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Abstract

This thesis focuses on the appropriateness of the inviscid potential flow model for deter 

mining the manoeuvring characteristics of a body moving through fluid. This model is 

widespread in many key applications for ships, submarines, aircraft, rockets, missiles, as 

well as for the swimming of marine animals and the flying of birds. Despite the widespread 

use, there are important anomalies in the theory, in particular relating to the lift induced 

by shed vorticity. These anomalies have been identified in the recent publication by Chad- 

wick which states that the lift has been calculated incorrectly, and apparent agreement 

in wing theory is fortuitous due to "two wrongs" in the theory giving the right answer.

In this thesis, the inviscid flow is further investigated, and the work of Chadwick is 

extended and developed further.

In the first two chapters, careful description of the basic fluid concepts and then derivation 

of the fluid equations is given. In chapter four, the lift and drag on a wing are considered. 

The lift evaluation comes out to be half that expected and this is in agreement and 

essentially repeats the analysis in Chadwick's recent paper [1]. However, the analysis is 

extended to evaluate the drag, and surprisingly the drag is determined to be infinite.

In chapter five, further investigation into the lift on a thin wing is undertaken, and it is 

seen that there is uncalculated jump in the lift at the trailing edge. This is calculated 

from the pressure integral across the trailing edge.

Finally, in chapter six, inviscid flow slender body theory is investigated. A complete near 

field expansion is given for a singularity distribution of sources over an infinite line by 

using the Fourier transform method. In this thesis, this result is extended for the finite 

line by using the integral splitting technique. By taking the ends to infinity, the result for 

the infinite line is recovered and the two methods shown to be equivalent for this specific 

case. The method presented here relies upon allowing a singular wake to exist behind the 

body. This introduces non-uniqueness in the matching and the implications of this are 

discussed.

Appropriate references to other researchers are given in individual introductions for each 

chapter.
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Chapter 1

Introduction

The inviscid flow equations with the thin wing theory and also the slender body theory 

have been used especially for solving manoeuvring problems in fluids. Key applications 

for ships, submarines, aircraft, rockets, missiles, as well as for the swimming of marine 

animals and the flying of birds, make use of these asymptotic theories. (A thin body is 

defined such that the body thickness is small compared to the body length. Examples of 

such bodies are wings and sheets. A slender body is defined such that the body distance 

measure in the cross-sectional plane to the axial direction of the body is small compared 

to the body length. Examples of such bodies are ships and submarines.)

Wing theory

Wing theory began with the work of Lanchester [2] [3] and Prandtl [4] who assume a 

trailing vortex sheet emanates from the trailing edge of the wing such that the Kutta 

condition is satisfied. The vortex sheet is then approximated by a distribution of horseshoe 

vortices. This is the fundamental description for most numerical Euler codes used to 

determine aircraft lift. By summing the contribution from all horseshoe vortices, the 

total lift on the wing is then obtained. However, both Goldstein [5] and Batchelor [6] [7] 

have expressed concerns over this model.

Batchelor [6] considers steady laminar flow with closed streamlines at large Reynolds 

number, and incorporates a viscous component in order to satisfy the boundary conditions



of the problem. In another paper [7], on axial flow in trailing line vortices, he again argues 

that the viscous component determines the leading order solution near the vortex line, and 

uses the Oseen linearisation to determine this. In this way, the fluid velocity at the centre 

of the vortex line and the kinetic energy of the system are finite, which is not the case 

in a purely inviscid model. Batchelor introduces the concept of the vortex core, outside 

of which is approximately inviscid flow and inside which viscosity becomes important. 

Similarly, Chadwick [1] retains the viscous component, although small, to develop a model 

using the Oseen equations for uniform flow past a wing. The consequences of retaining 

the viscous component are discussed later in this introduction.

Goldstein [5] pl31-134 also has concerns about the viscosity being initially set to zero, as 

this can lead to two different flows (p. 133): "If we consider a motion started from rest in a 

viscous fluid, it is known that lim lim and lim lim are different. Because of the action of
t—»OO /i »0 [A—»0 t—>OO

viscosity in diffusing the vorticity, diffused vorticity cannot occur in the former, although 

vortex sheets may; but regions of diffused vorticity may occur in the second limit." 

Here, p, is defined as the dynamical coefficient of viscosity, and t as time. He then goes 

on to give two examples of flows where, by using the different limits, different solutions 

are obtained. These are the flow between sliding flat plates, and uniform flow past a 

finite length flat plate. Chadwick [1] considers a more realistic example by considering 

small disturbance flow past a wing. Considering inviscid flow, this leads to linearized 

aerofoil/wing theory [8], and corresponds to Goldstein's first limit. However in [1] the 

viscous terms are retained and a solution corresponding to Goldstein second limit, in 

which vorticity diffuses, is obtained, see figure 1.1.

The most important difference noted by Chadwick between the two different limiting 

cases is in the calculation of the lift force on the body. The lift Oseenlet is induced from 

a velocity potential flow field and a viscous velocity flow field. Each of these flow fields 

induce equal lift force on the body. This is puzzling since there is no viscous velocity flow 

field in the inviscid formulation, and this contribution appears to be lost. In the thesis, we 

investigate this difference further by extending the work of Chadwick [1] in inviscid theory 

by considering on additional lateral flow velocity term. The outcome of this extension 

shall be to show that, once again, the lift is half that expected but also that the drag is 

infinite.

As in the Lanchester-Prandtl approach, we need consider only one infinitesimal horseshoe
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Figure 1.1: Two limiting procedures for small disturbance flow past a wing.

vortex, as the lift can be represented by a linear summation of the force contributions 

from each horseshoe vortex in the model. An investigation into how the lift is calculated, 

using the inviscid flow model, from the pressure distribution over the wing surface is then 

undertaken. It is shown that the puzzling difference in the lift calculation is due to a 

calculation, always omitted in the standard approach, of a lift jump at the wing's trailing 

edge.

Slender body theory

Slender body theory began with the work of Munk [9], and was extended for the slender 

wing case by Jones [10]. In slender body theory, the fluid motion is approximated near to 

the body by a two-dimensional flow in the transverse plane to the body's length axis. This 

asymptotic approximation is applied by assuming that the fluid velocity changes in the 

axial direction are lower in magnitude than the fluid velocity changes in the cross-section 

plane. The first order approximation then relates a distribution of three dimensional 

sources to the two dimensional source strength in the transverse plane.

Subsequent important developments include: Lighthill's theory for the motion of slender 

fish [11], Ursell's application to free surface linear water wave problems [12]; and Nielsen's



development for missile dynamics [13].

More recently, slender body theory has been applied to Stokes flow [14] and Oseen flow 

[15]. There are a wide variety of slender body or strip theory methods in use, but perhaps 

the two most common are the integral splitting technique and the transform analysis 

approach. For a general review of slender body theory development and methods, see 

Tuck [16].

The integral splitting technique splits the integrals into parts, over integrals near to the 

fluid point and over integrals far from the fluid point. Appropriate expansions can then 

be applied to the integrals, and in this way the variables in the transverse plane separated 

from the axial variable. However, the analysis requires involved integration by parts 

that means only a few terms in the near field expansion have ever been found using this 

method.

If instead a distribution of source potentials over an infinite length is considered, then use 

can be made of transform analysis such as Fourier or Laplace transforms [8].

In this way, the complete expansions can be obtained in transform space. Taking the 

inverse transform yields a complete expansion to all orders, assuming an infinitely differ 

entiate strength function [16]. However, the integration is now restricted to the infinite 

rather than finite line.

In this thesis, we give the complete expansion over a finite line. The integral splitting 

technique is used but applied to the generator potential rather than the source poten 

tial. The advantage of starting with the generator potential is that separation into the 

transverse plane and streamwise variables is immediate and does not require involved in 

tegration by parts, or application of restrictive end conditions. In this way, an expansion 

to all orders shall be obtained but over a finite length body rather than the infinite length 

of the transform methods. The advantage is that now a slender body approximation 

representing a finite length body can now be given to any degree of accuracy, depending 

upon the smoothness of the strength function.

In the first two chapters, careful description of the basic fluid concepts and then derivation 

of the fluid equations is given. In chapter four, the lift and drag on a wing are considered. 

The lift evaluation comes out to be half that expected and this is in agreement and



essentially repeats the analysis in [1]. However, the analysis is extended to evaluate the 

drag, and the drag is determined to be infinite.

In chapter five, further investigation into the lift on a thin wing is undertaken, and it is 

seen that there is a jump in the calculated lift force at trailing edge of the wing which 

is not obtained from the standard potential theory. This jump in the lift arises from the 

pressure integral across the trailing edge.

Finally, in chapter six, inviscid flow slender body theory is investigated. Tuck [16] gives a 

complete near field expansion for a singularity distribution of sources over an infinite line 

by using the Fourier transform method. In this thesis, this result is extended for the finite 

line by using the integral splitting technique. By taking the ends to infinity, the result for 

the infinite line is recovered and the two methods shown to be equivalent for this specific 

case. The method presented here relies upon allowing a singular wake to exist behind the 

body. This introduces non-uniqueness in the matching and the implications of this are 

discussed.



Chapter 2

Some basic concepts

In this section some definitions and briefly explanation about some concepts that may be 

used in this thesis, has been presented.

Two fundamental laws which are applied to any fluid are [17]:

1. The conservation of mass.

2. Newton's second law of motion.

2.1 Fluid as a continuum

All fluids are composed of molecules in constant motion. However, in most engineering 

applications we are interested in the average or macroscopic effects of many molecules. 

It is these macroscopic effects that we ordinarily perceive and measure. We thus treat a 

fluid as an infinitely divisible substance, a continuum, and do not concern ourselves with 

the behavior of individual molecules.

As a consequence of the continuum assumption, each fluid property is assumed to have a 

definite value at every point in space. Thus fluid properties such as density, temperature, 

velocity and so on, are considered to be continuous functions of position and time.
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2.2 Timelines, pathlines, streaklines and streamlines

Here we are defining some basic concepts such as Timelines, pathlines, streaklines and 

streamlines.

Timelines: If a number of adjacent fluid particles in a flow field are marked at a given 

instant, they form a line in the fluid at that instant; this line is called a timeline.

Pathline: A pathline is the path or trajectory traced out by a moving fluid particle. To 

make a pathline visible, we might identify a fluid particle at a given instant, for example 

by the use of dye, and then take a long exposure photograph of its subsequent motion, 

the line traced out by the particle is a pathline.

Streaklines: We might choose to focus our attention on a fixed location in space and 

identify, again by the use of dye, all fluid particles passing through this point. After a 

short period of time we would have a number of identifiable fluid particles in the flow, all 

of which had, at some time, passed through one fixed location in space. The line joining 

these fluid particles is defined as a streakline.

Streamlines: Streamlines are lines drawn in the flow at every point in the flow field so 

that at a given instant they are tangent to the direction of flow at every point in the flow 

field. Since the streamlines are tangent to the velocity vector at every point in the flow 

field, there can be no flow across a streamline.

2.3 Body forces, surface forces, stress

We also here defining some basic concepts such as Body forces, surface forces and stresses.

Body forces Those forces which act on all elements of volume of a continuum are 

known as body forces (like gravity and inertia forces).

Surface forces Those forces which act on a surface element, whether it is a portion 

of the bounding surface of the continuum or perhaps an arbitrary internal surface 1 , are

7



known as surface forces. Contact forces between bodies are a type of surface force.

Stress The force that compresses a body or expands a body (in other words the force 

which deform a body)is called stress.

2.4 Incompressible and compressible fluid

In general, a liquid is an incompressible fluid, and gas a compressible fluid. Nevertheless, 

even in the case of a liquid it becomes necessary to take compressibility into account 

whenever the liquid is highly pressurised, such as oil in a hydraulic machine. Similarly, 

even in the case of a gas, the compressibility may be disregarded whenever the change in 

pressure is small.

2.5 Compressibility and viscosity

Fluids are divided into liquids and gases. A liquid is hard to compress and as in the 

ancient saying "Water takes the shape of the vessel containing it", it changes its shape 

according to the shape of its container with an upper free surface. Gas on the other 

hand is easy to compress, and fully expands to fill its container. There is thus no free 

surface. Consequently, an important characteristic of a fluid from the viewpoint of fluid 

mechanics is its compressibility. Another characteristic is its viscosity. Whereas a solid 

shows its elasticity in tension, compression or shearing stress, a fluid does so only for 

compression. In other words, a fluid increases its pressure against compression, trying 

to retain its original volume. This characteristic is called compressibility. Furthermore, 

a fluid shows resistance whenever two layers slide over each other. This characteristic is 

called viscosity. In general, liquids are called incompressible fluids and gases compressible 

fluids. Nevertheless, for liquids, compressibility must be taken into account whenever 

they are highly pressurised, and for gases compressibility may be disregarded whenever 

the change in pressure is small. Although a fluid is an aggregate of molecules in constant 

motion, the mean free path of these molecules is 0.06pm even for air of normal temperature 

and pressure, so a fluid is treated as a continuous isotropic substance Meanwhile, a
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non-existent, assumed fluid without either viscosity or compressibility is called an ideal 

fluid or perfect fluid. A fluid with compressibility but without viscosity is occasionally 

discriminated and called a perfect fluid, too. Furthermore, a gas subject to Boyles-Charles 

law is called a perfect or ideal gas.

2.6 Viscosity and strain

Fluids offer resistance to a shearing force. Viscosity is a property of a fluid that determines 

the amount of this resistance. Viscosities of liquids vary inversely with temperature, while 

viscosities of gases vary directly with temperature.

Here we briefly show the rule governing the viscosity function in fluid formulas [18]. 

Observations show that, while the fluid clearly has a finite velocity v at any finite distance 

from the boundary, the velocity is zero at a stationary boundary. Thus the velocity 

increases with increasing distance from the boundary. These facts are summarised by the 

velocity profile which indicates relative motion between any two adjacent layers. Two 

such layers are shown having an infinitesimal thickness dy, the lower layer moving with 

velocity v, the upper with velocity v + dv.

2H-t 1
y
I

•* — (v+av)dt — »*

i — -> —————————— U( ———

v+dv /

S/

—— i ——=1 ———

Figure 2.1: Laminar motion and strain

In figure 2.1 (taken from [18]), two particles 1 and 2, starting on the same vertical line, 

move different distances d\ — vdt and d^ = (v + dv)dt in an infinitesimal time dt. Thus, 

the fluid is distorted or sheared as t increases. In general for isotropic solids behaving 

elastically the stress due to shear is proportional to the strain (i.e., relative displacement);

0 d2 — d\ dv dt dv , Strain = ———— = ——— = —at. 
dy dy dy
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However, a fluid flows under the slightest stress. In fact, in fluid flow problems, the stress 

is related to the rate of strain rather than to the total strain; in this case

(dv/dy)dt dv
Rate of strain =

dt dy

The friction or shearing force that must exist between fluid layers can be expressed as a 

shearing or frictional stress per unit of contact area and is designated by r. For laminar 

(nonturbulent) motion (in which viscosity plays a predominant role) r is observed to be 

proportional to the rate of strain, that is, to the velocity gradient, dv/dy, with a constant 

of proportionality, // defined as the coefficient of viscosity.

(2.6.1)

This is also called the dynamic viscosity (absolute viscosity or viscosity) of the fluid. 

Rearranging (2.6.1) such that
(2.6.2)

dy

gives a typical unit of viscosity which is

5
dy

""* N' S (2.6.3)
(m/s}/m m2 ' 

in the International System units. The kinematic viscosity, i/, is defined as

(2.6.4)

where p is mass density, and it has the unit ^'^T — ^- since N =

The dynamic viscosity of water and air are 1.75 x 10~ 3 and 1.72 x 10~ 5 N.s/m2 at 0° C 

respectively, while the kinematic viscosity of water and air are 1.75 x 10~ 6 and 1.33 x 10~ 5 

m2/s respectively. Both viscosities vary with temperature.

