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Abstract

Medical image processing has experienced dramatic expansion, and has been an

interesting research field that attracted expertise from applied mathematics, computer

sciences, engineering, biology and even medicine. This work is concerned with developing

image processing techniques to automate the detection and classification of cells in digital

images of day 2 embryos for suitability for In Vitro Fertilization (IVF) treatment.  In IVF

treatment eggs are removed from the ovaries of the woman and injected with sperms of the

man in a dish in the laboratory so that fertilization can take place and yield embryos. The

embryos are then graded and examined to decide which embryos are the best to be re-

implanted into the woman's womb again. The grading system used in this work involved day

2 embryos, and a dataset of 40 images was provided by Al Agyal clinic in Alexandria. At this

stage of development the embryos should have 4 approximately circular cells with similar

sizes in order to be considered as suitable for re-implantation.

The work develops an automated image processing system which firstly locates the

embryo in a microscope image, and then detects the cells in the embryo and matches their

properties against the criteria for re-implantation. Although the main problem was the

overlapping of the cells in the images, it was also found that the size (magnification) and the

brightness also varied from one image to another and these factors had to be taken into

consideration during the development of the detection algorithms. Once the perimeter of the

embryo had been located, several edge detection techniques including the Sobel, Prewitt and

Canny operators were examined as pre-processing for the circular Hough Transform. From

94 cells, only 62 cells (65%) were detected, but at the same time 226 of false cells were also

detected. As an alternative approach, template matching was investigated, using templates

with a range of sizes which were selected to match the acceptable size criteria for re-
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implantation and at the same time take into consideration the different magnification scales of

the images used. The Sum of Added Differences (SAD) and the Normalized Cross

Correlation (NCC) were used as a measure of the match. The NCC technique gave better

results than SAD, which failed to detect any true cells. NCC technique only detected 50% of

true cells, and further refinement to this approach was made. This involved binarisation of the

images and templates, and the creation of two new edge-detection algorithms, one of which

was based on the convolution technique while the other was based on the difference of the

grey level between the border of the cell and its background. These changes have increased

the cell detection accuracy to 80%, and reduced the detection of false cells from 118 to 39.

Of the 40 images available, 30 images were used to develop the automated system

while 10 images were left to test the performance of the system. In the case of the 10 images,

5 had larger embryos and 5 smaller ones than the 30 images, where the embryos had similar

sizes.  It was found that 85% of the cells in the 10 images were properly detected with only 6

false cells found. As the missed cells and false cells were distributed among the 40 images,

only 8 were analysed correctly (all true cells detected and no false cells found) but these were

all correctly identified as suitable or not suitable for re-implantation.  Further work is

required to improve the cell detection algorithm, and to decrease further the number of false

cells detected and hence improve the classification of the embryo.
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Chapter 1 Introduction

Overview

A brief introduction to the study described in this Thesis is given. It includes a brief

introduction to the clinical background to infertility and IVF treatment, which leads to the

importance of the grading process in selecting suitable embryos for implantation. The dataset

of microscope images of embryos that is used is then described, followed by the aims and

objectives of the study. Finally the contents of each Chapter will be described.

Medical image processing has experienced dramatic expansion, and has been an

interesting research field that attracted expertise from applied mathematics, computer

sciences, engineering, biology and even medicine. Many of these applications involve the

analysis of cells seen through microscopes for disease detection, classification and

monitoring. Typical of these has been the segmentation and classification of blood cells. This

included the segmentation of red blood cells that was proposed by many such as Vromen et al

(2009) and also the segmentation and classification of different white blood cells that was

proposed by many such as Bikhet et al. (2000). The classification of blood diseases such as

malaria using medical image processing has been also a relevant point that has been proposed

(Ross et al. 2006).

This study is concerned with developing and implementing a system that

automatically classifies human embryo cells as seen through a microscope as suitable for
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implantation. These cells are the product of a lab fertilization of a woman's egg with the

man's sperm, the fertilization in a lab with the human aid being a solution to a specific

infertility problem. These fertilized eggs are classified as suitable for implantation, using

grading schemes that are dependent on their age. Accurate classification of these cells will

prevent the mother and baby from acquiring many health problems that might occur due to

multi-cell implantation. The work described in this Thesis aims to develop and compare

image processing techniques that analyse and classify cells for implantation using a grading

scheme which is used in clinic for day 2 embryos.

1.1 Introduction to infertility

The term infertility is defined as the inability to conceive despite regular and

unprotected intercourse. Infertility in a couple can be due to either the woman or the man, not

necessarily both. However, pregnancy may be achieved by using any of the assisted

reproductive technologies (ART). There are a number of ART available to infertile couples,

in vitro fertilization (IVF) is one of these methods.

In IVF treatment, the eggs are removed from the ovaries of the woman and injected

with sperm of the man in a dish in the laboratory so that fertilization can take place. This is

accomplished by different IVF procedures (Sallam 2001), including:

1.1.1 Oocyte retrieval

Oocytes (eggs) retrieval is the process whereby a woman's eggs are removed from

her ovaries as depicted in Figure 1.1.



3

Figure 1.1 Oocyte retrieval

In order for this to occur, a woman must first have follicle (potential egg) production

stimulated by particular hormones. Once a number of follicles are produced, fertility

specialists can then remove these eggs in order to attempt fertilization.

1.1.2 Sperm collection

After the eggs retrieval, the man is asked to bring in his ejaculate in a sterile

container. The semen is allowed to liquefy at room temperature and a seminal fluid analysis

is performed (Sallam 2001). The semen is prepared for fertilization by removing inactive

cells and seminal fluid.

1.1.3 Fertilization

The eggs are then combined with the sperms in a separate dish that contains special

culture medium ready for fertilization. In normal IVF, many sperms are placed together with

an egg, in the hope that one of the sperms will enter and fertilize the egg. However, in certain

cases of severe male infertility, including such as very low sperm count or abnormally shaped

sperm or even poor sperm movement, embryologists use intracytoplasmic sperm injection

(ICSI), as shown in Figure 1.2, and take a single sperm and inject it directly into an egg. After

that the dish is then placed back inside of an incubator. As a result of fertilization, a zygote is

formed.
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Figure 1.2 ICSI

1.1.4 Embryo cleavage

The zygote now grows to be an embryo by a cell division process and should contain:

2 cells (blastomeres): 24 hours after insemination (Day 1)

4 cells: 48 hours (Day 2)

8 cells: 72 hours (Day 3)

Morula: (Day 4)

Blastocyst: (Day 5-6)

This development of a healthy embryo is depicted below in Figure 1.3.

Figure 1.3 Embryo development stages
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1.1.5 Embryo grading

Before the implantation process, the embryos should be first examined and graded.

This examination improves success rates of pregnancies using IVF and also reduces the

number of transferred embryos which causes multifetal pregnancies. Many features have

been combined in a variety of different ways to yield different embryo scoring systems.

However, all of these scoring systems can be clustered into three main systems: zygote

scoring systems, cleaved embryos scoring systems and finally blastocysts scoring systems

(Bqczkowski et al. 2004).

Zygote scoring system

In the zygote scoring system, the evaluation is done after 16-18 hours after

fertilization and it evaluates the following features, which are shown in Figure 1.4:

• Pronuclear size and symmetry

• Size, number, equality and distribution of nucleoli

• Appearance of cytoplasm

Figure 1.4 Zygote scoring features

The most popular system was that introduced by Scott et al. (2000) and it has been

widely accepted and many reports reported its usefulness in the selection of good
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embryos and hence better results in implantations. This system uses five grades based

on both the number and distribution of nucleoli in the pronuclei, as depicted in Figure

1.5 :

Grade 1: Equal numbers of nucleoli aligned at the pronuclear junction.

The absolute number of nucleoli ranges between three and seven.

Grade 2: Equal numbers of nucleoli of equal size in the same nuclei but one

nucleus having alignment at the pronuclear junction and the other

with scattered nucleoli.

Grade 3: Equal numbers and sizes of nucleoli which are equally scattered in

the two nuclei.

Grade 4: Unequal numbers and/ or sizes of nucleoli.

Grade 5: Pronuclei that are not aligned.

Figure 1.5 Scott's zygote scoring grades

This system was further revised and the new system classified zygotes into four

groups according to pronuclear morphology as follows: Grades 2 and 4 zygotes were
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combined as Z2 zygote score while the more desirable morphologies grades such as

grades 1 and 3 were renamed Z1 and Z3.

Cleaved embryos system

In the cleaved embryos system, the evaluation is done 40-48 hours after fertilization

and it evaluates other features than that of the zygote scoring systems, simply because

the zygote was now growing to be an embryo and hence its features were changing.

These features, which are shown in Figure 1.6 include:

• Number of cells (blastomeres)

• Appearance and size of blastomeres

• Cytoplasm defects (fragments)

Figure 1.6 Cleaved embryo grading features

The Cleaved Embryo system has been adopted by many researchers including

Cummins et al. (1986), Puissant et al. (1987), Staessen et al. (1992), Steer et al.

(1992) and Zeibe et al. (1997). However, as a consequence of many research groups,

several grading techniques have been introduced, and each clinic uses its preferred

grading system. Puissant et al. (1987), for example, used the following scoring

technique:

Zona Pellucida (ZP)
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Score 4:embryos with clear, regular blastomeres and either no

fragmentation or a maximum of five small fragments;

Score 3: embryos with few or no fragments but with unequal blastomeres (>

1/3 difference in size);

Score 2: embryos with more fragments but over < 1/3 of the embryonic

surface;

Score 1: fragments over > 1/3 of embryonic surface.

Two points are added if the embryo has reached the 4-cell stage by 48 h after

fertilization. This means that the maximum score of 6 points corresponds to embryos

which appear perfect and have reached the 4-cell stage 48 h after fertilization.

On the other hand, Zeibe et al. (1997) used other morphological criteria in which:

Morphology score 1.0: equally-sized symmetrical blastomeres;

Morphology score 2.0: uneven sized blastomeres;

Morphology score 2.1: embryos with 10% fragmentation;

Morphology score 2.2: embryos with 10-20% fragmentation;

Morphology score 3.0: 20–50% blastomeric fragmentation;

Morphology score 4.0: 50%blastomeric fragmentation.

Blastocysts scoring system

Finally, in the blastocysts scoring system, its evaluation is done on day 5 embryo,

when the embryo is now said to be in the blastocyst stage. The features in this stage

are completely different from the previous ones, as seen in Figure 1.7, as the
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formation of a fluid filled cavity in the middle of the embryo (blastocoel) appears,

surrounded by a single layer of cells called trophectoderm (TE) and a small

protuberance of cells called the inner cell mass (ICM) (Zeibe et al. 1997).

Figure 1.7 Blastocyst grading features

The two most popular blastocyst embryo grading systems are the Dokras et al. (1993)

and Gardner et al. (2005) grading systems, both based on morphology. Dokras et al.

(1993) grading is based on the blastocoel's rate of development and characteristics of

the blastocoel cavity, and blastocysts are graded as BG1, BG2, or BG3. The grading

criteria used by Gardner et al. (2005) are given in Figure 1.8, and focus on blastocoel

size and developmental characteristics of the inner cell mass and trophectoderm which

are initially examined and graded from 1-6. Next, the blastocysts graded 3 through 6

are identified and their inner cell mass and trophectoderm are further graded and

given letters A-C.
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Figure 1.8 Gardner's system (top) embryo development grading (bottom) ICM and TE grading

Despite the large number of published studies, there is no consensus about the most

accurate method for grading the embryo. The grading systems used rely mostly on factors

such as the embryologists, the IVF clinic or even religious issues. However, the work is this

Thesis considers the cleaved embryo system, which was used by the IVF clinic that provided

the work with the images.

1.1.6 Transferring problem

The last stage of the IVF process is the transfer of the embryo to the woman's womb

using a catheter, as shown in Figure 1.9.

Figure 1.9 Embryos transfer
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Generally, two or more embryos are transferred during each IVF cycle. This decision

is made upon medical factors such as the number of embryos, the health of the embryos, the

patient's age and other factors such as legal issues of the fertility clinic, the country, and

sometimes religious matters. The greater the number of embryos that are transferred into the

uterus, the higher the risk of having a multiple pregnancy. When multiple pregnancies occur,

the health of both the mother and the baby can be seriously affected, so every effort to

minimize multiple pregnancies must be taken by the fertility clinics.

1.2 Problem characteristics

Since implanting more than one embryo caused multiple pregnancies, it is better for

both the mother and the baby to try to minimize the number of embryos. This requires

choosing the best embryos with the highest grades according to one of the grading techniques

mentioned before. An automated system that is able to achieve this would reduce the load on

the IVF screeners and provide a consistent and uniform selection of embryos for

implantation.

Each clinic chooses a grading system according to many issues, such as the culture

media available, the extra cost needed for longer culturing embryos and sometimes the ethical

rules of the country or even the religion. The clinic that agreed to support this work was the

Ajyal clinic in Alexandria, Egypt. This clinic re-implants the embryos on Day 2, hence uses

the Cleaved embryo grading system in particular that of Zeibe et al. (1997), and hence the

images used in this study, were Day 2, and their general appearance was the 4 cell embryo

seen in Figure 1.3 This technique examines the number of blastomeres, their size and finally

the percentage of fragmentation as indicated in Table 1.1. The first row shows the different
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fragmentations percentages, the best of which was the first image which had 0%

fragmentation. As this percentage increases, the grading level of the embryo decreases. The

second parameter shown is the number of blastomeres. This parameter depends on the age of

the embryo, a Day 2 embryo should have 4 cells to be considered as a good embryo. As for

the last parameter, it is the size of each blastomere, they should be even sized. Therefore,

these were the features that will be used and taken into consideration upon creating the

system in this thesis.
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Table 1.1 Parameters of embryo quality

Parameter Example

Fragmentation

Number of

blastomeres

Blastomeres

size
even sized blastomeres

uneven sized blastomeres

The images used in this study were taken using an inverted microscope IX71. This

microscope allows the practitioners to see and focus on the embryos. The microscope is

connected using an acquisition channel to the computer; this allows the practitioners to see

the embryos on the computer monitor using software. This software (CRONUS) is used to

capture the images used and save them in a format that allows working upon. The clinic has

supported this work with around 40 images. Although the unrest in the country at the time
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prevented a larger number of images from being available, the images contained all possible

cases of Day 2 embryos that this work can depend upon to develop the required system. The

images have different magnification, illumination and also contain overlapping cells. These

factors are considered in designing the system. Images were divided into two datasets, one of

which contained 30 images. These were chosen to be within the same illumination brightness

and magnification and were used to develop the detection and classification algorithms. The

other 10 were used at the end to investigate the performance of the algorithms. They had

different magnifications and illumination conditions, 5 higher and 5 lower magnifications

than the 30 image training dataset. The complete dataset is shown in Appendix A (p.152).

1.3 Aims and objectives

The research question being addressed by this study is whether or not it is possible to

develop a prototype automated image analysis system that is able to detect and classify Day 2

human embryo cells as suitable for implantation. A successful system would reduce the load

on the IVF screeners and provide a consistent and uniform selection of embryos for

implantation. This will also prevent multiple pregnancies.

The specific key aims and objectives were to:

 Map the characteristics and key features of the Day 2 embryo cells that would

make them suitable for implantation into features that can be detected by the

system.

 Pre-process the image to compensate for magnification and illumination

variations in the microscope images.

 Develop and compare different image segmentation and feature extraction
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techniques appropriate to these images.

 Identify the most accurate image analysis techniques for classifying the

embryo as suitable for implantation.

 Investigate the performance of the approach using images of embryos taken

with different microscope magnifications.

