared to that of other BER genes such as hOGG1 (Kauffmann et al., 2008). The 

fact that proteins that are linked to DNA repair and also to DNA replication are 

overexpressed in melanoma cells could partly explain the resistance of these 
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malignant cells to genotoxic chemotherapy agents. Compounds that inhibit specific 

proteins involved in DNA repair such as PARP-1 have already been developed and 

their use in combination with other chemotherapy agents shows some benefit in the 

clinic (O’Shaughnessy et al., 2009; Kummar et al., 2012). The latest clinical trials 

show that PARP-1 inhibitors are especially effective for the treatment of breast 

cancer where the cells have a mutation in the tumour suppressor genes BRCA 1 or 2 

resulting in a decreased rate of DSB repair, so called synthetic lethality 

(O’Shaughnessy et al., 2009; Tutt et al., 2010). 

 

One reason why PARP-1 was used as a target for inhibition in the first place is that it 

plays a role in BER and its inhibition was known to delay strand rejoining (Hooten et 

al., 2012; Mansour et al., 2010). As NEIL3 expression is so much higher in malignant 

cells compared to normal cells it might play a crucial role in combating DNA damage 

and therefore securing cancer cell survival. Therefore, it is of great interest to 

investigate the effects on viability of a NEIL3 knockout (or double knockout with 

PARP) cancer cell line treated with a genotoxic agent. 

 

However, the problem in inhibiting proteins that are involved in DNA repair is that it 

affects the whole organism and results in collateral toxicities (Drew & Plummer, 

2009). Furthermore, each metastasis will be resistant to different drugs, which makes 

treatment of metastatic cancer difficult. However, as NEIL3 is highly expressed in 

malignant cells, inhibiting it might preferentially target the tumour cells and on the 

other hand have less effect on normal cells. In addition, NEIL3 might play a crucial 

role in genomic maintenance to secure cell survival and increased resistance of the 

cell against DNA targeted anticancer drugs (Hildrestrand et al., 2009). Although the 

inhibition of DNA glycosylases may be inefficient due to back up functions of other 

DNA glycosylases, or make cells even more resistant to genotoxic agents, as shown 

for knockout mouse models, respectively (Rinne et al., 2004; Roth & Samson, 2002) 
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NEIL3 could still be an interesting target for protein inhibiting anticancer drugs 

because of its spatially and temporally restricted expression pattern (Hegde et al. 

2008b). Tumour cell targeted NEIL3 knockdown by siRNAs is another treatment 

possibility that is the subject of much recent research (Pecot et al., 2011). 

 

The first evidence that a DNA glycosylase is involved in regulation of the cell cycle 

was given for the DNA glycosylase MPG which inhibits p53-mediated cell cycle arrest 

(Song et al. 2012). Like NEIL3, MPG expression is cell cycle dependent with levels 

highest during G1 phase (Bouziane, 2000). Since it is known that NEIL3 gene 

expression is upregulated in cells leaving the G0 phase and entering G1 phase 

(Neurauter et al., 2012), it might be of interest to investigate possible interactions of 

NEIL3 with p53 or other cell cycle regulatory proteins. 

 

Another indicator that NEIL3 is active during DNA replication is the similarity of its  

C-terminal end with that of TopoIIIα. TopoIIIα is expressed mainly in testes and is 

active during DNA recombination on the double Holliday junction dissolvasome 

complex (Chen et al., 2012). Interestingly, the function of TopoIIIα relies on its  

C-terminal tandem GRF zinc finger domain (Chen et al., 2012), which is also present 

in the C-terminal domain of NEIL3. Further evidence that this domain is involved in 

recombination is that the other type IA topoisomerase, TopoIIIβ which is not able to 

dissolve the double Holliday junction, has a shorter C-terminus that lacks the GRF 

zinc fingers (Chen et al., 2012). This group also showed that these GRF zinc fingers 

are responsible for the interaction with the first 133 N-terminal amino acids and the 

150 C-terminal amino acids of the Bloom Syndrome protein (BLM helicase; Hu et al., 

2001). In addition, BLM helicase is considered to be a major protein interaction 

partner for p53 and therefore indirectly regulates transcription and cell growth but on 

the other hand p53 indirectly regulates the processing of Holliday junctions by its 

inhibitory interaction with BLM (Wang et al., 2001; Yang et al., 2002). Interestingly, 
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overexpression of BLM helicase showed an inhibition of proliferation which might 

also affect the expression of NEIL3 as the expression levels of NEIL3 are high in 

proliferating cells (Garkavtsev et al., 2001). Therefore, the GRF Znf at the C-terminal 

region of NEIL3 might also be able to interact with the BLM helicase. Furthermore, 

FEN1 also was shown to interact with BLM helicase (Sharma et al., 2004). This is 

interesting, because FEN1 shows similar expression patterns to that of NEIL3 

(Neurauter et al., 2012). Therefore, with increased knowledge about these protein 

domains, it might be possible to find other potential binding partners that have 

conserved BLM helicase motifs. 

 

Furthermore, TopoIIIα together with BLM helicase are known to play an important 

role in the alternative pathway of telomere lengthening in the absence of telomerase. 

In fact, an absence of TopoIIIα led to an increase in overall DNA damage on 

telomeres in cells lacking telomerase (Temime-Smaali et al., 2008). This indicates 

that TopoIIIα might be an essential telomere-associated factor and as expression 

levels of NEIL3 are high in testes, where telomeres are maintained at their maximum 

length, it might be worth focusing studies for NEIL3 on telomere maintenance 

pathways. The fact that no change in phenotype of NEIL3-/- mice was observed might 

be due to the short period of time the tests were made and no generational studies 

have been reported (Torisu et al., 2005). As telomeres are known to play an 

important role in aging, a change in telomeres, either by their shortening or mutation, 

might affect an organism only in later stages of life (Cherif et al., 2002). On the other 

hand, first attempts to link high expression levels of NEIL3 in tumour cells to telomere 

shortening were not successful (Frias et al., 2008). However, these studies were 

carried out in non-small cell lung cancer cells which have not been reported to have 

high levels of active NEIL3 (Section 2.3.5.2.3). Hence, it is important to consider that 

NEIL3 has very tissue specific expression patterns which might acutely affect the 

phenotype only of certain tissues, but not the whole organism. 
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The fact that the expression level of NEIL3 is elevated in certain oxidatively stressed 

cells and during G1-S phase and the similarity of its C-terminal structure with that of 

TopoIIIα leads to the conclusion that NEIL3 might play a role in counteracting the 

effects of oxidative stress on telomeres via its DNA glycosylase activity and maybe in 

cooperation with BLM helicase. As it was found that stressed animals have shorter 

telomeres on average, which might be related to increased levels of oxidative stress, 

it might be worth repeating these tests in NEIL3 knockout mice with respect to their 

telomeres (Epel et al., 2004). 

