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Echo (DHy) in ancient mythology was a mountain nymph well known for
her melodic voice and beautiful singing. Myth has it that during a quarrel
with Pan (god of shepherds and flocks), he caused confusion in nearby
shepherds that led them to kill her and tear her to pieces which they
scattered throughout the land. Gaea (Earth) out of mercy collected the
scattered pieces which she buried where she found them. However, the
pieces kept her godly melodic voice. Thus, she remains scattered throughout

the planet trying to make herself heard by repeating what she hears.
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ABSTRACT

This thesis investigates room acoustic diffusers based on number sequences, exploring their

shortcomings and presents improvements.

Standard Phase Grating Diffusers display frequencies where they act like flat plates and fail
to diffuse. To overcome this, two new sequences (Liike and power residue) are introduced.
The diffusers based on these sequences display extended frequency range compared to
standard ones such as Quadratic Residue and Primitive Root Diffusers. Their performance is
studied using Boundary Element Modelling which shows that they can avoid flat plate
phenomena in the audible frequency range. Furthermore, it is shown that by taking advantage
of their inner symmetries Quadratic Residue and Primitive Root Diffusers can be created

from smaller components thus allowing for the flat plat effect to be mitigated.

Next, Absorption Grating Diffusers are investigated. They consist of ideally absorbing and
reflecting elements. For their implementation heavily damped Helmholtz Resonators are
investigated showing that they give an approximation of the required distribution of

admittance on the surface.

Then the performance of ideal Absorption Grating Diffusers is investigated using Boundary
Element Modelling. Even with idealised completely absorbing elements, the performance of
the diffuser is shown not to achieve substantial diffusion. This arises because edge diffraction
from the reflecting elements weakens at high frequencies. At frequencies where smaller
elements are creating substantial scattering, larger elements are producing specular
reflections. Furthermore, due to the lack of cancellation, the specular reflected lobe is

insufficiently attenuated, because it can only be changed through absorption.

Improvements to the original design are suggested. By changing reflective elements to
reactive ones, scattering can be extended to higher frequencies. This allows for a range of
frequencies were more reflecting elements display substantial dispersion. Also, implementing
the absorbing elements using porous material in a shallow well allows some reflection,

resulting in cancellation in the specular reflection lobe due to interference.

Measurements of the scattered pressure distribution of absorption grating surfaces are carried
out and then compared to Boundary Element Modelling simulations using surface admittance

data measured in an impedance tube. The agreement between measurement and simulation is



excellent proving the accuracy of this simulation method for these applications. The results
show that the samples tested perform as two level Phase Grating Diffusers, with some energy
loss, while their diffusion characteristics are shifted to lower frequencies. This arises because
of the lower speed of sound in the porous medium. This implementation is shown to absorb

50% of the incident sound while the rest is scattered uniformly but only over a limited
bandwidth.



INTRODUCTION

The acoustical quality of any performance space such as a concert hall, an auditorium, a club

or a studio is the key factor in the perception of sound in it. For this reason these spaces are
designed specifically for their application as they require different characteristics based on
their use[1]. The sound field in a room consists of the interaction of the direct sound with the
indirect reflections from its boundaries. The relationship between the amount of absorption
on the walls and the sound decay of a room was established by Sabine[2] which launched

modern room acoustic design[1].

The density and amplitude of the reflections dictates the acoustic characteristics of the
space[3] and relates to its performance. The response of a boundary can be characterized in
terms of absorption, reflection or diffusion. While the application of the right amount of
absorption can be used to set the required reverberation time of a room{2] it does not
necessarily take care of strong reflections from the boundaries of the room that can produce
echo problems[4]. Furthermore, in cases that very little absorption is required in a small room
there is need for diffusers to deal with the modal response of the space. Diffusers are
structures whose main goal is to scatter the incident wave rather than attenuate it[5]. For this
reason they can be used to deal with strong reflections from boundaries without removing

sound energy from the space.

Diffuser research was ignited by Schroeder who suggested using number sequences to create
diffusing surfaces[6]. Based on his concept, a category of diffusers was created known as
Phase Grating Diffusers. Using the same mathematical approach Angus later presented the
concept of Absorption Grating Diffusers[7] which are structures that combine the use of

absorbing and reflecting elements to achieve diffusion.

In this thesis the characteristics of both Phase Grating and Absorption Grating Diffusers are

investigated. The thesis is split into three parts:

The first part of the thesis presents the theoretical background to sequence based diffusers. It
discusses the measures that are used to assess diffusers, simulation techniques that are used to
predict their performance and methods that have been established to measure their scattered
field. The limitations and the disadvantages of Phase Grating Diffusers that have been

established in the literature are presented and two new Phase Grating Diffusers are presented



that, based on their characteristics, have the potential to perform better than the many in

common use. Boundary Element Modelling is used to predict their performance and compare

them to commonly used Phase Grating Diffusers.

The second part of the thesis centres on Absorption Grating Diffusers. Their design concept
1s presented and their requirements are discussed. Porous absorbers and absorbing structures
that can be used for their implementation are discussed along with measurement methods and
analytical models that are used to assess their absorbing characteristics. The use of densely
layered mineral wool behind a perforated structure is investigated as an implementation of
highly absorbing elements. Boundary Element Modelling is used to investigate the absorbing
and scattering capabilities of ideal Absorption Gratin Diffusers. Finally methods of

improving their performance are introduced either by using reactive elements or by using less

absorbing elements.

The third part of the thesis summarises the conclusions and contributions of the thesis and

presents new areas of research that can stem from its findings.



PART I. PHASE GRATING DIFFUSERS

Phase Grating Diffusers (PGD) were invented in the 1970’s by Manfred Schroeder, when he
introduced the concept of using maximum length sequences to improve sound diffusion in
concert halls and reverberation chambers(6, 8-10]. He suggested that by pseudorandomly
arranging wells of a constant depth on a surface (Figure 1-1) sound diffusion can be
achieved[6]. This would be the case when the wave reflected out of the wells has opposite

phase from the one reflected from the front surface.

N

Figure 1-1. One period of a Maximum Length Sequence Diffuser (MLSD) of well width w
and depth of the n™ well, d,.

N
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Based on the same concept Schroeder later suggested using wells of varying depth that would
be dictated by integer based pseudorandom sequences such as quadratic residue (Figure 1-2)
and primitive root sequences[8]. These diffusers were soon to become commonly used by the
industry[5, 8, 11-12]. In 1983, the first sequence based PGD product was created by RPG that
was presented in 1984 by D’Antonio ef al[13]. It was a Quadratic Residue Diffuser (QRD)
that found application in recording studios at first and later in other architectural spaces[s,

12].

’ g 7

/A 4::'/ /;
Figure 1-2. One period of a Quadratic Residue Diffuser (QRD) of well width w and depth of
the n™ well, d,,.




PGDs suffer from limited bandwidth. When the wavelength becomes small in comparison to
the width of the wells sound wouldn’t propagate as a plane wave in the well causing
cancellation in the well. Moreover, when the wavelength becomes double the common factor

of the well depths all the wells re-radiate in phase resulting in the diffuser acting like a flat

plate.

Hence, concepts to increase the bandwidth have been developed. First, a fractal diffuser was
designed. This considered reforming the bases of the wells into smaller diffusers that would

disperse sound at higher frequencies when the wavelength would be small compared to the

width of the wells[14].

To make products easy to handle, small structures that would be repeated to cover a
substantial surface are often used. The problem is that periodic repetition of a structure
introduced periodicity lobes in the scattered pressure distribution. The problem of periodicity
was first addressed by Angus who introduced the idea of modulation to achieve wide band
diffusion in 1995[15-16]. She suggested using a binary pseudorandom sequence to position

two different diffusers that resulted in a wider band of application.

Other suggestions abandoned sequence-based diffusers altogether and focused on using

optimization algorithms to generate a sequence with a wide band of diffusion[17].

In this part of the thesis Phase Grating Diffusers (PGD) are discussed. Prediction models and
measuring methods are examined. Coefficients and characteristics of diffusion quality are
debated and the principles of diffusion design are depicted. Later, standard PGDs such as
QRD and MLSD are presented and their characteristics and limitations are discussed. Finally,
new pseudorandom sequences are introduced and their performance is compared with the

industry standards.



Chapter 1. Introduction to diffusers

In this Chapter, some background theory is presented which is used in the thesis. Firstly, the
descriptors used to evaluate the performance of diffusers are presented and their merit and
quality discussed. An introduction to 1-D pseudorandom sequences is made and the methods

of generating 2-D sequences are presented.

1.1. Measures of diffusion

While polar plots of the scattered pressure distribution are useful, there is a need for a
coefficient that represents the *“quality” of diffusion in a more compact way. When
introducing Phase Grating Diffusers (PGD), Schroeder suggested the equality of energy
contained in the periodicity lobes[8]. While this concept had some merit at the time, it
requires periodic repetition of the diffuser which is not only unnecessary but undesirable as
well (see Section 3.3). So another measure of diffuser quality is required. An ideal descriptor

as has been suggested by Hargreaves et al[18] should:

. have a solid physical basis;

be clear in definition and concept, and related to the current role of diffusion in room
acoustics;

consistently evaluate and rank the performance of diffusers;

apply to all the different surfaces and geometries found in rooms;

be measurable by a simple process;

be bounded;

be easy to predict.

A number of descriptors have been presented over time that satisfy some of the above
characteristics[18]. There are two descriptors, which are globally accepted, that vie for the

position of the most representative measure of diffusion; these are the scattering coefficient

and the diffusion coefficient.

1.1.1. Scattering coefficient
Mommertz and Vorldnder developed the scattering coefficient[19-20]. The total energy Eiyr

leaving the element is split into the specular reflected energy Ep,.. and the scattered energy

E. .. where:

Eiotat = Espec + Escat 1.1



where Eqp,. is the energy referring to the angular pressure that is due to the dimensions of the
surface and thus is correlated with that reflected from a plate of the same dimensions whilst

Escan 18 the energy that is scattered due to the surface structure.

The scattering coefficient J is defined as:

S = Escat =1- Espec 12
Etotal Etotal

As is evident from equation 1.2 the scattering coefficient does not take into account how the
energy is distributed into different angles of reflection. It only takes into account whether the

energy is in the specular direction or not.

Another expression for the scattering coefficient when the pressures at reflection angles 8; of

constant angle difference are known is:

_ |Z?:1 p1(6:)p5(6;) |2
Lilp1 (817 - X ilpe (812

6,=1 1.3
where p(6) is the reflected pressure distribution of the surface under investigation, po(8) is
the reflected pressure distribution of a plane surface of the same size and #n is the number of

reflection angles.

The expression 1.3 allows for the measurement of the coefficient to be made when the
scattered pressure distribution is known. The measurement of the random incidence scattering

coefficient has been standardised[21].

1.1.2. Diffusion coefficient

Hargreaves et al[18] developed the autocorrelation diffusion coefficient:

_ CLlp(6)D* - T p6))°

- 1.4
(n— 1) XL, Ip(6)]

dc

where p(6;) is the pressure in the i" angle of reflection 6; and n is the number of receivers in

the polar response.

Autocorrelation gives the similarity of the energy distribution with itself, how invariant it is

with the angle of reflection. In order to take the pattern of the diffusion coefficient due to the



dimensions out of the criterion the concept of a normalised diffusion coefficient has been

suggested[11]. It is referred to as the normalised diffusion coefficient:

d, —d

d, = 2
" 1-d

1.5
ps

where d. is the diffusion coefficient of the sample in question and d,, is that of a rigid plane

surface with the same dimensions of the sample.

The measurement of autocorrelation diffusion coefficient has been standardised by the Audio

Engineering Society[22] and is in the process of being included in ISO17497-2[23].

1.1.3. Discussion

There 1s a lot of discussion on the subject of which coefficient most accurately characterises
the diffusion characteristics of a surface. Both the scattering and the diffusion coefficient
have values that range from O (specular reflection) and ! (perfect diffusion). However, an
issue arises when one considers what the perfect scattering refers to. The scattering
coefficient does not consider the pattern of the polar reflection of the surface. It only takes
into account that there is no energy in the angle of specular reflection. On the other hand the
diffusion coefficient requires exactly the same reflection in all angles regardless of the angle

of the incident wave.

The scattering coefficient has found application in geometric acoustic models[24]. The
diffusion coefficient, on the other hand, gives a better idea of the diffusion characteristics of a
surface as its aim is homogenous dispersion of sound in all directions rather than focusing in

a specific angle of reflection. For this reason it is usually preferred in diffusion design.

1.2.  Sequences

Since this thesis is centred on diffusers that are generated from number sequences it is
important to discuss their origin. For good diffusion, the sequences should display a flat
power spectrum (see Chapter 3). Consequently, they should have an autocorrelation function
that resembles a Kronecker delta[6, 8]. In order for a sequence to have this property it must
have a random arrangement of coefficients. Given the small length of the sequences that is
required for the design[11], 7 is most common for a QRD[13], it is unlikely to achieve a

random arrangement. For this reason, pseudorandom sequences have been designed that

display random properties.



10

1.2.1. 1-D sequences

1-D pseudorandom sequences have been studied and applied by other fields of science[8]
resulting in a large number of them being created over the years[25]. The most well known in
acoustics is the binary Maximum Length Sequences (MLS)[25] as they are widely used in
measurements[11]. The ones used for PGDs are integer based pseudorandom sequences[11].
The most famous of which are the quadratic residue e.g. [0,1,4,2,2,4,1] and primitive root

sequence e.g. [1,3,2,6,4,5] based on the prime number p = 7[25].

1.2.2. 2-D sequences
When a 1-D sequence in used a 1-D diffuser is created that scatters sound only in a semi-
circle. In order for the sound to be scattered in all directions (hemisphere) a 2-D diffuser is

required.

Superimposing a 1-D sequence on 2 dimensions

A simple way of creating such a diffuser is to use one sequence in each direction (Figure 1-1)
[26]. If the two sequences s; and s, to be used are generated by the functions f; and /> by the

equations:

s;(n) = fi(n) mod p,
1.6

s;(n) = f,(n) mod p,

where p; and p» are the generators of the sequences, mod is a function giving the minimum

positive remainder and » is the position of the coefficient in the sequence.

One of them is used to generate the grating of the rows and the other of the columns. The

coefficient of the 2-D sequence that is positions in x™ row and " column is given by the

equation:
s(x,y) = f(x,y) mod p 1.7
where f(x,y) = fi(x) + f,(¥) and p is the smallest common product of p; and p».

In Figure 1-1 an example is presented of a 2-D sequence created from a 1-D quadratic residue
sequence of prime 7. Since only one sequence is used p1 =p> = p =7 and f(x,y) = f1(x) +

f1(y). This construction is illustrated in

Figure 1-2.
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The Chinese Remainder Theorem([28] suggests that if 7 states the position of a coefficient in
a 1-D sequence of length N, while 2, and n» are the coordinates of that coefficient in a 2-D

Ni X N; array (where N, and N, are co-prime) then they are connected by the equation:

n, = nmod N,
1.8
nz = and Nz

where N = N;-N,.

To give an example, a 1-D sequence of length 20 can be folded in a 4 X 5 2-D array (given

the fact that 4 and 5 are co-prime) (Figure 1-3).

Folding in this way coincides with positioning the coefficients diagonally in a space of
parallel N; X N, arrays. The position on the 2-D grid is dictated by its position in its given

array (Figure 1-4).

Changing the folding steps in the Chinese Remainder Theorem

The Chinese remainder theorem dictates positioning the coefficients diagonally, moving one
step left and one step down. But, the autocorrelation properties can be retained even with

different folding steps. In this case the positions of the coefficients are set by the equations:

n, = (n +(n—-1) - (step; — 1)) mod N
1.9
n, = (n +(n—-1)- (step, — 1)) mod N,

where step; and step, are the folding steps. In order for positions not to coincide the steps
must not be divisor of the respective dimension. For instance, if a 20 coefficient long
sequence must be folded in a 4x5 array the value of 2 can’t be used for steps. If this value is
used then equation 1.9 will give n, = (2n)mod 4 + 1. This means that n, takes up only odd
value which cannot be accepted since the lines 2 and 4 of the array will be empty while the

locations of lines1 and 3 will correspond to two coefficients.

