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ABSTRACT 

 

Decision tree learning is one of the main methods of learning from data. It has been applied 

to a variety of different domains over the past three decades. In the real world, accuracy is not 

enough; there are costs involved, those of obtaining the data and those when classification 

errors occur. A comprehensive survey of cost-sensitive decision tree learning has identified 

over 50 algorithms, developing a taxonomy in order to classify the algorithms by the way in 

which cost has been incorporated, and a recent comparison shows that many cost-sensitive 

algorithms can process balanced, two class datasets well, but produce lower accuracy rates in 

order to achieve lower costs when the dataset is less balanced or has multiple classes.  

 

This thesis develops a new framework and algorithm concentrating on the view that cost-

sensitive decision tree learning involves a trade-off between costs and accuracy.  Decisions 

arising from these two viewpoints can often be incompatible resulting in the reduction of the 

accuracy rates.  

 

The new framework builds on a specific Game Theory problem known as the multi-armed 

bandit. This problem concerns a scenario whereby exploration and exploitation are required 

to solve it. For example, a player in a casino has to decide which slot machine (bandit) from a 

selection of slot machines is likely to pay out the most. Game Theory proposes a solution of 

this problem which is solved by a process of exploration and exploitation in which reward is 

maximized. This thesis utilizes these concepts from the multi-armed bandit game to develop a 

new algorithm by viewing the rewards as a reduction in costs, utilizing the exploration and 

exploitation techniques so that a compromise between decisions based on accuracy and 

decisions based on costs can be found. The algorithm employs the adapted multi-armed 

bandit game to select the attributes during decision tree induction, using a look-ahead 
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methodology to explore potential attributes and exploit the attributes which maximizes the 

reward.  

 

The new algorithm is evaluated on fifteen datasets and compared to six well-known 

algorithms J48, EG2, MetaCost, AdaCostM1, ICET and ACT. The results obtained show that 

the new multi-armed based algorithm can produce more cost-effective trees without 

compromising accuracy.  The thesis also includes a critical appraisal of the limitations of the 

developed algorithm and proposes avenues for further research.    
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CHAPTER 1: INTRODUCTION 

 

1.1 The motivation for the research in this thesis  

 

Decision trees are a natural way of presenting a decision-making process, because they are 

simple and easy for anyone to understand (Quinlan 1986). Learning decision trees from data 

however is more complex, with most methods based on an algorithm known as ID3 which 

was developed by Quinlan (1979, 1983, 1986). ID3 takes a table of examples as input, where 

each example consists of a collection of attributes, together with an outcome (or class) and 

induces a decision tree, where each node is a test on an attribute, each branch is the outcome 

of that test and at the end are leaf nodes indicating the class to which an example, when 

following that path, belongs. ID3, and a number of its immediate descendents, such as C4.5 

(Quinlan 1993), CART (Breiman et al. 1984) and OC1 (Murthy et al. 1994) focused on 

inducing decision trees that maximized accuracy. 

 

However, several authors have recognized that in practice there are costs involved (e.g. 

Breimen et al. (1984); Turney (1995, 2000); Elkan (2001)). For example, it costs time and 

money for blood tests to be carried out (Quinlan et al. 1987). In addition, when examples are 

misclassified, they may incur varying costs of misclassification depending on whether they 

are false negatives (classifying a positive example as negative) or false positives (classifying 

a negative example as positive). This has led to many studies which develop algorithms that 

aim to induce cost-sensitive decision trees.   

 

Lomax and Vadera (2013) present a survey of cost-sensitive decision tree algorithms. Some 

past comparisons by Vadera and Ventura (2001) and a more comprehensive evaluation by 
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Lomax and Vadera (2011) have evaluated algorithms which have incorporated these costs 

into the construction using extensions to statistical measures, genetic algorithms, or boosting 

and bagging techniques. Experiments were carried out over a range of cost matrices and 

showed that using both costs in the construction was the better method. However, on a later 

examination of the results from the algorithm which performed better overall (ICET 

introduced by Turney (1995)), variations in performance revealed weaknesses where the 

algorithm produced poorer results than would be expected. Contributing factors to the 

variation in performances are thought to be large numbers of attributes, differing numbers of 

attribute values, class distribution, number of classes and differing costs. Trade-off between 

high misclassification costs result in the sacrifice of the accuracy rate. The nature of the 

dataset may account for some of the discrepancies. These could influence how easy it is for 

the algorithm to classify examples. 

 

Although in the literature, it has always been suggested that Game Theory is different to 

decision theory (an idea utilized in some decision tree algorithms) and therefore caters to 

different decision situations, it has been suggested that it can be applied in a Machine 

Learning capacity (Cesa-Bianchi and Lugosi 2006) and could be used for prediction as both 

disciplines have in common the idea that past experience predicts future events. 

 

Machine Learning techniques are used in predictions with cost-sensitive learning as a 

descendent of this technique. Game Theory can also be used to predict outcomes by choosing 

strategies according to and linked with ‘payoffs’. The pay-offs vary but can easily be 

described as ‘costs’. For example in cost-sensitive learning the goal is to reduce costs, 

therefore the pay-off is simply the reduction of cost or to obtain the lowest cost as possible. 
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Pay-off functions are assigned to the strategies in order to help make the decisions. Picking 

strategies which would maximize pay-off is the desired outcome with a trend towards 

simplicity. Finding the simplest assumption needed (Occam’s razor1) is the ideal outcome 

(Rasmusen 2001). Pay-offs are shown using a matrix and strategies can be illustrated using 

decision-tree like structures. 

 

Use of costs within the decision tree learning process has introduced many interesting 

problems involving the trade-off required between accuracy and costs. It is clear that, whilst 

there are existing cost-sensitive decision tree algorithms which can solve two-class balanced 

problems well, other types of problems cause difficulties. In particular several authors have 

recognized that there can be a trade-off between accuracy and minimizing cost (Lomax and 

Vadera 2009, 2011) or a reduction in performance (Ting 2000a).  

 

Hence, this research aims to utilize Game Theory as a basis for developing a cost-sensitive 

decision tree algorithm, which aims to be able to address the trade-off between accuracy and 

cost that has been observed in previous studies.  

 

1.2 Research methodology 

 

Different methodologies have been studied and the most appropriate one is selected for this 

PhD. The methodologies studied are grouped under three categories: 

 

 

 

                                                 
1
 The simplest solution is often the most likely one. 
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• Constructive Methods 

These deal with conceptual and technical development and may not be as empirically 

based as other methods. They may involve evaluating prototype software against 

defined criteria or testing prototypes (Livari et al. 1998). 

• Nomothetic Methods 

These are positivism, where the idea is that the world exists externally and 

measurements should be through objective methods. It encourages statistics and 

experiments (Livari et al. 1998). Methods in this category are generally ‘laws’ i.e., 

laws of physics etc, and scientific methods such as hypothesis testing, mathematical 

analysis, experiments, field studies and surveys. They will be quantitative in the data 

collection and confirmatory. 

• Idiographic Methods 

These are interpretivism, which is the opposite of positivism. It encourages the 

appreciation of constructions and meanings which people have, not reporting facts, 

but dealing with the interpretations of them (Livari et al. 1998). Methods in this 

category are generally case studies and action research, dealing with direct 

experience. Case studies and action research deal in on-the-spot fact finding. The 

researcher learns about system requirements or how things work by visiting the place 

which requires it or has information about it. They are useful for studying how and 

why things happen. They are performed by interviews, observations, which are either 

overt or covert, and document analysis. 

 

Comparing the different methodologies listed above, a method belonging to the second 

category, Nomothetic methods, is more appropriate for this research as these methods involve 

hypothesis testing and experimentation as described by Livari et al (1998) p.187.  
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A method named GQM (Goal, Question, Metric) (Basili and Weiss 1984) is recommended to 

be used in the area of software development. GQM is a measurement mechanism used in 

order to obtain feedback and evaluation in software development. Its aim is to focus on 

specific goals and must be defined in a top-down fashion. It is ideally suited to this area as 

there are many observable characteristics such as lines of code, number of defects or 

complexity, making other methods which are metric-driven and bottom up unworkable (van 

Solingen et al. 2002). The GQM approach is to define goals, which are then refined into 

questions, and metrics are used in order to gain enough information so that the questions can 

be answered. 

 

In this thesis, the goal is to develop a framework which uses the trade-off required between 

accuracy and costs in order to achieve low costs and high accuracy which is required in cost-

sensitive learning. As a result of this goal, the following questions have been developed: 

1. How well do existing cost-sensitive decision tree algorithms perform? 

2. What are the weaknesses of existing cost-sensitive decision tree algorithms? 

3. Is it possible to minimize costs and minimize the sacrifice of the accuracy rate which 

occurs in cost-sensitive decision tree learning? 

4. Will using a technique, which has been developed to deal with trade-off by using pay-

offs, help in achieving the aim of cost-sensitive decision tree learning? 

 

In order to determine the answers to these questions, metrics have been devised which 

measure cost and determine whether these costs are minimized and accuracy, determining 

whether this is maximized or that the sacrifice is minimized. A research hypothesis has been 

developed with the aim of showing what happens to the accuracy and costs when using the 

trade-off effectively. 
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1.3 Research hypothesis, aims and objectives 

 

The Research Hypothesis put forward is that cost-sensitive decision tree learning involves a 

trade-off between decisions based on accuracy and decisions based on costs and that Game 

Theory can be utilized to develop an algorithm that improves upon the performance of 

existing algorithms. By using Game Theory, it may be possible to explore the opposing 

decisions in such a way as to decide that a compromise can indeed be reached. Any algorithm 

which aims to be a cost-sensitive one will need to achieve this trade-off in order to function 

correctly. The aim of this PhD is therefore to show what happens to accuracy and costs in the 

trade-off and to find a framework that can use the trade-off effectively to achieve the low 

costs and high accuracy required in cost-sensitive learning. In order to test this hypothesis the 

thesis objectives are: 

1. To survey and review existing cost-sensitive decision tree algorithms in order to 

investigate ways in which costs have been introduced into the decision tree learning 

process and at which stages they have been introduced  

2. To evaluate existing cost-sensitive decision tree algorithms in order to discover 

whether these algorithms are successful over many types of problems or are only 

effective for some types of problems, for example binary class datasets or balanced 

datasets 

3. To develop a new cost-sensitive decision tree algorithm which is based on Game 

Theory  

4. To investigate and evaluate the new algorithm against existing algorithms and 

measure performance in terms of cost to classify and accuracy, in order to test the 

research hypothesis 
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1.4 Outline of thesis 

 

The rest of the thesis is structured as follows: 

 

• Chapter 2: Background 

This chapter presents the background to decision tree learning and Game Theory 

• Chapter 3: Survey of existing cost-sensitive decision tree algorithms 

This chapter presents the results of a literature search which identifies existing cost-

sensitive decision tree algorithms and categorizes them into classes by the way the 

costs have been introduced 

• Chapter 4: The development of a new multi-armed bandit framework for cost-

sensitive decision tree learning 

This chapter presents an analysis of previous cost-sensitive decision tree algorithms, 

highlights their weaknesses and suggests a new framework using multi-armed bandits. 

Experiments are carried out in order to fine-tune the algorithm and an extension is 

also developed. The experimental methodology is also presented 

• Chapter 5: Investigating parameter settings for MA_CSDT 

This chapter presents an extensive investigation into four areas. These four areas 

address the parameter settings, in particular those which determine whether it is 

worthwhile to continue the induction process, determining the number of lever pulls 

to set for a dataset, which version and strategy is better and to investigate how 

different combinations of parameter settings and strategies can be used to obtain good 

results. Guidelines to setting these parameters are also discussed  

• Chapter 6: An empirical comparison  of the new algorithm with existing cost-sensitive 

decision tree algorithms 
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This chapter presents the results of the empirical comparison and evaluation against 

existing cost-sensitive decision tree algorithms and an accuracy-based algorithm in 

order to determine whether the aim of the algorithm can be met 

• Chapter 7: Conclusions and future work 

This chapter summarizes the aims and objectives of this thesis and discusses the 

results obtained both from the investigation and the empirical comparison. It gives 

details of work which could be carried out in the next stage of the algorithm’s 

development and suggests other possible future experiments based on the findings of 

this thesis 
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CHAPTER 2: BACKGROUND 

 

2.1 Decision tree learning 

 
 
Given a set of examples, early decision tree algorithms, such as ID3 and CART, utilize a 

greedy top-down procedure. An attribute is first selected as the root node using a statistical 

measure (Quinlan 1979, 1983; Breiman et al. 1984). The examples are then filtered into 

subsets according to values of the selected attribute. The same process is then applied 

recursively to each of the subsets until a stopping condition, such as all of the examples in the 

subset being of the same class. The leaf nodes are then assigned the majority class as the 

outcome.  Researchers have experimented with different selection measures, such as the GINI 

index (Breiman et al. 1984), using chi-squared (Hart 1985) and which have been evaluated 

empirically (Mingers 1989).  The selection measure utilized in ID3 is based on Information 

Theory which provides a measure of disorder, often referred to as the entropy, and which is 

used to define the expected entropy, E for an attribute A (Shannon 1948; Quinlan 1979; 

Winston 1993). The entropy of an attribute A is defined as:  

 

 �(�) = ∑ �(�). ∑ – P(�|)log2(P(�|)))�∈ ��∈�       (2.1) 

where  a ∈ A are the values of attribute A, and the c ∈ C are the class values. 

 

This formula measures the extent to which the data is homogeneous. For example, if all the 

data were to belong to the same class, the entropy would be '0'. Likewise if all the examples 

belonged to different classes, the entropy would be '1'.   ID3 uses an extension of the entropy 

by calculating the gain in information (I) achieved by each of the attributes if they were 

chosen for the split and choosing the attribute which maximizes this gain. This is given by 

equation (2.2).  
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ID3:  �� = �(�) −  �(�)      (2.2) 

where E(D) = ∑  – ����∈ �  ��� ���  , calculated on the current training set before splitting. 

 

Although Quinlan adopted this measure for ID3, he noticed that the measure is biased 

towards attributes which have more values, and hence proposed a normalization, known as 

the Gain Ratio, which is defined by: 

 

C4.5:  !�"#$�%"�� = &'&()*'  +ℎ-.- �#/�� =  ∑  – �0��∈ �  ��� �0�   

(2.3) 

 

C4.5 was also developed to include the ability to process numerical data and deal with 

missing values. Figure 1 presents the tree that result from applying the ID3 procedure to the 

examples in Table 1. At each leaf is the class distribution, in the format of (faulty, not faulty). 

 

picture 
quality 

sound 
quality 

age class 

poor good 2 faulty 
poor excellent 1 faulty 
good poor 2 faulty 
good poor 2 faulty 
good excellent 1 not faulty 
good good 1 not faulty 
good good 2 faulty 
excellent good 1 faulty 
excellent excellent 1 not faulty 
excellent good 2 not faulty 
good good 2 faulty 
good good 2 faulty 
good good 1 not faulty 
excellent excellent 1 not faulty 
excellent good 1 not faulty 

 

Table 1 Example dataset ‘Television Repair’ 
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Once a decision tree has been built, some type of pruning is then usually carried out. Pruning 

is the term given to that of replacing one or more sub-trees with leaf nodes. There are three 

main reasons for pruning. One is that it helps to reduce the complexity of a decision tree, 

which would otherwise make it very difficult to understand (Quinlan 1987), resulting in a 

faster, possibly less costly classification. Another reason is to help prevent the problem of 

over-fitting the data.  

 

 

 

Figure 1 Decision tree after ID3 has been applied to the dataset in Table 1  

 

The third reason is that noisy, sparse or incomplete datasets can cause very complex decision 

trees, so pruning is a good way to simplify them (Quinlan 1987). There are several ways to 

calculate whether a sub-tree should be pruned or not. Quinlan (1987), Knoll et al. (1994) and 

Bradford et al. (1998a, 1998b) have discussed different methods to do this, for instance, 

aiming to minimize loss (Bradford et al. 1998a, 1998b), or using misclassification costs to 

prune a decision tree (Knoll et al. 1994). A comprehensive review on pruning methods has 

been carried out by Frank and Witten (1998). 
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2.2 Game Theory 

 

Game Theory is a discipline which deals in trade-off. It deals with types of decision making 

where there may be more than one decision-maker. Game Theory (Davis 1983; Osborne 

2004) states that it is decision making with two decision-makers, which it denotes as 

‘players’. At least two players choose a strategy (make a decision) and as a result a reward or 

pay-off occurs. Each player must worry about what the other is doing. Pseudo-players have 

actions taken in a mechanical way; Nature is an example of a Pseudo-player (Rasmusen 

2001). Game Theory is the theory of many games not just one (Davis 1983). 

 

Game Theory differs from other types of decision making problems because as decision-

makers are manipulating the environment i.e. deciding how much advertising space to 

purchase, the environment i.e. other decision-makers are trying to do the same (Davis 1983). 

Game Theory has been used in disciplines such as economics, social science, political science 

and biology and applied to tasks such as price fixing, advertising, and strategies used in 

competitive business.  

 

Game Theory aims to help understand situations where decision-makers interact with each 

other according to a set of rules and consists of a collection of models which need to be 

simple with assumptions capturing the essence of the situation (Osborne 2004). Many 

problems can be understood without special technical background (Davis 1983). Real games 

are very complicated and toy games are often used instead (Binmore 2007). Applications 

which can be reduced to a single problem, for example a shop keeper reducing prices of his 

stock in response to a competitor doing likewise, are all situations for which Game Theory 

can be applied. 
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Decisions are linked to goals and the consequences of each option must be known in order to 

make the solution easy. The best strategy is chosen in order to reach the goal. If chance plays 

a role, decisions are harder to make (Davis 1983). Pay-off functions are assigned to strategies 

in order to help make the decisions. Picking strategies which maximizes pay-off is the desired 

outcome with a trend towards simplicity; finding the simplest assumption needed is the ideal 

outcome (Rasmusen 2001). Pay-offs are shown using a matrix and strategies can be 

illustrated using decision-tree like structures. 

 

Models are not either right or wrong but useful or not depending on the purpose for which 

they are used. The models are examined in order to analyze their implications, to either 

confirm an idea or suggest it is wrong. This analysis should help understand why it is wrong. 

Time is absent from the model. Each player chooses their actions “simultaneously” in that no 

player is informed when an action is chosen or what action another player has chosen 

(Osborne 2004). The assumption is that actions are chosen once and for all. It is assumed that 

all players will try to do their best. A Nash Equilibrium is a pair of strategies which, when 

applied, results in both players choosing the same option as neither wishes a change in 

strategy. It occurs when all players make the best reply to the strategy choice of the others 

(Nash 1950a, 1950b). For example if a player knew that the other player would always 

choose a particular strategy, they could maximize their pay-off by choosing the same 

strategy. 

 

There are three main categories of games in Game Theory. These are (i) the two-person zero-

sum game (ii) the two-person non-zero-sum game and (iii) the n-person game first defined by 

von Neumann and Morgenstern (1953) which involves forming coalitions. In a zero-sum 

game one person’s gain is the other’s loss whereas in a non-zero-sum person game this is not 
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the case. An example of a zero-sum game would be Matching Pennies where each player has 

two strategies; heads or tails. The Prisoner’s Dilemma is an example of a non-zero-sum 

person game.  

 

The Prisoner’s Dilemma Game is one of the most well known ‘games’ in Game Theory 

(Binmore 2007). Two suspects have been arrested for a minor crime, for instance handling 

stolen goods, for which there is ample evidence. However, they are suspected by the police of 

the greater crime of burglary for which there is only circumstantial evidence and no proof. 

The suspects are both offered the same deal: 

 

• If one confesses and turns Queen’s evidence, and the other does not, he will go free 

and the other goes to jail for a maximum prison term. 

• If both suspects confess they both go to jail for a minimum prison term for burglary. 

• If both suspects remain silent they both go to jail for a year for the handling charge as 

there is no evidence for any other wrong-doing. 

 

The assumption is that each prisoner will try their upmost to do what is best for themselves. 

The pay-offs are displayed in a matrix presented in Table 2. 

 

 suspect 2 
  confess do not confess 
suspect1 confess min, min 0, max 
 do not confess max, 0 1,1 

Table 2 Pay-off matrix for Prisoner’s Dilemma 
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Each player has two basic choices; they can act co-operatively or un-cooperatively. For any 

fixed strategy of the other players, a player always does better by playing un-cooperatively 

than by playing co-operatively (Binmore 2007). 

 

Another well-known game is the Hawk-Dove Game, where two birds, for example pheasants, 

may contest a resource such as food. The two birds can either act passively or aggressively in 

this kind of situation (Binmore 2007). A passive bird would surrender the food to an 

aggressive bird. Two passive birds would share the food but two aggressive birds would 

fight. Passive birds are usually referred to as ‘doves’ and aggressive birds as ‘hawks’ 

(Maynard Smith 1984). Each prefers to be aggressive if the other is passive and passive if the 

other is aggressive (Osborne 2004). Pay-off values here which may identify the Hawk-Dove 

Game with the Prisoner’s Dilemma Game are not realistic as injury to either bird would be a 

serious handicap (Binmore 2007). 

 

An example of the application of Game Theory is in the advertising sector (Davis 1983). 

Suppose that there are two companies which make a similar product, for example washing 

powder2. The first company A has enough money set aside to buy two blocks of television 

advertising time and the other B three blocks of time. Each block is one hour long. 

 

The television company splits the day into three time periods; morning (m), afternoon (a) and 

evening (e). The purchasing of the advertising slots must be made in advance and are 

confidential. Statistics provided by the television company state that 50% of the audience 

watches TV in the evening, 30% in the afternoon and 20% in the morning. It is assumed in 

this example that no-one watches more than one period in a day. If a company buys more 

                                                 
2
 This illustration of an application courtesy of Davis (1983) 
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time during any time period than the other company it will capture the entire audience during 

that period, if both companies buy the same number of hours during any one period or neither 

company buys any time at all during any one period, each get half the audience. 

 

If each member of the TV audience buys the product of just one of the companies, how then 

should the company allocate their TV time and what percent of the market might they get? 

There are 6 strategies for the company buying two blocks and 10 for the company buying 

three blocks. One solution would be that:  

 

• Company B plays each of the strategies (e,e,e), (e,e,a) and (e,a,m) where each letter is 

a time slot representing one of the blocks of time this company will have purchased, 

one third of the time 

• Company A plays each of the strategies (e,e) 6/15th of the time, (a,a,) 5/15th of the 

time and (a,m) 4/15th of the time. 

 

If Company B uses these recommended strategies it can be sure of winning on average 

63.33% of the time and if Company A uses its recommended strategy, Company B will not 

win any more than this (Davis 1983). 

 

The Multi-Armed Bandit Game, first proposed by Robbins (1952), is a scenario where a 

gambler must choose which slot machine from a selection of slot machines to play. He pulls 

the lever of one of the machines and receives a payoff. The gambler’s purpose is to maximize 

his return i.e. the sum of the pay-offs obtained over a random number of lever pulls. There is 

a trade-off here between exploration and exploitation as, if the gambler plays only one 

machine which he thinks is best he may miss out on another machine about to pay out. On the 
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other hand too much time spent trying out all the slot machines may not actually return a high 

enough reward (Auer et al. 2001, 2003).  

 

Cost-sensitive decision tree learning involves building a model in a cost-effective way. Other 

games do not offer this ability as they are not likely to be able to be adapted to include 

models. Based on the needs of cost-sensitive decision trees in that models need to be induced, 

the Multi-Armed Bandit Game looks promising in that its lever pulls could be viewed as 

generating models, and could be mapped to paths contained in a decision tree model. How 

this could be achieved is discussed further in Chapter 4. 
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CHAPTER 3: SURVEY OF EXISTING COST-SENSITIVE DECISION 

TREE ALGORITHMS 

 
 
Chapter 2 summarizes the main idea behind decision tree induction algorithms that aim to 

maximize accuracy. How can we induce decision trees that minimize costs? The survey 

reveals several different approaches. First, some of the algorithms aim to minimize just costs 

of misclassification, some aim to minimize just the cost of obtaining the information and 

others aim to minimize both costs of misclassification as well as costs of obtaining the data.  

Secondly, the algorithms vary in the approach they adopt.  Figure 2 summarizes the main 

categories that cover all the algorithms found in this survey. There are two major approaches: 

methods that adopt a greedy approach that aims to induce a single tree, and non-greedy 

approaches that generate multiple trees.  Methods that generate single trees include early 

algorithms, such as CS-ID3 (Tan and Schlimmer 1989), that adapt entropy-based selection 

methods to include costs and post-construction methods such as AUCSplit (Ferri et al. 2002) 

that aim to utilize costs after a tree is constructed.  Algorithms that utilize non-greedy 

methods include those that provide a wrapper around existing accuracy based methods, such 

as MetaCost (Domingos 1999), genetic algorithms, such as ICET (Turney 1995), and 

algorithms that adopt tentative searching methods. 

 

Table 3 categorizes the algorithms identified in the literature with respect to the taxonomy 

shown in Figure 2 and shows the significant volume of work in this field in each of the 

classes. The table also indicates whether the algorithms incorporate test costs, 

misclassification costs or both.  The time line of algorithms, shown as Figure 3, is also 

interesting. The first mention of the importance of costs dates back to Hunt’s (1966) Concept 

Learning System framework (CLS) that aimed to develop decision trees and recognized that 

tests and misclassifications could have an economic impact on human decision making.   
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Figure 2 Taxonomy of Cost-Sensitive Decision Tree Induction Algorithms 

 

 

Although, ID3 adopts some of the ideas of CLS, a significant difference in the development 

was ID3’s use of an information theoretic measure for attribute selection (Quinlan 1979).  

The use of an information theoretic top-down approach in ID3 influenced much of the early 

work which focused on methods for adapting existing accuracy based algorithm to take 

account of costs. These early approaches were evaluated empirically by Pazzani et al. (1994) 

who observed little difference in performance between algorithms that used cost-based 

measures and ones that used information gain.  This, together with the publication of the 

results of the ICET system (Turney 1995), which used genetic algorithms led to significant 

interest in developing more novel algorithms, including intense research on the use of 

boosting and bagging (Ting and Zheng 1998a, 1998b; Ting 2000a, 2000b; Domingos 1999; 

Zadrozny et al. 2003a, 2003b; Lozano and Abe 2008) and more recently, on the use of 

stochastic approaches (Esmeir and Markovitch 2007, 2008, 2010, 2011). Table 4 contains 

notation used in the rest of this chapter. 
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Table 3 Cost-sensitive decision tree induction algorithms categorized with respect to taxonomy by time 
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Figure 3 A timeline of algorithms 
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Symbol Definition 

N Number of examples in current training set/node 

Ni Number of examples in training set belonging to class i 

x Refers to an example in the training set 

node(x) Leaf node to which the example belongs 

k Number of classes and indicates looping through each class in turn 

w Weights 

A Indicates an attribute 

a Indicates attribute values belonging to an attribute 

Cij Misclassification cost of classifying a class i example as a class j example 

CA Test cost for attribute A 

cost(x,y) Cost of classifying example x into class y 

hi The ith hypothesis 

 
Table 4 Definitions of equations 

 

 

3.1 Single tree, greedy cost-sensitive decision tree induction algorithms  

 

As described in Chapter 2.1, historically, the earliest tree algorithms developed top-down 

greedy algorithms for inducing decision trees. The primary advantage of such greedy 

algorithms is efficiency, though a potential disadvantage is that they may not explore the 

search space adequately to obtain good results. This section presents a survey of greedy 

algorithms.  The survey identified two major strands of research:  Section 3.1.1.1 describes 

algorithms that utilize costs during tree construction and Section 3.1.2 describes post-

construction methods that are useful when costs may change frequently. 

 

3.1.1 Use of costs during construction 

3.1.1.1 The extension of statistical measures.   As outlined in the previous section, top-down 

decision tree induction algorithms use a measure, such as information gain, to select an 

attribute upon which the dataset will be partitioned during the tree induction process.  A 

reasonable extension, which was taken by a number of early algorithms, was to adapt these 

information theoretic measures by including costs. These early algorithms retained the top-

down induction process and the only differences between them are the selection measures 

and whether they take account of costs of attributes as well as costs of misclassification. 
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Five of the algorithms,  CS-ID3 (Tan and Schlimmer 1989), IDX (Norton 1989), EG2 (Núnez 

1991) , CSGain (Davis et al. 2006) and CS-C4.5 (Freitas et al. 2007)  focus on minimizing 

the cost of attributes and adapt the information theoretic measure to develop a cost based 

attribute selection measure, called the Information Cost Function for an attribute A  (ICFA): 

EG2:  ICFA = 2InfoGainA
 – 1/(CA + 1)ω                                (3.1) 

 CS-ID3: ICFA = (InfoGainA)2 / CA     (3.2) 

 IDX :   ICFA = InfoGainA / CA      (3.3)   

CS-C4.5: ICFA = InfoGainA / (CAφA) ω     (3.4) 

CSGain:        ICFA = (Na/N) * InfoGainA – ω * CA    (3.5) 
  
 

These measures are broadly similar in that they all include the cost of an attribute (CA) to bias 

the measure towards selecting attributes that cost less but still take some account of the 

information gained.   The only difference between the measures is the extent of weight given 

to the cost of an attribute, with EG2 and CS-C4.5 adopting a user provided parameter  ω  that 

varies the extent of the bias. CS-C4.5 also includes φA, a risk factor used to penalize a 

particular type of tests, known as delayed tests, which are tests, such as blood tests, where 

there is a time lag between requesting and receiving the information.  The authors of CSGain 

also experiment with a variation, called CSGainRatio algorithm where they use the Gain ratio 

instead of the information gain. 

 

Figure 4 presents a cost-sensitive decision tree induced by applying the EG2 algorithm to the 

data in Table 1.  For illustration purposes, the attributes picture quality, sound quality and age 

are assigned random test costs of 30, 15 and 1 units respectively.  These costs are used in 

selecting an attribute using the ICF measure resulting in a tree that takes account of the costs 

of the tests. 
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Figure 4 Decision tree after EG2 has been applied to the dataset in Table 1  

 
 

Algorithms that continue this adaptation of information theoretic measures but also take 

account of the misclassification cost as well as the test costs include an approach by Ni et al. 

(2005), Zhang et al. (2007), Zhang (2010) and Liu (2007).  Although the detailed measures 

differ, they all aim to capture the trade-off between the cost of acquiring the data and its 

contribution to reducing misclassification cost. Ni et al. (2005), for example, utilize the 

following attribute selection measure: 

 

Performance:  �12� = (324�5(6�75*' − 19 ∗ �;1�/(1� + 1))  ∗  ώ�   (3.6) 

where ώA is the bias of experts for attribute A and DMCA is the improvement in misclassification cost if the 
attribute A is used. 
 

As well as using both types of cost, this algorithm makes use of domain experts who assign a 

value of importance to each of the attributes. If an expert has no knowledge of the importance 
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of an attribute this bias is set to the default value of 1. If some attributes produce the same 

value for equation (3.6), preference is given to those attributes with the largest reduction in 

misclassification costs (DMCA). If this fails to find an attribute then the attribute with the 

largest test cost (CA) is chosen as the aim is to reduce misclassification costs.  

 

Liu (2007) identifies some weaknesses of equation (3.6), noting that several default values 

have been used, so develops the PM algorithm. Liu (2007) notes that if gain ratios of 

attributes are small, the values returned by the original algorithm, equation (3.6), would be 

small; resulting in the costs of attributes being ignored. If attributes have large total costs, the 

information contained in those attributes will be ignored. Other issues are the conflict of 

applying resource constrains. For instance, the overall aim of this algorithm is to allow for 

user resource constrains and it is therefore necessary to allow for the fact that users with 

increased test resources are not concerned as much about the cost of attributes, rather in the 

reduction of misclassification costs, and alternatively those with limited test resources are 

more concerned with the cost of the tests in order to reduce the overall costs rather than only 

reducing the misclassification costs. 

 

In order to trade off between these needs, a solution offered by Liu (2007) is to normalize the 

gain ratio values and to employ a harmonic mean to weigh between concerns with test costs 

(low test resources) and reduction in misclassification costs (when test resources are not an 

issue), additionally a parameter α is used to balance requirements of different test examples 

with different test resources.  

 

Zhang et al. (2007) take a different approach when adapting the Performance algorithm. 

They focus on the fact that the test costs and misclassification costs are possibly not on the 
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same scale; test costs would be considered on a cost scale of currency whilst misclassification 

costs, particularly in terms of medical diagnosis, states Zhang et al. (2007), must be a social 

issue; what monetary value could be assigned for potential loss of life? The adaptation 

attempts to achieve maximal reduction in misclassification costs from lower test costs. The 

only difference to equation (3.6) to produce CTS (Cost-Time Sensitive Decision Tree), is to 

remove the bias of expert parameter, preferring to address such issues as waiting costs (also 

referred to in other studies as delayed cost), at the testing stage by developing appropriate test 

strategies.  