 

There is also evidence that p53 not only interacts with BLM helicase but also with 

WRN to inhibit their activity (Yang et al., 2002). Interestingly WRN is also an 

interaction partner for NEIL1 that enhances its DNA glycosylase activity on oxidized 

purines (Das et al., 2007a). As the expression of NEIL1, like NEIL3, is cell cycle 

dependent and is also mainly active on ssDNA substrates, it would be of great 

interest to determine potential interactions between NEIL3 and WRN. 

 

To date, several groups have reported that an efficient expression and purification of 

active full length NEIL3 in an eukaryotic cell system in amounts high enough to be 

used in downstream assays could not be achieved (Krokeide et al., 2009; Liu et al., 

2010 and 2012) and although it was possible in this project to express full length 

NEIL3 as a fusion protein in an eukaryotic cell system (yeast) it was not possible to 

purify active NEIL3 for further use. 

 

It is known that NEIL1 and NEIL2 interact with other proteins involved in BER such 

as PNK, Polβ and LigIIIα and thus it is possible that NEIL3 also has to interact with 

these proteins to fulfil its function in BER (Wiederhold et al., 2004; Das et al., 2006). 

The first evidence of interaction was found for RPA as it was co-localized with 
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hNEIL3 in the nucleus and alignment of hNEIL3 protein sequence with sequences 

from proteins known to bind to PCNA and RPA revealed a putative PCNA- (residues 

80-96) and RPA-binding (residues 30-45) site (Morland et al. 2002). 

 

BER is known to be a pathway where many different protein complexes are involved 

depending on the sort of DNA damage. Proteins contained in such complexes can 

either act as scaffold proteins or as enhancers that increase the activity or turnover 

rate of other proteins. An example of an enhancer is the YB-1 protein which 

significantly enhances the base excision activity of NEIL2 via a stable interaction 

(Das et al., 2007b). However, as YB-1 also interacts with the downstream proteins 

LigIIIα and Polβ, it is likely that NEIL2 and YB-1 are part of a larger protein complex 

during DNA repair. Furthermore, YB-1 is also an interacting partner of APE1. If APE1 

is posttranslationally acetylated it modulates YB-1-mediated activation of expression 

of the ABC-transporter P-glycoprotein-1 (Chattopadhyay et al., 2008). The 

membrane protein P-glycoprotein-1 is responsible for multidrug resistance by acting 

as an efflux pump to remove xenobiotics such as antitumour agents from cells 

(Kakumoto et al., 2005). If NEIL3, with respect to its high expression levels in cancer 

cells, also indirectly stimulates P-glycoprotein-1 expression through YB-1 modulation, 

it might explain why these cells show a high degree of drug resistance. On the other 

hand, it was recently shown that YB-1 and RPA inhibit the AP lyase activity of NEIL1 

on ssDNA, presumably due to competition, as YB-1 and RPA both have a high 

affinity for ssDNA (Pestryakov et al., 2012). 

 

Not only proteins such as YB-1 might be an important target for further investigations 

on the biological role of NEIL3 but also posttranslational modifications, in particular 

acetylation. For example, for NEIL2 it was found that posttranslational acetylation of 

the Lys49 residue by the acetyltransferase p300 inhibits its DNA glycosylase and AP 

lyase activity (Bhakat et al., 2004). Interestingly, Lys49 is a residue that is conserved 
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within the NEIL family. Acetylation on residues other than Lys49 might affect the 

ability of NEIL3 to interact with certain protein partners and has to be considered 

when carrying out protein-protein interaction studies. For example, it was shown that 

PCNA is also acetylated by p300, however, when it is deacetylated by histone 

deacetylase-1 (HDAC1) it loses its affinity for Polβ and Polδ (Naryzhny & Lee, 2004). 

Other proteins that are acetylated by p300 are FEN1, Polβ, OGG1 and thymine DNA 

glycosylase (TDG) (Bhakat et al., 2006; Hasan et al., 2001, 2002; Tini et al., 2002). 

For example, acetylation of OGG1 at Lys338/Lys341 increases its rate of repair of  

8-oxoG by 2.5-fold (Bhakat et al., 2006) which leads to the suggestion that p300 

might play a crucial role in the regulation of BER proteins. 

  

DNA glycosylases such as OGG1 (Hill et al., 2001), UNG (Parikh et al., 1998), TDG 

(Privezentzev et al., 2001; Waters, Gallinari et al., 1999), single-strand selective 

monofunctional uracil DNA glycosylase (SMUG1) (Kavli et al., 2002) and NTH1 

(Marenstein et al., 2003) are known to have a higher affinity to the AP-site they 

create than they had to the original DNA lesion. However, APE1 seems to have more 

affinity for the AP lesion, replacing the DNA glycosylases and therefore increasing 

their turnover rate (Hill et al., 2001; Parikh et al., 1998; Privezentzev et al., 2001; 

Kavli et al., 2002; Marenstein et al., 2003). It must be considered that these DNA 

glycosylases are either monofunctional (UNG, TDG, SMUG1) or bifunctional with  

β-lyase activity (OGG1 and NTH1) but that both result in a substrate for APE1 (either 

AP-site for monofunctional or unsaturated aldehyde overhangs for bifunctional DNA 

glycosylases). For the NEIL proteins this is not the case as they have a β,δ-lyase 

activity resulting in the release of the deoxyribose sugar leaving 5′-P and 3′-P. 

Therefore, the function of APE1 that increases the turnover rate of other DNA 

glycosylases may not be applicable to the NEIL proteins, as the 3′-phosphatase 

activity of APE1 is very weak (Wiederhold et al., 2004). Therefore, APE1 may be 

unlikely to interact with NEIL3. However, perhaps PNK plays a similar role to APE1 
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for the NEIL proteins by increasing their turnover rate due to its affinity for 3′-P sites. 

Recently, it was shown that in the presence of XRCC1, LigIIIα and Polβ, PNK is part 

of a BER complex with NEIL1 and NEIL2 (Wiederhold et al., 2004; Das et al., 2006). 

Similarly, PCNA is known to enhance the activity of NEIL1 on the oxidized base  

5-OH-U from ssDNA where it acts as a clamp that helps NEIL1 to load the substrate 

(Dou et al., 2008). Although, PCNA does not stimulate NEIL2 it might still play a role 

in the function of NEIL3 as its substrates are more related to those of NEIL1. 

