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Small-angle neutron scattering (SANS) measures porosity in nuclear graphites, including

both open pores, caused by escaping decomposition gases, and internal cracks (in coke par-

ticles) generated by anisotropic thermal contraction along the c-direction (Mrozowski

Cracks). Porosity changes on the length scale observable by SANS must control the devel-

opment of internal stresses and hence of cracking in AGR graphite due to irradiation (both

fast neutron displacements of carbon atoms and radiolytic corrosion by CO2). Such crack-

ing may cause premature reactor shutdown. SANS measurements show that porosity is

fractal on a length scale between �0.2 and 300 nm, presumably due to Mrozowski cracks

– because the fractal index of the SANS signal depends only on the porosity of the graphitic

filler. We report here two novel uses of the SANS technique as applied to reactor graphite –

contrast matching with D-toluene (to measure the fraction of the porosity open to the sur-

face) and the temperature dependence of the scattering (to measure pore width changes up

to 2000 �C). These results provide important new information on AGR graphite porosity and

its evolution during irradiation.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Currently about 10% of the UK electrical generating capacity

comes from the Advanced Gas-cooled nuclear Reactors

(AGRs) which are scheduled to shut down in the period

2018–2023 although the closure date may be extended, if

an acceptable safety case can be established. They are to

be replaced with water moderated reactors (PWRs or BWRs).

However, progress with the latter is subject to significant de-

lay. Thus, research contributing to the life-extension of the

UK AGR fleet could literally keep the UK’s lights on. At pres-

ent, uncertainty in the behavior of the graphite moderators

creates a major difficulty in establishing a safe limit to oper-

ating life because deterioration of the moderator is one of
the key factors limiting the potential lifetimes of AGRs1.

After prolonged high intensity irradiation the accumulated

fast neutron damage causes microscopic dimensional

changes as well as changes in the total porosity [1]. Also,

radiolytic corrosion by the carbon dioxide coolant enlarges

the pores open to the coolant [2]. These, in turn, change

the macroscopic properties of the moderator material mak-

ing it more fragile and the occurrence of cracking more

unpredictable.

A model for the fast neutron damage in graphite was

originally developed in the 1970s but this is now believed

to be over-simplified because, at high radiation doses, the

observed properties differ significantly from those predicted.

The traditional view was that irradiation created new inter-
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stitial hexagonal layers which were only weakly coupled to

the rest of the graphite structure [1]. However, ab inito

calculations demonstrate that the atoms at the edge of such

a layer will interact strongly with the layer above or below

[3,4]. The resulting uncertainty in the behavior of the mod-

erator is considered likely to limit the safe operating life

of the reactor.

Currently, there are a number of techniques available to

investigate the properties of reactor graphites on both the

atomistic and macroscopic scales. However, in order to

understand the mechanisms involved, it is necessary to

understand a link between the properties on these very differ-

ent length scales and this link is currently difficult to estab-

lish. Small-angle neutron scattering (SANS) measurements

can uniquely provide an insight into the graphite structure

and its evolution under reactor conditions in the mesoscopic

range (�0.2–300 nm). It should be noted that various kinds of

microscopy can be used on these length scales. However,

microscopy examines a very limited field of view of this very

disordered material whereas SANS records, in one measure-

ment, the average density–density (or porosity–porosity) cor-

relation function over the above length scale – providing a

precise description of the average pore width distribution.

This technique is easily extended to measure, for instance,

the macroscopic variation of this porosity with position in

an irradiated graphite component.
1.1. Small-angle neutron scattering

Full reviews of the small-angle neutron scattering from car-

bons can be found elsewhere [5,6]. However, it is useful to give

the general form of the equation expressing the coherent

neutron differential scattering cross-section as a function of

the scattering vector, Q.

dR
dX
ðQÞ ¼ NPV2

Pðqc � qpÞ
2SðQÞF2ðQÞ þ Binc ð1Þ

Here Q = 4p sin (h/2)/k where h is the scattering angle and k

is the neutron wavelength, qc is the neutron scattering length

density of the carbon and qp is the same quantity for the pore

(or the corresponding value when the pore is filled with a li-

quid), Np is the number of pores/unit volume, Vp is the volume

of the pore, S(Q) describes the spatial separation of the pores

and F(Q) is the form factor which is determined by the pore

shape. More formally, these quantities should be averaged

over a distribution of pore sizes. Finally, Binc is a flat (Q-inde-

pendent) background due mainly to incoherent scattering,

principally from residual hydrogen.