Reynolds number

Reynolds conducted many experiments using glass tubes of 7, 9, 15 and 27 mm diamrter 

and water temperatures from 4 to 44° C. He discovered that a laminar flow turns to a

10



turbulent flow when the value of the non-dimensional quantity pvd/n reaches a certain 

amount whatever the values of the average velocity v, glass tube diameter d, water density 

p and water viscosity \i. Later, to commemorate Reynolds achievement,

was called the Reynolds number. In fact Reynolds number Re, expresses the ratio of 

inertial to viscous forces, so if a flow is characterized by a certain length /, velocity v and

density p, the Reynolds number is
vlRe = — , v

where v = ^ is the kinematic viscosity (2.6.4).

Newtonian and non-Newtonian fluids

The nonappearance of pressure in equation (2.6.1) shows that r and \JL are independent 

of pressure, however viscosity usually increases very slightly with the pressure, but the 

change is negligible. This is Newton's suggestion, which led to (2.6.1), and the equation 

is called Newton's law of viscosity. Fluids that follow this law and for which fj, has a 

constant value are known as Newtonian or incompressible fluids. Fluid, which do not 

follow this law are known as non — Newtonian.

2.7 Steady flow

A flow for which all velocities and properties at a given location are independent of time 

is called steady.

2.8 Vorticity, irrotational flow and circulation

As it is shown in figure 2.2, an elementary rectangle of fluid ABCD with sides </./• and 

dy } which is located at O at time t moves to O' while deforming itself to A'B'C'D' time

11



Time t+dt

A D

\ v+j£Ldx Timer 
1 x 8*

O

Figure 2.2: Deformation of elementary rectangle of fluid

dt later. AB in the a; direction moves to A'B' while rotating by cfei, and AD in the y 
direction rotates by de^. Thus

dv dude\ = -^—dxdt. de<2 = —-^-dydt.
ox oy

Let the angular velocities of AB and AD be u\ and uj^ respectively

since d6\ = ^, c?02 = ^, so o;i = ^, CJ2 = 

angular velocity LJ is

= — I1*, and hence for centre O, the average

The term in the brackets is called the vorticity for the z axis. Hurricanes, eddying water

12



currents and tornadoes are familiar examples of natural vortices. The case where the 

vorticity is zero, namely the case where the fluid movement obeys

dv du _ 
dx dy

is called irrotational flow [19].

In general, for fluid velocity v the vector £ = V x v is called the rotation of v, and 

therefore ux = £ • x, uy = £ • y and uz = £ • z.

The circulation C around the loop is defined as the line integral of the tangential com 

ponent of the velocity v around the closed loop L,

Irreducible Reducible

Figure 2.3: Reducible and irreducible loops in a two-dimensional flow. The shaded area 

represents flow boundary.

C = (i v • tdl, 
JL

where the unit tangent vector t points in the counterclockwise direction along L. If the 

loop is reducible, that is, if it can be shrunk to a point without crossing flow boundaries or 

singular points, we may use Stokes's circulation theorem to express the circulation around 

the loop as the areal integral of the strength of the vorticity over the area D enclosed by 

the loop Z/,

C = I uz dxdy. 
JD

In other word the circulation is equal to the product of vorticity by area. By Stokes 1 

theorem, whenever there is no vorticity inside a closed loop, then the circulation around

13



it is zero. The Stokes circulation theorem is used in fluid dynamics to study the flow 

inside the impeller of pumps and blowers as well as the flow around an aircraft wing [20].
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Chapter 3

Derivation of the fluid flow equations

Potential flow is a key model considered in most fluid texts. Batchelor [21] discussed the 
inadequacies of the potential flow model when we ignore the boundary layer. Batchelor 

illustrates the fact that at a large Reynolds number the flow will be irrotational but he 

also details the necessity of including the effects of the thin, viscous boundary layer (and 
of the need to understand more about viscous fluid and boundary layer separation). It 
is shown to be a much more accurate potential flow model to include the effects of the 
viscous boundary layer (particularly in relation to the inclusion of vorticity in the wake of 

the body). A result of the potential flow approximation is the introduction of the velocity 
potential, 0. We define the velocity vector u = V</>. We will give some properties of 
the velocity potential and derive Bernoulli's equation. This equation is also known as the 

pressure equation because it can be used to find an expression for the pressure term. To 
do this the Navier-Stokes equations must be derived which build on the concepts discussed 

in chapter 2.

3.1 History

Sir Isaac Newton (1642-1727) was the first to establish the relationship between force, 

momentum and acceleration (his famous "prmcipa"). Following his work Daniel Bernoulli 

(1700-1782) [22] used the concept of internal pressure with confidence and clarity in the 

study of moving fluids to achieve his most famous equation relating the pressure and the

15



velocity.

Leonhard Euler (1707-1783) found some inconsistencies in Newton's models and developed 

it into a more suitable form, and tied this with Jean le Ronald D' Alembert's (1717-1783) 

experimental results. To do this, he introduced the concept of linear momentum that the 

total force on a body is equal to the rate of change of total momentum of the body, with 

the clear understanding that the term "body" might be applied to each of every part of 

a continuous medium such as a fluid or elastic solid. He combined this with the concept 

of internal pressure to give the equations of motion of an inviscid fluid.

Augustin Louis Cauchy(1789-1857) introduced the concept of a stress tensor and combined 

this with Euler's laws of mechanics to give the general framework for the motion of any 

continuous medium. He derived Cauchy's law of motion from Newton's second law of 

motion.

Sir George Gabriel Stokes(1819-1903) extended Newton's original hypothesis and added 

the appropriate physical properties of a Newtonian viscous fluid to give the Navier-Stokes 

equations of motion. Oseen (1927) [23] used a linear approximation to the Navier-Stokes 

equations which are called Ossen's equations.

3.2 Stresses

3.2.1 Cauchy's stress principle

Consider a material continuum occupying the region R of space, and subjected to surface 

forces fi and body forces 6j. As a result of forces being transmitted from one portion 

of the continuum to another, the material within an arbitrary volume V enclosed by the 

surface S interacts with the materials outside the volume. Let n be the outward normal 

at point P 6 AS" C S (in this thesis we have denoted the vectors by bold face letters and 

unit vectors by hat bold face.), let A/t be the resultant forces exerted across AS upon 

the material within V by the material outside of V. The Cauchy stress principle asserts 

that A/,/A5 tends to a definite limit dfi/dS as AS" approach to zero at point P, while 

at the same time the moment of A/j about the point P vanishes in the limiting process. 

The resulting vector dfJdS is called stress vector t] n ' (If the moment at P were not to

16



vanish in the limiting process, a couple — stress vector, would also be defined at the point; 

one branch of the theory of elasticity considers such couple stress.). Mathematically the 

stress vector is defined by

w A/, dfi (ft) Af df
t = lim — — = — or tw = hm

O AS ds
. 

A5-o AS ds
(3.2.1)

Figure 3.1: As3 is the projection of As on plane perpendicular to

Prom figure 3.1 we obtain

As =
cos (n, x3 )

(3.2.2)

where ASJ is the projection of As on plane perpendicular to Xj axis (see figure 3.1).

Eq. (3.2.2) is also valid in the limit so,

ds
= Hi (3.2.3)

Now from (3.2.1) and (3.2.3) we have:

(n) _ _ 
1 ds i ds ds

__
ds ds3 (3.2.4)

where the repeated suffix implies a summation over j. Eq. (3.2.4) asserts that the notation 

t\^ (or t^ A) ) is used to emphasize the fact that the stress vector at a given point P in
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the continuum depends explicitly upon the particular surface element AS chosen there, 

as represented by the unit normal HI (or n).

For some differently oriented surface element, having a different unit normal, the associ 
ated stress vector at P will also be different. The stress vector arising from the action

( T\\across AS at P of the material within V upon the material outside is the vector —t\ . 
Thus by Newton's law of action and reaction,

-*<*>=*<-*> or -t(fi)=t(- fi>. 

The stress vector is very often referred to as the traction vector.

3.2.2 Stress tensor

The totality of all possible pairs of such vectors t\n' and Hi at P defines the state of stress 
at that point. Fortunately it is not necessary to specify every pair of stress and normal 
vectors to completely describe the state of stress at a given point. This may be accom 
plished by giving the stress vector on each of three mutually perpendicular planes at P. 
Coordinate transformation equations then serve to relate the stress vector on any plane 
at the point to the three planes updated to the coordinate system.

We set
. (n) - _ .(n)~ , f n~ . . n - _ .n - / Q o r\ 

Xi + t2 X2 + t3 Xs — ti Xj, (6.2.0)

then each of the three coordinate-plane stress vectors may be written as

t(*i) = tf^ + t(*,)%2 + 1(*;)£3 = tfi^ j = i, 2, 3. (3.2.6) 

By replacing n = Xj in (3.2.4) we will have

The nine stress vector components

,(*;) =
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in (3.2.6) are the components of a second-order Cartesian tensor known as the stress tensor.

We now follow (3.2.5)

as
77.3 ,

d/2
n2

T22n2 + T32n3

ds2 ds3 
r23n2 + T33n3 )

= (r \jfii + T2j n2 + r3jn3 )xj,

or

(3.2.7)

= ( n2 n3

T12

T23

^32

)T = (3.2.8)

t 32

fTl3

T12

t"

Figure 3.2: Normal stress and shear stresses acting on an element of fluid.
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3.2.3 Normal and shear stresses

Pictorially, the stress tensor components may be displayed with reference to the coordi 

nates plane as shown in figure 3.2. The components perpendicular to the planes ( r\\ , r22 

, r33 ) are called normal stress. Those acting in (tangent to) the planes (ri 2 , Ti 3 , r2 i , r23 

7 T3i »^32 ) are called shear stresses. A stress component is positive when it acts in the 

positive direction of the coordinate axes, and on a plane whose outer normal points in one 

of the positive coordinate directions. The component r^ acts in the direction of the jth 

coordinate axis and on the plane whose outward normal is parallel to the ith coordinate 

axis. The stress components shown in figure 3.2 are all positive.

3.2.4 The stress tensor-stress vector relationship

The relation between the stress tensor r^ at point P and the stress vector qn) on a plane 

of arbitrary orientation at that point may be established through the force equilibrium 

or momentum balance of a small tetrahedron of the continuum, having its vertex at P 

(figure 3.3).

Figure 3.3: Stress components on an arbitrary surface

The base of the tetrahedron is taken perpendicular to Hi and the three faces are taken 

perpendicular to the coordinate planes as shown by figure 3.3. According to (3.2.3) 

designating the area of the base QiQ2 Qs as ds, the areas of the faces are the projected 

areas dSi = dSn\ for face Q3 PQ2 , dS? = dSn2 for face Q;j PQi, dS.\ - dSn 3 for face
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QiPQ2 or as we showed in (3.2.3) dSt =

The average traction vector — t*j on the faces and ^-n) on the base, together with the 

average body force (including inertial forces, if present), acting on the tetrahedron are 

shown in the figure 3.3. Equilibrium requires that

= 0. (3.2.9)

If now the linear dimensions of the tetrahedron are reduced in a constant ratio, the body 

forces , being an order higher in the small dimensions tend to zero more rapidly than the 

surface forces. At the same time the average stress vectors approach the specific values 

appropriate to the designated direction at P. Therefore by this limiting process and the 

substitution (3.2.3), equation (3.2.9) reduces to

. (3.2.10)
/- . \ 

Cancelling the common factor dS and using the identity t\ 3 = r^ (3.2.10) is equivalent

to

t\A} = HjTji, (3.2.11)

which is same result we already mathematically found in (3.2.8).

3.2.5 Stress tensor symmetry 

Proof 1

Equilibrium of any arbitrary volume V of a continuum subject to a system of surface forces 

t\ and body forces 6; (including inertia forces if present) requires that the resultant force 

and moment acting on the volume be zero [24]. Summation of surface and body forces 

results in the integral relation,

/ t\ A} dS + I pb.dV = 0, 
Js Jv
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or

/ twdS + [ pbdV = 0. 
Js Jv

Replacing t\n' here by T^UJ and applying the divergence theorem we get

HJ + pbi)dV = 0 or / (V • S + pb)dV = 0. 
v Jv

Since the volume V is arbitrary then

Tijj + pbi = 0 or V • S + pb = 0. (3.2.12)

which are called the equilibrium equations.

In the absence of distributed moments or couple-stress, the equilibrium of moments about 

the origin requires that

r ( ft) r
Js Jv 

(where e^k shows the sign of triple inner product ijk of three basis vectors z, j and k.}

or

/ x x t (A} dS + / x x pbdV = 0, (3.2.13) 
7s Jv

in which Xi is the position vector of the elements of surface and volume. Again, making 

the substitution t\ = TyWj, applying divergence theorem and using the expressed in 

(3.2.12), the integrals of (3.2.13) are combined and reduced to

/ djkTjkdV = 0 or / EvdV = 0, 
Jv Jv

which for the arbitrary volume V requires

jk = 0 or Sv = 0, 

which means
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which says the stress tensor is symmetric. In view of r^ = TJ», the equilibrium equations 

(3.2.12) are often written

Proof 2

Let us concentrate our attention on the shear stresses that contribute to a torque about an 

axis through the centre of the element and parallel to the z-axis [25]. The torque produced 

by these forces about the centre of gravity of the element can be directly computed as

T = Txydxdzdy — ryxdydzdx.

Since (the moment of inertia in respect to the previously specified axis of rotation is

•— —r /•— r— r 
/ pr2dv = p I I / (s2 + t2 )dsdtdu

JSv J-d J_d± J_dzSv - _ _

dxdydz . , 9 , 9 . . M 2 2, 9 . . . , 9 , 9 .. 
+ dy2 }( or = — (dx2 + dy2 )).

Applying Newton's law, the torque may be equated to the product of angular acceleration, 
a), and moment of inertia, both to be taken in respect to the same axis of rotation the 

z-axis). We then obtain

. dxdydz. 2 2 . (rxy - ryx )dxdydz = p———(dx + dy )
J. Zt

2 i J*2\.""zi

or
(rxy - Tyx) = -^(dx2 + dy2 )tiz . (3.2.14)

Recalling now that dx and dy are infinitesimal, it must be concluded from (3.2.14) that 

the acceleration of any infinitesimal element would tend to infinity as dx and dy approach 

to zero (which is not possible) unless

rxy = ryx . (3.2.15) 

Hence by inference TJJ = TJJ.
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3.3 The continuity equation

Applying two main concepts [25]:

• the conversation of mass principle which merely states that mass cannot be created 

(or destroyed)

• neglecting all effects of special relativity and Einstein's famous mass-energy equation

to an infinitesimal volume within the flow, where variation in density and velocity has 
taken place, will lead us to a differential equation which is usually called the continuity equation. 
Following there are three ways to derive this equation.

1. Infinitesimal volume

Several approaches for deriving it shall be investigated. To derive this equation we now 
apply the principle of conversation of mass to a small volume of space through which a 
flow takes place. This volume is an imaginary volume fixed in position and offering no 
resistance of any kind to the flow. It may be imagined, for example, as a thin wire cage. 
For convenience we shall adopt a Cartesian coordinate system (x, y, z), but for the sake of 
simplicity we shall treat only a two-dimensional flow as shown in figure 3.4 in which there 
is a component of flow along the z-axis. Sections normal to the z-axis, therefore, have an 
identical flow pattern, so that it is sufficient to consider a unit width in the z-direction. 
The fluid velocity in the re-direction will be designated by u, and that in the ^/-direction 
by v, while the density will be indicated by p. Both the velocity components and density 

are functions of position and time. The principle of conversation of mass requires that the 
net outflow of mass from the volume be equal to the decrease of mass within the volume. 

This is readily calculated with reference to figure 3.4. The flow of mass per unit time 
and area through a surface is the product of the velocity normal to the surface and the 

density. Thus the z-component of the mass flux per unit area at the center of the volume 

is pu. This flux, however, changes from point to point, as indicated in figure 3.4. The net 

outflow of mass per unit time therefore, is
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pv+l/2^(Pv)dy 

$ ' *
I

<o|<S

a

"T
dy

I

~^S
s.

To Elemental 
pv-l/2jp-(Pv)dy volumeoy

Figure 3.4: Velocities and densities for mass flow balance through a fixed volume element 

in two dimensions.