An example of folding the sequence using folding step; = 2 and step> = 3 is displayed in
Figure 1-5. This method allows for a sequence to be folded in any number of different ways
resulting in 2-D sequences with the same ideal autocorrelation characteristics. This offers the

diffuser designer more options as he can choose the configuration that is more aesthetically
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appealing or even take advantage of the diffusers inner symmetries (as will be shown in

Section 4.4.2).

N1=5

1 9 17 5 13 | 4

16 4 12 | 20 8

tdays

N2:4

11 19 7 15 3

3

6 14 2 10 | 18 | 7

& N

step) =2

Figure 1-5. The positions of the coefficients of a 20-coefficient long sequence when folded
in a 4x35 array with step, = 2 and step, = 3.

1.3. Summary

In this Chapter an introduction to some aspects of diffuser design were made. The
coefficients that are used by both the scientists and the industry to assess the performance of
diffusers have been presented and their characteristics have been discussed. Furthermore, 1-D
sequences that can have been used to generate 1-D PGDs have been mentioned. Methods of
creating 2-D arrays from 1-D sequences that have been used in the past were presented.
Finally, a novel method to produce more than one 2-D array from a given 1-D sequence has
been introduced. In the following Chapter simulation techniques and measuring methods of

the scattered pressure distribution from a diffuser are going to be presented.
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Chapter 2. Assessing a diffuser

In order for the quality of a diffusing structure to be established there is need for the scattered
pressure distribution to be attained. In this Chapter numerical methods for the prediction of

the scattered pressure of a surface will be discussed, while the measuring method that was

used in this thesis will be presented.

2.1. Prediction methods

When Schroeder introduced the concept of using phase grating to achieve sound diffusion he
suggested that the far field polar pattern would be given by the Fourier transform of the
reflection coefficients of the surface[8]. If a structure that displays variation of its reflection
coefficient in one dimension was sampled every w and R, was the reflection coefficient of

each sample then the far field scattered pressure would be:
N-1
p(@) — Z Rne—jn-kwsine 21
n=0

where @ is the angle of reflection, n is the sample number, k the wavenumber and N the
number of samples. Note that this is a Discrete Fourier Transform of kwsiné, and for this

reason the prediction method is often referred to as a Fourier model.

Since then a number of methods for the prediction of the scattered pressure distribution from

a surface have been developed[11].

2.1.1 Boundary Element Modelling (BEM)

This method uses the Helmholtz-Kirchhoff integral equation to estimate the pressure at a
given point by adding the pressure direct from the source with the sum of the pressure
reflected from different patches of the surface. The reflected pressure is estimated by the

surface integral of the pressure and its derivative over the reflecting surface[29]:

reE p(¥)

P L L. 0G(7,7y) L, .. 0p(F)
FES p_;r_) =p; (7, 7)) + f (P(rs)m— -G(# 1) 6n(?s)) ds 22

S

reD 0

where E, D are the domains outside and inside the surface s (Figure 2-1). 7(x,y,2),

r.(x;, yi,z;) and 70(x0, Yo, Zo) are the position vectors of the point of interest, a point on the
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surface s and the source of the wave respectively. p(7), p;(#,7,) and p(7y) are the pressures
at the point of interest, the direct radiated pressure of the source to the receiver and that at a
point on the surface. 7 is the normal to the surface pointing outwards, ds is an infinitely small
portion of the surface and G (#,7.) is the free field Green’s function:

e~ Jkr

G171y = ype wherer = |V — 7} 23

For a 2-D case Green’s function is given by the Hankel function:

G(r) = _T]H(()Z)(kr) 2.4

Where H(()Z) is the Hankel function of the 2™ kind of order O.

In the case that the surfaces are considered locally-reacting the pressure derivative can be

connected with the pressure using the surface admittance:

WE) _
s = kB EP() 25

where £ is the surface admittance pointing outwards from the surface. In the case of a
reflective surface f—0 and consequently the pressure derivative can be omitted from

equation 2.2.

source
(XO’YO’ZO)
receiver y
(x’y’l)
z X
E
S
. r
point on surface s D
(XS’yS,ZS)

Figure 2-1. The Geometry of the boundary integral equation.






18

The solution of equation 2.6 can be reached by calculating the inverse of the matrix GIN +

A). As a result of that the surface pressures can be estimated:

-1

1
P= (EIN + A) P, 238

Once the surface pressures are known the integral equation, for 7 € E, gives the pressure at

any point in the E domain.

This method offers a direct solution to the Boundary Integral Equation and is used in the Part

2 of the thesis for the prediction of the scattered pressure distribution of Absorption Grating
Diffusers[30].

Thin panel Boundary Element Modelling

In order to reduce the computation time of the method other formulation must be used.
Terai[31] presented equations that connect the surface of the two sides of an infinitely thin
surface which are used to form the thin panel BEM. The pressure difference P(fs;) - P(Fs,z)

between the front and back of the plate is given by the equation[31]:

aG% (7,7 1)

2.9
on(#)on(7 1)

ap; (7o, Ts1) ) )

= B [ (o)~ p(72))
on(71) )

With the pressure difference known the pressure at a given external point is given by the

equation:

8G (7,74
pi(7) = pl(ro,r1)+f{p(rsl) p(7s2)} O(E rl))d 2.10

The use of the thin panel BEM becomes very useful when modelling the scattered pressure
distribution from Phase Grating Diffusers (PGD) (Figure 2-3(a)). Their geometry considers

the existence of very thin fins that can be easily modelled with this method.
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Thin panel

%
-~ / BEM
7 e

The diffusers are attached on walls so the area of interest is the space on the front of the
structure. This means that the structure can be meshed as is presented in Figure 2-3(b) since
the back has very little interference with the scattering at the front of the diffuser in the higher
frequency bandwidths where scattering is significant. Leaving the back open has the added
advantage that there is no enclosure created that can produce non-unique solutions. This
indirect solution to the Boundary Integral Equation is the ideal BEM formulation to simulate

the performance of PGDs[32-33] and therefore it is used in Chapters 3 and 4[34].

When a large surface is to be modelled the Boundary Element Method can become very
computationally expensive. The process can be sped up by making a number of

approximations.

2.1.2. Fraunhofer or Fourier Model

The Fraunhofer Model starts from the same integral equation as the Boundary Element
Method (eq. 2.2). The approximations that have been taken suggest that this model should
only be considered in the far field. Consider normal incidence sound. The scattered pressure

at a point in space is given by[11]:

Xs=a

. jkb e~ Jkro*T)  kp Kxsing
ps(7) = —W—rro——smc (T) (cos6 + 1) R(x;)e/"*sSM0dx 2.11
Xg=—a

In this equation the integration is the Fourier transform of the reflection coefficient in the
kx,sin® domain. This is a similar result to the one that Schroeder reached. It is common for

the (cos@ + 1) factor to be neglected and to follow the Fourier approach (eq. 2.1).

This is an elegant method that connects the distribution of reflection characteristics of a

surface with the scattered pressure but it refers only to the far field response.
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Far-Field

The far field is defined as the distance at which the difference between the minimum and the
maximum path length from the panel to the receiver is small compared to the wavelength
(Figure 2-4)[11]. This region is located where the distance between the receiver and the

surface is large compared to the maximum dimension of the surface:

2.12

Ar<ii2

¥
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y

Figure 2-4. Far-field determination.

The first requirement is rarely an issue if the second one i1s met. When they are met all the

point on the surface can be considered to be the same distance from the receiver[35]. The

surface is in the far field when[11, 23, 35]:

- 2.13

The region that falls under the far-field category changes for oblique positions. The furthest

case for small surfaces is when the receiver is in the normal of the surface. If the surface is

wide, then the receivers must be further away for grazing angles.

Far-field conditions are not always possible in measurements. In these cases other

requirements are needed. Such a case is referred to in Section 2.2.
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2.2.  Scattered pressure distribution measurement methods

The measurement of the scattered pressure distribution is in the process of being
internationally standardized 1SO:17497-2[23]. The standard is at the moment a committee
draft based on the Audio Engineering Society standard AES-41d-2001[22] and it considers

measurement in a three or a two dimensional domain under free field conditions.

The simplest way of measuring polar plots is if the diffuser is 1-D. Such diffusers scatter
sound in one plane and the polar response of interest is limited to two dimensions. For this
measurement a semi-anechoic chamber is used[22]. The reflective floor of the chamber is

taken into account by considering the image of the sample (Figure 2-5).

sample sample

mic source mic source

b T — g @ 2D . e ® e °

Figure 2-5. Free-field equivalent of the semi-anechoic chamber.

The setup of the measurement is depicted in Figure 2-6 with the speaker being at the bottom
of the figure. 37 microphones are set in an arc spaced apart by Ap=5° with a radius of R =
I.4m. The radius was dictated by the width of the room which is 3.3m. The samples that were
tested had a maximum width of 70cm and a height of 30cm. If the mirror image of the

samples is taken into account then they appear to be 60cm tall.

The measurements were carried out in the semi-anechoic chamber of the University of
Salford. For the recording a 44 channel NetdB real-time analyzer was used (Pro-121 and Pro-
132 combined)[36-37]. The source needed to be as close to the floor of the chamber as
possible (see Figure 2-5) so the Visaton SC 4 ND[38] speaker was used which has a flat
response from 1kHz up to 22kHz and is Sc¢m in diameter which resulted in its centre being
2.5¢m from the floor. Since the microphones are in the path of the loudspeaker they needed to
be as small as possible so as not to interfere. So they were made less than 5mm in diameter

using miniature omni-directional capsules that have flat response in the range of operation of

the speaker.
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Figure 2-7. Measured impulse responces with and without the sample.
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Figure 2-8. Measured scattered impulse response of the sample.
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The common peak corresponds to the incident wave that gets recorded by the microphone
before it reaches the sample area. The second peak of ks contains the scattered response from
the sample. After the application of equation 2.14 the response is windowed to remove the
residue from the incident sound. Thus the scattered impulse response that is used to generate
the polar response of the sample is acquired (Figure 2-8). The polar plot for each frequency is

obtained by Fourier Transforming the impulse responses of the 37 miniature microphones

(Figure 2-9).

Despite the efforts to follow the standard to the letter the requirement for signal to noise ratio
was not met. The standard suggests a value of at least 40dB for a reference flat plate. In the
measurements carried out for this thesis the signal to noise ratio did not exceed 25dB due to
the low sensitivity of the microphones used. Despite this deviation the measured scattered

pressure distribution displayed the expected behaviour.

Since the sample is a flat reflective surface the scattered pressure distribution is expected to
be symmetric. As can be seen in Figure 2-9 there is a notable difference for instance at +57/8.
The reason for this is the fact that the plot suffers from errors in the positioning of the
microphones in the arc. Due to the existence of sharp variations in the plot even a 0.1° error

in the position of the microphone can result in a substantial error in measurement.

0
-n/8 100 8
-n/4/ /’_0\\\ n/4
38 €0 3n/8
40
-n/2 - /2

Figure 2-9. Measured normal incidence scattered pressure distribution of a rigid surface 70cm
wide at 1.8kHz.

2.3. Measurements Vs Simulations
Measurements are tedious to conduct and time consuming, so simulations are used in this
thesis for the estimation of the performance of diffusers. In order to establish the validity of

the prediction models comparison with measurements need to be carried out.
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can show only the potential of a structure to diffuse and not be used to access its

performance.

2.3.3. Discussion

There 1s a trade-off between accuracy of prediction and computational speed with the
different models. The Fourier Model is very fast but it is an idealization of the problem. It
does not correctly model evanescent waves close to the surface, it considers incident plane
waves and 1s only applicable in the far field. However, it is an elegant model that connects
the distribution of the reflection coefficient on the surface with the scattered response. That is

why it finds application in diffuser design.

The Boundary Element Method is more accurate and has been shown to give accurate
predictions for Phase Grating Diffusers[31] but is computationally expensive. There are
methods that allow for the number of elements to be reduced such as the thin-panel Boundary
Element Method[31] or exploitation of the symmetries of the surface[11] but even then it

remains time consuming.

The angular resolution of the polar plots in this chapter have been dictated by the
measurement procedure were the receivers were placed with an increment of 5°. At later
stages of this thesis angular resolution of 1° will be used when predicting the performance of

diffusers. This will give a better representation of the performance of diffusers.

24. Summary

This Chapter contained the various methods that have been use in the past to attain the
scattered pressure distribution from a diffuser. Boundary Element Modelling has been shown
as the most exact but at the same time more computationally expensive simulation technique.
The Fourier Model on the other hand has been shown to give a very elegant connection
between the distribution of reflection coefficients on a surface and the scattered pressure
distribution from it. Finally, the method to measure the scattered field that was used in this
thesis has been presented and compared with both 2-D BEM and Fourier Model. In the two
following Chapters PGDs are going to be discussed. In Chapter 3 the reasoning behind
standard PGDs is going to be presented and issues surrounding diffuser design such as

periodicity and modulation are going to be addressed. Later, in Chapter 4+ new PGDs arc

going to be introduced.
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Chapter 3. Standard Phase Grating

Diffusers

The most common category of diffusers is Phase Grating Diffusers (PGD). In this Chapter
these structures are going to be presented. Their inherent limitations are going to be discussed

and the 1ssue of periodicity is going to be addressed. Modulation techniques are going to be

used to be deal with the problem of periodicity.

3.1. The diffusers

The introduction to this thesis presented sequences for PGDs, here the diffuser design is

examined in more detail.
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Figure 3-1. One period of a Maximum Length Sequence Diffuser (MLSD) of well width w
and depth of the n™ well, d,.
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Figure 3-2. One period of a Quadratic Residue Diffuser (QRD) of well width w and depth of
the n™ well, d,.

The depth of the n™ well d,, in the diffuser is set using a pseudorandom sequence[8]:

Snto
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. h . .
where s, is the n" term of the pseudorandom sequence, Ao is the design wavelength, and P is

the integer the sequence has been generated using, ¢.g., a prime p for QRDs.

The distribution of the phase ¢, and the reflection coefficient R, is given by[8]:

P
On(f) =2m P T 39
_ o Sn f
Ry (f) = exp (JZTTF'F() 13

where fis the frequency of the incident wave and f; is the design frequency of the diffuser.

The pseudorandom sequences are chosen based on the Fourier Method. So a structure that
has reflection coefficients whose Fourier Transform has a uniform magnitude should diffuse
well. The Wiener-Khinchin theorem states that the square of the magnitude of the sequence’s
Fourier Transform is equal to the Fourier transform of its autocovariance (or autocorrelation)
function. As a result a sequence of reflection coefficients whose autocorrelation function is a
Kronecker delta function, will display good diffusion properties. Such sequences include the

quadratic residue sequences (Figure 3-3).
The quadratic residue sequences are generated for any prime number P by the equation[25]:
s, = n?mod P 14

where n € [1, P] and mod is a function giving the minimum positive remainder.

For this type of pseudorandom sequences the integer number generator P is prime and it is

equal to the length of the sequence (N = P). The autocorrelation function Rxx of the sequence

1s[25]:

— 1
Ryx = 0 —_——— <t <<——, (120 3.5

where t denotes the autocorrelation delay.

The distribution of reflection coefficients displays these autocorrelation properties for

frequencies f, that the phase distribution 1s:



31

S
=2 -n
(pn(fa) T ) 16

Figure 3-3. Magnitude of autocorrelation function of a quadratic residue sequence (P=7).

Due to phase’s modular nature the distribution on the surface is the same for most integer

multiples of the design frequency:

fa = afo 37

where a is an integer that is not a multiple of P.

