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Abstract 
We propose a simple scalar model for describing pulse phenomena beyond the conventional slowly-varying 

envelope approximation.  The generic governing equation has a cubic nonlinearity and we focus here mainly 

on contexts involving anomalous group-velocity dispersion.  Pulse propagation turns out to be a problem 

firmly rooted in frames-of-reference considerations.  The transformation properties of the new model and its 

space-time structure are explored in detail.  Two distinct representations of exact analytical solitons and their 

associated conservation laws (in both integral and algebraic forms) are presented, and a range of new 

predictions is made.  We also report cnoidal waves of the governing nonlinear equation.  Crucially, 

conventional pulse theory is shown to emerge as a limit of the more general formulation.  Extensive 

simulations examine the role of the new solitons as robust attractors. 

 

PACS numbers:   42.65.-k (nonlinear optics), 

42.65.Tg (optical solitons), 

42.25.-p (wave optics),  

05.45.Yv (solitons, nonlinear dynamics of). 



I. INTRODUCTION 
The slowly-varying envelope approximation (SVEA) is so widespread in the literature of wave phenomena 

that it is almost trivially familiar [1–3].  Across a diverse range of contexts – from electromagnetics and 

quantum mechanics, to hydrodynamics and plasma physics – it is routinely deployed to simplify complicated 

(e.g., elliptic or hyperbolic) governing equations, typically reducing them to the parabolic class.  One is often 

concerned with the evolution of a physical quantity Q(t, z) that is represented by an envelope q(t, z) 

modulating a rapidly-oscillating component according to   Q(t, z) = q(t, z)exp[i(k0z 0t)] + q*(t, z)exp[i(k0z 

0t)].  Here, t and z denote time and space coordinates, respectively, while k0 and 0 are the propagation 

constant and angular frequency of the underlying carrier wave.  The quantity Q may correspond to, e.g., 

electric field, polarization grating, fluid velocity, ion density, or a quantum mechanical wavefunction.  The 

SVEA (which assumes the longitudinal variation of q is slow on the ~1/k0 scale-length) tends to go hand-in-

hand with a Galilean coordinate transformation to a frame of reference (tloc, zloc) moving at some characteristic 

(system dependent) speed, typically the group velocity vg.  Such a transformation has the standard form tloc = t 

– z/vg and zloc = z (this local time frame is denoted throughout by the “loc” subscript).  Together, the SVEA 

and subsequent coordinate boost form a universal mathematical device that is the cornerstone of conventional 

pulse modelling.  

In recent papers [4], we considered the consequences of neglecting the “SVEA + Galilean boost” 

combination in a simple nonlinear pulse propagation model that comprises one space dimension plus time.  

The motivation was to understand more thoroughly the precise role played by the SVEA in generating 

simplified governing equations, and to quantify directly its effect upon the various classes of wavepacket 

solutions.  Such a task may be undertaken most effectively, providing maximum physical insight, when the 

system being approximated can itself be handled in an exact mathematical way.  This seems to be an 

elementary problem but, to the best of our knowledge, such an analysis has not yet been reported in the 

literature.  For instance, while it is certainly true that spatial Helmholtz solitons for a cubic nonlinearity have 

been known for many years [5–7], no equivalent time-domain solutions appear to have been reported to date. 

To facilitate the analysis, we start out with a fully second-order spatiotemporal generalization [4] of the 

universal nonlinear Schrödinger equation [1–3].  The early stages of our approach are somewhat traditional, 

e.g., the introduction of wave envelopes and the Fourier decomposition of the temporal dispersion operator.  

However, we dispense with the “SVEA + Galilean boost” device and instead remain in the laboratory frame 

(i.e., the frame where the source of pulses is at rest with respect to the observer).  Such a choice is clearly 

allowed physically; it is, after all, the frame in which experiments are usually performed and measurements 

made.  While the effects uncovered here are generic in nature (i.e., a consequence of ellipticity or 

hyperbolicity in the model), one arena where this work may find particular application is in waveguide optics 

with spatial dispersion that can be of either sign (see Appendix).  It is the frame-of-reference feature that 

distinguishes the following investigation from the historic works of Hasegawa and Tappert [8,9], Zakharov 

and Shabat [10,11], Manakov [12], Gordon [13], and many others [14–16]. 

The layout of this paper is as follows.  A generic nonlinear wave equation is proposed in Sec. II, and the 

incompatibility of the traditional Galilean boost with systems involving spatiotemporal dispersion is detailed.  
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The space-time transformation laws of the model are then discussed, and the velocity combination rule for 

pulses is obtained.  Families of exact analytical forward- and backward-propagating bright solitons are derived 

in Sec. III, along with new physical predictions for pulse characteristics and three conservation laws (in both 

integral and algebraic form).  The subtle notion of rest frames is also addressed, two new classes of cnoidal 

wave are reported.  Asymptotic emergence of conventional pulse theory (in an appropriate physical limit) is 

examined in Sec. IV while, in Sec. V, computer simulations investigate the robustness of the new solitons 

against perturbations to the pulse shape.  We conclude, in Sec. VI, with some remarks about the applicability 

of our work and its potential for describing novel nonlinear wave phenomena that are directly observable in 

experiments. 