 

The above measures all utilize the information gain as part of a selection measure.  An 

alternative approach, taken by Breiman et al. (1984), is to alter the class probabilities, P(i) 

used in the information gain measure. That is, instead of estimating P(i)  by Ni/N, it is 

weighted by the relative cost, leading to an altered probability (Breiman, et al. 1984, p114): 

 

Altered Probabilityi  = Cij*(Ni/N) / ∑j cost(j)(Nj/N)                     (3.7) 

 

In general, the cost of misclassifying an example of class j may also depend on the class i that 

it is classified into, so Breiman et al. (1984) suggest adopting the sum of costs of 

misclassification: 

 

cost(j) =  ∑i Cij                    (3.8) 

 

Although these altered probabilities can then be used in the Information Gain measure, the 

method was tried by Pazzani et al. (1994) using the GINI index: 
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Altered GINI = 1-∑k
y=1 Altered Probabilityy

2      (3.9) 

   

C4.5 allows the use of weights for examples, where the weights alter the Information Gain 

measure by using sums of weights instead of counts of examples. So instead of counting the 

number of examples with attribute value a and class k, the weights assigned to these 

examples would be summed and used in equation (2.1). 

 

C4.5’s use of weights has been utilized to incorporate misclassification costs, by overriding 

the weight initialization method. For example if the cost to misclassify a faulty example from 

the example dataset in Table 1 is 5, those examples belonging to class ‘faulty’ could be 

allocated the weight of 5, and examples belonging to class ‘not faulty’ could have the weight 

of 1, so that more weight is given to those examples with the higher misclassification cost. 

C4.5CS is one such algorithm which utilizes this use of weights. 

 

The method of computing initial weights by C4.5CS is similar to that of the 

GINIAlteredPriors algorithm developed by Breiman et al. (1984) and Pazzani et al. (1994). 

When presented with the same dataset, both methods would produce the same decision tree. 

However Ting (1998) observes that the method which alters the priors would perform poorly 

as pruning would be carried out in a cost insensitive way, whereas the C4.5CS algorithm uses 

the same weights in its pruning stage. In his experiments with a version which replicates 

Breiman et al. (1984)’s method, C4.5(π’) performs worse that the C4.5CS algorithm. He 

explains this result as owing to different weights in the tree growing stage and the pruning 

stage. 
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The sum of all the weights for class j in the C4.5CS algorithm will be equal to N. The aim of 

C4.5CS is to reduce high cost errors by allocating the highest weights to the most costly 

errors so that C4.5 concentrates on reducing these errors.  

C4.5CS (Ting 1998, 2002):  

 

                                    +-"�ℎ%> = �?%(@) A∑ �*B7(5)ACC      (3.10) 

where cost(j) and cost(i) are as defined by equation (3.8). 

 

MaxCost (Margineantu and Dietterich 2003): +-"�ℎ% > =  D�EFG5GH 1>5     (3.11) 

AvgCost (Margineantu and Dietterich 2003):  +-"�ℎ%> =  ∑ �ICJCKL,CNI(HOF)             (3.12) 

       

These latter two algorithms have been designed to solve multi-class problems so the cost 

matrices involved are not the usual 2 x 2 grids presented when solving two class problems. 

Instead a k x k matrix is used, the diagonal cells containing the cost of correctly classifying an 

example, usually zero although for some domains it could well be greater than zero. 

 

Table 5 presents an example of a cost matrix of a dataset where k = 4. The diagonal cells have 

been assigned zero therefore a correct classification results in zero cost. Two algorithms 

developed by (Margineantu and Dietterich 2003) use this cost matrix directly to compute 

initial weights. MaxCost uses the worst case cost of misclassifying an example. The 

maximum value within a column is considered to be the worst case cost of misclassifying an 

example. For instance, the weight of all class 1 examples will be assigned 100 as that is the 

maximum misclassification cost in the column corresponding to class 1. AvgCost calculates 

the average cost of misclassifying an example for its weight. Each weight is computed as the 

mean of the off-diagonal cells in the corresponding column. Using this algorithm, class 1 
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examples are assigned 35.6. These two algorithms are considered more efficient than others 

of this type (Margineantu and Dietterich 2003).  

 

  
Predicted class Correct Class 

 1 2 3 4 

1 0 10 2 5 
2 100 0 5 2 
3 5 2 0 50 
4 2 5 25 0 

 
Table 5 Example of a cost matrix of a four class problem 

 

 

Margineantu and Dietterich (2003) also suggest an alternative way of setting the weights, 

called EvalCount, where an accuracy-based decision tree is first induced and then used to 

obtain the weights.  The training data is sub divided into a sub training set and a validation 

set. The sub training set is then used to grow an accuracy based decision tree. Using this 

decision tree, the cost of misclassification for each class on the validation set is then 

measured using the cost matrix. The weight allocated to a training example is then set to the 

total cost of misclassifying an example of that class. 

 

 3.1.1.2 Direct use of costs.   Instead of adapting the information gain to include costs, a number 

of algorithms utilize the cost of misclassification directly as the selection criteria. These 

algorithms can be subdivided into two groups: those that only use misclassification costs and 

those which also include test costs. 

 

The central idea with these algorithms is to calculate the expected cost if an attribute is used 

to divide the examples, compared with the expected cost if there is no further division (i.e. a 

leaf is assumed).  The attribute that results in the most reduction is then selected to divide the 
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examples. Of course, if none of the attributes results in a reduction, then a leaf node is 

created. 

 

Cost-Minimization (Pazzani et al. 1994), Decision Trees with Minimal Cost (Ling et al. 2004) 

and two adaptations Decision Trees with Minimal Cost under Resources Constrain (Qin et al. 

2004) and CSTree (Ling et al. 2006a) use either misclassification costs or a combination of 

misclassification costs and test costs to partition the data. Cost-Minimization, the simplest of 

these chooses the attribute which results in the lowest misclassification costs. 

  

One of the main algorithms to use costs directly in order to find the attribute on which to 

partition data, is Decision Trees with Minimal Cost developed by Ling et al. (2004), 

spawning other adaptations. Expected cost is calculated using both misclassification costs and 

test costs aiming to minimize the total cost. An attribute with zero or smallest test cost is most 

likely to be the root of the tree, thus attempting to reduce the total cost. This algorithm has 

been developed firstly to minimize costs and secondly to deal with missing values in both the 

training and testing data. In training, examples with missing values remain at the node 

representing the attribute with missing values. In a study comparing techniques by Zhang et 

al. (2005), it was concluded that this was the best way to deal with missing values in training 

examples. How and whether to obtain values during testing are solved by constructing testing 

strategies and are discussed additionally in Ling et al. (2006b). 

 

To illustrate what happens when only the costs (i.e., no information gain) are used to select 

attributes, consider the application of the DT with MC algorithm to the examples in Table 1, 

where in addition to the test costs we assume the misclassification costs of 50 and 200 for the 

faulty and not faulty class respectively.    
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5(a) Tree from DT with MC  5(b) Tree if left branch is expanded. 

 

Figure 5 Decision tree when DT with MC has been applied to dataset in Table 1 

 
 

Figure 5(a) shows the tree induced by DT with MC algorithm, which is very different from 

the cost-sensitive tree produced by EG2 (Figure 4) and from the tree produced by ID3 (Figure 

1).  This algorithm employs pre-pruning, that is, it stops splitting as soon as there is no 

improvement.  Figure 5(b) shows a partial tree obtained, if the left branch was expanded 

further.  The additional attribute that would lead to the least cost is sound quality, with a total 

cost of 220 units since there are still two faulty examples misclassified but there is the extra 

cost of 120 units for testing Sound Quality (i.e., 8 examples each costing 15 units).  However, 

the cost without splitting is 100 units (i.e., 2 faulty examples misclassified, with 

misclassification cost of 50) and hence, in this case, the extra test is not worthwhile. 

  
Ling et al. (2006b) use the algorithm developed in Ling et al. (2004) in a lazy learning 

framework in order to use different test strategies to obtain missing values on test data and to 

address problems of delayed tests. Using expected total cost, a tree is induced for each test 

example using altered test costs, whereby test costs are reduced to zero for examples with 

known values, thus making them a more desirable choice. 
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Ling et al. (2004)’s algorithm is further adapted into CSTree which does not take into account 

test costs, using only misclassification costs (Ling et al. 2006a). CSTree deals with two-class 

problems and estimates the probability of the positive class using the relative cost of both 

classes and uses this to calculate expected cost.  

 

A different and perhaps more extensive idea is by Qin et al. (2004), who develop an 

adaptation of the Ling et al. (2004) algorithm Decision Trees with Minimal Cost under 

Resource Constrains. Its purpose is to trade off between target costs (test costs and 

misclassification costs) and resources.  Qin et al. (2004) argue that it is hard to minimize two 

performance metrics and it is not realistic to minimize both of them at the same time. So they 

aim to minimize one kind of cost and control the other in a given budget. Each attribute has 

two costs, test cost and constrain, likewise each type of misclassification has a cost and a 

constrain value. Both these values are used in the splitting criteria, to produce a target-

resource cost decision tree (Qin et al. 2004) and used in tasks involving target cost 

minimization (test cost) and resources consumption for obtaining missing data. 

 

Decision Tree with Minimal Costs under Resource Constrain: 

  ICFS  =  (T − TA) 1�#?%.�"#�⁄       (3.13) 

  1�#?%.�"#� = (W − �) ∗ .� + X ∗ 15>(.) + # ∗ 1>5(.) + � ∗  1>5(.) (3.14) 

here T is the misclassification cost before splitting, TA is the expected cost if attribute A is chosen, rA, Cij(r) and 
Cji(r) are the resource costs for false negatives and false positives respectively, p is the number of positive 
examples and n the number of negative examples and o the number of examples with missing attribute value. 
 

A different approach than simply using the decision tree produced using direct costs, is 

suggested by Sheng and Ling (2005), a hybrid cost-sensitive decision tree. They develop a 

hybrid between decision trees and Naïve Bayes, DTNB (Decision Tree with Naïve Bayes). 

Decision trees have a structure which is used to collect the best tests but ignores, when 
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classifying, originally known attribute values not appearing in the path taken by a test 

example. It is argued by Sheng and Ling (2005) that any value is available at a cost, if values 

are available at the testing stage, these might be useful in order to reduce misclassification 

costs and to ignore them would be wasting available information. Naïve Bayes can use all 

known attribute values for classification but has no structure to determine which tests to 

perform and in what order should they be carried out in order to obtain unknown attribute 

values. The DTNB algorithm aims to combine the advantages of both techniques. 

  

A decision tree is built using expected cost reduction using the sum of test costs and expected 

misclassification costs to determine whether to further split the data and on what attribute. 

Simultaneously a cost-sensitive Naïve Bayes model using Laplace correction and 

misclassification costs is hidden at all nodes including leaves and is used for classification 

only of the test examples. The decision tree supplies the sets of tests used in various test 

strategies and the Naïve Bayes model, built on all the training data, classifies the test 

examples, thus overcoming problems caused by segmentation of data, that is the reduction of 

data at lower leaves, and making use of all attributes with known values but which have not 

been selected during induction so that no information once obtained, is wasted. In 

experiments, this hybrid method proved to be better in combination than the individual 

techniques (Sheng and Ling 2005). 

 

3.1.1.3 Linear and non-linear decision nodes.   Most of the early algorithms handle numeric 

attributes by finding alternative thresholds, resulting in univariate or axis-parallel splits.  A 

number of authors have suggested that this is not sufficiently expressive and adopted more 

sophisticated multivariate splits. These methods still adopt the top-down decision tree 
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induction process and the primary difference between them, which we summarize below, is 

whether they adopt linear or non-linear splits and how they obtain the splits. 

 

The LMDT algorithm (Draper et al. 1994) was one of the first to go beyond axis-parallel 

splits. This algorithm aims to develop a decision tree whose nodes consist of Nilsson’s (1965) 

linear machines. A linear machine aims to learn the weights of linear discriminants. Before 

looking at the LMDT algorithm, it is worth understanding the concept of a linear machine, 

which is central to the LMDT algorithm.  The following figure summarizes the structure of a 

linear machine. 

 

Each function gi(x) aims to represent a class i in a winner takes all fashion.  A weight wij 

represents the coefficient of xj for the ith linear discriminant function.   The training procedure 

involves presenting an example x that belongs to a class i.  If the example is misclassified, 

say into class j, then the weights of the jth machine can be decreased and the i th machine 

increased, i.e.: 

 
Wi  = Wi + c.x    
Wj = Wj - c.x        (3.15) 

 
where c is a correction factor, and the Wi   and Wj are the weight vectors for the ith  and jth   linear discriminants. 
 
 
 

 
 

Figure 6 Linear Machine 
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When the classes are linearly separable, the use of a constant correction rate (i.e. as in a 

perceptron) is sufficient to determine a suitable discriminant and this simple procedure 

converges.  However, in general, the classes may not be linearly separable and the above 

procedure may not converge. Draper et al. (1994) overcame this problem by utilizing a 

thermal training procedure developed by Frean (1990). This involved using an annealing 

parameter β to determine the correction factor c as follows: 

 

 c = β2 / β + k     where k = (Wj – Wi)
T x / 2xT x.   (3.16) 

 
                        where Wj is the weight vector of the ith  discriminant function that represents 

the true class of the example, and Wj  is the weight vector of the jth discriminant 
                        function that represents the class in which the example is misclassified. 
 
 

LMDT is altered to make it cost-sensitive by altering its weight learning procedure, with the 

aim of reducing total misclassification costs. In the modified version, it samples the examples 

based on the cost of misclassifications made by the current classifier. The training procedure 

is initialized for each class using a variable ‘proportioni’, for each class i. Next, if the 

stopping criterion is not met, the thermal training rule trains the linear machine and if the 

examples have been misclassified, the misclassification cost is used to compute a new value 

for each ‘proportioni’.  

 

An alternative approach to obtaining linear splits, taken in the LDT system (Vadera 2005b),   

is to take advantage of discriminant analysis which enables the identification of linear 

discriminants of the form (Morrison 1976; Afifi and Clark 1996):  
 

 (YF − Y )ΣOFE − F (YF − Y )ΣOF(YF + Y ) ≤ ln \�]L^(�])�L]^(�L)_     (3.17) 

    
where x is a vector representing the new example to be classified, YF, Y  are the mean vectors for the two 
classes, Σ is the pooled covariance matrix, and �(15)  is the probability of an example being in class Ci.  
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Theoretically, it can be shown that equation (3.17) minimizes the misclassification cost when 

` has a multivariate normal distribution and when the covariance matrices for each of the two 

groups are equal. 

 

This trend of moving towards more expressive divisions is continued in the CSNL system 

(Vadera 2010) that adopts non-linear decision nodes.  The approach also utilizes discriminate 

analysis, and adopts following split that minimizes cost provided the class distributions are 

multivariate normal: 

 

 − F E7(∑ −OFF ∑ )E + (YF7OF ∑ −OFF Y 7 ∑ )E − a ≥ ln \�]L^(�])�L]^(�L)_OF    

 

 a =  F �# (| ∑ |L| ∑ |] ) + F (YF7 ∑ YFOFF − Y 7 ∑ Y OF )                                            (3.18) 

 
where x is a vector representing the example to be classified, µ1, µ2 are the mean vectors for the two classes, ∑1, 
∑2 are the covariance matrices for the classes and ∑1

-1, ∑2
-1 the inverses of the covariance matrices.  

 
 

Given that the multivariate assumption may not hold in practice, it may be that utilization of a 

subset of variables could lead to more cost-effective splits, and hence several strategies for 

subset selection are explored.  One strategy, explored in Vadera (2005a), is to attempt all 

possible combinations and select the subset that minimizes cost. However, this strategy is not 

particularly scalable and results in trees that are difficult to visualize.  An alternative strategy, 

explored in (Vadera 2010), selects two of the most informative features, as measured by 

information gain, and uses the above equation (3.18) to obtain non-linear divisions.  

 

3.1.2 Post construction 

If costs are unknown at training time they cannot be used for inducing a tree. Additionally if 

costs are likely to change, this would mean inducing a tree for every different combination of 
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costs. Hence, various authors have explored how misclassification costs can be applied after a 

tree has been constructed. 

 

One of the simplest of ways is to change how the label of the leaf of the decision tree is 

determined. I-gain Cost-Laplace Probability (Pazzani et al. 1994) uses a Laplace estimate of 

the probability of a class given a leaf shown in equation (3.19). If there are Ni examples of 

class i at a leaf and k classes then the Laplace probability of an example being of class i is: 

 

           �(") =  ACc FHc ∑ AdJdKL                             (3.19) 

 

When considering accuracy only, an example is assigned to the class with the lowest 

expected error. To incorporate costs, the class which minimizes the expected cost of 

misclassifying an example into class j is selected, where the expected cost is defined by: 

 

       �EX-%-e 1�?% �/ ;"?��??"/"�%"�# "#%� ��?? @ =  ∑ 15>5 �(")  (3.20) 

 

Ferri et al. (2002), propose a post construction method based on Receiver Operating 

Characteristics (ROC) (Swets et al. 2000).  ROC facilitates comparison of alternative 

classifiers by plotting their true positive rate (on the y axis) against their false positive rate 

(on the x axis).   Figure 7 shows an example ROC, where the true and false rates of four 

classifiers are plotted. The closer a classifier is to the top left hand corner, the more accurate 

it is (since the true positive rate is higher and the false positive rate smaller).    
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The convex hull created from the points (0,0), the four classifiers and (1,1) represents an 

optimal front.  That is, for any classifier below this convex hull, there is a classifier on the 

front that is less costly. 

 

 

Figure 7 Example ROC 

 

The idea behind Ferri et al. (2002)’s approach is to generate the alternative classifiers by 

considering all possible labellings for the leaf nodes of a tree.  For a tree with m leaf nodes, 

and a two class problem, there are 2m alternative labels, which could be computationally 

expensive.  However, Ferri et al. (2002) shows that for a two class problem, if the leaves  are 

ordered by the accuracy of one of the classes, then only  m+1 alternative labellings are 

needed to define the convex hull, where the jth node of the ith labelling, Li,j,  is defined by:   

 

f5,> =  g−h- "/ @ < "+h- "/ @ ≥ "j                       (3.21) 

 

The convex hull formed by these labellings can then be used to determine the most optimal 

classifier once the costs of misclassification are known. 
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3.2 Multiple tree, non-greedy methods for cost-sensitive decision tree induction 

 

Greedy algorithms have the potential to suffer from local optima, and hence an alternative 

direction of research has been to develop algorithms that generate and utilize alternative trees. 

There are three common strands of work:  Section 3.2.1 describes the use of genetic 

algorithms, Section 3.2.2 describes methods for boosting and bagging, and Section 3.2.3 

describes the use of stochastic sampling for developing anytime and anycost frameworks. 

 

3.2.1 Use of Genetic Evolution for Cost-Sensitive Tree Induction 

Several authors have proposed the use of genetic algorithms to evolve cost-effective decision 

trees (Turney 1995). Just as evolution in nature uses survival of the fittest in order to produce 

next generations, a pool of decision trees are evaluated using a fitness function, the fittest 

retained and combined to produce the next generation repeatedly until a cost-effective tree is 

obtained. This section describes the algorithms that utilize evolution, which vary in the way 

they represent, generate, and measure the fitness of the trees. 

 

One of the first systems to utilize GAs was Turney’s (1995) ICET system (Inexpensive 

Classification with Expensive Tests. ICET uses C4.5 but with EG2’s cost function to produce 

decision trees, in Section 3.1.1.1. 

 

Its populations consists of individuals with the parameters CAi,
 ω, and CF, where CAi, ω are 

biases utilized in equation (3.1) and CF is a parameter used by C4.5 for determining the 

aggressiveness of pruning.  
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ICET begins by dividing the training set of examples into two random but equal parts: a sub-

training set and a sub-testing set. An initial population is created consisting of individuals 

with random values of CAi,
 ω, and CF. C4.5, with the EG2’s cost function, is then used to 

generate a decision tree for each individual. These decision trees are then passed to a fitness 

function to determine fitness. This is measured by calculating the average cost of 

classification on the sub-testing set.  

 

The next generation is then obtained by using the roulette wheel selection scheme, which 

selects individuals with a probability proportional to their fitness.   Mutation and crossover 

are used on the new generation and passed through the whole procedure again. After a fixed 

number of generations (cycles) the best decision tree is selected.  ICET uses the GENEtic 

Search Implementation System (GENESIS, Grefenstette (1990)) with its default parameters 

including a population size of 50 individuals, 1000 trials and 20 generations. 

   

More recently, Kretowski and Grześ (2007) describe GDT-MC (Genetic Decision Tree with 

Misclassification Costs), an evolutionary algorithm in which the initial population consists of  

decision trees that are generated using the usual top down procedure, except that the nodes 

are obtained using a dipolar algorithm. That is, to determine the test for a node, first two 

possible examples from the current dataset are randomly chosen such that they belong to 

different classes. A test is then created by randomly selecting an attribute that distinguishes 

the two examples. Once a tree is constructed, it is pruned using a fitness function.  The fitness 

function used in GDT-MC aims to take account of the expected misclassification cost as well 

as the size of trees and takes the form (Kretowski and Grześ, 2007): 
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2"%#-?? �/ %.-- =  \1 − k�l�_ (1 + m. no)         (3.22) 

where EC is the misclassification cost per example, MC is the maximal possible cost per example, TS is the 
number of nodes in the tree and γ is a user provided parameter that determines the extent to which the genetic 
algorithm should minimize the size of the tree to aid generalization. 
 

The genetic operators are similar in principle to the cross-over and mutation operators, except 

that they operate on trees. Three cross-over like operators are utilized on two randomly 

selected nodes from two trees:  

 

• exchange the sub-trees at the two selected nodes. 

• if the types of tests allow, then exchange just the tests. 

• exchange all sub-trees of the selected nodes, randomly selecting the ones to be 

exchanged. 

 

The mutation operators adopted allow a number of possible modifications of nodes, including 

replacing a test with an alternative dipolar test, swapping of a test with a descendent node’s 

test, replacement of a non-leaf node by a leaf node, and development of leaf node into a sub-

tree.   A linear ranking scheme, coupled with an elitist selection strategy, is utilized to obtain 

the next generation (Michalewicz 1996).3 

 

The ECCO (Evolutionary Classifier with Cost Optimisation) system (Omelian 2005)  adopts 

a more direct use of genetic algorithms by mapping decision trees to binary strings and then 

adopting the standard cross-over and mutation operators over binary strings.   Attributes are 

represented by a fixed size binary string, so for example 8 attributes are coded with 3 bits.    

Numeric attributes are handled by seeking an axis parallel threshold value that maximizes 

                                                 
3 The elitist strategy ensures that a few of the fittest are copied to the new generation, and the linear ranking strategy 

ensures some diversity and avoids the fittest don’t dominating the evolution to early in the evolution.    
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information gain, thereby resulting in a binary split. The mapping between a tree and its 

binary string is achieved by assuming a fixed size maximal tree where each node is capable 

of hosting an attribute which has the most features.4   Figure 8 illustrates the mapping for a 

problem where the attributes have two features only. Such a maximal tree is then interpreted 

by mapping the nodes to attributes, assuming that the branches are ordered in terms of the 

features.   In addition, mutation may result in some nodes with non-existent attributes, which 

are also translated to decision nodes.    

 

A tree is then populated with the examples in a training set and each leaf node labelled with a 

class that minimizes the cost of misclassification.   A version of the minimum error pruning 

algorithm that minimizes cost instead of error is used for pruning.  The fitness measure used 

is the expected cost of classification, taking account of both the cost of misclassification and 

the cost of the tests.  Once genes are mapped to decision trees and pruned, and their fitness 

obtained, the standard mutation and cross-over operators applied, a new generation of the 

fittest is evolved and the process repeated a fixed number of cycles.   Like ICET, ECCO 

adopts the GENESES GA system and adopts its default parameters.  

 

 

Figure 8 Illustration of mapping 

 

                                                 
4 The approach works in general for an attribute with more than two features 
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Li et al. (2005) take advantage of the capabilities of Genetic Programming (GP), which 

enable representation of trees as programs instead of bit strings, to develop a cost-sensitive 

decision tree induction algorithm.  They use the following representation of binary decision 

trees as programs, defined using BNF (Li et al. 2005): 

 

<Tree> :: “if-then-else” <Cond><Tree><Tree> | Class 

 <Cond> :: <Cond> “And” <Cond> | <Cond> “Or” <Cond> 

                          | Not <Cond> |  Variable<RelationOperation>Threshold 

 RelationOperation ::= “>” | “<” | “=” 

 

Unlike GDT-MC, which utilizes specialized mutation and crossover operators, Li et al. 

(2005) adopt the standard mutation and crossover operators of genetic programming. A 

tournament selection scheme, in which four individuals are selected randomly with a 

probability proportional to their fitness, compete to move to the next generation.  The fittest 

of the four is copied to the pool for the next generation and this tournament process repeated 

to produce the complete mating pool for the next generation. The fitness function employed 

is also different from ICET, ECCO and GDT-MC.  Unlike, these methods, which utilize 

expected cost, Li et al (2005) propose the following fitness function that is based on the 

principle that a cost-effective classifier will maximize accuracy (RC) but minimize the false 

positive rate (RFP): 

   

 Constraint Fitness Function = Wrc’ * RC – Wrfp * RFP  (3.23) 
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Experimentation with this function leads them to the following additional constraint to ensure 

that accuracy of one of classes is not compromised when the costs of misclassifications are 

significantly imbalanced: 

 

    Wrc = 1 if C+ ϵ (Pmin, Pmax), 0 otherwise,     (3.24) 

where C+ is the proportion of examples predicted to be positive, and the Pmin and Pmax define  the expected range 
for C+ that is provided by a user.  

 

3.2.2 Wrapper methods for cost-sensitive tree induction 

A significant amount of research has been done on accuracy based classifiers, and instead of 

developing new cost-sensitive classifiers or adapting them as described above, an alternative 

strategy is to develop wrappers over accuracy based algorithms.  

    

This section describes two approaches for utilizing existing accuracy based algorithms.  

Section 3.2.2.1 describes methods based on boosting, where an accuracy based learner is used 

to generate an improving sequence of hypotheses and Section 3.2.2.2 describes methods 

based on bagging that are based on generating and combining independent hypotheses. 

Section 3.2.2.3 describes a method which implicitly includes alternative hypotheses but in 

one structure. 

 

3.2.2.1 Cost-Sensitive Boosting.  Boosting involves creating a number of hypotheses ht and then 

combining them to form a more accurate composite hypothesis of the form (Schapire 1999; 

Meir and Rätsch 2003): 

 /(E) =  ∑ p7ℎ7(E)q7rF       (3.25) 

 where αt indicates the extent of weight that should be given to ht(x). 
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One of the first practical boosting methods, AdaBoost (Adaptive Boosting) works by 

generating hi(x) in sequential trials by using a learner on weighted examples that reflect their 

importance (Freund and Schapire 1996). It begins by assigning weights of 1/N to each 

example.  At the end of each sequential trial, these weights are adjusted so that the weights of 

misclassified examples are increased, but the weights of correct examples decreased. After a 

fixed number of cycles, a sequence of trees or hypotheses hi is available and can be combined 

to perform classification.  The final classification is based on selecting the class that results in 

the maximum weighted vote as defined by equation (3.25). There are different versions of 

AdaBoost with specific weight update rules (e.g., Freund and Schapire (1997), Bauer and 

Kohavi (1999), Schapire and Singer 1998, 1999)).  For example, one version that is based on 

a weak learner capable of producing hypotheses ht that return a confidence rating in the range 

(-1,1) uses the following update rule (Schapire 1999): 

 

    p7 =  L]ln \FOstst _        (3.26) 

    +7cF(E) = ut(v) wxy (Ozt {|t(v))}t        
where the Zt is used to normalize the weights so they add up to 1. 

 

Thus, AdaBoost consists of three key steps: the initialization, the weight update equations, 

and the final weighted combination of the hypotheses. The literature contains a number of 

algorithms that adapt these three steps of AdaBoost to develop cost-sensitive boosting 

algorithms. 

 

In particular, Ting and Zheng (1998a), which was one of the first studies to utilize boosting 

for cost-sensitive induction, proposed two adaptations:  an algorithm called UBoost (Boosting 
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with Unequal Instance Weights) and another called Cost-UBoost (UBoost with Cost-Sensitive 

adaptation).  

 

UBoost utilizes AdaBoost, except that the weights for each example x, of class j are 

initialized to the cost of misclassifying an example of class j, and normalized5 :  

 

   +~(E) =  �?%(@)      (3.27)  

 

The cost of misclassifying an example of class i, denoted by cost(i) is defined by Ting and 

Zheng (1998a) as in equation (3.8).  Below, we also use the notation cost(x) to denote the cost 

of misclassifying an example x. 

 

In addition, the composite classification rule of equation (3.25) is adapted to first work out 

the expected cost of classifying an example ECj(x), into class j using the combined 

hypotheses:  

 

 �1>(E) =  ∑ p7�1(E, @, ℎ7q7rF )      (3.28) 

where EC(x,j,ht)  is the expected cost  if the example x is classified in class j based on the distribution of 
examples in the leaf node of the tree ht that leads to the classification ht(x).    

 

UBoost then selects the class j that results in the minimum expected cost ECj(x). 

 

Ting and Zheng (1998a) also propose a method Cost-UBoost that extends UBoost by also 

amending the weight update procedure to take account of costs, so that:3 

 

                                                 
5 The presentation here assumes that the normalisation of the weights by a factor is Zt   is done at the end of a trial, 

therefore simplifying the equations. 
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  +7cF(E) = +7(E). �(�′, �)      (3.29) 

where y is the actual class and y’ is the predicted class for an example x and β is defined by: 

  �(�′, �) =  g 1{{′ +ℎ-# �′ ≠ �      1      +ℎ-# �′ = �  j     (3.30) 

 

The empirical trials conducted by Ting and Zheng (1998a) suggest that Cost-UBoost 

performs better than UBoost in terms of minimizing costs of misclassification for two class 

problems. However, they note that this advantage reduces for multi-class problems and 

suggest that this is owing to the mapping of different costs of misclassification into a single 

misclassification cost by equation (3.8).  Later in this section, we describe the more recent 

work of Abe et al. (2004), and Lozano and Abe (2008) that develops theoretical foundations 

for multi-class cost-sensitive boosting problems. 

 

In a follow up study, Ting (2000b) propose further variations, named CSB0, CSB1,  CSB2 

and compare their performance to another variation of AdaBoost, known as AdaCost (Fan et 

al. 1999). CSB0 is essentially the Cost-UBoost algorithm described above, while CSB1,  

CSB2 and AdaCost utilize increasingly sophisticated weight update functions for weak 

learners that produce the confidence in its prediction ht(x) ∈ (0, 1)  (Ting 2000b): 

 

CSB1:      +7cF(E) = +7(E)�(�′, �)exp (−�ℎ7(E))    (3.31) 

CSB2:      +7cF(E) = +7(E)�(�′, �)exp (−�ℎ7(E)p7)   (3.32) 

AdaCost:  +7cF(E) = +7(E)exp (−�ℎ7(E)p7�′(�, �′))   (3.33) 

where δ is -1 if the example is misclassified and +1 if classified correctly, and a αt  is defined as derived 
in (Shapire and Singer 1999): 

 

     p7 = L]�# \Fc�tFO�t_     (3.34) 
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and with rt defined as follows for the CSB family: 

 

    .7 =  L� ∑ �+7(E)ℎ7(E)vs�     (3.35) 

     

As well as the update equation, the rt and cost adjustment function β’ are defined differently 

for AdaCost: 

   .7 = ∑ �+7(E)ℎ7(E)�′(�, ℎ(E))vs�     (3.36) 

    

   �′(�′, �) =  g 0.5 �?%(E) + 0.5, +ℎ-# �′ ≠ �−0.5 �?%(E) +  0.5, +ℎ-# �′ = �  j  (3.37) 

   

Ting (2000b) evaluates these methods empirically and concludes that the introduction of the 

αt in CSB2 does not lead to a significant improvement and the additional parameters used in 

AdaCost are not particularly effective either.   CSB1 produces more cost-effective results than 

AdaCost in 30 runs while AdaCost performs better in 11 runs.  Surprisingly, the evaluations 

also suggest that AdaBoost produces better results than its cost-sensitive version AdaCost, 

which Ting (2000b) attributes to the particular definition of β’ that allocates a relatively low 

reward (penalty) when high cost examples are correctly (incorrectly) classified.   This is in 

contrast to the results presented in (Fan et al. 1999), where AdaCost produces better results 

than AdaBoost when the Ripper learner is used instead of C4.5 as the base learner. 