(PU + li^ (PV + \j X \PU o e)x

and this must equal the rate of mass decrease within the element

dp-—dxdy. 
at

Upon simplification this becomes ^ + -j^(pu) + ~§^(PV ) = 0- Generalised to 3-dimension 

this is

(3.3.1)

Equation (3.3.1) is called the continuity equation. If the density is constant (i.e. the 

fluid is incompressible), the continuity equation becomes

du dv dw__ I __ I __ — n
dx dy dz 

This equation is valid whether the velocity is time dependent or not.
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2. Mass outflow

The mass outflow per unit time through the surface of the volume is

/ pu • ndS, 
Js

and this must be equal to the rate of decrease of mass contained within the fixed volume

t d*>A~ / ^idv -
Jv dt 

Applying Gauss's theorem yields

jT (^ + V • (pu))dv = 0. (3.3.3) 

(3.3.3) must hold for all arbitrary volumes and therefore

g + V • (pu) = 0, (3.3.4) 

will be the general case of equation of continuity. From (3.3.4) we will have

= 0 or + V-u = 0, (3.3.5) 

where,

D d= - + u • V. (3.3.6)Dt dt

3. Conversation of mass

Applying conservation of mass

M = I /o(x, t)dv = I p(x, t + At)dv,
JVt JVt+btV(t)

which implies that,

/ p(x, t + &t)dv - I p(x, t)dv = 0,
JV(t+&t) JV(t)
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and since V(t + At) = V(t) + S(t)u • nAt therefore,

/ p(x, t + &t)dv + / p(x, t + At)u • nAtds - / p(x, t)rfv = 0. 
Jv(t) Js(t) Jv(t)

Applying Gauss's theorem yields,

/ -^-Atdv + I V • (pu)Atdv - 0, 
Jv(t) & Jv(t)<V(t) Ul JV(t)

since V(t) is arbitrary volume element, therefore,

3.4 Equation of motion

A Newtonian fluid is assumed to have continuous density and thus the motion to obey 

continuum mechanics. We consider an element of fluid of volume 6V, density p and 

velocity yj. A force / is exerted on the fluid element. Thus, from Newton's equations of 

motion, the force equals the rate of change of momentum:

(3-4-1)

We now consider a region of fluid enclosed by the surface S. According to definition 

(3.2.1) the force on the fluid, f, is such that

fi= / t\"} ds, (3.4.2) 
Js

replacing t^ from (3.2.11) and applying divergence theorem implies that

/* /* ^

fi= I TijUjds = \ -^-dV. (3.4.3) 
Js Jv OXj

Hence fi = 6V jp*- and equating with (3.4.1), so the "equation of motion" becomes9ij

Dt 
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3.5 The constitutive relations for the fluid

Applying stresses on the surface of the fluid element makes the fluid element distort. 
According to the differential of a function we express the change in velocity 5u\ for a 
displacement 6xi as we are expanding 6u\

. t du\ _ du\ _ du\ ou\ — 7-—-6x1 -} A ~ ' 
cfoi

2 LV dz2

l f /0"l 'Nur, /&4 &*1

\ ,- / *-fUi<> L/U/1)^2 + (-irr + ^r (3.5.1)

f)Tt /^Tilx*X/J *_/«A/^

We also expected a relation between the stress tensor field T^ and the "rate of strain
» t f) t 

tensor field " e^- = ^ + ^-. We define u; = (o>i,o;2 ,0^3) = V x u^, by following (3.5.1)
then we'll have

or

6u\ = (l/2)(eu6xi + ei2<5a:2 + 

- (l/2)(e2 i(foi ^

+

<ytil
£4

_*4_
i~ 2^

eu £12 613

621 e22 e23

631 e32 633

+

"o -0,3 o;2 "

o;3 0 -wi

— (jj2 MI 0

'

6x1

5x2

6x3 _

The terms in eij give the distortion of the fluid element, whereas the velocity change due 
to the terms in u^ is (1/2) (a; x <5r) which represents a rotation of the fluid element where 
6r = (6x1,6x2,6x3). The tensor components e^ give the different rate of strains of the 

fluid element.

The simplest relation between the stress tensor field r^ and the rate of strain tensor field 

eij is linear:
) — •'MI ~t~ ^ii.niv^-in'D- ^O.O.^j
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In deriving the Navier-Stokes equations we assume the relation takes the above linear 
form. Since the Navier-Stokes equations give accurate fluid flow descriptions, the above 
linear relation must describe the fluid flow. We assume the fluid is isotropic. As a 
consequence of the fluid having no directional properties the tensors Aij and £?ij,mp are 
isotropic. Therefore

Aij and Bi^mp are isotropic. Therefore

6jp + 6ip6jm) + v 

Substituting these relations into equation (2.8) gives:

If the fluid is incompressible, we expect the rate of increase of a fluid element emm to be 
zero. This means that the dilatation of the rate of strain tensor is zero.

Hence we obtain the constitutive relation

Tij = -p6ij + fjieij, (3.5.3)

where p is defined as p = — (l/2)Tkk and may be called the "pressure of the fluid ".

We now substitute the constitutive relation into the equation of motion for a fluid element 
in order to obtain Navier-Stokes equations.

3.6 The Navier-Stokes equations

We now consider the equation of motion of the fluid is given by equation (3.4.4) as

Dt

and the constitutive relations for the fluid is given by equation (3.5.3) as

duv+i + d^'' (;uu)
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Thus differentiating both sides (3.6.1) gives

(3.6.2)

Since we are dealing with an incompressible fluid then,

3u* 
V.t*t = TT^ = 0. (3.6.3)

If the flow is steady, then -^- = 0 and therefore -^ = u\-j^. So from (3.6.2) we obtain 

the Navier-Stokes equations for steady incompressible flow:

(3.6.4)

3.7 Oseen equations

Oseen's approximation to the fluid flow is that the velocity perturbation u to the uniform 

stream U is small compared to the stream velocity U '.

We let the uniform stream U be parallel to the x\ axis. Thus the velocity u^ is given by

where the Oseen approximation is \Ui\ <C U.

J. Q

Considering the Navier-Stokes equation, the term wj-^-rr is

x d d d d uid u2 d . (U + ui)—— + u2 —— + uz —- = U —— + -j— + -|— + -— .

Applying Oseen's approximation that ^ -C 1, we obtain

Applying (3.7.1) on (3.6.4) yields
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= -(l/p)Vp + ^V2 u. (3.7.2)

Taking the divergence of (3.7.2),

i dx2

Since the flow is incompressible, applying (3.6.3) on (3.7.3) yields V2p = 0 

The equations

(3.7.3)

9X1 - - * - (3.7.4) 
72P = 0,

are the Oseen's equations for steady flow.

3.8 Bernoulli equation

For high Reynolds numbers assume that the viscosity can be set to zero. The steady 
Navier-Stokes equations then reduce to

IdP 
pdxi'

From this, we can derive the Bernoulli equation for two different cases (see figures 3.5 and 

3.6).
P + -pUiU-j = const.

Case 1 is valid everywhere for irrotational flow. Case 2 is valid along a streamline. First 
consider the two cases for time independent flow, and then for time dependent flow.

Time independent flow

Case 1. For irrotational (potential)flow

:U



1.

Time dependent 
N-S Eqs.

0 Time dependent 
Eulerian Eq.

r Bernoulli Eqs. J
Potential flow Irrotational flow

Figure 3.5: Derivation of Bernoulli Eq. Case 1

Time dependent 
N-S Eqs.

Re'

2.

Streamlined 
flow

-*•
->

Time dependent 
Eulerian Eqs.

I
Bernoulli Eq.

Figure 3.6: Derivation of Bernoulli Eq. Case 2

There exist (p such that (p = /streamlined u 
tional part is zero V x u = 0,

so, Ui = j-2- and

irrotational flow such that the rota-

1 d ldP

r\ -t

i 2
= 0,

P + -pV = const. (3.8.1)

where V2 = UjUr Equation (3.8.1) is the simplest form of the Bernoulli equation, named 
in honor of Daniel Bernoulli (1700-1782) [25].

Case 2. For streamlined flow
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Figure 3.7: Forces on a fluid element in the absence of friction.

From Newton's law the force acting on a given mass is equal to the product of this mass 

times its acceleration. So we may write Fx = max , where Fx is the force in the positive 

x-direction acting on the particle of mass m and ax is acceleration in the ^-direction. 

Since max = pdxdyj^ and in absence of friction the forces acting on fluid element are 

pressure P arid body force f, so as it is pictorially shown in two-dimension figure 3.7, we 

may have Fx = —^dxdy + pfx dxdy, and therefore ^ = —~^ + fx - Similarly we will 

have the Eulerian equations

Du IdP . Dv IdP . Dw I dP .
Dt

IdP Dv 
'p~fo +fx ' ~Dt pdy Dt p dz (3.8.2)

Let us consider the steady 2-D flow of an incompressible, inviscid fluid in the absence of 

body forces; The Eulerian equations (3.8.2) for this case are

du du~x~ 
oy

I dP dv dv~^~ 
oy

1 dP
dx ' " dy p dx dx dy pdy 

This set of equations is readily integrated along a streamline. Multiplying first equation 

by dx and second one by dy and eliminating v in the first and u in the second equation 

and applying f = (f )/(f) = Jf, we shall have

Ou du , IdPj dv , dv , 1 OP ,u—dx + u—dy = —TT-aar, v—dx + v—dy = --—dy.
dx dy pdx dx dy pdy



Adding both sides to each other implies

~

since p is constant then,
V2 Pd(— + -) = 0, (3.8.3) 
2 p

or

-pV2 + P = const. (3.8.4)

where V2 = u2 + v2 .

We now in equation (3.8.2) suppose the body force f is a conservative force, so there 

exist a function U such that VC7 = f. When such a force is included in the equation of 
motion, the Bernoulli equation will be

V2 Pd(— + --U) = 0, (3.8.5) z p

or for two points along the same streamline in a steady, inviscid and incompressible flow

we have:
V, 2 Pi Vo 2 Po^ + 7~ c/1 = i' + f- c/2 - (3 - 8 - 6)

Time dependent flow

So far we have considered steady flow and have omitted the nonsteady term, but this 

term may be included in equation (3.8.5). We must then add the terms ^dx, ^dy for x 
and ^/-directions to the equation leading to (3.8.3).

since ds is an element of the streamline and

dvdVds u^ + v^ ds du

then we obtain
dV V*

"' " (3.8.7)
fd(L



in which the integration of the nonsteady term is carried out along a given streamline at 

a given instant of time starting from an arbitrary reference point. Equation (3.8.7) shows 
that

fdV V2 P
I -^—ds + —— + — — [/ = const, (integration along the streamline) (3.8.8) 

Ji at 2 p

In (3.8.8) the constant sometimes called the Bernoulli constant and denoted by B or 
because of the integration has been carried out along a special path at a given instant 
of time, so the Bernoulli constant should be a function of t as B(t). Integrating between 
two points of the streamline leads to the expression

/P2 
—ds + ^L + ±1_ 2̂ = U_ + ±J:_C71 . (3.8.9) 

rl dt 2 p 1p
Equation (3.8.9) is applicable to two points on a given streamline in a nonsteady flow of 
an incompressible fluid in the presence of conservation forces.

The force potential most usually considered is that due to gravity. Let us take the y-axis 
to be positive when pointing upward and normal to the surface of the earth. The force 
per unit mass due to gravity is therefore directed downward and is of magnitude g. Thus 
fx = 0, fy = —g and hence U — —gy. Substituting in Eq.(3.8.9), we obtain the equation 
that takes into account effect of the gravitational potential:

rP2 QV , V-2 2

ji (3.8.10)



Chapter 4

Some inconsistencies in the

aerodynamic potential flow theory

4.1 Introduction

There are predominantly high Reynolds number [26] flows and so the coefficient of the 

viscous term in the Navier-Stokes equation is small. The potential flow model is then ob 

tained by assuming that this term is negligible. Flow models are then obtained satisfying 

Bernoulli's equation [27, 22]. (Also, Lamb [27] provides equations for the flow in terms of 

the kinetic energy of the fluid and added mass of the body.)

In aerodynamics, Prandtl [28] found that the boundary layer of fluid close to the body 

significantly alters the dynamics of the flow even though it has negligible thickness; the 

boundary layer separates, and using the theorems of Kutta [29] and Joukowski [30] it is 

generally assumed that separation occurs at the trailing edge at which point the Kutta 

condition holds.

The resulting trailing wake is modelled by a vortex distribution [2] and classically this is 

further modelled by a finite number of horseshoe vortices.

Let us assume the classical textbook representation of the flow past a wing, by a distri-
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bution of horseshoe vortices emanating into the fluid at the trailing edge. In particular, 

we follow the description given by Lighthill (§11, [31]). A discrete number of horseshoe 
vortices are used to represent the trailing vortex sheet. We therefore expect that as the 

number of horseshoe vortices used to model the flow increases, the better the discrete 
approximation to the vortex sheet. Chadwick [1] therefore considers this limiting pro 
cess and obtains an integral distribution of what he calls lifting elements which exactly 
represents the vortex sheet.

In this chapter, we determine the forces [27]

F = - f Puds, (4.1.1) 
JsB

on a lifting element and substitute pressure P from Bernoulli equation (3.8.1) and find 
anomalies both in the lift and drag that help us understand Goldstein' concerns about 
inviscid flow theory [5]. (By lift and drag it is meant the forces perpendicular to the axis 
of the body and tangential to the axis of the body respectively. So this is different from 
the standard definitions of lift and drag which are related to the axis of the uniform flow 
direction.)

4.2 Potential flow

The equations of motion for potential flow necessary for subsequent analysis are now 

derived.

4.2.1 Statement of problem

We start with the time independent incompressible Navier-Stokes equations [27] p. 577 (or 

Eq. (3.6.4)) with the viscosity set to zero, and also continuity equation for incompressible 

flow
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Uj and p* are the velocity and pressure respectively in suffix notation for the cartesian 

co-ordinate system (xi,X2,x$}. p is the fluid density and is assumed to be constant.

Assume the slip body boundary condition, then

u]nj = 0, (4.2.2)

on the body surface SB, where n^ is the outward pointing normal.

Finally, we assume that away from the vortex wake region, the velocity can be represented 

by a potential velocity 0t such that u\ — |£-. Then,

rt „ rt0 N0 ' (42 '3)

where po is a constant. These equation given in (4.2.3) are the Bernoulli equation and 

Laplace equation respectively. We assume that the pressure tends to zero in the far field 

pi — >• 0, and the velocity tends to a uniform stream predominately in the Xi direction

>• USu + V5i2 as R = ^Jx\ + x\ + x\ — > oo; The velocities are such that U ^> V, and 

is delta Kronecker. So p0 = (l/2)p(U2 + V2 ).

Boundary conditions

Consider uniform flow (U, V, 0) at infinity past a fixed closed body of surface SB such that 

the "slip boundary condition"

+ + + uf .n = V^.n = ~r = u]nj = °> (4.2.4)

holds where n = (ni,n2,n3 ) is the outward pointing normal to the body surface SB and 

ut = V</>f is the fluid velocity (figure 4.1).

Letting u be the perturbation velocity for the uniform stream velocity ((/, V, 0), then 

ut = V0f = Uxi + Vx2 + u. This then becomes

+ y:r .2 
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U

/u.n=in=0

body

Figure 4.1: (£7, V, 0) Uniform potential velocity of the fluid.

where u = V</?. Denoting uf = (u\,u\,u\), implies u\ = (6nU + 6i2 V + J-JJ).

It is clear that t/o?i + V:r2 as R — > oo, and therefore u^ = (£/, V, 0) at infinity.

Limiting element

Consider an aerodynamic streamlined body such as a wing in high Reynolds number flow.

We now consider modelling the flow by the standard textbook approach, for example 
following Lighthill (§11,[31]) as a distribution of horseshoe vortices. This is represented 
pictorially by the figure 4.2.1 taken from (Fig 86, §11.3, [31]), where the circulation 7 of 
each horseshoe vortex and we consider the steady state such that the time t —> oo.

1
1

-1
**l

•f A

Hf?L_

1
1

————— ! i

'f
i

i •
1 '

1 •

i ———— ̂  ———————————————

' , t

Figure 4.2: Pictorial representation of a wing by a finite distribution of horseshoe vortices 

taken from Lighthill ([31], §11.3 figure 86).

Consider the method of Chadwick [15], the limiting representation as the number of
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horseshoe vortices increases and hence their span decreases.

