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Abstract 
A simple scalar model for describing spatiotemporal dispersion of pulses, beyond the classic “slowly-varying 

envelopes + Galilean boost” approach, is studied.  The governing equation has a cubic nonlinearity and we 

focus here mainly on contexts with normal group-velocity dispersion.  A complete analysis of continuous 

waves is reported, including their dispersion relations and modulational instability characteristics.  We also 

present a detailed derivation of exact analytical dark solitons, obtained by combining direct-integration 

methods with geometrical transformations.  Classic results from conventional pulse theory are recovered as-

ymptotically from the spatiotemporal formulation.  Numerical simulations test new theoretical predictions 

for modulational instability, and examine the robustness of spatiotemporal dark solitons against perturbations 

to their local pulse shape. 

 

 

PACS numbers:  42.65.–k (nonlinear optics), 

42.65.Tg (optical solitons), 

42.25.-p (wave optics),  

05.45.Yv (solitons, nonlinear dynamics of). 
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I. INTRODUCTION 
When modelling wave phenomena in physical systems, one is typically concerned with describing the 

evolution of a real quantity Q(t, z) that may be represented as an envelope q(t, z) modulating a rapidly-

oscillating component according to Q(t, z) = q(t, z)exp[i(k0z – 0t)] + q*(t, z)exp[–i(k0z – 0t)].  Here, t and z 

denote time and space coordinates in the laboratory frame, respectively, while k0 and 0 are the propagation 

constant and angular frequency of the underlying carrier wave.  The variable Q may correspond to elastic 

displacement, electric field, polarization grating, fluid velocity, ion density, quantum mechanical wavefunc-

tion, etc. [1–3].  The slowly-varying envelope approximation (SVEA), which anticipates that the longitudinal 

variation of q is slow on the ~1/k0 scale-length, is the first part of near-universal mathematical device whose 

function is to reduce complicated governing equations to a more tractable structure.  The second part is the 

deployment of a Galilean-type coordinate boost to a frame of reference (tloc, zloc) moving at some characteris-

tic (system dependent) speed, typically the group velocity vg.  Such a transformation has the standard form 

tloc   t – z/vg and zloc   z (the local time frame is denoted throughout by the “loc” subscript).  

The “SVEA + Galilean boost” recipe is used so freely in the literature that one rarely queries its adop-

tion. One of the key advantages of this classic approach is that it can operate largely independently of system 

nonlinearity, and it is certainly true that the technique clearly works well in the vast majority of studies to 

date.  However, an inevitable consequence is that relatively little is known about the mathematical properties 

of the more general governing equations and the properties (e.g., structure and stability) of its solutions.  One 

should also be mindful that there are classes of problem where such a conventional modelling approach is 

not necessarily appropriate.   

We investigate a dimensionless universal spatiotemporal dispersion model having cubic nonlinearity 

[4,5], with particular emphasis on the case of normal group-velocity dispersion.  This generic equation, 

which for example, arises in photonics and waveguide optics [6], is of the form     

       
2 2

2
2 2 0

2
u u u s ui u u 
   

    
         

,                  (1) 

where u is the wave envelope,  denotes the (longitudinal) space coordinate along which the wavepacket is 

travelling, and  denotes time (note that  does not represent a local time variable).  The three parameters 

appearing in Eq. (1) are:  (proportional to a ratio of group speeds), s = 1  [flagging the group-velocity dis-

persion (GVD) regime: +1 for anomalous; –1 for normal] and  (parameterizing the strength of spatial dis-

persion).  Spatial and temporal dispersion phenomena are thus identified with the 2 2   and 

  2 22s   operators, respectively.  The mathematical structure of Eq. (1) depends upon the product s [for 

sgn(s) = +1 (–1), it is elliptic (hyperbolic) in character]. 

The reader is directed to the Appendix for a derivation of model (1) in an optical context where, histori-

cally, the “SVEA + Galilean boost” has often been applied [7,8].  This latter approach usually works well 

provided the pulses under consideration are relatively long (where a sufficient number of electric-field cycles 

are contained within the envelope) and one is operating sufficiently far from the zero-dispersion point [2,6–

11].  When such conditions are not met, one may choose to accommodate higher-order linear effects through 
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a succession of additional terms of the type   j
j i u    (where j = 3, 4, 5… and the {j} are real parame-

ters) [12], or abandon the notion of an “envelope” altogether and instead work with the short-pulse equation 

[13].  Recently, it has been shown that there exist some semiconductor materials (e.g., ZnCdSe / ZnSe super-

lattices) where the role played by the 2 2   operator is no longer marginal and cannot be neglected in the 

traditional way [14].  A striking feature of spatial dispersion (an effect allied to 2 2u   ) is that the pa-

rameter  in Eq. (1) may assume either sign. 

In Ref. 5, the transformation and conservation laws were derived for Eq. (1).  Exact analytical bright 

solitons were found to exist when s = +1, along with two classes of temporally-extended solutions (cnoidal 

and dnoidal waves, which describe periodic trains of pulses).  Two distinct, but equivalent, solution represen-

tations were also developed.  Extensive computations, in parallel with classic analytical methods [15], con-

firmed the bright soliton pulses as highly robust entities surrounded by wide basins of attraction. 

Here, we complete the analysis of model (1).  The focus is predominantly on exact analytical dark soli-

tons, which exist when s = –1 and comprise a continuous-wave (cw) background field modulated by a phase-

topological grey “dip.”  The stability of the cw background is an issue of fundamental importance since these 

solutions play a key role in dark-soliton structure [16].  Our motivation is to establish the stability properties 

of the dark solitons of Eq. (1), and to see whether they exhibit a similar degree of robustness to their bright 

counterparts. 

The layout of this paper is as follows.  In Sec. II, we review the mathematical steps taken to obtain the 

conventional pulse model from Eq. (1).  In Sec. III, the cw solutions to Eq. (1) are derived, their dispersion 

relations are characterized, and the subtle recovery of the corresponding conventional solutions is demon-

strated.  Linearization techniques are then deployed to investigate the resilience of cw solutions to small per-

turbative modulations, and both long- and short-wave instability regimes are identified.  Subsequent numeri-

cal computations validate theoretical predictions.  In Sec. IV, we report exact analytical dark solitons (black 

and more general grey families), and also a class of snoidal wave (essentially a black-soliton pulse train).  

