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  Prediction models are at the heart of modern acoustic engineering. Current commercial room acoustic simulation software almost exclusively
approximates the propagation of sound geometrically as rays or beams. These assumptions yield efficient algorithms, but the maximum
accuracy they can achieve is limited by how well the geometric assumption represents sound propagation in a given space. This comprises their
accuracy at low frequencies in particular. Methods that directly model wave effects are more accurate but they have a computational cost that
scales with problem size and frequency, effectively limiting them to small or low frequency scenarios. This paper will report the results of initial
research into a new full-bandwidth model which aims to be accurate and efficient for all frequencies; the name proposed for this is the "Wave
Matching Method". This builds on the Boundary Element Method with the premise that if an appropriate interpolation scheme is designed then
the model will become 'geometrically dominated' at high frequencies. Other propagation modes may then be removed without significant error,
yielding an algorithm which is accurate and efficient. This paper will present the general concepts of wave matching and the results from some
numerical test cases.
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INTRODUCTION 

Prediction models are at the heart of modern acoustic engineering and are used in a diverse range of applications 
from refining the acoustic design of classrooms and concert halls to predicting how noise exposure varies through an 
urban environment. Current commercial room acoustic simulation software almost exclusively approximates the 
propagation of sound geometrically; early reflections are typically evaluated deterministically using a variant of Ray 
Tracing/Image Source method and late time reverberation is estimated stochastically on the assumption that its 
distribution matches that of propagated rays. These assumptions yield efficient algorithms, but the maximum 
accuracy they can achieve is limited by how well the geometric assumption represents sound propagation in a given 
space.  Errors may be significant in certain circumstances, especially at lower frequencies or in smaller rooms.  

Methods that model wave effects directly, such as the Boundary Element Method (BEM) and the Finite Element 
Method (FEM), do not suffer from this shortcoming. BEM has been shown to be an excellent choice for room 
acoustic simulation, particularly when the priority is to extremely accurately predict scattering from small objects in 
anechoic conditions1,2, hence it can greatly accelerate and reduce the cost of prototyping new and innovative 
acoustic treatments. In addition the mathematical theory behind BEM and FEM is well understood and theoretical 
error bounds are available such that algorithms can be adapted to guarantee required accuracy; in this sense they are 
said to have “controllable” error. However they have a computational cost and memory requirement that scales with 
badly problem size and frequency, effectively limiting them to small or low frequency scenarios. In particular the 
number of degrees of freedom required by a BEM model grows with frequency and/or geometry size squared and 
the number of coefficients in the (full) interaction matrices grows with frequency and/or geometry size to the power 
four. The latter can be thought of as the major bottleneck in the BEM algorithm, both in terms of memory 
requirements and the computational cost of linear algebra. This is to an extent addressed by the Fast Multipole 
Method3, however the number of degrees of freedom required remains unchanged. 

In contrast, the success of geometric methods at high-frequencies tells us that good results can be achieved with a 
much smaller number of degrees of freedom. Hybrid BEMs, where a known geometric solution for a specific 
geometry is used to design a bespoke discretisation scheme, are achieving excellent progress and can deliver 
extremely efficient algorithms with controllable error4; however these are presently limited to specific scattering 
object shapes and largely to two-dimensions. In this paper the end objectives are similar, but a more physically-
motivated approach will be followed in 3D with the aim of unifying BEM with geometric approaches. 

The method described herein is a prototype BEM formulation which we are calling ‘Wave Matching’.  The 
fundamental differences between this and a standard BEM are that: 1) surface quantities are discretised using wave-
modes instead of elements; 2) a novel testing integral is used. We believe that BEM is a good place to start in a 
search to unify wave and geometric approaches since both classes of algorithm work with surface geometry and 
analytically compute how elementary sound sources propagate through the media unobstructed, so the problem is 
one of computing the reflections and scattering from obstacles. The fundamental difference between BEM and 
geometric methods is that BEM attacks the problem by numerical discretisation of the total field whereas geometric 
methods trace reflections individually according to a high-frequency asymptotic approximation.  The premise in this 
paper is that if an appropriate family of oscillatory wave-modes is used as a BEM discretisation scheme, then as the 
frequency is increased the scattering of each mode becomes increasing ray-like and the number which have 
significant energy remains relatively small. Accordingly this method should retain low frequency accuracy and 
controllable error, since it is simply another approach to discretisation, but offer opportunities for acceleration at 
high frequencies. Numerically this means that although the number of degrees of freedom and the dimensions of the 
interaction matrices must still grow with problem size and frequency squared, all but a relatively small number of 
coefficients will be close to zero5. This paper extends the research in referece 5 by constructing a full interaction 
matrix (including self-interaction) for the test case problem of scattering by a 1m2 cube and examining what trade-
off between % matrix population and % error can be achieved by setting small interaction coefficients to zero. 