For example, consider the horseshoe vortex given by three vortex lines from (CXD, 0, s) to 
(0,0,5), from (0,0, s) to (0,0,0) and from (0,0,0) to (oo, 0,0) shown in figure 4.3.

Figure 4.3: Horseshoe Vortex. 

The velocity of the horseshoe vortex is given by [1] as
II f°° 

^ J0

-Y f°° d 1
7 ' r - ' XJ' (4.2.6)

where s is the span and 7 is the circulation. 

Evaluating each velocity components in turn as s —> 0,

75 9 (J) (4-2-7)

d d
4?r
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Similarly,

u = _ j_
U2 4?r J0

7 A00 5 1

(428)
ur , } *

and where we have used the integral identity given in Appendix 4.5:

°° d 1
(4.2.9)

Finally, the third velocity component is

x
47T J0

(4.2.10)
-R

again, the integral identity given in Appendix 4.5 was used.

Thus the potential of the " lifting element" , the limiting vortex of the horseshoe vortex, 

is

(4.2.11)

This is the potential part of the lift Oseenlet [32, 23] for Oseen flow.
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4.2.2 Force integral for the limiting element

The force is represented by a surface integral of the normal pressure over the body surface 

[27] such that

F = - j Pnds. (4.2.12)

Let F = (Fi, F2 , F3 ), now we replace P from the Bernoulli equation (4.2.3) and applying 

divergence theorem to omit the constant term p0 , to deduce

Fi = - I Pnids = -p I (ujiij)rijds, (4.2.13)
JSB JSB

where F^ is the force on the body due to the fluid, ds is an element of the surface, then 

for closed surface SB containing volume V divergence theorem for appropriate case gives

f t t f 0 • ' / (u]u])riids = I

and since Laplace's equation in (4.2.3) holds, so

M = __(} = 2 = ay*
^ 3 3' f)nr. /)T • /)T • r)r-r)r • r)nr •

this leads us to use slip boundary condition (4.2.4) and rewrite Fi in the following form

Fi = ^P j {(u}u})ni - 2(tittz}nj )}ds. (4.2.15) 
^ JsB

Let us determine the force Fi in (4.2.15) by substituting in the fluid velocity u given by 

the potential (4.2.11). Consider the problem described in the figure 4.4 which consists of 

a lifting element located at the origin.

In this figure n# = — n, n# shows outward pointing normal to general surface SR enclosing 

the body and nc the outward pointing normal to e-radius cylinder Sc (e < /?) along the
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x-axis and finally V is the volume between the general surface SR and the body and 

surface Sc- The divergence theorem for an appropriate vector field g is given by

f * J -L T » J ^ f -A I (A' W/ g.nB as + / g.ncas + / g.n^as = / (div g)dv.
J SB JSc "SR "V

So,

Figure 4.4: Singularity about x-axis

= -p I {iLjiitrii - 2u\u]rij}ds = 
2 JsB

- -p {u]u^(ni} B - (2u\u](nj ] B }ds 
2 JsB
I /* *"^ *^ I T *^ / T ^\ *~\ l *r 

, / , a ,o& 06*. n o ,op <— — p\ I {——(————) — 2——(——-
«/ V 1 J J 31

~ I {u^](ni)sR -2u\u}(nj)sR }ds 
JsR
[ t t t t

JSn

but from (4.2.14) we have — 0, therefore

=7>P( I {u] u] z JsR

For the sake of simplicity we denote the common integrand by

(4.2.16)

IntegrandfF,) = [u^u]^ -
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and therefore,

Since

we have: 

Integrand (Fx ) =

Integrand (F2 ) =

Integrand (F3 ) =

(4.2.17)
ISC

V2 + 2UJJ + Wjt + Vyp. V^)n, -2(Stl U + 6i2V +

4.3 Force calculation

4.3.1 Representation

In this section we compute the force (4.2.17) for the problem. Because </? is singular 

along x\ > 0, #2 — 0) ^3 — 0, we consider the surface consisting of the cylinder S> and
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punctured sphere SR (figure 4.4) given by

a<xi<

SR:

+ x2 2 + x3 2 = R2 ,

-e2 , <

= ecos0, x3 = esin0, 0 < 0 < 27T,

— — (0,cos0, sin0), ds =

Xi = RcosO, X2 = Rsm9cos(f), x3 = .Rsin0sin0, 

u **•• (p ^- ^TT, arccosl—5—) ^ c/ ^ TT,

The Integrand(F-) is then given as follows.

Force components on SR :

Integrand(F1 ) Sfl =

( -V* + V*-2ug-

-2(UV + l

Integrand(F2 )Sfl -

R

i dx2 dxi dx2 R

wN )(— , 8x20x3 R

Integrand(F3 ) 5/? =

3 x (4 ' 3 ' 1) 
~R''

R

R

(4.3.2)

(4.3.3)
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Force components on Sc '• 

Integrand(F1 )Sc =
r\ r\ r\ r\ r\ r\

'" [-^), (4.3.4)

Integrand(F2 )Sc =

- V* +
(435)

Integrand(F3 ) Sc =

^2^x3 (436)

4.3.2 Useful properties simplifying the analysis

We employ two useful properties, symmetry of integrand and harmonics of function, to 

simply the analysis which are described below. We then use these properties in our 

determination of the forces on the body.

Symmetry

Since the surface SR is symmetric with respect to the Zi£3 and XiX2 planes, then 

L ads = 0 if g is an antisymmetric function in terms of x2 or x3 . It is easy to verify
J Sn y

that if / is a symmetric (even) function in terms of x\ , then its derivative with respect to 

xi will be an antisymmetric (odd) function in terms of Xi (and vice versa). Accordingly 

JL \n(\/Xi 2 + x2 2 + Xs* — x\) would be an antisymmetric function in terms of .r-> because 

ln(x/zi 2 + x2 2 + x^ — x\) is a symmetric function in terms of x2 . We sumnmri/r those 

results for </? from (4.2.11) in the table 1.
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Symmetry

in terms of x\

in terms of Xi

in terms of £3

d(p 
9x7

even

odd

even

dtp 
dx2

none

even

even

d(p 
8x3

none

odd

odd

Table 4.1: Symmetry properties of partial differentials of

Harmonics

We shall prove a theorem about some harmonic functions.

Theorem 4.3.1. In any region o/R3 excluding the non-negative x-axis,

- a?i) = 0, where R = + x2 2 +

Proof. A simple computation shows

d
dx2

So,

82 - R3 -R2xi-x2 (2x2 R-xix2 )

R3 (R-xi)2

d2
= 0. (4.3.7)

D

Corollary 4.3.2. Since \n(R-Xi) is harmonic then so are £- \n(R-x } ) and -^ \\\(R-.r\] 

in the same region, so,
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Q r\

2 2V2 —— ln(R - xi) = 0 , V2 —— ln(fl - xi) = 0. (4.3.8)

4.3.3 Drag force

We calculate the contribution to the drag from the lifting element.

Evaluation over sphere

First consider the contribution over the sphere surface SR. The integrand is given by 
(4.3.1).
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Integrand(Fi)5fl =

_J/2 , y2 _c/ -r v 

-2(UV + U-%- + V^- 4- ££-&-}(&.} - 1(11 &- 4-nu v f ̂  x 1- »/ t- n ; ^^ -t- R .

We calculate each term in turn. Some of these evaluations are determined using Maple 
software [33].

+ ((-WV) + (-2t/))f + (-2y ds = 0 because of anti- 

symmetry of the integrand in terms of x^.

4.

Prom (4.3.7) we have (jg, + ^j) ln(fl - n) = -^i ln(fl - n) = |i, so,

J /s. 11+S +^&) = -&• Similarly, 

5-

1 ,702 r2 | J___d__ 322 V •"- fc ^ t 2
3 e4

128 R4 Trp2 U2 ' 256 R6 irp2 U2

JSR ^8x3) /ni fl5 ~~ 16e2 7rp2 f/2 ' I6Re2 Trp2 U'' 

ifi»3^-o2r:2 v •ft C T~

9
128

1 ! ^ 2 - ——3——^4 - -^k^ v^2̂ ^-

f J
1 213"° ~~ WR2 U2 p2 n 

1___,/P2 _ ^2
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Evaluation over cylinder

We now calculate the contribution to the drag from the lifting element over the cylindrical 
surface Sc- The integrand is given by (4.3.4).

Integrand (F

= - 2(UV + U^- + V$£- + &-&-}(—&} - 2(U-&- 4- *{u v -r u dx2 -i- v dxi -i- dxidX2 )( e ) * \ u dxs -t-

We calculate each term in turn. Some of these evaluations are determined using Maple 
software [33].

1. fso {(-2UV)(-&) + (-2*7|)(-f ) + (-2U)(-*)}ds = 0 because of antisym- 
metry of integrand in terms of x2 .

2. u a >>v 2 pU\/a2 +e2

e

6 j £4
128C/2 /J2 7r ^(aS+e2 ) 2 32C/2 p2 7r ( a2 +e2 ) 2

/P2 C2 fl 3 V

/P2 f2 _ 15 e2 , 3 e2 4 
2 H V 128t/2 p2ir (a2 +e2 ) 2 ^ 128C/2 p2 7r ^(a2 +e2 ) 2

1 - /^2_ £2 a4 + —————5———— 3
32t/2 p27r(a2 +e2 )2-

_1_____^,//?2 _ f2 fl4
o/ 2 2\2 D V -*«/ c u3C/-p-7r^a~-fe~; n iuty-/^-/ie

_______1 ea5 _ 1T TT 7^ ^T" 8t/2p2 7re2 K(a2 +e2 )

1 _____ e2 /P2 r2

16t/2 p2 7r R
e2 2

2 "" 32C/2 p2 7r(a2 +e2 ) 2 '

.jQ4 
2

5 2
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e*R(a*+c*) V -R C 2 fl

______I_____,/#2 _ f2 i 1_____a3 i 12222 V ^ e ~~

Result

Combining all the results together, we get

- _! v; ,
2 (7 ~

2\/a2

e2
lim{^-

and since

~~ ' ' >0,

then FI is of order O(^) and therefore tends to +00 as e —> 0. Hence the drag force is 

infinite. The implication of this is discussed later in §4.4.

4.3.4 Lift force

In a similar way as for the drag force we calculate the contribution to the lift from the 

lifting element. First consider the contribution over the sphere surface SR. The integrand 

is given by (4.3.2).
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Evaluation over sphere

Integrand(F2 )sR = 

-2(UV + V^-*\u v T v Qxi dx2

dx3

We calculate each term in turn. Some of these evaluations are determined using Maple 
software [33].

—2(V-j^- + ^--f^X^p )}ds = 0 because of antisymmetry of integrand in terms of #2 .^ 0X3 C/X2 0X3 ' ^ .rC ' J */*/o A.

2. /SH (-2C7V)^ds = /5fl (-2C/K)(cos^)(^2 sin^)^^ =

-Cccos ^!Ii!^/o27r (-2C7y)(cos ^)(^2sin61)^)^ = 2e2 ^^7r.

3.

arccos(

Similar to item 4 in §4.3.3 we have:

5-

Evaluation over cylinder

We now calculate the contribution to the lift from the lifting element over the cylindrical 

surface Sc . The integrand is given by (4.3.5).

Integrand(F2 ) 5c
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Calculating each term in turn,

= 0 because of antisymmetry of integrand in terms of y.

4, Pf £)(-?)* = -i"'. ™°g Maple [33]

Result

Combining all the results together, we get

~C2 \/ O2 +€2 - O.R

.

Prom the standard potential model we would expect the lift force for this particular 
potential velocity to be equal to 1. The implication of this disparity is discussed later in 
§4.4.

4.3.5 Side force

In this case since the whole integrand given in (4.3.3) over 5^ and the integrand given in 
(4.3.6) over Sc are antisymmetric in terms of z. (Of course, if the cylinder intersects the 
body at an angle, then there will be an additional contribution for which we cannot use 
the symmetry properties. However, it can be shown this contribution is negligible (see 

Appendix 4.6). The remaining contribution is then,

F3={^(/5n Integrand(F2 ) 5fi + JSc Integrand (F2 ) 5c ds)} = 0.
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4.4 Chapter 4 Discussion

We have considered the force contributions on a body due to the lifting element potential 

i ln(R — Xi) and have found that the side force is zero, lift force is a half and
drag force is infinite.

This has implications for aerodynamic potential wing theory, as the classical approach [2] 

models this by a vortex sheet and which we represent by a distribution of lifting element 

potentials. (This is because the limiting value of the horseshoe vortex potential as its 
span tends to zero is the lifting element potential.)

These results mean that the lift force on the wing would be half that expected from the 

classical approach. In [1], Chadwick argues that this is because the wrong limiting value 

for the lift of a horseshoe vortex has been used in the standard approach. (Essentially, 

the 2-D result L = pU'js has been wrongly assumed.)

Furthermore, in this chapter we have also found that the drag force on the wing is infinite.

This result may not be surprising to us as the kinetic energy associated with the flow is 

also infinite (see Appendix 4.7). This further means that we cannot use Lamb's equations 

of motion for potential flow as he represents them in terms of the kinetic energy. (However, 
Lamb assumes that the potential is regular and not singular everywhere in the fluid.)

Therefore we cast doubt on the validity of the aerodynamic potential flow model.

To model this problem appropriately, we must also include the viscous wake velocity even 

though the Reynolds number is large [1]. We suggest that one way of doing this is by 

using the Oseen equations [34, 15).
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4.5 Chapter 4 Appendix: Relation between 2-D po 

tential and 3-D

We show that

-£- \u(R - Xl ) = - r -j-——————^—————r- (4.5.1) 
d*j Jo ^{(*i-02 + *2 + *l}*

In practice we have: 

For j = 1:

= ~, (4-5.2) 

and

rHff5(4.5.1) = / 
Jo

°° T, — £ 1 °

R(R-xi) R(xl+x\Y 

and

##5(4.5.1) = ! 
Jo

100

But alternatively by denoting x^ + 2:3 = r2 , we have

(4.5.3) 

For 7 ^ 1:

(4.5.4) v ;

(4.5.5)

? + r2 )

= lnr + ln(-- + t(-)2 + 1) = Inr - sinh-^ 
r V r r
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Also

(Jo

- - 1 (4-5.7)+ r
X — x\

and therefore for large X,

L 2X . .-i— +sinh l

so
rX

Combining (4.5.6) and (4.5.8) gives

4.6 Chapter 4 Appendix: FS computation

(4.5.8)

ln(R - Xl ) = Jim (- {* - ——— * + \n2X). (4.5.9)
x-*°° 7o {(xi - £) 2 + x$ + x§}2

Now differentiating both sides of (4.5.9) with respect to Xj yields (4.5.1).

When computing the force F3 , we considered an intersection of the cylinder and the body 
which was symmetric about the x-axis (see §4.3.5). If the intersection of the cylinder and 
the body is not symmetric, we show below that we get the same result as for the symmetric 
intersection. We define the additional surface to be included because the intersection is 
not symmetric as the surface (Sc)° and show the contribution to the force F; < over the
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surface is negligible. We suppose the surface (Sc)° follows the parametric representations 

in §4.3.1 for 0 < </> < 2?r, a < x < /3. The integral is broken up into the following two 
parts

s = (V* = 0,

2. The integrand of

(e2 +xi 2 )i

>v

and since

_ i (_*L)2 +

then

( /i+^_

The integrand is then

-^^

So

= 0.
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4.7 Chapter 4 Appendix: Kinetic energy computa 

tion

Theorem 4.7.1. Green's Theorem

Let u = (ui,u2 , u3 ) and hence divu = f^ + jp- + ^

/ u.nofs = — / divudv, (4-7.1) 
./s ./v

1*1,1*2,1*3 an?/ three functions which are finite and differentiable at all points of a connected 

region completely bounded by one or more closed surface S, [27].