 

While they usually act as DNA glycosylases, NEIL1 and OGG1 also can stimulate the 

poly(ADP-ribosyl)ation activity of PARP-1 by binding to its C-terminal domain 

(Hooten et al., 2011, 2012). This is an example of proteins (in this case NEIL1 and 

OGG1) that can have different functions depending on the kind of interaction. Hence, 

it is not controversial if it is proposed on one hand that NEIL3 plays a part in BER 

during DNA replication and in recombination of chromosomes on the other. Another 

example of a multifunctional protein is XRCC1, a scaffold protein known as a 

fundamental protein interactor during BER and SSB repair. If NEIL3 acts during BER 

as suggested, XRCC1 might be a very important target as a protein partner for 

NEIL3. It might stabilise the DNA binding capability of NEIL3 or it could recruit other 

proteins essential for the DNA interaction or repair process. 

 

As NEIL3 contains a RanBP zinc finger and a NLS sequence it is likely that NEIL3 

also has to interact with specific nucleus transport proteins to be located correctly 

within the cell after its translation (Section 2.3.5.2.3). 

 

A suppression of HIV integration following RNAi knockdown of proteins involved in 

BER was first reported by Kameoka et al. (2004). NEIL3 also seems to play an 

important role in this as recent siRNA studies revealed that genomic HIV integration 

in cells lacking NEIL3 is significantly decreased (Yoder et al., 2011; Espeseth et al., 
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2011a and Zhou et al., 2008). One hypothesis might be that bifunctional DNA 

glycosylases such as NEIL3 help the viral integrase protein to fulfil its function. For 

example, perhaps NEIL3 can interact with the integrase protein transporting it into 

the nucleus via its NLS where it then binds to DNA. Once NEIL3 has excised an 

oxidized base and cut the resulting AP site via its AP-lyase activity, the resulting gap 

could be used by the integrase itself to insert the vDNA in form of a DNA loop. 

Subsequent DNA replication would then fully integrate the vDNA into the genomic 

DNA. However, such a DNA loop would be prone to recognition by p53 which would 

activate repair complexes such as MMR or even induce apoptosis. On the other 

hand, depending on its final conformation the loop could be resistant to repair 

mechanisms as was proposed for MMR and short DNA loops (Lang et al., 2011). The 

fact that HIV cannot replicate within a cell during quiescence (G0-phase in cell cycle) 

because this state blocks the reverse transcription process gives further evidence for 

the involvement of hNEIL3 in vDNA integration as its expression is stimulated by the 

release from quiescence (Amado & Chen, 1999; Neurauter et al., 2012). The patent 

submitted by Espeseth et al. (2011b) regarding drugs inhibiting hNEIL3 underscores 

the importance of studying the biological role of hNEIL3 in relation to HIV integration 

and lentivirus integration in general. This patent also includes MUTYH, LigIIIα, Polβ 

as potential drug targets to hinder HIV integration. However, the inhibition of LigIIIα 

and Polβ would affect the whole organism and its DNA metabolism that includes 

DNA repair, replication and recombination, whereas hNEIL3 might have a significant 

effect on HIV integration but not on the overall fitness of the organism and this could 

reduce harmful side-effects. 

 

The fact that there was no obvious change in the phenotype of NEIL3-/- mice does 

not mean that the organism was not affected at all. As stated before, maybe only 

specific tissues were affected or the observations were too short in time to see 

changes that might have only arisen with age. In addition it has to be considered that 
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perhaps the learning and memory capacity of NEIL3-/- mice is affected which is not 

necessarily an obvious aspect. Therefore, strategies to test this should be devised as 

also suggested by other groups (e.g. Marin-Burgin & Schinder, 2012). Evidence for 

the influence of NEIL3 on the brain was given by Regnell et al. (2012) who 

discovered morphologic alterations in the hippocampal network and reduced 

neurogenesis in vivo for NEIL3-/- cells. Neurogenesis is essential for the restoration of 

brain function after injury and also required for shaping the structural basis for 

learning and memory in the hippocampal structure (Sejersted et al., 2011). Hence, 

NEIL3 might play a crucial role as the main DNA glycosylase for Sp and Gh lesions 

in ssDNA in neuronal cells and therefore may be essential for retaining the cognitive 

behaviour in vertebrates. 

 

Conclusions and future perspectives 

 

The aim of this project was to find potential interacting protein partners for human 

NEIL3 and thus provide a clue to understanding the biological role of NEIL3. While 

recent studies have begun to shed light on the different biological processes that 

NEIL3 is involved in, it is still not clear why mammalian cells require this DNA 

glycosylase in particular, and what role the unique protein motifs play in its biological 

activities. It is known that the N-terminal region of NEIL3 includes a DNA glycosylase 

and H2TH motif conserved among NEIL1, NEIL2 and Fpg/Nei in E. coli. The function 

of these domains in the other proteins leads to the conclusion that NEIL3 plays a role 

in DNA repair. However, the predominantly C-terminal protein domains have yet to 

be ascribed a biological function and unfortunately this question remains as relevant 

now as at the start of this project. 

 

While mouse NEIL3 expression was shown to be upregulated in hematopoietic tissue 

and testes, during embryonic development and in stem/progenitor rich regions in the 
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brain the gene expression patterns of human NEIL3 in these tissues remains largely 

to be determined (Hildrestrand et al., 2009; Kauffmann et al., 2008; Morland et al., 

2002; Rolseth et al., 2008; Takao et al., 2009; Torisu et al., 2005). As all these 

tissues contain highly proliferating cells, and the fact that NEIL3 is upregulated in 

early S phase, makes it most likely that its function is to remove lesions from the 

genome in replicating cells (Neurauter et al., 2012). As it is known that NEIL3 shows 

higher activity in murine neural stem/progenitor cells compared to differentiated cells 

(Rolseth et al., 2008; Hildrestand et al., 2009), and that NEIL3-/- mice show a 

decreased repair capacity in damaged areas of the brain, it leads to the conclusion 

that NEIL3 gene expression is stimulated by transcription factors that are regulated 

by the differentiation and proliferation state of vertebrate neural progenitor cells. 

 

To date, the potential interacting protein partners found in this project remain to be 

confirmed. However, although there seems to be no link between a protein such as 

CGB8 and NEIL3, it does not necessarily mean that it is a false positive result. NEIL3 

was shown and is suggested, as discussed before, to play an important role in 

several independent processes within a cell. Therefore it is still important to 

undertake further efforts to find potential protein partners. Such proteins might be 

responsible for posttranslational modifications of NEIL3 or help NEIL3 to bind to DNA 

or other proteins. Such results would help to develop hypotheses or to confirm 

assumptions already made about the biological role of NEIL3. To confirm its place 

within BER, further investigations have to be carried out which focus on interaction 

with downstream and scaffold proteins involved in BER. The focus herein should be 

on in vivo investigations as only this way can the correct folding and posttranslational 

modification be ensured. 