 

II. NONLINEAR WAVES WITH SPATIOTEMPORAL DISPERSION 

A. Governing equation and Galilean boosts 
We consider the following governing equation for the dimensionless envelope u: 
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Here,  denotes the (longitudinal) space coordinate along which the wave is travelling, while  denotes time (it 

is crucial to note that  is normalized time and not a local time variable).  There are three parameters 

appearing in Eq. (1):  is proportional to a ratio of group speeds [e.g., for optical pulses, one may have 

  k1tp/|k2|, where 
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are coefficients in the Taylor expansion of the mode propagation constant k() around 0, while tp is a 

reference pulse duration – see Appendix], and s =  1 flags the group-velocity dispersion (GVD) regime (+1 

for anomalous; –1 for normal) [17–19].  The third parameter, , can be interpreted as a positive or negative 

spatial dispersion parameter [spatial and temporal dispersion phenomena are identified with the 2 2    

and   2 22s   operators, respectively].    Hence, the fundamental structure of the governing equation 

depends upon the product s: for sgn(s) = +1 (–1), Eq. (1) is elliptic (hyperbolic) in character. 

The first term in Eq. (1), 2 2u   , is routinely neglected by invoking the SVEA; one assumes that 

2 2u u      , and then defines a set of local coordinates loc =  –  and loc   This 

transformation describes a Galilean boost to a reference frame moving at speed 1/ in the + direction.  The 

differential operators transform as loc loc            and loc      , combining to leave the 

familiar parabolic wave operator in the local time frame: 

     2 2 2 2
loc loc2 2i s i s                    [8–19].  Since the nonlinearity is unchanged by 

the coordinate boost, the envelope u(loc, loc) satisfies  
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which is the canonical form of the universal nonlinear Schrödinger equation [10,11].  One can now ask what 

happens when the same boost transformation is applied to Eq. (1).  This procedure leads to a governing 

equation with a cross derivative 2
loc locu      that does not rigorously vanish: 
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The cross derivative can hinder a straightforward physical interpretation of Eq. (3) [20–22], and it also 

introduces extra computational complexity.  To proceed, one might, for instance, consider only those families 

of solutions where 2 << O(1), which enables the coefficient of the GVD term to be restored to s/2.  One 

could also argue, based on order-of-magnitude considerations, that the cross-derivative term may be dropped 

(see, for instance, the seminal spatial dispersion analysis of Biancalana and Creatore [23]).  In so doing, one 

arrives at 

          
2 2

2
2 2
loc loc loc

 + 0
2

u u s ui u u
  
  

 
  

 ,                                    (4) 

which is a temporal analogue of the well-known spatial nonlinear Helmholtz equation [5,7].  Since we wish to 

minimize approximations, we instead dispense with the Galilean boost and deal with the full generality of Eq. 

(1) directly. 

A leading-order estimate of the contribution made by the 2 2    operator in Eq. (1) can be obtained by 

assuming that 2 2u    is negligible compared to other terms, so that the longitudinal part of the wave 

operator is approximated by   22 22i s i u            .  One can then consider the product 

  2 2u u         , which leads to 
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By deploying this perturbative technique [24,25], the 2 2  operator has been replaced by an O() 

combination of higher-order (linear and nonlinear) derivatives with respect to the time variable . 
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B. Coordinate transformation laws and 

velocity combination rule 

When investigating the properties of Eq. (1) and its solutions under transformations in the space-time plane, it 

is convenient to adopt the notation routinely deployed for spatial solitons.  Under the change of coordinates 

[26] 
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the covariance of Eq. (1) is guaranteed so long as u transforms according to  
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Here, V is a temporal analogue of the transverse velocity parameter of an optical beam [4,26].  Under two 

successive applications of transformation (6), which are characterized by velocities V0 and V, respectively, it 

can be shown that the net velocity W with respect to (, ) is given by [27] 

        0
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.                            (7) 

The parameters V and V0 are linked in a way that is strongly reminiscent of the Lorentz velocity combination 

rule in relativistic kinematics [28].  While this correspondence is exact when sgn(s) = 1, one should be 

mindful that V0, V and W are physically related to inverse velocities. 

It is interesting to note that one can define an invariant interval associated with Eq. (1), according to 

whether s =  1.  For two points in the (, ) plane separated by coordinate differences  and , the 

invariant interval between these points is 2/2s + 2.  This numerical quantity is unchanged under 

transformation (6) with arbitrary V. 