FORMULATION 

Figure 1a depicts a scattering problem, comprising an obstacle submerged in a connected domain Ω+ containing 
air with equilibrium density �0 and speed of sound �.  � is a surface conformal to the obstacle, thus the obstacle 
resides in the interior domain Ω−.  �∞  is the extent of the medium; it may be shown that if Sommerfield’s radiation 
condition is satisfied here then there is no reflection and this may be ignored in the integrals that follow. � and � are 
3D Cartesian vectors defining the observation and radiation points respectively and 	 =  |� − �| is the distance 
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between them. � is taken to be a point on � and 
�� is the surface-normal unit vector there. � may lie anywhere in Ω+ 
or in Ω−, including on �; in the case where � lies on � then 
�� is the surface-normal unit vector there. Total pressure �(�) in the medium is a sum of the incident pressure (�) arriving from sources and the scattered pressure �(�) 
which emanates out from the obstacle in response to this. It is assumed that all acoustic quantities vary periodically 
in time with angular frequency � (i.e. �(�, �) = �(�)�−��� ) and satisfy Helmholtz equation: ∇2� + �2� = 0, 
where � = � �⁄  is the wavenumber in radians per meter. Application of Green’s theorem in the domain Ω+ produces 
the Kirchhoff integral equation (from here on to be called the scattering integral) which allows the scattered sound �(�) to be evaluated from the total sound �(�) on �. In the case of a rigid obstacle the latter term is omitted: 

�(�) = � ��(�) ����� (�, �) − �(�, �) ����� (�)� ��
�

 (1) 

Figure 1b depicts the three distinct phases by which a BEM solves the scattering problem. First the incident 
sound (�) arriving at the obstacle from the sources is calculated using a testing integral. Second the total sound �(�) at the surface of the obstacle is solved for. This includes consideration how the scattered sound from some 
parts of the obstacle hits other parts of the obstacle and causes further scattering, hence both the testing and 
scattering integrals are involved and a linear system of equations is produced which must be solved numerically. 
This stage of the algorithm must also be coupled to some model of the obstacle’s acoustic properties (typically 
locally-reacting surface impedance). Finally the scattered sound �(�) at any receivers is calculated from the solution 
for the total surface sound �(�) using the scattering integral. 

 

 
FIGURE 1. a) Geometry of scattering by an obstacle; b) Corresponding BEM solution process 

Discretisation of Sound for a Rigid Obstacle with Planar Rectangular Faces 

In most BEM formulations the surface is partitioned into a large number of elements, which are all small with 
respect to wavelength, and on each element a small number of low-order polynomial basis functions are used. There 
are however other families of functions which could be used to discretised sound at the surface. One option which 
has attracted attention is the use of oscillatory basis functions6,7, since these might be able to capture some of the 
oscillatory behavior of the solution allowing larger elements for the same accuracy.  In the Wave Matching approach 
this idea is taken a step further and the basis functions are chosen to be slices (on �) through waves (i.e. the basis 
functions themselves satisfy Helmholtz equation). Examples of such waves could include spherical harmonics or 
families of plane waves; the latter will be used in this test case. The expected benefits of this are three-fold: 1) that 
both the scattering and testing integrals may be converted from double surface integrals to single contour integrals5, 
for evaluation with computational cost which grows only with � instead of �2; 2) that the need for elements is 
eliminated and the basis functions may be applied over each smooth obstacle face (so large with respect to 
wavelength); 3) that a small number of significant coefficients are likely to dominate the interaction matrices and 
with judicious choice of basis functions it may be possible to represent the solution for accurately �(�) using only a 
very small number of non-zero weights. It should however be emphasized that these are expected benefits and this 
paper is a step towards demonstrating that they occur in reality. 