At these frequencies the reflection coefficients retain the same phase differences (Figure 3-4):

Sn afO ASp Sn
= _— = 2 —_ = +2 -
Pnlafo) =215 P TP 38

This suggests that the diffuser performs best at these frequencies. When a becomes equal to P

then the diffuser perform like a plane surface (see Section 3.2.1).
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There are sequences that although their autocorrelation functions do not go to 0 when it is out
of phase (z # 0) they still display a steady level. Other sequences that have found application

in diffuser design are the primitive root sequences, the maximum length sequences etc.

0sf 2 R ;
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Figure 3-4. Reflection coefficients of a 1-D QRD (N =7) at 1, 2 and 4 (left) 3, 5, 6 (right)
times the design frequency.

3.2. Disadvantages
PGDs display notable limitations. Some are inherent problems of their design while others

steam from the inaccuracy of the Fourier Model that is used to choose the sequence that

generated them.

3.2.1. Flat plate frequencies

When « is a multiple of the integer generator the phases of all the reflection coefficient will
become multiples of 27, and so all the reflection coefficients will be 1[16]. This will result in

the structure acting like a flat reflective surface. These flat plate frequencies, as shown in

Figure 3-5, are given by:

3.9
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Figure 3-5. The flat plate effect of a QRD (P=7).
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While in theory every such structure displays an infinite number of flat plate frequencies, in
reality it is rare for there to be more than one of these frequencies in the bandwidth of
concern. When that is the case, it is common to refer to the first of them as ‘the’ flat plate

frequency.

3.2.2. Well cut-off frequencies limitations

Due to the fact that plane wave propagation in the wells is assumed, there is an upper
frequency limit to the design. When half the wavelength becomes smaller than the well width
then the waves will no longer propagate as plane wave within the wells. This will cause the

reflection coefficients to deviate from the ones required. The upper frequency limit is:

Amin = 2w or fmax = C/ZW 310

where ¢ is the speed of sound and w is the smallest dimension of the wells cross-section.

3.3. Periodicity

Probably the most controversial issue surrounding diffuser design is periodicity. Since their
introduction PGDs have been considered as structures with regularly spaced patches of
different reflection coefficient generating an inherent regularity to the structure. Later the
choice of sequences with good autocorrelation properties steered towards periodic repetition
of the diffusers[8]. Even the standard for the measurement of the scattered pressure

distribution from a surface requires a structure of several periods to be tested if the diffuser is

to be used pertodically[23].

Any type of repetition causes periodicity lobes to be introduced in the autocorrelation
function of the reflection coefficient. This results in the introduction of periodicity lobes in

the pattern of the scattered pressure distribution above a low frequency limit.
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A typical case of periodicity comes from the regular distribution of the reflection coefficient
on a surface. In order to portray this problem a 1-D diffuser will be considered. It will be

considered that its reflection coefficient is constant for patches of width w throughout its

surface:
R(x)=R(mw) =R, , for n=0,1,2,.. ,N—1 3.11
where N is the number of patches.

The scattered intensity distribution /; can be estimated using the Fourier Method (see Section
2.1.2):

-1 2

Z

2

—jk'N , o,
15(9) = |we ] W/z - sinc (k W/Z) . Rne}k (n+Dw 312

n=0

where 6 is the angle of reflection, k "=ksin6 and N is the number of patches of the diffuser.

The sinc’(x) function that has been introduced in equation 3.12 causes lobbing to be
introduces in the distribution of scattered intensity. The pattern it introduces can be seen in
Figure 3-6 for w/A = 0.5. This lobe causes the distribution to be less uniform and therefore

degrades the performance of the diffuser.

3n/8 -3n/8

/2 -1/2

Figure 3-6. Lobing introduced by the constant patches of reflection coefficient when the
width of the patches is equal to half of the wavelength (1w/4 = 1/2).

To cover large surface areas more than one period of a diffuser structure is commonly used.
The repetition of the sequences causes harmonics to be created in the autocorrelation
function. This creates sharper grating lobes and as a result a less uniform scattering
distribution. The scattered intensity distribution in the case of @ diffusers is given by the

interference pattern of Q identical source:
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sin® (Qk’W/2>
3.13

sinz(k'W/z)

where I(0) is the scattered intensity distribution of a single period of diffuser, Q is the

Itot(g) = 1,(0)

number of periods, k" is equal to ksinf and W is the width of one period of the diffuser.

The interference pattern degrades the performance of the diffuser as it causes for more lobing
to be introduced to the scattered intensity distribution. In Figure 3-7 the lobing effect is

displayed for O =3, W/A = 2.

The superposition of the two types of periodicity is displayed in Figure 3-8. This is an effect

that will become more evident in absorption grating diffusers, as will be shown in Chapter 5.

/2 -n/2

Figure 3-7. Lobing introduced by 3 periodic repetition of the diffusers when the width of a
single diffuser is equal to two times the wavelength (W/4 = 2).

2

Figure 3-8. Lobing introduced by the combination of constant patches of reflection
coefficient and periodic repetition of the diffuser (0 =3, N =4, w/A = 1/2).
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34. Modulation

Ways of dealing with periodicity have been devised as regular arrangement of the reflection
coefficients is ill-advised. While in cases that more than one period is required it is necessary
to modulate the base sequence with another [15-16, 39-41]. In order to modulate two
sequences a binary pseudorandom sequence is required. The binary sequence defines the

order in which the sequences will be placed with 1 corresponding to the first sequence and 0

to the second (Figure 3-9).

Modulation will be used extensively in Chapter 4 to deal with the degrading effect that
periodicity has on the performance of PGDs. It will also be used to improve the beam

steering effect of Liike Diffusers (Section 4.2.2).
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Figure 3-9. Modulation of two PGDs using the binary sequence [1,0,1,1].

There are three major ways of choosing the second sequence to be used in the modulation.

The simplest way of presenting them is by considering PGDs (Section 3.1).

3.4.1. Using the inverse of the base sequence:

An inverse sequence is created by subtracting the original sequence from the integer that it
was generated from. So, for example, the sequence that will generate the inverse diffuser of
the quadratic residue sequence with P = 7 [0,1,4,2,2,4,1] is calculated by subtracting this
sequence’s coefficients from its integer number generator, 7 in this case, to give

[7,6,3,5,5,3,6] as the inverse (Figure 3-10).

inverse
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Figure 3-10. The inverse of a QRD (P=7).
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The inverse diffuser reflects the opposite phases from the original. Since the arrangement is
done using a pseudorandom sequence the resulting structure will display the phase grating

behaviour of a larger PGD with two levels. This technique is widely used[41] and, as will be

further used in Chapter 4.

3.4.2. Using the base sequence in reverse order:

Another technique for modulation is to use the same sequence but in reverse order. In
practice this is easily achieved by rotating the diffuser in its plane such that its left becomes
its right. The modulation is essentially a diffuser and its mirror image. For example, for
primitive root sequence with P = 7 [1,3,2,6,4,5] the mirror diffuser is simply [5.4,6,2,3,1].
This method has the added advantage of the overall structure having the same depth as the
base diffuser; in addition it only requires one base diffuser. However, it only works if there 1s
a degree of asymmetry in the base diffuser (Figure 3-11), as shall be shown for the new Luke
diffusers later. For instance the QRD of P = 7 is [0,1,4,2,2,4,1] and is mirror [1,4,2,2,4,1,0]
which display the only variation of the O which is moved from the beginning to the end of the

sequence.

7/
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Figure 3-11. The mirror of a PRD (P=7)
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3.4.3. Using a different sequence to that of the base diffuser:

In principle any alternate sequence may be used, but it is usual to use one that is performing
better than the base sequence at the frequencies where it is performing badly. For example,
two sequences with different flat plate frequencies. Angus, for instance, used a combination
of P =5 and P = 7 QRDs[39] while Cox et al used a combination of P =7 and P = 11
PRDs[42]. Since they used the same design frequency for the diffusers their flat plate
frequencies occurred at different points. It can also be used in cases of families of sequences

such as the Power Residue and the Liike Diffusers that will be examined in Chapter 4.
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3.5. Diffusion

The diffusion coefficient for a standard PGD can be seen in Figure 3-12. In this plot the
normalised diffusion coefficient of 5 periods of QRD of prime generator p=7 is displayed.
The design frequency is set to 1kHz (Figure 3-13a) and the well width to 5.1cm. The overall
width of the structure is 1.8m. The key frequencies to be noted are the peaks of diffusion at
approximately the multiples of the design frequency. At these multiples the phase changes
generated by the wells is the same with that at the design frequency (eq 3.8) resulting in good
diffusion (Figure 3-13b). The exceptions lic in the 7™ multiple that is the first flat plate
frequency (Figure 3-13c) of the diffuser (eq 3.9).

It is noteworthy to point out that the diffuser performs like a plane surface, when the
normalised diffusion coefficient is equal to 0. Apart from the flat plat frequencies this
happens consistently for frequencies below 860Hz. This frequency coincides with that when
A becomes comparable to the width of the period of diffuser W. This is a low frequency limit

of the diffuser:

Amax =W or fmin - C/W 3.14
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Figure 3-12. Normalised diffusion coefficient Fourier Model predictign .of 5 periods of QRD
(p=T7) with the design frequency set at 1 kHz ( ==== upper frequency limit).
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positioned at the centre of each diffuser (Figure 3-14). These sources would be spaced a
diffuser width W apart. If the diffusers were wider the interference pattern of these sources

would change. This change would alter the peaks of the diffusion coefficient.

PV 7 7 7
2% 2% 2% 2% 2%
2% 2% 2% 4%
2% 2% 2%% 2% 2%

O point source < W >

Figure 3-14. The periodicity equivalent of 5 periods of a QRD.

It is important to remember the limitations of the Fourier Model that was used for the
simulations here. The model considers plane wave propagation in the wells without taking
into account the cut off frequency of the well (eq 3.10). For the given well-width the high

frequency limit is at C/ZW = 3.3kHz. This suggests that the behaviour for most of the

bandwidth of this graph will only be approximately correct. For more accurate predictions

Boundary Element Modelling must be used.

3.6. Summary

With the conclusion of this Chapter the foundation of PGDs is completed. How they are
generated from pseudorandom sequences has been presented and their frequency limitations
have been outlined. The modulation techniques that can be used to address the problem of
periodicity that arises from the periodic repetition of a single diffuser have been explained.
Finally, the Fourier Method was used to investigate the characteristics of a standard

Quadratic Residue Diffuser. In the following Chapter new PGDs are going to be introduced.
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Chapter 4. New sequences for Phase

Grating Diffusers

The research question being examined in this Chapter is whether it is possible to design

diffusers with higher flat plate frequencies by applying new number sequences based on

larger integer generators.

Standard Phase Grating Diffusers (PGD) like Quadratic Residue Diffusers (QRD) and
Primitive Root Diffusers (PRD) have a limited frequency range due to the flat plate effect
that occurs when all the wells radiate in phase. The frequencies at which this occurs are
directly linked with the integer P that generates the pseudorandom sequence. For both QRD
and PRD the flat plate frequency is P times the diffuser’s design frequency. In order for the
phenomenon to take place outside the audible range a large number generator is needed
which will result in a long sequence as their length is similar to the generator (Ngrp= P, Npgp
= P-1). As a small diffuser is easier to construct and handle, the length of the pseudorandom
sequence is usually small limiting its integer generator as well. In this Chapter an alternative
approach using number sequences is presented that, although short in length, are based on
large integers. Two pseudorandom sequences, Power Residue and Type-II Liike, have this
desired characteristic. The performance of Power Residue Sequence Diffusers (PWRD) and
Liike Sequence Diffusers (LSD) is investigated using numerical simulations. Of the two
PWRDs are shown to move the flat plate effect to much higher frequencies as expected,

while LSDs are shown to require modulation in order to achieve substantial diffusion.

4.1. Power Residue Sequence Diffusers (PWRD)

Power residue sequences are generating by under-sampling primitive root sequences (Figure
4-1). The relationship between the generator and the length of the sequence changes
dramatically. For every PRD a number of PWRDs can be created that preserve the prime
generator but reduce the width of the structure by a fraction equal to the sampling step. By

changing the sampling starting point a family of PWRDs can be formed.
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Figure 4-1. PWRD (P =11, M = 2, r = 0) generated from a PRD (P = 11).

4.1.1. The sequence

Power residue sequences are based on any prime number P that can be expressed in the form:
P=M-N+1 4.1

where M and N are integers. M power residue sequences of period N can be generated using

the equation([25]:
s = @M mod P 4.2

where 0 <r <M, 0 <n<N, ais a primitive root of P and mod indicates the least non-
negative remainder. A primitive root of P is any number a with the property that any co-

prime to P is congruent to a power of a mod P[25].

In the case that a set of M integers D = [Sn,lf Sn2s - ,Sn'M] are modulo an integer P they are
said to form an integer difference set if every integer m # 0 can be expressed in exactly y

ways in the form:
Sn¢ —Spe =mmodp , where{ # & €[1:M] 43

The propertics of the difference set are usually represented using the nomenclature
(P,M,y)[25]. If, and only if, the power residue sequence forms a cyclic difference set (P,M.y),

then the reflection coefficients that it generates displays two level autocorrelation

magnitudes[25]:
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|Rxx (D) =

where Ryx 1s the ACF and 7 1s the delay variable. Figure 4-2 shows the magnitude of the ACF
for a number of power residue sequences of the same length that have been created from
different generators. As is obvious from this figure, their out-of-phase magnitude is always
greater than 0 and becomes greater as M increases. This means that they display worse ACF

properties than QRD that displays out-of-phase magnitudes equal to O (Figure 3-3).
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Figure 4-2. Magnitude of autocorrelation function of all power residue sequences of period N
= 9 that can be generated from different prime numbers.

The out of phase non-zero value of the ACF is not uncommon as other pseudorandom
sequences display such a characteristic. When the out-of-phase is real, it translates to a DC
component in the Fourier Transform of the reflection coefficient which dictates an added
feature in the angle of specular reflection. For primitive root and maximum length sequences
that have out-of-phase ACF[25] equal to -1 this manifests as a null in the angle of specular

reflection, a characteristic that has been exploited in diffuser design[42-43].
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In the case of power residue sequences the ACF is not constant out-of-phase. While the
magnitude is constant the phase is not so (Figure 4-3). This effect deviates from the

requirement of a Kronecker-delta like behavior and undoubtedly will degrade the evenness of

the spectrum.

real
--—imag

Figure 4-3. Autocorrelation function of a power residue sequences of period N=9 and
generegator P=19.

As already mentioned, power residue sequences are under-sampled primitive root sequences,
with a sample taken every M™ coefficient, with a different starting point (dictated by r), as

shown in Figure 4-1.

In the case of primitive root sequence of P = 11, the primitive root is 2, and the sequence is
[1,2,4,8,5,10,9,7,3,6]. For M = 2, and r = 0 every other coefficient is taken to form the

power residue sequence starting from the first S,(lo) =[1,4,5,9, 3] while for r = 1 the starting
point is the second term of the original primitive root sequence 57(11) =[2,8,10,7,6]. Note

that the one sequence is the inverse of the other: if the coefficients of 57(11) are cyclically
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shifted left 2 positions, it becomes [10,7,6,2,8]. So in this case, the two power residue

sequences are connected via the equation:
0 _ 1
S, =P - sfl_)z 4.5

This connection between the two sequences results in pairs of diffusers in a family that
perform similarly, because pairs have reflection coefficients with opposite phases. For

families of power residue sequences with more than 2 sequences this phenomenon takes

place for those that are spaced M/2 sequences away with the required shift left being (g - 1).

M/2-1)
s =p—s 4.6
n—(N/2-1)
There are three cases that form cyclic difference sets that can be applied in the creation of

power residue sequences[25]:
M =2 and N is odd
M =4 and N = {* where { is odd 4.7
M=8andp=8-(>+1=62-m?+9where { and m are odd

Since the goal is to push the flat plate effect to higher frequencies, the most promising cases

follow the last rule as it combines higher primes P with short sequences. The first case that

falls under this category is:

M=8n=3m=1=>p=73 4.8

This generates a short sequence typical of the length used in practical Schroeder diffusers

(period N = 9) but with a prime number generator of 73. One such sequence is 57(11) =

(1,2,4,8,16,32,64,55,37], which is the first of the family (r = 0). The higher prime
number gives a first flat plate frequency of 73 times the design frequency. This fact becomes

more impressive if one considers that a QRD with the same characteristic frequencies would

consist of 73 wells (Figure 4-4).