 

III. BRIGHT SOLITON PULSES 
A. Quadrature equations 

In the anomalous GVD regime (where s = +1), it is reasonable to expect families of exact analytical bright 

solitons to exist [5].  Furthermore, the cubic nonlinearity strongly suggests that one should be able to find 

sech-shaped pulses [9].  We begin our analysis by looking for solutions that have the quite general form u(, 

) = 1/2(, )exp[i(, )]exp(i/2), where (, )   |u(, )|2 is the wave intensity, (, ) is the phase 

distribution, and the complex-exponential exp(i/2) is a manifestation of the underlying carrier wave [this 

contribution appears explicitly in the envelope solutions of Eq. (1)].  Substitution of u into Eq. (1) and 

isolating the real and imaginary parts yields: 
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and 
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Equations (8a) and (8b) can be simplified by seeking solitary solutions that have linear phase profiles; this 

amounts to setting (, )    + K, where K is the soliton propagation constant and  is the frequency 

shift (strictly, is a normalized measure of the deviation of the pulse’s centre frequency from the carrier 

frequency).  With such a choice, the second partial derivatives of  are zero, and Eqs. (8a) and (8b) may be 

recast as 
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and 

           2 0K  
 
 

  
 

.                             (9b) 

The parameter  in Eq. (9a) has been identified as 
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so that Eq. (9c) defines the soliton dispersion relation whose quadratic character is tightly connected with the 

presence of the 2 2u    term in Eq. (1).  Solving for K, one naturally obtains two roots: 
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where the   sign flags propagation along   [5,26].  By introducing the new space-time coordinate   ( – 

W)(1 + 2W2)1/2, Eqs. (9a) and (9b) assume the canonical form: 
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For Eq. (11b) to hold for arbitrary gradients d/d, it must follow that W = ( + )/2K.  The symmetry 

reduction technique has thus transformed Eq. (1) into a simple quadrature equation [that is, Eq. (11a)].  

Crucially, this ordinary differential equation has exactly the same formal structure as that obtained in 

conventional pulse theory.  Bright (‘bell-shaped’) solitons are subject to vanishing-asymptotic boundary 

conditions of the form 
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which, when applied to Eq. (11a), cement the relationship    0/2  between parameter  [defined in Eq. (9c)] 

and the pulse peak intensity0.  Two integrations of Eq. (11a) yield () = 0sech2(0
1/2), and hence the two 

families of exact analytical bright soliton can be written as: 
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where W is given by 
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The upper (lower) signs correspond to pulses that are travelling in the forward (backward) longitudinal 

direction (see Fig. 1) [25].  For propagating solutions (i.e., real K  and no growth or evanescence in ),  

must lie within the band  <  < +, where   =   (2 + 2 + 1/2)1/2.  In addition, one must also have 

W > 0 for solutions travelling both forward and backwards in space (thus ensuring that the pulse is always 

moving forwards in time).  This latter condition amounts to  > .  By combining these two simultaneous 

inequalities, it can be seen that physically meaningful solutions require – <  < +.  However, for large 

frequency deviations (e.g., where    +) it should be borne in mind that the parabolic approximation 

invoked to arrive at the GVD-dominated temporal dispersion operator can become invalid. 

 

B. Space-time geometry of solitons 

The forward-propagating soliton must form a stripe in the (, ) plane that spans the first and third quadrants.  

The pulse thus travels through space-time along its world line  – W = 0 at speed 1/W.  This linear trajectory 

is inclined at angle  to the longitudinal  axis, where tan K W      (see Fig. 1).  When  = 0, it 

follows that W = V0, where 

                  0 1 4
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
.                               (14) 

Thus, 1/V0 = (1 + 4)1/21 provides a yardstick against which all other speeds may be measured.  For fixed 

, solitons with  < 0 ( > 0) travel faster (slower) than 1/V0 because their world lines are associated with 

smaller (larger) gradients (see Fig. 2).  In the laboratory frame, the duration of the soliton is  = (1 + 

2W2)1/20, where 0  20
1/2 is the duration in the rest frame [whose coordinates (0, 0) can be obtained 

from Eqs. (6a) and (6b)].  By substituting for W from Eq. (13b), it can be shown that  
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This key result predicts how the pulse duration depends on the system and solution parameters.  When  < 0, 

one finds that 0 >  while, when  > 0, it follows that 0 < .  Neither effect appears in conventional 

theory (see Fig. 3), which constitutes the Galilean limit. 

 

C. Velocity representation 

Equation (7) is a geometric relation that has been derived solely on the basis of coordinate transformations 

(i.e., independently of the nonlinearity, and without reference to any particular solution [27]).  By applying 

transformation (6) to the forward and backward 0   solutions in Eqs. (13a) and (13b), one generates an 

alternative pair of pulse solutions that may be combined into: 
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i V
V

Vi i i
V

    


 


   


 
    

      
   

            





                           (16) 

where W is given by Eq. (7) (with s = +1).  We refer to this as the velocity representation.  Solitons (13) and 

(16) represent the same physical pulse when the frequency shift  and velocity V are connected by 

                      2 2

1 4 1 1
1 2 1 2

V V
V V

 
 

 
       

.                                (17a) 

This mapping is most easily obtained by equating the phase slopes of the two representations.  It then follows 

that the expressions for W given in Eqs. (7) and (13b) are equivalent.  After some algebra, it can be shown that 

                     
   

 

1
2

2

1 4 4 1 4

1 4 2
V

     

  

       
 

   
.                          (17b) 

This result is entirely consistent with Eqs. (7) and (13b); for example, when  = 0, one recovers V = 0 and 

hence W = V0.  