Kinetic energy

If (p is the velocity-potential of an irrotational motion of a fluid then V2 </? = 0, so 
substituting u = (pVtp into (4.7.1) implies

dn
- I (V(p • V(/? + pV2 <p)dxidx2dx3 = - (V<p • Vp)dxidx2 dx3 . (4.7.2) 

Jv Jv

If K.E denotes the total kinetic energy of the incompressible fluid and p shows the density 

of it, then [27]

i f i rK.E = -p (V<£ • Vtp)dxidx2 dx3 = --p (p—ds.
2 Jy ^ Js

We now present the computation of the kinetic energy

K.E = P V<p.V<pdv, (4.7.3) 
2 Jv

for the potential flow (p(xi,x2 ,x3 ) = ^j-j^ ̂ (Vx\ 2 + x2 2 + x3 2 - Xi) where V is:

1. a cylinder of volume Vc with radius 6 along the xraxis where, 0 < a < .r\ <b,
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2. a sphere of volume Vs of radius R, with center lying on the Zi-axis at point (c, 0,0) 

where, c > 2H, (figure 4.5).

Figure 4.5: Cylinder Vc and Sphere Vs

Let M > 1 be any real number, we show that K.E > M and since M is arbitrary so 

K.E -> +00. We follow with the fact Vv?.V<p > (g-) 2 - (^fl)2 .

i. Computing K.E on Vc

Volume Vc '• <
2 + #3 2 < e2 , 0 -< a < xi < 6, 

= rcos</>, rr3 = rsin</>, 0 < 0 < 2?r, 0 < r < e.

We take 0 < S < ,/^fc where A = ^, then (*-£> ~^f > *M. Then

2 a o
»e /«6 />27r/•€ />0 />*

2 Js Ja Jo

i/VV2^ JS Ja JO

therefore K.E\ Vc —> +00. 

ii. Computing K.E on Vs

Volume Vs '• < = h sin 9 cos 0, rr3 = /i sin 0 sin

<0<7T, 0<0<27T, Q<k< R.

We take 0 < 6 < T^ where A = ^TJT, then 7^777^ > ^^ This implies
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K.E\v. =
Vs
/»/Z /-7T /

£ / / /2 Jo Jo Jo "r r,dp,2
I I ( ——) "•Jo Jo dxi 

p [R r f^ sin2 0 cos2 ^ 
27, Vo Vo ( 167r2p2 C/2 /i4

2 v 127r/?2 t/2

therefore .fif..E7|vs —»• +00.

We now compute the kinetic energy due to (p on the volume V in figure 4.4. The kinetic 

energy for this volume is much bigger than kinetic energy exerted on volume VR-T shown 

in figure 4.6, because of the positive integrand in (4.7.3). In figure 4.6, VR-T is the volume 

inside the sphere SR and outside the sphere Sr which completely surrounds the body 

and this volume excludes the cylinder Sc, in other words SB C VR-T C V. We suppose 

the sphere Sr has radius r and the volume VR-T is included in the domain a < 9 < lit 

in spherical coordinates according to parameterization in (§4.3.1) for 5^, where o; >

Figure 4.6: Volume VR-T
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So,

K.E\V > K.E\ VR P =
2

P [, [", , l
o/ ( ( ("72 Jr Ja Jo 4 < m 2(-1 + COS 0) TTpl/Tl2

cos10 -a{30 ln(l + tan2 -a) - 60 ln(tan -a)
Zt Zt Zt

- 115 tan2 -a - 17 - 245 tan4 -a 
2 2

- 105 tan6 -a - 30 tan8 -a - 300 ln(tan -a) tan2 -a - 600 ln(tan -a) tan4 -a
Zi Zi Zi £ £ A

- 600 ln(tan -a) tan6 -a - 300 ln(tan -a) tan8 -a - 60 ln(tan -a) tan10 -a
Z* £ Zt Zi Z* Zt

+ 150 ln(l + tan2 -a) tan2 -a + 300 m(l + tan2 -a) tan4 -a
Zt Zt Zi Z*

+ 300 ln(l + tan2 -a) tan6 -a + 150 ln(l + tan2 -a) tan8 -a
Zt ZA Zi Zt

+ 301n(l + tan2 -a) tan10 -a} = I (a),

since In (tan \a) tanm \a w (f ) m In (Ja) as a -> 0+, and lim(f ) m In (Ja) = lim(-^r) = 

0 for all positive values m. The dominant term in the solution of this integral (which we 

denoted it by /(a)) for small positive value of a is —60 In (tan |a) , so

lim I(a) = Iim^^^;cos10 (|a)(-601n (tan Ja)) = +00.

Hence

K.E\ V > lim K.E\vR_ r = +00.
a— +0
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Chapter 5

The jump in lift at the trailing edge 

of a thin wing in potential flow

5.1 Introduction

In many computational potential flow aerodynamic models, the lift is calculated from 

the pressure distribution over the top and bottom surfaces of the wing (rather than by 

calculating the lift from horseshoe vortex distribution representing the trailing wake sheet) 

and these results agree with experiment. This is the starting point of the research arising 

from this chapter. In this chapter we shall consider exclusively the standard aerodynamic 

potential flow model (and not quasi-potential or Oseen flow), in order to investigate how 

the lift is calculated from the pressure distribution over the wing in the standard approach. 

In particular we shall show that standard text book approach overcalculates the lift by a 

factor of two as there is an omitted calculation, a discontinuous jump in the lift integral 

at the trailing edge.
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5.2 Statement of problem

For the structure of the lift force we here also follow all conditions and assumptions that 

has been considered in (§4.2.1). Then we develop a wing representation in potential flow 

and give an expression for the lift force on the wing . The lift force is then evaluated from 
the pressure distribution over the top and bottom surfaces of the wing, and also across 
the trailing edge of the wing.

5.2.1 Wing representation

The classical approach is developed by thinking of a discretisation of the vortex sheet 
by a number of horseshoe vortices: Lighthill [35] figure 86 p. 216, Batchelor [21] figure 
7.8.4 p. 585, and Katz and Plotkin [36] figure 8.2 p. 169 distribute a spanwise number 
of horseshoe vortices of varying strength and in the limit let the span of each tend to 
zero; Newman [37] figure 5.18 p.195, and Katz and Polkin [36] figure 8.17 p.186 distribute 
a spanwise and chordwise distribution of horseshoe vortices of varying and in the limit 
again let the span of each tend to zero. We therefore represent the flow around a slender 
wing by a distribution of bound and free vortices over an area A within the slender wing. 
For simplicity, let us restrict our attention to an area A that lies on the rectangular area 
0 < x\ < X\, x-2 = 0 and 0 < #3 < X$, and let the uniform stream U flow past the body 
predominantly in the x\ direction. This distribution is approximated by a finite number 
of horseshoe vortices distributed over the area ^4, and such that the horseshoe vortices 
are regularly spaced with span Arcs in the #3 direction and separated by distance Azi in 
the x\ direction as shown in figure 5.1.

The circulation vortex strength on the vortex sheet r(xi,x3 ) is approximated at a finite 

number of points with coordinates (zAzi, 0, (j + 1/2) Ax3 ) for some integer value of i and 
j, and related to the strength of the horseshoe vortex at that point. In the limit as both 
A^i and Ax3 — > 0, then the circulation function F is determined. Hence, in this limit the 
span of each horseshoe vortex tends to zero. This means we take ^£^ — »• oo.

Expressing in terms of the perturbation velocity ut = to the uniform stream U6t i 

where U ^> V such that
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V I I I I
Area A —*• 7 7

/ / C3 / / horseshoe vortex
I I I I I
III 1 T

Figure 5.1: Distribution of horseshoe vortices which make up the vortex sheet.

u\

then in [1], this is shown to give

(5.2.1)

<f>(xi,x2 ,x3 ) = In(#i3 - xn )dyidy3 , (5.2.2)

where R13 = x\ + (x3 -

Thwaites and Prandtl [8] p. 301 eqns. (21) and (22) give similar expressions to (5.2.2), 
but for -J4- and restricted to when x2 = 0. Thwaites' result is obtained by replacing the 

integrand expression with

1 /- xn
^-2 In(#i3 - xu ) |x2 =o = 2
C/Xf) X33

7*13 (5.2.3)

where 2:33 = x3 — 2/3 and ri 3 = \f%\\ + ^33- Similarly Prandtl's result [4] is obtained by 

replacing the integrand expression with

d2 „ d f 1 / r13 \l ,'-^ i / yp \ I __ _____ I _____ I -1 | ^ ^> II / r .^ j \

/~fT* //*T*o I 'T'oo \ 'X*i i / I C/vC« o ix**/ j i "^jj \ **/ 1 1 / I

Thwaites describes the function ^13 as the load function, and it is related to the circulation 

strength of the vortex T such that ^13 (2/1, t/3 ) = dt3 (y\,y3 )/dy\ and (3 (y\,y3 ) = pUr(yi,ij3 )
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[1]. Hence, £J3 is a singularity strength distribution over the area A. The vortex strength 

in the xi direction is given by ^l = -£33/ (pU) and in the x3 direction is given by 

7s = W(/>kO where £33(2/1,2/3) = %(2/i,2fe)/%j- Hence, (5.2.2) represents an integral 
distribution of infinitesimal horseshoe vortices. This also agrees with the infinitesimal 

horseshoe vortex potential given by Thwaites [8] p. 391 eqn 76. Similarly, the shed vortex 

wake is also a singular sheet which we present by an equivalent singularity distribution 
^13(2/1,2/3), see figure 5.2.

wing
'Trailing vortex wake

Area A

Figure 5.2: Strength of vortex sheet inside and outside the body.

Let us also define the quantity L by

L= II £13(2/1,2/3)^2/1^2/3- (5.2.5)
A

(Hence, for a single horseshoe vortex of strength F, L = pUTs where s is the span of 

the horseshoe vortex.)

5.2.2 Force integral representation

The force is represented by an integral distribution of the surface pressure, however, since 

the pressure is undefined on the vortex sheet, and this sheet intersects the wing surface at 

the trailing edge, then the integral cannot be determined at the trailing edge. Therefore, 

a contour C& is considered (which is defined later) and which lies on the wing near to
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and enclosing the trailing edge a distance 6 away from the vortex sheet. The force is 

then given as an integral over all the body surface SB except for the surface on the body 
Ss (which is the surface enclosed by the contour C&), in the limit as 6 — > 0. Finally 
the force integral is evaluated over a symmetric surface Ssymm in order to simplify the 

representation. So before proceeding with the force representation, the surface 5aymm is 
defined and from this the contour C$ is denned.

Consider the surface Ssymm defined as the surface a distance e away from the rectangular 
area A. (A is defined as lying in the region 0 < x\ < X\ — e, x<i = 0, 0 < £3 < X% — £.} 
Then Ssymm consists of: the top and bottom surface 5^; the side surface SSide ', the trailing 
edge surface Ste and the front edge surface Sfe .

The top and bottom surfaces Stb consist of: the top surface St parameterised by (p, e, q) 
where 0 < p < X\ — £, 0 < q < X3 — e; and the bottom surface Sb parametrised by 
(p, —e, q) where 0 < p < Xi — e, 0 < q < X3 - e.

The side surfaces SSide consist of: the left side surface parameterised by (p, e cos /3, e sin (3} 
where 0 < p < X\ — e, —TT < /3 < 0; and the right side surface parameterised by (p, e cos /3, 
X3 - e + esin/3) where 0<p<Xl -e, O</^<TT.

The trailing edge surface Ste consists of: the cylindrical surface parameterised by (X\ —e+ 
£cosa,£:sina:,<?) where — f < a < f , 0 < ^ < A"3 — £; the quarter sphere parameterised 
by (Xi — e + e sin a sin/?, e cos a, e sin a cos/3) where 0<a<7r, |</3<7r; and the 
quarter sphere parameterised by (X\ — e + e sin a sin /3, e cos a, X$ — e + e sin a cos (3] where 
0<a<7r, 0</3< f.

The front edge surface Sfe consists of: the half cylinderical surface parameterised by 

(ecosa, £snm, q) where | < a < ^, 0<g< X3 -e; the quarter sphere parameterised by 

(e sin a sin /?, e cos a, £ sin a cos (3) where 0<a<7r, TT^/?^^; and the quarter sphere 
parameterised by (e sin a sin /?, e cos a, X3 - £ + £ sin a cos /?) where 0<a<7r, ¥j- < 0 < 

2?r. See figure 5.3.

Then let the contour C£ be where the plane x\ = X\ - e intersects the surface Ssymm (see 

figures 5.4, and 5.5). Similarly the contour C$ be where the plane x\ = X\ — £+ ye2 — 62 

intersects the surface 5si/mm , where 6 «C £ (see figures 5.4, and 5.5). Hence, to first order 

the contour C& is a distance 6 away from the vortex sheet.
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trailing edge

symmetric surface Ssymm

Figure 5.3: Surface symmetric about x-2 around the area A.

Figure 5.4: The position of the trailing edge , end view.

Then the force is represented by a surface integral of the normal pressure over the body 
surface [27] such that

&§{-JJ P^ (5.2.6)

where fl is the force on the body due to the fluid; ds is surface element; and SB - S& is 
part of the body surface not lying on 5<j. (Standard calculation essentially calculate the 
force integral over the body surface SB — S£ , but we claim that this is incorrect as the 
contribution to the force integral across the trailing edge is not then considered.)
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trailing edgey

Figure 5.5: The position of the trailing edge , side view.

Since vlrij = 0 on the body surface, then

S-SS

(5.2.7)

where S is a general surface enclosing the body except for the constraint that S& must 
lie on S. We have used the result that the integrand of the volume integral enclosing the 
two surfaces S — S$ and SB — S$ is identically zero from Green's integral theorem.

The second component of force, /2 is therefore given by

= lim II
*-*JJs-ss

+ -pUu3u3n2 - p(V + u2 )(U
£

- p(V + u2 )(V + u2 )n2 - p(V + U2 )u3n3 }ds.

(5.2.8)

Consider the integral over the surface such that S = S9yTnm which is symmetric about 

x2 = 0.

All terms in the integrand that are antisymmetric in x2 give zero integral contribution.
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Also, the term in the integrand -pUVni give zero contribution over the closed surface. 

So, from the form of Ui given in (5.2.2), then equation for /2 reduces to

/2 = li / / (5.2.9)

5.3 Lift force over top and bottom surfaces of the

wing

The top and bottom surfaces Stb defined as part of 5symm , are shown in figure 5.6 as 
the solid line. Hence the surface on the body Se which contains the trailing edge and is 
enclosed by the contour C£ is not included in the standard approach.

Figure 5.6: The top and bottom surfaces.

A near field approximation $""* is first calculated for 0. The inner integral of (5.2.2) is 

given in slender body theory [15] and the near field approximation discussed extensively 

in [16]. (Note that the standard form of the slender body integral, / ^/i can

rewritten as - ~ / m(yi) ln(Rn - xn )dyi.) Applying slender body analysis, a near field 

approximation 4>nf for </> is given as

3
rr 2-KpU Jo

(5.3.1)
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where r3 = V(X3 - 2/a) 2 + x\ . The force integral in 2-direction over the top and bottom 
surfaces, which we shall denote by /2t6 , is over the top surface St and bottom surface Sb . 

From (5.3.1), it is clear from symmetry arguments that the contribution from the bottom 
surface is the same as from the top surface.

Therefore, substituting (5.3.1) into (5.2.9) gives

/A~3 rX\ 
I ui(xi,e,xz)dxidxz 

Jo
"V V V/AS />AI /"As j^p / 

Jo Jo &x
flPr.f'T-. 1/0 ^ F

(5.3.2)

"V "V8 *

The force over the top and bottom surfaces of the wing is therefore L. However, there is 
an additional contribution to the lift force across the trailing edge of the wing.

5.4 Lift force across the trailing edge of the wing

It is noted that Ui is not singular at the trailing edge, and so there is no contribution to 
the integral from the term uini at the trailing edge in the limit as 6 —> 0. So, from (5.2.9), 

the force in the 2-direction across the trailing edge of the wing is given is

f = lim lim(—pU 11

_ S"'r Sr ^ (5-4.1)

«/ «/

where the inner limit is taken first. Also, Ate is the projection of the surface Ste onto the 

plane of constant x l5 similarly with AS, and dA is an element of area in the .;-| plane.
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Hence, we have assumed that ^3 is slowly varying function in xi. Applying the divergence 

theorem, the area integral is changed to a contour integral such that

= limim lim{-pU (b (f)n2 dl + pU <p •-»o*-*o JCe JCs (5.4.2)

where Ce and Cg are given in figures 5.4 and 5.5, and f is an integration around a 
closed contour in the anti-clockwise sense.