An important result, known as the Porod Invariant (or To-

tal Scattering), is the integral of the cross-section weighted by

Q2, the value of which can be related to the volume fraction of

the pores, u, so long as the cross-section is properly normal-

ized, as it is here [5].

P:I: ¼
Z 1

0

Q2 dR
dX
ðQÞdQ ¼ 2p2ðqC � qpÞ

2/ð1� /Þ ð2Þ

In the present paper, the measured SANS data is presented

in terms of dR/dO(Q), but for simplicity, we refer to this as

‘‘Intensity’’. Values for the Porod Invariant have been
determined by integration between the upper and lower lim-

its of the experimental measurements.

1.2. Previous SANS measurements on reactor graphite

The SANS technique has been very widely used for the study

of activated carbons of all types. This work has been reviewed

by Hoinkis [6]. There has been much less work published on

denser reactor moderator graphites and this work is reviewed

briefly here. The first measurements were by Martin and Hen-

son [7] who measured SANS from reactor graphites before

and after irradiation. They found some extra scattering at

fairly high Q which they attributed to small clusters of inter-

stitials and vacancies produced by fast neutron irradiation.

They also observed that the extra scattering disappeared

when samples were annealed at 1100 �C for one hour. Our

present interest is in larger scale porosity and this is seen at

considerably lower Q values. Here most of the early measure-

ments were performed by Martin and Caisley [8–10]. These

authors measured a series of AGR (Gilsocarbon) graphites,

both ‘‘as produced’’ and after neutron irradiation, using the

D11 SANS instrument at the ILL in Grenoble [11]. They estab-

lished that the SANS changed significantly as a result of neu-

tron irradiation [8] and was determined entirely by the coke

source used [9]. They also demonstrated how the SANS chan-

ged as a result of both thermal and radiolytically-induced oxi-

dation [10]. Data from these experiments, as originally plotted

on linear scales of intensity against Q, showed a smooth

reduction in intensity with increasing Q which was modeled

as the sum of two Guinier functions, each of which described

the form factor of a spherical pore, averaged over a small

range of pore radii (to eliminate terms due to a sharp cut-

off at a specific radius) given by:

dR
dX
ðQÞ � FðQÞj j2 ¼ exp � 1

3
Q2R2

g

� �
ð3Þ

Here, Rg is the radius of gyration of the pore (if the pore is

truly spherical, Rg
2 = 3R2/5). Estimates of the number of pores

with radii of gyration near 2.5 nm and near 10 nm were de-

rived from a ‘‘Guinier Plot’’, namely a plot of lnðdR
dX ðQÞÞ versus

Q2 for QRg < 1, which would be linear for a single pore size and

which would give an intercept of Np < Vp
2 > (qc � qp)2. If there

is a distribution of pore radii present, the resultant plot will

have a curved form (negative slope decreasing with increas-

ing Q). Thus, the intercepts of the tangents to this curve hav-

ing gradients corresponding to Rg values of 2.5 nm and

10.0 nm were taken to be representative of the populations

of pores of these sizes. Measurements were made on unirra-

diated samples and those irradiated with up to 51.3 · 1024 n/

m2 of fast neutrons. The results showed a progressive de-

crease in population of 10.0 nm pores with a corresponding

increase in population of 2.5 nm pores as a function of irradi-

ation level.

In their second publication [9], Martin and Caisley reported

on SANS experiments on 14 different graphite samples. These

samples were characterized by the nature of the coke source

(petroleum coke, pitch coke or Gilsocarbon) and by a range of

other characteristics including the binder material and the

grain size of the filler. The very clear conclusion was that

the SANS was entirely determined by the nature of the filler.



Fig. 1 – SANS from G.M6 graphite: unirradiated and

irradiated at 35.9 · 1020 n cm�2 (replotted from Martin and

Caisley [8]).