D. Rest frames vs. laboratory frames 

We now consider what happens when performing a linear boost to (loc, loc) = ( – , ) coordinates in the 

forward soliton (13) with  = 0.  This procedure generates a solution u(loc, loc) that satisfies Eq. (3),  

                    
  1 2 1 2 loc loc loc

loc loc 0 0 2
0

loc loc

, = sech
1 2

exp 1 4 exp ,
2 2

Wu
V

i i

 
   



 


 

  
  

          

                         (18) 
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and whose net velocity is Wloc   V0 –  = [(1+ 4)1/2 – 1].  Thus, boosting to the Galilean local time frame 

used in conventional theory (see Sec. II.B) cannot result in a stationary pulse (i.e., one where Wloc = 0) of 

finite amplitude unless    0. 

One can always describe a soliton in its rest frame (see Fig. 3), whose coordinates are denoted by (0, 0).  As 

a simple illustrative example, consider the  = 0 forward soliton.  Transforming to the rest frame using Eqs. 

(6a) and (6b) [where the velocity parameter is given by Eq. (14)], the partial differential operators become 

   
1 22

0 0 0 01 2 2s V s V    


          and    1 22
0 0 0 01 2s V V   


         .  The equation 

that u(0, 0) satisfies is then free of mixed derivatives [unlike Eq. (3)], but it is still more complicated than the 

original model [Eq. (1)].  More precisely, the combination of second-order derivatives is covariant, i.e., 

                
0 0 0 02 2

s s
 

       
       

  
       

,                         (19a) 

but the combination of first-order derivatives transforms according to  

                 

   

2
0

0 0
0 0

1

1 2

1 2 .

s V

s V V


  

 
 

 
 

  

  
      

                           (19b) 

In systems with spatiotemporal dispersion, the notion of rest frames also involves an additional subtlety.  It 

follows that (0, 0) strictly defines the rest frame of only a subset of  = 0 solitons – those solutions 

parameterized by fixed .  In other words, the rest frame of the  = 0 solution depends explicitly on the 

pulse peak amplitude (through the dependence of V0 on ).  To avoid these sorts of complexities, it is more 

straightforward to consider soliton pulses in the laboratory frame.  

 

E. Conservation laws 

Model (1) and its complex conjugate can be regarded as the Euler-Lagrange equations for a Lagrangian 

density L, where 

                                

* *
*

* *
4

2

1 .
2 2

i u u u uu u

s u u u u u

 
   


   

      
             

   
  

   

L

                                     (20a) 

By identifying the canonically-conjugate momenta as 

                    
 

*

2
i u

u
 


  

      

L ,                           (20b) 

                             
 * 2

i u
u

 


  
       
 L ,                                    (20c) 

and deploying standard field-theoretic techniques [28], the following three conserved quantities can be 

derived on the basis of Noether’s theorem: 
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*

2 * u uJ d u i u u 
 





   
         
 ,                                  (21a) 

               
* * *

* ,
2
i u u u u u uM d u u 

     





         
                    
                            (21b) 

                        
* * *

4* 1 .
2 2 2
s u u u u i u uH d u u u 

     





       
                 
              (21c) 

The integrals in Eqs. (21a)–(21c) represent the pulse energy-flow, momentum, and Hamiltonian, respectively; 

they are conserved in the sense that dJ/d = 0, dM/d = 0, and dH/d = 0.  By substituting u(, ) =          

1/2(, )exp[i(, )]exp(i/2) into Eqs. (21a)–(21c), and applying boundary conditions (12a)–(12d), it can 

be shown that when s = +1, 

             21 4 2J P     ,                                           (22a) 

           
2

2

1 4 2

Q
M J

 

 


  

 
,                            (22b) 

                   

 1
2

2
2

1 1 4 4
2 2

21 4 2 ,
1 4 2

JH

QP

  
 

 
 

        
 

 
    
   

                                (22c) 

where the integrals P and Q (which have positive-definite integrands) are defined by 

                          P d  




  ,                            (22d) 

             
   

21 1 
4

dQ d
d

  
  





 
  

 
 .                                           (22e) 

For Kerr bright solitons, it can be shown that P = 20
1/2 and Q = (2/3)0

3/2. 