Substituting for (f>nf from (5.3.1), and changing the order of integration gives

(5.4.3)

where the contour C& can now be replaced by the circular contour Crs of radius 6 at 

7/3 = x3 , see figure 5.7.

Figure 5.7: The contour C6 and Crg.

5.4.1 Contribution from contour Crs

The contribution to (5.4.3) from the contour CrS denoted by /| is
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cos 63r3 d03 }dy3

,
= « /* Jo

where r3 = {z2, + (z3 - = r3 cos 03 and z3 = r3 sin 03 .

(5-4-4)

5.4.2 Contribution from contour C£

Let the contribution to the force integral over the contour C£ be denoted by /f. Due to 

symmetry, the contribution from the upper half contour x2 > 0 is equal to the contribution 

from the lower half contour x^ < 0. Also, the contribution from the semi-circular contours 

are of lower order for small e. Therefore,

\im(-2pU ( 3 4>n £^° Jo
I rx* rx3

lim{ —— / / 
£^° v Jo Jo

- [
7T JQ

(5.4.5)

2 2
= -L.

Therefore at the trailing edge there is a jump in the lift force of value ff 

L/2-L = -L/2.

= /| + /| =

5.4.3 Total lift force on the wing

We have seen in the previous section that the total lift force on the wing is ff + ff = 

L - L/2 = L/2, half that expected by considering the pressure distribution over the top 

and bottom surface of the wing only.
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The total lift force is given by an integral involving the pressure over the body surface. 

From (5.2.7) by using Green's theorem it is shown that this integral is equivalent to an 

integral over a general surface S enclosing the body, for a particular integral involving 

pressure and velocity. Here, a spherical surface in the far filed is considered.

The force can also be calculated from a far field integral enclosing the body: consider 

a closed surface enclosing a volume of fluid which the integral given in (5.2.9). From 

Green's integral theorem, this is identically zero, and so the lift force can be represented 

by an integral over a surface enclosing the shed vortex wake and over a far field surface 

enclosing the body, see figure 5.8. It shall be shown next that the first of these integral is 

zero and then the force shall be calculated from a far field integral enclosing the body.

Figure 5.8: Far field

5.4.4 The force integral over a surface enclosing the shed vortex 

wake

First, we determine the form of the potential in the near field of the shed vortex wake
,nf
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The potential is given from (5.2.2) as

Applying the Taylor expansion gives

/y*" I /y**X 2 ' X 33

Substituting this expansion for ^ In(#i3 - zn) into (5.2.2) gives

1 /"*3 /)

(5.4.7)

which gives the same result as (5.3.1) with Xi — X\. Representing the flow near the wake 
in the form

gives for yi > X\
(5.4.10)

which is consistent with the standard aerodynamic horseshoe vortex description of the 
shed vortex wake, the vortex lines are parallel and constant strength.

The force integral over the trailing vortex wake f2 ake can now be determined. To first 
order, from (5.2.9), substituting in for 0 the value <$ake from (5.4.9) gives

oc 
wake

/•AS r 
jwae = _2f)U / /

Jo J
j rX3 roc r

= - \ \
7T Jo JXl JO

v (5,1.11)
X3 roc rX3 ^ >
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However, using the result (5.4.10), then

*°° d
' • --"1=00

1 " "* (5.4.12)
= 0,

so f?ake = 0.

5.4.5 The force integral over a spherical surface radius R —> oo 

enclosing the body

In the far field, from (5.2.2), applying the Taylor series expansion about a point (0,0,0) 

centered on the body gives

00 °° dn dm d

n=0 m=

where R — {x\ + x\ + #i} 5 5 and n and m and are non negative integers. The expansion 

is convergent except on the vortex wake x^ = 0, 0 < x3 < X3 , and also the coefficient 

a00 = 4^7. Consider the surface SR such that x\ + x\ + x\ = R2 , and the surface SSR 

which lies on the surface SR such that x\ + s2 < J2 where 0 < s < X3 . Therefore the 

points on the surface S5R are a distance at most 6 away from the trailing vortex sheet. 

Then from (5.2.9) the force over the far field surface enclosing the body f£f is given by

flf = lim lim [pU 11 (uiW2 - u^ds}. (5.4.14)
<J-»0 H-+OO 7 J

On substituting the expansion for (p from (5.4.13) and (5.4.14), only the first term in the 

expansion, a0o = 5777, is nonzero in the limit as R —> oo, and gives
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flf = L/3 + L/6 = L/2. (5.4.15) 

Hence, as expected, the total lift force on the wing is f?ake + f£f = 0 + L/2 = L/2.

5.5 Chapter 5 Discussion

The standard horseshoe vortex description of a vortex wake in potential flow aerodynamics 

has been taken, described in for example Lighthill [35] figure 86 p. 216, Batchelor [21] 

figure 7.8.4 p. 585, and Katz and Plotkin [36] figure 8.2 p. 169.

The discrete summation of horseshoe vortices is then replaced by an integral distribution 

of potential lifting singular solusions, following [1] (and first used in a slender body context 

in [15]).

The force integral over the body surface is replaced by a general force integral enclosing 

the body, and the near field flow is determined by using asymptotic analysis similar to 

that used in slender body theory. From this, it is shown that the lift force from the 

pressure integral over the top and bottom surface is L, as given in standard theory. (This 

is equivalent to stopping the integration at the contour C£ ). However, there is also a 

lift force from the pressure integral across the trailing edge, and this is shown to give a 

jump in the lift at the trailing edge of value —L/2. (This is equivalent to stopping the 

integration at the contour Cs). The lift on the body is also calculated from an integral 

enclosing the body in the far field. Both calculations show that the total lift force on the 

body is L/2 in inviscid potential flow theory and not L as has always been thought. This 

is consistent with the lift calculation obtained by considering the horseshoe vortex model 

given in [1].

Clearly, the potential flow model is incorrect for the following reasons: evaluated properly, 

the lift on a wing is given as L/2 and not L as given by experiment, (the assumed 

agreement with experiment due to an improper calculation is merely fortuitous); also the 

kinetic energy about a vortex line which is the fundamental building block element of a 

vortex model, is not bounded; and finally the far field uniform stream boundary condition
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is broken near the shed vortex wake because vorticity does not diffuse.

Furthermore, from a physical argument the representation must be flawed as it is impos 

sible to have a jump in lift at trailing edge. The pressure force is such that the trailing 

edge would snap off. This gives an indication as to why the potential flow model is in 

correct. There must be an omitted viscous resistive contribution which counterbalances 

the singular nature of the potential flow velocity, such that when included in the model: 

There is no jump in lift at the trailing edge; the kinetic energy about a vortex line is finite; 

and the far field uniform stream boundary condition if satisfied. The reason why the po 

tential flow model fails is because the viscosity has been set to zero in the Navier-Stokes 

equations, but yet a coupled singular viscous velocity term is expected to be present in 

the solution. So, even at high Reynolds number, it cannot be ignored.

This naturally leads to the requirement for a new model in which these viscous terms are 

present, and this model is given in [15] and [1] : Consider, for example, small perturbation 

potential theory [36] used extensively in aerodynamics. One way of obtaining this theory 

is by first setting the viscosity to zero in Navier-Stokes equations (yielding potential 

flow) and then by assuming that the velocity perturbations to the uniform stream are 

small. If we re-order these approximations so that first we assume that the velocity 

perturbations to the uniform stream in the Navier-Stokes equations are small (yielding the 

Oseen equations), and then take the limit as the Reynolds number tends to infinity, then 

the viscous terms are retained in the model. This yields a "quasi-potential flow model", 

and this is believed by us to be correct flow model for aerodynamics and hydrodynamics 

where the Reynolds number is high and lift/side force calculations are required: there is 

then no jump in lift for flow past wings, and theory agrees with experiment [1], and the 

velocity at the center of a vortex line is finite [15].

5.6 Chapter 5 Appendix: Boundary conditions

Since we consider an integral distribution of infinitesimal horseshoe vortices over the area 

A, the kinematic and dynamic boundary condition applied to the wake, and also the Kutta 

condition, are implicity satisfied by (5.2.2). However it is important to demonstrate this 

explicitly, which is done in the following appendix. The kinematic condition are [36]
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p.87-89

lim (°£L\ = * (5.6.1) 
z2 -o+ \dxi J 2

lim f^L] = -11, (5.6.2) 
X2-0+ V dx3 ) 2 ' v '

where in the notation of [36], 7X = 7j and 7^ = 73. jl is the bound vortex strength 

of the wake in the Xi direction, and 73 is the bound vortex strength of wake in the z3 

direction such that [36], p.89

= 0. (5.6.3)

The dynamic boundary condition [36], p. 87 state that the jump in the pressure Ap and 

the vortex sheet strength function in the transverse direction 73 are

= 0. (5.6.4) 

73 = 0. (5.6.5)

This is applied up to the trailing edge, and on the trailing edge satisfies the Kutta condition 

[36], p. 88.

Kinematic boundary conditions

Prom (5.3.1), near the vortex sheet we have

/ 3 *3(*i> ydjT In(r3 )djfe, (5-6.6)
Q OX2 

SO fXs d
«3i(xi,lft.)«-ln(r»)d»», (5.6.7) 

J0

where 4i (xi,y3 ) = BT(XI^- Letting x33 = x3 - y3 , then

. (5.6.8)

Let us assume that ^31 can be represented by a finite Taylor series expansion to N terms.
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Then

Changing the variable of integration to /? where x33 = x2 tan /3, then

Consider
tan71

Then

and so

/o = arctan(— ) - arctan(^ ——— -),

(5 - 6 - 9)

(5.6.11)

(5.6.12)

lim /0 = lim ( arctan(— ) - arctan^3 ~ X3 }] =-- (--) = TT. 
x2 ^o u x2^o\ V x2 v a;2 / 2 2

Using the result [38], p. 77 4.3.115, then

(5.6.13)

lim (x2 (I
X2-0 \ \

lim A = lim x2 (In ) 1 = 0.
J j

(5.6.14)V '

Similarly, using the result for n > 2 given in [38], p. 77 4.3.120, then

In = (5.6.15)

By iterating using the recursive relation, we have for n > 2 In = (9(x2 ), and so

lim /n = (5.6.16)

Therefore,
r hm (5.6.17)

Similarly,

TTry 2-KpU JQ
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However, ^ In(r3 ) = -^- In(r3 ) , and so, integrating by parts gives

TC-lnfo)
2

1

27tpU

Applying similar arguments as for ^^, we have

. (5.6.19)

It is more usual to express these in terms of the bound vortex strength of the wake 7X in the 

Xi direction and 73 in the x3 direction, where we let 7X = —tw/(pU} and 73 = -C3i/(pU). 

This gives the kinematic boundary conditions

ton (?£L} = ^, (5.6.21) 
12-0 \dxl J 2 ^ '

and
//\ = _7i (

v

Furthermore, since dX3dl[dX3 = dxzfx3 dxi > t^ien *^e circulati°n condition (5.6.3)

i |

holds, [36] p. 87-89.

Dynamic boundary conditions

Prom Bernoulli's equation and the asymmetry of the flow, the jump in pressure Ap across 

the vortex sheet is given by

Ap = -2pt/ = -pU^. (5.6.23)

Across the wake, from ( 5.4.10),

1 d 0, (5.6.24)

which holds up to the trailing edge. Hence, the Kutta condition ia satisfied at the trailing 

edge [36], p. 88.
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Chapter 6

Slender body theory

6.1 Introduction

In this chapter, we give the complete slender body expansion over a finite line for the 
generator potential defined as </? = ln(.R — xi). The integral splitting technique is used 
but applied to the generator potential rather than the source potential. The advantage of 
starting with the generator potential is immediately clear if the near field approximation 
for r —> 0, TI > 0 is considered; Then R — x\ ~ r2/2xi, and In (R — x\) ~ 21nr — In2x\. 
The separation into transverse plane and stream-wise variables is immediate and does 
not require involved integration by parts, or application of restrictive end conditions. In 
this way, an expansion to all orders is obtained but over a finite length body rather than 
the infinite length of the transform methods. A check for the expansion is that when 
the ends are taken in the limits to infinity and the equation is differentiated through 
with respect to x\, then the resulting expansion is equivalent to that given by Fourier 
transform method for a distribution of sources over an infinite length. However, it is 
shown by subsequent differentiations of the generator potential that different far field 
distributions yield the same leading order near field solution. The implications of this 
non-uniqueness are discussed for several fluid applications.
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6.2 Subsonic flow

We consider a flow past a body of revolution at zero yaw by the method of sources. It is 

of some mathematical interest to obtain the approximate solution for flow past a body of 

revolution by the method of sources [39]. Here we consider irrotational flow with constant 

entropy with an undisturbed flow U in the Xi-axis direction, if the velocity potential is 

+ (p, the linearised equation for (p is

6 - 2 ' 1

Corresponding with a source at the origin in incompressible flow, we may consider

(p = A/R where R = yx? + x\ + x\. (6.2.2) 

The mass flux out of any closed surface S for which the origin is an interior point is [5]

F = [ pV(j>-fids, (6.2.3) 
Js

where p is density. If p0 is the density in the undisturbed flow, then

(6.2.4) 
Po Js

Now let S to be a sphere (of radius R), then nt = ^ and then,

——

Po

For source of strength, ra which supposed to be infinitely many times differentiable, in a 

fluid of constant density pQ the mass flux out of a surface enclosing the source is 47rp0 m 

and the velocity potential is —m/(x\ + X2 + -x$)*. We may therefore say that in linearized
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subsonic flow, the perturbation potential for the source of strength m at the origin is 

-m/R, where R is given by (6.2.2).

Now consider the flow with an undisturbed velocity U along the Xi-axis, past an elon 

gated body of revolution of length Z, at zero yaw (in other words with its axis along the 

undisturbed flow). Let us try to find a distribution of sources, of strength m(xi) per 

unit length which gives, to a sufficient approximation, the same perturbation as the given 

body. Then if the origin is at the upstream end of the body, we should define

where r2 = z* + 4 (6.2.5)

However it is only in exceptional cases that there is a solution of this form of equation 

(6.2.1) with the necessary boundary conditions. But it appears that to the order of 

approximation to which we shall proceed, this is a sufficiently accurate, and the value of 

m may be found by an elementary argument. Take two sections normal to the axis at x\ 

and x\ + dx\ and consider the flux out of the surface formed by these sections and the 

part of the surface of the body connecting them. This flux must be ^7rp0m(xi}dxi. The 

flow is to be tangential to the body surface, so there is no flow across it. Let S(xi) be the 

area of the cross-section at Xi . To the lowest approximation the flux out through the two 

cross-sections is
p0 US(xl + dXl ) - pQ US(xl ) = pQ US'(xl )dxl , (6.2.6)

so we must take
47rm(zi) = US'(xl ), (6.2.7)

and substituting in (6.2.5) gives

= -— [k~~^L (6.2.8)

To find (f> on and near the surface of the body, we require only an approximation when r 

is small. But if we put r — 0 in the integrand, the integral becomes an improper integral, 

and care is needed in finding the correct form for small r. In what follows, we shall
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assume that S(xi) has a bounded second derivative. With the above value of m, we write 

— (p = /! + 72 , where,

= fxi m(yi )dyi I = re m(yi )dyi
Jo ' 2 ' ^ ' ' ^

and

m(yi) - m(xi) = (y1 - xl )G(y1 ,Xi), (6.2.10) 

where G is bounded. Then

r .,/ . :+ / . -.ay i 
Jo

and similarly

/ x • u-i(*-*i) . ^ (yiI2 = m(xl ) smh ^— —— + /
Br JX1 ^(xt-

d̂yl 
X1

Since for sufficiently small r:

sinh- L = log ( L) + M ~ log

• U-ISmh

^ p fa-^)^ = _ r Gdy
Vo a?i-yi ^o
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So as r tends to zero,

— v \ re( 2ri fxi \ / 9(P — v \ re 
m(xi) log -i - / GdVl + ro(an) log fil-Eil + /

J° J V ^ , 7:C1 / (6.2.11)
£r fxi f= ra(an) logon (£- an) -2m(an) log— -/ Gdyl + I Gdyi.
z Jo Jxi

So an approximation for (p in (6.2.5) is

(p ~ — {ra(on) log on (£ — Xi) — 2ra(on)log—- — / Gdyi+ I
2 Jo Jx

Now we construct

[Xl ~2 Br m(yi)dyi ^ r, J = ————— + /

and replace m(yi) from (6.2.10) to get

- xl )G)dy1/•'i-sgf mfaQdyi = f
Jo X! - yi Jo an -

£r r
= m(xi)\ogxi-m(xi)\og— -

* Jo

similarly,

- xi] - m(xi) log

So
Br r*i-\ Br re 

J = m(xi) \ogxi(i - xi) - 2m(xi) log — - / Gdyi + I
£ Jo Jx\ + r;

Now since G is bounded with bound M, so we suppose Mr = max <7(j/i,
yi € [ii -Br/2,xi +ar/2\

and therefore Mr < M so,
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/'"
v Xl —

\Br 

±Br

Gdyi 

Gdyi

-J
rxi-

f*/ Xl

2 r Gdyi 

' Gdy'i (6.2.12)

< MrBr < MBr.