A primitive root sequence with period N = 10 being generated from the prime P = 11 will
have a flat plate frequency at 11 times the design frequency, less than 6 times lower. It will

actually display 6 flat plate frequencies before the power residue diffuser displays its first.
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Figure 4-4. A QRD and a PWRD with the same design and flat plate frequency.

4.1.2. The diffusers

The cases of PWRD of period N = 9 are taken into consideration. They have a length which is
similar to many commercial devices while they can be generated using all the cases of cyclic
difference sets that have been suggested in 4.7. This allows the performance of sequences
with the same length but of different autocorrelation properties and different prime number

generator to be examined.

Given that the choice of sequence is based on the Fourier Model the performance of the
diffusers will be examined using the same technique. The structures to be tested will consist
of 5 periods of 40cm wide PWRDs. The resulting structure is 2m wide resulting in a low
frequency limit of 857.5Hz (eq. 3.14). The well width is 4.4cm which results in the upper
frequency limit of the diffuser being 3.9kHz. The design frequency is set to 1kHz.

The first case is created when a PRD of length 18 (P=19) is sampled every other well. Then 2
PWRDs (M = 2) of length N = 9 can be formed:

s =[1,4,16,7.9,17,11,6,5]
4.9

stV =[2,8,13,14,18,15,3,12, 10]
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Figure 4-5. Argand diagrams of the reflection coefficients of the PWRDs (P = 19) for the

different frequencies.

The two sequences are the inverse of one another (see Section 4.1.1) which results in

reflection coefficients, at multiples of the design frequency, to display opposite phases, as can

seen in the Argand diagrams of Figure 4-5(a). The different sign in the phases will result in

the same scattered pressure distribution from the two diffusers with an inversion of the angles

of reflection (Figure 4-6(a and c)). This relationship is not the same for other frequencies. At









s\ =[1,16,34,26,9,33,10,12, 7]

ss = [2,32,31,15,18, 29, 20, 24, 14]

s = [4,27,25,30,36,21,3,11, 28]

0.5 [ o
o _ A
o
©® ol i — .
g ° r=9 ‘
05 O
o
1t Q...
-1 0 1
1t ' o '
05} °O
©
g 0 r=2 o
05 © | :
n | ,oo o
-1 0 1
real

s =[8,17,13,23,35,5,6,22,19]

0.5¢

-0.5¢

50

4.10
5 o
o r= 1 TN
o i
o
-1 0 1
' )
%
o' .
: o r=3
o
o .
-1 0 1
real

Figure 4-8. Argand diagrams of the reflection coefficients of all PWRDs (P=37, M=4) at the

design frequency f.

These diffusers can be paired again with their inverse as can be seen in Figure 4-8. For this

reason the diffusion coefficient of the first two is presented in Figure 4-9, since that of the

other two will be similar. The coefficient displays similar trend for both PWRDs but it is

obvious that it is not the same. While outside the frequency range of the plot the flat plate

effect occurs at 37-fy = 37kHz as expected, which is outside the audible frequency range.
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range. An interesting phenomenon that is evident from this graph is that the first of the
PWRDs of the family start diffusing at a lower frequency than the rest. This is another

example of the autocorrelation properties of a sequence not “telling the full story”

As has been stated earlier, the lower frequency limit of the diffuser geometries being tested
here 1s when the wavelength fits into one period of the diffuser. This suggests that the PWRD
(r=0) in question appears to have the behaviour of a larger structure when applied
periodically. If one looks to the form of this PWRD a difference from that of the other
diffusers becomes evident. Its wells are arranged in groups of similar depths, which suggests
that at lower frequencies the wells do not act individually but as averages of these groups

(Figure 4-12).
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Figure 4-12. PWRD (P=73, =0).

The predictions presented for PWRDs have been made using the Fourier Model which is the
one that was used in the choice of the pseudorandom sequences. As has been discussed
before (Section 3.2.2) this simulation technique does not account for the high frequency limit
of the diffusers (eq. 3.10). For a 4.4cm well width of the PWRDs this frequency is
approximately 3.9kHz. This means that the predictions above this frequency will be

inaccurate unless the wells are themselves partitioned into sub-wells.

The more accurate BEM[44] is going to be used now in the comparison with more standard
PGDs. Since the Fourier Model considers only a surface of a given distribution of reflection
coefficients the structures have been regarded as 1-D. So the diffusers were compared with a
rigid plate. BEM on the other hand models the whole structure in 2-D. The comparison is

going to be made with a reflection structure of the same outer dimension that is going to be

referred to as “plane surface”.















59

diffusers (LSDs) are created for different step-sizes, with N-P generator. A schematic of the

creation of a LSD (P=42, r=1) in shown in Figure 4-17.
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Figure 4-17. LSD (P=42, r=1) generation from the PRD (P=T).

In this case, a steady step sequence is imposed on a PRD increasing the generator while

preserving the PRDs size.

4.2.1. The sequences
Type-1II Liike sequences are generated for any given prime p. They are formed in families of

p-1 sequences which are given, for different values of r, by the equation [25, 45]:
s,(f) =a"(p—1) + rnpmod p(p — 1) 4.12
where a is the primitive root of p.

The sequences are generated via the integer P = p(p — 1) and have a period length of

N =p — 1. A necessary conditionis 0 < n,r <p — 2.

The reflection coefficients of type-II Liike sequences have the following, two valued,

autocorrelation magnitudes[25]:

-1 T=

0
,RXX(T)IZ{ 1 —B;STSE 4.13

, (t#0)

2

where Ryyx is the autocorrelation and t is the autocorrelation delay variable. This
autocorrelation function magnitude is the same as that of a primitive root sequence of the
same period. Figure 4-18 shows the properties for an example family of sequences based on p
= 7. It is important to note while primitive root sequences have purely real periodic

autocorrelation function type-II Liike sequences have complex.
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Essentially the type-II Liike sequences are formed by superposing the primitive root sequence

q of prime p:
Qn = a™ mod p 4.14
and a steady step sequence ¢ of the same period:
th, =rnmod (p - 1) 4.15

with r giving the step size, as shown in Figure 4-17.

6 T T T T ; ; I

0
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Figure 4-18. Magnitude of the autocorrelation function of the family of Type-Il Liike
sequences (p =7, P =42).

For the above reason, every primitive root sequence can be considered to be the first
sequence (r = 0) of each type-1I Liike sequence family. On the other hand it can be
considered that from any primitive root sequence a set of p-2 new type-II Liike sequences can
be generated, each one with a different step size. This is possible because a linear ramp can
be added to any number sequence, provided the period is correct, without changing the

autocorrelation properties. This theorem is known as the shift theorem.

To give an example for P = 7 the primitive root sequence is g, = [1,3,2,6,4,5]. In order

for all the coefficients to become equal the sequence has to be multiplied with 7 which is the
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Figure 4-19 displays the diffusion coefficients of some diffusers of this family of LSDs along
with the equivalent PRD. The PRD us expected displays a flat plate effect at 7-fy = 3.5kHz.
Surprisingly though, while LSDs are expected to display their first flat plate effect at 42-f, =
21kHz, the one with r=1 displays a dip in the diffusion coefficient similar to the PRD’s flat
plate effect at 3.5kHz. On the other hand there is sharp peak in the case of r=3 at that

frequency.

This is because the LSD with r = 1 causes redirection rather than diffusion at this frequency.
The reflection coefficients at 3.5kH: have phases of 0, #/3, 27/3, &, 4n/3, Sn/3 which have
equal phase shift increment of #/3 from one well to the next. This constant phase increment
of the reflection coefficients is why the main reflected lobe is redirected into another
direction; it is identical to the phase shifts used to beam steer loudspeaker arrays. This
behaviour is inherent in LSDs because they are formed by adding a PRD to a linear stepped
ramp. At the frequency in question, all the reflection coefficients of the base PRD are equal to
1 with a phase shift of 0, leaving only the linear stepped ramp. Essentially the PRD
disappears and the diffuser acts like a tilted flat plate. This can be seen in Figure 4-20 where
the scattered intensity distribution from two periods of this LSD (r = 1) is compared to that
from a plane surface of the same size and shows that the diffuser is redirecting instead of

scattering the incident wave.

This is a very interesting example of why the scattering coefficient has not been chosen. The
scattering coefficient for the tilted flat plate frequency of the LSDs would be high as the

energy is scattered out of the zone of specular reflection; and this phenomenon would go

unnoticed.

All the LSDs of the family display this behaviour with the exception of the middle one (in
this case r = 3) (Figure 4-19) which appears to be dispersing the incident wave uniformly.
However, a closer inspection reveals that the reflection coefficients at this frequency are
simply +1 and -1 one after the other (representing a steady phase shift of x). Based on the
Fourier Model, cancellation in the specular reflection direction occurs (Figure 4-21a). In
reallity, mutual interactions between adjacent wells will tend to ‘smooth out’ the surface
pressure distribution and reduce the cancellation in real surfaces. At the same time the
periodicity of the reflection coefficient will result in sharp periodicity lobes to be introduced

in the scattered polar response. This can be seen in Figure 4-21b where the same

configuration is examined using the more exact BEM.
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4.4.  Further Suggestions

It is possible to use the inner symmetries of the sequences to ones advantage. Such cases are
discussed here. In the first Sections methods to make the industry standards QRDs and PRDs
through the use of smaller components is presented while in the second Section a new 2-D

PRG with interesting characteristics is introduced that should be further investigated.

44.1. Using half a QRD or PRD instead of the full one

The use of small sequences is dictated by the need for a period of the diffuser to be small.
This makes it easy to move and apply. For standard PGDs this results in a small integer
generator and low flat plate frequency. PWRDs and LSDs have been presented as options of

sequences that have generators substantially greater than their size.

QRDs and PRDs display symmetries that can be exploited to achieve a similar effect.
Quadratic residue sequences are symmetric around the centre of the device. For P = 7 the
sequence is s, = [0,1,4,2,2,4,1], which could be rearranged in the form [2, 4, 1,0,1, 4, 2].
The diffuser can be split in half (Figure 4-26) and only one half of it to be constructed. The

other half is the same as the first but put in a different orientation.

Z / e

//2/ 2 ,;{, e /%

Figure 4-26. Half a QRD used to form a full diffuser.
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So instead of using a QRD of length N = 7 and generator P = 7 half a QRD of length N=13
can be used. The structure to be moved and positioned would be the same approximate length

but the generator and with that the flat plate frequency would be double.

In the case of primitive root sequences the second half is the inverse of the first half. Take for
example the primitive root sequence of prime P = 7 which is s, =[1,3,2,6,4,5]. The

sequence s,, = [6,4,5] is the inverse of the sequence s;, = [1,3,2]:

1

Sn=[sn.sn] , Spn=p—sn 4.16
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The coefficients of a primitive root sequence are connected via the equation:

r—1 p—1
) , n= 1,2,...,—2— 4.17

Sn=p—sn(n+

This symmetry can allow for only half of a primitive root sequence to be constructed if the
structure 1s has thin well terminations (Figure 4-27). In a similar scenario with the one

suggested for QRDs the ratio of generator-to-width can be doubled.

Figure 4-27. PRD (p=7) split into two half that are inverse of one another.

M=4

11 7 3 19 15

16 12 8 4 20

Figure 4-28. The positions of the coefficients of a 20-coefficient long sequence when folded
in a 4x5 array with the Chinese Remainder Theorem.

4.4.2. Folding PRD forming parallel PWRDs

When folding a 1-D sequence using the Chinese Remainder Theorem (see Section 1.2.2) into
a M x N 2-D sequence one effectively samples it every M coefficients with a different
starting point and arranges it, in inverse order, into the rows dictated by that starting point. As
can be seen in Figure 1-3 the 1-D sequence (length 20) is folded into a 4 X 5 sequence. The

first row of the 2-D sequence consists of the coefficients [1,5,9,13,17] inverse order
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which can be obtained from sampling the 1-D sequence every M = 4 coefficients. The second

row displays a similar pattern ([2,6,10,14,18]) but with a starting point the 2™

coefficient.

As discussed in Section 4.1 power residue sequences are generated by sampling primitive
root sequences. This suggests that by folding a primitive root sequence in the appropriate
dimensions it can be arranged in pattern where its rows are power residue sequences. These
sequences will be in reverse order than expected though. In order for that to happen though
the folding dimensions have to be consecutive numbers otherwise the coefficients of each

row will not be in the required order.

Based on the cases that have been presented (Eq. 4.7) the dimensions possible are 2x3 and
8x9. The first case corresponds to a very small sequence but the second one looks ideal. The

folded 2-D sequence will be:

1 37 55 64 32 16 8 4 27
10 5 39 56 28 14 7 40 20
27 50 25 49 61 67 70 35 54
o = 51 62 31 52 26 13 43 58 29 418
mno 172 36 18 9 41 57 65 69 71 '

63 68 34 17 45 59 66 33 53
46 23 48 24 12 6 3 38 19

22 11 42 21 47 60 30 15 44

The rows as expected consist of mirrored power residue sequences.

As discussed in Section 1.2.2 a 2-D sequence with the same autocorrelation properties can be
achieved with different folding steps. If the folding step is set to the same as the number of

columns, 8 in this case, the power residue sequences will be in order.

_Sr(lo)_
1 2 4 8 16 32 64 55 377 s\
10 20 40 7 14 28 56 39 5| |.@
27 54 35 70 67 61 49 25 50| [
|51 29 58 43 13 26 52 31 62(_ |Sn+s 1o
Smn =172 71 69 65 57 41 9 18 36| |s@® ‘

n+4

63 53 33 66 59 45 17 34 68| | 5
46 19 38 3 6 12 24 48 23| |*nis
22 44 15 30 60 47 21 42 11 |59
%

[Sp 47
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When comparing the folded primitive root sequence with the power residue sequences in

equation 4.11 it is seen that the only difference is a shift of one coefficient per row.

A PGD based on this 2-D sequence should display very good diffusion properties in the

horizontal dimension. The performance of this diffuser needs to be tested in the future.

4.5. Summary

In this Chapter the problem of the flat plate frequency of Phase Grating Diffusers (PGD) has
been discussed. Two new pseudorandom sequences have been presented which have much
larger integer generators than their length. From them Power Residue Diffusers (PWRD) are
shown to move the flat plate frequency outside the audible frequency range while Liike
Sequence Diffusers (LSD) redirect rather than disperse the incident wave at the flat plate
frequency. While the performance of LSDs is corrected at the critical frequency with
modulation they are shown not to perform better than the industries standards. On the other
hand a PWRD was proven to perform better and more uniformly than industries standards

without displaying any frequencies were they acted like a flat plate.

In the concluding Section of this Chapter some practical suggestions were introduced as to
how the inner symmetry of QRDs and PRDs could be used to mitigate the flat plate
frequency problem. Furthermore, a 2-D diffuser that consists of parallel PWRDs has been

presented that displays good potential and should be further examined.

This Chapter concludes the first Part of the thesis that investigates ways to improve Phase

Grating Diffusers. The second Part of the thesis investigates Absorption Grating Diffusers.
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PART 1II. ABSORPTION GRATING
DIFFUSERS

In 1995, the theoretical concept of a new class of sequence-based diffusers was presented by
Angus, Absorption Grating Diffusers (AGD)[7, 27, 46]. Instead of wells of different depths
they consisted of absorbing and reflecting patches that were positioned in a grid based on a
binary unipolar sequence. Not being subject to the requirement of sound propagating in wells,
as was the case with PGDs, they have a much smaller profile. Cox took the idea even further

and introduced phase gratings in ADGs forming ternary and quadriphase sequence
diffusers[47].