 

The above adaptations of boosting presume that costs are well-defined in advance.   Merler et 

al. (2003) argue that in medical applications, the costs of false positives or false negatives can 

only be approximate, and further that during the classification process there two separate 

phases. In the first phase, the aim is to ensure that the classifier is sensitive and the true 
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positives are maximized whilst the specificity of a classifier is retained within acceptable 

bounds. In a second phase, a specialist medical consultant would examine the identified 

positives more carefully, filtering out the false negatives.  Hence, for this type of application, 

they develop a boosting algorithm, SSTBoost (Sensitivity-Specificity tuning Boosting) that 

adapts AdaBoost so that the error for the i
th example is defined in terms of measures of 

sensitivity and specificity: 

 

 �5 = (1 − o-#?"%"h"%�)�cFcF +  (1 − oX-"/""%�)�OFOF    (3.38) 

where π+1 π-1 are the class priors and c+1, c-1 are the costs of misclassification of the two classes. Sensitivity is the 
true positive rate and specificity is true negative rate.   
 

With this definition of error, they use equation (3.26) for αt : 

 

   p7 = \F _ ln (FO�C�C )       (3.39) 

 

The weight update equation takes the form: 

 

+7cF(E) = �w�(x)exp (−p7(2 − �?%(E))), "/-E�DX�- E "? ��??"/"-e �..-%�� +7(E) exp3p7�?%(E)9 , "/ -E�DX�- E "? ��??"/"-e "#�..-%��j 
           (3.40) 

 

Given specific costs for misclassification, this adaptation of AdaBoost, results in a classifier 

with a particular sensitivity and specificity. To enable a search for a classifier in a target 

region of sensitivity and specificity, they relate the costs of misclassifying a positive 

example, c+, and cost of misclassifying negative example, c-, in terms of a single parameter 

ω: 
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    cF = � 
    OF = 2 − ω      (3.41) 
 

This then enables a search over ω by using the method of bisection to find a classifier that 

aims to be within a user specified region of sensitivity and specificity, meeting their 

application goals. 

 

The above adaptations of AdaBoost amend the procedure to take account of costs. In contrast, 

as part of a study that aims to utilize boosting for estimating conditional class probabilities,  

Mease et al. (2007) describe how AdaBoost can be used directly to develop a procedure 

called JOUS-Boost to perform cost-sensitive boosting.  They use a result owed to Elkan 

(2001) that shows that it is possible to change the distribution of the data to reflect the ratio of 

costs and such that applying boosting on this changed distribution  results in minimization of 

cost. More specifically, given the cost of misclassification and number of examples of class 1 

and class 2 are N1, N2 respectively, the distribution of the data is changed so that the number 

of examples N1’, N2’ of class 1 and 2, satisfy: 

 

    
A′LA′] =  AL�L]A]�]L      (3.42) 

 

This change of distribution can be achieved by sampling the original data in a way that results 

in a smaller dataset (under-sampling) or a larger dataset (over-sampling).  The sampling itself 

can be done with replacement, where a selected example is returned, or without replacement. 

Under-sampling can result in loss of data and over-sampling leads to duplication of examples.  

Mease et al. (2007) carry out experiments on both artificial and real data showing that the 

duplication owing to over-sampling leads to over-fitting when boosting.   They then propose 

a variation, called JOUS-Boost (Over/Under Sampling and Jittering), that amends the 
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sampling process by adding noise to the features of any duplicated data and provide empirical 

evidence to show that this helps to reduce over-fitting when AdaBoost is used.     

 

Most of the above algorithms are based on using boosting on two class problems.  In two 

class problems, algorithms such as UBoost are able to set the weight of an example in 

proportion to the cost of misclassifying an example.  However, for multi-class problems, an 

example could be misclassified into several classes, so determining the weight is less 

obvious.  Several authors have proposed methods such as utilizing the sum or average of 

misclassification into the other classes (e.g. Breiman, et al (1984); Margineantu (2001)); 

though as noted above, Ting and Zheng (1998a) suggest that use of these methods may 

explain a reduction in the advantage gained by Cost-UBoost over UBoost in their empirical 

evaluations. Abe et al. (2004) also argue that these methods do not have a theoretical basis.  

Hence, they propose an alternative way of utilizing boosting, called Gradient Boosting with 

Stochastic Ensembles (GBSE), for multi-class problems.  GBSE is motivated by first defining 

a stochastic hypothesis H(y|x) for a class y for an example x based on the individual 

hypotheses ht(x) generated by (Abe et al. 2004): 

 

    �(�|E� =  
F

q
∑ �(ℎ7(E� = ��q

7rF    (3.43)  

If Ht(y|x) is the composite hypothesis after round t of boosting, then it is formed by 

combining the previous composite hypothesis Ht-1 with the new hypothesis, ht,  obtained in 

round t, weighted by αt:  

   �7(�|E� = (1 − α�t��7OF(�|E� +  α��(ℎ7(E� = ��  (3.44)  

where I(E) returns 1 if the expression E is true and 0 if E is false, α = 1/t, and initially H0(x|y) = 1/k, for a k-
class problem. 
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This enables the definition of the expected cost of misclassification over the examples, and 

using gradient descent, Abe et al. (2004) then derive the following weight update rule, where 

wx,y is the weight associated with classifying example x in class y: 

 

+v,{ = �?%�7OF(E) −  �?%(E, �)     (3.45) 

where costHt-1(x) is the expected cost of classifying example x by the composite hypothesis Ht-1(x).      
 

However, existing boosting methods assume a single weight of importance per example, and 

not multiple weights, wx,y. Hence, to utilize existing boosting methods, there needs to be a 

mapping to and from multiple weights to single weights per example.  Abe et al. (2004) show 

that this mapping can be achieved by expanding an example (x, y, (c1, c2, …ck)), that  has 

features x, class y, and costs of classification into class i defined by ci, into k examples : 

 

o = �3E, �, D�E>> − 59�" �(1. . a)}        (3.46) 

 

Abe et al. (2004) prove that minimizing cost over this expanded dataset is equivalent to 

minimizing the cost over the original multi-class data.  They note that equation (3.45) can 

lead to negative weights wx,y  which makes it difficult to utilize existing relational weak 

learners.  They therefore transform the examples of equation (3.46) to the following form: 

 

�\(E, �), �3+v,{ ≥ 09, |+v,{|_� E ∈  �, � ∈ �}     (3.47) 

 

A weak learner can be applied to these data and used to induce a relational hypothesis ht(x,y) 

and the composite hypothesis revised: 
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�7(�|E) = (1 − α�t)�7OF(�|E) + α�/7(�|E)          (3.48) 

where ft(y|x) converts the relational hypothesis to a stochastic form: 

 

/7(�|E) = � �7OF(�|E), "/ #� -E�DX�-? E ?�ℎ %ℎ�% ℎ(E, �) = 1�(ℎ(E, �) = 1)| � ∈ �|ℎ(E, �) = 1}|    �%ℎ-.+"?- j 
           (3.49) 

 

This formulation defines the mapping needed for GBSE to use single weight boosting 

methods for multi-class problems. 

 

A desirable property of any boosting algorithm is that it should converge and lead to the 

optimization of its objective.  Although this has not been shown for GBSE, Abe et al. (2004) 

show that a variant, called GBSE-T, with a fixed α, and the following amendment of the 

GBSE weight update equation (3.45) converges exponentially: 

 

    +v,{ = �*B7¡t¢L(v)H −  �?%(E, �)   (3.50) 

  

In a follow up study, Lozano and Abe (2008) develop stronger theoretical foundations for 

cost-sensitive boosting in which they derive update equations for a family of methods, called 

Cost-Sensitive Boosting with p-norm Loss (Lp-CSB) for which they prove convergence.   Like 

the above study, they use stochastic gradient boosting as the methodology, however, instead 

of aiming to minimize the expected cost of misclassification at each boosting round, they aim 

to minimize its approximation using the p-norm (Lozano and Abe 2008):  
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F|£|  ∑ (ℎ(�|E)¤(v,{,u)∈£ )�?%(E, �)    /�. X ≥ 1  (3.51) 

where S takes the expanded form defined as equation (3.46). 

 

They use methodology similar to the derivation of GBSE and use gradient descent to show 

that optimizing this p-norm based objective leads to finding a hypothesis ht at each round that 

minimizes (Lozano and Abe 2008, p507): 

     

¥ ¥ +v,{(�(ℎ7(E) = �)){∈¦v∈�  

                                                                                                                           (3.52) 
     

where 

    +v,{ =  �7OF(�|E)¤OF�?%(E, �)   (3.53)  

 

To facilitate the use of a relational weak learner, the examples are translated to the following 

form, into a similar form to equation (3.47) in GSBE (p508): 

 

    o =  ((E, �), �, +′v,{)| E ∈ �, � ∈ � }  (3.54)  

 

However, the weights are different from GSBE and defined by: 

 

+′v,{ = ¨ +v,{2  �#e � = 0, /�. (E, �)+ℎ-# � e�-? #�% �..-?X�#e %� %ℎ- D"#"D�D �?% ��?? ∑ +v,{{∈¦©2  �#e � = 1, +ℎ-.- �ª"? %ℎ- ?-% �/ ��� ��??-? -E-X% %ℎ- �#- +"%ℎ D"#"D�� �?%j 
           (3.55) 

 

Once a weak learner is applied and a new hypotheses ht(x,y) obtained, the revised composite 

hypothesis is defined as in equation (3.48) with ft(x|y) = ht(x,y).   Lozano and Abe (2008) 



55 

 

prove that this scheme and its related family of schemes are guaranteed to minimize the p-

norm based objective, providing a significant theoretical result and understanding of cost-

sensitive boosting methods.   

 

3.2.2.2 Cost-Sensitive Bagging.  The main principle of bagging is that producing n re-samples 

of the dataset (with replacement), applying a learning procedure to each resample and 

aggregating the answers leads to better classifiers, particularly for learners that are not stable 

(Breiman 1996).  This principle is used in MetaCost (Domingos 1999), which is one of the 

earliest systems to utilize cost-sensitive bagging. Thus, MetaCost re-samples the data several 

times and applies a base learner to each sample to generate alternative decision trees.   The 

decisions made on each example by the alternative trees are combined to predict the class of 

each example that minimizes the cost and the examples relabelled.  The relabelled examples 

are then processed by the base learner, resulting in a cost-sensitive decision tree.   

 

Zadrozny et al. (2003a, 2003b) describe a method called Costing that, like MetaCost applies a 

base learner to samples of the data to generate alternative classifiers.   However, the sampling 

process is significantly different from MetaCost. Each resample aims to change the 

distribution of the data so that minimizing error on the changed distribution is equivalent to 

minimizing cost on the original distribution (i.e., as described for JOUS-Boost above).   

Zadrozy et al. (2003a) argue that using sampling with replacement can lead to overtraining 

because of the potential for duplication, and sampling without replacement is also 

problematic since we can no longer assume that the examples selected are independent.   

Hence, to overcome these shortcomings, Zadrozny et al. (2003a) utilize rejection sampling 

(Von Neumann 1951) in which an example with cost c has a probability of c/Z of being 

accepted, where Z is chosen as the maximum cost of misclassifying an example.  Once these 
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samples, which are proportional to the cost, are generated using rejection sampling, Costing 

applies a base learner to generate m classifiers whose outcomes can be aggregated to classify 

an example.  Notice that, unlike MetaCost, there is no relabeling of the data in order to 

generate a single decision tree.  

 

Lin and McLean (2000) develop an approach, in which they use different learners on the 

same training sample to generate alternative classifiers. As with MetaCost, they use the 

different classifiers to predict the class of each example.  However, the labelling of an 

example x, by a classifier j is based on the risk of classification into two classes: 

 

Risk1,j =  π2 * P(2|x,j) * C12                                                                         (3.56) 

Risk2,j =          π1 * P(1|x,j) * C21 

 

The risk of classification of an example x into a class c is then defined as a weighted sum of 

the m classifiers: 

 

    Riskx,¯ = ¥ w°R¯,°±
>rF     (3.57) 

 

where wj, which is the weight associated with classifier j,  is the accuracy of the classifier on the training set. 
The class c that minimizes Riskx,c  is used to label an example x. 
 

 

Moret et al. (2006) describe a similar method to Lin and McLean (2000), called Bagged 

Probability Estimation Trees (B-PETS), but do not utilize the prior class probabilities, πi, in 

equation (3.56) and also estimate the P(i|x,j) using the distribution of examples in the leaf 

nodes and Laplace’s correction (equation 3.19) which is known to produce better estimates. 
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Moret et al. (2006) also propose an alternative way of estimating P(c|x), the probability of an 

example x being in a particular class c that makes use of lazy option trees.  A lazy option tree 

(LOT) is constructed for an example x, using the usual top-down process except there are two 

significant differences.  First, since the example is known, only tests that are consistent with 

the example are considered at each node.  Secondly, instead of selecting a single best test for 

each node, the first k best tests are also stored as alternative tests, leading to k sub-trees. An 

estimate of P(c|x) is then based on the k leaf nodes that the example x falls into.  In addition, 

they also use re-sampling and bagging over lazy option trees (B-LOTs), to produce estimates 

of P(c|x). These estimates of P(c|x) can then be used to select the class that minimizes the risk 

based on the cost of misclassification.   

      

Given that both MetaCost and AdaBoost each result in improved performance, it seems 

plausible that exploring a combination of the two methods could lead to further 

improvements. Ting (2000a) investigates this possibility by carrying out an empirical 

evaluation of two adaptations of MetaCost:  one, called MetaCost_A where the base learner is 

AdaBoost, and a second, called MetaCost_CSB, where the base learner is CSB0.   The results 

of the empirical evaluations suggest that there is little to be gained by embedding AdaBoost 

or CSB0 within MetaCost.  Bagging is known to be particularly effective at reducing variance 

owing to an unstable base learner (Bauer and Kohavi 1998), which may provide an 

explanation of why using bagging over AdaBoost or CSB does not result in further 

improvements. 

 

The comparison in Ting (2000a) also shows that using a cost-sensitive base learner for 

MetaCost does result in improvements over a using a cost-insensitive learner, which is also 

apparent in the empirical results presented in Vadera (2010). 



58 

 

3.2.2.3 Multiple Structures.  Estruch et al. (2002) argue that generating alternative trees such as 

in boosting and bagging can consume significant space and therefore propose a structure, 

called Multi-Tree, which aims to implicitly include alternative trees.   The central idea is to 

follow the usual top-down decision induction process, but instead of discarding alternative 

choices, these are stored as suspended nodes that could be expanded in the future (Ferri-

Ramírez 2002; Rissanen 1978).    Figure 9 shows a multi-tree for the example given Table 1 

of ‘Television Repair’ dataset. The attributes that have been selected are presented in 

rectangles, and the suspended nodes, which are in circles, are linked by the dashed lines.  The 

figure also includes the class distribution in each node and is given in the format (number of 

examples in ‘faulty’ class, number of examples in ‘not faulty’ class).  A multi-tree can be 

expanded to include an additional tree by selecting a suspended node and developing it into a 

tree using the top-down process but retaining potential attributes as suspended nodes. Estruch 

et al. (2002) consider alternative methods of selecting which suspended node to expand and 

adopt a random selection scheme.  Thus a multi-tree will implicitly include several trees each 

of which can be used for classification and whose outcomes can be combined to produce a 

weighted classification in the same manner to bagging. 

 

Estruch et al. (2002) experiment with different ways of producing this weighted classification 

by taking advantage of the fact that different decision trees may share the same part of a 

multi-tree.  A multi-tree is not as comprehensible as a single tree, and hence a method for 

extracting a single tree is developed. 

 

In contrast to MetaCost, where a single tree is obtained by applying a base learner on the re-

classified examples, a single tree is extracted by traversing a multi-tree bottom-up, and 

selecting those suspended nodes that agree the most with the outcomes of the multi-tree using 
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a randomly created dataset.  They then utilize ROC, as described in Section 3.1.2, to take 

account of costs. Estruch et al. (2002) includes an empirical comparison which concludes that 

it is more efficient in comparison to bagging and boosting.  The results for accuracy suggest 

that bagging produces better results at lower number of iterations while the use of multi-tree 

produces slightly better results beyond 200 iterations.   

 

 

Figure 9 Multi-tree using the example dataset 

 

3.2.3 Stochastic Approach 

 
The greedy methods of induction of trees, described in Section 3.1, select an attribute after 

considering its immediate effect on the examples. Several authors have investigated the 

potential for utilizing a k-look-ahead strategy to select attributes by considering their effect 

deeper down a tree (e.g., Murthy and Salzberg (1995), Dong and Kothari (2001)).  That is, for 

each attribute, a sub-tree of depth k is developed and the attribute that results in the best sub-

tree is selected.  Although increasing the look-ahead depth k has the potential for increasing 

the quality of a tree, as Esmeir and Markovitch (2004) point out, this also leads to an 

exponential increase in the time required for induction.   
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Hence, in their work they explore the use of stochastic sampling methods to assess the 

attributes and develop ACT (Esmeir and Markovitch 2007, 2008), a framework for anytime 

induction of cost-sensitive trees, and TATA (Esmeir and Markovitch 2010, 2011), an anycost 

framework for learning under limited budgets. 

 

ACT (Anytime Cost-sensitive trees) (Esmeir and Markovitch 2007, 2008) uses a stochastic 

tree induction algorithm to generate r samples of sub-trees for each value of an attribute.  The 

cost of each of these sub-trees is calculated using the training examples, and the minimum 

cost utilized as an estimate for the attribute value.  The costs of the sub-trees for the attribute 

values are aggregated to estimate the cost of selecting an attribute, and the minimum cost 

attribute selected.  The first of the r samples is generated using the EG2 algorithm and the 

remaining samples are generated using a greedy top-down induction process except that the 

probability of selecting an attribute is proportional to its information cost measure as defined 

in EG2 equation (3.1). 

 

In experiments, ACT returned better results than ICET (Section 3.2.1) and Decision Trees 

with Minimal Cost (Section 3.1.1.2) (Esmeir and Markovitch 2008, p26).  

 

In a more recent study, Esmeir and Markovitch (2011) note that minimizing the sum of test 

and misclassification costs implies that the costs should be on the same scale.6 They argue 

that a more realistic goal would be to develop trees that minimise misclassification costs but 

subject to a constraint that the total cost of the tests utilised is no more than a specified cost.7  

The limit on test costs may be available prior to learning, after learning but before 

classification, or may be unavailable, leading to algorithms they term as pre-contract, contract 

                                                 
6 As mentioned in section 4.1.1, Zhang et al. (2007), also make the same observation, though they adapt the measure used 

in the Performance algorithm to represent the trade-off between costs of tests and costs of misclassification.  
7 Greiner et al. (2002) provides some theoretical results for active learning under such budgets. 
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and interruptible classifiers. They develop a framework for algorithms for such situations, 

called TATA (Tree classification AT Anycost), that is capable of reducing misclassification 

costs as the budget for using tests increases.         

 

They develop this framework by first noting that existing top-down tree induction algorithms 

can be adapted so that the total test cost for any example will be no more than a pre-specified 

cost. This can be achieved during the tree induction process by only considering those 

attributes whose cost is below the current available budget, where the current budget is the 

initial budget less the cost of the attributes used from the root to the current node. Then, they 

adopt an approach similar to ACT, except that the r samples are obtained using an adapted  

version of C4.5 in which attributes that cost more than the available budget are excluded and 

attributes are selected stochastically with a probability proportional to their information gain.  

The samples for each available attribute are used to estimate the misclassification cost and the 

one with minimal misclassification cost selected. Given a maximum budget available for 

testing and a suitable sample size r, this achieves the requirements for a pre-contract 

algorithm. 

 

For a contract algorithm, the budget for test costs in not available until the classification 

stage.  To handle such applications, Esmeir and Markovitch (2011) propose inducing a 

sequence of trees, t1, … tk, which they term a repertoire, with respective budgets  c1,…,ck, 

where c1 is set to the cost of the cheapest test, and ck is set to the maximum cost,  where all 

the tests are used.    The number of trees, k, that are used, depends on the amount of time and 

memory available but also impacts on the time available for the number of stochastic 

samples, r, that are possible.   The k trees could be obtained by discretizing the interval from 

c1 to ck into k-1  uniformly spread intervals  or in a more sophisticated manner by repeatedly  
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using hill-climbing to subdivide an interval that has the largest gap in terms of expected 

errors and test cost budgets.8 

 

To achieve the goals of an interruptible algorithm, where neither the budgets for learning or 

the total tests costs are available, they propose developing a repertoire of trees and then to 

start classification using the tree with the minimum possible budget, and then repeatedly 

moving on to the tree with the next higher budget until interrupted or reaching the final tree.  

 

An empirical evaluation of TATA shows that misclassification costs reduce more rapidly with 

increasing budget when compared to EG2, an adapted version of EG2 where only attributes 

within budget are considered and C4.5.  The misclassification cost also reduces as the number 

of stochastic samples, r, increases, with the most significant improvement occurring when 

one, two or three samples are used, but minimal improvement after three samples. 

  

3.3 Summary and analysis of the results of the survey 

 

There has been significant interest in the introduction of costs into decision tree induction. 

Many ways of introducing costs within the decision tree process have been developed. Whilst 

there have been accounts of different types of costs, there has been no synthesis of the wide 

range of studies on cost-sensitive algorithms. An extensive survey of the field has been 

carried out with a view to providing an appreciation of the different approaches and 

algorithms that have been proposed. Additionally it provides a guideline to the type of 

framework which may prove effective. 

 

                                                 

8 More formally, they select an i for which (Ei – Ei+1) (Ci+1 – Ci) is maximum where the Ei  and Ci are the expected error 

and budgets for the ith tree.  
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A new taxonomy of cost-sensitive algorithms has been developed, organizing the algorithms 

into classes representing the way cost sensitivity has been introduced.  The survey revealed 

two major approaches; greedy, which induces a single tree making decisions with no 

backtracking and non-greedy, which uses multiple trees and multiple choices to induce trees. 

Seven classes are defined: 

 

1. Use of costs during construction, whereby attribute selection measures are adapted to 

include costs. The main differences between the algorithms in this class are the selection 

measures used and whether costs of tests, misclassification costs or both are incorporated. 

2. Post construction, developed when costs are unknown at training time or if the costs are 

subject to many changes. Differences between these algorithms arise from how the labels 

for leaf nodes are chosen. 

3. GA methods, which utilize evolution, producing populations of decision trees which are 

evaluated with regard to costs with the fittest being retained and combined. The algorithms 

vary in the way trees are generated or represented and how the fitness is measured. 

4. Boosting, which generates a number of decision trees in sequence using instance weights. 

The algorithms differ in the way that these weights are initialized, and updated. Other 

differences between algorithms include how the sampling is done, and how error rates or 

confidence rates have been calculated in order to give the trees with least error more 

importance in composite voting methods. 

5. Bagging, which generates a number of independent decision trees using re-samples from 

the training set, thus differing from the trees generated by boosting, being independent of 

each other similarly to those in the GA methods. Generally these algorithms are wrapping 

methods, using the decision tree as a sub-routine and wrapping the incorporation of costs 
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around it. Differences between these algorithms are how sampling occurs and in the 

composite voting method used. 

6. Multiple structures, which expands the ideas of generating alternative trees and combining 

the outcome by having alternative trees in one structure. This shows all possible 

alternative choices of attribute selection in one decision tree so that alternative choices are 

not discarded as in the usual decision tree process but are stored and can be expanded in 

the future.   

7. Stochastic Approach, which induces decision trees created by generating r stochastic 

samples of trees rooted at each potential attribute and selecting the attribute that results in 

the best tree. Varying the number of r samples results in the anytime behaviour where 

quality can improve with more time.  As well as anytime behaviour, this approach has 

been used to produce a framework for anycost behaviour, where misclassification costs 

reduce as the available total cost for testing increases.    

 

The survey also includes a timeline showing how the field has developed from early 

algorithms that simply amend selection measures to take account of costs, to the more recent 

and sophisticated stochastic algorithms that use sampling to induce anycost trees. 

 

If one were to decide which of the existing algorithms may be appropriate for use in a 

particular domain, this would depend on various factors including whether an application 

needs to minimise costs alone, minimize costs of tests and misclassifications, whether there is 

a fixed budget for test costs, and whether there is a need for anytime or anycost learning.  

Although, the particular experimental methods, datasets utilized (see Appendix A1) and 

related systems compared vary, it is possible to form a general view from the empirical 

evaluations presented in the studies.  
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A number of the non-greedy algorithms show the benefits of generating multiple trees. Based 

on the original study by Turney (1995) and the independent comparisons in (Lomax and 

Vadera 2009, 2011), ICET performs well when aiming to minimize the sum of costs of 

misclassification and tests, especially when costs of misclassification are uniform9.  

 

ACT, a system based on stochastic sampling, improves upon the results from ICET for both 

uniform and non-uniform misclassification costs (Esmeir and Markovitch 2008). 

 

The use of boosting has developed from the pioneering work on systems such as Cost-UBoost 

(Ting and Zheng 1998a) and AdaCost (Fan et. al, 1999) to JOUS-Boost (Mease et al. 2007) 

that shows the benefits of adding noise to the sampling process to reduce over-fitting.   

Lozano and Abe (2008) have advanced our understanding of cost-sensitive boosting by 

deriving methods such as Cost-Sensitive Boosting with p-norm Loss (Lp-CSB) that are 

guaranteed to converge. The recent work of Esmeir and Markovitch (2011) on TATA provides 

a novel framework for applications where the maximum cost for testing is available in 

advance, at the classification stage or even later. 

 

Given the relative success of non-greedy algorithms for cost-sensitive tree induction, a fair 

question is:   

“Is it worth using or even pursuing future research on greedy cost-sensitive decision 

tree induction algorithms?” 

 

The primary advantage of the greedy algorithms is that they are very efficient and therefore 

represent a good starting point for applications, and where performance with respect to costs 

                                                 
9 Costs of misclassification are said to be uniform when they are the same for all the classes. 
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is very good, there may be little benefit in using the more computationally expensive multi-

tree methods.  Producing similar results to multi-tree methods using single tree methods does 

represent a major research challenge, but as the work on non-linear decision tree shows 

(Vadera 2010), it is possible to produce results comparable to MetaCost and ICET for 

minimisation of misclassification costs at a fraction of the computational time.  Whether it is 

possible to extend this to applications that need to take account of costs of tests or budgeted 

learning remains an open question. 

 

In conclusion, the field of cost-sensitive decision tree learning has a rich and diverse history, 

providing a strong base for future research which would include building upon recent 

advances to develop new algorithms that improve performance or meet new requirements  
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CHAPTER 4: THE DEVELOPMENT OF A NEW MULTI-ARMED 

BANDIT FRAMEWORK FOR COST-SENSITIVE DECISION TREE 

LEARNING 

 
 

This chapter develops the framework for cost-sensitive decision tree induction which uses the  

principles of the multi-armed bandit algorithm. Section 4.1 presents a summary of the 

performance of previous algorithms which motivates the rationale, Section 4.2 develops the 

core algorithm and Section 4.3 identifies potential problems and some refinements. Section 

4.4 summarizes the development stage. 

 

4.1 Analysis of previous cost-sensitive decision tree algorithms 

 
 
One of the first comparisons of cost-sensitive decision trees evaluated the Genetic Algorithm 

based system ICET, the use of Linear Machines (LMDT) and C4.5 (Vadera and Ventura 

2001).  A more comprehensive evaluation was carried out as part of an MSc (Lomax 2006) 

and later additional datasets were considered and the results published in Lomax and Vadera 

(2011).   

 

Experiments were carried out over a range of cost matrices for the following algorithms: 

EG2, CS-ID3, IDX, MetaCost, MetaCost_A, MetaCost_CSB, AdaCost, SSTBoost, CS-

AdaBoost, CSB, LS-ID3, CS-LSID3, ICET.  A typical two-class cost matrix has a different 

value for misclassifying each class as the other, as below in Table 6.  As another example, 

Table 5, given on page 28 is a cost matrix for a four class problem. 

 

For example, to misclassify a class x example as class y, the misclassification cost would be 

1, but to misclassify a class y example as class x has a misclassification cost of 100. 
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 Predicted class 
Actual class x y 
x 0 1 
y 100 0 

 

Table 6 Typical cost matrix for two-class problems 

 

Eleven datasets, some of which are available from the Machine Learning Repository, and 

coming from differing domains including medical diagnosis, construction, insurance and 

games, which were chosen for the differing characteristics and used in the comparison, are 

presented in Table 7 (Lomax 2006; Lomax and Vadera 2009, 2011). 

 

 

 
Table 7 Main characteristics of datasets used in the comparison 

 
 

The result of this evaluation showed that to make a decision tree truly cost-sensitive, it is best 

to construct it using all the costs involved i.e., cost of the tests and the misclassification costs. 

Applying only misclassification costs after the decision tree has been constructed, for 

instance like the wrapper method algorithm MetaCost, to a certain extent does make the 

decision tree cost-sensitive, but can result in high classification costs when the cost of tests 
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are included in this calculation, owing to the fact that MetaCost as described, uses a weak 

learner which does not allow for this type of cost. Although the tree would be constructed 

with misclassification costs in mind, it may be that the attributes chosen to construct the tree 

have high test costs associated with them. 

 

Likewise, using only misclassification costs in instance weighting, as used in boosting 

methods, makes the decision tree cost-sensitive in some ways, but does not always have the 

right effect on some of the classes in the dataset. One of the main observations from the 

empirical evaluation was that incorporating misclassification costs in this way seems to have 

the effect of sacrificing overall accuracy rates in order to produce lower classification costs 

(Lomax and Vadera 2009, 2011). Using only the cost of the tests does mean that even though 

the accuracy rate may not be high, the cost of classification would still be relatively low; 

however no allowance can be made for examples, which would have high misclassification 

costs. High accuracy rates do not always mean low classification costs, likewise having an 

inexpensive decision tree where the cost to classify an example is not high, does not 

automatically mean that it is an accurate decision tree.  

 

It was noted in the conclusions to these experiments that the algorithm using the genetic 

method of incorporating costs, namely ICET, performed better overall, however studying the 

results of this ‘best’ algorithm highlight certain persistent problems in cost-sensitive decision 

tree learning which still have not been addressed.  

 

The experimental methodology adopted by Lomax (2006) used a randomly generated 

training/testing split with 70% of the data for training and 30% of the data for testing. Ten 
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training and testing pairs were created. Measurements are averaged over these ten pairs. The 

measurements used to examine the performance are: 

 

1. Average cost to classify an example (cost) 

The average cost of classifying an example is calculated using the test costs and 

misclassification costs as described by Turney (1995). An attribute (test) has a cost 

and may belong to a group. The first test is charged at full price, additional tests in the 

same group are charged at discount rate. Each time a new group is tested it is charged 

at full price.  

2. Accuracy rates (accuracy) 

The accuracy of the algorithms are measured by assessing how many of the examples 

in the testing set have been classified correctly as a percentage of the total number of 

examples in the testing set. 

 

To find out the average cost to classify an example by each algorithm in each dataset, the test 

costs are used along with the relevant misclassification costs. Turney (1995) found that 

averaging costs for comparison was not suitable as test costs varied between datasets so he 

normalized the average cost by dividing by a standard cost using equation (4.1): 

 

    n1 + D"#5(1 − /5)D�E5>15>    (4.1) 

 
where TC is the total of all tests, ƒi is the number of class i examples divided by the total number of examples 
and Cij is the highest cost in the current cost matrix.  
 

This methodology has been used for every subsequent experiment described in this thesis.  
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Figure 10 Using ICET’s results to demonstrate weaknesses of cost-sensitive decision tree algorithms 
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Figure 10 shows the results of the ICET algorithm from the empirical evaluation, the 

accuracy rate and cost to classify are averaged over the cost matrices used, with particular 

attention to the structure of the datasets themselves. The numbers shown against each bar is 

the number of examples in the whole of the dataset. The datasets are ordered from left to 

right, best to worse results. It can be seen that for some datasets ICET does not return as high 

an accuracy rate as on others. Likewise the cost of classification can vary in the same way. It 

could be expected that the same performance would be returned for every dataset processed 

and expect the datasets to be presented in the same order in both graphs, but this is not the 

case. For example, the coil dataset returns the second best result for cost to classify but the 

accuracy rate returned is sixth best.  

 

The best results for this algorithm are found on the datasets which are two-class and 

balanced. There are four datasets which are unbalanced; the one returning the worst result for 

accuracy belongs to the MRI dataset, but it does not return the worst cost to classify of these 

unbalanced datasets, some of the unbalanced ones produce a lower cost to classify than more 

balanced datasets. Two datasets which potentially should either present a problem to ICET or 

if not should return similar results, are those with minimal test costs. The chess dataset 

presents no problems to ICET which returns an accuracy rate of over 90% with a cost of 0.08 

but the other dataset with similar test costs is tic-tac-toe which only returns an accuracy rate 

of 70% with a cost of 0.187. 