The space-time structure of these more exotic solutions is detailed, and the recovery of their conventional 

counterparts, is described in Sec. V.  Sets of simulations, testing the robustness of dark solitons against per-

turbations to their temporal shape, are presented in Sec. VI.  Geometrical transformations are used to predict 

asymptotic pulse parameters.  We conclude, in Sec. VII, with some comments on the significance and poten-

tial applications of these new results. 

 

II. SLOWLY-VARYING ENVELOPES 

AND GALILEAN BOOSTS 
Conventional pulse theory makes an initial assumption that the first term in Eq. (1) may be neglected.  

Adoption of the SVEA, which is embodied by the inequality 2 2u u      , reduces the governing 

equation to the more tractable form 
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One then condenses the differential-operator combination         into a single derivative by intro-

ducing local coordinates, loc ≡  – and loc ≡ .  Under this Galilean-type boost to a frame of reference 

moving at speed 1/ in the + direction,    and    transform individually as 

loc loc            and loc      , combining to leave a parabolic wave operator in the local 

time frame:      2 2 2 2
loc loc2 2i s i s                    [7–11].  Since the nonlinearity is left 

unchanged under boost transformation (this is true even when the nonlinearity involves time dependence, 

e.g., for Raman-type contributions [17]), the solution u(loc,loc) satisfies the canonical nonlinear 

Schrödinger (NLS) equation, namely    22 2
loc loc loc loc2 , 0i s u u            . 

This standard approach is unhelpful if, for instance, one wishes to retain the 2 2u   term [4–

6,14,17,18].  By abandoning the Galilean boost and remaining in the laboratory frame, Eq. (1) can instead be 

analysed within a more exact framework (see Appendix B) involving space-time coordinate transformations 

that are remarkably similar to those in Einstein’s special theory of relativity.  It is then found that the predic-

tions of conventional pulse theory [i.e., Eq. (2)] tend to be recovered asymptotically from the more general 

model [i.e., Eq. (1)] in the same formal way that Newtonian mechanics emerge in the low-speed limit of rela-

tivistic mechanics.  

  

III. CONTINUOUS WAVES 

AND MODULATIONAL INSTABILITY 

A. Dispersion relations 

The cw solutions of Eq. (1) have the form u(, ) = 0
1/2exp[i(– + K)]exp(–i/2), where 0   |u|2 is 

the wave intensity,  measures the (normalized) deviation of the envelope from the carrier-wave frequency, 

and K is the propagation constant.  Substitution of u into Eq. (1) yields the quadratic dispersion relation  

 2 1
2

1
4

K s  


     ,                        (3a) 

where we have introduced    0 (the reasons for this choice will become clear shortly).  When sgn(s) = 

+1 (–1), Eq. (3a) prescribes families of ellipses (hyperbole) in the (, K) plane that are parameterized by , 

s,  and .  The corresponding cw solutions are then given by [4] 
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                 (3b) 

where the ± sign denotes propagation in the forward and backward longitudinal directions, respectively.  For 

sgn(s) = +1 (ellipses), non-evanescent waves exist within the (displaced) frequency band – <  < +, 
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where   = s   [2 + (2s + 1/2|s)]1/2.  For sgn(s) =  –1 (hyperbole), there are no such propagation cut-

offs (see Fig. 1). 

B. Recovery of conventional waves 

When all contributions from the 2 2u   term are negligibly small simultaneously, one must be able 

to recover the predictions made by conventional pulse theory.  For the cw solutions of Eq. (1), the three-fold 

algebraic limit    0 (negligible spatial dispersion),    0 (negligible nonlinear phase shift), and – 

(s/2)]   0 (negligible frequency shift) is formally equivalent to the SVEA.  The forward wave in Eq. (3b) 

converges to u(, )   0
1/2exp[–i( – ) + i( – s2/2)] so that, in the local time frame, the solution 

u(loc,loc)   0
1/2exp[–iloc + i( – s2/2)loc] satisfies the canonical NLS equation of Sec II.  Thus, the 

parameter can be identified with the propagation constant of the corresponding  = 0 conventional wave. 

The same algebraic procedure may also be applied to the backward wave in Eq. (3b), whereupon it is 

found that u(, )   0
1/2exp[–i(+ ) – i( – s2/2)]exp[–i2(/2)].  While boosting to a local time 

frame moving in the backward direction is possible (e.g., by introducing loc    +  and loc   ), there is 

no advantage in so-doing: this transformed wave u(loc, loc) clearly cannot satisfy the approximate equation 

     22 2
loc loc loc loc loc2 2 , 0i s u u                  because of the -dependent rapid phase factor 

that survives the limit process.  The conventional model is inherently uni-directional (describing evolution 

with respect to a single longitudinal direction) and does not support backward propagation. 

 

C. Linear stability analysis 

 Attention is now turned to the stability of the cw solutions against small-amplitude modulations in the 

time domain.  Without loss of generality, we set  = 0 and express u as u(,) = 0
1/2[1 + a(,)]exp(iK) 

exp(–i/2), where  is a formal expansion parameter and a(, ) is a complex function that describes a dis-

turbance to the amplitude and phase of the stationary state.  By considering small modulations, where ||   

O(1) and |a| = O(1), one can linearize in a around the cw solution and derive the following equation at O(): 

 
2 2

*
02 21 4 0.

2
a a a s ai i a a   
   
   

      
   

               (4) 

The simplest perturbation to analyse is a single Fourier component with frequency shift p.  Such a compo-

nent can be represented by 

         * *
1 2, exp exp ,p p p pa a i iK a i iK                      (5) 

where a1 and a2 are arbitrary constants.  Here, Kp ≡ kp + ip is a complex wavenumber whose real and imagi-

nary parts correspond to the propagation constant and spatial growth rate of Fourier mode (5), respectively. 

After substituting a(,) into Eq. (4), one arrives at the following characteristic equation for Kp: 
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The third term in Eq. (6), which arises from the i   operator, has no counterpart in the corresponding 

spatial calculation [19].  This linear-in-Kp factor frustrates subsequent algebraic analysis because one cannot 

first solve for Kp
2.  It is possible, in principle, to solve Eq. (6) for Kp directly with recourse to the standard 

formula for finding the roots of quartic equations [20].  However, these solutions are algebraically complex 

and provided little physical insight into the stability problem. 