 

The recently identified DNA substrates that NEIL3 can release from DNA comprise 

oxidized guanines (Liu et al., 2012), which are likely to be formed more frequently by 
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ROS in cells that have an increased metabolic rate (Beckman & Ames, 1998). If the 

latest results regarding gene expression levels and the DNA repair capability of 

NEIL3 are brought together with the fact that ROS generation is especially increased 

in cancer cells (Pelicano et al., 2004), it makes good sense that rapidly dividing cells 

need NEIL3 to secure their genomic integrity during DNA replication and therefore 

stimulate its expression. Thus, further studies should be focused on a restricted 

assortment of cell types where high expression of NEIL3 has been determined, such 

as cancer cell lines. Clarifying the significance of increased expression levels of 

NEIL3 in tumour cells might also explain its potential function within the normal cell 

and maybe NEIL3 can even be used as a new biological marker for diagnostic 

purposes or as a target for next generation cancer drugs. In addition, as evidence 

was found that NEIL3 reduces reverse transcription up to or including integration of 

HIV (Espeseth et al., 2011a; Yoder et al., 2011; Zhou et al., 2008), another benefit of 

NEIL3 inhibiting drugs could be their use in the prevention of HIV pathogenesis. 

 

In summary this work has demonstrated the following: 

 

- Design, construction and validation of new DNA vectors for Y2H  

and LexA fusion protein expression 

- Successful expression of hNEIL3-LexA in yeast 

- Identification of potential interacting clones and DNA sequences 

- Establishment of a Y2H system for DNA glycosylases 

- Possible interaction between LigIII and hNEIL3 

- Use of P. pastoris as an expression system 
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8 Appendix 

 

8.1 Vector maps 

 

 

 
Figure 94: Vector map from the pCMV6-AC vector from OriGene and  

its multiple cloning site (MCS). 
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Figure 95: Vector map from the pCMV6-AC vector from OriGene  

and its multiple cloning site (MCS). 

 

 
Figure 96: Vector map of the pGEM-T vector from Promega. 
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Figure 97: Vector map of the blunt end cloning vector pJET1.2/blunt  

from the CloneJet PCR Cloning Kit. 

 

 

 
Figure 98: Vector map of the bait vector pEG202 used in Y2H 
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Figure 99: Vector map of the bait vector pEG202-NLS used in Y2H. 

 

 
Figure 100: Vector map of the library plasmid pJG4-5 used in Y2H. Expression of 

fusion protein is induced by a GAL1 promoter. 
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Figure 101: Vector map of the reporter plasmid pJK101 used in 

the repression assay in Y2H. 

 

 
Figure 102: Vector map of the LacZ reporter plasmids pSH18-34 (high 

sensitivity), pJK103 (medium sensitivity) and pRB1840 (low sensitivity). 
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Figure 103: Vector map of P. pastoris overexpression vector pGAPZαA(B,C).  
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8.2 NEIL3 origin sequence included in the pCMV6-AC vector from 

OriGene 

 

grey = coding sequence 

 