Although the test case considered is specified to be a rigid 1m2 cube, the algorithm will be developed for the 
slightly broader class of rigid obstacles with planar rectangular faces. Conventional element-based and the new 
wave-based schemes will be developed in parallel so their performance can be compared.  
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The surface � bounding the obstacle is comprised of ��  planar rectangular faces. Each face �!  is defined by a 
corner vector "!;0 and two perpendicular edge vectors "!;1 and "!;2, with normal vector 
�! = "#!;1 × "#!;2. 

� = $ �!
�� −1
!=0  (2) 

In the element-based mode of discretisation, each face �!  is subdivided into a %!  by �!  grid of small rectangular 
elements &!,' ,�  with centers at *!,' ,�c = "!;0 + [' + 1 2- ] %!⁄ "!;1 + [� + 1 2- ] �!⁄ "!;2. To achieve eight elements 
per wavelength we set %! = .4�/"!;1/ 3⁄ 5 and �! = .4�/"!;2/ 3⁄ 5, and for the 1m2 cube under test, �� = 6 and %! = �! = ⌈4� 3⁄ ⌉ for all �! . 

On each element &!,' ,�  a piecewise-constant basis function e!,' ,�  is defined: 

e! ,' ,� (�) ≝ :1 if � ∈ &! ,' ,�0 otherwise
� (3) 

The total pressure � on the surface is approximated by a weighted sum of these; note the superscript “e” on the 
weights which denotes that they apply to the element-based scheme: 

�(�) ≈ @ @ @ A!e(', �)e! ,' ,� (�)�! −1
�=0

%! −1
' =0

�� −1
!=0  (4) 

The pressure scattered by a single basis function is given as: 

�!,' ,�e (�) = � e!,' ,� (�) ����� (�, �)��
�

 (5) 

The wave-basis scheme uses a two-dimensional Fourier series to approximate the pressure on each face. This is 
particularly suitable for rectangular faces since the basis functions are exactly orthogonal; they are defined: 

f!,' ,� (�) ≝ :��B�−*! ,0,0c C∙E! ,' ,� if � ∈ �!0 otherwise
� (6) 

Here  ' and � are spatial harmonic indexes and E!,' ,�  is defined as: 

E!,' ,� ≝ 23'/"!;1/ "#!;1 + 23�/"!;2/ "#!;2 − 
�! F�2 − G23' /"!;1/⁄ H2 − G23� /"!;2/⁄ H2
 (7) 

The total pressure � on the surface is approximated by a weighted sum of these; note the superscript “f” on the 
weights which denotes that they apply to the Fourier-based scheme: 

�(�) ≈ @ @ @ A!f (', �)f! ,' ,� (�)�! 2⁄ −1
�=−�! 2⁄

%! 2⁄ −1
' =−%! 2⁄

�� −1
!=0  (8) 

It should be noted that each f!,' ,� (�) really represents two waves which are mirror images in the plane of �! ; one 
incoming and one outgoing with respect to the obstacle. However the rigid boundary condition on the cube means 
the reflection coefficient between each pair is always unity, hence they have been collapsed into one basis function 
to simplify the algorithm and half the number of degrees of freedom; a similar approach was successfully used in the 
time domain for surface-normal plane waves in reference 8. The surface-normal component of particle velocity is 
equal and opposite for each wave pair, hence it could be argued that the wave propagation vector for the combined 
basis (as given in Equation 7) should have zero surface-normal component. However the testing integral (see next 
section) requires the surface-normal component of the incoming wave, and since B� − *!,0,0c C ∙ 
�!  is always zero, the 
incoming wave propagation vector may be safely applied to the combined basis. Accordingly the pressure scattered 
by a single basis function is written with the surface-normal velocity omitted, since that is zero for the combined 
basis function pair: 

�!,' ,�f (�) = � f!,' ,� (�) ����� (�, �)��
�

 (9) 
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Testing Integral 

Figure 2 illustrates the conceptual separation between the boundary integral model of the medium and the model 
of the obstacle’s acoustic properties. In many acoustic application the presence of two coupled models is not 
obvious, since either (as in this test case) the obstacle is considered sound hard and impenetrable, in which case 
there is no acoustic obstacle model, or it is considered to be locally reacting, in which case a surface impedance 
model is used and this can be substituted directly into the BEM equations giving the illusion of there being only one 
model. If the obstacle is sound penetrable and non-locally reacting then the presence of two models becomes clearer, 
since some sort of FEM (or BEM if the obstacle is has homogeneous acoustic properties) is required for the interior 
domain Ω−; these are coupled to the medium model in Ω+ through the discretisation scheme on �. 

