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ABSTRACT 

We predict, for the first time to our knowledge, that purely-absorptive nonlinearity can support 

spontaneous spatial fractal pattern formation. A passive optical ring cavity with a thin slice of 

saturable absorber is analyzed. Linear stability analysis yields threshold curves for Turing (static) 

instabilities with features proposed as characteristics of potential fractal pattern formation. Numerical 

simulations of the fully-nonlinear dynamics, with both one and two transverse dimensions, confirm 

theoretical predictions. 
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Spontaneous pattern formation appears in a wide range of disciplines, including physics, chemistry, biology, and 

engineering [1,2]. The universal phenomena of symmetry-breaking and self-organization often conspire to drive 

the emergence of one of two generic spatial structures: (i) simple Turing-instability patterns with a single 

dominant scalelength (e.g., hexagons, squares, stripes, and rings); (ii) complex patterns with proportional levels 

of detail spanning decades of scale (fractals, i.e., inherently scaleless objects). 

 Previously, a connection was sought between these two apparently exclusive signatures of complexity 

[3]. A characteristic was proposed as capable of predicting the fractal-generating capacity of wave-based 

nonlinear systems: systems whose static Turing instability threshold spectrum exhibit a large number of 

comparable frequency minima are potentially capable of generating spontaneous fractal structures. This type of 

pattern formation was confirmed in a simple dispersive system: the classic diffusive-Kerr slice with a single 

feedback mirror [2,4]. In this Communication, we predict the first spontaneous spatial fractals in a purely-

absorptive nonlinear ring cavity.  Such a choice of system enables us to test, simultaneously, the independence of 

the proposed fractal-generating mechanism with respect to both the nature of the nonlinearity and the particulars 

of the experimental configuration (e.g., single feedback-mirror, ring cavity, etc.). 

 The linear fractals found in the transverse eigenmodes of some unstable cavity lasers are formed 

through the interplay between diffraction and successive round-trip magnifications [5-7]. The multiscale origin 

of those patterns lies in a linear superposition of images, each of which has a larger scalelength than the 

preceding one. Here, the cascade to fractality is driven solely by intrinsic nonlinear dynamics. Above the Turing-

instability thresholds, nonlinear cascades contribute to the excitation of higher spatial frequencies, leading to 

smaller-scale details in the pattern. Such nonlinear fractals are truly spontaneous spatial structures (emerging in 

homogeneous systems) and physically distinct from “soliton fractals”, where each new scalelength is introduced 

by an individual, abrupt material inhomogeneity [8]. 

 Over recent decades, nonlinear ring cavities have provided a paradigm for studying optical pattern 

formation. Many analyses have simplified the full spatiotemporal dynamics by adopting the mean-field limit. 

However, Turing-instability threshold spectra obtained from mean-field models typically possess only a single 

minimum, and thereby preclude predictions of cascades-to-fractality. Allowing for light propagation effects 

reveals possibilities of multiple emergent spatial frequencies [9,10]. The generality of the proposed fractal-

generating signature [3] is tested here by examining a configuration (see Fig. 1) that is quite different from that in 
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Ref. [3]. We consider a thin slice of saturable absorber with a near-negligible width l (thus avoiding detailed 

nonparaxial treatment of small-scale field structure). We further assume that the medium polarization relaxes 

sufficiently rapidly (compared to the dynamics of the population inversion w and the cavity transit time tR) that it 

can be adiabatically eliminated. When potential diffusion of w is accounted for, the longitudinal (z) evolution of 

the electric field envelope E and medium dynamics are governed by 
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where 2
  is a transverse Laplacian, T1 and T2   T1 are relaxation times for w and the polarization, respectively, 

lD is a diffusion length, 0 an absorption coefficient, and  the detuning between pump and atomic resonance 

frequencies. The system can be either purely absorptive ( = 0) or purely dispersive (||   1). 