Fig. 2 – SANS from GE1 graphite: effect of irradiation

(replotted from [8]).
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This rules out any contribution to the SANS signal from, for

instance, the porosity involved in the evolution of gases

generated by the pyrolysis of the binder or to cracks in the

inter-granular region or at the surface area of the filler, prob-

ably because the size of the corresponding pores lie beyond

the observed range. In a third paper, they reported on the rel-

ative effects of thermal and radiolytic oxidation on the poros-

ity [10].

Finally, Hoinkis et al. [12] compared the effects of oxidative

corrosion (CO2 at 900 �C) with porosity changes induced by

neutron irradiation (5 · 1021 n/cm2 or �7 dpa) in nuclear

graphites. Using small angle X-ray scattering, they came to

similar conclusions about the changes in the relative popula-

tions of large and small pores.

1.3. Reinterpretation of the SANS data

Since the publication of Martin and Caisley’s data [8–10], the

fundamental significance of fractal distributions in Nature

has become very widely appreciated [13]. In a ‘‘mass fractal’’,

for instance, defined in terms of volume or pore fractals, the

density–density correlation function (or the pore–pore corre-

lation function) decreases according to a non-integer power

law with an index Dm that is less than the Euclidean dimen-

sion, d. Specifically, it can be shown that 2< Dm < 3 in 3-

dimensions and 0 < Dm < 1 in 1-dimension. In either case it

gives rise to an S(Q) function that varies as Q�Dm. The term

‘‘surface fractal’’, on the other hand, refers to a fractally rough

surface, the area of which increases as the ‘‘tile’’ used to mea-

sure it gets smaller. If the surface were smooth (i.e. indepen-

dent of tile size), the scattering would give rise to a Q�4

dependence which is referred to as Porod Scattering. But for

a fractal surface, the gradient is reduced below 4, as here

higher Q values correspond to a smaller ‘‘tile’’ dimension

and hence a larger total area for a fractally rough surface. For-

mally [14],

SðQÞ � QDS�6 ð4Þ

where Ds is the surface fractal dimension. There are alterna-

tive formulations of this equation, arising from rather differ-

ent assumptions about the interplay between surface and

mass fractals [15,16]. However, the main value of the fractal

picture is that it provides precise power law indices that can

be used as a unique characteristic measure of very heteroge-

neous structures, such as nuclear graphite. We have therefore

chosen to use Eq.(4) to describe the fractal properties for short

correlation lengths (high Q). We have thus replotted the Mar-

tin and Caisley data [8–10] on log(Intensity) � log(Q) scales to

see whether their samples show the fractal behavior. The

plots demonstrate that the SANS from AGR (Gilsocarbon)

graphites, does indeed have a non-integer power law form

where the exponent varies with fast neutron irradiation

(Figs. 1 and 2). This suggests a fractal distribution of porosity

that changes in a systematic way as the carbon atoms are dis-

placed by fast neutron irradiation.

Their data for Gilsocarbon graphite type G.M6 are shown in

Fig. 1 and give a linear behavior. The scattering from an unir-

radiated sample clearly exhibits two distinct linear regions

with an additional flattening at high Q due to incoherent scat-

tering from hydrogen or other incoherent scattering impuri-
ties. The gradients are respectively �2.897 at low Q (mass

fractal range) and �3.453 at higher Q (surface fractal range).

The data for the irradiated sample, remarkably, has changed

significantly giving a single linear slope for the full Q range,

having a gradient of �2.075, a mass fractal. Thus, the surface

fractal component seems to have been suppressed by the irra-

diation process (the surface smoothed and reduced in area)

while the pore/volume fractal component implies a reduced

density of large pores and an increased density of small pores

– as in the original interpretation of Martin and Caisley from

their derived Guinier radii, using the method described above

[8].

It is interesting that the Porod Invariant analysis (Eq.(2)

and Ref. [5]) indicates a pore volume/unit volume that in-

creases by 60% due to irradiation over the measured Q range

(between �67 Å and �454 Å (2p/Qmax and 2p/Qmin)). This could

mean either that new pores are being formed or alternatively

that pore surfaces are being smoothed and larger pores, ini-

tially beyond the measured range, are partially filled, hence

becoming observable in this Q range.