1.4 Thesis structure

The chapters of this Thesis are organized as follows:

Chapter 1 gives a brief introduction to the study described in this Thesis. It includes a

brief introduction to the clinical background to infertility and IVF

treatment, which leads to the importance of the grading process in

selecting suitable embryos for implantation. The dataset of microscope

images of embryos that was used is then described, followed by the aims

and objectives of the study.

Chapter 2 introduces a survey of the previous work done on the detection and

grading of embryos. This survey will include the work done on the

detection of day 1, day 2 and day 5 embryos. Finally, full analysis of the

survey will be judged and the pros and cons of each technique will be

stated.

Chapter 3 presents some of these techniques, such as image enhancement techniques,

image segmentation methodologies and some object detection methods.



16

Finally the software that can be used to implement such techniques will

be introduced.

Chapter 4 covers the investigation and trials of some of the common segmentation

and detection techniques on the embryos' images as a pre-processing

stage. It will also include the algorithm used to overcome the different

magnifications issue of the images.

Chapter 5 covers the implementation of the circular Hough Transform and

application to the embryo images. The technique will use some of the

pre-processing stages discussed in the previous chapter, including three

different edge-detection algorithms. The results obtained for each of

these edge-detection algorithms are compared and discussed in terms of

their robustness for cell detection.

Chapter 6 introduces a second technique that will be introduced to detect the

blastomere in the embryo. This involves template matching, with

templates being designed to match the acceptable sizes of the

blastomeres at Day 2. The template design strategy is described first,

followed by the implementation of the template matching process. Two

measures of the degree of match are investigated, and the results that

were obtained with the image dataset are presented and discussed.

Chapter 7 presents an enhanced template matching technique that was developed in

this Chapter in an attempt to improve on the poor classifications that
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were obtained. The rationale for the enhancements, the implementation

of the new techniques and the results that were achieved when applied to

the image data set are described.

Chapter 8 gives a refinement on the binary template matching technique. This

refinement was essential to decrease the number of false cells detected

by the previous binary template matching technique.

Chapter 9 summarises all the results of the previous techniques and provides the

measure of performance of each. The technique having the best results

will be further used on the rest of the images that were left as a test

dataset. Measure will also be provided for these results.

Chapter 10 contains the summary of the work done in this thesis. It summarizes the

main aims and objectives and also summarizes the results and the

findings obtained. Finally a suggestion for future work will be provided.
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Literature surveyChapter 2

Overview

This chapter introduces a survey on the previous work done on the automated analysis

of microscope images of cells in general, followed by more specific work on the detection

and grading of embryos, including Day 1, Day 2 and Day 5 embryos. Finally, the advantages

and disadvantages of these approaches and techniques are considered in the context of this

study.

2.1 Previous work on cell detection

The development of algorithms for biomedical images analysis is not an easy task, but

due to the rapid development in the bio-informatics field, much more effort has been focused

on automatic analysis of different types of cells seen through microscopes. Such cells are red

blood cells, white blood cells, tumour cell and even stem cells.

Bikhet et al. (2000) presented work that recognized and classified different categories

of normal white blood cells. The system worked on images captured by a camera attached to

the microscope and was in grey level form. Generally in blood analysis three different types

of cells are available; white cells, red cells and platelets. These are distinguished by both their



19

size and colour. In order to distinguish between them in terms of colour, white blood cells

appear darker in the grey-scale images than red blood cells and platelets. In the case of size,

platelets are the smallest whereas white blood cells were the largest.

The first problem that this work resolved was separating the white blood cells from

the rest of the image contents. This was achieved by first applying the median filter to the

image and then using thresholding to separate the cells from the background. After this

separation, the cells were classified into one of five different types (basophil, eosinophil,

lymphocyte, monocyte and neutrophil) according to the information about the size and

feature of each of the five types. This approach when tested on the image samples had a

percentage of correct classification of the cells of 90%. However, it did not solve the problem

of overlapping and touching cells.

Miroslaw et al. (2005) used correlation methods to detect mitotic cells automatically.

Mitotic cells are cells that have split into two cells with separate nuclei and identical

chromosomes. In this work cells were imaged using a camera attached to the microscope.

However, when viewed the cells appeared very regular and circular in shape and because of

this, the detection method was based on template matching. The templates were created either

from a 3D model or from test data. In the latter case, the templates were created by cropping

mitotic cells from test images. The 3D models differed depending on the type of the cell.

For example, for Kyoto mitotic cells, the template created for this type was a black circle

with white boundary, whereas for TDS mitotic cells, a white circle with black boundary was

used.

Due to the higher brightness of images the background was grey (intensity 128). The
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choice of the radius of the template was estimated and varied from 20 to 32 pixels and the

cell membrane was about 2 pixels thick.

The work started the detection process by applying the (3x3) median filter to suppress

any fluctuations in the intensities. Then the correlation between the image and the templates

was performed. This was followed by a peak detection stage were the highest peaks were

detected by using a suitable threshold value, but this caused the generation of many false

candidates. These were removed by the validation procedure in the last stage, which was

designed to eliminate these.

As a result of this work, it was concluded that a more sophisticated approach was

needed to cover all cases when small fluctuations in the image intensity were present. It was

also concluded that another optimisation may involve using a local threshold value instead of

using a global one, which does not take into consideration the presence of uneven

illumination.

2.2 Previous work on embryo detection

Unlike the analysis of microscope images of cells that was discussed in the previous

section which tended to be fully automated, the approaches taken by the IVF groups involved

with the detection and grading of embryo images include both automated or semi-automated

procedures, where some manual control of the process was required.
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The work done by Hnida et al. (2004) determined the blastomeres' size at different

cleavage stages and defined the deviations in mean blastomere volume as a consequence of

embryonic fragmentation. The blastomere size was determined using a sequence of recorded

images of the embryos. A total of 232 embryos were used, taken after 48 hours after

fertilization, and included 2, 3, and 4 cells. However, the blastomere size of the human

embryos was analysed semi-automatically by means of morphology analysis software. This

was done using the micrometre slide with the same magnification of the embryo. A line was

drawn on the slide and since the outlined distance on the slide was known, the actual physical

distance between the two adjacent pixels was calculated. The values describing the

blastomere such as the area and the volume were then calculated automatically.

Although the aim of this work was to find a relation between the blastomere size and

the volume, rather than detect the blastomere of the embryos, the study gave several

important results. The first was that the diameter of the blastomere decreases as the number

of blastomeres in an embryo increases, and for example the mean diameter of 2-cell embryos

was 80.1 µm whereas that of 4-cell embryos was 64.9 µm, as may be seen in Table 2.1.

Table 2.1 Mean blastomere sizes of embryos at different cleavage stages (Hnida et al. (2004))

Volume

±SE (x106 m3)

Diameter

±SE (µm)

2-cell embryos 0.278 ± 0.09 80.1 ± 9.8

3-cell embryos 0.182 ± 0.09 68.7 ± 12.2

4-cell embryos 0.149± 0.06 64.9 ± 8.5
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The second significant outcome was that the mean blastomere volume decreased

significantly with increasing the degree of fragmentation, indicating that the blastomere size

could be used as an indicator of the degree of fragmentation. This is illustrated in Table 2.2.

Table 2.2 Mean blastomere volume as function of degree of fragmentation (Hnida et al. (2004))

Fragmentation (%) 2-cell embryos

volume

±SE (x106 m3)

3-cell embryos

volume

±SE (x106 m3)

4-cell embryos

volume

±SE (x106 m3)

0 0.341 ± 0.09 0.2± 0.04 0.164 ± 0.05

1-10 0.310± 0.07 0.209 ± 0.1 0.165 ± 0.05

11-20 0.260 ±0.06 0.175 ± 0.08 0.136 ± 0.05

21-50 0.192 ± 0.09 0.141± 0.08 0.108 ± 0.05

>50 0.112 ± 0.06 0.112± 0.04 0.094 ± 0.08

Although not their main concern these researchers pointed out that computer-assisted

tools for the measuring of embryos features would be helpful.

The work described by Beuchat et al. (2008) aimed to provide a software tool that

enables the objective measuring of morphological characteristics of embryo, but for only for

the Day 1 human zygote. Their work provided measurements of new variables (24

measurements) along with the subjective ones available, as shown in Figure 2.1 on the next

page, and then showed the importance of these new measurements to the grading process. In

order to calculate these measurements, the subjective features (the pronuclei, oolemma,

cytoplasmic halo, polar bodies and finally the nucleolar precursor bodies) needed were

detected, and this was the objective of this study. Three groups of images were used, each
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from a different clinic. The groups consisted of 188 images, 201 images and 107 images,

respectively.

Figure 2.1 Subjective features of human zygote

Some of these features were automatically, semi-automatically or manually detected,

as summarised in Table 2.3 .

Table 2.3 Detection method of the features

Automatic Semi-automatic Manual

oolemma yes

cytoplasmic halo yes

pronuclei yes

Nucleolar precursor bodies yes

polar bodies yes

As shown in Table 2.3, the only automatic feature detected was the oolemma of the

zygote. This was achieved by firstly detecting the foreground and the region with the central

oocyte and separating it from the background. The second step was to detect the pixels
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belonging to the boundary of the oocyte. For this, Gaussian blur was applied followed by

Sobel edge filtering. The formed image was then binarized using Lloyd-Max classification

with two classes followed by a thinning process of the available boundary. Finally, an ellipse

fitting algorithm was fitted to this oolemma boundary.

The two features that were detected semi-automatically were the cytoplasmic halo and

the pronuclei. The detection of the cytoplasmic halo was achieved by selecting few points on

the border of the cytoplasmic halo and then applying the ellipse fitting algorithm to these

points. As for the pronuclei, a light-correction of the image was followed by histogram

equalization, then blurring with a Gaussian kernel and finally Sobel edge detection (Gonzalez

et al. 2002). After this, the edge image was correlated to edge templates and the position on

the pronuclei determined from the maximum correlated value. Finally, the nucleolar

precursor bodies and the polar bodies were manually detected because the automatic

approaches were not sufficiently robust.

Morales et al (2008) developed an automatic algorithm that helped embryologists to

have more information on the thickness of the Zona Pellucida (ZP). The purpose of this work

was to investigate the suggestion that the measurement of the ZP thickness variation was

directly related to the implantation rate. Their algorithm was based on an active contour

model, but prior to that the image had to be enhanced to increase the contrast of the image

and hence that of the ZP. The enhancement involved image thresholding followed by

applying a high-pass-Gaussian convolution filter which was optimal in terms of the

smoothing. Canny's edge detector algorithm (Canny 1986) was then applied to detect weak

edges, and then a derivative of a Gaussian filter was applied to achieve the gradient image of

the edge map produced earlier. Finally, the active contour model (snake) (Kass et al. 1988)
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was applied on the pre-processed images. When using the snake, the initial position had to be

near to the boundary of the object. This was achieved by averaging a pattern from about 60

images to determine a possible location of the centre.

The dataset used consisted of 76 images. They were taken on the second and third

days after fertilization. All images were taken using fixed magnification and brightness.

Through comparison with images manually segmented it yielded 91.65% accuracy in

localisation of the boundaries. However, this approach only detected the ZP and it did not

detect the number of blastomeres inside it.

Giusti et al. (2009) presented a practical edge-based technique for segmenting the

surrounding of the zygote cell from the rest of the image, although this did not include

detecting any of the blastomeres inside the zygote. The segmentation process was divided

into two steps. The first step found the approximate location of the cell centre, and this was

achieved by getting the image gradient followed by thresholding and then filling in the holes

of the largest component found. Hence for each point, the distance to the region boundary

was computed and the point with the maximum distance was finally chosen to be the centre.

The second step transformed the cell location to polar coordinates and the shortest-path

formulation was then used to recover the actual zygote contour. As this approach filled the

inside of the contour, it was not being able to detect the blastomeres, and so was limited to

images of Day 1 embryos.

Working on the grading of Day 5 embryos Filho et al. (2010) developed a method that

required the segmentation of the TE and the ICM, and used the segmentation features for

classification. For the outer boundary TE segmentation, the image was thresholded and points
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were sampled from the border. These sampled points were then used for an ellipse fitting

procedure. For the inner boundary segmentation, an initial circle situated in the centre was

used. This circle evolved until it met the inner boundary. However, this segmentation

technique did not meet the real TE boundary when manually segmented, and so, the manually

segmented approach was used to finish the calculations required for the classification. In the

case of the ICM segmentation, the circle was manually initialised at the centre of the cell and

then it evolved towards the ICM.

Table 2.4 summarises the relatively little work that has been done on computer-based

analysis of images of embryos.

Table 2.4 Summary of the survey

Outcome of the work

Hnida et al. 2004 used the aid of the computer to semi-automatically

measure the dimensions of embryos after different days

Beuchat et al. 2008 detected the features of Day 1 zygotes using automatic,

semi-automatic and manual techniques

Morales et al. 2008 automatically detected the thickness of the ZP of the

zygote

Giusti et al. 2009 automatically detected the active contour of the zygote

Filho et al. 2010 automatic grading of Day 5 embryos (blastocyst stage)
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2.3 Conclusion

After this survey of the relatively limited work that has been done on cell analysis and

the embryo detection it can be concluded that:

 The first step in the segmentation and classification process was identifying

the required features of the cell and this differed from one cell to another. The

features of the red blood cells are different from those of the mitotic cells and

from many others.

 The variations in the illumination, magnifications and noise in the images

required careful selection and tuning of both the pre-processing and

segmentations algorithms, but typical approaches are histogram analysis,

thresholding, applying filters and even correlation.

 The analysis and classification of embryos were particularly difficult because

of the differing characteristics of embryo at Day 1, 2 and 5 and semi-

automated techniques were required in many cases.

 A detected structure was considered a blastomere when the average diameter

was ≥ 40µm and a fragment when the average diameter was < 40µm. The

mean diameters of 2-, 3-, and 4- cell embryos were 80.1 ± 9.8µm, 68.6 ±

12.2µm and 64.9 ± 8.5µm, respectively.

The previous work showed the different algorithms and techniques that worked on the

segmentation of human embryos, some of which worked on Day 1, 2 or even 5 embryos, and

so provided a basis for identifying potentially effective algorithms for this study. Even so,

semi-automatic and manual methods were required, so it is likely that algorithms would need
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to be developed and tuned for the Day 2 images used in this study. The range of diameters of

Day 2 embryos relative to that of the ZP was identified and can be used to compensate for

magnification effects.

In the following Chapter, the basic Image Processing techniques for pre-processing

and segmentation of the images that were identified in the Literature Review are described.



29

Digital Image ProcessingChapter 3

Overview

In the previous Chapter the types of image analysis techniques that have been used to

analyse microscope images of cells and support the grading of embryos were identified. This

chapter describes some of these techniques, such as those for pre-processing images, image

segmentation methodologies and object detection methods. Finally the software that can be

used to implement such techniques will be introduced.

3.1  Image representation

Digital image processing can be defined as the use of computer algorithms to

perform processing tasks on digital images. Digital images are typically represented by a two-

dimensional array M x N, where the x coordinates range from 1 to M and the y coordinates

from 1 to N as depicted in Figure 3.1.

Figure 3.1 Image representation

Pixel
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The small region of the image centred on (x,y) is usually referred to as a picture

element, pixel, and has an associated value representing the average brightness in that region.