 Denoting the Fourier transform of E at the output face of the slice by  , ,E l tK , model (1) is 

supplemented by a ring-cavity boundary condition [9] 
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where K is transverse wavevector, a is intracavity plane-wave pump amplitude, (K) is a Dirac delta function, R 

is the intensity reflectivity of the coupling mirror [2] (other mirrors are assumed lossless) and 0 is cavity 

mistuning. The phase factor (K2) = 2K2/[1 + (1 – K2/k0
2)1/2] allows for Helmholtz diffraction [11] in the free-

space path, where     L/2k0, and k0 is the carrier wavenumber. The function F(K,KC) represents a spatial filter 

whose effect, in combination with diffraction, provides a continuously-variable cut-off frequency KC : 
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When letting k0  , the paraxial propagation factor (K2)  K2 is recovered so that, when F(K,KC) = 1, Eq. 

(2) becomes the classic (paraxial) boundary condition [9]. 
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 Linear stability analysis has been performed on the steady-state, transversely-homogeneous solutions 

(E0, w0) of system (1), subject to the paraxial boundary condition [9]. Perturbations are assumed proportional to 

exp(iK · x + t), where     – i,  is the growth rate, and  the Hopf frequency. The threshold for 

spontaneous static patterns is found when  = 0, yielding a condition on the intracavity intensity Ith    |E0|2: 
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where    1 + 2, th   0 + 0l/( T1T2Ith) – K2 and r   Rexp[–0l/( + T1T2Ith)]. Threshold condition 

(4) divides the (Ith, K) plane into a large number of islands (see Fig. 2). With increasing K, the width and 

separation of the islands decrease while the minimum (maximum) thresholds increase (decrease) smoothly. 

Sufficiently small lD allows the coexistence of large number of comparable instability islands. This multiscale 

characteristic may indicate spontaneous fractal patterns [3]. 

 In the absence of diffusion, system (1) has a global instability minimum [see Fig. 2(b)]. When the pump 

intensity just exceeds threshold, spatial frequencies defined by this minimum all have the same growth rate. One 

then expects that the resultant pattern in the one-dimensional transverse plane will be an extremely complicated 

area-filling pattern with fractal dimension 2. To test this conjecture, the stationary state of system (1) is 

initialized above threshold, and with a 0.1% level of background noise (added to accelerate the pattern formation 

process). For simple pattern formation, the filter KC is set so that only those waves within the first instability 

island may propagate freely around the cavity (spectral components with K > KC are attenuated). The static 

Turing intensity pattern I(x)   |E(x)|2 that eventually emerges has a single well-defined scale-length, and its 

corresponding power spectrum P(K) contains a dominant peak plus a set of weaker harmonics [see Fig. 3(a)]. 

When the filter is removed (by setting KC = k0 = 11,200), waves associated with many more instability minima 

may propagate and interact. Intrinsic nonlinear dynamics (e.g., harmonic generation and four-wave mixing 

cascades) then lead to rapid growth at the high-K end of the power spectrum [this process is illustrated in Figs. 

3(b) and 3(c)]. After a sufficient number of transits, all spatial frequencies are present in the pattern I(x) with 

roughly the same strength, resulting in an area-filling fractal (with dimension 2) that possess comparable levels 

of structure down to spatial scales at the optical wavelength, i.e. ~2/k0 [see Fig. 3(d)]. 
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The roughness-length dimension Drl of the fractal pattern in Fig. 3(d) can be calculated [12] from Drl = 

2 – dln<S(W)>/d(ln W). For an interval W of a curve I(x), the root-mean-square (RMS) roughness S(W) is the 

standard deviation of the first differences I of the values of I within the interval, I(x)   I(x) – I(x – x), and x 

is the constant sampling interval of the dataset representing the curve. Here, <S(W)> denotes the average value of 

S(W) over a number of intervals. Figure 4 shows the RMS roughness for the curve in Fig. 3(d); the main portion 

of the plot has a slope of zero, and thus Drl = 2. This result is in full agreement with predictions from the linear 

stability analysis. Although Drl is an integer, the pattern itself is still a fractal because its fractal dimension (i.e., 

Drl = 2) is larger than its topological dimension [i.e., 1 for the pattern in Fig. 3(d)]. 

 One may now consider spontaneous pattern formation when two transverse directions are present. The 

evolution of the perturbed stationary state toward a simple (static) pattern – in this case, a hexagonal array – is 

shown in Fig. 5.  The hexagon patterns are reminiscent of the classic patterns observed by Grynberg et al. [13].  