 

Based on these results and the literature review, the following weaknesses in the cost-

sensitive decision tree algorithm have been identified: 
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• Problems arise from an imbalance in the class distribution, with most decision tree 

learners biasing outcomes towards the dominant class; if this class is not the most 

costly, this explains the reduction of accuracy rates 

• Multi-class datasets cause problems because the frequency of examples in each class 

may not be high making it difficult to distinguish between the classes; the classes 

themselves may be similar also. Additionally multi-class datasets have the 

characteristics of imbalanced datasets   

• Extreme misclassification costs are difficult to handle since they result in bias and can 

result in no model being built; Lomax (2006) found that MetaCost returned no models 

when the misclassification cost range was high because the training set had all been 

labelled as the most costly class thus meeting the stopping criteria of decision tree 

algorithms with all examples in the one class 

• Trade-offs between high misclassification costs usually result in the accuracy rate 

being sacrificed; the higher the misclassification costs, the more unbalanced the class 

distribution, the lower the accuracy rate 

 

Even the ‘best’ algorithm (ICET) struggled with these aspects, for those algorithms which did 

not perform as well, these weaknesses were even more apparent. After studying the results 

presented in Figure 10 it is concluded that there is an additional factor to the class 

distribution, test costs and misclassification costs, which contribute to the way the datasets 

are processed. 

 
The nature of datasets could account for these discrepancies and inconsistent performances 

although to what extent has not been investigated in the area of cost-sensitive induction. This 

has been investigated in the STATLOG project (King et al. 1995), who concludes that the 

dataset being investigated contributed to which algorithm produced the better results. In order 



74 

 

to determine which algorithm should be used they developed a way to describe datasets and 

recommend the best algorithm based on this description. The descriptions include whether 

there is a skewed distribution, correlation and the types of attributes in the dataset.  Figure 10 

includes descriptions of the datasets to indicate the main characteristic of that dataset. In 

addition to the observations in the STATLOG project, there are indications that the structure 

of the data, that is, the number of attributes, number of discrete values each attribute has and 

the number of classes, could influence how easy it would be for an algorithm to classify 

examples. Large test costs, minimal test costs and large misclassification costs also influence 

how well an algorithm processes the datasets. These observations are taken into account 

when choosing the datasets and allocating test costs and misclassification costs. 

 

4.2 A new algorithm for cost-sensitive decision tree learning using multi-armed 

bandits 

 

Use of costs within the decision tree learning process has introduced many interesting 

problems involving the trade-off required between accuracy and costs. It is clear that, whilst 

there are existing cost-sensitive decision tree algorithms which can solve two-class balanced 

problems well, other types of problems cause difficulties. It is suggested that there is still 

research to be done with regard to cost-sensitive decision tree learning in order to overcome 

more difficult and challenging problems of the kind identified in Section 4.1.  

 

Evidence suggests that cost-sensitive learning needs to take account of the trade-off between 

decisions based on accuracy and decisions based on costs. For instance an algorithm using 

some sort of statistical measure might make a decision to split the data on a particular 

attribute as this is the desirable one based on an information theoretic measure. However, this 

attribute may have an expensive test cost associated with it. An algorithm employing only 
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costs may simply choose the least costly attribute, resulting in a different decision. If the aim 

is to minimize cost, a greedy algorithm will choose the cheapest one at every level. The ideal 

solution may be co-operation between these two viewpoints. A compromise could be reached 

whereby a slightly more expensive cost than the cheapest could be chosen so that a smaller 

tree is developed. This may reduce misclassification costs rather than simply using attributes 

in order of cost which may produce a large tree that does not reduce the misclassification 

costs as much as the other. High cost attributes may hide good splits (Esmeir and Markovitch 

2008) however the reverse is also certainly true; that low cost attributes may hide bad splits.  

 

Cost-sensitive learning could be thought of as involving two decision-makers because there is 

an algorithm and costs which sometimes work together well and sometimes do not. For 

example, player 1; ‘accuracy-based player’ chooses strategies concentrating only on accuracy 

and player 2; ‘cost-based player’ chooses strategies which consider costs in some way, each 

produces a different set of strategies. Conflict between decisions based on accuracy and 

decisions based on costs may produce good strategies but if they do not, a trade-off between 

these strategies must be found so a technique which deals in trade-offs should be utilized in a 

framework for cost-sensitive learning. What can be surmised at this stage is that the pay-offs 

matter when deciding strategies. 

 

Multi-Armed Bandit problems are those which could be solved by trade-offs between 

exploration (trying out solutions or strategies to find the best one) and exploitation (using the 

solutions or strategies, which are believed to give the better payoff). The Multi-Armed Bandit 

Game, as described in Chapter 2, has been used for a variety of problems such as selecting 

routes for packages and allocation of money to different projects where the outcome is not 

known (Berry 1985, Gittings 1989, Auer et al. 1995; Auer et al. 2001, 2002; Vermorel and 
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Mohri 2005; Dorard et al. 2009; Grünewälder et al. 2010; Dorard and Shawe-Taylor 2010). 

In these applications trade-off occurs in order that total cost of sending a set of packets on 

selected routes would not be larger than sending the packets all together on a single route or 

the trade-off between potential research projects which may prove profitable but this 

information is only obtained over time. Given the trade-off between accuracy and costs, this 

thesis explores the use of multi-armed bandits for cost-sensitive decision tree learning. 

 

The multi-armed bandit game is based on a gambler in a casino deciding which slot machine 

from a selection of slot machines is likely to pay out the most. The objective is to maximize 

the sum of rewards earned through a sequence of lever pulls. The player will randomly 

choose, from a given number of bandits, a lever to pull and will either get a reward or 

nothing. The player decides how many times he will explore the bandits by pulling levers a 

certain number of times, some bandits may be chosen more than once others not at all. The 

bandit which rewards the most will then be exploited by the player. 

 

The bandit to be exploited is usually decided based on a measure of regret, the one 

minimizing this value is chosen. This is calculated as the difference between the reward sum 

associated with an optimal strategy and the sum of the collected rewards (Auer et al. 2002; 

Auer 2002; Shawe-Taylor 2010). 

 

As it is suggested that cost-sensitive learning involves a trade-off between decisions based on 

accuracy and decisions based on costs, and as there is most definitely a trade-off between 

accuracy and lowering costs, the principles of the multi-armed bandit game could be used for 

decision tree learning to produce an algorithm which may address the problems indicated in 

Section 4.1.  
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A key step in decision tree learning is the selection of the attribute upon which to split the 

data. As detailed in Section 3.1.1.1, typically a statistical measure such as Information Gain is 

used. There are very few algorithms found in the survey which only use the costs to 

determine which attribute to use, detailed in Section 3.1.1.2.  In this new approach, the multi-

armed bandit algorithm will use both misclassification costs and test costs when selecting the 

attribute to exploit. The misclassification costs and test costs can be used as rewards; or rather 

the reduction of them is the reward. In order to gain as much information during the 

exploration stage as possible, a look-ahead methodology will be employed. A single bandit 

lever pull represents a test on an attribute.  Figure 11 illustrates the idea. Given a set of 

attributes A, an attribute a is chosen at random. A value v belonging to attribute a is chosen at 

random followed by additional attributes and their values until the depth to look ahead is 

reached. 

 

 

Figure 11 Illustration of the single pull and look-ahead bandit in the algorithm 
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The reward, or pay-off, is the reduction in costs, i.e. the ‘bandit’ (root_attribute), which 

reduces cost the most. As the multi-armed bandit algorithm sums up the rewards for each 

bandit, the average cost to classify an example will be summed up each time the same bandit 

is chosen. The average cost to classify is calculated using both misclassification costs and test 

costs. 

 

Figure 12 illustrates P bandits which have been generated and the cost calculated at the end of 

the path. In the illustration there are five different bandits chosen; odor, sr, hab, gc and 

bruises. For each time they have been randomly selected, an attribute value has been chosen. 

In this example the look-ahead level has been set to 1, this means that there are 2 attributes in 

the path. This second attribute, along with one of its values has been chosen at random and 

the cost has been calculated. The cost is calculated by assigning a label to the end of the path, 

as described later in this section. Those examples which would then be misclassified have 

their misclassification costs summed up. For every example at the end of the path, the test 

cost is added to the total misclassification costs and then divided by the number of examples 

at the end of the path. 
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Figure 12 Generate P bandits and calculate cost at the end of each path 

 

For example, the bandit ‘odor’ was chosen four times and the cost values 12.0, 7.0, 3.0 and 

4.0. The mean value calculated is 6.5. Table 8 presents the cost values summed up for each 

bandit and the mean for each bandit. As the requirement is to reduce costs and to exploit the 

bandit which reduces costs the most, the optimal strategy will always be the lowest cost 

obtained after P lever pulls. The process can be simplified by examining the mean of the 

costs returned by the bandits and then choosing the bandit which obtains the lowest mean 

value. The selection process by the multi-armed bandit algorithm continues until it is not 

worthwhile to continue.10 

 

 

                                                 
10

 The issue of when to stop is discussed in Section 4.3 
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bandit summed up cost mean of costs 
odor 26.0 6.5 
sr 27.33 13.665 
hab 218.69 72.89 
gc 29.1 14.55 
bruises 127.48 42.49 

Table 8 Example of the multi-armed bandit algorithm choosing an attribute 

 

 
 
Figure 13 shows the pseudo-code of the suggested framework. The multi-armed bandit 

algorithm is applied in the function calculate_mean_cost_for_A. The cost Ri is calculated and 

accumulated for attribute ai. After the for-loop is executed, the attribute minimizing cost by 

obtaining the lowest mean cost value, is chosen for exploitation. Only those attributes which 

were selected for exploration are considered for exploitation. The function 

pull_lever_generate_path represents the lever pull of the multi-armed bandit. To exploit the 

attribute the data is split on the desired attribute. 

 

To create a leaf, most existing algorithms either use the majority class or select the class that 

minimizes classification costs. However, in this algorithm a hybrid cost-sensitive labelling 

method has been employed, not seen in the literature. This labels the majority class regardless 

of cost but considers the cost when labelling those nodes where there is an even or almost 

even class distribution at the node. This is a combination of the labelling system of an 

‘accuracy-based player’ algorithm and a ‘cost-based player’ algorithm, as the concept of this 

algorithm is to find a compromise between the two, perhaps having a labelling system which 

is a compromise between them might help.  
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Tree MA_CSDT(Examples, P, k) 

/* Examples are the current dataset, P is the number of lever pulls 

   and k is the depth to look ahead, subTree are the child nodes, leaf is 

   an indicator that a leaf node has been created, classOfLeaf will  

   contain the class of the leaf node */ 

 

   Initialize Tree subTree  // an array of sub-trees 

   Initialize Boolean leaf as false 

   Initialize classOfLeaf as null 

      

   If not worthwhile to continue or no data left to explore 

  assign classOfLeaf with the most appropriate class 

            assign leaf as true 

  return  

   else  

   attribute_to_exploit = exploreAttributes(Examples, P, k)  

  subset = Split_Data(Examples, attribute_to_exploit) 

   

   For each subset i   

    subTreei = MA_CSDT(subseti, P, k) 

  END FOR 

 

  return subTree  // the sub-trees 

END 

 

Attribute exploreAttributes(Examples, P, k) 

/* R is an array corresponding to the set of attributes A and will 

   contain the sum of costs obtained for an attribute at each lever 

   pull, N is an array corresponding to the set of attributes A and 

   will contain the number of times that attribute chosen as root of 

   path, means is an array corresponding to the set of attributes 

   A and will contain the mean of costs calculated for each attribute 

*/ 

 

Initialize R to zero 

Initialize N to zero 

Initialize means to zero 

 

For j = 1 to P 

Begin  

 ai ∈ set of attributes A 
 Pathi = pull_lever_generate_path(ai,A,k) 

 Ri += cost for ai (Pathi, Examples) 

   

End 

 

means = calculate_mean_cost_for_A(R,N) 

 

 return attribute(minIndex(means)) 

END 

 

 

Figure 13 Multi-Armed Cost-Sensitive Decision Tree Algorithm (MA_CSDT) 



82 

 

As mentioned above, most cost-sensitive algorithms label leaf nodes by selecting the class 

that minimizes cost of misclassification, whilst accuracy based algorithms typically select the 

majority class. However, when costs of misclassification in one class are significantly higher 

than another, there can be a tendency to label many leaf nodes with this class, effectively 

ignoring other classes. The above mentioned hybrid labelling system has been developed to 

try to avoid this. As an example, if there were 10 examples in the subset at the end of the 

generated path, with 8 in class 1 and 2 in class 2, with misclassification costs of 1.0 and 10.0 

respectively, and with each attribute in the path having a test cost of 5.0. Using the hybrid 

labelling, the subset would be labelled as class 1. The examples in class 2 would incur 20.0 

misclassification cost. Additionally there would be 100.0 test costs, thus the expected cost 

would be calculated as (20.0 + 100.0)/10 which is 12.0. If the cost-sensitive labelling were 

used, the subset would be labelled as class 2 because to get 8 class 1 examples wrong costs 

less, thus the expected cost would be calculated as (8.0 + 100.0)/10 which is 10.8. Although 

the aim in cost-sensitive learning is to reduce costs, the aim of this algorithm is to minimize 

the amount of sacrifice of the accuracy rate. To do this, the majority class should not be 

ignored completely. Ignoring the information in a subset, i.e. the evidence that these 

examples belong in the majority class regardless of cost does lead to the sacrifice of the 

accuracy rate. By compromising between labelling systems, it is thought that this will help 

find a compromise between the two opposing viewpoints. 

 

The data mining software WEKA has been chosen to help in the development and 

implementation of the new algorithm. WEKA has been developed by Hall et al. (2009) using 

Java and has been used by a number of authors both to implement algorithms and in 

experiments. 
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4.3 Potential problems with the MA_CSDT algorithm 

 

The algorithm developed in Section 4.2 has a number of open questions that need further 

consideration, including: 

 

• What is a suitable choice for the number of lever pulls, P and look-ahead value k 

• What is the best way to stabilize fluctuating results obtained when executing the 

algorithm repeatedly? 

• Is it worth carrying on when there are only a few attributes or examples left in the 

dataset? 

• Can the hybrid labelling system allow for the trade-off between accuracy and costs? 

 

To investigate these questions, two artificial datasets were created using datasets from the 

Machine Learning Repository. Artificial datasets have been used so that the tree build can be 

anticipated and the outcomes controlled in order to examine development. The mushroom 

dataset was used to supply examples for 2-class problems, first with a balanced class 

distribution and then an imbalanced one and the glass dataset was used to supply examples 

for multi-class problems. A varying number of attributes chosen from the datasets were 

assigned test costs which would dictate choice in the tree induction. 

 

The following sections address the above questions. Section 4.3.1 examines the problems of 

setting the value of P, Section 4.3.2 explores two techniques which could be used to stabilize 

fluctuating results, Section 4.3.3 reports the problems and solutions with regard to when to 

stop the process and Section 4.3.4 investigates the potential for using a hybrid labelling 

system. Finally Section 4.3.5 draws conclusions from the experiments carried out during the 

developmental stage. 
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4.3.1 Problems setting the number of lever pulls and depth to look ahead 

If there is not enough exploration, potentially not enough different bandits are chosen which 

can result in an expensive attribute being chosen too early. An attribute with a high test cost 

can be chosen as a root attribute, thus returning a higher cost to classify than anticipated 

simply because the dataset space has not been explored enough. To make sure this scenario 

does not arise there must be a sufficient number of lever pulls carried out. If the number of 

lever pulls is high enough the algorithm has the opportunity to explore many more potentially 

good attributes. A way must be found to determine, what is a ‘sufficient number’. To 

determine what value is best for the look-ahead parameter k, a dataset was processed with 

increasing values of k. On examining the results obtained, it was found that there was no 

improvement in the results obtained at each increase of depth. It has been decided that further 

experimentation would be required as this result may be unique to this dataset. This 

parameter will therefore be set to the value 1 for all datasets and set to 2 for a selection of 

datasets to determine whether a lower depth improves results or not and if it is dataset related. 

 

It is evident that just guessing on the ideal value for the number of lever pulls for a given 

dataset is not good enough. Perhaps there is some way to calculate this? If the maximum 

number of unique bandits there would be in a dataset could be estimated in some way and 

this is used as a guide in the setting of the value of P, more stable results may be produced. 

To illustrate the problem of calculating the potential number of unique bandit paths which 

could be used in the multi-armed bandit algorithm, suppose there is a dataset with three 

attributes and each of these attributes has two values. If the depth has been assigned to 1, 

there will be two attributes in the path, and these attributes must be different. The solution to 

this problem can be drawn out as presented in Figure 14, where all potential unique bandits 

for the dataset are illustrated. 
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Figure 14 To calculate the number of potential unique bandit paths in a dataset 

 

It is now simply a case of counting out the leaves, so in this problem the solution is that there 

are 24 potential unique bandit paths which could appear in a decision tree. This very simple 

problem quickly becomes complicated. For a typical dataset, it is more problematic to draw 

out. The mushroom dataset, for example has 21 attributes. These attributes have different 

numbers of values ranging from 2 to 12. As any of the attributes can be a potential root, with 

any of its values in the path, it is not just a simple calculation and in order to calculate 

potential unique bandit paths it is necessary to enumerate out the calculation. To emulate the 

method illustrated in Figure 14, which is the easiest way to calculate the value required, a 

computer program which generates in turn every potential unique bandit path down to the 

depth of look ahead required has been used. Each time the end of a path is reached, a count is 

incremented. Thus the maximum value is then returned. This has been performed on the 

entire dataset but it could potentially be performed on a training set as it does not require 

knowledge of the number of examples, simply the attributes and their values. 

 

The potential unique bandit path value for the mushroom dataset has been calculated as 

12,624. Experiments carried out with the mushroom dataset then used a more realistic value 

of P as 10,000 which produced more stable results. Thus the value of P will be unique to each 
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dataset and will be assigned with the value of the potential unique bandit paths for that 

dataset as a guideline. 

 

4.3.2 How to stabilize fluctuating results obtained during the developmental stage 

As experiments on the artificial datasets were repeated, the results fluctuated, for example, 

sometimes the cost to classify obtained would be small but then on repeating the experiment 

the cost to classify obtained would be higher, so how could the results be stabilized? When a 

training and testing pair was subjected to repeated processing, the results obtained showed 

that there were differing trees resulting in high costs as well as low costs.  

 

Figure 15 illustrates the results obtained when running the algorithm on the same dataset with 

the same costs ten times for each value of lever pulls used. This graph is representative of all 

variations of the artificial datasets used whilst developing the algorithm. In these experiments 

the number of lever pulls had been set to values between 50 and 300. It was concluded that 

this value was not high enough to guarantee sufficient exploration in that the number of 

different bandits chosen was too limited.  

 

There are two potential ways to produce stable results. It may be that as described above, 

simply finding the ideal value of P will correct this problem. However, as noted in the 

literature study, constructing multiple trees has been a way to improve on the results obtained 

by using single trees. Therefore inducing multiple trees and then choosing the ‘best’ one 

might be a better solution. Game Theory involves a collection of models, where the one 

meeting the strategy is used. The main strategy of this algorithm is to lower costs whilst 

maintaining the accuracy produced by the ‘accuracy-based player’ algorithm. So therefore a 

number of trees can be generated using the above described algorithm, that is, if one tree is 
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generated the single version of the MA_CSDT algorithm can be used; if more than one tree is 

generated a multiple-model version of MA_CSDT can be used. 

 

 

Figure 15 Results illustrating the fluctuating values obtained using artificial datasets 

  

What should be the criteria for choosing the ‘best’ tree? Choosing the tree with the lowest 

cost seems to be the obvious choice, however this may not necessarily be an accurate tree as 

observed in previous comparisons. Choosing the tree with the highest accuracy is the other 

alternative but again this may not necessarily be a low cost tree, if the test costs are higher 

than the misclassification costs. The relationship between test costs and misclassification 

costs can be explored if both strategies are implemented and compared. Therefore the 

strategy can be set to choose the model which obtains the lowest cost or set to choose the 

model which obtains the highest accuracy. Given the strategy and the number of trees to be 

induced, the trees are evaluated on the training set to find out the accuracy of each tree and 
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the average total cost of each tree. Then, based on the strategy chosen, whichever tree meets 

the strategy will be returned to be evaluated on the test set. This idea is illustrated in Figure 

16. The number of trees to induce has been set to a default of 10 which is the chosen default 

number of MetaCost, however this can be changed as desired. 

 

 

Figure 16 Desired tree chosen by a given strategy 

 

For simple datasets it is possible that any strategy would result in the same model but for 

difficult datasets it would most likely result in differing ones and this is another way in which 

improved results can be obtained. 

 

4.3.3 To examine when to stop the decision tree build process  

Is it worth carrying on when there are few attributes left in the dataset which may be 

expensive? At some point particularly in the latter stages of decision tree build, the number of 

attributes is sufficiently reduced to limit random choice of attributes all of which may have 

high test costs. A pre-pruning technique is indicated given the nature of the multi-armed 
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bandit algorithm; exploring and gathering of information in order to find the correct bandit to 

exploit. Stopping when it is no longer worthwhile and there is no advantage to be gained by 

continuing is a logical step in the development of the algorithm. It also became clear that pre-

pruning techniques would be necessary when exploring the relationship between test costs 

and misclassification costs and that pre-pruning techniques would be useful in order to find a 

trade-off between the two types of costs. With regard to expenditure of test costs, a solution 

would be to implement a test to determine whether the attribute chosen should be used. To 

check if the tree building process is worth continuing, the same test can be used at the start of 

the process. This test will determine whether the reduction of misclassification costs is less 

than the test cost expenditure.11 To investigate which part of the tree build process will 

benefit more from this kind of test, the algorithm can employ these tests in combination. 

 

Additionally, is it worth carrying on with processing if only a small proportion of examples 

are left in the dataset, how much information can be obtained in this situation? In decision 

tree literature there have been various studies regarding when to stop the procedure. These 

include stopping when the number of examples fall below a given number and then assigning 

the majority class as the label (Weiss and Kulikowski 1991) or measuring a split in some way 

and if this falls below a specified threshold stopping the process (Han and Kamber 2001). 

These measures aim to avoid the decision tree containing nodes with few examples which 

results in insignificant statistical measures with the aim of improving the accuracy of the 

decision tree. How should these values be determined? For larger datasets ‘a few examples’ 

could number in the hundreds but for a smaller dataset this value may only be five or ten. 

Using proportional measurements will be able to resolve the issue of what is ‘a few’.  The 

proportion of the dataset at a node in relation to the size of the original training set can be 

                                                 
11

 Ling et al. (2004) also uses a similar approach, except they only perform the test at the beginning of the 

process testing all attributes to determine whether to create a leaf node or continue with the tree build 
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calculated and, given a desired proportion, in anticipation that it would not be worth 

processing further, and stop when this proportion has been reached; the default value has 

been set at 5% or less. This value was chosen because it is low enough for the information to 

be exhausted from the dataset but not low enough that it would have no significant effect. It is 

necessary to be able to observe any effects. Also the proportion of majority class at a node 

can be calculated and, given a desired proportion, to determine whether to make a leaf node; 

the default value has been set at 90%. This value has been chosen as 90% since it is 

considered to be evidence enough that the class with this proportion is most likely to be the 

class for that particular node.   

 

As the attribute chosen to be exploited is based on cost, it is necessary to make sure that this 

attribute has more than one value as using only costs will not give an indication of having 

only one value as a statistical measure would, hence a parameter is introduced to control what 

happens if this situation arises. If the chosen attribute has only one value, there are three 

options; (i) stop the process, (ii) ignore and continue with chosen one and (iii) choose the 

next best attribute or best one with more than one value. It is clear that ignoring and 

continuing to use a redundant attribute is not cost-effective but it is the intention to examine 

all possibilities to demonstrate this intuition.  

 

4.3.4 Can the hybrid labelling system allow for the trade-off between accuracy and 

costs? 

Does the hybrid labelling system allow for the trade-off between accuracy and the costs as it 

is thought it will? In past comparisons (Lomax and Vadera 2009, 2011), it has been noted that 

in order to achieve low costs, the accuracy rate is often sacrificed. The aim is to include 

information obtained from the majority class as well as the minority classes in order to 
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minimize the sacrifice of the accuracy rate but still lower costs. In order to test the 

hypothesis, and to determine whether this approach is successful, experiments will be carried 

out using both the hybrid labelling system and a cost-sensitive labelling system to be able to 

examine what happens to the accuracy rate. 

 

4.3.5 Conclusions drawn from the developmental stage 

Following the experiments carried out whilst developing the algorithm and aiding in 

identifying problems and possible solutions, small scale trials were carried out in order to 

gauge progress of the MA_CSDT algorithm. It became clear that ‘one size does not fit all’ in 

that it could be difficult to process a dataset with differing cost matrices, but by having 

parameters which can change behaviour and adjust to the differing characteristics of datasets 

can help with the process. For example some parameter settings may produce good results for 

a particular cost matrix but these parameter settings may not produce good results for a 

different cost matrix. Other different parameter settings can be examined to find good results 

so that there can be different parameter settings used for each cost matrix if required. Both 

the hybrid labelling system and a cost-sensitive labelling system, where the class which 

minimizes cost is allocated, were used in these small trials with the hybrid labelling system 

producing more high accuracy results than the cost-sensitive system. 

 

These trials in the developmental stages used both versions of the algorithms, both of which 

could produce good results. Setting the value of P high enough helps, along with choosing 

from multiple models. But which is better over different datasets? It may be the case that 

some datasets are easier to process and do not require multiple models, but others require 

multiple models with a careful decision of the strategy required. Can guidelines be produced 

in order that parameter settings can be identified, which would also include whether multiple 
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models are needed or not, and which is the best strategy given the costs for a particular 

dataset? These questions are explored in the next chapter. 

 

4.4 Summary of the development of the MA_CSDT algorithm 

 

In the first instance, experiments from previous studies were examined in order to identify 

possible weaknesses in cost-sensitive decision tree learning. Analysis showed that to make a 

decision tree truly cost-sensitive it is better to construct it using all costs involved i.e. 

misclassification costs and test costs. Studying the results of the ICET algorithm revealed 

persistent problems in cost-sensitive learning which have not been addressed. These are (i) 

problems arising from class imbalance, (ii) multi-class problems, (iii) extreme 

misclassification costs and (iv) trade-offs between high misclassification costs resulting in the 

accuracy rate being sacrificed. 

 

It is suggested that cost-sensitive learning involves trade-off between decisions based on 

accuracy and decisions based on costs and between accuracy and lowering costs so using the 

multi-armed bandit game which explores possible strategies before exploiting the best one, 

can be used with decision tree learning in order to produce an algorithm which may address 

the above issues. 

 

To represent the lever pulls of the multi-armed bandit, a path containing two or more 

attributes chosen at random will be generated and the average cost to classify an example 

travelling down that path will be calculated. A hybrid labelling system has been developed 

which will take into account the information obtained from the class distribution at the node 

before deciding which class to choose. 
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The algorithm has a number of parameters, including the number of lever pulls to generate 

bandits P and the depth to look-ahead k which could affect performance on datasets in that 

these would increase or decrease exploration. In addition, based on the literature and past 

studies, additional parameters were introduced to explore (i) when the learning process 

should stop (ii) whether multiple models can be generated in order to obtain better results, 

and (iii) choosing a model returning the lowest cost (cost-based strategy) or choosing a model 

returning the highest accuracy (accuracy-based strategy). It is thought that by using these 

different combinations of parameter settings, the behaviour of the algorithm can be changed 

to suit the dataset being processed, the test costs assigned to it and the misclassification costs. 

 

Two small scale trials were conducted to gauge progress in the development of the algorithm 

and used the full versions of the datasets which had been used to create artificial datasets. The 

conclusion of these trials is that ‘one size does not fit all’ in that choosing the most 

appropriate parameter settings for an individual cost matrix can produce good results and 

improve upon the overall results when just considering the same parameter settings for all 

cost matrices for a dataset. It was determined that the hybrid labelling system did increase 

accuracy rates and should therefore be investigated further to see if it helps with the trade-off 

between accuracy and costs.  

 

In the following chapter, an extensive investigation has been carried out using 15 different 

datasets, which have been allocated varying values of test costs and misclassification costs in 

order to further address these issues. 
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CHAPTER 5:  INVESTIGATING PARAMETER SETTINGS FOR 

MA_CSDT  

 

An investigation has been carried out using 15 real-world datasets, which have a variety of 

different values of test costs and misclassification costs. Experiments have been devised in 

order to provide statistics with which to examine performance, using both versions of the 

algorithm; single-model version and multiple-model version using a cost-based strategy and 

an accuracy-based strategy, with all possible parameter settings using a variety of differing 

lever pull values for each dataset. Four of the datasets, which have a relatively small value for 

their potential unique bandit path value, were chosen to be processed to a lower depth of 2. 

 

The main aim of the investigation is to help decide: 

 

• Which parameters allow the algorithm to only continue when it is worthwhile to do so 

and what effect this has on cost and accuracy  

• How many lever pulls should be used for each dataset, which version of the algorithm 

is better if any and which strategy for the multiple-model version works best for each 

dataset?  

• Investigate how to take advantage of these different parameter settings and strategies 

in order to achieve the aim of the algorithm 

• Can guidelines be devised for a dataset with regard to the combination of these 

parameters? 

 

The datasets have been chosen to cover a range of characteristics, i.e. combinations of 

different numbers of attributes and values, number of classes and different class distributions. 

Some of these datasets have been used with test costs in previous studies, so the same test 
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costs have been used, making sure they have a good contrast of costs. The datasets are all 

available from the Machine Learning Repository but with some dataset files being obtained 

from previous studies. Full details of these datasets are in the Appendix A2 along with test 

costs, group information and discounted cost if any. The same experimental methodology 

detailed in Section 4.1, has been carried out on the 15 datasets. 

 

A range of misclassification costs were used in order to examine the trade-off between the 

two types of cost used. For example misclassification costs were assigned to the classes in a 

dataset to be either higher than the test costs; lower than the test costs or a mixture of high 

and low values in relation to the test costs. Details of all cost matrices used in the experiments 

are listed in the Appendix A3. An identification number has been allocated to each one in 

order that they can be easily identified in tables and graphs.   

 

Potential unique bandit paths have been calculated for each dataset, unique to that dataset, 

and used as a guideline to allocate values so that there are 5 values for each dataset. These 

values are (1) lower than the potential unique bandit path value; (2) rounded down from the 

potential unique bandit path value, (3) the potential unique bandit path value, (4) higher than 

the potential unique bandit path value and (5) a much lower value than any of the previous 

values. The identifiers 6 and 7 were specially included for soybean and used in one smaller 

experiment. This was done as the soybean dataset has a longer process time than all other 

dataset. The values for each dataset are presented in Table 9. 
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 Identification of the value of P for each dataset 
depth (k) 1 1 2 3 4 5 6 7 
dataset        
annealing 7000 8000 8312 10000 1000   
breast 1500 2000 2152 5000 500   
car 200 300 366 500 50   
diabetes 150 180 184 300 30   
flare 700 800 898 2000 100   
glass 200 300 338 1000 50   
heart 500 600 658 1000 100   
hepatitis 800 1000 1082 1500 100   
iris 75 100 108 500 30   
krk 1000 1300 1312 1500 100   
mushroom 10000 12000 12624 15000 1000   
nursery 500 600 632 1000 100   
soybean 1000 3000 9104 5000 50 8000 9000 
tic-tac-toe 500 600 648 1000 100   
wine 1000 1200 1256 1500 100   
depth (k) 2        
dataset        
car 3000 4000 5082 6000    
diabetes 500 1000 1776 3000    
glass 3000 4000 4692 6000    
iris 500 600 648 1000    

Table 9 Values of P lever pulls for each dataset 

 

Experiments were designed so that every possible combination of parameter setting was 

executed for all training and testing pairs, and for each of the cost matrices described. As a 

result of the experiments executing all possible parameter settings, there is a large amount of 

data to be processed. After averaging out the ten training and testing pairs for each dataset, 

there are 158664 individual results to examine. To make it easier to find patterns and useful 

information all the results have been compiled into a dataset and used as input to the 

statistical software package SPSS in order that analysis can be performed on it. The table in 

Appendix Section A4 presents all the information which is contained in this results dataset 

and Appendix D9 is the comma separated value file containing all examples. 