 

D. Long-wave and short-wave instabilities 

We restrict our attention to regimes with  = O(1) and where there is only a small level of spatial disper-

sion, ||   O(1).  When sgn(s) = +1 (see Fig. 2), Re[Kp(p)] comprises a pair of ellipses of approximate 

width (2/|)1/2 centred on p    , while Im[Kp(p)] comprises a set of four hyperbole that characterize a 

short-wave instability.  There also exists a long-wave instability near the origin p   0 [see inset of Fig. 

2(b)].  In this domain, where Kp
2   0, p

2   0, and    0, Eq. (6) is well approximated by the parab-

ola 

   2 2 2 21 1
02 22 2 0p p p p pK K s            ,          (7a) 

which can be solved immediately to yield 

            1 22 21 1
02 2 2p p p pK s       .                  (7b) 

For s = +1, modulational instability (MI) appears in the frequency band |p| < (40)1/2, where Kp acquires a 

non-zero imaginary component.  The most unstable frequency is p0 = (20)1/2, which is associated with a 

period Tp0   2/p0 = 21/2/0
1/2.  This long-wave instability vanishes for s = –1 [irrespective of sgn()] be-

cause Kp is always real.  It is interesting to note that Eqs. (7a) and (7b) coincide with the predictions of con-

ventional pulse theory.  After a Galilean boost to the local time frame, the first term on the right-hand side of 

Eq. (7b) is transformed away and one is left with the classic result Kp(p) =  |p|(p
2/4 – s0)1/2 [21].  

When sgn(s) = –1, Re(Kp) always comprises four hyperbole.  For s = +1 and  < 0, Im[Kp(p)] exhibits on-

ly the long-wave MI band [see Fig. 2(b)]; when s = –1 and  > 0, one finds Im(Kp) = 0 (i.e., no MI at any 

p). 

E. Spontaneous modulational instability 

Analysis predicts, and simulations confirm, that there is no growth of long-wave instability when 0 = 0; 

indeed, bright solitons (i.e., pulses on a zero-amplitude cw background) were found to behave like robust 

attractors [5].  Results are now presented from simulations of model (1) with s = +1.  A cw solution with 0 = 

O(1) and  = 0 is initialized and a 0.01% level of complex noise is added to accelerate the growth of any 

spontaneous instability.  During the early stages of evolution, before fully-developed nonlinear dynamics 

take hold of the system, long-wave sidebands corresponding to the most-unstable frequency [predicted by 

Eq. (7b)] grow first (see Fig. 3).  Simulations have not uncovered any evidence of long-wave instabilities in 

regimes with s = –1, providing numerical confirmation of our analytical predictions. 
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IV. DARK SOLITON PULSES 
In this Section, two equivalent representations of the exact analytical dark solitons of Eq. (1) are de-

rived.  One expects families of tanh-type solutions to exist in the normal-GVD regime, where s = –1.  How-

ever, these particular solution classes are much more difficult to derive than their bright counterparts [5].  A 

direct-integration method is developed for the governing equation, in which the dark solution u is explicitly 

decomposed into its cw background field and grey-dip (intensity and phase) quadratures.  A range of coordi-

nate transformation techniques is then deployed to arrive at a more general dark solution [22]. 

 

A. Coordinate transformation laws and 

velocity combination rule 
It is worthwhile to review some essential mathematical results that will be used extensively throughout 

the following derivation and analysis. Under the coordinate change 

 
21 2

V
s V

 




 



     and     

2

2
1 2
s V

s V
  




 



,               (8a,b) 

where V is a velocity-like parameter, the form invariance of Eq. (1) is preserved so long as u transforms ac-

cording to 
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       (8c) 

From Eqs. (8a) and (8b), it can be shown that two arbitrary velocities, denoted by V0 and V, combine geomet-

rically (not additively, as they do in conventional pulse theory) to give a net velocity W, where [4,5,23] 

     0

01 2
V VW

s V V





.                   (8d) 

This result for W is generic in nature, in the sense that it is independent of both the system nonlinearity and 

also the solution u being transformed.  The structure of Eq. (8d) also bears striking similarity to the velocity 

combination rule of relativistic kinematics [24].  For brevity, we refer throughout to V, V0 and W as back-

ground, intrinsic and net velocities, respectively, while remaining mindful of the fact that they are strictly 

related to inverse velocities in the unscaled laboratory frame.   

 

B. Symmetry reduction and 

derivation of quadrature equations 

The analysis begins by seeking solutions of the form u(, ) = 1/2(, )exp[i(, )]exp(–i/2), where 

(, )   |u(, )|2 is the (real) wave intensity, (, ) is the phase distribution, and the complex-exponential 

exp(–i/2) is a manifestation of the underlying carrier wave (this contribution always appears explicitly in 
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Helmholtz-type envelope solutions) [25].  Substitution of u into Eq. (1) and isolating the real and imaginary 

parts, respectively, yields: 

    

222 2

2 2 2

22

2 12 2

14 2 8 0,
4

    
     

  
   

                        
                         

              (9a) 

and 

            
2 2

2 22 2 0.     
      

           
               

       (9b) 

Physically, dark solitons comprise a grey dip in the intensity profile (described by ) modulating a continu-

ous wave [see Eq. (3b)].  This simplifies the mathematical problem because one may proceed by looking for 

particular solutions of Eqs. (9a) and (9b) in which  may be expressed as (, ) = (, ) + K.  Here,  

(, ) represents the phase variation across the dark soliton, K =  (1 + 4)1/2/2 [from Eq. (3a), where  

  0] and it has been assumed, for simplicity, that the cw background field has  = 0 (this restriction will be 

lifted shortly).  The partial derivatives   and   may then be replaced by    and K   , 

respectively, so that Eqs. (9a) and (9b) become 

    

222 2

2 2 2
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8 2 0K

    
     


 

   
 

                        
             

         

        (10a) 

and 

                 

2 2

2 22 2

2 0.K

   
     

  
 

          
            

  
     

            (10b) 

In this way, the cw component has been eliminated from the problem and one can concentrate solely on de-

riving the grey-dip part of the solution u. 