In the case of a monochrome, or grey-scale, image, each pixel value is represented by a

numeric value, which is typically in the range from 0 to 255, with 0 representing black, 255

representing white. In binary images the value of each pixel will be either 0 or 1, with 0

representing black and 1 representing white, while each pixel has a triple value in colour

images representing the contribution from the three primary colours Red, Green and Blue

colours, each value being typically in the range from 0 to 255, where 0 indicates that none of

that primary colour is present in the colour of that pixel and 255 indicates a maximum

amount of that primary colour. Since the images that we will be working on are captured by

the imaging system in grey- scale form, the following algorithms and techniques will

concentrate on grey-scale images.

3.2  Image pre-processing

The objective of the image pre-processing algorithms is to change pixel values in the

image so that it is more suitable for subsequent analysis than the original image, for a specific

application. There is no general theory of image enhancement, and the observer is the judge

of how well a particular method has worked (Gonzalez et al. 2002). The pre-processing

methods include brightness and contrast enhancement, histogram equalization, image

smoothing and filtering and are described in the following sections.

3.2.1  Image brightness and contrast enhancement

In this process the brightness of the whole image is adjusted. This involves the use of

a histogram showing the number of occurrences (pixels values) of each frequency level in the
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image. An image with L grey levels has the range r= [0, L-1]. When r is the k grey level

then n is the number of pixels in the image having grey level r as seen in Figure 3.2 on

the next page.

Figure 3.2 Image histogram

Increasing or decreasing the brightness of an image is simply done by the subtraction

or addition of a constant from all pixel values. Decreasing the brightness (move the histogram

to the left) requires a subtraction operation, while increasing the brightness (move the

histogram to the right) requires an addition operation to be performed. An example of this

technique is shown in Figure 3.3 for some of the images used in this study.

Figure 3.3 Image brightness enhancement (top right) original image (top

left) image after increasing the brightness (bottom) image after

decreasing the brightness
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Unlike, the brightening operations shown in Figure 3.3 which do not change the

distribution of the pixel values in the histogram, contrast enhancement is achieved by

changing the distribution of pixel values in the original image. The contrast enhancement of

the image involves scaling pixel values to stretch the histogram to cover the complete range

of grey-level values (Figure 3.4) but is does not change the general shape of the histogram

(the peak values are the same) (Awcock et al. 1995). Mathematically, the contrast adjustment

operation is defined as:

Where the input value is input and its limits are lower input and upper input and the

output value of the image after enhancement is output and its limits are lower output and

upper output.
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Figure 3.4 Contrast enhancement (a) original image (b) image after contrast enhancement

3.2.2  Histogram equalization

Histogram equalization is used to achieve another form of contrast enhancement. This

enhancement is done by adjusting the pixel values to produce a better distribution in the

histogram, and ideally all the histograms become equally populated. It usually increases the

global contrast of the images, especially when the -features of the image are represented by

close contrast values. However, it is also useful with the images with backgrounds and

foregrounds that are both bright or both dark.

To apply histogram equalization on a grey-scale image it is first necessary to calculate

the image’s normalised histogram, p from:.

( ) = 0,1,… − 1
Where is the number of occurrences of grey level , L is the total number of grey

levels in the image, is the total number of pixels in the image. The contents of each

histogram bin will range between 0 and 1.
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The cumulative distribution function is then derived from:

( ) = ( )
And finally, the transformation function, ( ) which maps each pixel value to the

new pixel value is given by:

( ) = ( − ) ∗ ( )

This procedure is illustrated in Figure 3.5. Figure 3.5(a) shows the pixels values of a

10x10 image ( =100). For simplicity, the grey levels L will be just 16, and this will make the

value of range from 0 to 15.  The intermediate values in the histogram equalisation process

are shown in Figure 3.5 (b) and the resulting histogram equalised image in Figure 3.5(c).
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Figure 3.5 Example of histogram equalisation

3.2.3 Image smoothing

The aim of this process is to smooth the image in order to reduce unwanted noise and

so improve the visibility of important structures in the image. Unlike the previous techniques

where the modified value of a pixel depended only on the original value of the pixel, this

technique uses the values of the surrounding neighbourhood pixels to determine the enhanced

value of each pixel. The neighbourhood can either involve4 neighbours, as shown in Figure

3.6(a) or 8 neighbours, as in Figure 3.6(b).
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(a)                                                  (b)

Figure 3.6 Neighbourhood (a) 4 neighbours (b) 8 neighbours

The smoothing techniques use the values of the image in the specified neighbourhood

and the corresponding values of a sub-image with the same dimensions. The sub-image is

sometimes called a filter or mask. An n x n mask means that the mask consists of n columns

and n rows, and for example, the 8 neighbour mask shown in Figure 3.6(b) is a 3x3 mask.

The process is performed by simply applying the mask from the first top left point of

the image rightwards and downwards until the end of the bottom right end of the image. At

each point (x,y), the output  is given by a sum of products of each mask value and its

corresponding image pixel value. Figure 3.7 on the next page shows the 3 x 3 masking

process on an image.
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Figure 3.7 3x3 masking process

For a mask w(x,y), with x and y having values from -1 to +1  for a 3x3 mask, the

centre of the mask, w(0,0), should coincide with the image at I(x,y) indicating that the result

R(x,y) value will replace the pixel at (x,y). The result R(x,y) is calculated using as:

( , ) = (−1,−1) ∗ I( − 1, − 1) + (−1,0) ∗ I( − 1, ) +(−1,1) ∗ I( − 1, + 1) + (0,−1) ∗ I( , − 1) + (0,0)∗ I( , ) + (0,1) ∗ I( , + 1) + (1,−1) ∗ I( + 1, − 1)+ (1,0) ∗ I( + 1, ) + (1,1) ∗ I( + 1, + 1)
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Mean (average) smoothing mask

The mean smoothing mask is shown in Figure 3.8 where it may be seen that each

element makes an equal contribution to the output.

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Figure 3.8 3x3 mean smoothing mask

This masks effectively replaces each pixel value in the image with the mean

(average) value, which reduce the noise fluctuations leading to a smoother looking

image. The averaging process also reduces fine detail and makes the image look less

sharp or blurred. In Figure 3.9(a) the original image is shown and the image after

applying the mean smoothing mask is shown in Figure 3.9(b).

(a)                     (b)

Figure 3.9 Effect of mean smoothing mask
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Median smoothing

An alternative to simple averaging is median smoothing, where the pixel values of the

image coinciding with the mask are first sorted and the new pixel value is the median

(middle) pixel value. An example of this operation is shown for the 3 x 3 mask

depicted below.

The image values are 120, 126, 123, 123,150,135, 126, 125, and 145. These values are

be sorted to give: 120, 123, 123, 125, 126, 126, 135, 145 and 150. The median is the

5th element, and so the value 126 is the new value which will replace the value 150

(at the centre of the mask). Applying this mask to an image (Figure 3.10(a)), the effect

is illustrated in Figure 3.10(b).

(a)                             (b)

Figure 3.10 Effect of median smoothing
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3.2.4 Image segmentation

The objective of the segmentation process is to partition an image into meaningful

regions which correspond to part of or the whole of objects within the scene (Awcock et al.

1995). Image segmentation algorithms are generally based on intensity discontinuity or

similarity. The first uses the abrupt changes in the pixel values which are usually associated

with the edges of an object in the image to define its boundary. The second type partitions the

image into regions that are similar according to a set of predefined criteria, such as having

values above a thresholding value. These two approaches are described in the following

Sections.

Edge detection3.2.4.1

An edge is a set of connected pixels that lie on the boundary between two regions

(Gonzalez et al. 2002). Figure 3.11(a) shows a model of an ideal digital edge which is

available at the transition of two different grey levels intensity. However, Figure 3.11 (b) is a

practical view of the same image which shows a blurry edge rather than a sharp edge due to

many factors such as image acquisition and optical imperfection. The abrupt change in the

grey-level is shown in Figure 3.11(c) and Figure 3.11(d) shows the more realistic ramp

change in the grey-level intensity. The first derivative of Figure 3.11 (d) is given in Figure

3.11 (e). There is a positive transition at the point of going from the dark side to the lighter

side of the image; it is constant for the points in the ramp; and there is another transition at

the point from the ramp to the light side of the image. This demonstrates that the first

derivative can detect the presence of an edge in an image.
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Figure 3.11 Different types of edges (a) ideal image (b) digital image (c) abrupt change in grey level (d)

ramp change in the grey level (e) first derivative of the ramp.

The first derivative of an image is based on the 2-D gradient. The gradient G(x,y) of

an image depends on both the magnitude and orientation gradients. The magnitude gradient,

|G| , and orientation angle,  α, may be  calculated from :| | = [ + ]
or | | = | | + | |
= tan

As noise variations will appear as small discontinuities, a pixel in the image is

considered to be part of a real edge if its first derivative gradient is greater than a pre-

determined threshold value. In many cases the presence of an edge is all that is required and

so the orientation angle is not calculated.

(a)



42

Edge detection of an entire image using the magnitude gradient and orientation angle

measures can be implemented using masks with the appropriate weights. Typical of these are

the Roberts, Sobel and Prewitt edge detectors, where a pair of masks is used which are

designed to detect orthogonal components of edges, |Gx| and |Gy|, which are then combined

to give the |G| and, if necessary and the orientation angle,  α.

Roberts edge detector

The Roberts edge detector uses a pair of 2x2 mask as shown in Figure 3.12. If the

pixel grey-level values in a neighbourhood are those in Figure 3.12(a), the values of

|Gx| and |Gy| are generated using the pair of masks shown in Figure 3.12(b) and

Figure 3.12(c) respectively which are sensitive to diagonal edges.

P1 P2 1 0 0 -1

P3 P4 0 -1 1 0

(a) (b) Gx                                                (c) Gy

Figure 3.12 Roberts 2x2 masks

| | = | 1 − 4| , | | = | 3 − 2|
Sobel edge detector

The Sobel edge detector is probably the most popular basic edge detector and uses a

pair of 3x3 masks, as illustrated in Figure 3.13(b) and Figure 3.13(c) where Gx is

sensitive to vertical edges and Gy sensitive to horizontal edges.
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(a) Gx Gy

Figure 3.13 Sobel 3x3 masks

If the pixel grey-level values in a neighbourhood are those in Figure 3.13(a) then| | = |( 3 + 2 ∗ 6 + 9) − ( 1 + 2 ∗ 4 + 7)|| | = |( 1 + 2 ∗ 2 + 3) − ( 7 + 2 ∗ 8 + 9)|
Prewitt edge detector

The Prewitt edge detector also uses a pair of 3x3 masks but with different weights

values as illustrated in Figure 3.14(b) and Figure 3.14(c) where again Gx is sensitive

to vertical edges and Gy sensitive to horizontal edges.

P1 P2 P3 -1 0 1 1 1 1

P4 P5 P6 -1 0 1 0 0 0

P7 P8 P9 -1 0 1 -1 -1 -1

(a)                                                      (b) Gx (c) Gy

Figure 3.14 Prewitt 3x3 mask

In this case Gx and Gy are derived from:| | = |( 3 + 6 + 9) − ( 1 + 4 + 7)|| | = |( 7 + 8 + 9) − ( 1 + 2 + 3)|

P1 P2 P3 -1 0 1 1 2 1

P4 P5 P6 -2 0 2 0 0 0

P7 P8 P9 -1 0 1 -1 -2 -1
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Thresholding3.2.4.2

Thresholding converts a grey-scale image into a binary image according to a pixel ‘s

grey-level value. The basic thresholding technique involves manually selecting a Threshold,

T, such that the pixels in the object(s) of interest have grey-level values greater than T, and

are set to 1 while the background is set to 0.

A refinement of this technique is to select the Threshold from a histogram of the pixel

grey-level values in the image. If the histogram has identifiable peaks and valleys as the

histogram shown in Figure 3.15, the threshold T in this case can be chosen automatically as

the valley point.

Figure 3.15 Thresholding using histogram
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3.3 Object detection

The principle of object detection is to determine the presence or absence of an object

that is suspected of being in the image. Some of the commonly used techniques that are

particularly appropriate for this study are the Hough Transform and template matching,

which was used in the work presented by Miroslaw et al. (2005).

3.3.1 Hough Transform

The Hough Transform (Hough et al. 1960) is a technique used to find shapes in a

binary digital image. By using Hough Transform it is possible to find all kinds of shapes that

can be expressed mathematically such as straight lines, circles and ellipses.

The simple case is the detection of the presence of straight lines in an image. For any

point (x,y) in the image, all lines which pass through that pixel have the form y = mx + c.

However, if this equation was rewritten as c=-mx+y (also called parametric space) and the

value of x and y were considered as constants, and the value of m and c as variables, each

line in parametric space represents a point on the line (x,y), as shown in Figure 3.16. More

importantly, all pixels which lie on the same line in (x, y) space will pass through the same

point in (m,c) space.

Figure 3.16 The xy plane and the parametric plane
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The Hough Transform works by letting each point (x,y) vote in (m,c) space for each

possible line passing through it. These votes are added in an accumulator for each (m, c), and

for example, if, after all pixels have been considered, that a particular (m,c) has one vote- this

means that there is one point through which this line passes. If a position (m’,c’) in the

accumulator has n votes, this means that n feature points lie on that line, and this is strong

evidence for the presence of a line, y=m’x +c’ in the image.

Similarly, the Hough Transform can be used to determine the parameters of a circle

when a number of points that fall on the perimeter are known. A circle with radius R and

centre (a, b) can be described with the following parametric equations:= + ( )= + ( )
When the angle sweeps through the full 360 degree range the points (x, y) trace the

perimeter of a circle.If an image contains many points, some of which are falling on

perimeters of circles, then the job of the search program is to find parameter triplets (a,b,R) to

describe each circle. The fact that the parameter space is 3D makes a direct implementation

of the Hough technique more expensive in computer memory and time. In order to decrease

these, known or fixed radii R can be used.

Figure 3.17 Hough transform of a circle with fixed radius
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Figure 3.17 shows that each point in the circle (left) with a fixed radius generates a

circle in the parameter space (right). The true centre point will be the common point to all

parameter circles, and can be found by allocating the maximum value in a Hough

accumulation array.

3.3.2 Template matching

Template matching is an extension of the 3 x 3 mask process, but the templates are

usually larger and contain an image of the object that is being searched for. The template is

moved systematically around the whole image, or a selected region, the degree of similarity,

or correlation, between the template and the image at each position is evaluated. If the

correlation is high, then the object is considered to have been detected and is positioned at the

co-ordinates of this match. The formula used to calculate the values of the correlation array

is: ( , ) = [ ( , ) ( − , − )]
where S (m, n) is the similarity measure of point (m,n), IM (j, k) denotes the image of

size (j,k) and T is the template.

This is illustrated in Figure 3.18 for the small template shown in Figure 3.18(a), the

image of Figure 3.18(b). The correlation array that is produced is shown in Figure 3.18(c).

The highest value in the correlation array is 8 and its position is at the second row in the first

column and it corresponds in the image to the starting point at the second row and first

column till the fourth row and the third column.
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1 1 1 0 0

1 1 1 1 1 1 0 0 7 4 3

1 0 1 1 0 1 0 0 8 5 4

1 1 1 1 1 1 1 0 5 5 4

0 1 0 1 1

(a) Template (b) image                                  (c) correlation array

Figure 3.18 Template Matching

However, because the correlation value can go high about a particular coordinate

(m,n), the normalized cross-correlation technique is a good solution for such a situation. The

normalized cross-correlation has a maximum value of 1 that occurs if and only if the template

matches that exact position in the image. This is given below, where the normalized cross

correlation is denoted by:

NCC(m, n) = ∑ [ − ][ − ],∑ , [ − ] ∑ , [ − ]
where IM is the image, IMmean is the mean of the image, T is the template and Tmean is

the mean of the template. Considering the same example given in Figure 3.18 (a) and (b),

when applying the NCC to it the result is given in Figure 3.19.