 

Each example in the results dataset has been classified by the value of the cost and accuracy 

returned by that experiment. If the cost is less than 0.3, the category allocated is ‘good’; less 
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than 0.5 is ‘medium’ and ‘poor’ otherwise. If the accuracy is greater than 68.0, the category 

allocated is ‘good’; between 45.0 and 68.0 is ‘medium’ and ‘poor’ otherwise. The values of 

these two attributes determine the class, based on accuracy/cost; (1) good/good, (2) 

good/medium, (3) good/poor, (4) medium/good, (5) medium/medium, (6) medium/poor, (7) 

poor/good, (8) poor/medium, (9) poor/poor. As combinations of accuracy and cost would 

result in a large number of classes, it was decided that three for each measurement would be 

more advisable rather than four each as the resulting combination would mean too many 

classes. Splitting each value into equal thirds was rejected as this would produce a ‘good’ 

accuracy of 66% or above. This was not considered to be high enough so the boundary was 

raised to 68% or above. A medium result of 33% and above was also considered too low to 

be in what potentially could be a reasonable result so this was also raised to 45% and above. 

Similar considerations to boundaries on the cost measurement was also given, thus less than 

0.3 can be considered ‘good’ and higher than 0.5 is considered ‘poor’. Analysis performed on 

the dataset included cross-tabulation, frequency information and mean calculations obtained 

for cost and accuracy on attributes and their values in relation to the class allocated to 

examples. 

 

The details of the experiments with their parameter settings are presented in Table 10. The 

table gives information regarding the strategy used; either no strategy because a single model 

is induced, cost-based strategy where from multiple models the one returning the lowest cost 

is chosen and accuracy-based strategy where the one returning the highest accuracy is chosen. 

The number of models, the depth and labelling system employed in each experiment are also 

shown in the table. Additionally frequency of best and worst results as a percentage, which 

are calculated using the previously mentioned class allocations and the frequency a model 

was produced by each experiment are also given in the table. For example the information 
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obtained from row 1 indicates that Experiment 0 has no strategy as only 1 model is induced. 

The depth to look-ahead is set to 1 and uses the hybrid labelling system. So for example for 

the annealing dataset, four different values of P were assigned. All the remaining parameter 

settings are used in combination which results in 96 batches of settings to be executed on the 

ten training and testing pairs for each cost matrix and dataset.  

 

expId strategy 
used 

no of 
models 

depth 
(k) 
 

label 
system 

best all 
examples (trees) 

worst all examples 
(trees) 

frequency 
tree 
produced 

batches 
per 
dataset 

0  none 1 1 HYBRID 37.8 (38.4) 1.51 (2.4) 50.7 96 

0l  none 1 1 COST 29 (36.9) 1.36 (2.8) 38.7 96 

0T5 none 1 1 HYBRID 34.8 (34.4) 1.58 (2.4) 51.8 24 

0lT5 none 1 1 COST 26.9 (33.3) 1.34 (2.7) 40 24 

1  accuracy 10 1 HYBRID 44.5 (52.4) 1.51 (2.4) 52 96 

2 cost 10 1 HYBRID 39.4 (43.1) 1.49 (2.5) 48.3 96 

3  accuracy 10 1 COST 34.8 (47.9) 1.45 (2.8) 41.7 96 

4  cost 10 1 COST 29.9 (37.6) 1.42 (3.1) 37 96 

5  accuracy 10 2 HYBRID 32 (26.8) 0 (0) 57.4 96 

6  cost 10 2 HYBRID 28.2 (20.2) 0 (0) 57.4 96 

7  accuracy 10 2 COST 19.1 (18.7) 0 (0) 43 96 

8  cost 10 2 COST 18 (16.2) 0.019 (0.044) 43 96 

9 accuracy 20 1 HYBRID 22.2 (37.5) 0.27 (0.46) 59.1 24 

10  accuracy 10 1 HYBRID 0 (0) 7.87 (9.6) 45 96 

13 accuracy 10 1 COST 77.5 (77.5) 0 (0) 100 8 

S1T5 accuracy 10 1 HYBRID 39.9 (44.4) 1.52 (2.43) 52.8 24 

S1lT5 accuracy 10 1 COST 30 (38.7) 1.36 (2.6) 43.4 24 

Every combination of parameters as described in Section 4.3, each one of the combinations is executed on each of 
the datasets and their cost matrices.  

 

Table 10 Details of each experiment, settings and frequency (%) of best and worst results from the analysis file 

 

Table 11 presents a summary of the main information obtained by running analysis on the 

results dataset. For each dataset, the number of attributes is recorded, along with how many 

values the attribute with the highest number of values has. The potential unique bandit paths 

have been calculated to a depth of 1. A ratio of the highest misclassification cost divided by 

the highest test cost for each dataset and for each cost matrix has been calculated in the 



99 

 

results dataset, and the mean for each dataset for this ratio is recorded. These help to describe 

the type of dataset. Also included are the identifiers of the best experiments and best 

parameter settings producing the majority of best results in the order of (i) strategy chosen if 

‘best’ attribute has only one value, (ii) an indicator of how many lever pulls carried out, (iii) 

the pre-pruning combination used and (iv) whether proportional stopping used; t if used f 

otherwise. If an ‘x’ is present in the group of parameter settings, this indicates that there is no 

overall parameter setting producing the best results. 

 

For example for the annealing dataset, examining the best results obtained using the cost-

based strategy, the experiment which produced the majority of the lowest costs was 

Experiment 4, which uses the cost-based strategy in order to choose a model, using a look-

ahead depth of 1 and using the cost-based labelling system. The parameter settings, which 

produced the majority of the lowest cost, where the value 0 indicating what to do when the 

attribute has only one value for the best attribute, in this case stopping the process if this 

occurs; PId 4 which indicates the lever pull value used was higher than the potential unique 

bandit path value and in this case was set at 10,000 as shown in Table 9; the pre-pruning 

combination ‘d’ which does not use any checks to see if it is worthwhile to continue and ‘t’ 

which indicates that the proportion of examples at a node would be calculated and the process 

would stop when this falls below the default level. For the accuracy-based strategy, there was 

no overall experiment producing the majority of best results, there would have been no 

checks for whether the ‘best’ attribute had only one value and no overall clear majority for a 

value of P. However the pre-pruning combination ‘d’ was again the better one most often but 

in this case there were no tests in order to carry out proportional stopping. 
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Table 11 Summary of dataset information including mean values obtained from the analysis file  

Dataset Name annealing breast car diabetes flare glass heart hepatitis

area physical medical social medical physical forensic medical medical

no of attributes 24 9 6 6 10 7 11 16

highest no. of values for an attribute 10 13 4 4 6 4 4 3

potPaths 8312 2152 366 184 898 338 658 1082

class distribution unbalanced unbalanced unbalanced 65/35 unbalanced part even unbalanced

multiclass TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE

group cost TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

mean ratio mc/tc 2.55 23.88 2.77 97.51 1.24 6.26 21.58 267.63

max(P) 10000 5000.00 6000.00 3000.00 2000.00 6000.00 1000.00 1500.00

min(P) 1000 500.00 50.00 30.00 100.00 50.00 100.00 100.00

dn_cost mean 0.027 0.08 0.09 0.15 0.02 0.14 0.00 0.14

cost  (examples) mean 0.024 0.14 0.16 0.12 0.04 0.19 0.04 0.10

cost(trees) mean 0.0278 0.38 0.33 0.27 0.11 0.25 0.15 0.23

dn_accuracy mean 73.99 61.07 62.05 58.05 79.60 32.37 50.25 63.63

accuracy (examples) mean 82.07 60.17 63.21 60.35 82.81 44.99 55.78 69.78

accuracy (trees) mean 86.74 63.16 61.40 66.57 85.39 51.61 72.23 79.70

% of best results (examples) 97.7 48.90 68.50 11.00 89.10 2.38 19.40 70.30

% of best results (trees) 96.5 4.22 21.50 25.90 90.00 3.33 77.60 71.20

% of worst results (examples) 0 0.00 0.00 0.02 0.00 0.00 0.00 0.00

% of worst results (trees) 0 0.00 0.00 0.04 0.00 0.00 0.00 0.00

% whether a tree was grown or not 57 34.90 28.10 42.50 25.00 71.40 25.00 42.30

best experiment (strategy0) 4 4 4 x x x 4 4

best experiment (strategy1) x x x 5 x 1 1 1

best parameter settings (strategy0) 0,4,d,t 0,1,d,t 0,4,d,t 0,1,d,t 0,1,d,t 2,4,b,t 0,4,d,t 0,4,d,t

best parameter settings (strategy1) 1,x,d,f 0,x,d,t 1,x,d,f 2,x,d,t 0,2,d,t 0,1,d,f 2,x,d,f x,x,d,t

average time in seconds (single) 3.47 0.61 0.15 0.06 0.21 0.09 0.21 0.31

average time in seconds (ensemble) 31.56 4.69 1.33 0.35 1.76 0.64 1.89 2.60

Dataset Name iris krk mushroom nursery soybean tictactoe wine

averages/

overall 

highest, 

lowest etc

area botanical game botanical social botanical game physical

no of attributes 4 6 21 8 35 9 13

highest no. of values for an attribute 3 8 10 5 7 3 4

potPaths 108 1312 12624 632 9104 648 1256

class distribution even almost even even almost 65/35 even

multiclass TRUE TRUE FALSE TRUE TRUE FALSE TRUE

group costs FALSE FALSE FALSE TRUE TRUE FALSE TRUE

mean ratio mc/tc 1.22 9.51 317.34 4.73 70.00 2221.40 1.21 195.86

max(P) 1000.00 13000.00 15000.00 1000.00 9104.00 1000.00 1500.00 15000.00

min(P) 30.00 100.00 1000.00 100.00 50.00 100.00 100.00 30.00

dn_cost mean 0.11 0.36 0.00 0.19 0.32 0.20 0.10 0.14

cost  (examples) mean 0.15 0.39 0.01 0.19 0.14 0.11 0.08 0.14
cost(trees) mean 0.29 0.43 0.02 0.26 0.14 0.24 0.15 0.23

dn_accuracy mean 33.33 15.22 50.11 38.36 16.31 57.44 34.76 47.46

accuracy (examples) mean 60.42 16.60 62.33 49.90 65.87 62.19 49.99 56.85

accuracy (trees) mean 86.29 18.76 99.01 61.75 65.88 69.73 82.85 64.86

% of best results (examples) 29.50 0.00 25.00 9.90 55.30 18.60 29.10 33.70

% of best results (trees) 57.80 0.00 100.00 19.50 55.30 43.10 87.70 38.90

% of worst results (examples) 0.00 14.90 0.00 0.46 0.00 0.00 0.00 1.30

% of worst results (trees) 0.00 28.50 0.00 0.92 0.00 0.00 0.00 2.30

% whether a tree was grown or not 51.10 41.70 25.00 50.80 99.90 43.10 33.10 46.00

best experiment (strategy0) s1lT5 4 0 4 1 4 4

best experiment (strategy1) x 1 s1T5 x 1 x x

best parameter settings (strategy0) 0,5,a,t 0,1,b,t 2,1,d,t x,4,d,t x,3,c,f 0,2,d,t 0,4,d,t

best parameter settings (strategy1) 2,x,d,f 1,5,d,t 2,5,d,f 0,5,d,f 1,3,c,f 2,4,d,f 2,5,d,f

average time in seconds (single) 0.03 3.39 5.21 1.51 6.71 0.38 0.18 1.50

average time in seconds (ensemble) 0.10 40.71 51.06 13.46 64.15 2.90 1.59 14.59

Total no of experiments 158664

Total no of experiments producing trees 73024

Range of attribute numbers 4 - 35

Range of maximum number of attribute values 3 - 13

Range of potential paths 108 - 12624
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The annealing dataset has the highest frequency of best results and the krk dataset has the 

lowest frequency of best results when considering all examples. When considering only those 

examples when a tree is grown, the krk still remains the one with the lowest frequency of best 

results but the mushroom dataset now has the highest frequency of best results at 99%. The 

dataset with the most trees grown is soybean and with the least grown are flare, heart and 

mushroom datasets.  

 

The following sections describe the findings of the investigation, Section 5.1 examines the 

parameters which ultimately control tree growth by permitting the process to continue only 

when it is worthwhile to do so and examine what happens to the cost and accuracy rate when 

each of the parameters are in control. Section 5.2 investigates the parameter settings which 

indicate how many lever pulls are being carried out, which version of the algorithm is better 

for certain datasets and the strategy which may be better, given the test costs and the 

misclassification costs assigned to each dataset. Section 5.3 investigates how choosing the 

best parameter settings and strategy for a dataset and a cost matrix individually can improve 

upon results than when using the same parameter settings for every cost matrix allocated to a 

dataset. Finally Section 5.4 attempts to find guidelines which will determine the best 

combination of parameter settings for a dataset and its allocated cost. 

 

5.1 Parameters allowing continuation of process when it is worthwhile 

 

The table in Appendix Section A5 gathers statistics for each of the parameter settings to 

determine which ones produce highest frequency of best and worst results. Out of all the 

parameter settings, the pre-pruning options which carry out tests in order to see whether it is 

worthwhile carrying on with the process have predictably the greater control when it comes 
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to decreasing costs and increasing the accuracy rates. However the control for stopping early 

when the information in the dataset is reduced i.e. proportional stopping of both the examples 

and dictating the class proportion does not have as much impact as the other pre-pruning 

option. This is interesting as it was expected that proportional stopping would have more 

impact than it does. 

 

Lower costs are most often produced by the proportional stopping option than by allowing 

full tree growth but this includes the pre-pruning combinations.  The four pre-pruning 

combinations are; a: true, true; b: true, false; c: false, true and d: false, false; where the first 

Boolean value dictates whether the method described by Ling et al. (2004) is carried out and 

the second Boolean value dictates whether the attribute chosen is tested to see if it is 

worthwhile or not.  The combination ‘c’ produces the majority of better low cost results, 

followed by ‘b’. Each of these only carry out one test; the combination ‘c’ does not carry out 

Ling et al. (2004)’s method, only the best attribute is tested whilst the other combination ‘b’ 

is the reverse. For accuracy, no proportional stopping along with the combination ‘d’ 

produces the majority of the better results. It is thought that trees are quite often not built 

when the pre-pruning combination ‘a’, ‘b’ and ‘c’ all return the same low cost and low 

accuracy. Evidence suggests that the pre-pruning combination options control tree build 

rather than the proportional stopping option as there are many results which are the same 

regardless of whether the proportional stopping option has been used. The pre-pruning 

combination option ‘d’ allows the proportional stopping options to help raise accuracy and/or 

lower costs. For example the accuracy is raised when the pre-pruning combination ‘d’ is 

used, but with the addition of proportional stopping, the accuracy is slightly reduced and with 

a lower cost. By examining the table in Appendix Section A5, it is clear that the pre-pruning 

combination has most effect on whether a tree is grown or not. The combinations a, b or c are 
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checking whether it is worthwhile or not.  The pre-pruning combination option ‘a’ produces 

less trees than the other combinations which is to be expected as it performs more checks. 

The pre-pruning combination option ‘d’ is where the algorithm is forced to grown a tree. For 

some datasets, namely breast, diabetes and hepatitis, employing the proportional stopping 

option increases the accuracy rates. When these datasets are allowed to be processed fully, 

the extra information used does not help to improve upon the accuracy rates unlike the other 

datasets. 

 

As mentioned earlier, when the algorithm considered it not worthwhile to continue, it can 

sometimes result in no model being built. In order to investigate how building a model can 

improve results, a series of graphs have been compiled which (i) plot the ‘do nothing’ cost 

from all examples and those from where examples have a model, (ii) plot ‘do nothing’ 

accuracy from all examples and those from where examples have a model, (iii) plot the mean 

cost obtained from all examples and from where examples have a model (iv) plot the mean 

accuracy obtained from all examples and from where examples have a model.  

 

Figure 17 presents the graphs for costs whilst the accuracy graphs are in the Appendix D1. A 

black solid line indicates do nothing mean cost for all examples, a black dotted line indicates 

the do nothing mean cost for only those examples producing a tree, a green solid line 

indicates the mean cost value obtained from all examples whilst the red dotted line the mean 

cost value obtained for only those examples producing a tree. The same style of lines is used 

for the corresponding accuracy values. 

 

It is hoped that by using different combinations of parameter settings, a combination of them 

can be found that will increase accuracy and lower cost at the same time. The relationship 
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between test costs and misclassification costs are significant. Based on earlier observations, it 

can be expected that if the test costs are lower than the misclassification costs, it makes sense 

to grow a model in order to reduce these higher costs. If the reverse is the case it is only 

worthwhile growing a tree if the misclassification costs were to be greatly reduced but not at 

the expense of spending test costs. When the test costs and misclassification costs are a 

mixture of high and low amounts, it is harder to say whether trees should be grown or not, it 

is likely that smaller trees would be required and this would need exploration to find the 

correct combination of attributes in the tree. 

 

In general the red line is always a higher cost except in the 2-class graphs, where the cost 

returned from the tree examples only is lower than the cost returned from all examples for 

some cost matrices, those where the misclassification costs are low. In the 3-class graph, for 

the misclassification costs from the group which is higher than the test costs; 7, 8, 9 the cost 

returned from the tree examples only is lower also. This is repeated for the 5-class graph for 

costs for some cost matrices. For the 15 class graph, there is no red line as all examples where 

produced using trees so it would be identical. In this case, growing a tree proved better for all 

cost matrices than doing nothing. 

 

As was suggested, when the misclassification costs are much lower than the test costs, there 

is a reluctance on the part of the algorithm to produce a tree, this is evident in that the values 

for the costs obtained (green line) are very close to the ‘do nothing’ costs for the 

misclassification costs where this is the case.  
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Figure 17 Graphs showing do nothing costs versus cost obtained for each of the types of classes 
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The interaction between the higher and lower misclassification and test costs is easier to see 

when the misclassification costs are averaged over their 3 groups; the binary classes datasets 

have to have their misclassification costs averaged over the whole of the matrices. Graphs 

have been compiled for each of the multi-class datasets for the same series of values but the 

misclassification costs have been grouped into their types; mixed, low and high in relation to 

the test costs.  

 

Most of the datasets follow the pattern where the costs obtained are higher than the ‘do 

nothing’ costs and the accuracy obtained is higher than the ‘do nothing’ accuracy. Figure 18 

presents the exceptions to this, which are the annealing, glass, iris and wine datasets for the 

group of misclassification costs which are higher than the test costs. The annealing and 

nursery datasets show the same pattern for the group of misclassification costs which have 

values both higher and lower than the test costs. The remainder of the graphs are presented in 

the Appendix D2.  

 

For those datasets where the misclassification costs can only be averaged to one group which 

is a group with mixed high and low costs in relation to the test costs, graphs with the values 

of ‘do nothing’ values and values obtained are also presented in the Appendix D2. All the krk 

results are high in relation to the other costs and the mushroom results are low, and their 

accuracy rates are low and high respectively. The cost value for the breast dataset is lower 

than the ‘do nothing’ cost value however the corresponding accuracy returned is lower than 

the ‘do nothing’ accuracy, which is unusual.  
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                dn_cost(examples)                  dn_cost(trees)                             cost(examples)                       cost(trees) 

 

Figure 18 Graphs showing multi-class datasets in their 3 groups of misclassification costs: mixed, low, high  

 

To obtain higher accuracy rates, it is necessary to grow a tree. Although this more often than 

not results in a higher cost, the aim of the algorithm is to minimize sacrificing the accuracy 

rate. In order to do so a tree must be grown. The more exploration that takes place, the more 

likely it is to produce a model which will meet this aim and still reduce costs. One must 

remember that in order to classify something it will be necessary to pay some cost. Being 

able to alter the algorithm’s behaviour is necessary to achieve this aim. It is acknowledged 

though, that the needs of the user will depend on the domain, and not producing a model is an 

indication of the fact that it may not be worthwhile to do so. This is vital information so that 

costs are not wasted, and other techniques can be used instead. 
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5.2 Determining how many lever pulls, which version and strategy is desirable 

 

The multiple-model version of the algorithm using the cost-based strategy produces the 

majority of the best results over all datasets. The preferred value of P lever pulls is either the 

same as or greater than the potential unique bandit path value as a general rule. 

 

Although the identifier of P lever pulls refers to values which are personal to each dataset, 

they are all in relation to the potential unique bandit paths of the dataset. So for example PId 

3 is the potential unique bandit path value, PId 4 is a value which is higher than the potential 

unique bandit path. Six of the datasets need a higher amount than the potential unique bandit 

paths to produce good results, these are breast, car, diabetes, glass, krk and soybean. The 

others can produce good results with a lower value. For mushroom it does not matter, 

although all values of P are very high anyway for this dataset. Investigation with regard to the 

depth to look-ahead, of the four datasets chosen to look to a depth of 2, although good results 

were obtained for the iris and diabetes datasets, these results were also obtained using only a 

depth of 1, the glass dataset showed no improvement when looking to a lower depth and there 

was no improvement of results for the car dataset either. The conclusion is that as these 

datasets required only a relatively small value of P as their potential unique bandit path 

values, perhaps the datasets did not benefit from looking ahead to a lower depth. It is possible 

however that datasets with a larger value of P as their potential unique bandit path values 

might benefit from looking ahead to a lower depth. 

 

With regard to the attribute with one value strategies, the ignoring or find next best options 

are those which are in the majority for producing good results; however it only makes a 

difference if the criterion is actually met. It is possible that this criterion is seldom invoked 

for the majority of datasets. Perhaps it is better to examine the dataset to determine whether a 
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dataset is likely to produce this scenario and then remove attributes which are similar in many 

ways which duplicate information and do not add anything new.  

 

There is a higher frequency of Class 1 examples using the hybrid labelling system than using 

the cost-sensitive labelling system. Using the cost-sensitive labelling always reduces the 

accuracy in the unbalanced datasets; the more balanced the dataset, the less the sacrifice 

against the two labelling systems because of course, when the class is balanced, the cost-

sensitive side of the hybrid labelling system will be used anyway.  

 

5.3 Investigate taking advantage of different parameter settings to achieve aim 

 

It has been observed that some parameter settings produce good results for some cost 

matrices, but the same settings do not produce as good results for others. Section 4.3 has 

discussed the concept of treating each cost matrix for each dataset as an individual entity and 

to find the most suitable settings producing the best results for it. 

 

It is possible, therefore, to improve on the results of a dataset by considering separately the 

best parameter settings. So for example instead of thinking about a dataset and finding 

parameters for it, it is much better to think of it as different datasets, one for each of the cost 

matrices it has been allocated. For example, the annealing dataset is one dataset, with 15 cost 

matrices. Better results can be obtained if it is thought of as 15 datasets. Therefore in these 

experiments 210 datasets are processed each as individual entities, each with their own best 

combination of parameter settings in order to achieve the best results possible. 
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In addition to considering parameter setting combinations, the strategy used to choose the 

parameters needs to be considered. Should the parameter settings which produce the lowest 

cost be chosen and then use the corresponding accuracy, or should the parameter settings 

which produce the highest accuracy be chosen and then use the corresponding cost. Maybe, 

depending on the domain and needs of the user and the relationship between test costs and 

misclassification costs, a mixture of these should be chosen in order to try to achieve the aim 

of cost-sensitive learning; that of maximizing accuracy at the lowest cost possible. A full set 

of tables which are the best values achieved for a cost matrix for a dataset are given in the 

Appendix D3. For each dataset and cost matrix, the values obtained by each experiment were 

examined. The example with the lowest cost is selected, and the example with the highest 

accuracy is also selected along with their corresponding accuracy/cost. If either of these 

examples did not produce a tree, then an alternative example is also chosen which has the 

next lowest cost obtained from producing a tree or the next highest accuracy producing a tree 

along with corresponding values. Examples which are chosen by both strategies are indicated 

in the tables. The parameter settings used to produce each of these results are also detailed in 

the tables.  

 

Figure 19 illustrates that different cost matrices may require different strategies. Mean values 

have been calculated for scenarios ‘do nothing’ that is if no model has been induced and the 

overall value obtained if no strategy is chosen but simply the mean value obtained from all 

examples. Additionally the values obtained when using the cost-based strategy and using the 

accuracy-based strategy are plotted.   

 

In order to attempt to anticipate what a user might require, ‘best choice’ illustrates the 

differing needs of the cost matrices; the costs and accuracy rates from both strategies are 



 

examined, trying to allow for user requirements and to achieve low costs whilst minimizing 

sacrificing the accuracy rate.  
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cost matrix so the accuracy-based strategy value is chosen for that cost matrix and the 

corresponding cost used. In order to achieve lower costs whilst maintaining accuracy or 

minimizing sacrifice, a compromise is sought between the two strategies, if this is difficult to 

meet, the flexibility of the algorithm means that users have more choice than with traditional 

cost-sensitive algorithms. It may be that the user wants to go for a more cautious approach to 

cost expenditure and err on the side of caution. 

 

The best illustration of the idea behind choosing the appropriate parameter settings for each 

individual run of a dataset as described are the mushroom and soybean dataset in Figure 19. 

First the mushroom dataset, which maintains an accuracy rate of 100% over the majority of 

the cost matrices and achieves this at a lower cost. For cost matrices 7 to 11, the cost-based 

strategy with tree and accuracy-based strategy both produce very high accuracy rates, but the 

cost-based strategy returns these at a lower cost. As the difference between the accuracy rates 

for these two strategies is only 1.48% but the cost is less by 0.014 to 0.021 the strategy for the 

‘best’ choice for these cost matrices is the lowest cost and corresponding accuracy; the cost-

based strategy.   

 

For the soybean dataset the pattern is the ideal pattern; if nothing is done i.e. no model 

induced, cost is high because the accuracy is low and there are misclassification costs. When 

a model is built, the mean cost value returned for each of the cost matrices is much lower and 

the corresponding accuracy is higher. When values are chosen which meet the cost-based 

strategy, the cost is lower and the accuracy increases. When values are chosen which meet 

the accuracy-based strategy, the accuracy is high and the cost is even lower. Appendix 

Section D4 presents the rest of the results for each dataset. 
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Examining the patterns for the remaining datasets, for the car, glass, heart, iris and krk 

datasets, the red line showing the ‘best’ choice is higher for costs than the other options, but 

the accuracy is improved. The annealing, breast, diabetes, flare, hepatitis, nursery, tic-tac-toe 

and wine show that the ‘best’ choice can reduce costs and still keep the accuracy high for at 

least some cost matrices. 

 

5.4 Developing guidelines for datasets to determine the best combinations of 

parameter settings 

 

As there are a large number of potential combinations of parameter settings which could be 

used when processing a dataset, it would be useful to see if the best settings for a dataset 

could be predicted as a guideline for processing future datasets. In order to do this, two 

approaches have been used. The first way looks at the parameter settings to see which of their 

values resulted in the highest frequency of the Class 1 examples. The interest is only in Class 

1 examples as these are the best results and it is only these for which it is important to predict 

the settings required to achieve them. There must be some way to describe the dataset and the 

costs in order to determine the parameter settings which would be best. Two attributes in the 

results dataset which can help with this are ‘grpPotPaths’, which groups together potential 

unique bandit path values and ‘grpRatio’ which groups the relationship between the highest 

misclassification cost and the highest test cost used by an experiment. By examining each of 

the attribute values and examining which parameter settings lead to the highest frequency of 

Class 1 results, the following information has been compiled in Table 12. 
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description 
of dataset 

strategy no of 
models 

label 
system 

depth 
(k) 

one value 
strategy 

id of 
P 
value 

pre 
prune 
option 

prop 
stopping 

class 
prop 
stopping 

if potPaths 
<= 500 

accuracy 10 HYBRID 1 2 4 c TRUE TRUE 

if potPaths 
<= 1000 

cost 10 HYBRID 2 2 4 d FALSE FALSE 

if potPaths 
<= 2000 

none (0) 1 HYBRID 1 0 5 d TRUE TRUE 

if potPaths 
<= 3000 

none 1 HYBRID 
(COST) 

1 2 3/4 a (d) TRUE TRUE 

if potPath 
<= 5500  

cost 10 HYBRID 2 2 2/3 a (d) TRUE TRUE 

if potPath 
<= 9200 

cost 10 HYBRID 1 2 3 d FALSE FALSE 

if potPath = 
all other 
values 

any 1 or 10 either 1 any any d either either 

          
grpRatio <= 
0.1 

none 1 HYBRID 1 2 5 d FALSE FALSE 

grpRatio <= 
0.99 

none 1 HYBRID 1 2 5 d TRUE TRUE 

grpRatio is 
1.0 

accuracy 20 LABEL 1 2 4 d TRUE TRUE 

grpRatio <= 
10.0 

cost 
(none) 

10 (1) HYBRID 
(COST) 

1 2 5 b (c) TRUE TRUE 

grpRatio < = 
100.0 

accuracy 20 HYBRID 1 2 4 d FALSE FALSE 

grpRatio <= 
500.0 

accuracy 20 HYBRID 1 (2) 0 4 d FALSE FALSE 

grpRatio <= 
1000.0 

cost 10 HYBRID 
(COST) 

1 0 2 d FALSE FALSE 

grpRatio > 
1000 

cost 10 HYBRID 
(COST) 

1 0 2 d FALSE FALSE 

Table 12 Manually obtained parameter settings based on description of a dataset and frequency of class 1 
examples 

 

The second way is to use a technique known as ‘meta-mining’. Attributes representing the 

parameter values, class distribution, grouped potential unique bandit paths and the ratios of 

misclassification cost to test cost along with the class to which the example has been assigned 

were selected and following the experimental methodology described earlier in Section 4.1, 

were processed by the accuracy-based algorithm J48 in WEKA.  
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The WEKA J48 was run on three kinds of files; (i) all examples, (ii) examples from multiple-

model version, (iii) examples from single-model version. Each kind of file was executed with 

different pruning levels in order to produce a more compact tree but one with good accuracy. 

The confidence levels entered were the default value, 0.15 and 0.05. The accuracy rates 

obtained are presented in Table 13. 

 

Out of the 9 options c0.05 - all examples has the highest accuracy of 82.95%. Using the most 

extreme version of pruning produced the highest accuracy for each type of file. The lowest 

accuracy returned was from the single version examples using the default pruning level. 

 

J48 with confidence level accuracy obtained 
c0.05 – all examples 82.95423 
c0.05 – ensemble 82.92961 
c0.05 - single 82.45773 
c0.15 – all examples 82.89284 
c0.15 – ensemble 82.79647 
c0.15 - single 82.38293 
default  – all examples 82.53402 
default  – ensemble 82.43935 
default - single 82.16518 

Table 13 Accuracy rates obtained from J48 predicting classes from parameter settings 

 

No matter what file is examined; the root attribute is always ‘distribution’ which describes 

the class distribution of the dataset. The ten files producing the better results have been 

averaged by class i.e. each individual class has had its accuracy rate calculated. Out of all 

Class 1 examples, 91% of them were predicted correctly from their parameter settings using 

descriptions of the dataset. Of the ten files, the one which contains the highest accuracy has 

been used to extract rules to decide on parameter settings as guidelines. This file contains the 

highest overall accuracy of 83.12% and with an accuracy of 94.3% on predicting Class 1 

examples. Leaves not being labelled Class 1, i.e. good cost, good accuracy, were removed 

leaving around 106 leaves from 557 leaves. If attribute ‘tree’ has been chosen for a node, the 
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branch indicating no tree was grown has been ignored in favour of following the path where a 

tree has been grown as it is necessary to concentrate on parameter settings where a tree has 

been grown. Even with harsh pruning there are still leaves with few examples. Any leaf, 

having only 100 or less examples, is also removed, leaving the best and most confident leaves 

to be used. Leaves with a high percent of accuracy are kept; in order that all root node 

branches have relevant leaves, this has been set at 65%. There are 33 leaves remaining and 

these are used to extract rules. The rules are shown in Figure 20. 

 

When comparing these two approaches it is observed that there are differences between them. 

Although both attributes in the manual approach are used in the ‘meta-mining’ approach, two 

of the attributes chosen to help determine parameter settings have one thing in common. They 

both describe the nature or structure of the dataset. The attribute ‘grpPotPaths’ has grouped 

potential unique bandit paths in value ranges. Potential unique bandit paths use attributes and 

their values in the calculation so could be a good indication of how attributes and their 

different values interact. The attribute ‘balanced’ describes the class distribution so between 

these two attributes the dataset’s structure is described. The other attribute, which was the 

ratio between misclassification costs and test costs, describes the other important aspect with 

regard to the dataset; the costs which are to be used. 

 

By using the results dataset, the rules obtained from WEKA as described and the information 

manually obtained, have been examined. The rules from WEKA prove the most accurate. 

However as this produces combinations of parameter settings and the manual version does 

not, this could be anticipated. The manual selection of ways to describe datasets should not 

be dismissed so easily however, as it could be used in combination with the other technique. 