It can be seen in (6.2.12) that (/i +/2 )-J-> 0 as r -»• 0. On the other hand by integration 

by parts we'll have

/ x\ — •

and,

J x-i+l.

Br r 
/

JQ

yi - -Br) log ——
Z *

Hence as r —>• 0, we will have

rx\L m' - yi)dyi - I m'(yi) log(yi -

Now we substitute m from (6.2.7) and for small r we get an approximation for (p in (6.2.8) 

that is

-{S'(O) \og(Xl )
4?r

"(yi ) \og(Vl -
(6.2.13)

interest of above method in finding an approximation for (6.2.8) is that it relates the 

limiting value, as r —> 0, of I\ + 72 to a particular "principal value" of tho integral of

m(y\)/\x\ -2/iI from ° to *•



If the body is pointed at the forward end, S"(0) = 0, and if it is pointed at the rear end 

S'(i) — 0. Note that (p is logarithmically infinite at the forward end unless S"(0) = 0, and 
at the rear unless S'(£) = 0. By considering these assumption we may have

U Br T1 // r //-I S (yi)\og(xi-yi)dyi + S (yi)log(yi-xi)dy1 }. (6.2.14)
«/0 t/xi

6.3 Proceeding by Fourier transform method

In this section we apply the Fourier transform to find an approximation for </? as a distri 
bution of sources m(xi) along xi—axis [40], such that

i \ i \ l f°° m(yi) dyi /COIN(p(xi,X2,X3) = <p(xi,r) = -— . . (6.3.1)
4?r y.QQ -y/(xi — y\Y + r2

We show that when r —> 0,

+ /(xi) + 0(r2 logr), (6.3.2)

where,
f(xi) = -— m'(yi)sga(xi-yi) \n2\xi-yi\. (6.3.3)

To prove (6.3.2) , we define

0fci) = r2

and now (6.7.3) yields
/ \ Jm yiOO

™>(y\)9(x\-y\
oo

*OO

-y\)dyi=

Thm. (6.7.2) implies that F (0 * m,u;) = 

But,
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cosum . A sin am
/ * A/?/^ -4- 7*^ / \/7/2 _j_*/ —oo V *-" r ' */ — oo v ^* i^

= 2 / ^°Sa;^ rfu = 2 / C°SUJTt dt, 
J0 ^/w^Tr1 J0 VT^* '

comparing with (6.7.28) shows that

g(u) - 2K0 (ur). (6.3.5)

Combining (6.7.25) and (6.7.26) together yields that

9 / oo

:„(*) = (ln(|) - 7)l + 53^^] + ^ (Tn^^, (6.3.6)
& \ \ IV* I I\ n-l ^ ' / n=l

n
where, an = JD i-

^0(^2) is an analytic (holomorphic) function through the z—plane cut along the negative 

real axis [38], which guaranties [41] uniformly convergence of series in (6.3.6) and therefore 

can be integrated term by term [41]. Therefore the Fourier transform and its inverse can 

be applied term by term, so for any positive u we would have following results:

Ko(ar) m (ln( )_ n

u;rn=l

n=0 v 7 n=0

where <T O = 0 .
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Therefore,

00 rn oo

(CTn - lnr) W "m(a;) + 2 i(ln(-) - 7)u»"A(a;). (6.3.7)
n=0 ^ '' n=0 ^ '

According to Thm.6.7.3

(6.3.8)
\JLJU I

gives the inverse Fourier transform of terms u;2nrh(u;).

Also from Thm.6.7.3 we have
iujm(uj) = F (m', a;),

then applying Thm.6.7.2 gives

If00 ( 2 \
I -^ / \ I 1 1 UjJXi I— / m(uj) I In — - 7 1 e l du =

iKJ-oo \ M / ^639^

J- f° ((iw)m(u;)) f — fin 7^7-7)) e^dij = (m' * 
2n J_ 00 \u \ \uj\ JJ

where /i is the inverse Fourier transform of f ^ Hn p - 7j J and by applying (6.7.2) and 

using (6.7.7), (6.7.5) and (6.7.6) it can be found as follows:

1 r°° 1 / 2 \

1 r°° 1 1 f°° In \<jj\ 
= — I — (In2 - 7)sin(o;a:i)cL' - -— / — 

2?r 7,0 u 2?r 7.^ u
1 r° 1 /, x . / x , 1 r° = — — (In2 - 7)sm(o;xi)aa; — — /
7T Jo U 7T JQ

lnu;
LJ

= I (|sgn(x1 )(ln2- 7)) -^ (sgnfe) (-|7 ~ | (In N))) 

= isgn(a: 1 )ln(2|a; 1 |) J
^

(6.3.10)

and licncc,
1 >0°

, -.(/,) ln(2 |.r, - l



Now let us define

(6 ' 3 ' 12)

Now we find the inverse transform of the terms

2(ln(-)-7)u;2nm(u;).

Rewriting (6.3.7) by (6.3.8), and using Thm(6.7.2) will give

( 6 - 3- 13)
Eventually

1 f°° m(yi)dyl

\ «-> •w* 1~. I— ..(-inrir - ~ n x— (lnr-crn )

So (6.3.14) implies (6.3.2) which is the derived result .

(6.3.14)

and
1 /*OO

= --— / m'(7/i) sgn (xi - yi) ln(2 |xi - 3/i|)dj/i. (6.3.15)

6.4 Proceeding by splitting method

Tuck [40] has suggested splitting method to find an asymptotic for the potential flow 

(o But we follow quasi-potential flow (logarithmic distribution) rather than 3-D dipole 

distribution with the same source m(x). It is expected this method and Fourier transform 

method give same results over the infinite line since,

r
Jx u

(6. -1.1)
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where, RI = ^x^ +r2 , xn = Xi - yi. We consider xi as a point in the integrating 
domain and therefore the integral

/*& 
m(y1 )ln(R1 - Xll )dyi (6.4.2) 

--a
will contain a semi infinite line singularity. To evaluate /, we split the integral into four 
integrals

xi-6rxi-

I\= I m(yl ){\n(Rl - xu ) -\ur2 }dyl ,
J xn

fXi-6
/2 = / ra(?/i)21n

xi
m(yi)\u(Rl -xn )dyi,

-1-6

/ *b 

i+<5

As it can be seen in the first integral by adding — In r2 to the integrand we intend to 
remove the singularity but still this problem remains around the lower bound of /3 , and 
fortunately the other two integrals /2 and /4 are definite. We calculate each integral in 

turn.

Firstly we show the singularity in the integrand is removable.

Consider

g(x, r) = \n(Vx2 + r2 - x) - In r2 . (6.4.3)

According to

n i
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and assuming x ^> r > 0,

r2 .1

oo — -i r2n~ 2

n=l

therefore,

(x, 0) = lim g(x, r) = — In 2x. (6.4.5)

This shows that g has a removable singularity as r tends to 0 and hence it can be expressed 

by a power series in terms of r.

Since,

d 1 1 r2 _i-0(zn,r) = -— = - —(1 + -2-) 3. (6.4.6)

Since

So applying (6.4.7) to (6.4.6) yields

d
Qx JV ~ ii7 ' T-.. \ ^—1 9^n/^r>!^2

'11 ^11 \ n=l ^ V' t: ; ^11

Integrating with respect to xu gives

f d < Q(xu,r) = I «—^(xn,r)dxn + h(r)
J <JX\\

/ . J. • » I i y \ ^ / t 

-'•11 rt=i 2 2 "(/>!) 2

! r2"

= -In./
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But flf(xn,0) = -In2zn and so

However from (6.4.8),

and so
n

we now use the Leibnitz rule for differentiation, given below:

dtp

Now using Leibnitz rule (6.4.11) gives 

dxi Xa

dx\
- 6)(- In2(5)

and applying induction gives

/•

/

"
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d2n t N (2n-l)!
-^P(ZH, 0) = -——r-^- for n > 1. (6.4.9) 

11 x n

(6- 4 - io)

1 l Xa , ,, (6.4.12)
2n-l (--\\kfl. _ i\|,n(2n-l--'- x '



where we denoted mk (xl -6) = -jm(xl - 6).

From (6.4.10) and (6.4.12) and applying Taylor expansion for 

6) about xi we deduce that

L <5 ~ / -.\r, 2n Q2n rx\-6rxi-°

I m(y1 )g(xlll r)dy1 =
-'X

oo

n=0 ^
-

oo (_l)nr2n 2n-l (_

oo /I '\n T,2n 2n-]

E V L ) ' v-^ V *•) V' v x y ; ^ 
. 02n/',n h2 .^ Jffc ^Bti 22"(n!) 2 fe ^ (JO

Since,
00 /

Bto 22"(n!) 2 

and —p(—a?n,0) = ln(—2xn) therefore as we used Leibnitz rule for I\ here we have

and therefore,

-^(-xn,0)) dyi - -

^L̂2
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Again applying induction gives

rxb Qln Q2n rxb
I mM7^(-9(-Xu,ty)dyi = —^ \

Jxi+6 oxl OX 1 JXl+s
2n-l C{- _
£
k=l

Using Taylor expansion for m^2n ^(xi + 6) and m(2n x fc) (xi + 6} about #1 gives

xb

nn=o n- xi+6
n ln rxb

n=U •"
vn^n(-i)v_ __

fc!
oo -

Lfc=i(k-
oo ^l^w^n 2n-l ^ _ 

_ V
j!

Computation of /2 is straight forward such that

/ xi-6 
m(yi)dyi = 2{M(xl -6)- M(xa)}\nr 

aa
oo —

n=l

where we have supposed ^-M(xi) = m(xi).

ComDutation /-j is involved, and relies as use of the Taylor series expansion, such that



r2 -

oo= E
n=0

n=0
r /-/ in( V - xu)dxn

n=l

-^xi) r+<5 2n 
n-l! J-6 Xn

2n-l

Denote

n=0

= E ^f /xf
n=l

such that

r J3 = reuen rodd

I*ven forn > 0 :

2n+l

So,

= E
n=0

oo

or,

oo

for ;t > 1



Since

In 

then

= 2In

and

5 X,2n

" "

denote Jn - /Otan" tan2n 0 sec 0 dO so,

Jn = /Otan~ tan2"' 1 0 tan d sec 0 d9 

= [tan2"' 1 9 sec flC' 1^ - (2n - 1) f?*

and then,

~ (2n - l)(Jn

or

1 (6\2n AT_i_ r2 /2n-l\T 
=(2^)(;) V ^ ^ 2n J ~

- 6) -21nr = 2p(<5,r) + 21nr,

sec

+ tan2 d sec 0 M

Let an = (l , and bn = — (^r)> so, Jn =

givng =
n=l

21nrl + "

By induction,
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= (an + bn (an-i + 6n_iJn_2 ))

= (an + 6nan_i + 6n6n_i (an_

where (bk ) ] = bib2 ...bk = (~2ll and

J0 = JQtan ( r > sec Q &Q = in (sec 0 + tan 0) 0&n r = In <5 2£ + J =-</(*, r)-In r.

Hence,

T _ A (-l)"-fc(2n)!(fc!)2 1 ( 6 } 2k ( A , r*\ , (-l)n (2n)!
J « ~~ L^i 2, 2n -2k (n\) 2 (2k)\ (2fc)W/ IV ^/ 22n (n!) 2 

fc=l

Eventually applying the Taylor series expansion (6.4.4) to J 1 + Jj such that

r2j

and replacing g(6, r) from (6.4.8) gives

= E
n=l n=l

oo

n=l

-ln2i+E(yS^ + lnr
fc=l

oo 2n f-l)"- fc (2n)i(fc!)» 1 2 fc

n=l J
22J(2j_ 1)(j!)2

(-l) fc (2fc)!

n=l

or,



2 
Bti (2n)!

! r2fc

r2fc' 
9 ^ • •"•» \^ij I ^+* Z-, ——7^—— I Z.

oo (-l)VnM2n^^ / oo -lfc2fc! T2fc

22-(n!)

^^ _
E22n(n , )2 22n(n!)2

Then

(2n)!

_0 V" y^iy f y> V -V 

n=l (^)2 l - ' 02n ~

(n!) 2 } fcfi 22"-2fc (2fc)! (2A;)r2fc
,, r2fc 

2 V^ ^ */ • "- v-iy / >r^ l •" v ""/ '-

oo (-l)VnM2n (xi) oo (-^n
( }

2n

Now bring all four integrals together and pulling out all those terms independent of 6 

gives:

oo A/ ,,, (li)(52n ~
E *L^~ E 
n=l A'=l TV—
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22"(n!)

n 9^ (In2d) ( —l)"r2n

n=l

oo

k\

22n (n!)2
k=l

00

n=l

\r2n
j±f—-2M(xa)liir

(_l)nr2n

22n (n!)2

22"(n!)2 
n=l \k—l n=l

22"(n!) 2
(-l) fc (2fc)! r2fc

A;=1
2 X2fc

We have

J_ 
2n

and consider

-1 22Z 1 1 n l n l

:=l k=l
' ni

1 f />X1 ~£ 
= lim — < / e-*o47r ^yla - In 2xn )rfi/i

rxb 1 
/ m(yi) (ln(-2a;ii)) dyl } , 

yI1+e J

also

Uxi-d rxi+s \ 
m(y1 )(-\n2xu )dy1 + / m(yl ) (ln(-2xn )) dyl \ , 

i-e ^xi+,5 J

where by changing variables and imposing the limit we get,

F*(xi,6) = l}™\ m(xi - xii)(]n2xu )dyi - m(xl + xn ) (\n2xn ))dyi >
f6 

= I {m(xi — xn) - m(xi + xn )}\n2xn dxn
Jo

,

(2fc)! (2*)!

So
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(-l)nr2n M2n (gl) 
———22»(n!) 2 

n=0 n=l

+ E ^fn!)2" JL [4^(xx)] - 2M(za ) Inr
n=0

(2fe)

(-l) fc (2fc)!
«=i — v fc=u' (2fc)22fc(* !)2 *2

(n !)2 w 22"-2fc (2fe)! (2k) r^ \ 22J(2j-l)(j!)2 J2? 
n=l fc=l

" 2n(-I)"r
22"(n!) 2 ^ ^ ^ (j!) v '

(-l)"r2"

22n ni2
(_l)nr2n

j\ -r_^ 2 2"(n!) 2 ^ (A;!) 
n=l fc=l j—l,j^k n—l k=l

22"(n!) 2 -^ fc! _> 2 2"(n!) 2 
fc=l n=l

oo , .,„ ,„ 2n-l
22"(n!)2

(-l)nr2n M2n (3;i ) " (-l)~ fe (fc!)2 1 ,5^ , O V (-l)"r2"M2"(x!) ^ (-l)*(2fc)! T2k 1
——— 2" 2 ——— Z^ 2- 2fc 2fc! 2*^ "•" ^ Z^ 2 2"n! 2 Z^ 2fc22fc fc! 2 2^ / '22"(n!) 2 ——— ^ 2- 2fc (2fc)! (2*)^ "" ^ 2 2"(n!)2 ^ (2fc)22fc (fc!)