-0.14 -0.29 0.29

1 -0.29 0.37

-0.21 -0.29 -0.37

Figure 3.19 Results of NCC
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3.4 Implementing the Image processing algorithms

Many different programming languages and environments can be used to implement

image processing algorithms that have been described, such as C, C++, or Java. However, the

MATLAB environment was chosen because it is a high-level technical computing language

and interactive environment for algorithm development, data visualization, data analysis, and

numeric computation (MATLAB- Mathswork. 2011). It is used in a wide range of

applications, including signal and image processing and many other applications. It also has

special toolboxes that contain many built-in functions, including Image Processing libraries

that can be easily incorporated into an application. MATLAB also supports vector and matrix

operations that are fundamental to engineering and image processing problems. This

environment provides a well-supported tool that enables fast development, allowing the user

to focus on the extensions to the basic algorithms as required, providing a solution in a

particular application.

3.5  Conclusion

A range of image processing techniques have been described in this Chapter,

concentrating on those that have been effective in the past for analysing  microscope images

of cell. The circular nature of the cells being detected and classified in this study would be a

good reason for choosing Hough Transform for circle detection initially. However, it is clear

that the images would need to be pre-processed to provide the edge-detected images that are

required as input to the Hough Transform, possibly with some enhancement to support the

edge-detection process. The investigation of the best enhancement and edge-detection

techniques for the embryo data is described in the next Chapter.
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Pre-processing of the embryo imagesChapter 4

Overview

This chapter covers the investigation and trials of some of the common segmentation

and detection techniques on the embryo images as a pre-processing stage. It also includes the

algorithm used to overcome the variations in magnification of the images.

4.1  Introduction

The pre-processing process consists mainly of two main operations. The first is to

solve the issue of the image having different magnifications. These magnifications are due to

the different magnifications of the imaging system, and this step is essential to compensate

for this issue. The next is detecting the edges of these images and this step is important for

certain techniques that work on edged images rather than the grey scale form. Different

approaches are applied and considered for both operations and these are discussed in the

following sections.
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4.2 Magnification compensation

The size of the cells (blastomeres) in an embryo depends on the age of the embryo

itself. According to the research presented by Hnida et al. (2004), the size of the blastomeres

of the embryos at Day 1 after fertilization differ from that of Day 2, 3 or even 5. However,

since the work proposed in thesis considers the embryo at Day 2, the size of such embryos is

taken into consideration. One of the problems found in the set of images available was the

difference in the magnification of the images due to the imaging system. Another was that all

the research done on Day 2 embryos was done using their potential size (Hnida et al. 2004)

while the work here focuses on their pixels equivalence, so a sort of conversion was needed.

The approach taken is to compensate and normalise the different magnifications issue.

This was done by detecting the ZP and then estimating its diameter in pixels. As the potential

size of the embryo in µm was known, and its equivalent size in pixel was estimated, then the

scale of magnification can be calculated. The algorithms used are discussed below.

4.2.1  Detection of the ZP

When investigating the possible techniques and the work done on ZP detection in the

Literature Survey, the key research was done by Morales et al. (2008) who aimed to detect

the thickness of the ZP. The disadvantage of this approach is that it concentrated on the

thickness of the ZP and to do so it used a rather complex technique. The other alternative was

using Hough Transform to detect the ZP which has a circular shape. The Hough Transform

would be used with an indefinite size of the radius. This requires the accumulator to be a 3D

array that corresponds to the x-centre, y-centre and the radius of the circle. The maximum
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value of the 3D accumulator will correspond to the radius of the ZP being the biggest circle

available.

(a) (b) (c)

Figure 4.1 Result of detecting the ZP using Hough Transform

Figure 4.1(a) shows an image, the edges of the image is shown in Figure 4.1(b). The

ZP is not detected because the intensity variation between the ZP and the surrounding is less

than the intensity between the border of the cells and the surroundings. For this reason when

the Hough Transform was applied to such an image, a cell was detected rather than the ZP.

This is shown in Figure 4.1(c). Since this stage is very important to the rest of the work,

failing to detect the ZP size properly was a reason to propose another algorithm that can

detect the ZP properly and that is much simpler to implement.

The aim is to detect the ZP simply and then get a rough estimate of its diameter. It

was recognized that the ZP can be detected by the presence of a slight difference in the grey

level between it and the background and this observation was used to detect the diameter of

the ZP.

The initial step of the proposed technique involves the four mid-points of the image at

the left, the right, up and down sides as shown in Figure 4.2. These values that are available

on the four sides are used as the initial values for an inwards motion towards the centre of the
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image. The motion continues at each side separately as long as the intensity difference

between that pixel and the next remains smaller than a certain value. This value was

determined after investigating the images in the dataset and having a close look at the

difference of the grey levels between the border of the ZP and its surrounding. This value was

found to be 20 for the available dataset. However, for other images this value might vary.

Figure 4.2 Mid-points of the ZP

Eventually, the motion stops at each side yielding four different (x,y) coordinates, and

the approximate centre and diameter of the ZP were calculated using= −
= −

= ( , )
where x are the x coordinates of the motion that started from the top of the image,

Xup

Xdown

Yleft Yright
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x the x coordinates of the motion that started from the bottom of the image. Note that

their y coordinates were neglected since they were the same. Similarly, y and y are

the y coordinates of the motion that started from the left and the right of the image,

respectively. D is the estimated diameter of the ZP. Figure 4.3 indicates the result of applying

this algorithm on an embryo's image.

Figure 4.3 The result after ZP detection

4.2.2 The size of ZP

The estimation of the diameter of the ZP is just an initial step towards determining the

size of the embryo. The size of the embryo in the image must correspond to its size in reality.

Measurements on the images are done in pixels and converted to actual physical units by

knowing the scale of conversion. However, knowing that the size of Day 2 embryo to be

about 0.15 mm and the size of the ZP in pixels, the required scale was calculated by .

= /
The scale S was calculated by dividing the size of the ZP which represented the size

of the image of the embryo in pixels by the actual size of the embryo given in m. According

to the work done by Hnida et al. (2004), the expected blastomeres diameter of a 4-cells
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embryo was 64.9± 8.5 µm. This meant that the expected blastomeres ranged from 56.4 µm to

73.4 µm. However, to know the size of such blastomeres in an image (in pixels) these values

should be multiplied by the scale value S that was previously calculated. This gives the

minimum diameter (in pixels) D and the maximum diameter D of the expected

blastomeres.

Assume that the images had a diameter of 95 pixels. Knowing that actual size of the

Day 2 embryo should be about 0.15 mm, the scale S can be calculated by dividing 95 by

0.15mm or 150 µm which will give a value of 0.63 pixels/µm. However, to calculate D

the value of S was multiplied by the minimum value of the blastomere which was 56.4 µm,

this gave a value of 36 pixels. Similarly the value of D was 46 pixels.

4.3 Edge detection

The second pre-processing operation that was considered important following the

Literature Survey is edge-detection. Several algorithms were tried out, some of which gave

acceptable results while others gave very week edges and a further enhancement was

required. These are described in the following sections and the results after applying different

edge detection techniques to the embryo data are shown.

4.3.1 Edge detection using basic techniques

Different edge detection techniques such as Sobel and Prewitt that were described in

the previous Chapter were implemented. The results are illustrated in Figure 4.4 for a typical

embryo image. Neither techniques were particularly successful and only detected the stronger

fragments of the cell edges. In some images the edges detected were very weak to the extent
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that they were barely visible.

Figure 4.4 Image after applying Sobel and Prewitt

Different threshold were chosen, as shown in Figure 4.5, to try and improve clarify

these edges but they did not improve the results. Upon increasing the threshold the edges

became much lighter, while decreasing the threshold introduced more fragment and false

edges due to noise in the image .

Figure 4.5 Using different thresholds on Sobel

4.3.2 Edge detection using a new approach

In order to try and overcome these drawbacks and hence produce an edge which was

more clear, a new algorithm was developed. The idea behind this algorithm was based on the

observation that the difference between the blastomere and its border was simply the

difference in the grey level intensity. This is shown in Figure 4.6, where it may be seen that
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the border was usually darker in colour than the rest of the blastomere.

Figure 4.6 Intensity of the border

To distinguish this difference, subtracting the intensity of each pixel from its

neighbour was performed, and if the difference was greater than a certain value, this point

was considered a border. The border of the blastomere was darker than that of the ZP and this

caused the value of the difference to be bigger. The value was found to be 25 for the available

dataset. This was found after having a close view (Figure 4.6) to the value of the intensities

between the border of the cell and the background. However, this value might change with a

different image dataset. This process was performed in two directions. The first from left to

right, that is the subtraction occurs between the pixel and its left neighbour. The other one

occurs from top to bottom, which is where the subtraction occurs between the pixel and its

below neighbour. As a result of merging these two results together, the border of the

blastomere was achieved. Part of the image shown in Figure 4.6 that shows a border is

illustrated Figure 4.7(a). This sample illustrates the left to right subtraction. Notice that the

absolute value of the subtraction is the value to be considered rather than the signed value of

it and this is given in Figure 4.7(b). The value at each location was examined, the location
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that had a value above the threshold was given the value of 1 which represented a possible

edge point otherwise it was given a 0. This is shown in Figure 4.7(c). The value of the

threshold chosen was evaluated after several trials on the available images data set.

Figure 4.7 Difference between the intensity

Similarly, the subtraction was also performed from the top of the image towards the

bottom as shown in Figure 4.7(d) and hence the edges in the vertical direction were detected

as shown in Figure 4.7(e). Having these two results of the possible edges, one in the

horizontal direction (Figure 4.7(c)) and the other in the vertical direction (Figure 4.7(e))

combining them together achieved the final edges of the image. This is shown in Figure 4.8.

Figure 4.8 Merging the two results
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The result of this new algorithm (Elshenawy algorithm) is illustrated below in Figure

4.9. Comparing this result to the previous one in Figure 4.5, it was clearly shown that this

method detected thicker edges rather than the thin edges that appeared after using Sobel edge

detector.

Figure 4.9 Edge detected using Elshenawy method

4.3.3 Edge detection using convolution mask

Another approach for getting the edges of the image was using masks similar to the

ones used by Sobel, Prewitt or any other type but with different mask values. Figure 4.10

shows the convolution kernel used.

-3 0 3

-3 1 3

-3 0 3

Figure 4.10 Convolution kernel

The result of applying such a mask all over the image yielded an output image such as

the one given in Figure 4.11(a) below. Upon studying the output image, it was obvious that
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the edges of the image are the ones having darker grey intensity (closer to 0, so a simple

thresholding technique was used. It changed the image into a binary image as shown in

Figure 4.11(b).

(a) (b)

Figure 4.11 Image after applying the convolution kernel

4.4  Conclusion

The two main pre-processing operations consisted of resolving the magnification

problem of the image and detecting the edges of the cells too. Resolving the magnification

problem depended on the size of the ZP which was detected by the designed algorithm rather

than Hough Transform or the work done by Morales et al. (2008). In the edge detection

phase, the common algorithms such as Sobel and Prewitt showed poor edges and hence a new

algorithm was essential. Two algorithms were designed, the first (Elshenawy) used the

difference in grey level to detect the edge while the second used a convolution mask to do so.

Both algorithms gave promising edges as a result and the next phases will show which

algorithm is more efficient.



61

Chapter 5 Embryo Detection using the Hough

Transform

Overview

The nature of the blastomere being circular leads to the initial approach of detecting

them using common circle detection techniques such as Hough Transform. This chapter

covers the implementation of the circular Hough Transform and its application to the embryo

images. The technique will use some of the pre-processing stages discussed in the previous

chapter, including three different edge-detection algorithms. The results obtained for each of

these edge-detection algorithms are compared and discussed in terms of their robustness for

cell detection.

5.1 Introduction

One of the common techniques used for detecting circles in an image is Hough Transform.

The three parameters that such a technique must return are the centre x and y and the radius

of the circle. However, with the increase in the number of parameters compared with the

straight line detection, the complexity of the process also increases. For this reason, it was

better to fix one of these parameters, and the natural one to constrain was the radius of the

circle, which represents the radius of the cell. In order to apply Hough Transform the image
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has to be in its edge form rather than the original image, this will reduce the time complexity

of applying the Hough Transform. Since the input to the Hough transform is the x and y

coordinates, it will be much better to feed the algorithm with the points that represent the

edge of the image rather than all the points in the image. For this reason it was required to

apply the two pre-processing stages discussed in the previous Chapter, which were the

magnification compensation and the edge detection on the image before applying the Hough

Transform.

5.2 Proposed technique

The proposed technique consists of two phases, the first of which is the pre-processing phase

while the second is the Hough Transform phase. Figure 5.1 demonstrates the sequence and

the output of these phases.

Figure 5.1 Algorithm used for applying Hough Transform

The ZP detection stage generates the range of expected diameters of Day 2

blastomeres, corresponding to the range having the minimum value of the diameter (in pixels)
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D and the maximum diameter D . These are used as the diameter size to the Hough

Transform in order to decrease the number of variables and hence the complexity of the

algorithm. The other stage is the edge detection phase which detects the edges of the image

using the three techniques mentioned earlier that were the Sobel edge detector, the new

algorithm and finally the convolution mask. The outputs of these two phases are then fed to

the Hough Transform algorithm.

Upon approaching this phase, the size of the radii needed in the transform would have

been calculated along with the edges of the image. The Hough Transform was then applied to

each of the edge detected images.

The number of iterations needed to apply the transform on the same image depended

on the range of the radii available from previous calculations that were discussed in previous

sections. These are the value of Dmin and Dmax in Algorithm 5-1 below.

Algorithm 5-1 Steps of applying Hough Transform

For i= Dmin to Dmax

 Apply Hough Transform using the value of i.

 Store the maximum value of the Hough Transform in an

array x

End for

Remove all the redundant values from x.
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As discussed before, the result of applying the Hough Transform was the generation

of a 3D accumulation array representing the x-centre, y-centre and the radius of the circle, but

since the radius used is fixed, then a  2D accumulation array is generated instead. Each value

in this array corresponded to the vote value of detecting a circle (of the specified radius) at

this point. For example if the X and Y coordinates of the array had n votes this meant that n

possible points passed through this point. The X and Y coordinate that were found to have the

highest count, was considered to be the position of the strongest circle. However, since the

image had more than one cell, detecting the one cell that had the maximum accumulator

count was not appropriate for this application.

To compensate this problem all possible maximum values were considered and found.

Figure 5.2 shows the difference between detecting only one peak value and detecting all peak

values that that could indicate the presence of additional cells in the image.

Figure 5.2 The accumulator values

The next step that followed applying Hough Transform involved storing the values

that corresponded to the peak values in an array. Each time the transform was applied the

results were appended at the end of this array. At the end of all the iterations this array held
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all possible values of detected cells with the values of their radii .Table 5.1 gives the values

of such an array, and corresponds to the image given in Figure 4.3. The first column contains

the value of the radius used for applying the transform, whereas the second and the third

columns are the X and Y coordinates of the centre of the cell. The last column contains the

matching value of the transform which is the accumulator count and so is a measure of the

strength of the circle.