 

F. Cnoidal waves 
So far, we have derived and analysed the exact analytical bright solitons of Eq. (1), which describe isolated 

structures in the time domain.  For completeness, we now report the existence of two classes of cnoidal waves 

when s = +1.  These solutions are given by Jacobi elliptic functions of the first kind, and describe periodic 

trains of identical non-dispersive pulses.  The first solution class is 
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   

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

 
 
  

          
   
 



                          (23a) 
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where cn   0(m2 – 1/2), while the second class is 
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1
dn 2

, dn ;
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
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                          (23b) 

where now dn   0(1  m2/2).  For both cn and dn solutions (which could also be written in the velocity 

representation of Sec. III.C), W{cn,{dn} is given by Eq. (13b) when  = {cn,dn}.  It is noteworthy that when  = 0, 

the two cnoidal-wave solutions satisfy the spatial nonlinear Helmholtz equation [5], where  [in Eq. (4)] 

represents the transverse spatial coordinate.  Wavetrains (23a) and (23b) are parameterized by the modulus m, 

where 0   m  1 controls the temporal period between successive pulses.  In the limit that m1, the period 

of the cn and dn functions diverges and one recovers the sech soliton [see solution (13)].  As m0, the cn 

wavetrain tends towards a cosine modulation (of vanishingly-small amplitude), while the dn wavetrain 

asymptotes to a flat (continuous-wave) solution. 

 

IV. CONVENTIONAL BRIGHT SOLITONS 

AND CNOIDAL WAVES 

A systematic analysis of pulses of a generic nonlinear wave equation with spatiotemporal dispersion has been 

developed throughout this Section.  We now show that in a simultaneous multiple limit, the predictions of 

conventional pulse theory can be recovered.  Intuitively, one should expect to find this type of asymptotic 

convergence – conventional pulses must emerge in regimes where the SVEA is valid.  When all contributions 

from the 2 2    operator can be neglected simultaneously [4,5,26,27], Eq. (1) may be replaced by the 

(approximate) parabolic model [8,9,17] 

             
2

2
2 0

2
u u s ui u u
  

   
      

 .                  (24) 

In the limit that V2   0, one recovers the transformation laws for Eq. (24) from Eqs. (6a)–(6c): 

                V    ,         ,                         (25a,b) 

              21
2, exp ,u isV is V V u               .                            (25c) 

One also finds the classic Galilean velocity combination rule, W   V0 + V, emerging from Eq. (7). 

 

A. Bright solitons 

Enforcing the four-fold simultaneous limit    0 (long pulse),   0 (moderate nonlinear phase shift), 

( + /2)   0 (negligible frequency shift) and W2   0 in solution (13) leads to the approximate 

solutions 
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 

  
         
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 





                      (26) 

where W    + .  On the other hand, a dependent rapid phase factor, exp[–i2(/2)], survives the limit 

process for the backward waves.  Hence, the backward solutions in Eq. (26) cannot satisfy Eq. (24).  This 

situation points to the intrinsic uni-directionality of the conventional model, which describes evolution along a 

single longitudinal direction only.  Under a Galilean boost to local coordinates (loc, loc) (see Sec. II.), Eq. 

(24) transforms into Eq. (2), as discussed in Sec. I, and the familiar Kerr soliton emerges from the forward 

solution [9]: 

                                

   1 2 1 2
loc loc loc loc0 0

2
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, sech

exp .
2

u

i i
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  

  
  

         



                             (27) 

When  = 0, soliton (27) is stationary in the local frame, irrespective of .  That is, (loc, loc) defines the rest 

frame of all  = 0 solutions, whose peak always sits at loc = 0 [recall, from Sec. III.D, that there is no such 

universality for solitons of Eq. (1)].  For the forward pulse, the conserved quantities given in Eqs. (22a)–(22c) 

asymptote to J   P, M   P, and H   ( + /2)P – P + Q; for the backward pulse, one obtains J   P, 

M   +P, and H   ( + /2)P – 3P + Q – (2 + 1/)P.  We note that in the latter case, H contains a term 

at O(|–1) and so is formally singular. 

 

B. Cnoidal waves 
The same formal limit procedure that we applied to the solitons (13a) and (13b) can now be used to 

asymptote cnoidal waves (23a) and (23b), in which case one obtains: 
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                          (28a) 

The forward solutions converge to their conventional counterparts, as they should, and in the (loc, loc) frame, 

one finds that [29,30]     
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  

     
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                                  (28b) 

As expected, the backward cnoidal waves have no analogue in this frame. 
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A similar handling of the velocity representation of solutions is also possible, whereupon one finds 

exactly the same algebraic results as in Eqs. (26)–(28), but with  replaced by V.  This follows directly from 

Eq. (17a) and (17b), which show that    V.  That is, frequency shifts and velocities are completely 

interchangeable in conventional theory since they have the same mathematical status under the SVEA.  

However, the same is clearly not true in the (more general) spatiotemporal formalism, where the connection 

between  and V is more intricate.  It can also be shown, from Eq. (14), that the intrinsic velocity is V0   . 

 

C. A note on soliton momentum 
Finally, we note some interesting observations about the structure and interpretation of conserved quantities in 

both spatiotemporal and conventional pulse models.  Equation (22c) shows that spatiotemporal bright solitons 

possess a non-vanishing Hamiltonian when = 0; this quantity may be interpreted as a zero-point energy.  

Equation (22b) reveals a more intuitive symmetry between forward and backward solutions, namely that they 

have opposite momenta.  Like H, the invariant M is non-zero when = 0 and it is tempting to interpret this 

zero-point momentum physically through frame-of-reference considerations: solutions (13) and (16) describe 

pulses that are moving with respect to the laboratory frame, and such relative motion may be associated with a 

non-vanishing momentum. 