There has never been a comprehensive study on the effectiveness of AGDs. The published
work on the subject is based on approximate prediction models that while an indication of the
behaviour of these devices cannot conclusively prove their performance. Furthermore, there
hasn’t been any discussion of how these surfaces are going to be implemented in reality given
that their requirement of ideally absorbing element at all frequencies is unattainable
especially at low frequencies. The only suggestion was made by D’Antonio who used a
pseudorandomly perforated mask in front of a layer of absorbing material[48] without

investigating though if its behaves as an AGD.

In this part of the thesis Absorption Grating Diffusers (AGD) are being discussed. First, their
theoretical concept is presented and a review of the related literature is made. Then methods
of assessing the absorbing properties through analytical models and measurements are
presented. The types of absorbing elements that can be used to implement these surfaces are
presented and their characteristics and limitations are discussed. Later a realistic way to
implement a surface that consists of nearly perfectly absorbing elements is presented. Then
the performance of ideal Absorption Grating Diffusers is investigated using Boundary
Element Modelling and their diffusion capabilities are explained. Finally, improvements to
the performance of these devices are presented by either introducing reactive elements or

using less absorbing element.



73

Chapter 5. Introduction to  Absorption
Grating Diffusers

In this Chapter the theory behind Absorption Grating Diffusers (AGD) is presented. Their
requirements are discussed and their advantages and disadvantages presented. Existing

devices are mentioned and their deviation from the original concept is pointed out.

While phase grating diffusers achieve different reflection coefficients by acting on the sound
wave’s phase, binary amplitude diffusers act on the wave’s magnitude by either absorbing or

reflecting the incident wave.

5.1. Introduction

The concept was presented by Angus[7] in 1995 who used the same foundation of the
number theory that Schroeder used for the Phase Grating Diffusers[8] presented in Section
3.1. She suggested that if the grating the magnitude of the reflection coefficient of a surface
rather than its phase[7]. So instead of a structure consisting of wells that produce the required
phases of the reflection coefficient the structure would be flat and consist of areas of ideal

absorption and ideal reflection resulting in reflection coefficients of O and 1 respectively.

The grating of reflection coefficients still needs to display two-level autocorrelation function
in compliance to the Fourier Theorem (Section 2.1.2) thus a binary unipolar pseudorandom
sequence is needed. Most binary pseudorandom sequences are designed bipolar so they
contain coefficients of -1 and 1 but they can be converted to unipolar by switching the -1s to
0s. While the bipolar sequences display ideal autocorrelation properties, this characteristic 1s
compromised when transformed into unipolar ones as is displayed in Figure 5-1 for the case

of a Maximum Length Sequence (MLS).

There are a number of binary sequences that consist of approximately 50% absorbing and
reflective elements that can be used for this application such as Maximum Length Sequence
(MLS), Legendre, Golden, twin prime, Hall sequences and others[25, 49]. Given the
requirements of pseudorandom sequences[25] and their limited number of coefficient values,
the short binary pseudorandom sequences are the same regardless of their type. If a sequence
with smaller weight is required Angus[27] suggested another category of binary sequences

with good autocorrelation function known as optical sequences. They consist of a small
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percentage of I (around 25% for long sequences) which results in the surface being too
absorbing or too reflecting based on whether the 1s will state the reflective or the absorptive
patches. The number of 1s can be increased by combining sequences of the same family but

that will deteriorate the autocorrelation properties of the final sequence([50].

15%"'_ﬁ; T T T T T T
— bipolar
----- unipolar
12+
ot ]
s 5
) "
6r -
A h
cememmceemmmm e — e ——————————— ] Ve ccmccmmmemmac e e —————— 4
3_
| 1 1 | | | ! 1 | 1 i L

O 1
-14 12 10 -8 6 -4 -2 0 2 4 6 8 10 12 14
T
Figure 5-1. Autocorrelation function for a bipolar and a unipolar MLS(k=4) of period N = 15.

In this thesis MLSs are going to be used as they have good autocorrelation properties and
they display approximately the same number of Os and Is. The percentage of Is in the
sequence gives its weight which in the case of unipolar MLSs is close to 50%. This suggests
that at high frequencies we can expect the diffuser to absorb half the incident energy. Given
that this thesis considers short pseudorandom sequences the MLSs used may also be another
type of binary sequences. Even when that is the case they will be referred to as MLS in

tribute to Schroeder who used them in their bipolar form for the introduction of PGD[6].

The case of a 1-D AGD created from the MLS (k = 3) of length N = 7 is presented in Figure
5-2.
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5.3. Reasons for Doubt

No thorough study has been carried out to identify the diffusion and absorption qualities of
AGDs. Most of the discussion around them has used the approximate Fourier Model to

predict their performance.

The idea of AGDs has been based on the Fourier Model which, as discussed Section 2.3.3 for
PGDs, is an approximation of the performance of a structure. In the case of AGDs this model
considers that the surface performs like an array of omni-directional sources positioned in the
place of the reflecting elements. This means that in order for the Fourier Model to apply the

reflecting elements must scatter energy uniformly (Figure 5-3).

e OO 00O
e A

Diffuser

(O point source V7] reflecting plate
vacancy perfect absorber

Figure 5-3. Fourier theory equivalent of a AGD.

So the questions that arise are:

“Can the reflective elements scatter energy uniformly as required by the Fourier Model?”

In the case that they can:
“Is the scattered energy substantial to achieve diffusion?”

Another issue with their design concept is its requirement for elements of ideal absorption

steady with frequency. This is difficult to achieve in reality especially at low frequencies. So

another question is:

“How can an ideal or near ideal absorbing element be implemented in reality?
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are investigated and their diffusion and absorption capabilities are discussed. Finally, in

Chapter 9 improvements to the original design are suggested.

In order to set the theoretical background of study presented in Chapters 7 and 8, an

introduction to the coefficients, prediction models and measurement techniques that are used

in this part are presented in the following Chapter.
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Chapter 6. Absorbers

Before investigating the scattered pressure distribution from partially absorbing surfaces a
surface must be characterised. In this Chapter absorbers are discussed. Measures used to

describe their performance are presented along with different types of absorbing elements. In

addition, measuring methods are outlined.

6.1. Measures

The term absorber is used for materials or structures that absorb significant acoustical energy.
Absorbers have been studied meticulously for over a century, and there are accepted

measures that can be used to access their performance.

The design concept of the sequence generated diffusers is based on the Fourier Model (see
Section 2.1.2) which requires knowledge of the distribution of the reflection coefficient. It is
defined as the fraction of the reflected pressure p,,s and the incident pressure on the surface

Dinc Over the from the surface:

_ pref
Pinc 6.1

R

incident
reflected

Figure 6-1. Sound reflection from through a surface.

Its magnitude gives the amount of pressure reflected of the surface while its phase is the
phase change between the incident and the reflected wave. All the information required to

characterise a surface as far as its reflecting and absorbing properties are contained in the
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reflection coefficient for a given surface but it is angle dependent. There is another

coefficient that is not dependent of the angle, the surface impedance[51]:

5 = PoCo '1+R
* cos(y) 1-R 6.2

where po and ¢ are the density and the speed of sound in air and y is the angle of incidence
(see Figure 6-1). The real part of the surface impedance is known as the resistance and it

gives a measure of the energy loss while the imaginary is known as the reactance and it gives

the phase change.

As mentioned in Section 2.1.1 Boundary Element Modelling (BEM) requires the surface
admittance as an input. The surface admittance is the inverse of the surface impedance:
1 cos(y) 1-R

B—Z" PoCo 1+R 6.3

In most practical application, the real valued absorption coefficient based purely on energy is

most commonly used to characterise the absorbing capabilities of a surface:

=1 |R|?
a IR| 6.4

In this thesis all impedance and admittance coefficients are going to be normalised to the

characteristic impedance of air (zy = pyCy):

oz 1 1+R
n = poce  cos() 1—R
6.5
B = i _ PoCo
" ZTl ZS

The aforementioned coefficients all refer to the characteristics of a surface. There are others
that refer to the characteristics of the material. Such coefficients that are going to be used in
this thesis are the characteristic impedance z, and the characteristic wavenumber k. which are
used to estimate the surface characteristics of different layers of absorbing materials as is

discussed in the following Section.

6.2. Prediction models
The use of analytical models has been studied in acoustics to allow for the prediction of the

surface characteristics of a layer of porous absorbing material. The main interest of this thesis
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1s centred on the surface characteristics, as this knowledge is required from all scattering

simulation techniques used (BEM and Fourier Model).

Transfer Matrix Model

Allard[52} describes a model for predicting the surface impedance z,,,_of a multi-layered

absorbing surface if the characteristic impedance z,, the characteristic wavenumber k, and the
depth d; of each layer are known. In the case that the wave is propagating normal to the

surface (Figure 6-2) the problem has only one dimension.

. th K
(i+1)" layer ™ layer (i-1)™ layer
kl+1~ ikl Prrl k:- Zn P kl-la Zi-1s Pi-l
incident transmitted transmitted
> > >
reflected reflected
< < y
X
pxr+1 P/: pxr
U | Uy Uy
d,

Figure 6-2. Geometry of the propagation of sound through a multi-layer medium.

By taking into account the continuity of the pressure and the velocity at the boundaries, the
surface pressure and velocity on the boundaries of the layer can be connected if the

characteristics of the layer are known:

lpxm} cot(k;d;) ]k Lsin(k;d,) lpxil

/—sm(k d;) cot(k;d;)

xl+1

where the subscripts /, and x, refer to the values at the top and the bottom of the i layer
respectively and the subscript i refer to the characteristics of the i™ layer, while p is the

density, d is the width of the layer and w is the angular frequency.

From equation 6.6 the surface impedance of the "™ layer Zs,,, can be estimated if the surface

impedance of the (i-1)™ layer zg; and the characteristics of the M layer are known:
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y = Prisi _ —jz5,z; cot(k;d;) + z?
ah Uxitg Zs; — jz; cot(k;d;) 6.7

In the case of only one layer of absorptive material in front of a rigid backing (Figure 6-3) the

surface impedance (i-1)™ layer is infinite. Equation 6.7 is simplified to:

_ —jzs;z cot(kid;) + 2}

Zo. =
St zs; — jz; cot(k;d;)

= —jz; cot(kd;) 6.8

Equation 6.8 allow for the characteristics of any surface to be calculated from the

characteristic impedance and wavenumber of the layer behind it.

(i+1)" layer ™ layer
kl+]~ Zi+ls ,0:+l kla 2 p:
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reflected reflected \\\
NN
Q\Q
d,

Figure 6-3. Geometry of the propagation of sound through a single layer medium in front of a
rigid backing.

Prediction models of the characteristic properties of a porous material

There are a number of prediction models that estimate the characteristic impedance and
characteristic wavenumber of a porous material[52]). These are empirical or theoretical
models that focus on the characteristics of an infinite layer of a known acoustic medium. For
their application a number of characteristics of the medium are needed, for example the flow
resistivity in required for the Delany and Bazley model[53]. Furthermore, they have

limitations in their bandwidth of application.

In this thesis the characteristic impedance and wavenumber of the porous materials
investigated are going to be obtained by measurements in an impedance tube as will be
presented in Section 6.3.2. This method has the advantage that it does not require previous
knowledge of the characteristics of the material and it is limited in bandwidth only by the

limitations of the tube. Furthermore, they will allow for better comparison of scattering
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between measurements and simulations for the performance of Absorption Grating Diffusers
(AGD) as the characteristics used in the simulations will correspond to the actual material

used in the measurement rather that their estimation from its properties.

6.3. Impedance tube measurements

To develop AGDs requires knowledge of the absorption properties of porous materials and
Helmholtz Resonators. In order to attain this information impedance tube measurements were
carried out. In this Section the measurement methods to acquire either the surface impedance

or the characteristic impedance and wavenumber used in this thesis are going to be discussed.

6.3.1. Surface impedance measurement

The surface impedance of a structure can be measured in an impedance tube. The
measurement 1s carried out under the plane wave conditions enforced by the tube. The
method used during this thesis was the transfer function method[54] the setup of which can

be seen in Figure 6-4.

mic2 mic |
{ b { |

loudspeaker

A

Figure 6-4. Impedance tube setup for measuring surface impedance.

By measuring the pressure at two positions (x|, x») the transfer function between the two

positions 1s found:

D2 ejkx2 +R- e—kaz

H=—=— ‘ 6.9
p, ek*1 4 R.eJkn
The reflection coefficient is found by re-arranging 6.9:
. plkxy _ pjkx
_ e e 6.10

- e—ijZ — H . e—jkx1

Once the reflection coefficient is known then the surface impedance z; and the absorption

coefficient & can be found via equations 6.2-6.4.
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In order for this method to work the pressure at the two points must be different. So the
spacing between them must not be too small compared to the wavelength while being smaller

than it. This translates to the transfer functions frequency limits:

0.45¢
lx;, — x|

fu <

6.11
c

>—
20°|x1—X2|

f

where x; and x; are the distances of the two microphones from the sample (see Figure 6-4).

The frequency range can be extended by using more than two microphone positions. That

would create more pairs of measurements and as a result a wider applicable bandwidth.

This solution applies only for plane wave propagation. Such conditions can be reached in an

impedance tube (Figure 6-4) up to the cut-off frequency:

Cc
> —
fu 2d 6.12

where c is the speed of sound of the medium (air in this case) and d is the maximum width of
the tube. In the case that the tube has a circular cross-section, d is the diameter while if the
cross-section is rectangular it is the diagonal. The system of equations 6.11 and 6.12 gives the

overall frequency limits of this measuring system.

This method used to measure the surface impedance of Helmholtz Resonators is going to be
discussed in the following Chapter. The square impedance tube of Figure 6-5 is used. It has a
cross-section of 5.4x5.4¢m” and Y2 inch microphones are positioned at x; = 9.93¢m and x, =
15.03cm from the end of the tube. So the frequency limits of the tube are 300Hz and 3kH:
and the Briiel & Kj®r Pulse 3560 was used for the data acquisition and analyses[55]. Swept-

sine signal[56] that was generated from the analyser was used for the measurement.

In order for Helmholtz Resonators to be tested in front of a volume of air or a layer of porous
material an extension of varying depth is used (Figure 6-6). In this way perforated plates can
be securely fixed between the tube and the extension. The termination and parts of the sides
of this extension are wooden so it i1s not perfectly rigid. When tested the extension gave an

absorption coefficient of 0.05.
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The material characteristics can be measured using an impedance tube in the setup displayed
in Figure 6-8. The characteristics of a medium are contained in the four transfer matrix

components Ty, T1>, T>; and T», that connect the pressure p and particle velocity u of the

sound wave at the two surfaces of the material{58].

p Ty Tyy p
u left T21 T22 u right

This is a system of two equations with the four transfer matrix components unknown. By

testing the same sample under two different impedance tube terminations a solvable system

of four equations is created:

pr po ’['11 ’['12 pr po
= = 6.14

u” uly Ty Top u" u®lighe
where the superscripts indicate the two different impedance tube terminations, r for rigid and
o for open-tube.
The pressure and particle velocity at each side of the sample can be expressed as[58]:

‘ jk 1 ik - jk
Prese = Ae/*™ + Be /K%,y . = p—C(Aef ¥ — Be™/kx)

6.15

. . 1 . .
Pright = Ce/** + De /K%y opy = E(Ce”‘x — De /kx)

By measuring the pressure at two points on either side of the sample the coefficient A, B, C

and D are estimated:

p(x;)e %% — p(x,)e /M _ plx)e ™/ N — p(x, eIk
B 2jsin(k(x,; —x3)) - 2jsin(k(x; — x3))
6.16
p(x3)e T¥*e — p(x,)e /' _ plxg)e /¥ — p(xg)e Tk
B 2jsin(k(x; — x2))  2jsin(k(q — xp)

Substituting eq. 6.15 in 6.14 one gets:
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[ T12 e_jkd T Jkd
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B” e_jkd T ejkd
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6.17

[ T12 e_jkd T Jka

0 T, +— -2 - —
[A ] _ ( 11 Py + pcTy + Tzz) (Tu pe + pcTy, Tzz) 7 [CO

T —jkd jkd

B° Az € [EP! £
_(Tu + P pcTy; — Tzz) 5 (Tu - p_c— pcTy + Tzz) 7 De

The system of equations 6.16 and 6.17 can be solved to produce the transfer matrix

components 71y, Ty2, 15, and T, from the pressure measurements.