117 

 

  

 

 

Figure 20 Rules extracted using J48 accuracy-based algorithm on examples in the results analysis file 

 

IF distribution is even 
    IF multi-class is FALSE 
 IF grpPotPaths is >500 & <= 1000 
    Set –prop FALSE 
                            Set –label COST 
 OTHERWISE 
      Set –prop TRUE 
      Set –label HYBRID 
   IF multi-class is TRUE 
 IF grpPotPaths  <= 500 
                        IF ratio >1.4 
                            Set –pre-pruning combination a 
                        OTHERWISE 
                            Set –pre-pruning combination d 
                            Set –prop TRUE 
             IF grpPotPaths >500 & <= 1000 
            IF ratio < 6.02 
                            Set –pre-pruning combination a 
                            Set –depth 2 
                        OTHERWISE 
                            Set –pre-pruning combination d 
                            Set –depth 1 
             IF grpPotPaths >1000 & <= 2000 
           Set –pre-pruning combination b 
                       Set –model 10   
            OTHERWISE 
                      Set –depth 1 
          Set –pre-pruning combination d 
                      Set –prop FALSE 
 
IF distribution is part unbalanced 
     IF ratio > 7.14 
     Set –label HYBRID 
     Set –prop FALSE 
     Set –pre-pruning combination d 
    OTHERWISE 
     Set –label COST 
     Set –prop TRUE 
     Set –pre-pruning combination d 
 
 
 
 
 
If a value has not been found for a parameter, this 
is an indication that it is not statistically important 
so therefore it is suggested that the default value 
be used. 

IF distribution is unbalanced 
    IF grpPotPaths  <= 500 
    Set –label HYBRID 
    Set –prop TRUE 
    IF grpPotPaths >500 & <= 1000 
    Set –oneVal stop 
                Set –model 10 
    Set –prop FALSE 
    IF grpPotPaths >1000 &  <= 2000 
        IF ratio <= 21.94 
    Set –oneVal stop 

   Set –prop TRUE 
        IF grpPotPaths > 3000 & <= 5500     

   Set –label HYBRID 
   Set –pre-pruning combination d 
   Set –prop TRUE 

       OTHERWISE 
    Set –label COST 
    Set –oneVal nextBest 
    Set –prop TRUE 
 

IF distribution is 65/35 
     IF ratio > 7.0 & <= 71.0 
 Set –strat accuracy 
 Set –pre-pruning combination b 
     IF ratio > 71.0 & <= 219.0 
 Set –prop TRUE 
 Set –pre-pruning combination d 
 Set –label HYBRID 
     IF ratio > 219.0 
 Set –prop FALSE 
 Set –pre-pruning combination d 
 Set –label HYBRID 
    OTHERWISE 
 Set –strat cost 
 
 
IF distribution is almost even 
     IF grpPotPaths is >= 6000 & <=9200 
     Set –strat accuracy 
 OTHERWISE 
     Set –strat cost 
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The guidelines produced may prove useful to determine how to set the parameter values. Any 

of the three identified attributes could be used to obtain the parameter values but it would be 

important to conduct some experiments in order to see if they are as successful as was 

indicated. 

 

So for example an unseen dataset can be chosen, test costs and misclassification costs 

assigned and potential unique bandit paths calculated. Then each of the three attributes could 

be used in turn to set parameter settings and then execute the appropriate algorithm using the 

parameter settings recommended. Again all possible parameter settings in combination can 

also be executed and results compared. This would be a good test of whether guidelines can 

indeed be recommended. 

 

5.5 Summary of findings from the investigation 

 

An extensive investigation, carried out on the 15 real-world datasets, resulted in 158664 

experiment results which have been collated into a results dataset and analyzed using a 

statistical software package (SPSS). Each experiment has been carried out used different 

strategies using all possible combination of parameter settings. Each example in the results 

dataset has been allocated a class based on the combination of the cost and accuracy rate 

returned by that particular example.  Both versions of the algorithm were used; the single 

version producing one model and the multiple-model version producing n models. 

 

The aim has been to determine which parameters allow the algorithm to only continue when 

it is worthwhile to do so and the effect this has on cost and accuracy, to determine how many 

lever pulls should be used for each dataset, and which version of the algorithm and which 
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strategy works best. Another aim is to investigate how to take advantage of the different 

parameter settings and strategies and to see if guidelines for the setting of these parameters 

can be found. 

 

Sometimes, when the algorithm considered it not worthwhile to continue, resulted in no 

model being built. This led to an investigation into the scenario of a model or no model 

grown. Graphs show that accuracy rate is improved when a model is generated. Obviously 

costs tend to be higher when a model is grown but in some cases, particularly in multi-class 

datasets like soybean, growing a model helps to reduce costs, when the misclassification 

costs are greater than the test costs. 

 

Two techniques were explored to see which may be able to help find guidelines to parameter 

settings for unseen datasets. Using the class representing the best results, parameter settings 

have been examined to see which ones produced the highest frequency in order to determine 

whether these parameter settings are best for a dataset, which has a certain number of 

potential unique bandit paths or has a particular ratio of misclassification costs and test costs. 

  

The other technique used, called ‘meta-mining’, finds rules using the accuracy-based 

algorithm J48, which could be used in order to find guidelines to parameter settings. Each 

used an attribute which was an indication of the structure of the dataset, for example, class 

balance and potential unique bandit path value and additionally the ‘meta-mining’ technique 

used an attribute which uses the ratio of the misclassification costs and test costs. It is thought 

that a combination of the two techniques would be helpful. 

 



120 

 

From the investigation of strategy and parameter settings choice, if each dataset/test 

cost/misclassification cost combination is treated as a separate dataset and the best parameter 

settings and strategy for each one are found, this makes the algorithm under development 

very flexible in comparison with existing cost-sensitive algorithms because it can behave 

differently when given different parameter settings. This flexibility can be used to improve 

results. 

 

From each experiment, the lowest cost along with its settings for each cost matrix has been 

examined to find the best one overall (cost-based strategy) and the same for the highest 

accuracy (accuracy-based strategy). These values are carried forward into an evaluation of 

existing algorithms. It is necessary to check the development using these 15 real-world 

datasets and compare performance measures against existing well-known cost-sensitive 

algorithms. 
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CHAPTER 6: AN EMPIRICAL COMPARISON OF THE NEW 

ALGORITHM WITH EXISTING COST-SENSITIVE DECISION TREE 

ALGORITHMS 

 
 

In order to examine the Multi-Armed Cost-Sensitive Decision Tree algorithm (MA_CSDT) 

and compare performance with well-known existing cost-sensitive algorithms, the 15 datasets 

along with the test costs and misclassification costs used in the investigation (see Chapter 5) 

are used in a comparison along with J48 (C4.5 version 8) in WEKA in order to see if the aim 

of the algorithm can be achieved over the wide variety of datasets and costs. 

 

The algorithms chosen for comparison, along with J48 are EG2 (Núnez 1991), MetaCost 

(Domingos 1999), AdaCostM1 (Fan et al. 1999), ICET (Turney 1995) and ACT (Esmeir and 

Markovitch 2008). The algorithm J48 is chosen to provide a benchmark for accuracy and the 

cost-sensitive algorithms selected represent five classes of cost-sensitive decision tree 

algorithms as described in Chapter 3 and in Lomax and Vadera (2013). Four of the 

algorithms have been implemented in the open source data mining software package WEKA 

(Hall et al. 2009) and they have been adapted to include test costs in their evaluations.  

 

• EG2, described in Section 3.1.1.1 has been implemented using the description given 

in Turney (1995) in which the J48 implementation has been adapted to include 

equation (3.1). 

• MetaCost is an algorithm which is included in the WEKA package, described earlier 

in Section 3.2.2.2. 

• AdaCostM1 is an adaptation of the algorithm AdaBoostM1 (Freund and Schapire 

1996) which is included in the WEKA package. The adaptations developed by Fan et 

al. (1999) for the algorithm AdaCost, and described in Section 3.2.2.1 have been 
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added to AdaBoostM1 in order that the algorithm AdaCost can process multi-class 

datasets and be included in the evaluation. 

• ICET, as described in Section 3.2.1 has been previously implemented and has been 

tested by comparing experiments in Turney (1995) in order to check the 

implementation (Vadera and Ventura 2001). This implementation has been used in 

several previous studies.   

• ACT, as described in Section 3.2.3 has been implemented using the description given 

in Esmeir and Markovitch (2008) and has been tested by comparing experimental 

results detailed in their paper. 

 

The J48 algorithm produces the target accuracy rates, in order to determine whether a 

compromise between accuracy-based decisions and cost-based decisions can be found so that 

it is possible to induce decision trees that maintain accuracy but also minimize costs. The 

results obtained from the experiments investigated in Chapter 5 have been examined in order 

to determine whether the hypothesis can be confirmed. As there are two different approaches 

to take while examining the results, both of these approaches have been used to produce 

values to compare. Over all the examples in the results dataset, lowest cost for a dataset and 

cost matrix is chosen along with its corresponding accuracy rate and is designated as COST-

BASED(ALL). Additionally the highest accuracy along with its corresponding cost is also 

chosen and is designated as ACCURACY-BASED(ALL). This is repeated using only those 

examples where the proportional stopping parameters are set to TRUE and using only those 

examples where the parameters are set to FALSE. These are labelled COST-BASED<> and 

ACCURACY-BASED<>. The MIXMATCH strategy examines the described strategies and 

picks one for an individual cost matrix which may help improve upon the results obtained by 

each of the cost-sensitive algorithms. For example, cost matrix 1 for a dataset, uses COST-
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BASED<> as it is a better choice. For cost matrix 5 for the same dataset, ACCURACY-

BASED<> might be the better choice rather than staying with COST-BASED<> for all of the 

cost matrices. The MIXMATCH strategy attempts to combine the strategies in a flexible way 

in order to achieve the aim of the algorithm. 

 

To examine cost and accuracy from the five cost-sensitive algorithms, processing the datasets 

using both pruned and un-pruned versions of EG2, MetaCost, AdaCostM1 and ACT have 

been used with ICET using only a pruned version, as the un-pruned version never produces 

better results than the pruned version. 

 

As the MA_CSDT algorithm, using some combinations of parameter settings, resulted in no 

trees being induced, in the first instance the output of the six algorithms has been examined to 

see whether trees have been produced. It is likely that, in some cases either pruning the tree 

results in no tree being left or that no tree has been grown in the first instance. Table 14 

presents the percent that trees were not grown during the processing of the datasets using 

pruned versions of the algorithms. Additionally it gives the misclassification cost identifiers 

which have produced the least trees. For example, in the breast dataset, all of the 

misclassification cost matrices processed by the EG2 algorithm, had an equal rate of not 

producing trees. For the ICET algorithm, the cost matrices 1 to 12 did not produce trees. The 

algorithms MetaCost and AdaCostM1 only produce trees for the misclassification cost 

identifier 8.  Comparing these to processing of the datasets using un-pruned versions, there 

are still some algorithms for some of the cost matrices which do not produce a tree. These are 

MetaCost and AdaCostM1. It is concluded that the other algorithms did not produce a tree 

owing to pruning reasons, however for MetaCost and AdaCostM1 the reason that no trees 

have been produced on some occasions, is that the process stops as all the examples belong to  
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Table 14 Percent of trees not grown by dataset for the six algorithms in the evaluation with the cost matrices 
producing the least trees 

Dataset (total no of 

times files processed) J48 EG2 MetaCost AdaCostM1 ICET ACT

Total % 

trees not 

grown

annealing (150)

% tree not grown 0 0 0 0 0 33.33% 5.55%

CM: least trees n/a n/a n/a n/a n/a  6-10

breast (150)

% tree not grown 0 30.00% 93.33% 93.33% 78.66% 20.00% 52.55%

CM: least trees n/a all equal not  8 not  8  1-12  7-9

car (120)

% tree not grown 0 0 0 10 87.50% 58.33% 24.31%

CM: least trees n/a n/a n/a 4  1,3,5-8, 11  5-8,10-12

diabetes (150)

% tree not grown 0 0 86.66% 86.66% 18.66% 6.66% 33.11%

CM: least trees n/a n/a  1-6, 9-15  1-6,9-15  4,6-8 8

flare (90)

% tree not grown 70.00% 100.00% 63.33% 52.22% 84.44% 68.89% 73.15%

CM: least trees all equal all equal 2  2,5  4,7,8  4-9

glass (180)

% tree not grown 0 0 0 0 1.11% 60.56% 10.28%

CM: least trees n/a n/a n/a n/a  5,11  8 -11 ,15-18

heart (150)

% tree not grown 0 0 80.00% 82.67% 0 6.67% 28.22%

CM: least trees n/a n/a  1-5,10-15  1-6,10-15 n/a 8

hepatitis (150)

% tree not grown 0 0 80.00% 82.00% 3.33% 6.67% 28.67%

CM: least trees n/a n/a  1-5,11-15  1-7,12-15  8

iris (90)

% tree not grown 0 0 0 0 14.44% 35.56% 8.33%

CM: least trees n/a n/a n/a n/a  1-6  3-6

krk (180)

% tree not grown 0 0 0 0 2.22% 22.22% 4.07%

CM: least trees n/a n/a n/a n/a 15  1,3-5,16-18

mushroom (150)

% tree not grown 0 0 0 40.00% 0 6.67% 7.78%

CM: least trees n/a n/a n/a  1-4,14-15 n/a 8

nursery (150)

% tree not grown 0 0 0 0 15.33% 40.67% 9.33%

CM: least trees n/a n/a n/a n/a  1,2  8-11,13

soybean (150)

% tree not grown 0 0 0 0 0 0 0

CM: least trees n/a n/a n/a n/a n/a n/a

tictactoe (150)

% tree not grown 0 0 32.67% 86.67% 22.00% 6.67% 24.67%

CM: least trees n/a n/a  1-4  1-7,10-15 13 8

wine (90)

% tree not grown 0 0 0 0 0 33.33% 5.56%

CM: least trees n/a n/a n/a n/a n/a  4-6
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one class. In the case of AdaCostM1 this will be owing to the initial weight procedure and in 

the case of MetaCost, owing to the way that this algorithm re-labels the training example with 

the class that minimizes the cost, as described in Section 3.2.2.2.  

 

The ACT algorithm is the only one of these six which fails to grow trees for the majority of 

the datasets. In fact the only dataset where this algorithm grew a tree for each training and 

testing pair over each cost matrix, is the soybean dataset. For this particular algorithm the 

most likely explanation of this is owing to its strict pruning policy. The other algorithms use 

error-based pruning, which involves testing whether having a sub-tree results in more errors 

than if it were to be pruned to a leaf node. The ACT algorithm uses an extension of this 

method to include the misclassification costs and the test costs. Only if the cost is reduced by 

having a sub-tree, is the sub-tree retained. Therefore, in some cases the ACT algorithm 

considers it not worthwhile to retain the sub-trees, reducing the model to the original subset. 

Two-class datasets and 3-class datasets have the fewest trees grown over all the processed 

files. The fact that trees are not always grown will be taken into account when looking at the 

costs in the evaluation. Section 6.1 presents the results of the evaluation and Section 6.2 

presents a discussion of the outcome of the evaluation. 

 

6.1 Empirical comparison results 

 

Table 15 presents the percentage that each cost-sensitive algorithm achieved the lowest cost 

for a cost matrix or the highest accuracy for a cost matrix for each of the datasets examining 

both pruned and un-pruned versions of the algorithms.  
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 lowest cost for 
a cost matrix 

highest accuracy 
for a cost matrix 

J48 1.38% 32.08% 
EG2 9.67% 11.77% 
MetaCost 6.45% 11.09% 
AdaCost 3.92% 3.92% 
ICET 5.07% 3.41% 
ACT 5.30% 2.73% 
MA_CSDT 68.20% 34.98% 

Table 15 Percent that each cost-sensitive algorithm achieves the lowest cost or highest accuracy for a cost 
matrix for both pruned and un-pruned versions 

 

An algorithm returning the highest accuracy must have a lower cost than the J48 

corresponding cost. If more than one algorithm qualifies for either lowest cost or highest 

accuracy, each one is included in the percentage shown.  

 

Table 16 presents a summary of each dataset showing whether the MA_CSDT algorithm has 

met its main aims. The main aims are (i) the MA_CSDT returned the same accuracy rate as 

J48 or higher; (ii) in order to obtain the same or higher accuracy rate, a lower cost has also 

been returned; and (iii) produces the lowest cost than all other algorithms. For the majority of 

the datasets these aims have been met. There are a number of datasets where a simple 

strategy of choosing the highest accuracy and corresponding cost for all cost matrices 

produces good results which meet the aims of the algorithms by returning a higher accuracy 

rate than J48 at a lower cost, and a number of datasets where choosing a mixture of different 

strategies for the cost matrices produce good results. The exceptions are the car, krk and 

nursery datasets where no strategy of MA_CSDT has been able to produce an accuracy rate 

comparable with the accuracy-based algorithm J48. 
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Table 16 Summary of whether MA_CSDT has met its aims for each dataset 

 

 

accuracy 

same or 

higher 

than J48

if no % 

sacrifice

is this 

cost 

lower 

than J48

produces 

a lower 

cost 

overall

if yes % 

sacrifice comments regarding the evaluation

annealing *can combine strategies to improve results

pruned* yes yes no EG2 gets lower cost but lower accuracy

un-pruned* yes yes yes 10.88 Never gets lower cost than EG2, (-0.007), accuracy always lower.

breast *can combine strategies to improve results

pruned* no 3.74 yes yes 11.57 EG2 gets lower cost but lower accuracy.

un-pruned no 0.65 yes yes 8.48 Does not require combination of strategies to achieve its aim.

car unable to meet aims regardless of combinations of strategies

pruned no 14.01 no yes 33.56

un-pruned no 16.28 no yes 35.83

diabetes does not need any combination of strategies to meet aims

pruned yes yes yes 13.83

un-pruned no 0.08 yes yes 14.08

flare does not need any combination of strategies to meet aims

pruned yes yes yes 4.6

un-pruned yes yes yes 2.04

glass *can combine strategies to improve results

pruned* yes yes yes 21.9 EG2 has low cost but accuracy not as high.

un-pruned* yes yes yes 24.01 Combinations of strategies required

heart does not need any combination of strategies to meet aims

pruned yes yes yes 10.2

un-pruned yes yes yes 11.42

hepatitis does not need any combination of strategies to meet aims

pruned no 0.06 yes yes 27.31

un-pruned yes yes yes 27.25

iris *can combine strategies to improve results

pruned* yes no yes 46.94 Combinations of strategies help, but there is some sacrifice

un-pruned* yes no yes 46.94 Combination of strategies help meet the aims 

krk unable to meet aims regardless of combinations of strategies

pruned no 23.53 yes no

un-pruned no 25.95 yes yes 39.9

mushroom lowest cost and highest accuracy already used, no combination possible

pruned yes yes no All aims achieved, EG2 reduces cost by 0.003

un-pruned yes yes no All aims achieved, EG2 reduces cost by 0.002

nursery unable to meet aims regardless of combinations of strategies

pruned no 20.85 no yes 47.2

un-pruned no 22.05 no yes 48.4

soybean lowest cost and highest accuracy already used, no combination possible; STRATEGY0 similar results to STRATEGY1

pruned no 0.73 no no Difference in costs only on average 0.0076.

un-pruned no 0.96 no no Difference in costs only on average 0.0032. 

tictactoe lack of cost information for some CMs is hard to overcome

pruned yes yes yes 22.34 Can meet aims, performs better than all except ACT. 

un-pruned no 1.59 yes yes 24.22 As above

wine *can combine strategies to improve results

pruned* no 0.01 yes yes 14.7 All algorithms sacrifice accuracy for lower costs

un-pruned* no 0.56 yes yes 16.74 As above
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The first aim has been met for the majority of datasets. For all other datasets where a sacrifice 

of accuracy rate has been required in order to return a lower cost than J48, this sacrifice has 

been kept to a minimum. The lowest cost over all algorithms has been returned for all 

datasets except annealing (pruned), krk (pruned), soybean and mushroom; where these costs 

are lower there is a large amount of sacrifice of accuracy rate. For these latter two datasets, 

all algorithms have returned low costs and the differences between all these costs are very 

small and all strategies produce very similar values. 

 

The costs for each dataset returned by each algorithm, both pruned and un-pruned versions, 

have been averaged over all the cost matrices and for the multi-class datasets, also over the 3 

groups of misclassification costs; mixed, low and high. Graphs have been produced which 

show the average cost returned by each algorithm and by each MA_CSDT strategy and 

annotated with the corresponding average accuracy rate obtained. The graphs have been 

examined and have been divided into three categories; those where the MA_CSDT algorithm 

has achieved its aim of returning a high accuracy rate or minimal sacrifice to the accuracy 

rate in a more cost-effective way than J48 and the other cost-sensitive algorithms, those 

where it has not achieved its aim, and those where the aim could be achieved if an increase in 

the sacrifice to the accuracy rate is allowed. A representative dataset has been chosen to 

illustrate the findings of the evaluation, with the rest of the graphs presented in Appendix 

Sections D5 and D6 for pruned and un-pruned versions respectively with Appendix Sections 

D7 and D8 which have tables showing the results obtained for each cost matrix by each 

strategy for costs and accuracy for pruned and un-pruned versions respectively. 

 

The following sections describe the results in each of the three scenarios; Section 6.1.1 

presents the results where the aim of the algorithm has been met using a consistent strategy 
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throughout the cost matrices for a dataset, Section 6.1.2 presents the results from those 

datasets where the aim of the algorithm has not been met regardless of how flexible the 

algorithm can be and Section 6.1.3 presents the results where the aim can be met by choosing 

the most appropriate strategy for each cost matrix for a dataset. 

 

6.1.1 Results from the evaluation where the aim has been achieved by MA_CSDT 

The algorithm MA_CSDT has achieved its aim on datasets heart, flare, hepatitis, diabetes, 

tic-tac-toe (pruned) and breast (un-pruned). Figure 21 presents the results for the heart 

dataset, showing the cost averaged over all cost matrices. 

 

The algorithm J48 returns an accuracy rate of 75.75% and obtains this accuracy rate at a cost 

of 0.296. All other algorithms return a lower cost than this. The highest accuracy rate 

returned is 78.42% and the algorithm MA_CSDT using ACCURACY-BASED(ALL) 

produces this value. The accuracy rate has been increased by 2.67% above that returned by 

J48 at a reduction in cost of 0.066. Using ACCURACY-BASED<TRUE>, although the 

increase in accuracy is lower at 1.21%, the reduction in cost is higher at 0.087. As shown in 

Table 14, AdaCostM1 and MetaCost, produce the fewest trees for this dataset and as a 

consequence, the accuracy rate returned by these algorithms are much lower. ACT grows 

93% of the trees, whilst this is enough to increase the accuracy rate of this algorithm against 

AdaCostM1 and MetaCost, the cost returned is increased owing to the increased 

misclassification costs. 

 

The algorithm MA_CSDT using ACCURACY-BASED<TRUE> returns a higher accuracy 

rate than EG2 and a lower cost. For the un-pruned versions of the algorithms, J48 returns an 

accuracy rate of 76.97% at a cost of 0.343.  
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Figure 21 Heart dataset processed using pruned versions of the cost-sensitive algorithms and flare dataset using 
un-pruned versions of the cost-sensitive algorithms 
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In the case of the flare dataset, each of the other algorithms fails to grow trees for some of the 

cost matrices. In particular EG2 does not grow any trees at all, ICET does not grow trees 84% 

of the time and even J48 does not grow any trees 70% of the time. After careful examination 

of the output files produced, it has been concluded that the lack of trees are as a result of the 

class distribution of the dataset which causes the majority of trees to be pruned back to 

nothing. The majority class in the whole dataset has 88.9% of the examples in it. Pruning 

techniques would most likely determine that sub-trees were not able to improve on the results 

of the original dataset and so would be converted into leaves, resulting in a large percentage 

of no models being produced. With this in mind, the results of the flare dataset using un-

pruned versions of the algorithms have been presented in Figure 21. 

 

The MA_CSDT algorithm using all strategies can be forced to induce trees using its 

parameter settings, setting the pre-pruning option to ‘d’ and by allowing no proportional 

stopping. The ACCURACY-BASED(ALL) and ACCURACY-BASED<FALSE> return an 

accuracy rate increase of 0.07% and 0.01% respectively and manages to return a lower cost 

than J48.  

 

The accuracy rate for J48 is 86.88%, for a cost of 0.209. Of the cost-sensitive algorithms, 

AdaCostM1 and ACT do not return as lower a cost as J48, as the accuracy rates obtained by 

these two algorithms are very much reduced, an indication of how no model was produced 

using pruned versions of these algorithm as the leaf would have had less errors than the sub-

tree. Of the five existing cost-sensitive algorithms, EG2 returns the lowest cost and increases 

accuracy by 1.78%. This is a good result, however, MA_CSDT using ACCURACY-

BASED<FALSE> returns a similar increase but for 0.067 less cost. The ACCURACY-

BASED(ALL) accuracy rate is an increase of 2.63% over J48 and 0.85% over EG2. As 
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illustrated in Figure 21 each strategy of MA_CSDT returns a lower cost than the other six 

algorithms.  

 

6.1.2 Results from the evaluation where the aim has not been achieved by MA_CSDT  

The algorithm MA_CSDT has not achieved its aim on datasets car, nursery and krk. Figure 

22 presents the results for the krk dataset, which is representative of this group of datasets. 

 

No algorithm returns a higher accuracy rate than J48, although it accomplishes this at a 

greater cost than each of the other algorithms including all strategies of MA_CSDT. 

MetaCost and AdaCostM1 get closer to the accuracy rate of J48 than any other algorithm and 

return a lower cost than J48. MA_CSDT does not get anywhere near this accuracy rate, the 

highest accuracy rate is produced by ACCURACY-BASED<TRUE> and does return a low 

cost but this accuracy rate is 23.53% less than J48.  

 

Using un-pruned versions, the results for EG2, ACT and all strategies of MA_CSDT show no 

improvement and in most cases are worse with regards to the cost value. J48 has a higher 

accuracy and slightly lower cost, MetaCost and AdaCostM1 remain the better algorithms 

regarding returning the highest accuracy rates at a slight reduction in cost. The ACT 

algorithm returns the highest cost and the lowest accuracy of all the algorithms.  The 

MA_CSDT using ACCURACY-BASED<FALSE> in the un-pruned version has higher cost 

than in the pruned version and the accuracy rate is reduced.  
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Figure 22 The krk dataset: top processed using pruned version; bottom processed using un-pruned version of 
cost-sensitive algorithms 
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6.1.3 Results from the evaluation where the aim can been achieved by MA_CSDT 

Although the algorithm MA_CSDT has not quite achieved its aim on some datasets, it has 

almost achieved it with perhaps one cost-sensitive algorithm producing slightly better results 

or perhaps not quite reaching a high accuracy. Figure 23 presents the results for the iris 

dataset, with the cost obtained from each algorithm and MA_CSDT strategies. This dataset is 

representative of the datasets where using the mentioned four strategies or a mixture of them 

do not always improve on the results; annealing, breast, glass, tic-tac-toe and wine.  

 

 

Figure 23 Iris dataset processed using the un-pruned version of the cost-sensitive algorithms 
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BASED<FALSE> return the highest accuracy rates and improve over J48 by 1.3%, but the 

costs returned by these two strategies is far too high and is an increase on the cost returned by 

J48 and the cost-sensitive algorithms. The cost-sensitive algorithms return a cost that is in 

each case higher than J48.  

 

Owing to the fact that the MA_CSDT algorithm has multiple parameter settings which can be 

used in different combinations, it is possible to examine results obtained for this dataset and 

each cost matrix for all possible parameter settings in order to find a result which improves 

upon the results obtained by the five cost-sensitive algorithms. 

 

The MA_CSDT MIXMATCH strategy as described, involves looking at the four other 

strategies and choosing from these four strategies, the best for each individual cost matrix. 

For the iris dataset, there is no variety in the four strategies, both the cost-based values and 

the accuracy-based values are the same. However, there are other experimental results which 

could potentially be better than those examined, which were the highest accuracy or lowest 

cost.  

 

As mentioned, the accuracy rate returned by both accuracy-based strategies are 94.97% and 

94.95%. This is higher than the J48 accuracy rate of 93.66%. Therefore all experimental 

results for the iris dataset have been examined for an accuracy rate which is not the highest 

but is close to the highest whilst returning a cost which is lower than the other cost-sensitive 

algorithms.  

 

Table 17 presents the cost and accuracy returned for individual cost matrices for the iris 

dataset for each algorithm, and for each strategy of MA_CSDT. The entry MIXMATCH* 
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shows values returned when all experiments for the iris dataset are examined looking at the 

highest accuracy obtained when the cost is lower than that obtained by other algorithms. 

 

For each cost matrix, it is possible to find a combination of parameter settings which can 

obtain a good accuracy rate but do this in a more cost-effective way. 

 

 

 

Table 17 Iris dataset cost and accuracy returned for each cost matrix for un-pruned versions of cost-sensitive 
algorithms 

 
 
The MIXMATCH* bar in Figure 23 shows the improvement possible when examining other 

parameter settings other than those producing the highest accuracy overall. By accepting a 

reduction in the accuracy rate of 0.01%, it is possible to reduce the cost by 0.045. The EG2 

algorithm returned a higher cost than J48 for a much lower accuracy so the improvement 

obtained by the MA_CSDT using MIXMATCH* strategy is 0.053 lower cost for an increase 

of accuracy of 3.54%.  

 

cost 1 2 3 4 5 6 7 8 9

J48 0.342 ± 0.016 0.329 ± 0.016 0.336 ± 0.017 0.421 ± 0.022 0.42 ± 0.021 0.421 ± 0.022 0.277 ± 0.013 0.27 ± 0.013 0.273 ± 0.014

EG2 0.342 ± 0.008 0.337 ± 0.008 0.342 ± 0.009 0.419 ± 0.011 0.421 ± 0.011 0.419 ± 0.011 0.293 ± 0.008 0.291 ± 0.008 0.292 ± 0.008

MetaCost 0.358 ± 0.005 0.353 ± 0.007 0.328 ± 0.01 0.448 ± 0.023 0.472 ± 0.018 0.397 ± 0.023 0.279 ± 0.013 0.263 ± 0.009 0.246 ± 0.01

AdaCostM1 0.37 ± 0.001 0.36 ± 0 0.29 ± 0.001 0.47 ± 0.017 0.461 ± 0 0.373 ± 0.001 0.325 ± 0.01 0.274 ± 0.011 0.257 ± 0.015

ACT 0.42 ± 0.01 0.413 ± 0.011 0.42 ± 0.01 0.526 ± 0.013 0.524 ± 0.013 0.526 ± 0.013 0.36 ± 0.01 0.351 ± 0.009 0.35 ± 0.01

COST-BASED(ALL) 0.014 ± 0 0.014 ± 0.001 0.013 ± 0.001 0.01 ± 0 0.01 ± 0 0.009 ± 0 0.178 ± 0.012 0.149 ± 0.009 0.175 ± 0.012

ACCURACY-BASED(ALL) 0.5 ± 0.014 0.428 ± 0.011 0.45 ± 0.017 0.504 ± 0.014 0.5 ± 0.017 0.614 ± 0.027 0.305 ± 0.008 0.38 ± 0.009 0.245 ± 0.01

COST-BASED<FALSE> 0.014 ± 0 0.014 ± 0.001 0.013 ± 0.001 0.01 ± 0 0.01 ± 0 0.009 ± 0 0.179 ± 0.012 0.149 ± 0.009 0.176 ± 0.012

ACCURACY-BASED<FALSE> 0.5 ± 0.014 0.428 ± 0.011 0.45 ± 0.017 0.504 ± 0.014 0.5 ± 0.017 0.614 ± 0.027 0.305 ± 0.008 0.38 ± 0.009 0.245 ± 0.01

MIXMATCH* 0.3 ± 0.009 0.28 ± 0.008 0.289 ± 0.01 0.365 ± 0.007 0.369 ± 0.011 0.357 ± 0.011 0.243 ± 0.005 0.236 ± 0.004 0.239 ± 0.008

accuracy 1 2 3 4 5 6 7 8 9

J48 93.66 ± 0.767 93.66 ± 0.767 93.66 ± 0.767 93.66 ± 0.767 93.66 ± 0.767 93.66 ± 0.767 93.66 ± 0.767 93.66 ± 0.767 93.66 ± 0.767

EG2 90.02 ± 1.456 90.02 ± 1.456 90.02 ± 1.456 90.02 ± 1.456 90.02 ± 1.456 90.02 ± 1.456 90.02 ± 1.456 90.02 ± 1.456 90.02 ± 1.456

MetaCost 94.42 ± 0.931 94.42 ± 0.931 78.53 ± 4.015 93.11 ± 0.785 94.61 ± 0.948 93.65 ± 0.792 93.42 ± 0.751 93.66 ± 0.767 93.9 ± 0.845

AdaCostM1 90.78 ± 1.217 94.67 ± 0.846 78.53 ± 4.015 93.95 ± 0.928 94.67 ± 0.846 90.7 ± 1.468 94.14 ± 0.885 93.66 ± 0.767 94.11 ± 0.749

ACT 87.12 ± 1.664 87.59 ± 1.47 89.41 ± 1.228 90.52 ± 1.267 91 ± 1.256 89.41 ± 1.228 92.95 ± 0.763 92.95 ± 0.763 94.11 ± 0.75

COST-BASED(ALL) 33.81 ± 1.45 31.38 ± 1.452 34.81 ± 1.306 33.81 ± 1.45 31.38 ± 1.452 34.81 ± 1.306 73.03 ± 2.228 71.86 ± 2.038 75.62 ± 2.046

ACCURACY-BASED(ALL) 94.62 ± 0.9 95.33 ± 0.66 94.75 ± 0.771 95.12 ± 0.791 94.7 ± 1.076 94.7 ± 0.89 95.26 ± 0.904 95.04 ± 0.79 95.22 ± 0.537

COST-BASED<FALSE> 33.81 ± 1.45 31.38 ± 1.452 34.81 ± 1.306 33.81 ± 1.45 31.38 ± 1.452 34.81 ± 1.306 72.39 ± 2.208 71.86 ± 2.038 75.86 ± 1.893

ACCURACY-BASED<FALSE> 94.62 ± 0.9 95.33 ± 0.66 94.75 ± 0.771 95.12 ± 0.791 94.7 ± 1.076 94.7 ± 0.89 95.26 ± 0.904 95.04 ± 0.79 95.22 ± 0.537

MIXMATCH* 92.44 ± 1.126 92.73 ± 1.023 93.61 ± 1.054 93.34 ± 1.07 93.18 ± 1.045 92.26 ± 1.4 94.75 ± 0.771 94.75 ± 0.771 94.99 ± 0.654
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6.2 Discussion of the outcome of the empirical evaluation 

 

The MA_CSDT algorithm can return the lowest cost for a cost matrix 68.2% of the time and 

return the highest accuracy for a cost matrix 34.98% of the time. Each time the highest 

accuracy is achieved, its corresponding cost is lower than that of J48. The main aim to 

achieve the same or higher rate of accuracy more cost-effectively as the accuracy-based 

algorithm J48 has been met for the datasets annealing, flare, glass, iris, heart and mushroom. 