To highlight the limitations of the standard analogy with particle mechanics, it is instructive to first 

consider conventional solutions with  = 0 [see Eq. (26)] and that are hence moving in the forward direction 

with W = V0 =  in the laboratory frame.  While one naturally expects such solitons to have zero momentum 

in their rest frame [which, recall, is identical to the (loc, loc) coordinates for the subset of  = 0 solutions], 

analysis shows that their momentum is zero even in the laboratory frame (i.e., before one transforms to the 

rest frame).  Hence one may conclude that the zero-point momentum is eliminated by the SVEA, rather than 

by the Galilean boost. 

One can extend these considerations to the corresponding spatiotemporal soliton, which has momentum 

M = +2Q/(1 + 4 + 22)1/2 [see Eq. (22b)].  Coordinate transformation Eqs. (6a) and (6b) can be used to 

show that, in its rest frame, this soliton is represented by  
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                                      (29a) 

where the frequency shift 0 and propagation constant K0 are given by 
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and 

                  0 2
0
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
 

 
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.                           (29c) 

Solution (29) satisfies a governing equation that can be obtained as described in Section 3.4; that equation and 

its complex conjugate correspond to the Euler-Lagrange equations for a Lagrangian density 
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                             (30) 

This expression for L0 can be obtained by transforming Eq. (20a) with Eqs. (19a)(19d).  Subsequent analysis 

following the methods in Section 3.5 reveals that the momentum of soliton (29) is M0 = [(1 + 4)1/2 1]P, 

where P = 20
1/2.  Thus, in its rest frame, the forward spatiotemporal soliton is associated with a momentum 

M0 that is non-vanishing unless   0 (which, recall, is one contribution to the SVEA). 

A natural conclusion to draw from these frame-of-reference considerations is that the canonical field 

momentum [e.g., the M integral defined in Eq. (21b)] for continuously distributed objects in space-time cannot 

generally be considered analogous to the kinematic momentum of a point particle in classical mechanics. 

 

V. STABILITY OF BRIGHT SOLITON PULSES 

A. Stability criterion 
The stability properties of pulses are usually analyzed in the local time frame, where the conventional 

governing equation has the NLS form [see Eq. (2)].  It is well known that a localized solution of this equation 

is robust against small perturbations if its power P() satisfies the inequality 

                 2
loc loc loc , 0dP d d u

d d
  

 





  ,                                      (31) 

where P is the integral quantity on the right-hand side of Eq. (31).  This inequality, which is the well-known 

Vakhitov-Kolokolov (VK) integral criterion [31], tends to be a necessary but not sufficient condition for 

predicting stability [32].  For exact soliton (27), it follows that P() = 2(2)1/2, and so the VK condition is 

always satisfied. 

Physical symmetry principles demand that instability cannot arise as a consequence of changing one’s 

coordinate system.  For example, if a solution u(loc, loc) of Eq. (2) is found to be robust against perturbations, 

it follows that the corresponding solution u( – , ) of Eq. (24) must be equally robust.  In other words, one 

cannot have a solution that is stable in the local time frame and, simultaneously, unstable in the laboratory 

frame.  By extension, if a solution of the conventional model [Eq. (24)] is stable, one might expect the 

spatiotemporal generalization of that solution to be also stable (at least if the 2 2u   contribution is small).   

As these arguments are not conclusive, and in any case would only consider stability with respect to small 

perturbations, we complement these considerations with full numerical investigations. 

 

B. Initial value problems 
The stability of the new bright solitons is now addressed computationally through an initial value problem.  

The input pulse for Eq. (1) is chosen to be 
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              1 2 1 2
0 0,0 sech expu i      ,                                   (32) 

which corresponds to exact solution (26) of the conventional pulse model.  The following selection of 

simulations thus addresses the system dynamics when the injected waveform does not take full account of the 
2 2   operator.  By using Eqs. (6) and (17b) to transform to the rest frame of the input pulse, it can be 

seen that initial condition (32) corresponds to a solution whose width deviates from the value required for an 

exact soliton by the factor (1 + 2W2)1/2  [26].  When  << O(1) and 2 << O(1), the asymptotic parameters 

(amplitude, width, and area) of any emergent solitons can be predicted using inverse-scattering techniques 

[14] (though one must then be mindful to transform back to the laboratory frame). 

Equation (1) is integrated numerically using a direct generalization of the difference-differential 

algorithm [33] to allow for i   in the linear wave operator.  This additional operation can be implemented 

using Fast Fourier Transforms, and results in a negligible increase in computational overheads.  In regimes 

where  < 0 and s = +1, the governing equation has a hyperbolic structure but computations can still be 

performed using essentially the same method. 

 

C. Bright solitons as robust attractors 

Results are first presented from a range of simulations when  = 1.0,  = 5, 10, and 15 and where  = +10–3.  