Referring to coordinate change (8), it is convenient to introduce a new coordinate    ( – V0)/(1 – 

2V0
2)1/2, where  – V0 = 0 defines the trajectory in the space-time plane along which the pulse centre trav-

els (alternatively,  may be interpreted as a rest-frame coordinate).  Here, V0 is the intrinsic velocity of the 

grey dip in the (normalized) laboratory frame; for a pulse moving forwards (backwards) along the longitudi-

nal  axis, V0 must be positive (negative).  The operators    and    transform as 

   
1 22

01 2 V d d  


     and    
1 22

0 01 2V V d d  


     , while    12 2 2 2 2
01 2 V d d  
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and    12 2 2 2 2 2
0 01 2V V d d  


    .  This symmetry reduction approach has thus transformed Eqs. (10a) 

and (10b) into a pair of coupled ordinary differential equations for the  and  quadratures: 
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,                     (11b) 

which may be decoupled and solved exactly.  Indefinite integration (with respect to ) of Eq. (11b) yields 

d/d = ( – 2KV0)(1 – 2V0
2)–1/2  + c1/, where c1 is a constant to be determined later (by applying solu-

tion boundary conditions).  The phase slope d/d can now be eliminated from Eq. (11a), and a first integra-

tion (with respect to ) gives 

                      

 2 2
02 2

1 2
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                       (12) 

where c2 is a second constant to be determined.  The relevant boundary conditions on  and  for a grey 

soliton are: 

         10
lim


  


 ,     
0

lim 0d
d

 


 ,      0lim


  


 ,        (13a,b,c) 

where 0 corresponds to the intensity of the cw background field and 0 < 1 ≤ 0 is the intensity at the pulse 

centre.  For dark-type solutions, the  derivatives of  and  must satisfy vanishing asymptotics: 

             lim 0d
d

 


 ,      lim 0d
d



  ,             (13d,e) 

Together, boundary conditions (13a)–(13e) supplement quadrature equation (12) and allow one to find the 

desired grey soliton by direct integration. 

 

C. Exact analytical grey solitons 

Since the right-hand side of Eq. (12) is an expression cubic in , one may write (d/d)2 = B(0 – )2( – 

1), where B is a constant, 0 is a double root, and 1 is a single root.  Comparing the coefficients of the four 

powers of  (from 3 to 0) uncovers the following relations, respectively: B = 4,  

           2 2 2 2 2
0 0 0 02 2 2 2 0,K F V K V F                   (14) 

c2 = 40
2(3 – 2A2), and c1

2 = 0
3F2, respectively  Here the notation A2 + F2 = 1, where F2   1/0 is the tradi-

tional grey soliton contrast parameter, has been introduced.  Since d/d > 0 in the domain  > 0, direct inte-

gration of d/d = 2(0 – )( – 1)1/2 gives rise to the classic dark-soliton intensity distribution for a cubic 
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nonlinearity, namely () = 0[1 – A2sech2(0
1/2A)].  One must also consider the phase distribution.  Since 

the phase gradient d/d vanishes as   , it follows that ( – 2KV0)(1 – 2V0
2)–1/2 + 0

1/2F = 0 [we 

also note that this result is formally identical to Eq. (14)].  Substituting for (), separation and integration of 

the phase quadrature equation d/d = 0
1/2F{[1 – A2sech2(0

1/2A)]–1 –1} leads to a second classic result, 

namely () =  tan–1[(A/F)tanh(0
1/2A)].   

By reintroducing the original space-time coordinates  and , the exact analytical dark solitons of Eq. (1) 

may be written as 

 
1 2

1 2 2 2 1 2 0
0 0 2

0

1 1 2 0
0 2

0
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1 2

exp tan tanh
1 2

exp 1 4 exp .
2 2

Vu A A
V

VAi A
F V

i i

    


 




 
 



  
   

    
                   
           



        (15) 

Here, the upper (lower) signs describe a dark soliton evolving forwards in time, and travelling in the forward 

(backward) longitudinal direction (see Fig. 4).  The intrinsic velocity V0 is given by 

            
 

 
1 2 2 2
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0 2

1 2 2 2 1 4

1 2 2

F F
V F

F

    



    


 
.     (16a) 

This generalized expression is obtained by solving Eq. (14), which is quadratic in V0 and thus possesses two 

solutions.  However, for compactness of notation we have absorbed these two possible sign choices into the 

argument of the tanh and sech functions [c.f. solution (15)], and hence V0 must be always non-negative.  The 

above expressions yield consistency with those found for black solitons (whose results are flagged by the ‘b’ 

subscript), F = 0 and V0(0)   V0b, where (see Fig. 5) 

  0b 1 4
V 





.                     (16b) 

The equation for V0b is also identical to that given in Refs. [4,5] for the bright soliton of Eq. (1).  It is inter-

esting to note that V0(F) is not anti-symmetric with respect to F since V0(–F)   –V0(F) [7,23].  For conven-

ience, one may express solution (15) in the following more compact form: 

          
  1 2 1 2 0

0 0 2
0

, tanh
1 2

exp 1 4 exp ,
2 2

Vu A A iF
V

i i

 
   



 
 

  
   

    
           



                   (17) 

where phase variations have been absorbed into the complex tanh-shaped wave profile. 

 

D. Mapping onto continuous waves 
In the spirit of the frames-of-reference approach [4,5], space-time (geometrical) operations can now be 

used to find a more general dark soliton of Eq. (1).  Such a solution comprises a grey dip modulating a cw 
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background field that has a non-zero frequency shift[c.f. Eq. (3b)].  Note that while transformation laws 

(8a)–(8d) are expressed in terms of velocity V, the free parameter should ideally be .  One can proceed by 

establishing the relationship connecting and V.  This (V) correspondence can be uncovered by a two-

stage analysis: (i) apply geometrical transformation (8) to solution (17); and (ii) map the transformed cw 

component (in terms of V) onto the solution given in Eq. (3b) (in terms of ).  The first part of this proce-

dure leads to 

   

 

 

1 2 1 2
0 0 2

1
2

, tanh
1 2

exp 1 4 4
2

exp ,
2

Wu A A iF
W

i i

i

    


   





  
   

   
           
   
 



       (18) 

while the second part (equating the temporal phase slope) yields 

     2 2

1 4 1 1
1 2 1 2

V V
V V



 

 
      

.            (19a) 

With this definition of (V), the longitudinal phase slope is automatically mapped so that solution (18) is 

entirely self-consistent.  Inversion of Eq. (19a) can also determine V as a function of : 

     
   

 

1
2

2

1 4 4 1 4

1 4 2
V

     

  

       
 

   
,     (19b) 

where V() is independent of F (as must be the case, since soliton greyness is unaffected by any frequency 

shift in the cw background field).  The net velocity W   W(F, ) is given in Eq. (8d), where V0   V0(F) and 