GCGCAGCGTTGAGTTGCACAGCGGTATTCTCACCAGGCCCTGCAATCGGTGGGCCACAGTGCCGGCCAC

AGAG 

ATGGTGGAAGGACCAGGCTGTACTCTGAATGGAGAGAAGATTCGAGCGCGGGTGCTCCCGGGCCAGGCG

GTGACCGGCGTGCGGGGAAGCGCTCTGCGGAGTCTGCAGGGCCGCGCCTTGCGGCTCGCAGCCTCCACG

GTTGTGGTCTCCCCGCAGGCTGCTGCACTGAATAATGATTCCAGCCAGAATGTCTTGAGCCTGTTTAAT

GGATATGTTTACAGTGGCGTGGAAACTTTGGGGAAGGAGCTCTTTATGTACTTTGGACCAAAAGCTTTA

CGGATTCATTTCGGAATGAAAGGCTTCATCATGATTAATCCACTTGAGTATAAATATAAAAATGGAGCT

TCTCGTGTTTTGGAAGTGCAGCTCACCAAAGATTTGATTTGTTTCTTTGACTCATCAGTAGAACTCAGA

AACTCAATGGAAAGCCAACAGAGAATAAGAATGATGAAAGAATTAGATGTATGTTCACCTGAATTTAGT

TTCTTGAGAGCAGAAAGTGAAGTTAAAAAACAGAAAGGCCGGATGCTAGGTGATGTGCTAATGGATCAG

AACGTATTGCCTGGAGTAGGGAACATCATCAAAAATGAAGCTCTCTTTGACAGTGGTCTCCACCCAGCT

GTTAAAGTTTGTCAATTAACAGATGAACAGATCCATCACCTCATGAAAATGATACGTGATTTCAGCATT

CTCTTTTACAGGTGCCGTAAAGCAGGACTTGCTCTCTCTAAACACTATAAGGTTTACAAGCGTCCCAAT

TGTGGTCAGTGCCACTGCAGAATAACTGTGTGCCGCTTTGGGGACAATAACAGAATGACATATTTCTGT

CCTCACTGTCAAAAAGAAAATCCTCAACATGTTGACATATGCAAGCTACCGACTAGAAATACTATAATC

AGTTGGACATCTAGCAGGGTGGATCATGTTATGGACTCCGTGGCTCGGAAGTCGGAAGAGCACTGGACC

TGTGTGGTGTGTACTTTAATCAATAAGCCCTCTTCTAAGGCATGTGATGCTTGCTTGACCTCAAGGCCT

ATTGATTCAGTGCTCAAGAGTGAAGAAAATTCTACTGTCTTTAGCCACTTAATGAAGTACCCGTGTAAT

ACTTTTGGAAAACCTCATACAGAAGTCAAGATCAACAGGAAAACTGCATTTGGAACTACAACTCTTGTC

TTGACTGATTTTAGCAATAAATCCAGTACTTTGGAAAGAAAAACAAAGCAAAACCAGATACTAGATGAG

GAGTTTCAAAACTCTCCTCCTGCTAGTGTGTGTTTGAATGATATACAGCACCCCTCCAAGAAGACAACA

AACGATATAACTCAACTATCCAGCAAAGTAAACATATCACCTACAATCAGTTCAGAATCTAAATTATTT

AGTCCAGCACATAAAAAACCGAAAACAGCCCACTACTCATCACCAGAGCTTAAAAGCTGCAACCCTGGA

TATTCTAACAGTGAACTTCAAATTAATATGACAGATGGCCCTCGTACCTTAAATCCTGACAGCCCTCGC

TGCAGTAAACACAACCGCCTCTGCATTCTCCGAGTTGTGAGGAAGGATGGGGAAAACAAGGGCAGGCAG

TTTTATGCCTGTCCTCTACCTAGAGAAGCACAATGTGGATTTTTTGAATGGGCAGATTTGTCCTTCCCA

TTCTGCAACCATGGCAAGCGTTCCACCATGAAAACAGTATTGAAGATTGGACCTAACAATGGAAAGAAT

TTTTTTGTGTGTCCTCTTGGGAAGGAAAAACAATGCAATTTTTTCCAGTGGGCAGAAAATGGGCCAGGA

ATAAAAATTATTCCTGGATGCTAA 

TATCTGTAGATTCTCTGGCATTTAGTCTCTTCAAACTGTGTATAATGTTTGGTCCTCCTCTGTTTCATA

GAAAAGTCATAGAATATGATACATTGAAAAGTTACTGCAAAAAAAAAAAAAAAAAAA 
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8.3 Motif sequences in hNEIL3 (OriGene) 

 

GCGCAGCGTTGAGTTGCACAGCGGTATTCTCACCAGGCCCTGCAATCGGTGGGCCACAGTGC

CGGCCACAGAG 

 

One line is 1-19 aa or 1-57 bp. Sequences in bold are motifs. 

 

N-terminal domain of NEIL 3 (1-151 aa) 

ATGGTGGAAGGACCAGGCTGTACTCTGAATGGAGAGAAGATTCGAGCGCGGGTGCTCCCGGG

CCAGGCGGTGACCGGCGTGCGGGGAAGCGCTCTGCGGAGTCTGCAGGGCCGCGCCTTGCGGC

TCGCAGCCTCCACGGTTGTGGTCTCCCCGCAGGCTGCTGCACTGAATAATGATTCCAGCCAG

AATGTCTTGAGCCTGTTTAATGGATATGTTTACAGTGGCGTGGAAACTTTGGGGAAGGAGCT

CTTTATGTACTTTGGACCAAAAGCTTTACGGATTCATTTCGGAATGAAAGGCTTCATCATGA

TTAATCCACTTGAGTATAAATATAAAAATGGAGCTTCTCGTGTTTTGGAAGTGCAGCTCACC

AAAGATTTGATTTGTTTCTTTGACTCATCAGTAGAACTCAGAAACTCAATGGAAAGCCAACA

GAGAATAAGAATGATG 

 

H2TH motif (151-244 aa) 

AAAGAATTAGATGTATGTTCACCTGAATTTAGTTTCTTGAGAGCAGAAAGTGAAGTTAAAAA

ACAGAAAGGCCGGATGCTAGGTGATGTGCTAATGGATCAGAACGTATTGCCTGGAGTAGGGA

ACATCATCAAAAATGAAGCTCTCTTTGACAGTGGTCTCCACCCAGCTGTTAAAGTTTGTCAA

TTAACAGATGAACAGATCCATCACCTCATGAAAATGATACGTGATTTCAGCATTCTCTTTTA

CAGGTGCCGTAAAGCAGGACTTGCTCTCTCTAAA 

 

CACTATAAGGTTTACAAGCGTCCCAATTGTGGTCAGTGCCACTGCAGAATAACTGTGTGCCG

CTTTGGGGACAATAACAGAATGACATATTTCTGTCCTCACTGTCAAAAAGAAAATCCTCAAC

ATGTTGACATATGCAAGCTACCGACTAGAAATACTATAATCAGTTGGACATCTAGCAGGGTG

GATCATGTTATGGACTCCGTGGCTCGGAAGTCGGAA 

 

Zf-RanBP (319-343 aa) 

GAGCACTGGACCTGTGTGGTGTGTACTTTAATCAATAAGCCCTCTTCTAAGGCATGTGATGC

TTGCTTGACCTCA 

 

AGGCCTATTGATTCAGTGCTCAAGAGTGAAGAAAATTCTACTGTCTTTAGCCAC 

 

NEIL3 unique motif (362-402 aa) 

TTAATGAAGTACCCGTGTAATACTTTTGGAAAACCTCATACAGAAGTCAAGATCAACAGGAA

AACTGCATTTGGAACTACAACTCTTGTCTTGACTGATTTTAGCAATAAATCCAGTACTTTG 

 

GAAAGAAAAACAAAGCAAAACCAGATACTAGATGAGGAGTTTCAAAACTCTCCTCCTGCTAG

TGTGTGTTTGAATGATATACAGCACCCCTCCAAGAAGACAACAAACGATATAACTCAACTAT

CCAGCAAAGTAAACATATCACCTACAATCAGTTCAGAATCTAAATTATTTAGTCCAGCACAT

AAAAAACCGAAAACAGCCCACTACTCATCACCAGAGCTTAAAAGCTGCAACCCTGGATATTC

TAACAGTGAACTTCAAATTAATATGACAGATGGCCCTCGTACCTTAAATCCTGACAGC 
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Zf-GRF 1 (505-550 aa) 

CCTCGCTGCAGTAAACACAACCGCCTCTGCATTCTCCGAGTTGTGAGGAAGGATGGGGAAAA

CAAGGGCAGGCAGTTTTATGCCTGTCCTCTACCTAGAGAAGCACAATGTGGATTTTTTGAAT

GGGCAGATTTGTCC 

 

TTC 

 

Zf-GRF 2 (552-596 aa) 

CCATTCTGCAACCATGGCAAGCGTTCCACCATGAAAACAGTATTGAAGATTGGACCTAACAA

TGGAAAGAATTTTTTTGTGTGTCCTCTTGGGAAGGAAAAACAATGCAATTTTTTCCAGTGGG

CAGAAAATGGG 

 

CCAGGAATAAAAATTATTCCTGGATGCTAA 

 

 

TATCTGTAGATTCTCTGGCATTTAGTCTCTTCAAACTGTGTATAATGTTTGGTCCTCCTCTG

TTTCATAGAAAAGTCATAGAATATGATACATTGAAAAGTTACTGCAAAAAAAAAAAAAAAAA

AA 
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8.4 SNPs in hNEIL3 DNA 

 

SNPs in hNEIL3 cDNA (from OriGene) compared to hNEIL3 cDNA (from NCBI). 