 
FIGURE 2. Conceptual separation of medium and obstacle models 

 
This is discussed here because it gives insight into what the medium model must achieve in Ω−, effectively an 

acoustic black hole in place of the obstacle, from which nothing is reflected (unless passed back from the obstacle 
model) and through which nothing can pass (unless the obstacle model implements this). The objectives of the 
testing integral are thus twofold: 1) to provide input data for the model of the obstacle’s acoustic properties; 2) to 
permit scattering of a “shadow” wave into the interior of the obstacle to cancel the incoming sound such that the 
total acoustic energy (incident plus scattered) within the volume occupied by the obstacle is zero and so that waves 
cannot pass through the obstacle (unless the obstacle model implements this).  

Typically this has been achieved by stipulating that total pressure �(�) = 0 if � ∈ Ω−. However (with the 
exception of the CHIEF9 method) it is only possible to enforce this infinitesimally inside �, so instead of being a 
region of zero pressure Ω− becomes a soft cavity, which has its own resonances leading to the well documented non-
uniqueness problem. It is also well known that using a combination of the pressure and its surface-normal derivative 
circumvents this problem. In the frequency domain acoustics this is known as the Burton-Miller method10 but in 
electromagnetic and time-domain acoustics it is known as the Combined Field Integral Equation (CFIE)11; we will 
use the latter formulation since the normalization factors better suit our application. 

The CFIE may be stated in the frequency domain as ��(1 − I)�(�) = I �� ��J⁄ (�), where 0 < I < 1 is a 
frequency-independent blend coefficient. Taking the median value I = 1 2- , we have the condition: 

���(�) = ����J (�) (10) 

It is easy to show that Equation 10 is satisfied by any plane wave travelling in the direction 
��, that is, out of the 
obstacle. The CFIE therefore permits sound emanating from the obstacle model to return to the medium, but 
discretises sound arriving from the medium, passing that data to the obstacle model and scattering cancelling waves 
into Ω−. As a side effect of this, it also permits any small amounts of energy entering Ω− due to only approximate 
cancellation of incident and scattered waves to exit into Ω+ without reflection, hence internal cavity resonances do 
not occur12. 

It would be desirable to create a variant of the CFIE which is valid for a more general class of waves; in this 
paper we are specifically interested in plane waves travelling in the direction E!,' ,� . To this end we define the 
testing statement, which matches Equation 10 when ' = � = 0 and E!,0,0 = −�
��: ����J (�) + �
�� ∙ E!,' ,� �(�) = 0 (11) 

Obstacle 
model  
in Ω− 

Medium 
model in Ω+ 
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Because the plane wave basis functions spatially overlap with one another, and because there do not exist 
locations where all but one are zero, collocation testing is not appropriate and Galerkin testing integrals must be 
evaluated to achieve a well-conditioned numerical system. The most appropriate testing functions are the complex 
conjugates of the basis functions, since these de-modulate the oscillation of the form ���∙E! ,' ,� . The testing face will 
be called �L  (i.e. indexed by b) and on it the basis functions will be indexed by M and N, with summation limits OL  
and PL .  Using ��L,M,N ��J⁄ (�) = −�
�� ∙ EL,M,N �L,M,N (�) we have: 

� �L,M,N (�)QQQQQQQQQQ R ����J (�) + �
�� ∙ EL,M,N �(�)S
�L

�� = � T�L,M,N (�)QQQQQQQQQQ ����J (�) − �(�) ��L,M,N��J (�)U
�L

�� (12) 

The right hand statement in Equation 12 is very interesting for two reasons. First it bears a very close 
resemblance to the energy-inspired time domain BEM algorithms in references 13 and 14, for which unconditional 
stability can be proven. Secondly it bears a close resemblance to the scattering integral, suggesting that 
transformation to an edge integral for efficient evaluation may be possible; this has yet to be shown but Asvestas15 
gives a process for converting double integrals of this form into contour integrals. Substituting �(�) = �(�) + (�) 
and then breaking down �(�) into a sum of waves �!,' ,�f (�) scattered by each basis function yields: 