Fig. 3 – Gilsocarbon contrast matching.

Fig. 4 – PGA graphite contrast matching.
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The effect of progressive increases in the fast neutron irra-

diation dose on the power-law exponent is demonstrated in

Fig. 2 for GE1 graphite. The initial two-component gradient

of the virgin graphite becomes a single line having a decreas-

ing gradient with increasing irradiation. Porod Invariant

analysis of the GE1 graphite data also shows a tendency for

the volume of small pores to increase by ca. 23% and 29% as

compared to virgin graphite – for doses of 17.4 · 1020 n cm�2

and 51.3 · 1020 n cm�2 respectively. The original paper in-

cludes data on a range of different isotropic graphites which

all appear to behave in a similar way.

In another paper [10], these authors reported on the effect

on the scattering from electro-graphite blocks – made from

both petroleum coke and Gilsocarbon – before and after ther-

mal and radiolytic oxidation. For both types of material, ther-

mal oxidation produced an increase in scattering while

radiolytic oxidation produced a decrease. In both cases, the

effect became more pronounced for the smaller pores (as evi-

denced by the high Q scattering). Based on the current under-

standing of the process by which thermal oxidation produces

activated carbons, we suggest that an increase in the scatter-

ing is due to a much increased population of small pores and

hence increased surface area. On the other hand, radiolytic

oxidation – the process responsible for mass loss of graphite

in reactors due to gamma radiation and CO2 coolant oxidation

– enlarges pores in proportion to their size [2] and in the pro-

cess reduces the population of smaller pores and hence re-

duces SANS intensity at higher Q.

Further, recent measurements on SANS from dense isotro-

pic graphite have been reported by Hoinkis and Allen [17].

These authors measured the scattering from graphite in-

tended for use as the first wall of a fusion reactor – designated

POCO AXM-5Q1. This material was binder-free and consisted

of nearly perfect graphite grains which were hot pressed

using a proprietary method. Measurements were made for a

series of burn-offs measured in weight %. The angular cross

section followed a Q�3.1 behavior over some 3.5 decades in

intensity with a peak at around 0.01 Å�1. Oxidation of this

graphite to a mass loss of between 0% and 2.3% showed a

slow Q-independent increase in the scattering intensity with-

out any significant change in shape (fractal index and peak

position). The power law index lies just within the range of

a surface fractal. Alternatively, it would be consistent with a

power law form for a pore radial distribution function [15],

F(r) � r�0.9.
2. Measurements on Gilsocarbon and PGA
graphite

2.1. Contrast matching

In the present experiments we have used the SANS technique

previously developed for studies of activated carbon [5]. In

particular, we have demonstrated that deuterated toluene

also provides an excellent contrast matching liquid for graph-

ites, condensing into all pores connected to the surface down

to the minimum observable pore dimension (�0.2 nm). Scat-

tering from all open pores is thus essentially eliminated.

The technique has been used to distinguish between open
and closed pores within the graphite specimens. These mea-

surements were performed using the LOQ SANS instrument

at ISIS [18] covering the Q range from 0.009 to 1.0 Å�1. The

graphite samples were cut to dimensions of 2.0 cm ·
2.0 cm · 0.2 cm. Each sample was out-gassed at 200 �C prior

to the measurements – to eliminate as much hydrogenous

material as was practicable. Gilsocarbon and PGA (Pile Grade

A) graphite samples were studied. Gilsocarbon filler particles

have an onion shape which produces rather isotropic proper-

ties. PGA graphite is produced from needle shaped coke parti-

cles that become aligned along the extrusion direction during

manufacture, giving rise to the anisotropic properties of this

graphite. Hence, the PGA samples were cut in two ways: par-

allel and perpendicular to the extrusion direction – to investi-

gate the properties in both. As Q lies in the plane of the

sample, we expected the perpendicular cut to give a circu-

larly-symmetric intensity contour plot and the parallel cut

to give ellipsoidal contours.