Since  > 0, the duration of the input pulse (hence its power P) is reduced relative to the exact (i.e., the 

unperturbed) solution.  One therefore expects to find qualitatively similar self-reshaping characteristics to 

those uncovered for Helmholtz Kerr spatial solitons [26] (see Fig. 4).  The pulse parameters exhibit 

monotonically decaying oscillations that tend to vanish as   , leaving a stationary state (i.e., an exact 

spatiotemporal pulse).  When  is decreased (for instance, by a factor of 10), the normalized reshaping curves 

shown in Fig. 4 are nearly unchanged.  However, the longitudinal scaling can be such that the oscillations take 

place over a greater propagation length in the unscaled coordinate z [26]. 

When  < 0, the input pulse duration and power are increased relative to the unperturbed solution.  One 

therefore expects the nonlinearity to dominate the initial stages of evolution and, accordingly, for the peak 

amplitude to increase.  Results are shown in Fig. 5 using the same values of  = 5, 10, and 15 but with  = 

10–3.  The reshaping pulses still exhibit their monotonically-decaying oscillations as they evolve toward 

stationary solutions of Eq. (1), but there are qualitative differences.  For instance, increasing the strength of 

the perturbation tends to result in an asymptotic pulse whose area is progressively less than that of the input 

pulse. 

 

VI. CONCLUSIONS 
We have proposed a novel generalization of the classic nonlinear Schrödinger pulse equation which is based 

on a formalism that describes spatiotemporal dispersion.  By retaining a more complete description of the 

linear wave operator, we have been able to apply the mathematical tools and computational techniques of 

Helmholtz spatial solitons to phenomena in the time domain.  While the essence of this approach was 

suggested some three decades ago [34], it appears to have received little subsequent attention in the literature.  
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One of the surprising outcomes of this research is just how much progress can be made when abandoning the 

SVEA.  A host of exact analytical results has been obtained, including transformation laws, exact analytical 

solutions (stationary isolated pulses and extended wavetrains), and conserved quantities (integral and 

algebraic forms).  We have also uncovered a general velocity combination rule, identified the invariant 

interval, and analyzed the characteristics of soliton rest frames.  Crucially, the predictions of conventional 

nonlinear pulse theory are recovered in an appropriate limit.  One important aspect not discussed here is the 

stability of the spatiotemporal cnoidal-wave solutions (22a) and (22b) [35]; such considerations are reserved 

for future research. 

Extensive simulations, in parallel with the VK criterion [31] and traditional inverse-scattering techniques 

[14], have established that the stability properties of spatiotemporal solitons are similar to those of their 

nonlinear beam counterparts [26].  These new solutions have been shown to behave as robust attractors in the 

face of significant temporal shape perturbations, and their innate stability appears insensitive to the sign of the 

 parameter. 

The analysis presented in this Paper has a wide appeal, particularly within the arena of universal soliton-

supporting evolution equations.  One avenue to explore is the case of more involved nonlinearities, such as 

cubic-quintic [36] and saturable [37]; another is the systematic generalization of a whole range of pulse 

models, including the classic equations of Manakov [12], Hirota [38], Kaup and Newell [39], Davey-

Stewartson [40], and many more besides.  Pulse interaction geometries [41] in coupled nonlinear systems with 

spatiotemporal dispersion are also of intrinsic interest [42].  While our research may find application in the 

field of spatially-dispersive waveguide optics [23], we believe that the effects uncovered here are generic in 

nature [4], and that the modelling approach will be applicable to wave propagation problems in other 

dispersive nonlinear systems. 
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APPENDIX:  

Application to waveguide optics 
Historically, the theory of optical pulses has been firmly rooted in the nonlinear Schrödinger setting, with all 

its advantages and disadvantages [1–3, 8–19].  In the classic scalar wave optics approach, the transverse 

spatial profile of the electric field E is confined by the structure of the waveguide and the polarization 

scrambling term in Maxwell’s equations, namely    E , can be safely neglected.  One proceeds by seeking 

pulse solutions that have the form 

                       *
0 0 0 0, , exp , expE t z A t z i k z t A t z i k z t            ,                         (A.1) 

where z is the longitudinal coordinate along the axis of the waveguide and t is the time coordinate.  The 

envelope is A(t, z), 0 is the optical carrier frequency, and k0   n00/c.  Here, n0 is the linear refractive index 

of the medium (at frequency 0) and c is the vacuum speed of light. 

By substituting field ansatz (A.1) into the corresponding Maxwell equations and transforming to the 

frequency domain, it can be shown that [8–19] 

                   
2

2 2
0 02 2 0A Ai k k k A

zz
 

   


   ,                           (A.2) 

where  0 ,A A z     denotes the Fourier transform of the pulse envelope, and k2 is the mode eigenvalue 

(obtained by solving Maxwell equations for the transverse part of the confined field – see Ref. 18).  The term 

(k2 – k0
2) is routinely approximated by 2k0(k – k0), and assuming that A  remains centred within the vicinity of 

0, k() is Taylor-expanded around 0 so that 

                       0 0 0 NL
1 !

jj

j

k
k k k

j
   





      ,                                      (A.3) 

where k0   k(0), and  
0

j j
jk k


    for  j = 1, 2, 3, …   The (small) nonlinear correction to k  is taken to 

be kNL = n2I/c, where n2 is the Kerr coefficient and I is the intensity.  By keeping the first two terms in the 

summation on the right-hand side of Eq. (A.3), and Fourier transforming back to the time domain using the 

prescription    0
j ji t     , it can be shown that A(t, z) satisfies the wave equation, 

           
2 2
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.                         (A.4) 

The coefficients 
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                        (A.5,6) 

parameterize the (inverse) group velocity and (inverse) group-velocity dispersion, respectively, and we have 

identified I   |A|2.  