 

hNEIL3 cDNA insert in pCMV6-AC vector from OriGene: 

 

GCGCAGCGTTGAGTTGCACAGCGGTATTCTCACCAGGCCCTGCAATCGGTGGGCCAC

AGTGCCGGCCACAGAG 

 

ATGGTGGAAGGACCAGGCTGTACTCTGAATGGAGAGAAGATT 

CGA (AA pos.: 15 ; Codon NCBI: CGC ; Syn.: Arg) 

GCGCGGGTGCTCCCGGGCCAGGCGGTGACCGGCGTGCGGGGAAGCGCTCTGCGGAGT

CTGCAGGGCCGCGCCTTGCGGCTCGCAGCCTCCACGGTTGTGGTCTCCCCGCAGGCT

GCTGCACTGAATAATGATTCCAGCCAGAATGTCTTGAGCCTGTTTAATGGATATGTT

TACAGTGGCGTGGAAACTTTGGGGAAGGAGCTCTTTATGTACTTTGGACCAAAAGCT

TTACGGATTCATTTCGGAATGAAAGGCTTCATCATGATTAATCCACTTGAGTATAAA

TATAAAAATGGAGCTTCT 

 

CGT (AA pos.: 117 ; Codon NCBI: CCT ; Missense: G=Arg, C=Pro) 

GTTTTGGAAGTGCAGCTCACCAAAGATTTGATTTGTTTCTTTGACTCATCAGTAGAA

CTCAGAAACTCAATGGAAAGCCAACAGAGAATAAGAATGATGAAAGAATTAGATGTA

TGTTCACCTGAATTTAGTTTCTTGAGAGCAGAAAGTGAAGTTAAAAAACAGAAAGGC

CGGATGCTAGGTGATGTGCTAATGGATCAGAACGTATTGCCTGGAGTAGGGAACATC

ATCAAAAATGAAGCTCTCTTTGACAGTGGTCTCCACCCAGCTGTTAAAGTTTGTCAA

TTAACAGATGAACAGATCCATCACCTCATGAAAATGATACGTGATTTCAGCATTCTC

TTTTACAGGTGCCGTAAAGCAGGACTTGCTCTCTCTAAACACTATAAGGTTTACAAG

CGT 

 

CCC (AA pos.: 252 ; Codon NCBI: CCT ; Syn.: Pro) 

AATTGTGGTCAGTGCCACTGCAGAATAACTGTGTGCCGCTTTGGGGACAATAACAGA

ATGACATATTTCTGTCCTCACTGTCAAAAAGAAAATCCTCAACATGTTGACATATGC

AAGCTACCGACTAGAAATACTATAATCAGTTGGACATCTAGCAGGGTGGATCATGTT

ATGGACTCCGTGGCTCGGAAGTCGGAAGAGCACTGGACCTGTGTGGTGTGTACTTTA

ATCAATAAGCCCTCTTCTAAGGCATGTGATGCTTGCTTGACCTCAAGGCCTATTGAT

TCAGTGCTCAAGAGTGAAGAAAATTCTACTGTCTTTAGCCACTTAATGAAGTACCCG

TGTAATACTTTTGGAAAACCTCATACAGAAGTCAAGATCAAC 

 

AGG (AA pos.: 381 ; Codon NCBI: AGA ; Syn.: Arg) 

AAAACTGCATTTGGAACTACAACTCTTGTCTTGACTGATTTTAGCAATAAATCCAGT

ACTTTGGAAAGAAAAACAAAGCAAAACCAGATACTAGATGAGGAGTTTCAAAACTCT

CCTCCTGCTAGT 

 

GTG (AA pos.: 424 ; Codon NCBI: GTT ; Syn.: Val) 

TGTTTGAATGATATACAGCACCCCTCCAAGAAGACAACAAACGATATAACTCAA 
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CTA (AA pos.: 443 ; Codon NCBI: CCA ; Missense: T=Leu, C=Pro ) 

TCCAGCAAAGTAAACATATCACCTACAATCAGTTCAGAATCTAAATTATTTAGTCCA

GCACATAAAAAACCGAAAACAGCC 

 

CAC (AA pos.: 471 ; Codon NCBI: CAA ; Missense: C=His, A=Gln) 

TACTCATCACCAGAGCTTAAAAGCTGCAACCCTGGATATTCTAACAGTGAACTTCAA

ATTAATATGACAGATGGCCCTCGTACCTTAAATCCTGACAGCCCTCGCTGCAGTAAA

CACAACCGCCTCTGCATTCTCCGAGTTGTGAGGAAGGATGGGGAAAACAAGGGCAGG

CAGTTTTATGCCTGTCCTCTACCTAGAGAAGCACAATGTGGATTTTTTGAATGGGCA

GATTTGTCCTTCCCATTCTGCAACCATGGCAAGCGTTCCACCATGAAAACAGTATTG

AAGATTGGACCTAACAATGGAAAGAATTTTTTTGTGTGTCCTCTTGGGAAGGAAAAA

CAATGCAATTTTTTCCAGTGGGCAGAAAATGGGCCAGGAATAAAAATTATTCCTGGA

TGCTAA 

 

TATCTGTAGATTCTCTGGCATTTAGTCTCTTCAAACTGTGTATAATGTTTGGTCCTC

CTCTGTTTCATAGAAAAGTCATAGAATATGATACATTGAAAAGTTACTGCAAAAAAA

AAAAAAAAAAAA 

 

Explanations: 

 

CDS [Coding Sequence (e.g. ATGGTGGAA…)] 

 

Origin Sequence [Addition to CDS (e.g. GCGCAGCGTT…)] 

 

(e.g.) CGA...: SNPs (Single Nucleotide Polymorphisms) 

 

AA pos.:  Amino Acid Position (Codon Position) of SNP 

 

Codon NCBI:  Codon at same AA pos. but found altered in cDNA sequence on 

NCBI. 