V   V() are obtained from Eqs. (16a) and (19b), respectively.  This results in an algebraic expression for 

W(F, ) that is somewhat cumbersome, namely 

         
   

   

1 2 2 2
0

2 1 2 2
0

1 4 2 1 4 2
,

2 2 1 4 2 1 4

F
W F

F

           

            

              
             

      (20a) 

where, for compactness, we have introduced    1 + 4 + 4( + /2) and    1 + 2(2 + F2).  For 

black solitons, Eq. (20a) simplifies considerably to W(0, )   Wb(), which is given by 

 
 b 1

21 4 4
W 

  


 

    
.                        (20b) 

Equation (20b) agrees with the result in Refs. [4,5], which was derived for bright and black solitons on a 

slightly different basis (though still with frame-of-reference ideas in mind).  One may also prove that Wb is 

compatible with transformation laws (8a)–(8d), since it can be shown that Wb() = [V0b + V()]/[1 + 

2V0bV()].  It is interesting to note that an ansatz approach fails to yield solution (18). 
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E. Exact analytical snoidal waves 

Model (1) supports classes of nonlinear waves that are periodic in  [26].  While a soliton is typically a 

single localized entity, temporally extended solutions (e.g., described by Jacobi elliptic functions of the first 

kind) represent periodic wavetrains of similar pulses whose separation (in time) is controlled by the modulus 

m, where 0   m   1.  In the limit m1, the period becomes infinite and the solution reduces to a single 

soliton pulse.  The analytical form of such periodic waves was recently reported in Ref. [5] for the anoma-

lous-GVD regime (s = +1), where families of cnoidal and dnoidal families were uncovered.  Families of 

snoidal wave, that exist in the normal-GVD regime (s = –1), are reported here:  

 

 

1 2 1 2 sn
0 0 2

sn

1
sn 2

, sn ;
1 2

exp 1 4 4
2

exp ,
2

Wu m m
W

i i

i

 
   



   





 
 
  

           
   
 



       (21) 

where sn   0(1 + m2)/2.  The net velocity Wsn of the sn wave is formally identical to Wb [see Eq. (20b)], 

except that the propagation constant  is replaced by sn.  For m1, the sn function becomes a tanh and, in 

this case, a black soliton emerges.  As m → 0, solution (21) tends to a (quasi-linear) sin wave with vanish-

ingly-small amplitude. 

F. Velocity representation 

Thus far, exact analytical dark solitons of Eq. (1) have been presented using a notation that corresponds 

to that traditionally encountered in pulse physics (i.e., where the temporal phase gradient, identified with a 

frequency shift, is treated as a free parameter).  It is also possible to represent the same solutions using a ve-

locity-type representation of the phase (one that is more frequently used when describing nonlinear beams).  

In a sense, this is a more natural representation, given the velocity parameterization of transformation laws 

(8a)–(8d).  Dark soliton (18) then becomes 

        

  1 2 1 2
0 0 2

2

2

, tanh
1 2

1 4exp
1 2 2

exp exp ,
21 2

Wu A A iF
W

i V
V

Vi i i
V

    


 
 

   


  
   

   
          
         

  





      (22a) 

where V is the free parameter, while V0 and W are given by Eqs. (16a) and (8d), respectively.  In a similar 

way, one can express snoidal wave (21) in the form 
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  1 2 1 2 sn
0 0 2

sn

sn
2

2

, sn ;
1 2

1 4exp
1 2 2

exp exp ,
21 2

Wu m m
W

i V
V

Vi i i
V

 
   



 
 

   


 
 
  

           
           





      (22b)   

where Wsn = (V0sn + V)/(1 + 2VV0sn), V is the free parameter and V0sn is identical to V0b [see Eq. (16b)].  This 

representation is advantageous for drawing comparisons with the mathematical structure of spatial solitons, 

and seeing more clearly the effect on exact analytical solutions of including the term i u    in the govern-

ing equation.  Note that, when deriving the backward solutions in Eqs. (22a) and (22b), it was convenient to 

make the change V   –V in Eqs. (8a)–(8d).  This swap merely preserves the position of the + and –signs in 

Eq. (8d), and makes for a more compact simultaneous representation of forward and backward pulses. 

 

V. CONVENTIONAL DARK SOLITONS 

AND SNOIDAL WAVES 

It is axiomatic that, when all contributions from 2 2u   are negligible simultaneously, the corre-

sponding predictions of conventional pulse theory [i.e., Eq. (2)] must emerge from Eq. (1).  However, this 

physically intuitive requirement is more subtle to implement mathematically than simply setting  = 0. In-

deed, experience has shown that this over-simplified approach yields erroneous results in the spatial domain 

[25], and this is also true here.  In the reduction to conventional pulse theory, one must pay careful attention 

to the way  interplays with other parameters.  As illustrated in Sec. III.B, the formal restriction 
2 2 0u     when applied to solutions of Eq. (1) is fully equivalent to a multi-fold algebraic limit.   

It is particularly instructive to consider transformation laws (8a)–(8c).  Under the restriction V2   0, 

one recovers V    ,    , and      2, exp 2 ,u isV is V V u               .  In the limit 

V0V   0, the familiar Galilean (additive) velocity combination rule is recovered from Eq. (8d), namely W 

  V0 + V. 

A. Dark solitons 

The multiple limit one has to enforce in solution (18) is    0 (negligible spatial dispersion),    0 

(negligible nonlinear phase shift), and ( + /2)   0 (negligible frequency shift).  Applying this limit to 

the intrinsic and background velocities, V0 [see Eq. (16b)] and V [see Eq. (19b)], respectively, one finds that 

to leading order: V0   0
1/2F +  and V   .  This latter result illustrates the important point that frequency 

shifts and velocities are completely interchangeable in conventional theory: they have the same mathematical 

status under the SVEA, though Eqs. (16b) and (19b) show that the same is clearly not true in the more gen-

eral framework.  The net velocity W of the grey soliton becomes W   0
1/2F +  +    V0 + V [see Eqs. 
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(20a) and (8d)], which is the familiar Galilean velocity combination rule.  Solution (18) may then be ex-

pressed as 

    
 

 

1 2 1 2
0 0

2

, tanh  ,

exp
2

exp 1 1 ,
2

u A A iF

i i

i

     

   




   

  
      

  
    







          (23a) 

where 

               1 2
0, F         .                 (23b) 

Direct substitution verifies that, on the one hand, the approximate forward solution satisfies Eq. (2) exactly.  