Figs. 3 and 4 demonstrate the contrast match data for

Gilsocarbon and PGA graphite respectively. The scattering

from the D8-toluene itself is a horizontal line at �0.1 cm�1

and is omitted from the graphs for clarity. The Porod Invariant

analysis of the empty graphite in comparison with that for

the same sample saturated with D8-toluene indicates that



Fig. 5 – Analysis of SANS from open and closed porosity for

Gilsocarbon.

Fig. 6 – Analysis of SANS from open and closed porosity for

PGA graphite.

Fig. 7 – The variation with temperature of the scattering

intensity from PGA graphite at a set of Q values. Filled and

unfilled symbols refer to data from samples cut normal and

parallel to the extrusion direction respectively.
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66% of porosity in Gilsocarbon and 71% of that in PGA graph-

ite are accessible to the external surface over the range of

length scales measured. Note that the figures show results

for different H/D ratios. These data confirm that the best pos-

sible matching is for 100% D8-toluene. The flat background at

high Q clearly increases, as expected, with H content of the

D8/H8-toluene mixtures.

The other significant result from these measurements is

that the SANS profiles from the open and closed pores do

not coincide with each other, indicating that their pore size

distribution as well as their origins are different. Thus, if we

subtract the scattering from the samples containing the con-

trast matching liquid (i.e. corresponding to scattering from

closed pores) from the original scattering, we must be left

with the scattering from the open pores (this subtraction of

intensity depends on there being no interference terms aris-

ing from adjacent filled and empty pores). The comparisons

of scattering from open and closed pores in each graphite

are shown in Figs 5 and 6.

The SANS from the contrast matched samples, i.e. from

the closed pores, in Gilsocarbon (Fig. 5) shows a single compo-

nent power-law with a gradient of �3.207 (surface fractal
dimension Ds = 2.793), indicating a rather rough surface.

PGA closed porosity apparently shows two power laws but

data from an extended Q range is needed in order to establish

this fully (Fig. 6). The SANS signals from PGA and Gilsocarbon

‘‘open porosity’’ are more complicated and consist of at least

two linear regions on a double logarithmic scale. Both imply

the presence of smooth surfaces at low Q values and of rough-

er (fractal) surfaces at higher Q values (Figs. 5 and 6). It is

noticeable that there are more large pores in the open pore

scattering, as one might expect. We would anticipate the sig-

nal from the open pores to increase after the radiolytic corro-

sion and to indicate whether the corrosion has mainly

affected large or small pores. Because erosion is caused by

an activated molecular radical species of limited lifetime,

the rate of erosion depends on the amount of this radical pro-

duced within about a micron range of the pore surface and

this strongly enhances the relative importance of small pores

[2]. For such pores, as measured here, the erosion effect will

be proportional to the volume (width) of the pore so it is not

surprising that the SANS signal remains fractal.

2.2. Temperature dependence

In the second set of measurements, the samples were

mounted in a furnace and heated to 2000 �C in increments

of 200 �C. The resulting SANS signal was measured in situ

for each temperature at equilibrium. The identical intensity

profiles of the scattering at a given temperature both heating

and cooling rules out any observable annealing process in this

temperature range. Here we obtain the important result that

the SANS intensity decreases in a linear fashion with increas-

ing temperature (Fig. 7) due, presumably, to the filling of

cracks normal to the c direction that were formed by thermal

contraction during cooling (Mrozowski cracks [19]). Notice-

ably, although the trend is identical for the two PGA samples

(cut parallel and perpendicular to the extrusion direction) the

absolute intensities are different – being higher for the sam-

ple cut perpendicular due to preferred orientation of the nee-

dle coke particles. This orientational aspect of the results will

be fully described elsewhere [20]. However, the fractional



Fig. 8 – Fractional pore closure of PGA and Gilsocarbon

graphites.
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decrease in the SANS signal for Q-parallel to the extrusion

direction relative to that normal is independent of the value

of Q, suggesting that the porosity distribution is isotropic

within a given coke particle. Furthermore, the results suggest

that the material would have to be heated to well above

2000 �C to completely close the pores, suggesting that these

pores must have been created due to loss of plasticity in the

grist rather than in the binder.