Once these components are known, the characteristic impedance and wavenumber of the

material can be calculated[58]:

1
k.= Esin’l(,/—le “Toy) 6.18

T
7, = |[=2 6.19
T2

where d is the depth of the material tested.

The system used for the measurement was the Briiel & Kj®r 4206-T impedance tube kit[59]
displayed in Figure 6-9. It consists of two tube components of different diameter that can be
attached to the speaker (left end of the tube) and four Y inch microphones. The wider tube
component is supplied with three microphone positions on each side of the sample allowing
for the frequency ranges of eq. 6.11 to be extended. The wide one (diameter of 10cm) (Figure
6-9a) has frequency range from 500Hz to 6.4kHz and the smaller one (diameter of 2.9cm)
(Figure 6-9b) has 50Hz to 1.6kHz resulting in the kit having a combined frequency range
from 50Hz to 6.4kHz. The signal that was used for the measurement was a swept-sine[56]

generated from the Briiel & Kj®r Pulse 3560[55] analyser.

The characteristic impedance and wavenumber of black open cell was measured with this
method and they are presented in Figure 6-10 and Figure 6-11. These measurements will be
used in Section 9.2 where the scattered pressure distribution from a surface that partly

consists of this material is going to be simulated in BEM.
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Figure 6-11. Impedance tube measurement of the characteristic wavenumber k. of black open
cell foam.

6.4. Types of absorbers
Since there is a requirement of absorbing elements in the design of absorption grating

diffusers it i1s important to point out methods for their implementation.

6.4.1. Layer of porous materials

The most common absorbing materials are porous. Their absorbing characteristics are due to
viscous losses as the sound penetrates through the pores. The surface impedance of a layer of
porous material can be either measured directly in an impedance tube (see Section 6.3.1) or
can be estimated from the characteristic impedance 7, and characteristic wavenumber k. of
porous material using the Transfer Matrix Model (eq. 6.8). When the surface impedance is

known the other surface coefficients of the material can be calculated as discussed 1n Section

6.1.

The trend of the absorption coefficient of Scm of foam estimated from the characteristic
impedance and wavenumber, measured in the previous Section, can be seen in Figure 6-12.

The disadvantage of implementing the absorbing element, of an Absorption Grating Diffuser,
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in this fashion is the requirement of a substantial depth of the absorbing material to achieve
absorption close to 1 at low frequencies. This becomes evident in this graph where the first

peak of substantial absorption is achieved when a quarter of the wavelength fits into the depth

of the material (f = 1.7kHz).

01 i

T

1 | 1 1 1
1000 2000 3000 4000 5000 6060
f (Hz)
Figure 6-12. Absorption coefficient of Scm deep open cell estimated from its characteristic
impedance and wavenumber.

6.4.2. Helmholtz Resonators

A simple device that can achieve low frequency absorption without requiring too much space
is the Helmholtz Resonator (Figure 6-13). They are devices that absorb acoustic energy and
re-radiate it when the acoustic pressure drops. They are named after Hermann Von Helmbholtz
who first wrote about them in 1863[60]. He suggested them as tuners since they can be set-up
very accurately to reinforce a specific frequency. Baron Rayleigh presented a more extended
theoretical analysis of the function of such resonators in 1896[61]. Although these are the
first scientific references on Helmholtz Resonators their history and applications go a long
way back. They have been used in ancient Greek and Roman open theatres to increase the

reverberation times and reinforce the performer’s voice as well as in many early churches to

provide absorption by resonance[62].
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A Helmholtz Resonator is the acoustical equivalent of mass on a spring and consists of an
empty cavity with a neck (Figure 6-13). So its function can be split into two components the
mass of air in the hole and that in the cavity. The volume of air in the cavity acts as a spring
and the air in the neck as the mass that oscillates. When the device is exposed to the resonant
frequency the air in the neck will oscillate and energy will be lost due to friction with the
sides of the neck and also dispersed from the sides of the cavity. For frequencies away from

resonance the absorption is minimal unless the hole is sub-millimetre in size[63].

Figure 6-13. A Helmholtz Resonator and its mechanical equivalent.

Similar to its mechanical equivalent the resonant frequency of the Helmholtz Resonator

is[64]:

6.20

where ¢ is the speed of sound, § is the area of the opening, V is the volume of the cavity and

t” the length of the neck including the end correction:

t'=t+ 26a 621

where « is a characteristic size of the opening (ex. the radius for a circular perforation) and 0

is the end correction.

The end correction is considered to approximate the fact that it is not only the mass of air in
the neck that oscillates but air close to the opening as well due to the radiation impedance.
This effect has its roots in the flow of air through a structure with varying cross-section. The
flow lines narrow in the smaller cross-section and cause the particle velocity to increase. The

opposite effect occurs when the air moves from the smaller cross-section to the bigger one.
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There is a transition state between the two cross-sections where the flow lines narrow and
widen. In the case of Helmholtz Resonators this transition state of the flow lines results in
more than just the air in the neck to participate in the oscillation. For a baffled circular neck

opening where a is the radius of the opening the end correction is J = 0.85.

By altering the stiffness of the spring or changing the mass of the mechanical oscillator, the
resonant frequency can be varied. By changing the size of the cavity or the neck of the

resonator, the resonant frequency of the Helmholtz resonator can be tuned.
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Figure 6-14. Helmholtz Resonator with cavity volume V, hole-depth d and hole-radius a,
morphed into a surface.

A Helmholtz Resonator can be morphed into a flat surface as is depicted in Figure 6-14. The
neck in this case is the hole-area of a perforated plate. The absorption coefficient of this
structure can be measured in an impedance tube (see Section 6.3.1). The performance of a
Helmbholtz Resonator with design frequency f, = 900Hz (cavity volume V = 38cm’, hole-area
S = 2em? and hole-depth ¢t = 1.5mm) is displayed in Figure 6-15. It achieves maximum
absorption at resonance while at other frequencies the absorption is minimal with the
exception of the area around 1.9kH:. This second resonance 1s due to the vibrating plate of
thickness ¢ that forms the top of the device. If the plate was solid it would be expected to
display resonance at 2.4kHz. Here due to the hole it has less mass and therefore it has shifted
to lower frequencies. By altering the stiffness of the plate this peak will shift and can be

pushed out of the frequency range of interest.
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The Q factor of the absorption coefficient is relatively large and the bandwidth of absorption
is small, as losses are relatively small. Given that the absorbing elements need to display
ideal absorption for a substantial bandwidth the use of Helmholtz Resonators in this form
does not meet the requirements for absorption grating diffusers. In order to achieve
absorption for a wider frequency range absorbing material must be included in the volume.

The Helmholtz Resonator when the cavity is occupied with absorbing materials is referred to

as “loaded”
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Figure 6-15. Measured absorption coefficient in an impedance tube of a Helmholtz Resonator

morphed into a surface with resonant frequency f, = 900Hz (cavily volume V = 38cm’, hole-

area S = 2cm” and hole-depth 1 = 1.5mm).

Loaded Helmholtz Resonators

The existence of absorbing material usually moves the resonance to higher frequencies and
reduces the peak of absorption, while the Q factor will decrease as the hole-diameter
augments. The shift in the resonant frequency and the increase in the bandwidth of absorption

are results of the added damping in the cavity.

Periodically repeated loaded Helmholtz Resonators on an infinite surface have been

studied[65]. They can be implemented by considering a perforated surface a distance from a
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rigid backing. Above a certain frequency, they can be approximated by considering only one
period of the surface. Each period due to the symmetry of the surface can be considered as an

independent Helmholtz Resonator. The volume of the resonator will be the one contained in a

period as is portrayed in Figure 6-16.
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Figure 6-16. Periodically perforated surface backed by absorbing material in front of a rigid
backing.

The resonant frequency of a perforated surface in front of a rigid backing can be found by

_ C &
f_Zth'-d 6.22

where ¢ is the speed of sound in air d the distance between the perforated plate and the

adapting equation 6.20:

backing, ¢” is the plate thickness ¢ including the end correction and ¢ is the open area of the

plate which is given by the equation:

P 6.23
where a is the radius of the hole and D is the period of the surface.

The vibrating mass of air in the volume is:

p
m=;(t+26a) 6.4

where p is the density of air and ¢ is the end correction.

The end corrections have been estimated by Ingard[66] for circular (where « is the radius of
the hole) and square apertures (where 2a is the side of the hole) and small open areas (e <

0.16). But Cremer and Miiller[64] have presented an estimation of the end correction for open

areas up to the limited case of ¢ = I:
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Even though the knowledge of how to estimate the resonant frequency is an important first
step in understanding the behaviour of these devices, it is not enough to allow for accurate
prediction of their behaviour. Another, important information is losses within the device. The

losses when the cavity of the resonator is empty stem from the friction in the neck which is

negligible if the holes are not sub-millimetre.

That is the reason why in order to achieve some absorption, away from the resonant
frequency, absorbing material must be included in the volume. If the volume is filled with
absorptive material as Figure 6-16 shows, the hole can be considered to be filled with the
material as well due to radiation impedance. The air that flows through the hole will come up
against the resistivity of the material. Due to radiation impedance the losses will be from the

portion of absorber that is behind the cross-section of the hole:

od

S 6.26

Tm

The transfer matrix prediction model which was analysed in Section 6.2 can give a complete
solution of the performance of a periodically perforated surface if the characteristic
impedance z. and wavenumber k., of the absorbing material, are known. The surface

impedance of the absorber behind the perforation z,; will be:

Zg1 = —JZc COt(kcd) 6.7

If the mass effect of the perforation is added to surface impedance of the absorbing material
the surface impedance of the perforated surface can be estimated:
t"
Zsy = ;](A)p + Zgy 6.28

In Chapter 5 where the concept of Absorption Grating Diffusers was presented they were
described as surfaces with pseudorandomly arranged absorbing and reflecting elements. If
loaded Helmholtz Resonators are going to be used for their implementation then the
performance of non-periodic arrangements of resonators needs to be investigated. Such

structures have not been meticulously investigated and the only reference to their

performance is that they absorb like a periodic arrangement of Helmholtz Resonators with the
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same open area, provided that the distances between the holes are large in comparison to their
diameter[64].

6.5. Summary

In this Chapter acted as a literature review on absorbing structures. The basis for assessing
the qualities of such elements was presented. The methods for the prediction and
measurement, in an impedance tube, of their surface and characteristic coefficients that are
used in this thesis were illustrated. Absorbing structures that will be used as elements of the

Absorption Grating Diffusers were presented and their performance characteristics were

discussed.

In the following Chapter whether an Absorption Grating Diffuser which can be implemented
by incorporating loaded Helmholtz Resonators in a surface is going to be investigated. In
order to do so a wider band of absorption from these devices will be attempted while the
discussion on the behaviour of non-periodic arrangements of Helmholtz Resonators is going

to be extended.
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Chapter 7. Implementation of the

absorbing elements with perforations on a

mask

One way of implementing the Absorption Grating Diffusers (AGD) considers a layer of
absorbing material behind a randomly perforated surface (Figure 5-4). It considers the holes
to act as loaded Helmholtz Resonators (absorbers) and the rigid areas as reflectors. Such
structures can achieve absorption in the hole-areas close to the ideal requirement of AGDs for
a small bandwidth. Before work can be carried out in sequence design and optimization
methods, a better understanding of how perforated surfaces act must be reached. Also a
number of implementation issues need to be addressed. There is a need to make the absorbing
parts performing the same regardless of how close the neighbouring absorbing parts are
located. Finally, the absorbing patches must be made to display stable absorption coefficient

equal to 1 for a considerably large bandwidth.

There is no analytical theory that can predict the surface admittance distribution on the
surface of such a structure. Investigation of their behaviour is going to be conducted with
impedance tube measurements while the applicability of using the measured surface

admittance in Boundary Element Modelling (BEM) simulations is going to be studied.

7.1.  Holes on a mask

The 1ssues with using a perforated surface in front of layer of porous material is that the holes
behave like Helmholtz Resonators resulting in very absorbing surfaces. Furthermore, away
from resonance the absorption achieved is poor. So the resulting surface acts similarly to a
periodic surface of the same open-area, as suggested in the previous Chapter. The holes
interact both inside and outside the cavity resulting in the performance averaging out across
the surface. In order for such a device to be used as an AGD it has to consist of purely

absorbing and reflective elements.

Some insight to the behaviour of perforated surfaces can be found through surface impedance
measurements in an impedance tube with a square cross-section (Figure 6-5). This setup
allows for the prediction of the surface characteristics of periodic surfaces to be measured. By

measuring a single period of such a surface it can be considered to be identical to an infinitely
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wide periodic surface by considering its mirror images in respect to the sides of the tube[67].
Two simple examples are portrayed in Figure 7-1.

Figure 7-1. The cross-section that is tested in the square impedance tube can be considered to
be a single period of an infinitely wide surface.

7.2. Helmholtz Resonator impedance tube measurements

For the measurements the square tube presented in Section 6.3.1 is used using the adjustable
extension (Figure 6-6) so that the perforated plates can be fixed in front of a volume of air or
a layer of porous material. Some of the patterns of sample plates that were tested are

portrayed in and Figure 7-2.

Ll
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Figure 7-2. Sample plates out of 1.5mm aluminium sheets.

Helmholtz Resonators with empty cavity were tested with the hole located in the centre of the
sample area. In Figure 7-3 the absorption coefficient of cases, with 29mm cavity depth and

1.5mm plate thickness, for different hole-diameters are presented. Unfortunately, the
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Some measurements of the loaded Helmholtz Resonators with this mineral wool occupying
its cavity are displayed in Figure 7-5. The depth of the cavity was set to 29mm and the same
plate samples were tested as before. These results arc very encouraging for AGD design.

Their steady absorption with frequency can be adapted in the concept of the design; however

the absorption coefficient is less than unity.

As can be noticed the plate resonances that were evident in the case of the empty cavity in
Figure 7-3 have gone. The mineral wool is in contact with the plate providing damping to the
plate. The small peaks of plate resonance that can still be seen in the figure would be reduced

even further if the mounting conditions are changed; so it is something that isn’t an issue for

this discussion.

7.3. Helmholtz Resonator BEM simulation

Since BEM will be used in the prediction of the performance of AGDs a useful idea is to see
if the same results can be produced through simulation. The input data that are going to be
used are from measurement in the impedance tube. So the level of agreement between
simulation and measurement will correspond to whether BEM can accurately reproduce its

input.

For this reason the geometry of the measurement is introduced in a direct 3-D BEM[68] with
all the surfaces being considered perfectly reflecting with the exception of the sample area.
Instead of the speaker, a point source is considered close to the side were the speaker is
located. This replacement should go unnoticed as inside the tube plane wave propagation will
be forced. BEM can estimate the pressure at the positions were the microphones are located
i the measurement. Once these pressures are known, the transfer matrix method can be used

to estimate the surface impedance and absorption coefficient using eq. 6.9 and eq. 6.10.

Since the performance of this over-damped Helmholtz Resonator cannot be calculated from
any model, the measured data will be used for the simulation. The sample area of the tube is
considered to be uniformly absorbing with the surface admittance characteristics previously
measured. Figure 7-6 presents the BEM estimation in comparison to the measured input. The

agreement is within +0.03 while it is even better in the low and mid frequencies.
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sides of the tube will result in a group of closely spaced perforations which will appear as one
larger one (Figure 7-15). Two patterns with the same open-area that are different end up

displaying the same end correction.

The drop in the absorption coefficient of patterns with perforation in the corners of the
sample at high frequencies is due to the wavelength becoming similar to the width of the
tube. This suggests that half a wavelength fits into the diagonal of the tube resulting in low

pressure at the corners of the tube hence low absorption in the corners.

Figure 7-15. Same pattern emerging from different hole configurations.