 

Syn.: Synonymous – different codon but same resulting amino acid 

 

Missense: Different codon as well as different resulting amino acid 

 

ATG:  Start codon 

 

TAA:  Stop codon 

 

 

Source for SNP findings: 

 

http://www.ncbi.nlm.nih.gov/projects/SNP/  Gene ID for NEIL3 = 55247 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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8.5 PCR product quality from EGY48 yeast extractions 

 

Table 25: PCR product quality, obtained from potential positive EGY48 yeast clones from 

placental cDNA library screening, after purification using sonication method 

Yeast Clone Number Concentration (ng/µl) 260nm/280nm 260nm/230nm 

21 74.4 1.80 1.71 

33 65.2 1.83 1.52 

41 59.4 1.78 1.58 

50 54.4 1.81 0.90 

57 36.1 1.81 1.75 

64 47.2 1.81 1.33 

73 45.3 1.81 1.80 

74 53.9 1.82 1.70 

77 48.2 1.80 0.88 

78 59.2 1.84 1.34 

83 40.3 1.90 2.41 

86 43.2 1.90 2.46 

88 51.3 1.86 2.34 

89 36.3 1.92 2.34 

91 32.5 1.90 0.39 

95 39.5 1.89 2.38 

96 36.2 1.86 2.13 

97 50.9 1.90 2.07 

99 45.5 1.87 2.47 

103 13.1 1.81 2.05 

111 72.3 1.63 0.94 

113 37.6 1.83 1.91 
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Yeast Clone Number Concentration (ng/µl) 260nm/280nm 260nm/230nm 

117 37.2 1.76 1.60 

120 46.8 1.84 1.62 

121 37.3 1.84 1.65 

123 42.4 1.82 1.70 

124 42.9 1.82 1.57 

125 44.0 1.80 1.50 

126 39.1 1.87 1.75 

127 34.3 1.79 1.35 

131 34.0 1.89 1.27 

136 35.0 1.85 0.27 

142 32.6 1.84 1.44 

147 43.8 1.86 1.67 

148 24.5 1.84 1.41 

149 26.6 1.82 1.68 

151 27.6 1.80 1.74 

156 28.0 1.76 1.28 

160 35.5 1.82 0.23 

162 40.4 1.83 1.42 

163 44.9 1.87 2.05 

166 36.7 1.82 1.70 

170 42.3 1.78 1.67 

178 32.1 1.85 1.77 

182 37.7 1.80 1.68 

185 37.0 1.83 0.52 

188 39.8 1.85 1.72 

189 40.1 1.78 1.15 
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Yeast Clone Number Concentration (ng/µl) 260nm/280nm 260nm/230nm 

190 on 23 Nov 28.5 1.80 1.40 

190 on 24 Nov 120.4 1.37 0.33 

191 36.7 1.82 1.43 

193 38.0 1.80 1.06 

196 23.3 1.88 1.38 

199 39.0 1.90 1.82 

200 40.4 1.85 1.77 

208 34.6 1.86 1.36 

 

8.6 Complete sequencing (BLAST) results of Y2H screenings 

8.6.1 Complete sequencing (BLAST) results of placental cDNA library screen 

 

Clone 
No. 

BLAST Result 
Conserved  
Domains 

In 
frame? 

CDS? 

14 
  

Protein phosphatase 1, regulatory (inhibitor) 
subunit 7  

LRR_SD22 Leucine 
Rich repeats 

? YES 

15 No PCR product       

21 
Decorin (DCN), transcript variant C, mRNA 

(also Variants B, A2, A1, E, D) 

LRR_TYP Leucine 
Rich repeats 
(Superfamily) 

YES YES 

28 
Interleukin 1 receptor accessory protein 

(IL1RAP), RefSeqGene on chromosome 3 

-------------No 
domain found--------

------- 

-   

33 RPL10 ribosomal protein L10  
Ribosomal_L16_L1

0e domain 
NO YES 
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Clone 
No. 

BLAST Result 
Conserved  
Domains 

In 
frame? 

CDS? 

41 
Homo sapiens shisa homolog 5 (Xenopus 

laevis) (SHISA5), mRNA 

-------------No 
domain found--------

----- 

- YES 

50 No PCR product   -   

57 No DNA Sequence found by sequencing   -   

59 

Homo sapiens chromosome 6 genomic 
contig, GRCh37.p5 Primary Assembly -- 

Features of the part of sequence: AN1-type 
zinc finger protein 3 [Homo sapiens] 

  - NO 

63 
Homo sapiens gamma-aminobutyric acid 

(GABA) A receptor, epsilon (GABRE), mRNA 
  - NO 

64 
TIMP metallopeptidase inhibitor 2 (TIMP2), 

mRNA 
NTR_like 

(Superfamily) 
YES YES 

73 Ribosomal protein L30 (RPL30), mRNA 
Ribosomal_L7Ae 

(Superfamily) 
YES YES 

74 
RNA binding motif protein 8A (RBM8A), 

mRNA 

--------------No 
domain found--------

-------- 

YES YES 

77 

Chorionic gonadotropin, beta polypeptide 8 
(CGB8), mRNA (also polypeptide 5, 7, 2, 1 
and luteinizing hormone beta polypeptide 
(LHB) with decreasing E values and Max 

ident) 

GHB_like YES YES 

78 

Chorionic gonadotropin, beta polypeptide 8 
(CGB8), mRNA (also polypeptide 5, 7, 2, 1 
and luteinizing hormone beta polypeptide 
(LHB) with decreasing E values and Max 

ident) 

GHB_like NO? YES 

83 No DNA sequence found by sequencing       

86 No DNA Sequence found by sequencing       
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Clone 
No. 

BLAST Result 
Conserved  
Domains 

In 
frame? 

CDS? 

88 Hemoglobin, alpha 1 (HBA1), mRNA Globin NO YES 

89 No DNA sequence found by sequencing       

91 No DNA sequence found by sequencing       

95 No DNA Sequence found by sequencing       

96 No significant similarity found whith BLAST.       

97 
Chorionic somatomammotropin hormone 1 

(placental lactogen) (CSH1), mRNA 
Somatotropin_like NO YES 

99 
Homo sapiens shisa homolog 5 (Xenopus 

laevis) (SHISA5), mRNA 
  -   

103 No PCR product       

111 
Chorionic somatomammotropin hormone 1 

(placental lactogen) (CSH1), mRNA 
Somatotropin_like YES YES 

113 
Proteasome (prosome, macropain) subunit, 
alpha type, 5 (PSMA5), transcript variant 1, 

mRNA 

Proteasome_alpha
_type_5 

NO YES 

117 
Osteoclast stimulating factor 1 (OSTF1), 

mRNA 
--------No domain 

found---------- 
- NO 

120 
Chorionic somatomammotropin hormone 1 

(placental lactogen) (CSH1), mRNA 
Somatotropin_like YES YES 

121 No DNA Sequence found by sequencing       

123 
Chorionic somatomammotropin hormone 1 

(placental lactogen) (CSH1), mRNA 
Somatotropin_like YES YES 

124 
Pregnancy specific beta-1-glycoprotein 5 

(PSG5), transcript variant 1, mRNA 
--------No domain 

found---------- 
- NO 
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Clone 
No. 

BLAST Result 
Conserved  
Domains 

In 
frame? 

CDS? 