Eventually we write / in following form

oo/= Ê
To 22n (n!)

where G(a;i , 8) is aW terms that assembled inside the bracket and it is identically equal to 

zero because all terms in both sides of (6.4.13) are independent off 6. Now since

Xu
f

J

- e) In 2 

,-, - e) In 2
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= -m(xl - E) Iu2e + m(Xl - E) In 2e - m(xa ) \u(2(xl - xa)) -

= -m(xa

= -m(xa ) ln(2(x! - xa)) - J^~e -sgnfa - Vl ) (In2 ^ - yi \) dyi

and

e)(ln2E) + 

e)(ln2e) -

e)(ln2e) - m(xb) In(2(x6 - n)) + m(xl + £)(ln 2e)

= -m(xb ) ln(2(xb - xj) - /^ spnfe - y.) (In 2 |x, - 

then,

£) 1

lim — {-m(xa ) ln(2(xi

(6.4.14)

1 sgn(xi -2/i)(ln2|xi -yi\)dyi}.

x __» _oo, assuming m(xa ) approaches to zero faster than In2(xi — xa ) and similarly 

for £/>, then

lim m(sa) ln(2(zi - xa )) = 0, lim m(xb ) In(2(z6 - Zi)) = 0 and in this case

ft 1 r ri ~£ rfm(yi) , v/1 , JL./?^,) = lim-—{- / —,——sgn(xi-yi) (\n2\xi- 
pri v iy e-o47T y.oo dj/i5xi

rf7rt(yi) 
<Vi
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Integrating both sides of (6.4.2) and (6.4.13) with respect to Xl and letting xa tend to 
—oo, xb to oo, gives

"oo ___/•_. \j_. oo /_•• \n_2n(-l)V —

where,

s(Xl) =
This is the same result as obtained for the Fourier transform method, and is a check for 
the analysis.

6.5 Applications

Consider using this result to determine the near field approximation for a distribution of 

sources, dipoles, and infinitesimal horseshoe vortices.

6.5.1 Distribution of sources

Differentiating

r^-b
I m(yi)\n(Ri - xn )dyi = - 2M(Xa)lnr 

Jx* (6.5.1)ia

00 I _
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with respect to Xi gives

So, applying integration by parts gives

" '

-ro(X0

Assuming that in the limit Xa — *• -oo and X& — > oo that m(x\) decays faster than 

ln(2 |xn|), then we get

° nr -

where

Uxj-e /-Xb \ 
mf (yl )(-ln2xu)dyl + / m'(yi) (ln(-2xii))dj/! I 

:a -/xi+e J

which is equivalent to the result given in Tuck [16] which uses the Fourier transform 

approach of Thwaites [8] and is given for completeness in section 6.3.

6.5.2 Distribution of dipoles

Differentiating (6.5.2) with respect to x2 then gives a distribution of 3-D dipoles

nr -
(6.5.3)

6.5.3 Distribution of infinitesimal horseshoe vortices

In a uniform flow field, lift is only produced by modelling the shod vortex wake; The dipolo 

distribution (6.5.3) within the body gives no lift. In aerodynamics, the vortex wake is
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represented by a trailing vortex sheet which itself is approximated by a distribution of 
horseshoe vortices [21]. In the limit giving a continuous vortex sheet, this is equivalent 
to an integral distribution of infinitesimal horseshoe vortices [1], and the infinitesimal 
horseshoe vortex is defined in Thwaites [8]. This definition is seen to be equivalent to

r\

have given by the potential - — In^ - xu ) [I]. This is also the potential part of the lift
UX2

Oseenlet [15], and differentiating (6.5.1) with respect to x2 gives

/Jxa
- Xll )dyi = - Inr

oo - 

„?„
r -

Hence, the leading order near field term for both (6.5.3) and (6.5.4) is a two dimensional 
dipole term. So, different far field distributions yield the same nearfield leading order term. 
This is because we have allowed a discontinuity line on x\ > X&, x2 = x$ = 0. Uniqueness 
is restored to the matching if we apply Kutta condition of aerodynamics. Then, the 
solution (6.5.4) rather than (6.5.3) is obtained. Consider a distribution of infinitesimal 
horseshoe vortices over a span s then gives a thin body/wing representation 

•** /)rs r

I I
Jo Jxa (6.5.5)

where

xi ~\ 
\ 
)

r\

:„

and the load function £(3/1,3/3) =
r3 = ^/x\ + (2:3 - 2/a) 2 and RU = \/(x\ - y\Y + %2 + (BS ~ 2/s) 2 - The trailing vortex

wake is then defined along xl > Xb , x2 = 0, 0 < x3 < s.

is given in Thwaites [8]; The functions

6.6 Chapter 6 Discussion

A distribution of generator potentials of the type tf = \n(R - .t'i) arc considered over a 

Y < / < X(, .i' 2 •'':« = 0, and using the integral splitting method near field slender
•*» a __ * * ^~

KM)



body expansion is given.

Differentiating through with respect to x\ gives a distribution of source terms, and in this 
way the slender body expansion for a distribution of source terms over a finite length is 
given. For the particular case where the ends are taken to infinity, then a distribution 
of source terms over an infinite length is obtained and this is shown to agree with the 
distribution given in Tuck [16] by using the Fourier transform method of Thwaites [8].

Differentiating through with respect to x2 gives a distribution of infinitesimal horseshoe 
vortices, and the resulting potential is singular along the infinite half line x\ > 0, XT. = 
#3 = 0 which defines a singular wake line. A spanwise distribution that defines a singular 
wake sheet, and gives a thin wing approximation. The leading near field matching term 
is the dipole, and this is also the leading near field matching term obtained when consid 
ering a distribution of three-dimensional dipoles. This non-uniqueness in the matching 
is removed if the Kutta condition is applied, and then only the distribution of infinites 
imal horseshoe vortices, which provide lift in a uniform flow field, matches to the two 
dimensional dipole near field.
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6.7 Chapter 6 Appendix: Fourier transforms require 

ments

The Fourier transforms definition and relevant theorems and formulas and required cal 

culation which have been used within the chapter are presented in this section.

Definition 6.7.1. (Fourier Transform) If / is a real-valued function on [-00,00], the
y\ _

function / = F (/) defined by the integral

f°°
f(w) = F (/, w) = \ e-™uf(u)du, (6.7.1)

J — 00

and therefore the Fourier inverse transform will be

/ - \ 1 f°° - 
/ (x) = F-1 (/, x) = — j f (w) e^du. (6.7.2)

Lemma 6.7.1. // / has Fourier transform then F (f(x - t), w} = e~ltw F (/).

Proof. /^ e'iwuf(u - t)du = /^ e~^^ f (r^dr, = e~ 

Theorem 6.7.2. (Convolution theorem for Fourier Transforms)

Let f and g be a real-valued function over the interval } - oo, oo[, with Fourier transforms 

F(UJ) and G(u} respectively, then the Fourier transform of their convolution

f*g(*)= I™ g(t}f(x-t}dt, (6.7.3)
J — oo

exists and is equal to F(u)G(u).

Proof Since / and g have Fourier transforms then both satisfy Dirichlet's conditions and 

so does their convolution / * g(x) which guaranties existence of F(f *g,w}.

For next part applying lemma (6.7.1) and also replacing /(.r - /) by using ((j.7.2) for 

convolution gives:
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f°° I* 00 1 f°°
9(t)f(x-t)dt = I g(t)(— [F(f(x-t})]eiuxdu)dt

00 J —oo £R J -co
r°° 1 r°° 

= \ 0W(^- \ [e~itwF(w}}e^xd^)dt
J-OO *K 7-00

<x>

-00

oo

-00

now from (6.7.2) we have F~l (FG,x) = f*g (x) or conversely F(f*g,w) = F(u)G(u>).

n

Theorem 6.7.3. Let F(u) be the Fourier transforms of f(x). Assume all first (n - 1) 

derivatives of f(x) vanishes as \x\ —> oo ; then, the Fourier transform o//(n) (x) exists and

equals to
Hn f

'). (6.7.4)

Proof. Applying integration by parts yields:

r ̂7-00 du"
du = dun~l

u=oo

=—oo /oo 

•oo

dn -

= M/(

By repetition of this rule, (6.7.4) is held, for more details see [42, 43].

D

To find the the inverse Fourier transform of aerodynamic potential flow, the following key 

formula (table 3.7.2.3 page 278 [44] ) which is the Fourier sine transform Fs of /(f) = 

r 1 In*, in this chapter has been used,

= r^ 
7o ^
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To prove (6.7.5) we follow three below steps: 

1. Euler constant 7
n

The Euler constant 7 is defined as the limit of the decreasing sequence " ^ ^ — In n " as
m=l

n —»• co [45] and numerically it is estimated 7 « 0.5772. An equivalent value for Euler 

number is related to Gamma function [46]

/ CO 
e~*tx~l dt, x > 0, 

.

is

so,

/oo 
e-*(lnt)cK. (6.7.6) 

.

2. Fourier sine of l/t

There are different ways to prove

= sgn(u;) . (6.7.7)

Here we present two different proofs:

• Using residues theory for complex functions as suggested in [41]

Lemma 6.7.4. 141] Let the point z = XQ be a real simple pole of a function /, and let 

BQ denote the residue of f at the pole. Let Cp show the upper half circle with radius 

p centered at XQ where the orientation is in the clockwise direction (Left: figure 6. 1), 

let also p be small enough such that f is analytic on 0 < \z — x0 | -< p and it can be 

presented by
o

/(*) = —— —+0M, (6.7.8)
Z — XQ
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where g is continuous on \z — XQ ^ p, then,

lim / f(z)dz =
p—»0 I/-*

v On

Proof. Since JCp = In -j&ifKPM = -B07Ti, then,

/ f(z)dz-(-B0m) = I g(z)d< 
Jcp Jcp

where Mg = max \g(z)\.

<

(6.7.9)

(6.7.10)

P/

Figure 6.1: Left: Simple real pole, Right: p < 1, and R > 1.

Corollary 6.7.5.

/oo 

.

smx
x

D

dx — —, (6.7.11)

Proof. The function — on and inside the closed contort C shown in figure 6.1

(Right) is holomorphic so, fc ^-dz = 0. On the other hand,

r iz r piz rR eix r »iz r-p ix
\ —dz= \ —dz+ \ —dx+ \ —dz+ \ —dx. (6.7.12) Jc z Jcp z Jp x JcR z J_R x

According to lem.6.7.4

/ elz 
—dz = 

- z
—m. (6.7.13)
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Figure 6.2: sin# and |0.

For sin0 > |0, for 0 < 0 < \ , (see figure 6.2), then

JcR

iz
-dz

i: i: Jo i (6.7.14)

and since

/ —dx+ I —dx = I —————dx = 2i I —— dx. (6.7.15) 
r X J.R X Jp X Jp X

So, as p -> 0 and R -»• oo from (6.7.13), (6.7.14) and (6.7.15), now (6.7.11) holds. D

Corollary 6.7.6. From corollary (6.7.5) we have

/ °° sin (ut) , , . r°° sm(x) 1 , , , f°° sin(x) , ——-—-at = sgn(o;) / —:—— dx = sgn(o;) / ——— dx = 
t JQ x/u u J0 x

which proves (6.7.7).

Using Laplace transforms as suggested in p.392 [47]

f sin tuj .
/ ( ——— )duj 

Jo u /OO.
/oo

L

1
u

f sin tuj N
( " } J

u
_s 2 +u;2 _ duj =

/MQO= -arctan(7 )|0 =--,

= I — [L(sinicj)] duj 
Jo v

/OO i

o i •>,s -(- (jj-
(6.7.16)
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since Zr1 [i] = 1, then

/Jo

sin tu TT -.

3. Using differential equation

Let us define
(hit) d* (a; > 0), (6.7.17)

then

F'(u) = - I (tint) e'^dt = -e~wt (tlnt)]^°
Jo

-=/
<*> Jo

i r00~-7o

i r-- I 
w Jo

((In

a;

so we will have the first order differential equation

(6.7.18)

and the solution of (6.7.18) is

= -[-Inw + c],

since from (6.7.6) we have c = F(l) = —7, so,

F(u) = -
UJ

(6.7.19)

Now let us again define
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then according to (6.7.17)

/oo 

. 

and therefore from (6.7.19) we shall have

t~if \ I T~>f \ J l/i i \ 7 i 2 i i (c n r\r\\(jrlu;) = — / r (ijj)auj = I — (ma? + 7) aa; = — In a; + 7lnu;. (D./.20)* ' f\/ f \ // ^^ * ^ /7 7 w 2 

Hence from (6.7.20) we should have

G(zu;) = - In2 iu + 7 In iw = - f Ino; + i—j +7 flno; + z—J
^ ^ \ ^/ \ ^'

21 / 7T
= - In2 u;- — + 2z^-lno;) +7(lna; + ^j (6.7.21)

^\ 1 £ J \ Zi / 

/I o 7T2 \= I 2 ln ^-y+7lna;

on the other hand

f°° /ln/\ T" 00 /ln/\
= / e~iujt — }dt= — (cosut - ismut)dt. (6.7.22) 

Jo V * / ^o V * /

Combining (6.7.21) and (6.7.22) together, formula (6.7.5) now is held.

6.7.1 Bessel function

The linear equation

2 2^v i/2 2 2 M f\"v IT ' -4- I rv — 7i 'v I ?/ — 11; x ' V 01- " / /Jc/ — u '

is the general Bessel equation. By series methods, this equation can be shown to have the 

solution [48]

y = Axa Jp (/3x^) + Bxa J_p (f3x~1 ), p not an integer or zero 

y = AxQ Jp (px^) + BxaYp (px^, p an integer
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One important formulation of the two linearly independent solutions to Bessel's equation 

are the Hankel functions H*(x) and H%(x), defined by:

H2a (x) = Ja (x}-iYa (x).

Modified Bessel functions

The Bessel functions are valid even for complex arguments x, and an important special 

case is that of a purely imaginary argument. In this case, the solutions to the Bessel 

equation are called the modified Bessel functions of the first and second kind, and are 

defined by:

Ia (x) — i~aja (ix). 

Ka (x) = l^l Hla (ix).

These are chosen to be real- valued for real arguments x. They are the two linearly 

independent solutions to the modified Bessel's equation:

The following required formulas are forwarded from [38]:

0°

12
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(6.7.26)

(6.7.27)
jfc=l

Eq. (6.7.27) is known as C. P. Singer's formula [49] Ex.1 no. 16.

Formulas (9.6.4, 9.6.21 [38], p.376) for k > 0 imply

r^fL dt = K0 (kr). (6.7.28) 
Jo vtz + 1

The asymptotic form for Ko(e) 6.1 [8] is

(6.7.29)

where it is a direct result from 6.7.26.
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Chapter 7

Discussion and application

An investigation into inviscid potential flow theory, in particular in relation to the ma 

noeuvring of bodies in fluid has been undertaken.

If the potential flow is assumed regular such that no singularities or discontinuities are 

allowed to exist in the fluid, then for a fixed body in a uniform flow field both lift and 

drag are zero from D'Alembert's paradox.

In aerodynamics, this assumption is relaxed so we may have a singular vortex wake, usu 

ally a wake sheet emanating from the trailing edge. For this model, it has always been 

assumed that the resulting lift evaluation is in good agreement with experiment. How 

ever, Chadwick [1] found a flaw in the theory which suggests the lift has been calculated 

inappropriately. In this thesis we have confirmed this result, and for a thin wing found 

the cause of the miscalculation: a jump in lift across the trailing edge. Further, the drag 

force is shown to be infinite for this model.

It is therefore concluded that the inviscid flow model with a trailing wake is flawed.

Slender body theory is also researched for solutions with a shed wake, and a complete 

near field expansion is given for a distribution of sources over a finite line. Again, it is 

seen there are anomalies with the inviscid flow model because the matching is non-unique, 

and the application of the Kutta condition is proposed to restore a unique matching. The 

validity of the Kutta condition is only by experimental verification and so is an external
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constraint.

To recap, it is suggested that the inviscid flow model is inappropriate for problems which 

model a shed vortex wake, and will give incorrect evaluation for the forces. Instead, it is 

suggested that the viscous terms in the Navier-Stokes equation are retained through the 

analysis.
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