VL,!f (M, N, ', �) ≝ � �L,M,N (�)QQQQQQQQQQ ���!,' ,�f��J (�) + �
�� ∙ EL,M,N �!,' ,�f (�)�
�L

�� (13) 

WLf (M, N) ≝ − � �L,M,N (�)QQQQQQQQQQ R ���J (�) + �
�� ∙ EL,M,N (�)S
�L

�� (14) 

Because each face uses two discretisation indexes the interaction matrices are four-dimensional, though it is 
straightforward to reshape them to two-dimensions for use with standard matrix solver. The reshaped matrices are 
concatenated as follows to give a matrix equation VA = W which may be solved numerically to find the vector of 
discretisation weights A: 

V = XV0,0 ⋯ V0,�� −1⋮ ⋱ ⋮V�� −1,0 ⋯ V�� −1,�� −1^ W = XW0⋮W�� −1^ A = TA0⋮A�� −1U (15) 

Numerical Implementation 

The element based scheme is tested in a similar manner to above. Some intermediary quantities are defined: 

_L,!e (M, N, ', �) ≝ � eL,M,N (�) � e!,' ,� (�) ����� (�, �)��
�

��
�

 

= � � ����� (�, �)��
E! ,' ,�

��
EL ,M ,N

 
(16) 

aL,!e (M, N, ', �) ≝ � eL,M,N (�) � e! ,' ,� (�) �2���� ��J (�, �)��
�

��
�

 

= � � �2���� ��J (�, �)��
E! ,' ,�

��
EL,M ,N

 
(17) 

These integrals above are evaluated using standard numerical techniques, with just single-point Quadrature on 
the outer integral but proper care being taken to regularise the singularities in the inner-kernel.  The element-based 
interaction matrices use the CFIE hence: VL,!e = aL,!e − ��_L,!e  (18) 

The excitation wave is a plane wave with propagation direction Eb  , so (�) = ��E ∙� and � ��J⁄ = �
�L ∙ E : 

WLe (M, N) = −�B
�L ∙ E − �C � (�)
&L,M ,N

�� (19) 
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For the wave-based scheme the intermediate matrices are defined as: 

_L,!f (M, N, ', �) ≝ � �L,M,N (�) � �!,' ,� (�) ����� (�, �)��
�

��
�

 (20) 

aL,!f (M, N, ', �) ≝ � �L,M,N (�) � �!,' ,� (�) �2���� ��J (�, �)��
�

��
�

 (21) 

These combine to give the wave-matching testing integral: VL,!f (M, N, ', �) = aL,!f (M, N, ', �) + �
�! ∙ E!,' ,� _L,!f (M, N, ', �) (22) 
The excitation vectors is given by: 

WLf (M, N) = −�B
�L ∙ E + 
�L ∙ EL,M,N C � fL,M,N (�)QQQQQQQQQQ (�)
�L

�� (23) 

Equations 20 and 21 are less well studied than Equations 16 and 17 and direct numerical integration schemes are 
still under development. However it is possible to numerically evaluated Equation 20 from Equation 16 and 
Equation 21 from Equation 17 as follows; this will be demonstrated for the outer integral containing the testing 
function, but a similar process applies to the inner integral too. 

With a little manipulation it can be shown that the testing function at the element centres has the same form as a 
two-dimensional discrete Fourier transform (DFT): 

�L,M,N G*L,M′ ,N ′c H = �−�23OL
MM′ �−�23PL

NN′
 (24) 

If the wave basis is approximated by elements then a DFT type statement arise: 

�L,M,N (�) ≈ @ @ �L,M,N G*L,M′ ,N ′c HeL,M′ ,N ′ (�)PL −1
N′ =0

OL −1
M′ =0  

= @ @ �−�23OL
MM′ �−�23PL

NN′ eL,M′ ,N ′ (�)PL −1
N′ =0

OL −1
M′ =0  

(25) 

Substituting this (and a similar statement over the scattering face) into Equation 20 and Equation 21 allows _ 
and a to be calculated by a 4D ℱℱh, where i(M, N, ', �) = ',  and j(M, N, ', �) = �, and W by a 2D ℱℱh: 