For the datasets diabetes, hepatitis, tic-tac-toe and wine a sacrifice of less than 1% of the 

accuracy rate returned by J48 results in a lower cost. The un-pruned version processing the 

breast dataset also returns a lower cost for the same sacrifice but for the pruned version the 

sacrifice was greater at 3.74%. For the remaining datasets, car, krk, nursery and soybean, this 

aim has not been met.  

 

By looking at the two strategies cost-based and accuracy-based it is apparent that a trade-off 

is required between cost-based decisions i.e. cost-based strategy choosing the parameter 

setting combination which produces the lowest cost for a cost matrix and accepting the 

corresponding accuracy rate, and accuracy-based decisions i.e. accuracy-based strategy 

choosing the parameter setting combination which produces the highest accuracy rate for a 

cost matrix and accepting the corresponding cost. As discovered in Chapter 5, the same 

parameter settings seldom produce both the lowest cost and the highest accuracy so it is 

evident that all processes of classification is a trade-off; attribute selection and the decision of 

which model to choose which would produce the desired result for user requirements and 

domain requirements. 

 

The heart dataset is representative of six datasets which produce good results and achieve the 

aim of the algorithm by obtaining a high accuracy rate in a more cost-effective way. For each 
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of the datasets where the aim of the MA_CSDT algorithm has been met, these good results 

are produced by using the accuracy-based strategy. The cost-based strategy has the lowest 

cost which has been returned from induced trees; however the corresponding accuracy rates 

are always lower than the J48 algorithm. In the datasets where the aim has been met, 

choosing the same strategy for each of the cost matrices has been sufficient to meet the aim 

of MA_CSDT, thus a compromise between accuracy-based decisions and cost-based 

decisions has been found. 

 

The krk dataset is representative of poor results, where the MA_CSDT algorithm has not 

been able to achieve its aim. The accuracy-based algorithm J48 achieved the highest accuracy 

overall, with only two of the cost-sensitive algorithms MetaCost and AdaCostM1 achieving a 

similar accuracy rate. They achieved almost the same rate with a small reduction in costs. 

EG2, ICET and ACT also failed to achieve a comparable accuracy rate but do manage to at 

least reduce costs. 

 

On examination of the trees induced, the most likely cause of this failure to meet its aim is 

that the MA_CSDT algorithm either grows trees that are too small in comparison with the 

size of the dataset, which has a large number of examples in the training set, or grows a tree 

which is far too large with over 20,000 leaves. The paths in these trees are comprised of 6 

attributes in order to reach the leaves. The smaller trees have paths to the leaves which 

consist of two or three attributes. The conclusion reached, after studying the files produced is 

that the large number of examples contributes to the problems of processing this dataset. In 

each training file there are approximately 20,000 examples. Pruning or stopping tree build 

early results in many examples at the leaf nodes which results in low accuracy. Allowing the 

tree to grow fully, results in overgrown trees with few examples at the node, which results in 
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higher test costs but still does not improve accuracy.  The ACT algorithm also produces trees 

which follow this pattern of either too small or too large and is also not very successful on 

this dataset.  

 

The three algorithms, which produce the better results for this dataset (J48, MetaCost, 

AdaCostM1), all produce the same tree which, when pruned has 3948 leaves and un-pruned 

8268 leaves. They all choose the same root; ‘wkr’ which happens to be the attribute with the 

highest cost. However this is statistically the better attribute and in combination with less 

costly attributes further down the tree, results in a medium sized tree which produces the 

accuracy rate of around 50%. EG2 produces similar trees but chooses one of the less costly 

attributes for its root, and uses the more costly one later in the tree build. This produces a 

similar sized tree but the less costly attribute is not as good a root attribute as the more costly 

one in this dataset. ACT chooses the same root as the better algorithms, however in its pruned 

version, reduces the tree produced too much and in the un-pruned version grows a tree with 

over 25,000 leaves, increasing the test costs needed as a result of later choosing many less 

costly attributes. 

  

This dataset demonstrates that higher accuracy does not always mean lower costs, if to 

achieve this, the tree grows uncontrollably. However not spending a lot on test costs does not 

always work either as money saved on tests may be spent on misclassification costs.  

 

On examination of the results of the soybean dataset, all of the algorithms except ACT 

produce very similar results. All the accuracy rates are slightly lower than J48 and the costs 

returned by all strategies are around the same value and all algorithms return higher costs 

than J48. This dataset is one of the few where the cost-based strategy and the accuracy-based 
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strategy produce very similar results. It is likely that this is as a result of low test costs with 

many attributes having the same test costs. It is one of the datasets where there are parameter 

settings which produce both the lowest cost and the highest accuracy as investigated in 

Chapter 5. The tic-tac-toe dataset is a difficult dataset to process for a cost-based algorithm in 

that as the test costs for every attribute is the same value, the misclassification costs become 

the only source of information for MA_CSDT to use in order to determine the attributes to 

use in the tree build. When processing particular cost matrices where the misclassification 

costs are low or are the same as the test costs, there is little information that can be used in 

order to separate the attributes into useful ones.  

 

Examining the results of the mushroom dataset demonstrates the successful trade-off between 

the test costs and misclassification costs. Each algorithm, for either all cost matrices or some 

cost matrices, can achieve 100% accuracy. The costs obtained are the test costs used in the 

tree induction. Any variation between algorithms regarding the cost they return are the sole 

result of the attributes which have been chosen during tree induction and therefore when 

different trees are induced this can be inferred by looking at the cost obtained. Therefore the 

objective of the algorithm is to discover the best attributes, which in combination can achieve 

the 100% accuracy but incurring the smallest amount of test costs. Of all the algorithms in the 

evaluation, EG2 returns the lowest overall cost with a corresponding accuracy of 100%.  The 

MA_CSDT returns a slightly higher cost, but this is around 0.002 to 0.003 higher than EG2 

(which is helped by its formulae in this situation but not for other datasets with similar ranges 

of test costs) but achieves one aim of returning a lower cost than the accuracy-based 

algorithm and so has successfully found a trade-off between the two viewpoints.  
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As demonstrated in Chapter 5, examining the parameter settings using the cost-based strategy 

and the accuracy-based strategy, these are, more often, not the same parameter settings for 

the same cost matrix. The user is given a choice between the two viewpoints which will be 

determined by the domain nature. For example, some domains may like to err on the side of 

caution. They prefer to reduce costs and are not concerned with the reduction of the accuracy 

rate. An example would be checking for fraudulent bank transactions. In this case if a bank 

transaction is checked and is not fraudulent the cost may simply be the cost of a telephone 

call. If the transaction is actually fraudulent then the cost saved could potentially be quite 

high. Therefore the bank would not be overly concerned by false positive errors as they 

would not incur high misclassification costs. 

 

Other domains are opposite. They do not want high cost errors but do not want the low cost 

errors either. Medical domains are examples of this. They do not want to subject the patient 

to unwanted treatment either so in this case they are more likely to want a classifier which 

will be accurate but obviously if they can obtain this accuracy at a lower cost this is much 

more desirable. 

 

With some datasets, choosing a straightforward accuracy-based strategy for each cost matrix 

for a dataset is enough to obtain a higher accuracy rate for a lower cost. For some datasets, 

choosing between different strategies for each cost matrix improves on the results overall. For 

some datasets this is not always possible as the four strategies produce only 2 different 

results. Quite often the accuracy rate using the cost-based strategy is too low and there is too 

much sacrifice. However it may be possible to examine the results and not choose the highest 

accuracy but get a lower cost. In some cases other parameter settings may produce high 

accuracy rates which may not be lower than J48 so the aim of the algorithm is still met, thus 
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taking advantage of the flexibility of the MA_CSDT algorithm. In other cases this may result 

in sacrifice of the accuracy rate but in acceptable amounts. For example when AdaCostM1 or 

MetaCost process the heart dataset the accuracy rate they produce is over 30% less than J48, 

this sacrifice is far too much. A reduction of around 3% for a significant reduction in costs is 

acceptable. 

 

In the iris dataset, the cost-based strategy returns low cost but the corresponding accuracy 

rate is far too low; the accuracy-based strategy returns higher accuracy than J48 but for a 

higher cost. The cost-sensitive algorithms return a lower cost with a more comparable 

accuracy rate. The likely reason for this scenario is that where pruned versions are used, a 

sub-tree was removed which reduced the errors on the training set but resulted in the 

accuracy rate obtained on the testing set which could potentially have been higher if not 

pruned, but is still comparable. As the tree was smaller, there was a reduction in test costs 

used which ultimately resulted in a lower cost. In the un-pruned version J48 can take 

advantage of its statistical measure. As there are only four attributes in the dataset with two 

with much lower test costs than the other two, it is likely that growing the tree is the ideal 

way to increase accuracy but it is harder to control the tree build with regard to cost-

effectiveness owing to the small number of attributes in the dataset.  

 

However, the purpose of MA_CSDT is to try to find a compromise between such situations 

as these. So it makes sense to examine other parameter settings to find a compromise so that 

the accuracy rate can be increased in a more cost-effective way. The MIXMATCH* strategy 

is designed to replicate the user’s decisions, taking into account the domain nature so that it 

can be demonstrated that the MA_CSDT’s flexible nature can be exploited. In the case of the 

iris dataset, the MIXMATCH strategy has been extended to include all results which have 
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been obtained by all combinations of parameter settings in order that MA_CSDT’s best and 

comparable performance can be utilized in the comparison.  

 

As demonstrated in the representative dataset krk, the overall accuracy rate is nowhere near 

as high as the J48 algorithm so therefore no amount of strategy mixing is going to help. It 

could be that just going for a lower cost is the only alternative. This may be acceptable in 

some domains as mentioned so if the algorithm returns the lowest cost of all of the algorithms 

then maybe this would be an alternative for the user. In this dataset, it might be the case that 

low costs are hiding bad splits and the only way to help is to try to gain additional 

information by some other means. If there is a lot of activity regarding cost i.e. high test 

costs, high misclassification costs or a mixture, the cost information is enough to construct 

the tree. If the reverse is the case as in tic-tac-toe dataset or krk where there are 50% very low 

cost attributes and 50% very high cost attributes, maybe a statistical measure is required to 

add that little bit extra knowledge. What may be useful is the reverse of those algorithms 

described in Section 3.1.1.1 where the statistical measure has been extended to include cost, 

maybe the cost calculation used in the MA_CSDT can be extended to include a statistical 

measure, when confronted by these combinations of test costs and misclassification costs in a 

dataset. When the test cost information is minimal as in tic-tac-toe this might also be a good 

addition because there is only the misclassification cost to use. It may take a while to get to 

good misclassification cost reduction so tree induction results in a large tree. Even though the 

cost of the tests may not be too much it all adds up and an overlarge tree tends not to be 

helpful in most cases, hence the introduction of pruning techniques discussed by Frank and 

Witten (1998). Balancing the reduction in misclassification costs against a small output of 

test costs does not usually work all that well but testing whether the attribute is good for 

splitting using another measure in this case would probably be best.  
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As mentioned with the soybean dataset, because many of the combination of parameter 

settings result in both low costs and high accuracy, there is also not much room for flexibility 

by mixing the strategies. In order to increase accuracy to that of the accuracy-based algorithm 

J48 it might also require some additional information which is provided by a statistical 

measure. The mushroom dataset has also a range of low test costs. Although MA_CSDT can 

produce the second lowest costs and the differences between the two algorithms’ low cost is 

very small, there are several attributes with the same test cost, some of which are more useful 

than others. In order to find which one is the better split when the cost is identical, the 

information provided by a statistical measure may be useful, and the algorithm which does 

produce the lower costs for the mushroom dataset, EG2, does use statistical measures along 

with the test costs. 

 

The EG2 equation balances the amount of information gained against the test cost spent to 

achieve this information. If the cost is worth it regarding the information gained this is 

reflected in the value returned and so therefore the highest one is chosen, indicating good 

information for cost ratio. Although nothing is done if the attributes are not worth the cost 

maybe something like this could be used with that described in Section 4.3 where the ‘worth’ 

of the choice of split is determined. It could be included with the test costs and 

misclassification costs, in the datasets where it is needed, to determine whether the low cost 

is hiding a bad split or is simply a low cost attribute that will produce a good split. 

 

Although not successful in every dataset, there is sufficient evidence to suggest that it is 

possible to find a compromise between accuracy-based decisions and cost-based decisions in 

order to both maintain accuracy and return lower costs or to minimize the sacrifice of the 

accuracy rate whilst still returning lower costs. 



145 

 

6.3 Summary of the findings of the evaluation 

 
 
In order to examine the Multi-Armed Cost-Sensitive Decision Tree algorithm (MA_CSDT) 

and compare performance with well-known existing cost-sensitive algorithms, 15 datasets 

along with test costs and misclassification costs have been used in a comparison along with 

J48. The aim of the algorithm is to minimize costs whilst maximizing the accuracy rate. The 

J48 algorithm provides the target accuracy rates. The existing cost-sensitive algorithms are 

EG2, MetaCost, AdaCostM1, ICET and ACT.  

 

The main aims are that the MA_CSDT algorithm returns the same accuracy rate or higher 

than J48, that this is obtained at a lower cost and that it produces the lowest cost than the 

other algorithms. For the majority of datasets these aims have been met. 

 

For some datasets, using a single strategy for all cost matrices obtain good results, other 

datasets obtain good results when using a mixture of strategies for the cost matrices and there 

are three datasets; car, krk and nursery where no strategy has been able to produce accuracy 

rates comparable with the accuracy-based algorithm J48. 

 

If there is a lot of activity regarding cost i.e. high test costs, high misclassification costs or a 

mixture of high and low costs, the cost information is enough to construct the tree. If the 

reverse is the case it is difficult to construct the tree as there would only be one cost element 

contributing to the information needed. If, as in the case of the tic-tac-toe dataset, for one of 

the cost matrices there is minimal cost information as the test costs are all minimal and so is 

the misclassification cost, maybe a statistical measure is required in order to supplement the 

information provided by the costs. 
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The algorithm can use its parameter settings and differing strategies to overcome the 

problems caused by difficult datasets. There is sufficient evidence to suggest that it is 

possible to find a balance between the cost-based decisions and accuracy-based decisions in 

order to meet the aim of minimizing cost and maximizing the accuracy or to minimize 

sacrifice of the accuracy rate. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

 

Cost-sensitive decision tree learning is an important research area as it considers the costs 

involved when inducing decision trees. In the real world costs are involved when obtaining 

data and when classification errors occur. Recent comparisons have evaluated algorithms 

which have incorporated these costs by various methods such as extensions to statistical 

measures, genetic algorithms or boosting and bagging techniques. Examining the results of 

the better performing algorithm revealed some weaknesses. 

 

This thesis has suggested that cost-sensitive decision tree learning involves a trade-off 

between decisions based on accuracy and decisions based on costs and that Game Theory can 

be utilized to develop a framework which can find a compromise between these two points of 

view. The aim of the thesis is to demonstrate the trade-off between the accuracy-based 

decisions and the cost-based decisions and use the trade-off effectively to achieve the aim of 

cost-sensitive learning which is to minimize costs whilst maximizing accuracy. The nature of 

the domain dictates the importance of this aim. Whilst some domains may err on the side of 

caution and prefer to sacrifice the accuracy rate rather than incur high misclassification costs, 

there are many domains where this is not acceptable. Medical domains would prefer to have 

no low cost errors either, not wanting to subject the patient to unwanted treatment. In these 

domains, if a classifier can be found which will minimize costs, but at the same time be as 

accurate as an accuracy-based classifier, this is more desirable.  

 

A number of methodologies were examined and the category Nomothetic methods chosen as 

the more appropriate for this research. A method named GQM (Goal, Question, Metric) 

(Basili and Weiss 1984) has been used for this research. In this thesis, the goal was to 

develop a framework which uses the trade-off required between accuracy and costs in order 



148 

 

to achieve low costs and high accuracy required in cost-sensitive learning. This goal was 

defined in order that the hypothesis might be proven. The questions raised by this were (i) 

how well do existing cost-sensitive decision tree algorithms perform? (ii) What are the 

weaknesses of existing cost-sensitive decision tree algorithms? (iii) Is it possible to minimize 

costs and minimize the sacrifice of the accuracy rate which occurs in cost-sensitive decision 

tree learning? and (iv) Will using a technique which has been developed to deal with trade-

off by using pay-offs help in achieving the aim of cost-sensitive decision tree learning? 

 

These questions help to devise the objectives needed to focus the research, carrying out a 

literature review to find answers. Metrics were also devised which measure cost to determine 

whether these costs are minimized and accuracy, to determine whether this is maximized or 

that the sacrifice is minimized. 

 

It was felt that as the GQM methodology has been primarily aimed at software development 

and that a main part of this thesis is to develop a new framework for cost-sensitive decision 

tree learning, it would be the better methodology to follow. It has been concluded that this 

methodology was helpful in providing a good interface between theory and practice and that 

of all the methodologies investigated, was the most suited to the task. It is helpful to define a 

goal which can be related to the research hypothesis, using the questions which can give rise 

to good objectives and allowing a practical approach to the research. 

 

The following objectives were devised in order to achieve the answers to the questions 

devised using the GQM methodology and to meet the aims of the thesis using the metrics 

given: 

 



149 

 

1. To survey and review existing cost-sensitive decision tree algorithms in order to 

investigate ways in which costs have been introduced into the decision tree learning 

process and at which stages they have been introduced  

2. To evaluate existing cost-sensitive decision tree algorithms in order to discover 

whether these algorithms are successful over many types of problems or are only 

effective for some types of problems, for example binary class datasets or balanced 

datasets 

3. To develop a new cost-sensitive decision tree algorithm which is based on Game 

Theory  

4. To investigate and evaluate the new algorithm against existing algorithms and 

measure performance in terms of cost to classify and accuracy, in order to test the 

research hypothesis 

 

Some recent comparisons show that although many cost-sensitive algorithms can process 

balanced, two class datasets well, many of them produce lower accuracy rates in order to 

achieve lower costs to classify when the dataset is less balanced or has multiple classes. 

 

One comparison has been examined further and the results of the algorithm which proved the 

better one, has been analyzed to determine the weaknesses of cost-sensitive decision tree 

algorithms. The main weaknesses discovered are (i) problems arise from an imbalance in the 

class distribution, (ii) multi-class datasets cause problems, (iii) extreme misclassification 

costs are difficult to handle and (iv) trade-off between high misclassification costs usually 

result in the accuracy rate being sacrificed; the higher the misclassification costs, the more 

unbalanced the class distribution, the lower the accuracy rate tends to be. 
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As part of an extensive literature review, a survey of cost-sensitive decision tree algorithms 

has been carried out revealing over 50 different algorithms. A timeline of these algorithms is 

presented. The algorithms have been organized by the way costs have been introduced into 

the process and a taxonomy with seven classes has been developed. These are (i) use of costs 

in the construction, (ii) post construction, (iii) GA methods, (iv) boosting, (v) bagging, (vi) 

multiple structures and (vii) stochastic methods. The algorithms have been described, the 

differences highlighted and a summary of observations made by the authors discussed. 

Additionally datasets used in all the different studies has been collated with the idea of 

guiding researchers to determine which of the existing algorithms may suit their purpose best. 

 

In order to test the hypothesis and see if the aim can be achieved, a framework has been 

developed which builds on a specific Game Theory problem: the multi-armed bandit. This 

problem involves using exploration and exploitation techniques to solve it. Concepts from the 

multi-armed bandit game have been utilized in order to develop a new algorithm, viewing the 

pay-offs as a reduction in costs so that a compromise between decisions based on accuracy 

and decisions based on cost can be found. The multi-armed bandit game has been adapted to 

select the attributes in the decision tree induction. The result is an algorithm with many 

parameters which can alter behaviour in the hope that the correct behaviour can be found 

which suits each dataset and the costs belonging to that dataset. 

 

Using 15 real-world datasets from the Machine Learning Repository, with varying values of 

test costs and misclassification costs, the algorithm has been investigated with regard to 

performance over the different parameter settings. Experiments were devised using single 

model induction version and a multiple-model induction version of the algorithm using all 

possible parameter settings for five varying values of lever pulls which are unique to each 
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dataset. For each dataset a range of misclassification costs were used which were higher than 

the test costs, lower than the test costs or a mixture of high and low values in relation to the 

test costs. The results of these experiments were compiled into a dataset which could then be 

analyzed and investigated. Each example is an outcome of a particular experiment, for a 

dataset and cost matrix and combination of parameter settings and has been classified into 

one of nine classes which reflect the cost and accuracy rate achieved by the experiment. The 

aim of the investigation was to summarize findings and decide (i) which parameters allow the 

algorithm to continue only when it is worthwhile to do so and what effect this has on cost and 

accuracy, (ii) which investigates the parameter settings which indicate how many lever pulls 

is better, which version of the algorithm is better and which strategy is better for a dataset 

given the test costs and misclassification costs, (iii) which investigates how choosing the best 

parameter settings and strategy for a dataset and cost matrix as an individual can improve on 

results and (iv) to determine whether guidelines to parameter settings can be found. 

 

The main findings from the investigation in Chapter 5 were that: 

 

• Of the four pre-pruning options, testing whether it is worthwhile to continue or not, 

the combination which tests the chosen attribute only, produces the majority of better 

low cost results 

• Using the proportional stopping option along with class proportional stopping does 

not have as much impact on tree build as testing to see whether it is worthwhile to 

continue or not 

• To produce the best accuracy, allowing the tree to be fully grown without forcing it to 

be stopped is the best option  

• A higher value of lever pulls proved the better option in the majority of situations 
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• The multiple-model version proved to be the better option over the majority of 

datasets 

• Investigations regarding the depth to look-ahead have produced results which indicate 

that the datasets, where the depth was increased to 2, did not show any improvement. 

These same results were obtained when the depth was 1 for two datasets iris and 

diabetes and no improvement for car and glass. This could be dataset related. 

 

When processing the algorithm, using some combinations of parameters resulted in no model 

being built. It has been determined that to obtain higher accuracy rates it is necessary to grow 

a tree. Although this does result in a higher cost, the aim of the algorithm is to maximize 

accuracy and minimize cost and in order to do so a tree must be grown. The more exploration 

that takes place, the more likely it is to produce a model which will meet this aim. Better 

results are obtained for the majority of datasets by increasing the value of the parameter 

which allows more exploration; the number of lever pulls. 

 

By treating each dataset/cost matrix combination as a separate entity, allows the flexibility of 

the algorithm to work to its full effect by choosing for each individual, the most appropriate 

strategy rather than choosing the same strategy for every cost matrix for a dataset. This is 

demonstrated in that choosing parameter settings which produced the lowest cost and using 

the corresponding accuracy for some cost matrices produces very good results but not for 

others, whilst choosing parameter settings which produced the highest accuracy and using the 

corresponding cost repeats this pattern. It is seldom that the same parameters produce the 

lowest cost and highest accuracy. By using the best strategy for an individual cost matrix, not 

the same strategy for every cost matrix, results in a flexible algorithm which gives the user 

more choice than with traditional cost-sensitive algorithms. 
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Guidelines have been produced, which attempt to predict the parameter settings for 

processing future datasets. Two approaches have been used in order to see if it is possible to 

set parameter settings as a guideline. One way was to examine all parameter settings 

producing good results and the other way was to process the results dataset using the 

accuracy-based algorithm J48. The outcome of these two approaches is that attributes which 

describe the dataset structure, that is class distribution or groups dictating a combination of 

attribute and values, need to be used to determine what parameter settings should be used.  

 

In order to examine the performance of the MA_CSDT algorithm compared to well-known 

existing algorithms, an evaluation has been carried out using the 15 datasets with the 

misclassification costs and test costs which are also used in the investigation. The existing 

cost-sensitive algorithms are EG2; from the class costs used in the construction, MetaCost; 

from the class bagging, AdaCost; from the class boosting, ICET; from the GA methods class 

and ACT; from the stochastic approach class. Additionally the accuracy-based algorithm J48 

was also used in order to provide a ‘target’ accuracy rate. The aim of the algorithm is to 

achieve the same accuracy rate as the accuracy-based algorithm, but do this at a lower cost 

than the other cost-sensitive algorithms. Each experiment and each combination of parameter 

settings has been examined in order to find the best option for each individual cost matrix for 

each dataset given two strategies; cost-based strategy which chooses the lowest cost obtained 

for a cost matrix and uses the corresponding accuracy rate and accuracy-based strategy which 

chooses the highest accuracy rate obtained for a cost matrix and uses the corresponding cost. 

These have then been compared to the cost and accuracy returned by each of the other 

algorithms.  
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The MA_CSDT algorithm can return the lowest cost for a cost matrix 68.2% of the time and 

return the highest accuracy for a cost matrix 34.98% of the time. Each time the highest 

accuracy is achieved, its corresponding cost is lower than that of J48. For six of the datasets, 

the algorithm MA_CSDT was able to achieve its aim of minimizing the costs whilst 

maximizing the accuracy rates. For an additional four datasets, the aim can be achieved by 

applying a strategy which is tailored to the individual dataset and its cost, thereby finding a 

compromise between accuracy-based decisions and cost-based decisions. For example, whilst 

it is desirable to obtain the highest accuracy rate as possible, this can be allowed to be 

reduced slightly, by one or two percent, in order to achieve a lower cost than existing cost-

sensitive algorithms. By examining each cost matrix individually and by considering the 

accuracy rate obtained by the accuracy-based algorithm J48, in those datasets where the aim 

was not achieved by using one strategy for each cost matrix, a combination of both strategies 

were used thus achieving the aim. For some of these datasets, a higher accuracy rate than J48 

had been achieved and in these cases by allowing a small sacrifice of the accuracy rate, a 

lower corresponding cost was found.  

 

Using different strategies for individual cost matrices meant that the aim of the algorithm was 

achieved however there were two datasets which this technique did not help; those datasets 

where the information obtained from the test costs was insufficient; particularly those with 

low test costs; mushroom and soybean. In this case it is suggested adding extra information 

which can help decide whether a low test cost is hiding a bad split or a low test cost is 

associated with a good attribute would be a solution to this problem. 

 

For the remaining three datasets; car, krk and nursery, MA_CSDT was unable to achieve its 

aim, producing only a low accuracy rate and being unable to minimize cost in all cases. It 
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should be noted however that on one of these datasets, krk, three of the existing cost-sensitive 

algorithms were also unable to achieve good results. 

 

In conclusion, this thesis has developed a new algorithm and framework for cost-sensitive 

decision tree induction based on the principles of the multi-armed bandit problem. The 

algorithm has helped explore and confirm a research hypothesis, that cost-sensitive learning 

involves a trade-off between the decisions based on accuracy and decisions based on cost. By 

using a framework which explores strategies based on cost, a compromise between these 

viewpoints can be reached in the majority of cost-sensitive problems and that for those 

problems where the new algorithm is not as successful; a version containing extra 

information could be used in order that these problems can also be improved upon. 

 

Future work 

 

Although the algorithm can achieve its aim for some problems, there are some limitations at 

this time. The algorithm relies on the cost information available in order to determine the best 

attribute upon which to split the data. When this is limited for some reason, for example if the 

test costs are low or the misclassification costs are low, this presents the algorithm with a 

problem in that there is not enough information to determine which attribute has a low test 

cost hiding a bad split or a is a good split. Even though the algorithm is designed to look 

ahead, when all attributes have a low test cost it must rely on the misclassification costs only 

and in some cases particularly when these are also low, the algorithm can find itself unable to 

backtrack from a bad decision. 

 

In order to overcome this limitation, it is suggested that a more complicated version of the 

multi-armed bandit algorithm can be used, one that has, as an add-on, a statistical measure in 
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order to combat attributes with lower test costs which may have been chosen simply because 

of the low test cost.  

 

As noted in the discussion of the evaluation, the algorithm EG2 was able to achieve lower 

costs for some of the cost matrices. This algorithm does not include misclassification costs in 

its statistical measure used to find the attribute upon which to split the data. However it does 

use the test costs in such a way that the value returned indicates whether the split is ‘worth’ 

the cost or not. Although the procedure does not react to a worthless split, simply choosing 

the best of what is on offer, it does at least make the best choice it can and indirectly the 

accuracy of the tree could be determined in a limited way. 

 

The measurement this algorithm uses, as presented in equation 3.1, may be of use by 

supplying additional information regarding the ‘worth’ of the attribute. In the first instance it 

is suggested that equation (3.1) can be incorporated into the cost calculation used in the 

adaptation of the Multi-Armed Bandit problem as the simplest way of including extra 

information. 

 

The experiments using the krk dataset, which produced overly large trees resulting in poor 

accuracy rates and high costs, could then be repeated using the extended version of the 

algorithm which includes the statistical measure equation (3.1). Different ways of 

incorporating this measure can be tried out. If not successful, research into more complicated 

multi-armed bandit scenarios can be undertaken to find a suitable algorithm which can be 

adapted for use by MA_CSDT for an improved measurement in order to find an attribute to 

exploit. 
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In Chapter 5, it has been suggested that sometimes the costs are such that it may not be 

worthwhile to induce a cost-sensitive decision tree. In these cases it was suggested that other 

techniques could be used instead. It may be worth investigating when this state is likely to be 

reached. In the case of the krk dataset for example, the accuracy-based algorithm produced a 

good accuracy rate and those cost-sensitive algorithms which used the same accuracy-based 

algorithm as a weak learner managed to reduce cost with only a small amount of reduction in 

accuracy. Perhaps when costs are too extreme pseudo-costs could be used therefore it would 

always be worthwhile in these cases. Other techniques could be used and compared to see if 

the answer lies in when not to use cost-sensitive trees but simply use the accuracy-based 

algorithm. 

 

The result of the investigation and experimentation where the look-ahead depth was increased 

to 2 was inconclusive. It might be that the datasets selected for these experiments included 

datasets which would not require extensive look ahead searching. However to determine this 

required initial experimentation. It could also be the case that generating paths to a greater 

depth does not work for any dataset as this involves looking too many moves ahead; this has 

been noted in past literature that looking ahead too deeply can produce worse results (Murthy 

and Salzberg 1995). It is therefore suggested that using the information discovered in the 

investigation, one of the datasets where the results could be improved is chosen and used to 

investigate this further.   

 

As discussed in Section 4.1, it was thought that the nature of the dataset could influence how 

the algorithm processed the dataset. It was noted that when examining the results from a 

previous comparison, there were inconsistencies. Even allowing for datasets which had the 

same test cost allocated to each of their attributes, inconsistent results were obtained. The 
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conclusion is that characteristics of the datasets, for example the number of attributes and 

how many different values these have, in addition to costs, have some influence on the ability 

of an algorithm to process the dataset. Although not examined in detail in this thesis, it is 

thought that an investigation using the results obtained in these experiments could be carried 

out in the first instance to determine if this conclusion is correct. 