125 
Chorionic somatomammotropin hormone 1 

(placental lactogen) (CSH1), mRNA 
Somatotropin_like YES YES 

126 
Chorionic somatomammotropin hormone 2 

(CSH2), transcript variant 1, mRNA 
Somatotropin_like YES YES 

127 
Chorionic gonadotropin, beta polypeptide 8 

(CGB8), mRNA 
GHB_like NO? YES 

131 
Chorionic somatomammotropin hormone 1 

(placental lactogen) (CSH1), mRNA 
Somatotropin_like YES YES 

136 
Chorionic somatomammotropin hormone 2 

(CSH2), transcript variant 1, mRNA 
Somatotropin_like YES? YES 

142 
Chorionic somatomammotropin hormone 2 

(CSH2), transcript variant 1, mRNA 
--------No domain 

found---------- 
- NO 

147 
Ornithine decarboxylase antizyme 1 (OAZ1), 

mRNA 
ODC_AZ 

(Superfamily) 
? YES 

148 No DNA Sequence found by sequencing   -   

149 
Structural maintenance of chromosomes 6 

(SMC6), transcript variant 1, mRNA 

ABC_SMC6_euk, 
P-loop_NTPase 
(Superfamily) 

YES 
mRNA/

NO 
CDS 

YES 

151 
HOP homeobox (HOPX), transcript variant 3, 

mRNA 
Homeodomain YES YES 

156 No PCR product   -   

160 
ELAV (embryonic lethal, abnormal vision, 

Drosophila)-like 1 (Hu antigen R) (ELAVL1), 
mRNA 

RRM (found two 
times in same 

sequence) 

YES YES 
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Clone 
No. 

BLAST Result 
Conserved  
Domains 

In 
frame? 

CDS? 

162 
Proteasome (prosome, macropain) subunit, 
alpha type, 5 (PSMA5), transcript variant 1, 

mRNA 

Proteasome_alpha
_type_5 

NO YES 

163 Hemoglobin, beta (HBB), mRNA Globin YES YES 

166 
Transglutaminase 2 (C polypeptide, protein-

glutamine-gamma-glutamyltransferase) 
(TGM2), transcript variant 1, mRNA 

--------No domain 
found---------- 

- NO 

170 
Ribosomal protein L9 (RPL9), transcript 

variant 2, mRNA 
Ribosomal_L6 
(Superfamily) 

? YES 

178 
CD59 molecule, complement regulatory 

protein (CD59), transcript variant 5, mRNA 
--------No domain 

found---------- 
- NO 

182 
Gamma-aminobutyric acid (GABA) A 
receptor, epsilon (GABRE), mRNA 

--------No domain 
found---------- 

- NO 

185 
Homo sapiens hemoglobin, gamma G 

(HBG2), mRNA 
Globin YES YES 

188 
Tumour protein, translationally-controlled 1 

(TPT1), mRNA 

TCTP superfamily 
(No more 

information on 
NCBI) 

YES YES 

189 
Secreted protein, acidic, cysteine-rich 

(osteonectin) (SPARC), mRNA 
--------No domain 

found---------- 
- NO 

190 No DNA Sequence found by sequencing   -   

191 
Chorionic somatomammotropin hormone 1 

(placental lactogen) (CSH1), mRNA 
Somatotropin_like YES YES 

193 
Gamma-aminobutyric acid (GABA) A 
receptor, epsilon (GABRE), mRNA 

--------No domain 
found---------- 

- NO 
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Clone 
No. 

BLAST Result 
Conserved  
Domains 

In 
frame? 

CDS? 

196 No Transcript found by BLAST   -   

199 
Chorionic somatomammotropin hormone 1 

(placental lactogen) (CSH1), mRNA 
Somatotropin_like YES YES 

200 
Proteasome (prosome, macropain) subunit, 
alpha type, 5 (PSMA5), transcript variant 1, 

mRNA 

Proteasome_alpha
_type_5 

NO? YES 

208 
(worked 
only with 

PCR 
method) 

Ribosomal RNA processing 9, small subunit 
(SSU) processome component, homolog 

(yeast) (RRP9), mRNA 

WD40 
(Superfamily), TP2 
Nuclear transition 

protein 2 
(Superfamily), DNA 

polymerase III 
subunits gamma 

and tau (Multi 
Domain) 

YES? YES 

 

8.6.2 Complete sequencing (BLAST) results of Jurkat T-cell cDNA library 

screen 

Clone 
No. 

BLAST Result 
Conserved 
Domains 

In 
frame? 

CDS? 

1 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none -- NO 

2 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

3 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

4 No similarity found none   NO 

5 
Homo sapiens nudix (nucleoside diphosphate 

linked moiety X)-type motif 4 (NUDT4), 
transcript variant 2, mRNA  

none   NO 

6 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

7 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

8 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 
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9 No similarity found none   NO 

10 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

12 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

13 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

15 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

17 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

18 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

19 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

22 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

23 Cytochrome c oxidase none   NO 

26 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

33 

Homo sapiens solute carrier family 25 
(mitochondrial carrier; phosphate carrier), 

member 3 (SLC25A3), nuclear gene encoding 
mitochondrial protein, transcript variant 2, 

mRNA 

none NO YES 

37 
Homo sapiens ribosomal protein L4 (RPL4), 

mRNA 
none NO YES 

43 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

45 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

51 
Homo sapiens coiled-coil domain containing 
88A (CCDC88A), transcript variant 2, mRNA 

none   NO 

44 
Homo sapiens pyruvate kinase, muscle 

(PKM2), transcript variant 3, mRNA 
Pyruvate kinase 

(PK) 
NO YES 

52 No similarity found none  NO 

55 No similarity found none  NO 



 Thomas ROEDL – PhD Thesis – Salford 2013 229 

8.7 Additional pictures 

 
Figure 104: GeneExpression of NEIL3 in different human cell lines. (Image 

taken from http://biogps.gnf.org/#goto=genereport&id=55247(2010)). 
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Figure 105: Structures of mouse/human NEIL3, human NEIL1, NEIL2, E. coli Nei, 
Thermus thermophilus MutM (Fpg) and human APE2 proteins. Black boxes, the 
conserved N-terminal domain; horizontally-striped box, H2TH motif; cross-hatched 
box, zinc finger motifs; hatched box, putative nuclear localization signals; vertically-
striped box, topoisomerase IIIα homologous domain; checkered box, PCNA 
binding motif. (Image taken from Torisu et al., 2005). 
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Figure 106: 216 potential genuine clones on YNB (gal) ura

-
/his

-
/trp

-
/leu

-
 

master plates, picked from screening plates after incubation at 30°C for 
two days. 