On the other hand, the backward solution does not satisfy that equation because the rapid phase term, namely 

exp[–i2(/2)], remains.  This situation points to the intrinsic uni-directionality of wave equations derived on 

the assumption of slowly-varying envelopes.  In the local time frame (loc, loc) = ( –  , ), the forward 

solution transforms into the classic form [7] 

    1 2 1 2
loc loc 0 0 loc loc loc

2

loc loc

, tanh

exp
2

u A A W iF

i i

     

  

   

  
      

  



        (24) 

whose net velocity is simply Wloc ≡ 0
1/2F + .  The product 0

1/2F thus plays the role of a local intrinsic ve-

locity, so that when  = 0 (zero frequency shift) and F = 0 (black soliton), the pulse is stationary in the local 

time frame (i.e., the intensity minimum moves along the line loc = 0 because one has Wloc = 0).   

 

B. Interpretation of intrinsic velocity 
To gain deeper insight into soliton velocities, it is instructive to consider coordinate transformations 

more carefully.  Without loss of generality, we restrict our attention to the  = 0 subset of solutions (we note 

that inclusion of a finite frequency shift affects none of the following). 

A physical distinction between black (i.e., F = 0) and grey (i.e., |F| > 0) dark solitons is the size of the 

phase shift  across their temporal profile (being  radians and, generally, less than  radians, respec-

tively).  In conventional pulse theory, where one tends to analyze waves in local coordinates (loc, loc), this 

phase shift, namely  = –2tan1(A/F) = 2tan1(F/A) –  [2], is manifest as a so-called intrinsic velocity 

0
1/2F [c.f. solution (24)].  By invoking the inverse Galilean transformation, the same dark soliton when ex-

pressed in (, ) coordinates [c.f. solution (23) with the upper signs] is governed by Eq. (2) and its intrinsic 

velocity becomes 0
1/2F + .  Hence, from the frames-of-reference perspective, both grey and black solitons 

(and, for that matter, bright solitons also [4,5]) must have an intrinsic velocity with respect to the laboratory 

frame (by virtue of simply travelling along the z axis).  Note that  is preserved (as it must be) when trans-

forming between local and laboratory frames. 
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The way in which velocities combine under Galilean-type boosts oversimplifies these considerations.  

The separation of intrinsic velocity into two additive factors is merely an artefact of the SVEA; furthermore, 

one of these factors may be transformed away through a change in coordinates.  Equation (16a) shows that in 

the more general case, V0(F) has a much stronger geometrical characteristic than has previously been recog-

nized.  The interplay between system and solution parameters is then more intricate, and the intrinsic veloc-

ity cannot be broken up in such a straightforward and intuitive way. 

 

C. Snoidal waves 
Applying a similar asymptotic procedure, snoidal wave (21) is approximated by 

  

   

 

 

1 2 1 2
0 0 sn

2

sn

, sn , ;

exp
2

exp 1 1 ,
2

u m m

i i

i

     

   




  
  

      
  

    







            (25) 

where sn(, )   (  )   .  Direct substitution verifies that the approximate forward wave satisfies 

Eq. (2) exactly, while the approximate backward wave does not.  In the local time frame (loc, loc) = ( –  , 

), the forward solution transforms into the classic form [26] 

    
   1 2 1 2

loc loc 0 0 loc loc

2

loc sn loc

, sn ;

exp ,
2

u m m

i i

     

  

  
  

      
  



           (26) 

where the net velocity in this frame is just the frequency shift . 

 

VI. STABILITY OF DARK SOLITON PULSES 

A. Stability criterion 
Conventional nonlinear theories of dark soliton stability are routinely performed in the local time frame.  

They are also based on a renormalization procedure, whereby the continuous infinity of degrees-of-freedom 

associated with the cw background is subtracted in a self-consistent way, rendering the system’s conserved 

quantities (energy-flow, momentum, and Hamiltonian) finite [2,27].  To facilitate analysis, one usually con-

siders the  = 0 subset of solutions.  The stability criterion is introduced by way of a renormalized momen-

tum integral Mren [28].  A dark solution is then predicted to be stable against small perturbations if dMren/dV0 

> 0, where 

      
*

* 0
ren 0 loc 2

loc loc

1
2
i u uM V d u u

u



 





            
 ,              (27) 

0 is the intensity of the cw background, and V0   0
1/2F is the intrinsic velocity of the dark component in the 

local time frame.  Substituting solution (24) into Eq. (27), it can be shown that Mren(V0) = 2V0(0 – V0
2)1/2 – 

20  tan–1[(0 – V0
2)1/2/V0]. 
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In the more general model (1), one might expect a relationship similar to Eq. (27) to hold on physical 

grounds.  If a pulse (either bright or dark) is predicted to be stable in its local time frame, then for that pre-

diction to be meaningful, the same pulse must also be stable when viewed from any other frame (e.g., the 

laboratory).  Symmetry principles mean that one does not expect instabilities to appear and disappear spon-

taneously when boosting between different coordinate systems (since the choice of reference frame is an en-

tirely arbitrary one).  The formal mathematical question of stability criteria for bright and dark (spatial and 

temporal) Helmholtz solitons remains open, as does the issue of renormalization theory for classes of fully-

second order nonlinear envelope equations such as model (1).  However, one can still address questions con-

erning dark soliton stability through initial value problems and numerical computation. 

 

B. Initial value problems 

Simulations are now used to probe the fully-developed nonlinear dynamics when Helmholtz dark pulses 

suffer a perturbation to their temporal shape.  We begin our investigation by injecting a perturbed black (F = 

0) solution, 

         1 2 1 2
0 0,0 tanh expu i       ,                  (28) 

of full width 0   2/0
1/2, into the system.  The formal shape perturbation arises from omission of the cor-

rection factor (1 – 2W2)1/2 from the envelope.  Since this input pulse corresponds to an exact solution of Eq. 

(2) [c.f. soliton (23a) with upper signs], this class of initial value problem considers propagation effects when 

one does not take full account of contributions from the 2 2u   term [23]. 