This suggests that the pattern of the perforations plays a key role in the absorption
characteristics of such surface. To the extent that a number of holes will appear as one larger
one if placed close together compared to the wavelength. Be that as it may, if the absorption
is considered to be concentrated in the hole-area it will be close to 1 regardless of the pattern

and average achieved absorption of the surfaces.

So using dense layered mineral wool behind the perforated mask one can achieve the basic
requirements for the implementation of AGDs. The high resistivity of the material dampens
the resonant behaviour of the holes and results in stable absorption in the bandwidth
investigated resulting in a surface that is not highly absorbing. The absorption coefficient of
the perforations has been shown to be close to 1 regardless of their spacing. This agrees with

the requirement of ideally absorbing and reflecting elements stated by the concept of AGDs.
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7.5. Summary

Using dense layered mineral wool some of the issues in the performance of perforated
surfaces have been dealt with. The resonant behaviour of the perforations is damped resulting
in a structure that does not behave like a Helmholtz Resonator but acts almost purely
resistively in the frequency range investigated. This resolved the issue of varying absorption
with frequency while achieving a level of absorption of the surface that is not too high.
Furthermore, since the rigid area of the plate does not absorb substantial energy the absorbing
elements of the surface are the holes. In this configuration the absorption coefficient that
corresponds to the hole-area is close to 1 regardless of the spacing of the perforations. This
resolves the issue of the varying performance of the absorbing elements. This implementation

of AGDs paves the way for these devices to be created in reality.

Furthermore, BEM has been found to predict the absorbing performance of such surfaces.
This in turn allows for the performance of the diffusion from these surfaces to be predicted by
using BEM on an array of holes. Having shown that AGDs can be created, a more detailed

investigation of their performance in carried out. In the following Chapter the performance of

ideal 2-D AGDs is discussed.
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Chapter 8. Scattered pressure distribution

from Absorption Grating Diffusers

In the previous Chapter a realistic approach to the implementation of surfaces consisting of
ideally absorbing and reflecting elements has been discussed. In this Chapter the performance
of the Absorption Grating Diffusers (AGD), as suggested by Angus are investigated. First,
the characteristics of the different components of such a device will be looked into and

comparison with the ideal ones will be made. Then, the scattered pressure distribution of
AGDs will be tested.

The 1nvestigation is carried out in a 2-D domain using Boundary Element Modelling (BEM).
The 2-D simulation allows for computational speed without being inferior to 3-D. Isolating
the scattering from one dimension of the surface allows for the contribution of that dimension

to be investigated while any results can be later expanded to 3-D.

8.1.  Reflecting elements

In an AGD the reflecting eclements based on the Fourier Theorem are the equivalent of omni-
directional sources. So they should scatter pressure equally in all directions which
corresponds to a diffusion coefficient of 1. The performance of a thin plate is examined in

BEM to find out the extent to which it agrees with the requirement.

The plate is w = 50cm wide and d = 1mm deep. The source is positioned 10m away from the
sample while 181 receivers with 1° increment are placed in a semicircle with a 5m radius.
The distance of the source and receivers from the surface are substantial for it to be in the far
field. So the specular reflection zone corresponds only to the receiver normal to the surface

(0°) while all the other receivers are in the non-specular zone.

In Figure 8-1 the diffusion coefficient of a flat plate is presented as a function of the
wavelength of the incident wave. As is evident from this graph the plate does not perform to

the standards required as it fails to even approach the value of 1.
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The trend of the reflected energy from the sample can be seen in Figure 8-2 where the mean
reflected intensity is plotted along with the intensity reflected into and outside the specular

reflection zone. All the intensities have been normalised to the incident pressure at the

receiver that is normal to the surface.
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Figure 8-1. BEM predicted diffusion coefficient of a flat plate of width w.

When the sample is small compared to the wavelength it does not reflect substantial energy
as it does not pose an obstacle for the sound wave. As the wavelength becomes smaller the
sample reflects more energy reaching -20dB when its width becomes comparable to the
wavelength (1 = 3w). For smaller wavelengths than that the sample is large enough to be a
substantial obstacle for the sound wave. The maximum reflected energy is displayed when
half a wavelength is equal to the width of the plate (A = 2w). For A < w the scattered energy

stabilises at -20dB.

The scattered energy from the sample can be split into the specular and non-specular
reflection zones which correspond to the areas inside and outside of the area of geometric
reflection. The scattered energy in the non-specular zone is purely due to the diffraction from

the edges of the surface. The edge diffraction is created by the interference between the
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Figure 8-3. BEM prediction of the normal incidence scattered level distribution (dB) from a
flat plate of width w at A = w/4 (a), A = 2w (b) and 1 = 10w (c).

The ratio of the sound reflected in the zones of interest depicts the deterioration of the
performance of the plate (see Figure 8-4). It shows that while for large wavelengths the
difference between the scattered intensity in non-specular and the specular zone is -3dB it

deteriorates when the sample becomes comparable to the width of the surface (4 < 4w).



116

In order to use the rigid surface in an AGD a bandwidth where it performs similarly to an
omni-directional source has to be established. The low wavelength limit would be in the
region where A = w as that is the edge diffraction weakens. The value of A, = 0.83w can be
used as it is the wavelength the ratio of the non-specular over specular reflected energy drops
by 3dB compared to the maximum value (Figure 8-5). The high wavelength limit is stated by
the reflected energy. The value of 4,,,, = 3w is used as it is the wavelength that the overall

reflected energy reaches the value of the energy reflected from the surface at high

frequencies.
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S
Figure 8-4. BEM predicted ratio of the mean reflected intensity in the non-specular over the
specular zone of a plate of width w.
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Figure 8-5. BEM prediction of the normal incidence scattered level distribution (dB) from a
flat plate of width w at the wavelength limits of applicability for AGDs A4, = 3w (a) and
Amin = 0.83w (b).

8.2. Ideally Absorbing elements

In a AGD the absorbing elements of the diffuser need to display perfect absorption (5, = 1) at
all frequencies. Their performance cannot be simulated for a single absorbing element in the
way that was done in the previous Section for the reflective one. If a perfectly absorbing
surface was realised with non-absorbing sides (Figure 8-6) the BEM wouldn’t give realistic
prediction of how it would perform when incorporated in a surface. The rigid sides and back

would result in more energy being reflected from the sample especially at low frequencies.

rigid element

— — — absorbing element

Figure 8-6. BEM realisation of an absorbing surface of width w, normalised surface
admittance of §, = 1 and rigid sides.
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Despite the inability to investigate their performance the absorbing elements are going to be
considered to display normalised surface admittance of 1 at normal incidence for all
frequencies. This of course is unattainable for any type of absorber but investigation in this
idealised form allows for the performance of AGDs to be conducted as a function of the ratio

of the wavelength with the dimensions of the elements of the surface.

8.3.  Distribution of admittance on a surface

Having examined the building blocks that compose AGDs the scattered response from
surfaces with distributed absorbing and reflected elements is examined. Since the absorbing

elements are considered ideally absorbing, their normalised surface admittance will be 3, = 1

for all frequencies.

83.1 Pseudorandomly arranged

The pseudorandomly arranged surface of Figure 8-7 is discussed first. It is generated using a
single period of MLS (k = 5) of length N = 31. Each 1 and O in the binary sequence
correspond to a reflecting and an absorbing element respectively of width w. As a result the
sample is 31w wide and consists of reflecting element ranging from w to Sw wide. The

reflecting elements make up 51.6% of the surface.

The simulation was carried out for element widths w = 25mm, with the source and receivers
placed 20m and 10m respectively away from the sample. The scattering estimated from this

geometry refers to the far-field response of the sample.

B rioid element
[[] absorbing element

Figure 8-7. Surface with reflecting elements arranged pseudorandomly using a MLS (k=135).

The scattered intensity distribution from this sample can be seen in Figure 8-8 along with that

scattered from a rigid surface of the same size. The intensity has been normalised to the
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The diffusion coefficient that is achieved for this sequence is not substantial as it fails to

exceed even 0.15. There appears to be a jump in diffusion when the wavelength fits onto the

whole surface (A = 31w) but even that is very low.

From the reflected energy point of view, at high wavelengths (4 > 40w) the diffuser acts as an

average absorber since the reflecting elements appear too small. The absorption decreases as

the wavelength becomes smaller and becomes 50% when half a wavelength becomes

comparable to the width of the smaller reflecting element (A = 2w). That is the frequency

that the smallest reflecting element reaches its maximum reflected energy (see Figure 8-2). At

this frequency all the elements act individually due to reduced mutual interaction.
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Figure 8-9. BEM prediction of the normalised diffusion coefficient (d,) and al?sorption
coefficient (a,) from a suface with reflecting elements arranged pseudorandomly using MLS

(k=5).
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When the wavelength is comparable with the smallest reflecting elements of the surface, it is
very small compared with the largest one (1= 2wy, = 0.4w,,,,). This wavelength is

smaller than the low wavelength limit of omni-directionality of the largest element which is

0.83w,., that was discussed in the previous Section.

The difference of performance between the reflecting elements of different sizes poses a
significant defect of the AGDs. In order to achieve substantial reflected energy the width of

the smaller element must be comparable to the wavelength which results in the largest

element reflecting specularly.

This suggests that a sequence that would consists of a small number of single 1s and not long
series of Is could be a better candidate. Such a sequence is the lower order MLS (k = 3) [1, 1,
1, 0, 0, 1] which contains a single 1 and the largest series of 1s is 3. In order to have a surface

of similar width 4 periods of the sequence are considered (see Figure 8-10).

7w

A
v

rigid element
absorbing element
Figure 8-10. Surface with reflecting elements arranged pseudorandomly using 4 periods of

MLS (k = 3).

The periodic repetition results in periodicity lobes appearing in scattered level distribution.
The periodicity lobes appear at oblique angles when the wavelength becomes similar to the
width of a single period of the diffuser (1= 7w). Figure 8-1la displays the scattered
response for A = 7w and the periodicity lobes appear at + 3”/8. As the frequency increases
the number of periodicity lobes increase and become more narrow and closer together. In

Figure 8-11b all the sharp side lobes are periodicity lobes (4= 2w).
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Figure 8-12. BEM prediction of the normalised diffusion coefficient (d,) and absorption
coefficient (a,) from a suface with reflecting elements arranged pseudorandomly using 4
periods of MLS (k = 3).

8.3.2. Periodic

Given that periodicity improved certain aspects, this raises the question whether a purely
periodic structure would perform better. For this reason the structure of Figure 8-13 is tested.
It consists of reflecting elements of a fixed width W = 4w. The diffusion characteristics of

the surface are centred again on the characteristic wavelength A = 8w = 2W which is equal

The diffusion coefficient from the periodic structure can be seen in Figure 8-14. The
diffusion coefficient reaches its maximum value while the absorption reaches its minimum
value in the region of A = 7w. In this region two effects coincide, periodicity lobes appear for
oblique angles of reflection while the edge diffraction of the reflective elements reaches it

maximum point as their width is equal to half a wavelength.
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Figure 8-13. Suface with periodicly positioned reglective elements (of width W) positioned

every 2W.
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Figure 8-14. BEM prediction of the normalised diffusion coefficient (d,) and absorption
coefficient (a,) from a suface with periodically positioned reflective elements (width W =

4w) positioned every 2W.
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8.4. Discussion

A number of different arrangements of AGDs have been presented in this Chapter. An outline

of the behaviour of each is presented in the Tables below.

The periodic pattern has achieved some diffusion around A = 2W in a bandwidth smaller
than one octave-band due to the coexistence of periodicity induced lobes and maximum edge
diffraction in that frequency. The surface in this bandwidth is not very absorbing (less than
50%) which is desirable. Even at the peak of diffusion, the scattering produced is weak.

Consequently, the periodic device has limited scattering performance in terms of both the

bandwidth and diffusion produced.

The MLS (k = 5) arrangement produced very weak diffusion for frequencies were the
wavelength was smaller than the width of the surface (1 < 31w) and it remained very
absorbing for wavelength larger than twice the width of the smaller reflecting element (1 >
2w). The structure did not manage to achieve substantial diffusion as the reflective elements
displayed a larger variation of widths resulting in them displaying different bandwidths of

strong edge diffraction that resulted in the surface performing as an average absorber.

Finally, a surface generated from 4 periods of MLS (k = 3) was tested. It displayed a peak in
diffusion when the first periodicity lobes appears (4 = 7w) which is close to the frequency of
maximum edge diffraction from the larger reflective elements. The fact that most of the rigid
area of the surface is included in the larger elements resulted in the absorbing properties of
this configuration not being too high resulting in less than 60% absorption for wavelengths

smaller that the width of a period of MLS (k = 3) (4 < 7w).

In all the cases discussed peaks of diffusion are achieved at the frequencies where grating
lobe were introduced to the scattered pressure distribution. The absorption coefficient at any
given frequency is dictated by the percentage of the reflective elements whose width is
smaller than half the wavelength. Furthermore, the peaks of the diffusion coefficient don’t
reach substantial values as the side lobes achieved have much lower energy compared to the
specular reflection lobe. The specular lobe is attenuated only by absorption so its level can

only drop by 3dB for a 50% absorbing surface.

8.5. Summary
In this Chapter ideal AGDs were investigated. The behaviour of the elements they consist of

was presented and their diffusion and absorption properties were discussed. Their reflecting
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elements were found to deviate from the require behaviour of omni-directional scatterers as
the produced edge diffraction is weak and limited only to an octave. A variety of different
structures was tested and their performance was explained. Their most dominant

characteristic is that they fail to produce side lobes with comparable energy to the specular
lobe.

It should be re-stated that the devices discussed in this Chapter are idealised. They are
considered to contain perfectly absorbing elements at all frequencies, than cannot be achieved

in reality. So although they represent perfectly the theoretical concept of AGDs, presented in
the previous Chapter, they fail to justify the term “diffuser”.

From the research presented in this Chapter it can be unequivocally concluded that the
theoretical concept of AGD is flawed. In the following Chapter improvements to the
performance of these devices is going to be attempted by deviating from the ideal building

components to realisable ones with reactive characteristics.
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Chapter 9. Improvements to Absorption

Grating Diffusers

The previous Chapter established that Absorption Grating Diffusers (AGDs) in their original
form fail to achieve substantial diffusion. In this Chapter, ways to improve their performance
are presented. First, reactive elements are used to increase the non-specular reflected energy

from the reflecting elements. Then imperfect absorbing elements are used to allow for

cancellation of the specular reflection to occur.

9.1. Reactive elements in the place of the reflective
The scattered field from a reflective element displays low energy in the non-specular zone

when the wavelength becomes smaller than its width (see Section 8.1). In this Section an

attempt to improve the performance at smaller wavelengths is attempted.

9.1.1. Helmholtz Resonators

A type of structure that scatters the incident sound is Helmholtz Resonators[69]. For this
purpose the existence of a Helmholtz Resonator is going to be considered in the place of a
reflector. The reasoning for introducing them in the AGDs is that ideal resonators will
perform like a reflective structure away from resonance and as a scatterer at frequencies

around their resonant frequency.

The resonator is considered ideal with no losses of energy occurring anywhere but the neck
of the structure. As discussed in Section 6.4.2 such a structure would display negligible
losses. The investigation is going to be conducted once more in a 2-D BEM as the geometry
of a 3-D one would become computationally expensive.

2a
<>

hC h

W

w

Figure 9-1. A Helmbholtz Resonator formed in a 2-D surface.
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The structure of Figure 9-1 is considered where the third dimension is considered infinite.

The resonant frequency of the 2-D Helmholtz Resonator is:

Cc a

fT:E t,'SC 9‘1

where ¢ is the speed of sound in air and ° is the length of the neck including the end

correction.

Since the width of the element can be considered as the low wavelength limit of the non-
specular behaviour of a reflective element (f < c/w), the resonance should occur at a

wavelength lower than the limit (f, < ¢/w).