Table 5.1 The value of the array

On inspection of this array, it was found that some of these values were redundant as

they corresponded to the same circle. This can be clearly shown after plotting the X and Y

values of the centres. Figure 5.3 shows that these values can be clustered only into three

groups rather than the seven in the Table. The cluster size however, varied according to the

size of the embryo which differed according to the magnification that was used on the

images. The cluster size was chosen in a way to eliminate the redundant points but at the

same time take into consideration the possibility of overlapping cells. Therefore, it was

chosen to be 50% of the radius of the smallest cell, which was determined by the size of the

ZP determined earlier.
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Figure 5.3 Plot of X and Y coordinates

The elimination of the redundant values was implemented using the steps indicated

below: Assume that the data in Table 5.1 is in array ‘a’, the output is kept in array ‘x’, mask

size 21x21.
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The first group contains the sixth value, while the second group contains the second,

third, fifth and seventh values and the rest are in the third group. It was noticeable that the

first group did not contain any redundant values unlike the second and the third groups.

However, to remove the redundant values from the first group, the point having the maximum

matching value was the only one taken while all the rest were eliminated. The same action

was done on all the points of the array. After this process, the seven elements in

Table 5.1 would be reduced to three elements as shown in Table 5.2 below, indicating the

centres and the radii of all possible cells in the image.

Table 5.2 Values after elimination

These values were plotted on the original image giving the result shown in Figure 5.4.

Figure 5.4 Plotted results on the image

5.3 Results of applying Hough Transform

The results that were achieved when following this procedure were found to depend heavily

on the edge-detection algorithm that was used. Three sets of results were obtained for each
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image, and these are discussed in the following Sections. In this Section samples of these

results will be given, while the rest will be found in Appendix B (p.154).

Results of applying the Sobel detector

When the Hough Transform was applied to the images obtained using the Sobel edge

detector, the algorithm generally managed to detect some true cells but found many false

ones. In some images, the algorithm had completely failed to detect any true cells, and this

will be clearly shown in the following section.

(a) original images

(b) images after Sobel

Figure 5.5 Image samples after applying Sobel

In some of the images, such as the one in Figure 5.15, the cells were clearly

distinguishable, but after applying the Sobel edge detector the circular outline of the cells was

not that clear, because of the noise that had appeared in the edge-detected images. This was

found to be a major problem with the Hough Transform approach; the effects of the noise

gave rise to many false cells.
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Figure 5.6 Sample of result on image 3

The results of the image shown in Figure 5.6 were good because it had less noise in it.

In the above image, the Hough Transform managed to detect only three cells but they were

the true ones.

Figure 5.7 Sample of result on image 26
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The effect of increased noise on the cell detection process is clearly shown in the

results illustrated in Figure 5.7. The algorithm managed to detect the three cells in the

previous figure, but then it detected other false ones because of the noise in the image. In this

Figure, the results in the fourth and lower rows show false cells, although they had high

matching values.

Figure 5.8 Sample of result on image 10

Investigating the results of another image (Figure 5.8), it was found that the proposed

technique has detected some true cells, such as the ones shown in the fifth and sixth rows.

However, it also detected some false cells that even had matching values greater than those of

the true cells, and this was considered as a misleading result.
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Figure 5.9 Result of image 14

When images were processed with higher noise levels, the results of applying the

Hough Transform were not satisfactory at all. The results of Figure 5.9 show that the

algorithm detected cells with matching factors very close to the ones detected in Figure 5.6,

Figure 5.7 and Figure 5.8 but this time they were false cells. This was because of the very

noisy image that was produced after applying the Sobel edge detector.
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Results of applying Elshenawy algorithm

The second edge-detection technique that was evaluated is Elshenawy algorithm discussed in

Chapter 4. Two samples of the results are shown in Figure 5.10, and when compared visually

with the results of the Sobel algorithm in Figure 5.5(b), it is clear that these results have

thicker and clearer edges, which might be helpful when applying the Hough Transform,

although, the noise was still present.

(a) original images

(b) images after new algorithm

Figure 5.10 Sample of images after applying Elshenawy algorithm

The thick and clear edges that yielded from using Elshenawy algorithm enabled the

Hough Transform to find the true cells better, as shown in Figure 5.11. The four cells in the

image were correctly detected, and with higher matching factors.
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Figure 5.11 Image 3 result after using Elshenawy algorithm

Looking at the images that had more noise, such as the one in Figure 5.12, many false

cells were detected, also with high matching ratios, due to the noise.

Edged Image Result Diameter

(pixels)

X centre Y centre Matching

factor

50 33 59 48

42 67 44 38

42 38 36 36

50 44 68 35

42 56 29 25

42 48 51 25

Figure 5.12 Result of image 26
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In the results depicted below in Figure 5.13, the true cells detected also had the lowest

matching point as the case in the results of Figure 5.8. The false cell detected in the fourth

row had a matching point higher than the true cells in the fifth and sixth rows. On the other

hand, the results of the false cells in the first, second and third rows had detected the cells but

with improper sizes.

Figure 5.13 more results using Elshenawy algorithm on image 10

With images that had even more noise, the algorithm also failed to detect any true

cells or even give a low matching factor to indicate a weak detection value. As shown in

Figure 5.14, the result gave a matching factor of 45, which was considerably high if

compared to the other results stated above. Taking a closer look at the result, the detected cell

was not a true cell.
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Edged Image Result Diameter

(pixels)

X centre Y centre Matching

factor

50 56 44 45

50 63 56 42

50 57 32 40

46 76 37 37

50 44 31 37

50 36 42 37

50 48 63 37

42 67 8 29

46 68 25 29

Figure 5.14 Results of image 14

Results of applying the convolution mask detector

The results of the third technique are shown in Figure 5.15, where it can be seen that

the edge-detected image had also thick and clear edges but the noise was less than the

previous types, because of the smoothing process introduced by the larger 3x3 template. The
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results showed the detection of the three cells correctly in the first three rows. The fourth

result showed the detection of the same cell as the first one but with different dimension, and

the fifth row indicates the detection of the fourth cell but with an incorrect dimension. The

matching factors of these results were considerably high in comparison with the previous

techniques.

Figure 5.15 Results of convolution mask on image 3

The noisy edge-detected image, such as that shown in Figure 5.16, that was not

processed well by the two earlier techniques, gave much better results using this technique, as

can be seen in Figure 5.16. This technique managed to detect all the true cells in the image,

with high matching factor, and found no other false ones.
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Figure 5.16 Results of the image 26 using convolution mask

The image shown in Figure 5.17 when applying the convolution mask edge-detector

have properly detected only two cells and one on false cell. This was because the image after

edge detection had less noise than the others. Yet, the false cell also had a matching value

higher than the detected true cells.

Figure 5.17 More results using the convolution mask

However, this approach still detected false cells in the very noisy images, although the

matching factors were lower than for the true ones, as may be seen in Figure 5.18.
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Figure 5.18 Result of image 14

5.4 Results using the Hough Transform.

Table 5.3 shows the cell count for the 30 images in the training dataset derived using

the Hough-based technique. This technique managed to detect around 60 out of 94 actual true

cells in these images. Although the Sobel technique had the highest percentage in detecting

potential cells, it also had the highest count of false cells detection, which was 226. The

convolution technique reduced the number of false cells considerably, but was not quite as

accurate as the Sobel technique for finding the true cells.
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Table 5.3 Hough-based technique results

Edge detector

technique

Total cell

count

Potential

detected cells False cells

count %

Sobel

94

62 65.9 226

New algorithm 61 64.8 155

Convolution mask 57 60.6 161

5.5 Conclusions

This Chapter described the use of the circular Hough Transform for detecting the cells

inside the images. The transform used a fixed radius in its detection to compensate the errors

found when the same technique was used for the ZP detection and to make use of the

knowledge about the likely range and similarity of diameters of the cells that would make

them suitable for implantation.

Three different edge-detectors were considered, for pre-processing the image date for

the Hough Transform. The Sobel edge-detector gave the poorest results with the lowest

matching factors compared to the other two techniques. In the noisy images, the process

found false cells with similar matching factors to those of the true cells, and for particularly

noisy images, the technique failed to detect true cells and detected false cells with high

matching factors. The lowest numbers of false cells that were found was using the 3x3

template, although it detected slightly fewer true cells than for the Sobel edge-detector.
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The overall performance of the Hough Transform was 60-66% and this was not

considered sufficiently reliable to meet the objectives of the study. Consequently it was

necessary to consider other cell detection techniques. These are described in the next two

Chapters, and these results are reconsidered in comparison with those obtained using the

alternative techniques.
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Embryo detection using templateChapter 6

matching

Overview

In this Chapter a second technique is introduced to detect the blastomere in the

embryo. This involves template matching, with templates being designed to match the

acceptable sizes of the blastomeres at Day 2. The template design strategy is described first,

followed by the implementation of the template matching process. Two measures of the

degree of match are investigated, and the results that were obtained with the image dataset are

presented and discussed.

6.1 Introduction

When using the circular Hough Transform the edge-detected fragments that could

contribute to the circular boundary of a blastomere were added into the accumulator

corresponding to the centre of that boundary.  Unfortunately, noise tended to break up the

real edge, reducing effectiveness of detecting true edges, but also gave rise to false edges.

However, the decision to focus on the circular shape of the blastomeres with a range of

acceptable diameters that would be suitable for implantation was still considered to be most

promising way forward. Consequently, the second technique that is considered to detect the



82

cells in the images involves template matching using templates with the same circular shape

and size as the blastomeres. The position in the image that gives the best match, or as in the

case of the Hough Transform, positions of the highest matches indicate the locations of

blastomeres. Since acceptable blastomeres could have a range of sizes, a variety of templates

are used in this process.

6.2 The proposed algorithm

The main issue with the template matching approach is the design of the template, in

particular, the size, contents and shade (grey-scale or monochrome) of the template. These

factors are discussed in the next Section, followed by the implementation of the template

matching process, and then the results.

6.2.1 Templates generation

Size of the template

As for the Hough Transform process, the size of the template is relative to the size of

the ZP and the acceptable range of sizes of the blastomere. This is resolved by using

the pre-processing phase (ZP detection only). The range of diameters of the rings

varied as discussed in Chapter 4 from 36 to 52 pixels, each having a thickness of 2

pixels, and templates were generated from each of these sizes.

Contents of the template

Although the template could have contained a disk, whose size corresponds to the size

of the blastomeres, it was expected that the matching process would be confused by

the overlap of the cells, and so it was decided to design a template with a ring to
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match the edge of the blastomere, Figure 6.1 shows a sample of such a template. The

thickness of the ring was created to be similar to the thickness of the cell.

Figure 6.1 Template contents

Shade of the template

While a monochrome template could have been used, it was considered that a grey-

scale template that matched the average background and interior of the blastomere,

with a dark grey ring similar to that of the blastomere, would give the best matches.

However, it was observed that the brightness values differed from one image to

another, which consequently required the shades in the template to be determined

separately for each image, prior to the matching procedure. The method used to

determine the shades in the templates involved building a grey-level histogram for the

original image, and then selecting grey-level values for the background/interior of the

template, and the shade of the ring of the blastomere. Figure 6.2(b) illustrates the

histogram analysis of the image in Figure 6.2(a). The histogram shows the distribution

of grey-level values in the image, with higher grey-level values corresponding to

bright shades in the image, as shown by the shaded horizontal axis in the Figure.
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(a) (b)

Figure 6.2 Histogram analysis. (a) Original image (b) histogram of the image

In order to decide upon the shades of background/interior and the ring, the histogram

was divided into two equal halves as shown in Figure 6.3(a) and the peaks in each half

were found (Figure 6.3 (b)). The grey-level value of the peak in the dark half was

selected to be the value of the ring and the value of the peak found in the second half

(the bright half) was selected to be the value of the background/interior for that image.
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(a) (b)

Figure 6.3 Peak values

The values that appeared in Figure 6.3(b) that corresponded to the value of the ring

and the background are shown in Figure 6.4 when used to create the template. The

background of the template had the grey value of 167 while the ring had the value of

76.

Figure 6.4 Sample of the template
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6.2.2 Correlation process

Once the templates had been generated, the correlation process takes place as

indicated in Figure 6.5

Figure 6.5 Correlation procedure

Two correlation techniques were investigated; the Sum of Absolute Differences

(SAD) and the Normalised Correlation Coefficient (NCC). The potential advantage of the

SAD technique is considerably reduced computational times, compared with the NCC

algorithm. These are discussed in the following Sections.
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SAD technique

The SAD technique is based on calculating the difference between each point in the

image and the corresponding point in the template used for comparison. Then, the

magnitude of these differences are added together to measure the similarity between

two images. This is process is defined as:( , ) = ∑ ∑ | ( , ) − ( , )|
Where IM is the image and T is the template generated, and is demonstrated in Figure

6.6.

(a) (b)

(c  )                                          (d)

Figure 6.6 SAD technique (a) image (b) template (c) the differences (d) the value of the SAD

Figure 6.6(a) shows part of the image with its corresponding grey level values while

the template is shown in Figure 6.6(b). The two grey levels of the template have the

grey values of 142 for the background and 124 for the ring according to the image as

discussed earlier. The difference between these two is given in Figure 6.6(c), and the
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magnitudes of these differences was added together in order to reach the sum of

absolute differences (SAD) 2456, as given in Figure 6.6(d).The mask of the template

is moved one pixel to the right and the same technique is done with the new part of

the image. This process continues until the template has been applied to all pixels in

the image. The location having the minimum SAD value is considered to be the

position of the best match between the template and the image.

NCC technique

The NCC method is based on Pearson’s correlation theory, and is calculated from:

NCC(x, y) = ∑ [ − ][ − ],∑ , [ − ] ∑ , [ − ]
where IM is the image, IMmean is the mean of the image, T is the template and Tmean is

the mean of the template. The correlation coefficients values range from -1.0 to 1.0;

1.0 indicates a high value and consequently a very good match, and this reduces to

zero for poor matches, 0.0 indicating no similarity between the template and the

image values at the particular at position, 0.0 is obtained if there is no match. This is

illustrated using Figure 6.7 below, where the same part of the image and template

were those used earlier in Figure 6.6.

(a) (b) (c)

Figure 6.7 NCC technique (a) image (b) template (c) the value after applying NCC

0.167
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The result of applying the NCC technique gave a value of 0.167. This was a very poor

value that indicated a weak similarity between the above image and the template. In

the regions of the blastomere, where the template and image had a good match the

NCC typically exceeded 0.4. The template was moved systematically around the

whole image, as with the SAD method, and in this case the location having the

maximum NCC was considered to be the position of the best match between the

template and the image.

6.3  Results using the SAD and NCC correlation techniques

6.3.1 Considering one peak value

This section will show samples of the results obtained by the SAD and the NCC

correlation techniques while the rest of the results will be available in Appendix C (p.173) .

The diameter of the ring in the templates sizes ranged from 38 to 52 pixels. The results

obtained for a sample image are shown in Figure 6.8.

Figure 6.8 Results of image 3
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It may be seen from the figure that results obtained using the SAD technique were

absolutely inappropriate, as they only found false cells. The NCC technique gave much better

results and showed a unique detection of a cell centred at point (73,38) and had a diameter of

38 pixels. The value of the NCC was 0.3461 only. The results for the second, third, fourth,

seventh and eighth ring diameters all showed the detection of the same cell. The centres were

nearly the same but the diameters were different. The diameter of the cell with the highest

NCC value was considered to be the best one, and in this case it was the fourth one, which

had a value of NCC of 0.4139. A third cell was detected with the fifth and the sixth ring

diameters. Again the highest similarity value was considered the best result, which was that

of the fifth ring diameter, and had a value 0.3755.