Once this static pattern has been reached, the filter is removed by setting KC = k0 = 90 and subsequent evolution 

is monitored.  Intermediate patterns form that resemble the superlattice structures observed in optical feedback 

experiments with Kerr-like nonlinearities [14,15]. Our simulated patterns then subsequently develop an 

increasing level of fine structure (see Fig. 6). However, accurate 2D simulations of fractal (as opposed to simple) 

patterns are exceptionally resource-hungry: computer memory limitations restrict k0 to relatively small values 

compared to 1D computations [16] and prevent the final pattern reaching a truly volume-filling character (that 

should have dimension 3). 

 In conclusion, it has been shown that a purely-absorptive nonlinear system can give rise to spontaneous 

spatial fractal patterns. Linear analysis reveals Turing-instability threshold spectra with characteristics suggesting 

cascades-to-fractality. Simulations demonstrate the generality of this proposed fractal-generating signature [3], 

i.e., independence with respect to both system nonlinearity and the details of experimental geometry (e.g., single 

feedback-mirror or ring cavity). We expect other photonic systems with similar Turing threshold spectra to be 

capable of generating spontaneous fractal patterns.  Any experiment designed to observe spontaneous spatial 

optical fractals will inevitably involve some high-frequency cut-off (e.g., intrinsic filtering due to finite beam-

size considerations, while simulations presented here and elsewhere [3] have considered plane-wave pumping 

only), and such effects may prevent patterns in the laboratory from reaching their area-filling or volume-filling 

potential.  However, the results reported in this Communication (extending considerations from single-feedback-
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mirror Kerr configurations to absorptive ring-cavity geometries) support the notion of universality of the 

proposed mechanism for predicting a system's fractal-generating capacity.  
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FIGURE CAPTIONS 

Fig. 1. (Color online) Schematic diagram of the nonlinear ring cavity geometry with a spatial 

frequency filter F(K, KC). 

 

Fig.2. (Color online) Multi-Turing threshold instability spectra for the purely-absorptive ( = 0) ring-

cavity system (1) with (a) a finite level of diffusion (lD = 0.2) and (b) no diffusion (lD = 0). Other 

parameters are set to: a = 19.0, 0 = /4, R = 0.9,  = 1.0, 0l = 10.0, T1 = 1.0 and T2 = T1/100. 

 

Fig. 3. (Color online) Evolution of one-dimensional pattern (first column) and its corresponding power 

spectrum (second column) in a purely absorptive cavity containing a thin slice of material.  Other 

parameters are the same as in Fig. 2(a).  (a) Static pattern (formed when the filter is set to KC = 1.0) 

when the filter is removed at time t = 0.  Subsequent patterns after the filter is removed (KC = k0 = 

11,200) shown for times: (b) t = 500tR, (c) t = 1,000tR, and (d) t = 3,000tR. 

 

Fig. 4. (Color online) Root-mean-square roughness of the real-space pattern I(x) shown in Fig. 3(d). 

 

Fig.5. (Color online) Formation of a simple Turing (hexagon) pattern in purely absorptive cavity with 

two transverse dimensions, and where the filter has been set to KC = 1.0.  All other parameters are the 

same as those in Fig. 2(a). Patterns are shown for times: (a) t = tR, (b) t = 280tR, (c) t = 360tR, and (d) t 

= 900tR. 

 

Fig. 6. (Color online) Evolution of the hexagonal array from Fig. 5(d) toward a fractal.  (a) Initial 

simple hexagonal pattern at time-zero (when the filter is removed by setting KC = k0 = 90.0).  Patterns 

are shown for times: (b) t = 270tR, (c) t = 350tR, (d) t = 860tR. 
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Figure 1. 
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Spontaneous spatial fractal pattern formation in absorptive systems, 

Figure 2. 
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Figure 3. 
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Spontaneous spatial fractal pattern formation in absorptive systems, 

Figure 4. 
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Spontaneous spatial fractal pattern formation in absorptive systems, 

Figure 5. 
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Spontaneous spatial fractal pattern formation in absorptive systems, 

Figure 6. 

 

 