Equation (A.4) shows that electromagnetic modes have an intrinsic “propagation” contribution to 2 2z   

in the form of the 1/2k0 coefficient.  Biancalana and Creatore [23] have recently shown that light in some 

semiconductor waveguides (such as ZnCdSe / ZnSe superlattices) can also exhibit a potentially dominant 
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“material” contribution, whose physical origin lies in the coupling of the confined electric field to diffusing 

excitons.  This spatial dispersion phenomenon appears through a modification to the coefficient of 2 2A z   in 

Eq. (A.4), whereby the propagation contribution 1/2k0 can be augmented by the exciton term to yield a lumped 

coefficient, 

                     0 0
2

0

1
2 2

n
k c








.                                     (A.7) 

Here, *2 xM   , *
xM  is the effective exciton mass, 0  is a resonant frequency,   is a dimensionless 

parameter related to the oscillator strength for the coherent exciton-photon interaction, and   is a frequency 

detuning (for a more complete account, the reader is directed to Ref. 23).  A salient point is that the second 

term in Eq. (A.4) can, in principle, become negative when * 0xM  .   

After rescaling, the dimensionless envelope u  is governed by Eq. (1).  The normalized space and time 

coordinates are  = z/L and  = t/tp, respectively, where tp is the duration of a reference pulse with dispersion 

length L = tp
2/|k2|.  The sign of the group velocity dispersion is flagged by s =  1 = sgn(k2) (+1 for 

anomalous; –1 for normal), and    k1tp/|k2|.  The spatial dispersion parameter is  = 0 + D, where 0   

1/2k0L = c|k2|/2n00tp
2 and 2 2 2

0 0 2 0 02 2 pD n cL k n ct        .  Finally, the electric field amplitude 

is scaled according to u = A/A0, where A0   (n0/n2k0L)1/2 = (n0|k2|/k0n2tp
2)1/2. 
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FIGURE CAPTIONS 
 

FIG. 1. (Color online)  Schematic diagram illustrating forward (FWD) and backward (BWD) pulses in the 

laboratory frame.  For physically meaningful solutions, the FWD (BWD) soliton upper/lower sign in solution 

(13)] must always span the first and third (second and fourth) quadrants of the  ,   plane.  This condition, 

which is captured by 0W  , ensures that the peak of the pulse is always moving forwards in time.  Dotted 

lines denotes the trajectories 0W   . 

 

FIG. 2. (Color online)  Plot of the parameter W [given by Eq. (12b) with 1.0  ] as a function of frequency 

  for solitons with 0 1.0   and for two (opposite-sign) values of the spatial dispersion parameter  .  Inset: 

space-time plane  ,  .  Forward-propagating solitons with 0   move along the line 0 0V    at uniform 

speed 01 V .  Solutions with 0   ( 0  ) travel at faster (slower) speeds. 

 

FIG. 3. (Color online)  Schematic diagram for a forward-propagating pulse illustrating the cases of (a) 

 sgn 1s   , and (b)  sgn 1s   .  The “0” subscripted coordinates  0 0,   define the rest frame (i.e., the 

frame in which the pulse is stationary and hence travels along the 0  axis); these coordinates can be obtained 

from Eqs. (6a) and (6b) by selecting W as the velocity parameter.  Note that the pulse width must be measured 

at a fixed longitudinal position (so that 0 0     ). 

 

FIG. 4. (Color online) Self-reshaping of a unit-amplitude pulse ( 0 1.0  ) from initial condition (32) where 

310    and 1.0  .  The peak amplitude decreases and the pulse width tends to increase in such a way that 

the area increases.  Horizontal bars denote the asymptotic soliton parameters as predicted by inverse-scattering 

techniques [14]. 

 

FIG. 5. (Color online) Self-reshaping of a unit-amplitude pulse ( 0 1.0  ) from initial condition (32) where 

310    and 1.0  .  The peak amplitude increases and the pulse width tends to decrease in such a way that 

the area decreases.  Horizontal bars denote the asymptotic soliton parameters as predicted by inverse-

scattering techniques [14]. 
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FIG. 4. (Color online) Self-reshaping of a unit-amplitude pulse ( 0 1.0  ) from initial condition (32) where 

310    and 1.0  .  The peak amplitude [part (a)] decreases and the pulse width tends to increase in such 

a way that the area [part (b)] increases.  Horizontal bars denote the asymptotic soliton parameters as predicted 

by inverse-scattering techniques [14]. 
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