As shown, the NCC algorithm managed to detect only three cells out of four clear

ones. This was because only one maximum was considered as a result of applying each

diameter. This problem was solved by considering all the peak values and eliminating the

redundant points (as discussed in Section 5.2) instead of just taking one maximum value. An

example of the results of considering all the peak values will be shown in the later section.
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Figure 6.9 Results of a sample of image 13

The image in Figure 6.9 had four clear cells, but again the SAD techniques failed to

detect any true cells. In the case of the NCC, only three cells were detected as seen for the

first three ring diameters, with NCC values almost the same as the previous example image.

The results for the fourth to the seventh ring diameters show the detection of false cells, but

with relatively low NCC values, which were indicative of the matches being false.

An example of an image that had only one cell is shown in Figure 6.10, which meant

that these techniques should not give any matches, or at least if they did it should be with

very low NCC values.



92

Figure 6.10 Results of image 7

As with the previous results, the SAD technique only found false cells. The

NCC technique also found false cells detection, but with high NCC values which was

problematic because these cells had NCC values which were close to the previously detected

true cells. As it was intended to use a threshold NCC value to distinguish between true and

false cells, this would lead to errors in the classifications.

With images that had significant noise as for the example shown in Figure 6.11, the

results of the SAD technique were the same as the previously discussed examples. On the

other hand, the results of the NCC were all considered as false cells and their values were

considerably low in comparison with the previous results.
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Figure 6.11 Result of image 16

The failure of the SAD technique to detect any true cells was a reason to exclude this

technique from any further enhancement in the approach. The enhancement needed in this

approach was considering more than one peak value rather than only one peak value per

diameter size. This case was similar to that found in the previous Chapter when applying the

Hough Transform. The same approach to detect more than one peak value hence was used in

this enhanced technique too but this approach was used with the NCC technique only.

6.3.2 Considering peak values

An example of the results of considering all the peak NCC values in an image is

shown in Figure 6.12 (The SAD approach was not investigated in view of the poor earlier

results).
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Figure 6.12 Sample of results with more than one peak of image 3

Although it was thought that this approach might detect the fourth cell in this image it

was unsuccessful. However, the three cells that were detected using the earlier process shown

in Figure 6.8 were also detected here. The difference here was that they were only detected

once with the best similarity values. However, the drawback of this method was that it had

detected false cells, unlike the previous one, although the false cells had low NCC values.

An example of an image that contained more noise is shown in Figure 6.13. The NCC

approach found false cells, and these had high NCC values. The rest of the results are placed

in Appendix D (p.179).
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Figure 6.13 Sample of image 24

The other extreme of the results of an image where a true cell was found, but with a

low NCC value is shown in Figure 6.14.

Figure 6.14 Another misleading result of image 12
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These results highlight the difficulties and failings of the basic template match

approach. In the case of the SAD technique, simply subtracting each value in the template

from its corresponding grey-level value in the image, led to the process determining the

brightest location in the image, because the majority of the values template corresponded to

the background, which had the brighter values. That is the value of the background was

dominant over the value of the template.

In the case of the NCC technique, when only the (one) maximum peak value was

used, true cells were detected with NCC values that ranged from 0.4 till 0.3. It is believed that

values did not exceed the 0.4 range simply because the template used consisted of the two

selected grey levels, whereas the image had 256 grey levels, and so the similarity value could

not be very high even at the positions of best match. Also, there was a problem in that some

of the false cells that were detected also had similar NCC values to the true ones. The other

drawback of this technique was that each size of the template gave only one result. Some

images had more cells that were not detected because of this issue. The attempt to solve this

drawback was to try to take more than a peak value in order to detect more cells in the image.
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6.4 Summary of template matching results

Two approaches were considered using the template matching technique: SAD and

the NCC. These approaches were used to detect the cells either by considering one peak value

of the correlation coefficient or by all available peak values. The results obtained using these

approaches are demonstrated in Table 6.1and Table 6.2.

Table 6.1 One peak template matching results

Approach
Total cell

count

Potential

detected cells False cells

count %

SAD
94

0 0 219

NCC 44 46.8 175

It can be seen from the Table that the SAD technique showed complete failure in

detecting any potential cells, while the NCC technique had detected only 46.8%.

The trials that considered more than one peak value excluded the SAD approach since

it gave 0% of potential cells detection. Table 6.2 shows that this enhancement produced a

slight increase in the potential cell detection but a great improvement in false cell detection

count.

Table 6.2 Multi-peak template matching results

Approach
Total cell

count

Potential

detected cells False cells

count %

NCC 94 45 47.8 69
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6.5 Conclusion

The idea of using the template matching technique to solve the drawbacks that were

found with the Hough Transform techniques yielded drawbacks itself and gave more poor

results than expected. The SAD technique failed to detect any true cells available in any of

the images. The performance of the NCC technique was much better than the SAD, but the

separation of true and false cells was problematic, because in many cases the NCC value of

the false cells was similar to that of the true cells, and so a classification based on an NCC

threshold was inaccurate. There were also examples of true cells being detected with a low

NCC value. The other drawback of the basic technique was that each of the templates gave

only one result, the best match with that particular ring diameter, and this led to some images

containing cells that were not detected.

The attempt to solve this drawback was to try to examine all the NCC peak values in

order to detect more cells in the image. However, this approach did not improve the situation,

and in most cases the same cells were detected is in the previous technique. Not only that but

it had also found additional false cells in the images.

While the template matching approach with a range of ring diameters was expected to

give more accurate results than with the Hough Transform, this was not found to be the case.

It was thought that the main problem was matching a two shade template with grey-scale, and

an enhancement to this approach, where the number of grey levels in the images was reduced

for the matching process would yield more accurate classifications. This enhancement is

described in the following Chapter.
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Chapter 7 Embryo detection using Binary Template

Matching

Overview

After investigating the Hough Transform and the template matching techniques in the

previous Chapters, an enhanced template matching technique is developed in this Chapter in

an attempt to improve on the poor classifications that were obtained. The rationale for the

enhancements, the implementation of the new techniques and the results that were achieved

when applied to the image data set are described.

7.1 Introduction

The poor results obtained with the techniques described in the previous Chapter were

attributed largely to matching a two-shade template with the values in a grey-scale. The

approach taken in this Chapter is to reduce the images to binary, using the edge-detection

techniques used to pre-process the images for the Hough Transform.  As a consequence of

this the bi-level ring templates can also be reduced to the binary ones avoiding the need to

determine the average background/interior, and the value for the cell border in each image.
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7.2 The binary template matching technique

In this technique the first step is the detection of the ZP which determines the size of

the ring templates used. The templates here are generated but in their binary form. The binary

version of the ring template takes the form shown in Figure 7.1.

Figure 7.1 Binary ring template

Each image is converted to its binary form after detecting its edges using the proposed

algorithms discussed in Chapter 4, and Figure 7.2 shows the images after applying the

different edge detection techniques described.

(a) (b)                        (c)

Figure 7.2 Binary representation of the images after applying different edge detection algorithms (a)

Sobel (b) Elshenawy algorithm (c) convolution mask
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The output from the convolution mask technique is converted to its binary form. But

the conversion caused the edges to be black and the background to be white, which is

opposite to the desired output. This result is inverted such that the edges are white, while the

background is black as shown in Figure 7.3.

(a) (b)

Figure 7.3 Output from convolution mask technique (a) original (b) inverted

As both the image and template are now in binary form, it is less complex and simpler

to perform a simple AND operation between the two arrays, and then count the number of

matches (1s). In this case, the maximum value indicates the position of the best match. As

with the previous techniques, all peaks are found for each image when processed with a

particular ring diameter, and the redundant ones are eliminated. The summary of this

technique is depicted below in Figure 7.4.
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Figure 7.4 Summary of the algorithm

This process was performed on the image dataset for each of the three edge detection

techniques described above. The results obtained for each of these techniques, and a

discussion about the advantaged and disadvantages of each are discussed in the next Section.

7.3 Results for the binary templates matching technique

A sample of the results is shown in Figure 7.5. The results are illustrated as follows:

the columns show the results of applying each of the three different edge-detectors on an

example image. The adjacent numbers correspond to the x and y coordinates of the peak

similarity value, the diameter of the ring, and finally the similarity value. The similarity value

was calculated from the ratio of the number of the matches (1s) to the number of pixels in the

ring then multiplying it by 100 to convert it to a percentage. If there was a perfect match with

the ring the percentage similarity value would be 100%. The rows are ordered in terms of the

similarity values found for the different peaks for each technique. Some of the results are
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discussed and shown below in this Section while the rest of the images are placed in

Appendix E (p.187).

Figure 7.5 Results obtained from an example image

In this example, the Sobel edge detector gave the lowest similarity percentages. This

was because the edges that were derived were very thin and hence the match count was not

high compared to the thicker edges that were generated by the two other techniques. Three

cells were detected; the fourth being missed due to the absence of a part of cell's edge.

However, the results of the other two techniques gave much higher similarity percentages and

also managed to detect all the four cells in this image, although the cell with the highest

similarity percentage was different for the two techniques.
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Figure 7.6 is the same as Figure 7.5 but with the results for each technique colour

coded according to the coordinates of the detected cell centre. The first cell detected in the

Sobel technique was coded using a red rectangle, this same cell was also detected in

Elshenawy algorithm and the convolution techniques and hence given the same red rectangle

code.

Figure 7.6 Corresponding cells colour-coded
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The first cell (red rectangle) that was detected using the Sobel edge detector, with a

similarity percentage of 26.8%, was found using Elshenawy algorithm detector but with a

higher similarity of 55.2%, and was found by the convolution edge-detector with an even

higher percentage that reached 55.7%. Note that the centres and the radii of the three results

are so close that they could be considered the same. This was shown again with the rest of the

detected cells (purple, green and blue rectangles) except for the fourth cell (blue rectangle)

that was not detected by the Sobel detector as mentioned above. It should be noted that the

convolution edge-detector technique gave the highest similarity percentage.

Another sample of the results achieved is given in Figure 7.7. The detected cells are

also colour coded by rectangles for simplicity in comparisons.
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Figure 7.7 Results of image 10

The first detected cell (red) was found by all three techniques with centres and radii

more or less alike, but with different similarity percentages. This time the highest percentage

similarity was achieved by Elshenawy technique. In the case of the second detected cell

(purple), the highest percentage similarity was, again, that of Elshenawy technique, but its

radius was different from that found by the two other techniques.
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Taking a closer look at this, it was found that this result was the correct one, as the

two other techniques gave a larger radius because the cell overlapped other cells. The third

cell (green) was detected with the highest percentage by the convolution technique and was a

case similar to that of the second cell (purple). Finally the forth cell (blue) was only detected

by the convolution technique.

An example of a more noisy image is shown in Figure 7.8, where it can be seen that

the cells were not as clearly defined in the results achieved by Sobel and Elshenawy as for the

convolution technique.

Figure 7.8 Results of image 15
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This time the results were different from the earlier examples. Each technique has

managed to find cells that were not be detected by the other techniques. For, example, the cell

detected and enclosed with the blue rectangle was only detected by the Sobel technique, and

Elshenawy algorithm, while the cell enclosed with the black rectangle which was only

detected by the Sobel and the convolution. There was also a cell (not coloured) detected by

the convolution technique that was not detected by the other two techniques. The similarity

percentage in this case was higher than the above results, but unfortunately some of those

were false cells. However, the true cells in this image were the ones shown by the red, green,

black and the uncoloured rectangles.

With images that had even more noise, the results were not satisfactory because false

cells were with high similarity percentages. This is clearly illustrated in Figure 7.9.
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Figure 7.9 Result of image 9

In this image there were no cells that could be identified, but the three techniques

managed to find potential cells.

These results suggest that the binary template matching technique compensated for

some of the difficulties with the template matching algorithm developed in the previous

Chapter although false cells were still being detected with high similarity percentages to

those of the true cells. However, this technique did appear to manage to detect more true cells

than the template matching algorithm. It was observed in the examples shown that the lowest
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percentage similarities were obtained using the Sobel edge detector, and this occurred

because the edges were very thin compared with the thickness of the rings in the ring

templates. In the cases of the noisy images there was a tendency to find a large number of

pixels that overlapped the template ring, which caused the high similarity percentage, and

hence the detection of a false cell.

7.4 Summary of the binary template matching results

The results obtained using the binary template matching approach on the image

dataset using the three edge-detection techniques used to pre-process the images for the

binary template matching are given in Table 7.1.

Table 7.1 Binary template matching technique results

Edge detector

technique

Total cell

count

Potential

detected cells False cells

count %

Sobel

94

68 72.3 92

Elshenawy algorithm 67 71.2 83

Convolution mask 74 78.7 117

This approach produced significantly better results than the earlier grey-scale template

matching approach. The convolution mask approach detected the most true cells, but at the

same time found many more false cells than the other technique. Elshenawy algorithm has

the same overall accuracy as the Sobel edge detector but found fewer false cells.
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7.5 Conclusion

The idea of using binary rather than the grey levels images and templates have

increased the number of potential cells detected. This increase was available in all types of

edge detection techniques. On the other hand, the number of false cells has also increased,

and this will cause the system to misclassify the embryos. Another improvement and

refinement was essential to try to decrease number of the false cells detected. This

refinement will be introduced in the following Chapter.
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Chapter 8 Refining the Binary Template Matching

Overview

In this Chapter a refinement on the binary template matching technique is made. This

refinement was essential to decrease the number of false cells detected by the previous binary

template matching technique.

8.1 Introduction

The previous results of the binary template matching technique had increase the

number of potential cells detected. On the other hand, the number of false cells detected had

also increased. Refinements will be introduced in this Chapter to decrease the number of false

cells detected. These refinements will include applying a filter to smooth the image in order

to eliminate some of the available noise which might be the reason of the false cells

detection. The other refinement will be trying to introduce another mask to measure the level

of noise within the detected cell. These two approaches will be discussed in details in the

following sections.
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8.2 Refining the binary template matching results

8.2.1 Applying filters

The results obtained using the binary template matching approach on the image

dataset showed an improvement on the detection of true cells, but there were still a large

number of false cells being found, particularly in the noisier images. In order to reduce this

noise, applying a filter was essential. Its aim was to smooth the image before using the edge-

detectors. Although smoothing causes the image to be blurry and might eliminate part of the

edges along with the available noises, but the intensity of the present edges of the cells are

much darker than that of the noise so the effect in eliminating the noise will be more visible

than that of the dark edges. However, decreasing the noise in the image will hence decrease

the number of false cells detected. Figure 8.1 on the next page shows an image in its actual

form, and then the edges detected using the three different techniques of this image. The

median filter was then applied to this and its edges were detected and finally the mean filter

was applied to the same image and then the edges were detected too. This step was made to

choose among these filters. However, it was observed that the effect of applying the median

filter gave better results than before, especially when applying both Elshenawy and the

convolution mask techniques. On the other hand, the mean filter gave very noisy results upon

applying the Sobel technique and produced both weak and discontinuous edges when using

Elshenawy technique and satisfactory results when applying the convolution mask technique.

Hence the median filter was applied on the images to resolve the problem of the noise,

aiming to improve the results.
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Figure 8.1 Example images after edge detection, with and without the different filters

The summary of the algorithm is now look like the one illustrated in Figure 8.2 and is

different from the one previously shown in Figure 7.4. The pre-processing phase now

includes the stage of smoothing the image before applying any of the three edge detection

techniques that were previously mentioned.

Figure 8.2 Summary of the algorithm when applying the median filter
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Samples will be shown in the following pages while the rest of the results are placed

in Appendix F (p. 202) and Appendix G (p. 215). The results depicted in Figure 8.3(a)

illustrate the output of using the refined algorithm when applying the median filter prior to

detecting the edges by the Sobel technique. Comparing these results to the previous results

displayed in Figure 7.6, that are also shown in Figure 8.3(b), it was obvious that the number

of potential cells that were detected using this approach has increased from three to four cells.