Extensive computations with Eq. (1) have been performed using a generalization of the difference-

differential algorithm in Ref. [29] to allow for the i u   term.  As the pulse travels along , its width 

evolves toward the asymptotic value  1 22
01 2 W      , corresponding to the theoretical prediction for 

an exact (stationary) dark soliton [23].  Self-reshaping is accompanied by the emission of a small amount of 

radiation.  Figure 6 presents two illustrative sets of results for typical pulse evolution.  When  > 0 (the hy-

perbolic scenario), the injected pulse is initially too long for the cw background intensity 0.  The interplay 

between dispersion and nonlinearity thus tends to shorten the pulse length.  Similarly, for  < 0 (the elliptic 

scenario) the injected pulse is too short in time.  The solution thus tends to broaden as it propagates. 

The robustness of grey solutions can be addressed using an initial condition of the form u(, 0) = 

0
1/2[Atanh(0

1/2A) + iF], whose full-width is 0   2/0
1/2A.  This input pulse corresponds to an exact grey 

soliton of the conventional model equation with V( = 0) = 0 and hence W = V0 [where V0 is given by Eq. 

(16a)].  The self-reshaping characteristics of perturbed grey solitons are qualitatively similar to those of the 

black solutions shown in Fig. 6.  A key quantitative difference is that much longer propagation lengths are 

required for stationary grey solitons to emerge from the initial condition. 
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VII. CONCLUSIONS 
A framework for describing dark pulses of a universal governing equation with second-order spatiotem-

poral dispersion and a cubic nonlinearity has been examined.  Linear analysis has predicted the MI character-

istics of continuous waves, with simulations confirming theoretical predictions.  New families of exact ana-

lytical dark soliton have been derived for normal-GVD regimes, along with a class of (temporally-periodic) 

snoidal wave.  The space-time geometry of these new solutions has been explored in detail.  Furthermore, 

computations provided supporting evidence that these dark solitons may be classified as robust fixed-point 

attractors of the system dynamics. 

The analyses presented here, and also in Refs. 4 and 5, take the first steps toward a deeper understanding 

of nonlinear pulses in fully second-order systems.  Many other exciting avenues of theoretical and techno-

logical importance remain to be explored.  Most obviously, perhaps, is the question of spatiotemporal soliton 

pulse multiplexing [30] (an adiabatic perturbation method for Helmholtz-type beam systems was developed 

in Ref. 31).  Equation (1) can be modified to include other generic nonlinearities (particularly those func-

tional forms where one might now reasonably expect to find exact analytical solitons).  Also of interest is the 

potential for generalizing model (1) to multi-component regimes [32].  Given the detailed knowledge now 

established for scalar bright [4,5] and dark Helmholtz solitons in the time domain, vector contexts [33] are 

especially appealing and a natural candidate for further study.  Such coupled-mode equations could be used 

in photonics applications to understand how light behaves in birefringent waveguides [34] in the presence of 

spatiotemporal dispersion. Moreover, since spatial dispersion appears generically from the linear wave equa-

tion Laplacian, one may reasonably expect Helmholtz soliton pulses in a range of other, non-optical, con-

texts. 
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APPENDIX 
A. Derivation of optical model equation 

In the classic scalar wave optics approach, the transverse spatial profile of the electric field E is confined 

by the structure of a waveguide and the polarization scrambling term in Maxwell’s equations, namely 

   E , can be safely neglected.  One proceeds by seeking pulse solutions that have the form   E(t, z) =   

A(t, z)exp[i(k0z – 0t)] + A*(t, z)exp[–i(k0z – 0t)], where z is the longitudinal coordinate along the axis of the 

waveguide, t denotes the time coordinate, and A(t, z) is the envelope.  The underlying carrier wave has a cen-

tre frequency 0 and propagation constant k0 = n00/c, where n0 is the linear refractive index of the host me-

dium (at frequency 0) and c is the speed of light in a vacuum. 

By substituting the field E into the corresponding Maxwell equations and transforming to the temporal 

frequency domain (denoted by ), it can be shown that [6] 

 
2

2 2
0 02 2 0A Ai k k k A

z z
        

   ,                (A1) 

where  0 ,A A z     is the Fourier transform of the pulse envelope and k2 is the mode eigenvalue (ob-

tained by solving Maxwell equations for the transverse part of the confined field). 

At this point, it is customary to deploy a Taylor expansion to deal with the linear temporal dispersive 

properties of the system that are contained implicitly within k2().  By assuming that pulse solutions have 

only a narrow spectral width (temporal variations in A are on much longer time-scales than the characteristic 

period ~1/0) and that A  remains peaked within the vicinity of 0 (small frequency shifts) one may write 

      
0

2 2
0 0

0

1
!

j
j

j
j

k k
j

 

    




 


  

 .            (A2) 



 

 20  

By discarding terms beyond the second order in ( – 0), where third- and higher-order linear dispersion ef-

fects may be neglected [12], it follows that 

           22 2 2
0 0 0 1 0 0 2 1 02k k k k k k k            ,        (A3) 

where k0   k(0) and  
0

j j
jk k

 



    for j = 1, 2, 3, … By noting the correspondence 

   0
j ji t     , inverse Fourier transformation back to the time domain leads to the following governing 

equation: 
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            (A4) 

where n2 is the Kerr coefficient (assumed to be frequency independent) and the system nonlinearity has been 

included heuristically. 

In our analysis, we have followed a more traditional approach that simplifies the scalings without loss of 

generality.  Under similar assumptions as before, the term k2() – k0
2 is well approximated by 2k0[k()– k0], 

and it is now k() [rather than k2()] that is Taylor-expanded: 
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 .             (A5) 

Keeping terms up to second order in ( – 0) leads to the familiar quadratic approximation 

         22
0 0 1 0 02

kk k k           .              (A6) 

It is interesting to note that there is full agreement between Eqs. (A6) and (A3), up to terms in ( – 0)2.  By 

inverse Fourier transforming and introducing the nonlinearity in a similar way, one arrives at the classic opti-

cal pulse equation, 

   
2 2

202
1 22 2

0

1 0
2 2

kA A A Ai k n A A
k z z t t c

             
.        (A7) 

While Eq. (A4) is (potentially) a more accurate model, we shall instead continue with Eq. (A7) as this form is 

more commonly encountered in the literature [1–34].  

Equations (A7) and (A4) reveal that electromagnetic modes have an intrinsic propagation contribution to 
2 2z  in the form of the 1/2k0 travelling-wave pre-factor.  Biancalana and Creatore [14] have recently shown 

that light in some semiconductor waveguides (such as ZnCdSe / ZnSe superlattices) can also exhibit a poten-

tially dominant material contribution, whose physical origin lies in the coupling of the confined electric field 

to diffusing excitons.  Spatial dispersion appears through a modification to the coefficient of 2 2A z  in Eqs. 