 

In conclusion, this thesis suggests the hypothesis that cost-sensitive learning is a trade-off 

between two alternative viewpoints, which are decisions based on accuracy and decisions 

based on cost. This thesis has presented an algorithm which tries to allow for different user 

and domain needs so that the user has more choice than a straightforward cost-sensitive 

algorithm which will simply aim to reduce costs which can have a detrimental effect on the 

accuracy rate, or as an alternative choose an accuracy-based algorithm which can have a 

detrimental effect on the cost. It is shown that allowing for the trade-off between decisions 

based on accuracy and those based on costs can achieve the aim of cost-sensitive learning 

which is to minimize costs whilst maximizing accuracy. 
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APPENDIX 

 

A1 Analysis of datasets used by studies from the survey 

 

Table A1, given overleaf, shows the top 20 datasets used by the studies in Chapter 3. These 

datasets have been divided into groups; two class datasets, multi-class datasets and those 

which have been used as both two class and multi-class datasets. The table gives details of 

how many datasets each study used, the average number of datasets used and how many of 

the datasets are in the top 20. All datasets in the top 20 are available from the Machine 

Learning Repository12. Some of the studies have used private datasets or those from other 

sources. 

  

The table also indicates whether the test costs and misclassification costs are provided.  Other 

datasets which are not in the top 20 listing but are still useful in order to measure 

performance include: (i) the Soybean dataset which has 19 classes, (ii) Thyroid (NN), used by 

Turney (1995) and others, and is a larger version of the hypothyroid dataset and has 3 classes 

and (iii) Statlog Shuttle, a large dataset with 58,000 examples, useful to examine how an 

algorithm performs with a larger number of examples. 

 

                                                 
12 http://archive.ics.uci.edu/ml/index.html 
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A2 Details of the datasets used in the main evaluation 

 

A2.1 Annealing 

Area: Physical 

Steel annealing from the Machine Learning Repository. It is multi-class, imbalanced, with 

high test costs and high potential unique bandit paths. Costs obtained on consultation with 

domain expert. Missing values were indicated as – but are actually ‘not applicable’ and have 

not been removed. Attributes have been removed if all examples had only one value or less 

than 10 examples for other values. All continuous attributes have been discretized using 

WEKA. 

 

attributes no of 
values 

test costs discount group 

family 3 50.0 50.0 x 
steel 8 50.0 50.0 x 
carbon 10 50.0 50.0 x 
hardness 7 50.0 50.0 x 
tempRolling 2 50.0 50.0 x 
condition 3 50.0 50.0 x 
nonAgeing 2 50.0 50.0 x 
surfQual 5 50.0 50.0 x 
lustre 2 50.0 50.0 x 
shape 2 50.0 50.0 x 
oil 3 50.0 50.0 x 
bore 3 50.0 50.0 x 
thick 9 250.0 250.0 x 
width 4 250.0 250.0 x 
len 2 250.0 250.0 x 
bf* 2 1500.0 1500.0 a 
bt* 2 1500.0 1500.0 a 
bwme* 3 1500.0 1500.0 a 
bl* 2 1500.0 1500.0 a 
chrom‡ 2 1500.0 250.0 a 
cbond‡ 2 1500.0 250.0 a 
ferro‡ 2 1500.0 250.0 a 
formability 6 2000.0 2000.0 x 
strength 8 2000.0 2000.0 x 
Total test costs  15850.0   
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*These tests are individual tests. Each one is independent and cannot provide answers to the 

other attributes. Each one of these can provide answers to all attributes marked ‡. 

‡values are obtained for these attributes by doing one of the tests marked *. So if an attribute 

from this group is chosen, one of the tests which get the values marked * must be carried out 

so the test cost is full price. If one of the tests either * or ‡ has been carried out before, 

attributes marked ‡ will have a value easily obtainable and discount will apply. 

 

Dr K J Abrams, Technical Consultant, University of Salford has provided an insight into this 

dataset along with advice regarding the allocation of the test costs and the groupings of the 

attributes. 

 

Details of the class distribution of the annealing dataset are as follows: 

 

 Frequency Percent Cumulative 
Percent 

1 8 .9 .9 
2 99 11.0 11.9 
3 684 76.2 88.1 
5 67 7.5 95.5 
U 40 4.5 100.0 
Total 898 100.0  

 

A2.2 Breast Cancer 

Area: Medical 

This version was obtained from Esmeir and Markovitch (2008), originally from the Machine 

Learning Repository; the costs were allocated by Esmeir and Markovitch (2008) also. It is 

one of three domains originally provided by Oncology Institute. Nine examples which had 

missing values have been removed by Esmeir and Markovitch.  
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attributes no of values test cost discount group 
breast 2 5.02877 5.02877 x 
menopause 3 9.2464 1.84928 a 
breastquad 5 18.4302 18.4302 x 
age 9 24.2124 16.8152 a 
irradiat 2 40.8691 40.8691 x 
tumorsize 12 41.8689 41.8689 x 
nodecaps 2 61.1264 53.7293 a 
degmalig 3 75.1722 75.1722 x 
invnodes 13 93.0188 93.0188 x 
Total test costs  368.9732   

 
 
It is a two class dataset; no recurrence events and recurrence events and is imbalanced. The 

class distribution is as follows: 

 

 Frequency Percent Cumulative 
Percent 

no recurrence 
events 

196 70.8 70.8 

recurrence events 81 29.2 100.0 
Total 277 100.0  

 

 

A2.3 Car Evaluation 

Area: Social 

Originally from the Machine Learning Repository, this file is the one used by Esmeir and 

Markovitch (2008), along with the costs. It evaluates cars based on buying price, 

maintenance, overall price, technical characteristics and comfort and capacity. Structural 

information has been removed from the dataset leaving the attributes shown in the table. 

There were no missing values. 
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attributes no of values test costs discount groups 
maint 4 5.58562 5.58562 x 
lugboot 3 6.84251 6.84251 x 
doors 4 20.6264 20.6264 x 
buying 4 35.4139 7.08277 A 
persons 3 91.6271 63.296 A 
safety 3 98.6441 70.313 A 
Total test costs  258.7396   

 

This dataset is a multi-class dataset with an imbalanced distribution. 

 

 Frequency Percent Cumulative 
Percent 

acc 384 22.2 22.2 
good 69 4.0 26.2 
unacc 1210 70.0 96.2 
vgood 65 3.8 100.0 
Total 1728 100.0  

 

 

A2.4 Pima Indian Diabetes  

Area: Medical 

Originally from the Machine Learning Repository but this version is from Esmeir and 

Markovitch (2008), with costs from Turney (1995). The classes are whether an example 

shows signs of diabetes, with class value 1 indicating tested positive. The population lives 

near Phoenix, Arizona. All attributes which were continuous were discretized using WEKA.  
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attributes no of values test costs discount groups 
timespreg 2 1.00 1.00 x 
massindex 2 1.00 1.00 x 
pedigree 2 1.00 1.00 x 
age 2 1.00 1.00 x 
glucosetol 4 17.61 15.51 A 
insulin 3 22.78 20.68 A 
Total test costs  44.39   

 

The class distribution, which has a 65/35 distribution, is as follows: 

 

 Frequency Percent Cumulative 
Percent 

0 500 65.1 65.1 
1 268 34.9 100.0 
Total 768 100.0  

 

A2.5 Solar Flare 

Area: Physical 

The original dataset contains three potential classes, one for the number of times a certain 

type of solar flare occurred in a 24 hour period. Each instance represents captured features for 

1 active region of the sun. Esmeir and Markovitch (2008) have used flare1.data and the class 

being used is C-class flares. There are no missing values. 

 

attributes no of values test costs discount group 
codeforclass 6 4.36544 4.36544 x 
codeforspotsize 6 6.60975 1.32195 B 
codeforspotdist 4 7.69262 7.54576 B 
activity 2 8.21288 8.21288 x 
evolution 3 10.0288 2.00576 B 
previous 3 39.8118 11.0989 B 
complex 2 51.9166 26.275 B 
region 2 69.6765 64.3887 B 
area 2 87.3879 87.3879 x 
soptarea 2 96.5457 96.5457 x 
Total test costs  382.248   
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There is an imbalanced class distribution. 

 

 Frequency Percent Cumulative 
Percent 

0 287 88.9 88.9 
1 29 9.0 97.8 
2 7 2.2 100.0 
Total 323 100.0  

 

A2.6 Glass Identification 

Area: Forensic Science 

This dataset deals with the identification of types of glass left at crime scenes. Esmeir and 

Markovitch’s file was used along with their costs. Attributes have been discretized by 

WEKA. There are no missing values.  

 

attributes no of values test cost discount group 
a6 4 13.3987 13.3987 x 
a0 3 40.2861 32.9151 a 
a1 2 49.5373 42.1663 a 
a3 3 67.0591 59.6881 a 
a7 2 70.2323 62.8613 a 
a5 4 75.0775 75.0775 x 
a2 2 78.2133 70.8423 a 
Total test costs  393.8043   

 

 

The classes are listed as follows: 

 

1. Building windows float 

2. Building windows non-float 

3. Vehicle windows float 

4. Vehicle windows non float processed (not in dataset) 
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5. Containers 

6. Tableware 

7. Headlamps 

 

This results in a 6 class dataset with the following class distribution: 

 

 Frequency Percent Cumulative 
Percent 

1 70 32.7 32.7 
2 76 35.5 68.2 
3 17 7.9 76.2 
5 13 6.1 82.2 
6 9 4.2 86.4 
7 29 13.6 100.0 
Total 214 100.0  

 

 

A2.7 Heart Cleveland 

Area: Medical 

This dataset is from the Machine Learning Repository, but the actual file used is the one 

prepared by Esmeir and Markovitch (2008). The costs used are those provided by Turney 

(1995) although the group data has been altered slightly as the ICET implementation used in 

the evaluation can only process one group datasets. There were some missing values but 

these have been removed by Esmeir and Markovitch. The dataset indicates the absence or 

presence of heart disease. 
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attributes no of values test costs discount group 
age 2 1.0 1.0 x 
sex 2 1.0 1.0 x 
pain 4 1.0 1.0 x 
fbs 2 5.2 5.2 x 
restecg 3 15.5 15.5 x 
exang 2 87.3 87.3 x 
oldpeak 2 87.3 87.3 x 
slope 3 87.3 87.3 x 
fca 2 100.9 100.9 x 
thal 3 102.9 1.0 b 
thalach 2 102.9 1.0 b 
Total test costs  592.3   

 

It is a two class dataset with an even class distribution: 

 

 Frequency Percent Cumulative 
Percent 

0 160 53.9 53.9 
1 137 46.1 100.0 
Total 297 100.0  

 

 

A2.8 Hepatitis 

Area: Medical 

Originally from the Machine Learning Repository, there are missing values, but this version 

was obtained from Esmeir and Markovitch (2008). There is no indication of what they did 

with the missing values; however there is one less example. The continuous attributes were 

discretized using WEKA, and the costs were those used by Turney (1995). 
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attributes no of values test costs discount group 
sex 2 1.00 1.00 x 
steroid 2 1.00 1.00 x 
antiviral 2 1.00 1.00 x 
fatigue 2 1.00 1.00 x 
malaise 2 1.00 1.00 x 
anorexia 2 1.00 1.00 x 
liverbig 2 1.00 1.00 x 
liverfirm 2 1.00 1.00 x 
spleen 2 1.00 1.00 x 
spiders 2 1.00 1.00 x 
ascites 2 1.00 1.00 x 
varices 2 1.00 1.00 x 
histology 2 1.00 1.00 x 
bilirubin 2 7.27 5.17 A 
albumin 3 7.27 5.17 A 
protime 3 8.30 6.20 A 
Total test costs  35.84   

 

The class distribution is unbalanced as follows: 

 

 Frequency Percent Cumulative 
Percent 

1 32 20.8 20.8 
2 122 79.2 100.0 
Total 154 100.0  

 

 

A2.9 Iris Plants 

Area: Botanical 

This dataset contains 3 classes of iris plant. The aim is to predict the type of plant. There are 

no missing values and the attributes have been discretized by WEKA. This version is from 

Esmeir and Markovitch (2008) along with costs. 
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attributes no of values test costs discount groups 
sl 3 7.65056 7.65056 x 
sw 3 22.5831 22.5831 x 
pl 3 78.2133 78.2133 x 
pw 3 98.2458 98.2458 x 
Total test costs  206.6928   

 

The class distribution is even: 

 

 Frequency Percent Cumulative 
Percent 

Iris-setosa 50 33.3 33.3 
Iris-versicolor 50 33.3 66.7 
Iris-virginica 50 33.3 100.0 
Total 150 100.0  

 

 

A2.10 Chess Endgame White King and Rook against Black King (krk) 

Area: Game 

This dataset is a stored game with theoretic values for the enumerated elements. It denotes 

whether positions are won for either side or include the depth of win (number of moves), with 

Black to move, positions drawn or lost in N moves. The class is the optimal depth of win for 

white in 0 – 16 moves otherwise drawn.  

 

This dataset is available from the Machine Learning Repository but this version was 

obtained, along with costs, from Esmeir and Markovitch (2008). 
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attribute no of values test costs discount group 
wrr 8 7.11229 7.11229 x 
wrf 8 7.3094 7.3094 x 
wkf 4 7.57644 7.57644 x 
bkr 8 70.0909 70.0909 x 
bkf 8 78.6536 78.6536 x 
wkr 4 89.3119 89.3119 x 
Total test costs  260.0522   

 

The class distribution is as follows: 

 

 Frequency Percent Cumulative 
Percent 

0 27 .1 .1 
1 78 .3 .4 
2 246 .9 1.3 
3 81 .3 1.5 
4 198 .7 2.2 
5 471 1.7 3.9 
6 592 2.1 6.0 
7 683 2.4 8.5 
8 1433 5.1 13.6 
9 1712 6.1 19.7 
10 1985 7.1 26.8 
11 2854 10.2 36.9 
12 3597 12.8 49.7 
13 4194 14.9 64.7 
14 4553 16.2 80.9 
15 2166 7.7 88.6 
16 390 1.4 90.0 
d 2796 10.0 100.0 
Total 28056 100.0  

 

A2.11 Mushroom 

Area: Botanical 

This dataset is from the Machine Learning Repository with costs used by Lomax and Vadera 

(2011). There is a high potential unique bandit paths value with low test costs. It is a two 

class dataset with an even distribution. There are only nominal values. Missing values all in 

attribute stalk-root, coded as value x and left in the dataset. Attribute veil-type was removed 
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as it only has one value. The aim of the dataset is to classify edible and poisonous 

mushrooms. 

 

attributes no of values test costs discount group 
bruises 2 1.0 1.0 x 
odor 9 1.0 1.0 x 
pop 6 1.0 1.0 x 
hab 7 1.0 1.0 x 
ss 2 2.0 2.0 x 
sr 5 2.0 2.0 x 
ssar 4 2.0 2.0 x 
ssbr 4 2.0 2.0 x 
scar 9 2.0 2.0 x 
scbr 9 2.0 2.0 x 
ga 2 3.0 3.0 x 
gs 2 3.0 3.0 x 
gsize 2 3.0 3.0 x 
gc 12 3.0 3.0 x 
cs 6 4.0 4.0 x 
csur 5 4.0 4.0 x 
cc 10 4.0 4.0 x 
rn 3 5.0 5.0 x 
rt 5 5.0 5.0 x 
spc 9 6.0 6.0 x 
vc 4 7.0 7.0 x 
Total test costs  63.0   

 

 

 Frequency Percent Cumulative Percent 
0 4208 51.8 51.8 
1 3916 48.2 100.0 
Total 8124 100.0  

 

A2.12 Nursery 

Area: Social 

Evaluation of applications for nursery schools, with the final decisions resting on occupation 

of parents, family structure, financial standing, social and health. This dataset is available 

from the Machine Learning Repository but this version is from Esmeir and Markovitch 
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(2008) along with costs. Their version has less examples than the Machine Learning 

Repository one (which was 12960). However there is no explanation regarding their 

processing of the dataset. 

 

attributes no of values test costs discount groups 
finance 2 8.21288 1.64258 A 
children 4 9.86595 3.29564 A 
housing 3 10.004 1.0 A 
parents 3 11.0199 4.44957 A 
hn 5 11.4081 11.4081 x 
social 3 15.8234 9.25308 A 
form 4 20.949 20.949 x 
health 3 98.6441 98.6441 x 
Total test costs  185.9273   

 

The class distribution (apart from 2 classes with very few examples) is balanced, as follows: 

 

 Frequency Percent Cumulative 
Percent 

not recom 2900 33.3 33.3 
priority 3644 41.9 75.2 
recommend 2 .0 75.2 
spec prior 1829 21.0 96.2 
very recom 328 3.8 100.0 
Total 8703 100.0  

 

 

A2.13 Soybean 

Area: Botanical 

This dataset diagnoses the diseases of the soybean plant. It is from the Machine Learning 

Repository, with the costs as used by Lomax and Vadera (2011). Only 15 of the classes are 

traditionally used. All examples with missing values have been removed. Most of them have 

multiple values missing: 
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attributes no of values test costs discount group 
plant stand 2 5.00 5.00 x 
hail 2 5.00 5.00 x 
plant growth 2 5.00 5.00 x 
leaves 2 5.00 5.00 x 
leafshread 2 5.00 5.00 x 
leafmalf 2 5.00 5.00 x 
stem 2 5.00 5.00 x 
lodging 2 5.00 5.00 x 
fruiting bodies 2 5.00 5.00 x 
mycelium 2 5.00 5.00 x 
sclerotia 2 5.00 5.00 x 
seed 2 5.00 5.00 x 
mold growth 2 5.00 5.00 x 
seed discolour 2 5.00 5.00 x 
seed size 2 5.00 5.00 x 
shrivelling 2 5.00 5.00 x 
date 7 10.00 2.0 a 
precip 3 10.00 2.0 a 
temp 3 10.00 2.0 a 
crop hist 4 10.00 2.0 a 
area damaged 4 10.00 2.0 a 
severity 3 10.00 2.0 a 
seed tmt 3 10.00 2.0 a 
germination 3 10.00 2.0 a 
leafspotshalo 3 10.00 2.0 a 
leafspotsmarg 3 10.00 2.0 a 
leafspotsize 3 10.00 2.0 a 
leaf mild 3 10.00 2.0 a 
stem cankers 4 10.00 2.0 a 
canker lesion 4 10.00 2.0 a 
external decay 2 10.00 2.0 a 
int discolour 3 10.00 2.0 a 
fruit pods 3 10.00 2.0 a 
fruit spots 4 10.00 2.0 a 
roots 3 10.00 2.0 a 
Total test costs  270.0   

 

• external decay has no value 2 – watery 

• fruitpods now has no value 2 – few present 

• fruitspots has no value 3 – distort (did not have one anyway).  
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This makes no overall difference to the class distribution, which is fairly evenly spread over 

the 15 classes: 

 

 Frequency Percent Cumulative 
Percent 

diaporthe-stem-canker 20 3.6 3.6 
charcoal-rot 20 3.6 7.1 
rhizoctonia-root-rot 20 3.6 10.7 
phytophthora-rot 20 3.6 14.2 
brown-stem-rot 44 7.8 22.1 
powdery-mildew 20 3.6 25.6 
downy-mildew 20 3.6 29.2 
brown-spot 92 16.4 45.6 
bacterial-blight 20 3.6 49.1 
bacterial-pustule 20 3.6 52.7 
purple-seed-stain 20 3.6 56.2 
anthracnose 44 7.8 64.1 
phyllosticta-leaf-spot 20 3.6 67.6 
alternarialeaf-spot 91 16.2 83.8 
frog-eye-leaf-spot 91 16.2 100.0 
Total 562 100.0  

 

 

A2.14 Tic-tac-toe Endgame 

Area: Game 

This encodes the complete set of possible board configurations at the end of tic-tac-toe where 

x is assumed to have played first. Target concept is ‘win for x’ (true when x has one of 8 

possible ways to create 3 in a row). The attributes correspond to the squares. Costs used are 

those in Lomax and Vadera (2011). 
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attributes no of values test costs discount groups 
a0 3 1.0 1.0 x 
a1 3 1.0 1.0 x 
a2 3 1.0 1.0 x 
a10 3 1.0 1.0 x 
a11 3 1.0 1.0 x 
a12 3 1.0 1.0 x 
a20 3 1.0 1.0 x 
a21 3 1.0 1.0 x 
a22 3 1.0 1.0 x 
Total test costs  9.0   

 

It is a 2 class dataset with a 65/35 distribution: 

 

 Frequency Percent Cumulative 
Percent 

negative 332 34.7 34.7 
positive 626 65.3 100.0 
Total 958 100.0  

 

 

A2.15 Wine Recognition 

Area: Physical 

The dataset comprises of the results of chemical analysis of wines grown in the same region 

in Italy, but derived from 3 different cultivars. Analysis determines the quantities of 13 

constituents found in each of the 3 types of wine.  

 

This is available from the Machine Learning Repository, but this file is from Esmeir and 

Markovitch (2008) along with their costs. All attributes are continuous and so was discretized 

by WEKA. 
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attributes no of values test costs discount groups 
a3 2 5.86631 5.86631 x 
a8 2 14.6291 14.6291 x 
a4 2 30.1854 6.03708 b 
a6 3 39.8244 39.8244 x 
a1 3 42.3829 18.2345 b 
a5 2 47.2174 47.2174 x 
a2 3 48.6759 48.6759 x 
a9 1 52.5906 52.5906 x 
a12 3 73.7248 49.5765 b 
a10 3 74.856 74.856 x 
a11 4 83.4669 83.4669 x 
a13 4 84.78 84.78 x 
a7 4 98.5054 98.5054 x 
Total test costs  697.0051   

 

 

This is a 3 class dataset with an even distribution, as shown: 

 

 Frequency Percent Cumulative 
Percent 

1 59 33.1 33.1 
2 71 39.9 73.0 
3 48 27.0 100.0 
Total 178 100.0  
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A3 Details of the misclassification costs used in all experiments 

 

A3.1 2-class datasets 

 

cost 
matrix 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

class                
1 1 1 1 1 1 1 1 1 10 50 100 500 1000 5000 10000 
2 10000 5000 1000 500 100 50 10 1 1 1 1 1 1 1 1 

 

A3.2 3-class datasets 

 

cost matrix 1 2 3 4 5 6 7 8 9 
class          
1 1 100 10 1 10 5 150 250 200 
2 10 1 100 5 1 10 200 150 250 
3 100 10 1 10 5 1 250 200 150 

 

A3.3 4-class datasets 

 

cost matrix 1 2 3 4 5 6 7 8 9 10 11 12 
class             
1 1 500 100 10 1 20 10 5 150 300 250 200 
2 10 1 500 100 5 1 20 10 200 150 300 250 
3 100 10 1 500 10 5 1 20 250 200 150 300 
4 500 100 10 1 20 10 5 1 300 250 200 150 

 

A3.4 5-class dataset: annealing 

 

cost matrix 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
class                
1 100 10000 5000 1000 500 150 350 300 250 200 1000 5000 4000 3000 2000 
2 500 100 10000 5000 1000 200 150 350 300 250 2000 1000 5000 4000 3000 
3 1000 500 100 10000 5000 250 200 150 350 300 3000 2000 1000 5000 4000 
4 5000 1000 500 100 10000 300 250 200 150 350 4000 3000 2000 1000 5000 
5 10000 5000 1000 500 100 350 300 250 200 150 5000 4000 3000 2000 1000 
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A3.5 5-class dataset: nursery 

 

cost matrix  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
class                
1 1 1000 500 100 10 1 50 20 10 5 150 350 300 250 200 
2 10 1 1000 500 100 5 1 50 20 10 200 150 350 300 250 
3 100 10 1 1000 500 10 5 1 50 20 250 200 150 350 300 
4 500 100 10 1 1000 20 10 5 1 50 300 250 200 150 350 
5 1000 500 100 10 1 50 20 10 5 1 350 300 250 200 150 

 

A3.6 6-class dataset: glass 

 

cost matrix 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
class                   
1 1 1000 500 100 50 10 1 70 50 20 10 5 150 400 350 300 250 200 
2 10 1 1000 500 100 50 5 1 70 50 20 10 200 150 400 350 300 250 
3 50 10 1 1000 500 100 10 5 1 70 50 20 250 200 150 400 350 300 
4 100 50 10 1 1000 500 20 10 5 1 70 50 300 250 200 150 400 350 
5 500 100 50 10 1 1000 50 20 10 5 1 70 350 300 250 200 150 400 
6 1000 500 100 50 10 1 70 50 20 10 5 1 400 350 300 250 200 150 

 

A3.6 15-class dataset: soybean 

 

cost matrix 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
class                
1 1 700 650 600 550 500 450 400 350 300 250 200 150 100 50 
2 50 1 700 650 600 550 500 450 400 350 300 250 200 150 100 
3 100 50 1 700 650 600 550 500 450 400 350 300 250 200 150 
4 150 100 50 1 700 650 600 550 500 450 400 350 300 250 200 
5 200 150 100 50 1 700 650 600 550 500 450 400 350 300 250 
6 250 200 150 100 50 1 700 650 600 550 500 450 400 350 300 
7 300 250 200 150 100 50 1 700 650 600 550 500 450 400 350 
8 350 300 250 200 150 100 50 1 700 650 600 550 500 450 400 
9 400 350 300 250 200 150 100 50 1 700 650 600 550 500 450 
10 450 400 350 300 250 200 150 100 50 1 700 650 600 550 500 
11 500 450 400 350 300 250 200 150 100 50 1 700 650 600 550 
12 550 500 450 400 350 300 250 200 150 100 50 1 700 650 600 
13 600 550 500 450 400 350 300 250 200 150 100 50 1 700 650 
14 650 600 550 500 450 400 350 300 250 200 150 100 50 1 700 
15 700 650 600 550 500 450 400 350 300 250 200 150 100 50 1 
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A3.7 18-class dataset: krk 

 

cost matrix 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
class                   
1 1 850 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 
2 50 1 850 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 
3 100 50 1 850 800 750 700 650 600 550 500 450 400 350 300 250 200 150 
4 150 100 50 1 850 800 750 700 650 600 550 500 450 400 350 300 250 200 
5 200 150 100 50 1 850 800 750 700 650 600 550 500 450 400 350 300 250 
6 250 200 150 100 50 1 850 800 750 700 650 600 550 500 450 400 350 300 
7 300 250 200 150 100 50 1 850 800 750 700 650 600 550 500 450 400 350 
8 350 300 250 200 150 100 50 1 850 800 750 700 650 600 550 500 450 400 
9 400 350 300 250 200 150 100 50 1 850 800 750 700 650 600 550 500 450 
10 450 400 350 300 250 200 150 100 50 1 850 800 750 700 650 600 550 500 
11 500 450 400 350 300 250 200 150 100 50 1 850 800 750 700 650 600 550 
12 550 500 450 400 350 300 250 200 150 100 50 1 850 800 750 700 650 600 
13 600 550 500 450 400 350 300 250 200 150 100 50 1 850 800 750 700 650 
14 650 600 550 500 450 400 350 300 250 200 150 100 50 1 850 800 750 700 
15 700 650 600 550 500 450 400 350 300 250 200 150 100 50 1 850 800 750 
16 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 1 850 800 
17 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 1 850 
18 850 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 1 
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A4 Summary of the attributes in the results dataset 

 

attribute description 
id numerical identifier 
dataset dataset name 
ExpId experiment identifier 
attributes number of attributes in dataset 
maxValue highest number of attribute values in a dataset 
potPaths potential unique bandit paths calculated for dataset and given depth 
grpPotPaths potential unique bandit paths values grouped 
discretize whether discretized in WEKA 
distribution class distribution of dataset 
multiclass whether multi-class dataset or not 
mcost misclassification cost identifier 
groupMiscost which group is the misclassification cost in 
high_mc what is the highest misclassification cost in the matrix 
descMcost group which identifies relationship of misclassification to test costs 
tot_mcost total of misclassification costs in the matrix 
tot_tcost total of test costs for the dataset 
highest_tc what is the highest test cost for the dataset 
mcosttcost ratio of highest misclassification cost/highest test cost 
grpRatio ratio value grouped 
group whether the test costs have groups or not 
strat what strategy has been used 
model how many models generated 
label which labeling system used 
depth what look-ahead depth used 
oneVal what strategy with attribute with one value to use 
PId what P category used (unique to dataset), as detailed in Table 11 
P what is the actual value of P used, as detailed in Table 11 
worthPruneCombo what pre-pruning combination used 
prop whether proportional stopping used 
cprop whether class proportional stopping used 
dn_cost ‘do nothing’ cost to classify 
dn_accuracy ‘do_nothing’ accuracy rate 
cost actual cost returned 
accuracy actual accuracy returned 
trees whether a tree was grown or not 
costCat category the cost value belongs to 
accuracyCat category the accuracy value belongs to 
adjAccCat category when allowing for n-class accuracy 
bestCost if this was the lowest cost for the matrix 
bestAccuracy if this was the highest accuracy for the matrix 
altCost if no model grown, next lowest cost with model 
altAcc if no model grown, next highest accuracy with model 
costAccBest if example is bestCost and bestAccuracy 
altCostAccBest if example is altCost and bestAccuracy 
altCAcc if example is altCost and altAcc 
bestCostaltAccBest if example is bestCost and altAcc 
goodResults combined class groups 
class class to which example has been assigned 
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A5 Parameter settings % frequencies of best and worst results all examples and 

trees only plus frequency of trees not grown or grown 

 

 
Parameter 
Settings 

best 
(examples) 

best 
(trees) 

worst 
(examples) 

worst 
(trees) 

NO TREE TREE 

strategy – if the lowest cost desired, if the highest accuracy desired, if single version none 
cost 32.2 35.2 1.13 2.0 55.4 44.5 

accuracy 35.4 42.9 1.39 2.29 52 47.9 

none 32.9 37.0 1.44 2.6 55 44.9 

model  - (indicates the number of models which will be generated, if single version 1 
1 32.9 37.0 1.44 2.6 55 44.9 

10 34.1 39.8 1.28 2.2 53.5 46.4 

20 22.2 37.5 0.27 0.46 40.8 59.1 

label – if the hybrid labeling system is used HYBRID, if cost-sensitive labeling used COST 
HYBRID 37.8 40.2 1.44 2.2 48.5 51.4 

COST 29.2 37.1 1.21 2.4 59.8 40.1 

oneVal – indicates what do to if attribute chosen has only one value 
stop 33.0 37.4 1.27 2.2 53.8 46.1 

ignore 33.8 39.1 1.37 2.4 54 45.9 

nextBest 34.2 40.1 1.35 2.3 54 45.9 

P lever Pulls – using the potential unique bandit calculation as guideline, id 3 is actual value 
1 33.3 38.5 1.29 2.2 53.8 46.2 

2 33.8 38.9 1.33 2.3 54.2 45.8 

3 33.9 39.2 1.33 2.3 54.3 45.7 

4 34.0 39.2 1.31 2.2 54.4 21.5 

5 32.9 38.0 1.45 2.5 53 47 

6 78.3 78.3 0 0 0 100 

7 76.6 76.6 0 0 0 100 

-pre-pruning option – implementing Ling et al. (2004) method used before start of process / used 
when the attribute has been chosen; a combination of these two methods 
a: true/true 29.2 29.6 0.48 0 74.6 25.3 

b: true/false 29.9 26.8 0.46 1.2 68.7 31.2 

c: false/true 32.3 44.7 0.48 0.009 72.5 27.4 

d: false/false 43.4 43.4 3.9 3.9 0 100 

-prop – if no. of examples below 6% of original proportion of training dataset, or value as stated 
FALSE 33.6 38.3 1.8 3.5 54 45.9 

TRUE 34.5 40.3 0.65 0.92 53.9 46 

0.15 0 0 8.1 10.2 54.8 45.1 

0.2 0 0 7.6 8.9 54.9 45 

-cprop – if no of examples in majority class is 90% of examples at node, or value as stated 
FALSE 33.6 38.3 1.87 3.5 54 45.9 

TRUE 34.5 40.3 0.65 0.92 53.9 46 

0.8 0 0 7.87 9.6 54.9 45 
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APPENDIX D 

 

The following documents are on the attached DVD and are named as indicated. 

D1 Do nothing accuracy versus accuracy obtained by a number of classes 

D2 Graphs showing datasets with misclassification costs reduced into groups 

D3 Best results obtained for each dataset 

D4 Comparing mean values obtained with values obtained by a given strategy 

D5 Annotated graphs showing datasets processed using pruned versions of the cost-sensitive 

algorithms  

D6 Annotated graphs showing datasets processed using un-pruned versions of the cost-

sensitive algorithms 

D7 Tables showing datasets processed using pruned versions of the cost-sensitive algorithms 

D8 Tables showing datasets processed using un-pruned versions of the cost-sensitive 

algorithms 

D9 AnalysisOfResultsFile.csv which contains the results from all the experiments 

 

 


