
School of Computing, Science and Engineering 

 

The spatiotemporal Ginzburg-Landau equation: 
dissipative solitons & stability 

D. W. Bresnahan, J. M. Christian, and G. S. McDonald 

Materials & Physics Research Centre, University of Salford, U.K. 
Email: d.bresnahan@edu.salford.ac.uk 

Keywords: dissipative solitons, Ginzburg-Landau, spatiotemporal dispersion, energy theme 

The complex Ginzburg-Landau (GL) equation describes universal wave propagation in 

dispersive systems that also exhibit competition between amplification and dissipation [1,2]. 

The balance between dispersive effects (group-velocity dispersion and self-phase 

modulation), linear gain and nonlinear loss can, in principle, lead to the formation of a 

stationary wavepacket (or soliton) in the local time frame. Here, we propose a novel two-

fold generalization of the traditional GL equation to accommodate additional physical 

effects: (i) spatiotemporal dispersion [3], and (ii) power-law nonlinearity [4]. Exact analytical 

bright solitons of the new model have been derived, with asymptotic analysis demonstrating 

the emergence of well-known solutions [1,2] in a simultaneous multiple limit. Extensive 

simulations have revealed that, like its conventional counterpart (see Fig. 1), the new class of 

spatiotemporal dissipative soliton is also susceptible to a blow-up phenomenon (where the 

zero-amplitude continuous-wave solution is modulationally unstable against background 

fluctuations of arbitrarily-small magnitude). However, a route to stabilization may be 

possible by coupling the soliton to a non-dispersing linear wave [5]. 

 
Figure 1. Instability in the conventional complex GL equation in the local time frame (loc,loc) [2] for increasing strength of power-
law nonlinearity. The perturbed initial-value problem corresponds to launching an input pulse whose peak intensity is lower than 
that predicted by the stationary solution for (a) sub-Kerr, (b) Kerr, and (c) super-Kerr systems. 
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