(A7), whereby 1/2k0 is augmented by the exciton term: 
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Here, *2 xM   , *
xM is the effective exciton mass, 0 is a resonant frequency,  is a dimensionless parame-

ter related to the oscillator strength for the coherent exciton-photon interaction, and  is a frequency detun-

ing (for a detailed account, the reader is directed to the Appendix in Ref. 14).  It is interesting to note that the 

second term in Eq. (A8) can, in principle, become negative when *
xM < 0.   

After a rescaling of Eq. (A7), the dimensionless envelope u is governed by Eq. (1).  The normalized space 

and time coordinates are  = z/L and  = t/tp, respectively, where tp is the duration of a reference pulse with 

dispersion length L = tp
2/|k2|.  The sign of the group velocity dispersion is flagged by s =  1 = –sgn(k2) (+1 

for anomalous; –1 for normal), and    k1tp/|k2|.  The spatial dispersion parameter is  = 0 + D, where    

1/2k0L = c|k2|/ 2n00tp
2 and 2 2 2

0 0 2 0 02 2 pD n cL k n ct        .  Finally, u = A/A0, where the natural 

unit of electric field amplitude is A0 = (n0/n2k0L)1/2  = (n0|k2|/k0n2tp
2)1/2. 

 

B. Galilean transformation 
Under the conventional Galilean boost, one transforms to a frame of reference moving along the z axis (in 

the forward direction) at the group velocity vg = 1/k1.  Hence, when tloc = t – k1z and zloc = z, it follows that the 

operators t   and z  transform according to loct   and loc 1 locz k t     , respectively.  In the (tloc, zloc) 

frame, Eqs. (A7) and (A4) become 
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and 
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             (B2) 

respectively.  The origin of the mixed partial derivative term at 2
loc locA z t   lies in the 2 2z  operator [18], 

and the numerical coefficient of this term is k1/k0 in both cases.  To simplify considerations, the mixed-

derivative term could be neglected but this lead to a less-exact model.  By abandoning the Galilean boost and 

remaining in the laboratory frame, one avoids the mixed-derivative complications associated with Eqs. (B1) 

and (B2). 
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FIGURE CAPTIONS 

FIG. 1 (Color online)  Dispersion relations for cw solutions with  = +10–3, 0 = 1.0, and  = 1.0.  (a) Ellipse 

when s = +1 [representative of regimes with sgn(s) = +1], and (b) hyperbole when s = –1 [representative of 

regimes with sgn(s) = –1].  The families of curves are centred on (, K) = (s, 0), so the dominant effect of 

varying  is to translate the curves along the  axis.  Blue (upper) curves: forward wave.  Red (lower) curves: 

backward wave. 

 

FIG. 2. (Color online)  Dispersion relation [obtained by solving Eq. (6) numerically] for Fourier mode (5) 

when  = +10–3, 0 = 1.0,  = 1.0, and s = +1.  Note that there are always four branches because of the quartic 

nature of Eq. (14).  (a) The propagation constant of the perturbation (real part of the complex wavenumber Kp) 

comprises two ellipses.  (b) The spatial growth rate of the mode (imaginary part of Kp) has a short-wave MI at 

high-p.  Inset: Bow-tie-type structure of the classic long-wave MI curve (the additional two roots are zero).  

These small-scale features in p(p) are not apparent from visual inspection of the larger-scale plot. 

 

FIG. 3.  (Color online)  Spontaneous development of modulational instability in the anomalous-GVD regime 

(s = +1) when  = +10–3,  = 1.0, and 0 = 1.0.  In this simulation, the level of noise is set to 0.01% ( = 10–4).  

The zero-frequency spectral component (i.e., the dominant peak in the Fourier transform that is associated 

with the  = 0 cw background field) has been filtered from the dataset.  The first sidebands that start to grow 

are centred on the most unstable frequency p0   (20)1/2, as predicted by linear analysis.  The results are 

qualitatively unchanged for  = –10–3 because the long-wave instability region is independent of . 

 

FIG. 4. (Color online) Schematic diagram illustrating the geometry of solution (17), and in particular the dis-

tinction between pulses propagating in the forward (FWD) and backward (BWD) longitudinal directions.  In 

the (, ) plane, the minimum of the grey dip travels along the line  – V0 = 0 and  + V0 = 0, respectively, 

where the intrinsic velocity V0 is given by Eq. (16a).  The trajectory makes an angle  relative to the longitu-

dinal axis, where tan  = V0. 

 

FIG. 5.  (Color online) Schematic diagram illustrating the distinction between forward-propagating black and 

grey dark solitons.  The black soliton (those solutions with F = 0) has an intrinsic velocity V0b [given by Eq. 

(16b)], while its more general grey counterpart (here, a solution with F > 0) has an intrinsic velocity V0 [where 

V0(F > 0) > V0b]. 

 

FIG. 6. (Color online)  Self-reshaping of perturbed black (F = 0) pulses (28) toward an exact soliton with (a)  

= +10–3 (hyperbolic scenario) and (b)  = –10–3 (elliptic scenario – note that the qualitative features of these 

curves are similar to those in Ref. [23] for Helmholtz spatial dark solitons).  Solid bars denote theoretical pre-

dictions of the asymptotic full-width  .  Other parameters: 0 = 1.0 and  = 1.0; note that the cw back-

ground of each pulse has no long-wave MI since s = –1. 
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FIG. 5.  (Color online) Schematic diagram illustrating the distinction between forward-propagating black and 

grey dark solitons.  The black soliton (those solutions with F = 0) has an intrinsic velocity V0b [given by Eq. 

(16b)], while its more general grey counterpart (here, a solution with F > 0) has an intrinsic velocity V0 [where 
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FIG. 6. (Color online)  Self-reshaping of perturbed black (F = 0) pulses (28) toward an exact soliton with (a)  

= +10–3 (hyperbolic scenario) and (b)  = –10–3 (elliptic scenario – note that the qualitative features of these 

curves are similar to those in Ref. [23] for Helmholtz spatial dark solitons).  Solid bars denote theoretical pre-

dictions of the asymptotic full-width ∞.  Other parameters: 0 = 1.0 and  = 1.0; note that the cw back-

ground of each pulse has no long-wave MI since s = –1. 