Fig. 8 shows the fractional closure of pores determined

from the Porod Invariant values as a function of temperature

relative to ambient temperatures in PGA and Gilsocarbon

graphites. The pore filling process for the two samples is sim-

ilar for temperatures up to 600 �C but starts to deviate with

further heating. The pore closure in PGA graphite is essen-

tially linear up to 2000 �C whereas, in Gilsocarbon, the rate

of closure slows down as the temperature increases above

600 �C.

3. Interpretation of the SANS signal from
reactor graphites

It is apparent that in reactor graphites, the SANS signal arises

from the porosity. There are a number of different kinds of

porosity present. Some pores in the binder will be intercon-

nected to the surface because they provided an escape route

for hydrocarbon gases produced during the carbonization of

the binder material. Microscopy also shows cracks around

the edges of the graphitic particles [21], and some sets of par-

allel cracks which are thought to form in the filler particles

during cooling from their minimum temperature for plastic

deformation. We believe that the SANS signal is determined

by these cracks forming in the filler during cooling. The aniso-

tropic thermal contraction in the c direction would be ex-

pected to cause the basal planes to pull apart randomly,

thus forming cracks parallel to the basal plane which appear

with variable widths and separations of the order of 10–

100 nm wide (Mrozowski cracks). Given that the SANS from

graphites is determined by the filler particles in use [9] and

is described by a single fractal behavior, it is reasonable to as-

sume that the SANS signal is generated by these cracks. Note

that the widths of these cracks and their separation appar-
ently vary over at least an order of magnitude. Although some

planar cracks are visible in the micrographs, these are appar-

ently relatively rare. In fact, the images are dominated by

rather disordered structures and the visible cracks have to

be rather large to be seen in the SANS [21,22]. It is notable

that the fractal index we observe is consistent with a 3-d

porosity distribution, not a 1-d distribution. If the cracks were

indeed 1-dimensional as observed in the direction normal to

the graphite planes, the fractal index would be less than 1.

The larger value observed suggests that most of the domains

containing ordered graphitic structure are themselves part of

a 3-d structure and that the size of the graphitic particle in the

c direction largely determines the total crack width in the par-

ticle. The fractal dimension being as for a 3-d arrangement

suggests that there are only a few slits in each particle.

Note that the linear decrease in the SANS intensity with

increasing temperature is entirely consistent with this mod-

el – i.e. the observed porosity was produced by the thermal

contraction. This picture is very similar to that described by

Hacker et al. [22] who observed that the coefficient of ther-

mal expansion was not influenced by radiolytic weight loss

up to quite high weight losses, suggesting that a rigid disor-

dered carbon framework generated the 3-dimensional struc-

ture capable of transmitting thermal strains and that the

oxidation process probably involved a percolating network

of cracks. Given the origin of these cracks, it is remarkable

that our contrast matching measurements demonstrate that

some 70% are open to the surface. The distribution of open

porosity within the graphite is of great importance in pre-

dicting performance when undergoing radiolytic corrosion.

An arrangement of macroscopic regions in the graphite

block containing open porosity alternating with regions hav-

ing closed porosity might generate local variation in the

macroscopic properties. Thus, given that fast neutron irradi-

ation tends to fill the sealed pores while radiolytic corrosion

tends to open out the open pores, the combination of these

processes could produce local stress gradients, possibly lead

to cracking.
4. Conclusions

Previous measurements on reactor graphites have shown a

strong SANS signal from graphite over a wide distribution

in Q. We have reported here that this scattering from Gilso-

carbon and PGA graphites gives a rather good straight line

fit to the measured intensity when plotted on a log–log

scale, suggesting that the scattering comes from a fractal

distribution of pores. We have here extended these earlier

measurements using contrast matching to distinguish be-

tween filled and empty pores and have, in addition, ob-

served that the SANS decreases linearly with increasing

temperature. We would therefore suggest that the SANS sig-

nal is dominated by scattering from Mrozowski cracks pro-

duced by anisotropic shrinkage of the graphite filler

particles during the cooling process. The temperature

dependence of the SANS suggests that the pores would be

completely closed by around 3000 �C due to the anisotropic

thermal expansion. We can conclude that around 70% of

the porosity is accessible to the external surface, and hence
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to the active species that causes the radiolytic corrosion

process, a fact that is highly significant for understanding

this process.
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