However, two drawbacks appeared; the first was the presence of a detected false cell and the

second was the low percentages of the results. Although the fourth cell was detected, the

percentage of all the results seemed to decrease.

(a)                                                               (b)

Figure 8.3 Results when using Sobel (a) with median filter (b) without median filter on image 3

In the figure, the detected cell that is marked with the red rectangle was detected in

the two approaches. In the approach that used the median filter the percentage of detection

was 21.4 % while in the other approach this percentage reached 25.7%. Similarly, the
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percentages of the other cells that were marked with the purple and green rectangles have

decreased from 26.8% to 21.1% and from 21.8% to 19.5%, respectively. On the other hand,

the centres and radii of both techniques were very close to each other.

Upon changing the edge-detection technique, the results also changed. The results of

using Elshenawy algorithm are shown in Figure 8.4.  As shown in the Figure, the four

potential cells were detected by both techniques; with applying the median filter (Figure

8.4(a)) and without the median filter (Figure 8.4(b)).

(a) (b)

Figure 8.4 Results when using Elshenawy algorithm (a) with median filter (b) without median filter on

image 3

Unlike the results achieved by using the Sobel technique, the percentages of detection

using Elshenawy algorithm have increased by using the median filter. When studying all the

results of both approaches in the Figure, it was observed that the results of the two

approaches were very close to each other and yet no false cells were detected in neither of
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them.

The last edge-detection technique was the convolution mask. The results of this

technique are illustrated in Figure 8.5 below. No false cells were detected in both approaches

and all four potential cells were detected. The percentage results however varied from one

cell to another. Some results of the detected cells were higher in the approach using the

median filter (red rectangle) while the results of the rest decreased.

It was obvious in the results of the previous embryo that due to the noise reduction

after applying the median filter, some of the results percentages would have decreased in

some cells due to the removal of some pixels during the filtering process.

(a)                                                             (b)

Figure 8.5 Results when using convolution mask (a) with median filter (b) without median filter on

image 3

Further trials and investigations were taken concerning the images that had more

noise (Figure 7.8) than the previous one. Figure 8.6 shows a sample of this image. It gives the
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results of such an image when using the Sobel edge detector with and without applying the

median filter.

(a)                                                                       (b)

Figure 8.6 More results when using Sobel (a) with median filter (b) without median filter on image 15

It was obvious that the results achieved with applying the median filter (Figure 8.6(a))

contained many false cells compared to the other approach (Figure 8.6(b)). On the other hand

the three potential cells were detected using both approaches. The size and the position of the

detected cells were similar in both approaches but again the percentage of detection

decreased when the median filter was applied.

When applying Elshenawy algorithm to the same image the results depicted in Figure

8.7 were achieved. It was observed that all of the four potential cells were found through

both techniques with very close similarity of position, size and even percentage. It was also

noted that the percentage of detection of the Sobel technique was lower than the two other

techniques.
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(a)                                                                     (b)

Figure 8.7 More results when using Elshenawy algorithm (a) with median filter (b) without median filter

on image 15
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The results that were achieved by the convolution mask were exactly the same except

for the value of the percentages. Again, the values of the percentages decreased when the

filter was applied because of the loss of some of the borders that were removed as part of the

smoothing process. The results are given below in Figure 8.8.

(a)                                                                     (b)

Figure 8.8 More results when using convolution mask (a) with median filter (b) without median filter on

image 15

The results obtained using the binary template matching approach on the image

dataset when the median filter was applied to reduce the noise levels prior to the edge-

detection techniques is shown in Table 8.1.
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Table 8.1 Results when applying median filter

Edge detector

technique

Total cell

count

Potential

detected cells False cells

count %

Sobel

94

69 73.4 119

Elshenawy algorithm 76 80.8 105

Convolution mask 85 90.4 100

This approach improved on the detection of the true cells, but still found a large

number of false cells.

Upon applying the median filter on the images and trying to detect the cells using the

Hough Transform instead, the following results shown in Table 8.2 were achieved.

Comparing the results in Table 8.1 and Table 8.2, the number of potential cells detected using

the Sobel technique had slightly increased when using the Hough transform but the false cells

detected had increased too. As for the other edge detection techniques, the potential detected

cells have decreased upon using the Hough transform without any improvement in the

number of false cells detected. Therefore, the second approach of refinement will be applied

on the binary template matching technique.
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Table 8.2 Results when using Hough Transform on filtered imaged

8.2.2 Applying two templates

A second refinement was to introduce a second set of binary templates, which took

the form of a disk which had the ranges of sizes as the cells, and the ring template. This

template measures the noise within a cell and rejects the result if the amount of noise within

the cell exceeds certain limits. The two templates are shown in Figure 8.9.

(a) (b)

Figure 8.9 Ring (a) and disk (b) binary templates

A cell that was found was considered as a true cell if its border was detected using the ring

template (a) and its interior did not contain a considerable amount of noise which was

measured by using template (b).

Edge detector technique
Total cell

count

Potential

detected cells False cells

count %

Sobel

94

71 75.5% 143

Elshenawy algorithm 56 59.5% 101

Convolution mask 53 56.3% 147
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Two percentage sensitivity values were then calculated, one using the ring template

as before, giving an indication of the match between the image and the ring template, the

‘border percentage sensitivity’ (BPS), and the second, giving an indication of the match of

the disk template and the 1s in the interior of the cell, the ‘interior percentage sensitivity’

(IPS), which would be high for noisy images and low otherwise. There was an inverse

relationship between these two percentage sensitivity measures in the sense that a high BPS

gave a strong indication of the presence of a true cell, while a high IPS gave a strong

indication of noise in the image, and would reduce the indication of the cell being a true cell.

The task of combining these sensitivity values to decide if a potential cell was a true

cell was not straightforward. One solution that was investigated was to construct a

mathematical equation where the variables were the BPS and the IPS and the output was the

likelihood of true cell. The surface shown in Figure 8.10 has the desired characteristics:

Figure 8.10 Surface of the desired equation
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The equation of such a curve:

Z = exp (-X.^2 - Y.^2)

where Z is the likelihood of a potential cell being a true cell, and X and Y are the BPS and

IPS respectively. The maximum value of Z was then used to detect the position of the best

match of the cells. The same rules that were used in the previous techniques for redundant

points elimination were applied in this technique too. However, any value of Z that was less

that 0.5 was not considered. This was considered to neglect the points that had likelihood less

than 50% which were a weak chance of being a cell. The steps taken to apply this algorithm

are summarized in Figure 8.11 found on the next page.

Figure 8.11 Summary of the algorithm
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Samples of the results are given on the next page and discussed while the rest are

placed in Appendix H (p.226) and Appendix I (p.232). Figure 8.12 shows a sample image

with the new edge-detection technique.

Figure 8.12 Sample of results using Elshenawy detector algorithm on image 3

The results show that the two template classification algorithm managed to detect all

of the four available cells correctly with no false ones. As for the measure of goodness it

varied from 0.75 to 0.67 which is considerably high. These values varied due to the variation

in the values of both the BPS and the IPS values. In the results of the first row, the BPS was

0.5 while the IPS was 0.17 which gave a measure of goodness 0.75. As the value of the IPS

decreased, it was expected that the measure of goodness would increase as they were

inversely proportional, but the opposite happened because the value of the BPS decreased, as

can be seen in the results of the second and third rows. Note that the slight decrease in the

measure of goodness in the second and third rows was not as prominent as the decrease in the

result of the fourth one. This was because there was a big increase in the value of the IPS.
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As the noise increased in the image, the tendency of the algorithm to detect false cells

also increased. This was because noise increased the BPS and hence the measure of

goodness. Note that the IPS, which was meant to be the noise measure, was also high because

of the noise. This is seen in the example shown in Figure 8.13 where the result of applying

the convolution mask to an image is seen. The only true cell available in the second row has a

measure of goodness of 0.71 which was very high. Although the result in the first row had a

higher measure of goodness, the detected cell was a false one; this high value was a result of

the high value of the BPS compared to that of the second row.

Figure 8.13 Results using convolution mask on image 16

When trying to apply this technique on the images that used the Sobel edge
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detector, the algorithm did not give any significant results. Further investigation showed that

the reason was that the edges produced were very thin and weak; this caused the BPS to be

very low. On the other hand, the images lacked noise which caused the IPS to be very low

too. Upon combining the values of the BPS and the IPS, the achieved value of the measure

of goodness was below the desired value.

In summary, the enhanced “AND” technique used two templates instead of one to

detect the cells. The first detected the presence of the border while the other measured the

noise inside the detected cell. The outputs of these two templates were then applied to a 2

variable equation to evaluate the measure of goodness of the detected cell. The results of this

technique are illustrated in

Table 8.3. Although the number of detected cells decreased slightly, this approach did

lead to a considerable drop in the number of false cells.

Table 8.3 Enhanced "AND" technique results

Edge detector

technique

Total cell

count

Potential

detected cells False cells

count %

Sobel

94

0 0 0

Elshenawy algorithm 72 76.5 42

Convolution mask 71 75.5 91
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8.3 Conclusion

In this chapter the template matching algorithm was modified to process on binary

images rather than grey level images. The modification made consisted of two phases: the

first involved applying the median filter to the image before the edge detection process, while

the second introduced a second template to get a measure of the noise inside the cell, which

was considered to be responsible for the large number of false cells being detected. These two

values were then combined in a two variable equation to give a single value which gave the

likelihood of a potential cell being a true cell.

The modifications to the template matching approach to convert the images to binary,

and then using a median filter to reduce the noise before applying the edge detection

algorithms gave the better results. The introduction of a second binary template to get a

measure of the noise in the cells led to a slightly reduced detection of the true cells, but a

considerable reduction in the number of false cells detected. A summary of all the results is

given in the next Chapter with the best algorithm developed in this Chapter applied to the test

image dataset to investigate the robustness of the algorithm.
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Chapter 9 Results and Discussion

Overview

The results of the previous techniques are provided in this chapter together with a

measure of performance of each. The technique having the best results will be the used to

test the other images that were left as a test dataset. Measures will also be provided for these

results.

9.1 Introduction

All of the previous algorithms that were used aimed to detect the presence of cells in

Day 2 embryos. Different results were achieved from each technique. To distinguish between

them and decide which one was more effective, a measure of robustness was essential. The

same measure was used for all techniques. This measure consisted of two parts. The first

involved counting the number of potential cells that were effectively detected by the

algorithm compared to the total available cell count in all the images that is 94 cells. The

second involved counting the number of false cells that the technique has detected. The

following section will present the results obtained using each technique.
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9.2 Summary of Previous Results

The results will be displayed in order of the algorithm was investigated:

 Hough Transform technique.

The Hough Transform approach was described in Chapter 5. Three different edge-

detection techniques were applied to each of the images in the dataset, and the

accuracy of these in detecting true cells, and number of false cells detected, primarily

as a result of noise  in the images was discussed. The results obtained were presented

in Table 5.3, which has been copied below as Table 9.1:

Table 9.1 Hough-based technique results

Edge detector

technique

Total cell

count

Potential

detected cells False cells

count %

Sobel

94

62 65.9 226

Elshenawy algorithm 61 64.8 155

Convolution mask 57 60.6 161

 Template matching technique

The two template matching techniques that were considered SAD and the NCC, were

described in Chapter 6. These approaches were used to detect the cells either by

selecting one value (minimum SAD, or maximum NCC) or by considering all the

available peak values. The results obtained using these approaches were presented in

Table 6.1 and 6.2, which have been copied below in Table 9.2 and Table 9.3:
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Table 9.2 One peak template matching results

Approach
Total cell

count

Potential

detected cells False cells

count %

SAD
94

0 0 219

NCC 44 46.8 175

Table 9.3 Multi-peak template matching results

Approach
Total cell

count

Potential

detected cells False cells

count %

NCC 94 45 47.8 69

 Binary template matching technique

This technique was described in Chapter 7 and used template matching, but instead of

working on the image in its grey scale form, both the image and the template were

converted into its binary form. This required the application of the three edge

detection algorithms on the image before applying the template matching process,

which used a logical AND operation, and used the ratio of the number of matches (1s)

to the number of pixels in the template ring to generate a percentage similarity

measure of the match between the image and the template. Table 9.4 shows the results

that were presented in Table 7.1.
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Table 9.4 Enhanced template matching technique results

Edge detector

technique

Total cell

count

Potential

detected cells False cells

count %

Sobel

94

68 72.3 92

Elshenawy algorithm 67 71.2 83

Convolution mask 74 78.7 117

 Refining the Binary template matching technique

Applying median filter

The first approach of refinement was by using the median filter to smooth the image

and hence decrease the number of false cells detected. The median filter was applied

to the original image before applying any of the three edge detection techniques after

which the binary template matching and the Hough Transform approaches were

applied to the edges of the images. Table 9.5 and Table 9.6 are copied from Table 8.1

and Table 8.2 represented in the previous Chapter.

Table 9.5 Results when applying median filter

Edge detector

technique

Total cell

count

Potential

detected cells False cells

count %

Sobel

94

69 73.4 119

Elshenawy algorithm 76 80.8 105

Convolution mask 85 90.4 100
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Table 9.6 Results when using Hough Transform on filtered imaged

Comparing the results in Table 9.5 and

Table 9.6, it is shown that using the Hough Transform decreased the number of

detected cells and increased the number of false cells detected too.

Enhanced “AND”  technique

The enhanced “AND” technique used two templates instead of one to detect the cells.

The first detected the presence of the border while the other measured the noise inside

the detected cell. The outputs of these two templates were then applied to a 2 variable

equation to evaluate the measure of goodness of the detected cell. However, the

results of this technique are illustrated on the next page in Table 9.7. Although the

number of detected cells decreased slightly, this did lead to a considerable drop in the

number of false cells.

Edge detector

technique

Total cell

count

Potential

detected cells False cells

count %

Sobel

94

71 75.5% 143

Elshenawy algorithm 56 59.5% 101

Convolution mask 53 56.3% 147
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Table 9.7 Enhanced "AND" technique results

Edge detector

technique

Total cell

count

Potential

detected cells False cells

count %

Sobel

94

0 0 0

Elshenawy algorithm 72 76.5 42

Convolution mask 71 75.5 91

9.3 Results for the testing dataset

Each of the approaches introduced gave different results, the best of which was that of

the enhanced “AND” technique using Elshenawy algorithm as an edge detector technique. To

measure the performance of this approach to detect cell in different images, this technique

was used on the 10 testing images that were kept aside. These consisted of 5 images which

were taken with a lower magnification than the images in the larger dataset and 5 taken with

a higher magnification. The results will be introduced and discussed in detail in the following

sections showing the compensation measures that were designed to overcome the

magnification issue and the size of the ZP.

9.3.1 Applying the algorithm

The first step, which was part of the pre-processing stage, was the detection of the ZP. This

was detected using the technique described earlier in Chapter 4. This technique mainly used

the information about the difference in the grey level of the border of the ZP and the

background. This information was a product of the close investigation that was made on the

nature of the embryos images that showed that this difference was 20. Using this technique
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to detect the ZP of the testing images, a sample of these results is depicted below in Figure

9.1.

Figure 9.1 ZP detection of a testing image

The image in Figure 9.1 is one of the images that have a smaller magnification than

the images that were used in all of the previous work. The size of this image is 80x80. Upon

applying the ZP detection algorithm on this image, the algorithm detected the ZP properly as

illustrated in the Figure and the size of the diameter was 76 pixels. From this the scale factor

was simply calculated by dividing the diameter of the ZP by the size of the Day 2 embryo,

giving a value of 0.5 pixel/µm.