_L,!f = �−2�3 R i%! + j�! S ℱℱh4 :flip3,4 G_L,!e Hn (26) 

aL,!f = �−2�3R i%! + j�! S ℱℱh4 :flip3,4 GaL,!e Hn (27) 

WLf = ℱℱh2{WLe } (28) 
Since �!,' ,�  has no conjugate extra operations are required to make it fit the form of a DFT: multiplication by  �−2�3 [i %!⁄ +j �!⁄ ] which implements a spatial shift by one element; application of flip flips the matrix in each of the 

dimensions listed underneath, hence flip3,4  is equivalent to flipdim(flipdim(A,3),4)in Matlab™. 

TEST PROCEDURE AND RESULTS 

As discussed earlier, the hypothesis of this paper is that the wave-mode scheme produces interaction matrices 
which are dominated by a relatively small number of significant terms, and that the remainder may be set to zero 
without incurring substantial error. This will be tested by progressively culling (i.e. setting to zero) interaction 
coefficients, starting with the smallest magnitude and gradually moving to the largest, and examining the error that 
results. Because BEM solutions rely on cancellation and interference between different terms, it is unwise to use a 
hard cutoff to cull interactions and instead a soft cutoff was devised. This operated by applying a linear taper 
between two thresholds �oMM�q  and �rst�q , and was stated in such a way that the phase of the complex-valued 
interaction matrices was retained (see Equation 29 overleaf). In all cases it was chosen that �rst�q = 0.1 × �oMM�q . 
An example culling-profile with �oMM�q = 10−3 is shown in Figure 3. 
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v�orr�� =
⎩⎪⎨
⎪⎧v |v| > �oMM�q

v × �oMM�q|v| |v| − �rst�q�oMM�q − �rst�q �rst�q < |v| < �oMM�q0 |v| < �rst� q
� (29) 

 

 
Figure 3. Example Culling Profile with �oMM�q = 10−3 and �rst�q = 10−4 

 
Culling was applied to both the A and b matrices, with �oMM�q  respectively set as a fraction of the largest 

magnitude coefficient in each. Solution error incurred through culling was quantified by computing the mean error 
in the surface pressure at the element centers, normalized by the mean magnitude of the un-culled solution. For the 
element scheme this could be computed directly from the surface weights (as Equation 30), but for the wave-mode 
scheme computation of the surface pressures by inverse FFT of the discretisation weights was required beforehand. 

Normalised Mean Error = mean[A − Aculled ]mean[A]   (30) 

 

 
Figure 4. Percentage population of the A matrices vs percentage normalized mean error in the surface pressure  

for k = 4π. Percentage population required to achieve 1% and 5% error is indicated for each scheme. 
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Figure 4 shows the trend between percentage population of the A matrices, being the number of non-zeros versus 
the total number of elements (�� × ⌈4� 3⁄ ⌉4), and the percentage normalized mean error, as defined in Equation 30. 
In this test case the wavenumber � = 43 and E = [0 0 −�]. It is clearly seen that the culling process causes 
less error in the wave-matching scheme than it does when using conventional elements. To achieve error below 5% 
the wave-matching scheme requires only 8% of its coefficients to be retained, whereas the element scheme requires 
45% to be retained. To achieve error below 1% the wave-matching scheme requires only 32% of its coefficients to 
be retained, whereas the element scheme requires 95% to be retained.  

This is encouraging initial evidence that supports the notion that the use of a wave-matching scheme does indeed 
allow the interaction matrices to be sparsified. Ongoing research will look at other test cases and examine how the 
number of interactions which must be retained varies with frequency, since this will inform us as to whether the 
scheme becomes quasi-geometric at high frequencies as hoped, or just gives a fixed efficiency scaling as other 
existing oscillatory basis functions have achieved6,7. 

CONCLUSIONS 

This paper compared a conventional element-based BEM formulation and a new ‘wave-matching’ formulation 
on the problem of scattering by a cube. Small coefficients in the interaction matrices were culled (set to zero) and 
the error examined. It was found that the wave-matching scheme is more tolerant of culling than the standard 
elements-based approach, which may provide a means of achieving improved efficiency at high frequencies. 
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