According to the work done by Hnida et al. (2004) and introduced in Chapters 2 and

4, the expected size of the cells (blastomeres) of Day 2 embryos ranged from 56.4 µm to 73.4

µm. To convert these values into pixels, the scale factor was used. These ranges were

equivalent to 28 pixels to 37 pixels. These values were the Dmin and the Dmax (respectively)

values of the templates to be generated. In this approach two templates were generated

having the same size each time. The first template had the ring in it in order to detect and

measure the existence factor of the border of the cell, whereas the second template was a

solid flood-filled circle that was used to measure the noise factor inside the cells. These two

factors gave their results as a percentage to the actual size of the template and for this they

were named BPS and IPS.
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The second step of the pre-processing phase involved detecting the edges of the image

after applying the median filter. The edge detection algorithm that gave the best results was

Elshenawy algorithm that was introduced and designed in this work. This technique used the

same idea that was used in the ZP detection, but this time the threshold value was 25 due to

the darker colour of the border of the cell compared to that of the ZP.

The idea of this technique was based on using the two templates that were generated

and moved along the whole image by a simple logical “AND” operation. This operation

developed the two factors that were BPS and IPS. These factors were used to measure the

percentage of existence of the border and the noise inside the cells. These values were then

substituted in an equation which was introduced in Chapter 7. The choice of this equation

was based on the 3D surface required, taking BPS and IPS as the X-Y axis, respectively,

while the Z axis was the indicator of the measure of goodness of the detected cell. For this

reason any result that was below 50% was neglected.

The results of using this technique gave some redundant values that had to be

removed. These redundant values were removed using the clustering technique developed

and discussed before in chapter 5. This technique worked to remove the redundant values that

belonged to a mask size around the maximum value. The size of this mask depended on the

size of the image, which was again subject to changes and depended on the size of the ZP, as

mentioned before. For this image the Dmin was 28 pixels, which made the radius equal to 14

pixels, and since 50% of the radius value was 7, the mask size for the clustering process was

15x15. This mask removed the redundant size but at the same time tried to keep the cells that

were nearly overlapping.
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The results are shown in Figure 9.2 below. The table shows that the algorithm has

detected 3 of the 4 potential cells available.

Image
Radius

x-centre y-centre BPS IPS

Measure

of

goodness

14 48 38 0.45 0.16 0.72

16 24 42 0.45 0.24 0.69

16 35 24 0.38 0.21 0.65

14 50 48 0.35 0.24 0.62

Figure 9.2 results of the enhanced "AND" technique

Another sample taken from the available images is given in the next page in Figure

9.3. This image has a higher magnification scale than that of the other images that were used

in the previous work. The size of this image is 180 x 180. Upon applying the ZP detection

technique to this image, the ZP was properly detected as depicted in the Figure.
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Figure 9.3 sample of another image

The image shown in the Figure had a ZP diameter of 168 pixels. The magnification

scale S of this image came from dividing the diameter of the image, which is 168 by the

expect size of the embryo which is 150µm, to give 1.12 pixels/µm. However, the values of

Dmin and the Dmax were 62 pixels and 82 pixels, respectively. Another value that was

dependent on the size of the ZP and the magnification scale was the size of the clustering

mask. As explained before the size of the mask would be calculated from the radius of the

smallest template which for this image was 31. The mask size for this image was 33x33.

The results of applying the algorithm to this image are shown on the next page in

Figure 9.4. The algorithm managed to detect all of the 4 cells without any false ones. The

results of the rest of the 10 images are depicted in Appendix J (p.238).
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Image
Radius

x-centre y-centre BPS IPS
Measure of

goodness

31 87 59 0.33 0.14 0.62

33 96 87 0.32 0.17 0.61

33 66 100 0.29 0.14 0.59

32 67 62 0.26 0.08 0.58

Figure 9.4 Results of the image
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9.3.2 Results

The 10 images that were kept aside as a test sample to measure the robustness of the

enhanced “AND” algorithm gave 80% of potential cells detection. It can be seen in Table 9.8

that out of the 35 cells that were present in the 10 images, the algorithm has properly detected

30 cells. On the other hand, only 6 false cells were detected.

Table 9.8 summary of the results

Edge detector technique Total cell count

Potential detected

cells False cells

count %

Elshenawy algorithm 35 30 85 6

The enhanced “AND” technique along with all the compensation solutions that were

designed have proven that together they detected the potential cells of a new image dataset

with a percentage of 80%. These compensations included detecting the ZP with different

magnification scales, evaluating the different ranges of the templates used and even the size

of the clustering mask.
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9.4 Classification results

Table 9.9 presents all the cell counts of all the images. The information in this table

consists of the cell count which gives the actual cell available in the image, the number of

potential cells that the algorithm managed to detect and finally the false cells detected. The

optimum case is where the number of cell counts was all detected with no false cells, such as

the result of image 3. Image 3 contains 4 cells, these cells were all properly detected with no

false cells, likewise images 4, 11, 13, 16, 21, 30 and 34. These 8 results are shown in Table

9.10(a) and are the only ones that can be used for classification.

Table 9.9 Classification results

Image #
Cell

count

Potential cells

detected

False

cells

detected

Image #
Cell

count

Potential

cells detected

False

cells

detected

1 4 2 0 21 3 3 0

2 3 2 0 22 4 4 1

3 4 4 0 23 3 3 1

4 3 3 0 24 4 4 1

5 4 1 3 25 4 2 2

6 4 3 1 26 3 3 2

7 1 0 4 27 3 3 2

8 3 1 1 28 4 4 3

9 2 0 4 29 3 2 1

10 4 4 1 30 4 4 0

11 5 5 0 31 4 2 0

12 4 3 0 32 4 3 0

13 4 4 0 33 2 1 1

14 0 0 4 34 4 4 0

15 4 4 1 35 3 3 1

16 1 1 0 36 3 3 1

17 5 3 1 37 4 4 1

18 0 0 5 38 3 3 1

19 4 2 4 39 4 3 1

20 4 2 0
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Table 9.10 results used for classifcation

(a) (b)

Image #
Cell

count

Potential

cells detected

False

cells

detected

3 4 4 0

13 4 4 0

30 4 4 0

34 4 4 0

Considering the classification issue of these cells and according to the grading

technique used in this work of Day 2 embryo, the only images that can be re-implanted are

those having 4 properly detected cells as in images 3, 13, 30 and 34 as depicted in Table

9.10(b). Although the images 4, 11, 16and 21 have properly detected cells, neither of them

have the desired number of cells that should be available according to the grading system

used, that is why these are not to be re-implanted again.

In some cases detecting false cells or even failing to detect all potential cells in the

image causes an improper classification result. Table 9.9 shows that some images contain 4

cells, which means that they can be re-implanted but because of false cells detected/failure of

detecting all the potential cells, they were classified as inappropriate. These images are 1, 10,

12, 15, 19, 20, 22, 24, 28, 31, 32, 37 and 39. On the other hand, some results detected 4 cells

while they are not present and this will also cause misleading classification. Such images

were 5, 6, 7, 14, 17, 23, 25, 35, 36 and 38.

Image #
Cell

count

Potential

cells detected

False

cells

detected

3 4 4 0
4 3 3 0

11 5 5 0

13 4 4 0

16 1 1 0

21 3 3 0

30 4 4 0

34 4 4 0
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9.5 Conclusion

Among all the different approaches used, the enhanced “AND” technique gave the

best results that had high percentage of correct cell detection as well as low false cells

detection. The importance of trying to detect all the available potential cells and none of the

false cells has appeared clearly during the classification process. The total number of detected

cells was not as important as managing to clarify if this number consists of all the potential

cells, some false cells or a combination of both.

Given the size criteria that was used to detect the cells that met the template used, the

aims and objectives became to select correctly the identified images having 4 cells. However,

the aims and objectives of this Thesis were completely met for those images that were

correctly analysed.
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Chapter 10 Conclusions

Overview

This Chapter contains the summary of the work done in this thesis. It reviews the

main aims and objectives and the results and the findings obtained. Finally suggestions for

future work are provided.

10.1 Summary of the aims and objective and work done

The aim of this work was to develop a prototype automated image analysis system

that is able to detect and classify Day 2 human embryo cells as suitable for implantation. To

accomplish this, there were many stages which this work had to perform. This work has

managed to:

 Map the characteristics and key features of the Day 2 embryo cells that would

make them suitable for implantation into features that can be detected by the

system.These features were the blastomere number and size. Day 2 embryos must

have 4 blastomeres that are even in size.

 Pre-process the image to compensate for magnification and illumination

variations in the microscope images. This was achieved by developing a novel

approach to detect the size of the ZP, which was then used to estimate the
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magnification of the image and hence adjust the measurements of the anticipated

sizes of the cells to tune the detection algorithms.

 Develop and compare different image segmentation and feature extraction

techniques appropriate to these images: the Hough Transform and template

matching. These techniques were carried out using the information from the pre-

processing stage, as it was essential to compensate for the magnification and

illumination variations in the images. Certain modifications were made to these

techniques which involved the production of novel techniques for the edge

detection along with the new approaches that were based on the Hough

Transform and the template matching. These modifications used a disk as a

template that matched the cell sizes and grey scale. The template was used in

further modifications but in its binary form.

 Identify the most accurate image processing techniques for classifying the

embryo as suitable for implantation and this was done after investigating all the

results from all different techniques and approaches available.

 Investigate the performance of the approach using images of embryos taken with

different microscope magnifications.

10.2 Summary of the results and findings

The work done in this thesis involved applying different techniques aiming to detect

and classify Day 2 embryos. The first of which was a Hough-based technique that managed

to detect potential cells with a percentage that varied from 60.8% to 65.9% according to the

edge detection technique used.
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The template matching based techniques were carried out using two approaches. The

first only took into consideration a unique peak value and gave a detection percentage of

46.8% when using the NCC method while the SAD gave 0%. The second approach that

detected all the peak values gave 47.8%.

Enhancing the template matching technique by converting both the image and the

templates into their binary form made the percentage of detection increase to reach 71.2% to

78.7%, depending on the type of edge detection technique used which was either Sobel,

Elshenawy algorithm or the algorithm that used the convolution mask. When the median

filter was used to this technique, the edges produced by using the Sobel edge detector

produced a percentage of 73.4%. However, the percentages of the two other techniques

reached 80.8% and 90.4% respectively.

A final modification was made to the technique; the result of this modification gave a

percentage of Elshenawy algorithm and the convolution mask of 75.5% and 76.5%, while the

Sobel gave 0%. This final technique was further used on another dataset of images that

contained 10 images that had different magnifications, 5 of which had smaller magnification

and the other 5 had a higher magnification. These images gave a percentage of detection of

85%.

As shown from all the previous results, the numbers of potential cells detected along

with the number of the false cells detected were the main factors that will affect the

classification. The optimum case for the classification is where the number of cell counts are

all properly detected with no false cells. Considering the classification issue of these cells and
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according to the grading technique used in this work of Day 2 embryo, the only images that

can be re-implanted are those having 4 properly detected cells

In some cases detecting false cells or even failing to detect all potential cells in the

image causes an improper classification result. Such as detecting 4 cells upon which 2 of

them are potential cells and the other 2 were false ones. According to the classification issues

this image can re-implanted, but in reality 2 of the detected cells are false. Other cases had 4

cells but the detected results showed more than that because of the false ones which made the

classification result to consider not re-implanting it.

As for the classification of the detected images of the latter technique, 39 images were

tested on the system, 8 images were found suitable for the classification processs, that is all

the available cells were properly detected with the absence of false cells. Among these 8

images, 4 images had their 4 cells and hence were appropriate to be re-implanted again, while

the other 4 images had their cells properly detected too but they were not considered to be

appropriate for re-implantation due to their cell count which was not equal to the desired

number.

10.3 Future work

The fact that the system has detected only 8 images properly with their real cells and

no false cells out of the whole dataset was a key issue to consider if the system is to be robust

enough for clinical use. Further work is required to correctly identify only the true cells in the

images. The current algorithms have detected 80% of the true cells, and considerable work

was required to reduce the false cells down to minimum.
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The work done measured some of the thresholds according to the images available.

These thresholds might slightly change with the change of the clinic. Creating a system

before the proposed detection system to automatically adjust these thresholds will make this

system more effective to work on any image from any clinic.

If accuracy of the detected Day 2 cells can be sufficiently improved for clinical use it

will be possible to implement this on an embedded system that can be placed inside the

incubator. The system will take pictures of the embryos while they are inside the incubator at

the appropriate time (at Day 2), and then detect, classify and finally grade the embryos.

The work in this thesis focused on the detection of cells of Day 2 embryos. However,

work can be done to automatically measure the fragmentation percentage, which can be used

along with the number of cells count detected in order to perform an automatic grading

system for embryos at other stages of development.

Finally, the merger between BPS and IPS can be tried out using the concept of fuzzy

logic. These two values can be considered as the variables of the fuzzy system and an

appropriate membership function can be developed to produce the desired output, which in

this case would be the measure of goodness.
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APPENDIX A

Images Dataset
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Testing Dataset
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APPENDIX B
This Appendix contains the results of the Hough Transform technique that was discussed in Chapter 5. Some of these results were

depicted in the Chapter while the rest are shown in the tables in the following pages.

The results of the detected cells of each of the three types of edge detectors (Sobel, new algorithm and convolution mask) are given in

each table. However, these results include the x-centre, y-centre, radius and finally the matching value which corresponds to the value of

accumulator. The detected cell is also shown as a blue circle plotted on the image.
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APPENDIX C
This Appendix contains the results of the proposed technique

in Chapter 6. These results are the results of applying the correlation

technique and getting the values of the maximum correlation

coeffient. The two techniques used were the SAD and the NCC.
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APPENDIX D
This Appendix contains the results of the proposed technique in Chapter 6. These results are the results of applying the correlation technique and

getting the values all the maximum correlation cooeffient. The two techniques used were the SAD and the NCC.
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APPENDIX E

This Appendix contains the results of the proposed technique in Chapter 7. These results are the results of applying the template matching using

the binary template. The technique worked on binary image that were produced by extracting their edges using either Sobel, new algorithm or

the convolution mask approach without using the median filter.
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APPENDIX F

The results of the approach discussed in Chapter 8 are shown in this Appendix. This approach used the template matching on the binary

images but the median filter was applied to the image before detecting its edges. This Appendix will show the results when using the Sobel edge

detector.
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APPENDIX G

The results of the approach discussed in Chapter 8 are shown in this Appendix. This approach used the template matching on the binary

images but the median filter was applied to the image before detecting its edges. This Appendix will show the results when using the new

algorithm and convolution mask edge detectors.
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APPENDIX H

The results of the approach discussed in Chapter 8 are shown in this Appendix. This approach used the two templates on the binary

images but the median filter was applied to the image before detecting its edges. The two factors BPS and IPS are used to substitute them in a 2

variable equation to measure the goodness of the detected cell. This Appendix will show the results when using the convolution mask edge

detector.
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APPENDIX I

The results of the approach discussed in Chapter 8 are shown in this Appendix. This approach used the two templates on the binary

images but the median filter was applied to the image before detecting its edges. The two factors BPS and IPS are used to substitute them in a 2

variable equation to measure the goodness of the detected cell. This Appendix will show the results when using the convolution mask edge

detector.
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APPENDIX J

This Appendix shows the results of applying the test images to the enhanced “AND” technique using the new algorithm as an edge

detector. Some of these results are discussed in Chapter 9.
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