The sample tested by the Boundary Element Modelling (BEM) can be seen in Figure 9-2. The
outer geometry of the structure is not a rectangle as presented in Figure 9-1 in order to avoid
errors in the numerical simulation. BEM only models surfaces and consequently solid parts of
the diffuser can appear like cavities which resonate and lead to problems of non-unique
solutions. Changing the geometry alters the pressure distribution in the domain behind the
sample but does not affect the scattered response in front of the diffuser which is what is

important for this study.

h. h

W

w
Figure 9-2. 2-D Helmholtz Resonators geometry used in BEM.

The sample tested is w = 40cm wide and & = 5¢m deep. The Helmholtz Resonator is placed in
the middle of the surface and it has hole-diameter 2a = lcm and hole-depth t = 1em while the

cavity is S, = w.xh, = 2x3cm® = 6cm”. Using the end correction of eq. 6.25 the resonant
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The behaviour of a Helmholtz Resonator is not just of dispersion of energy it also causes
change in phase. At resonance the reflection coefficient of a non-absorbing Helmholtz
Resonator is -1 resulting in a phase change of 7 to the reflected wave compared to that from a

plane surface. This suggests that using reactive elements on AGDs will add cancelation to

their performance.

9.1.2. Discussion

In the case discussed in the previous Chapter of an AGD created using the pseudorandom
sequence MLS (k = 3) the reflective elements came in two dimensions w and 3w. At smaller
wavelengths where the smaller elements started reflecting substantial energy the larger ones
were reflecting energy specularly. If a reactive element like the Helmholtz Resonator
presented above was used in the place of the 3w wide element then there would be a
bandwidth were all the elements would display significant scattering. Furthermore, if the
resonant wavelength was set to % of the width of the large element then the resonance would
occur when half a wavelength would fit onto the smallest elements. So at that frequency all

elements would radiate substantial energy in the non-specular reflection zone.

t7) ideal absorber ] rigid

Figure 9-5. 2-D BEM geometry of an Absorption Grating Diffuser generated from 4 periods
of MLS (k = 3) implemented using Helmholtz Resonators in the place of the large reflective
elements.

Such a device is presented in Figure 9-5 and it is investigated using BEM. The resonant
wavelength is set to 4, = 2w and the scattered pressure distribution is estimated. The results
are displayed in Figure 9-6. While away from resonance diffusion is unaltered, at resonance
the performance is improved. The use of the reactive elements has attenuated the specular
lobe by 2.5dB while it has increased the side lobes at +7/3 by about 6dB making them
comparable in reflected energy. Their contribution would be deemed even more successful if
attenuation of up to 10dB was not present at +7/8. This is an artifact that can be traced back
to the scattered field of a single resonator (Figure 9-4b) at resonance that displayed minima in

the same angles.
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Figure 9-9. Normalised surface admittance of a 7.5¢m deep leayer of black open cell foam
estimated from its characteristic impedance and wavenumber which were measured in an
impedance tube.

The comparison between the measured and predicted scattered pressure distribution from the
absorption grating surface is within +3dB for most cases while it displays disagreement at
some angles that can reach 20dB (Figure 9-10). Disagreements between measured and
predicted are mainly a result of human error in the positioning of the microphones as well as
residues from the room’s response during the measurement as discussed in Section 2.3.1.
The comparison was made for other absorption gratings and the agreement was equally good.
The configurations tested included modulated MLS (k = 3) with the inverse (see Section 3.4)

and periodic arrangements of absorbing and reflecting elements.

The results from this investigation shows that using the surface admittance, measured in an
impedance tube, as input to BEM gives good agreement with measured data. Furthermore, by
establishing BEMs validity in predicting the scattered field from absorption grating surface
allows for the further investigation to be carried out with this simulation technique. This
results in easier testing but also in the freedom to use more receivers in the far field and so

more accurately depict the scattered field.









142

magnitude
o O o
& o

o
N

1

0 | 1 ' !
300 500 700 1k 2k 3k 4k 5k 6k

sl
{ | 1 1 1 i i 1 i 1 1 11

300 500 700 1k 2k 3k 4k 5k 6k
f (Hz)
Figure 9-12. Reflection coefficient of a 7.5¢m deep leayer of black open cell foam estimated
from its characteristic impedance and wavenumber which were measured in an impedance
tube.

The cancellation is evident in the polar plots of Figure 9-13. Plots (a) and (c) correspond to
such frequencies and the specular lobe is attenuated by 19dB and 9dB respectively. On the
other hand at 2kH- (Figure 9-13b) where the phase of the reflection coefficient of the foam is

close to 0, there is only a 3dB attenuation of the specular lobe via absorption.

The mitigation of this lobe is the reason for the peaks in the absorption coefficient a, of
Figure 9-11. The absorption achieved at 900Hz is so high that the structure acts like an
absorber of limited bandwidth. The peaks of diffusion at 2.8kHz and 5kHz are much lower
because in their case more that a wavelength (34/4 and 54/4 respectively) fits into the porous
media. This results in a much lower magnitude of the reflection coefficient and hence less
cancellation occurs. Even though the diffusion coefficient is lower as these frequencies more

energy is scattered from the diffuser making them the most well behaving frequencies of the

diffuser.
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The movement of these critical frequencies is a result of the lower speed of sound in the
porous medium (Figure 9-14). The real part corresponds to the propagation speed of the wave
in the medium while the imaginary in connected to the reactance of the material. The
propagation speed in the porous medium is always smaller than 1 which is a result of the

resistance of the material to the propagation of the sound wave. This means that the lower the

speed of sound the higher the attenuation.

In the example discussed earlier the first peak of diffusion occurred at 950Hz where the speed
of sound in the material is 25% lower compared to the one in air. This is the reason both for
the substantial shift in the characteristic frequency and for the high absorption. Both these
phenomena would not be so overwhelming if the speed of sound in the material was higher at

that frequency or the frequency of interest was higher.
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Figure 9-14. Speed of sound c, in black open cell foam normalised to the speed of air ¢
estimated from its characteristic impedance and wavenumber which were measured in an

impedance tube.
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9.3.1. Absorption in all the wells

If a PRD was used instead and all its wells where filled with a porous material each well-
depth would need to be rearranged so that the appropriate phase of the reflection coefficient
would be achieved. Even in the case that such a structure was devised the magnitude of the

reflection coefficient of each well would be different resulting in different wave interference.

An idea would be to fill all the wells with the same amount of porous material. This amount
can only be as deep as the shallowest well (Figure 9-17). This would reduce the depth by only
a small amount as the layer of the porous material would not be deep enough to delay the

wave substantially.

D porous

Figure 9-17. PRD (P = 7) with the same layer of porous material in all the wells.

Furthermore, MLSDs consist of about 50% wells, so when filled with foam half of the
surface is still reflective. In the case of a PRD (exp. for P=7 [1, 3, 2, 6, 4, 5]) that consists
entirely of wells there should be concern as to whether the resulting device if too absorbing.
Since the layer is shallow though the absorption is not be excessive and so the diffusion
properties of the PRD will not be diminished. They will be shifted to lower frequencies and

the structure will display added absorption due to the existence of the porous material.

9.3.2. Absorption in all selected wells

Since the depth of the device is dictated by the deepest well the case of adding porous
material in it can be considered (Figure 9-18). If the design frequency is set to 2kHz then the
well depth of the deepest well will be 4.9cm deep for the standard QRD (P = 7). If the foam

was used in a well it would need to be 4cm deep to achieve the required phase change. The

reduction of the depth achieved is 18%.
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Figure 9-18. QRD (P = 7) with porous material in the deeper wells.

While being able to reduce the profile of a diffuser is very useful in diffuser design it should
be pointed out that the magnitude of the reflection coefficient from the well is 0.37 rather
than 1 which is required by the design of the diffuser. This will result in the diffuser not
meeting the design requirements of the distribution of reflection coefficient on its surface.
Furthermore, while this implementation provides the desirable phase at the design frequency
fo it will not do so for frequencies that are multiples of f, where the diffuser is expected to

behave ideally (see Section 3.1) due to the different speed of sound at those frequencies.

94. Discussion
Methods of improvement of the performance of AGDs have been presented in this Chapter.
They are both aimed at making the device less passive as in the previous Chapter it has been

pointed out that it fails as a diffuser.

One of the reasons for this is the inexistence of a frequency range where all the reflective
elements of different width would scatter pressure uniformly. So the first approach was to
incorporate reactive elements in the place of the larger reflective elements aiming at
substantial dispersion at higher frequencies. Helmholtz Resonators were used, tuned to the
frequency of maximum edge diffraction of the smaller elements. Even though some
improvement is achieved it is only limited to the resonant frequency of the Helmholiz
Resonator. Be that as it may, it points to a new method of implementation that considers the

surface to consist of a series of reactive elements tuned to operate at specific frequencies.

The introduction of cancellation to AGDs has been attempted in the past by Cox[47] with
ternary and quadriphase sequence diffuser where he included wells in the grid. The existence
of such wells allows for out of phase pressure to be reflected from the well to interfere with

the reflections from other parts of the surface.
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Following the same concept of adding cancellation to AGDs a new approach is attempted.
The AGD is implemented with non-perfectly absorbing elements. These elements were
realised by filling wells with porous absorber. This configuration allowed for part of the
energy to get reflected from the absorber with a phase difference that is dictated by the depth
of the well and the speed of sound in the material. The resulting device performed as a PGD
with its diffusion characteristics shifted to lower frequencies, an effect enforced by the lower
speed of sound in the material. The existence of the absorber in the well provides absorption
that combined with cancellation result in a very absorbing surface. If the diffuser is designed
to diffuse at higher frequencies were the resistance of the material is lower the resulting

device combines good diffusion with moderate absorption for a given bandwidth (in case

presented here 1kHz).

The result of the investigation in the second part of the thesis can be summarised by two

points:

“Ideal Absorption Grating Diffusers in their original concept do not perform as diffusers;
they behave like moderate absorbers but their performance could be improved with the

addition of reactive elements.”

“Absorption Grating Diffusers implemented with wells of absorption can provide 50%
absorption combined with good diffusion for a given bandwidth; which was the goal of the

ideal Absorption Grating Diffusers.”
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CONCLUSIONS AND FURTHER WORK

This thesis has been centred on diffusers generated using pseudorandom sequences. The

focus was to investigate their drawbacks and to inquire as to how these limitations can be

dealt with.

Part 1

The first part of this thesis investigated Phase Grating Diffusers, otherwise known as
Schroeder Diffusers. These structures consist of wells of different depths which are set by a
pseudorandom sequence for the design frequency fy of the diffuser. The generator P of the
sequence gives the number of possible depths by splitting a quarter of the design wavelength
into P increments. The coefficients of the sequence dictate the depth of each well. Diffusion
1s achieved by the interference of the waves reflected out of the wells which display different

phases.

In order to create a 2-D diffuser one needs to create a 2-D sequence. The Chinese Remainder
Theorem has been used to generate a 2-D diffuser from a 1-D sequence. In this thesis a novel
approach has been presented that can generate a number of 2-D diffusers with the same
autocorrelation properties from any 1-D sequence by altering the folding steps in the Chinese
Remainder Theorem. This allows for both the investigation of a number of 2-D diffusers with

the same properties and the more choices in diffuser design.

All Phase Grating Diffuser have been shown to exhibit frequencies at which they fail to
diffuse sound and act like a flat plate. This occurs when the wavelength fits into the
increment of the well-depths as specified by the sequence generator. This phenomenon first
occurs at Pfy and is referred to as the first flat plate frequency of the diffuser. Known types of
diffusers such as Quadratic Residue Diffusers (QRD) and Primitive Root Diffusers (PRD),
have generators that are similar to the length N of the sequence. As most applications use

short diffusers (typically N = 7 for QRDs), these flat plate frequencies occur within the
audible bandwidth.
In order to treat the flat plate effect a number of solutions have been presented. Two new

classes of diffusers, Power Residue Sequence Diffusers (PWRD) and Liikke Sequence

Diffusers (LSD), have been presented. They both have much higher sequence generators than
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their length and allow a small diffuser to have a flat plate frequency well outside the audible

range. Their performance was investigated using 2-D Boundary Element Modelling.

LSDs are the superposition of a PRD and a steady step. Because the PRD has a different
length than a generator (N = P-1) the LSD has a generator of P(P-1). At the flat plate
frequency of the PRD, redirection rather than diffusion is achieved. Since LSD is a
combination of two structures, when the PRD acts as a flat plate the LSD acts like a steady
step. By using modulation, an apertodic arrangement of the diffusers, this defect has been
reduced. However, with the exception of the flat plate frequency, LSDs fail to achieve the

same level of diffusion as more standard designs.

PWRDs are generated by undersampling a PRD, creating a shorter sequence based on a large
generator. PWRDs can have the first flat plate frequency outside the audible bandwidth.
Specifically the case of the PWRDs of length N = 9 generated by sampling the PRD of
generator P =73 every M = 8 wells has been shown to achieve better diffusion than standard

number theoretic diffusers across the design bandwidth.

In addition to these new classes of diffusers two simple configurations have been introduced
that allow for the construction of 1-D QRDs and PRDs using smaller components. This is
done by taking advantage of their inner symmetries and constructing them using an element
that is half the width of the diffuser. The QRDs are symmetrical with respect to the axis going
through their centre so the diffuser can be formed by positioning the same component with
two different orientations. Similarly, in PRDs’ the second half is the inverse of the first half
so the diffuser can be created by using a single structure. In this way the ratio of generator-to-
width is doubled for standard Phase Grating Diffusers. Given that the flat plate frequency is
closely linked to the number of their wells this allows for the doubling of the problematic

frequency for a diffuser that is created for components of the same width.

Further Work

PWRDs have been shown to perform better than the commonly used number theoretic

diffusers, which shows that the search for new pseudorandom sequences must continue.

Since both PWRDs and LSDs are generated from manipulating PRDs further investigation

must be carried out to see how sequences can be manipulated without altering their

autocorrelation properties.
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For instance LSDs are created based on the fact that a linear ramp can be added to a
pseudorandom sequence without affecting its autocorrelation function. It i applied to PRDs
because their length is different that their generator. This is a characteristic that exists with
other sequences like PWRDs. If this technique is applied to PWRDs it will not affect the
magnitude of its autocorrelation function. The resulting diffuser will have a high number
generator as it will be the product of the generators of the two structures. Given that PWRDs
bave large generators to begin with this factor is not that important. The important factor is
that through this method a new class of diffuser is created that has the potential to display
good diffusion properties and should be investigated. The discovery of new sequences will

increase the arsenal of the designer in order to created better diffusing structures.

The relationship between PWRDs and the PRD they were created from can been further
exploited. The fact that PWRDs are created from undersampling a PRD can be exploited by
folding a PRD of generator P = 73 and length N = 72 into 8x9 diffuser. As presented in
Section 4.4.2 2-D diffuser will consist of parallel PWRDs in one dimension. This device in
principle should in addition to scattering pressure in a hemi-sphere perform ideally in this

dimension. The performance of this diffuser should be further investigated.

Part 2

The second part of the thesis researched Absorption Grating Diffusers. Since their design
requires the existence of ideally absorbing and ideally reflecting element to be
pseudorandomly distributed on the surface, the first step was to establish a surface that could

approximate the required reflection coefficient distribution.

The first configuration used densely packed layered mineral wool behind a pseudorandomly
perforated mask. A similar configuration had been suggested in the past with the use of a
typical porous material that resulted in the structure behaving as resonant absorbers. The use
of the densely packed mineral wool resulted in the structure behaving as a damped resonator.
The absorption as measured in an impedance tube displayed constant absorption in the range
of 300Hz to 3kHz. The sample behaves like one that consists of nearly ideal absorption in the
hole-area and ideal reflection in rest of the surface. Furthermore, using impedance tube
measurements it was shown that the equivalent concentrated absorption can be considered

independent of the perforation pattern. In this way it has been shown that a structure with the

required distribution can be constructed.
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Having established a realistic implementation, the performance of the ideal surface was
investigated using 2-D Boundary Element Modelling (BEM). The validity of using measured

data as input to 2-D BEM was proven by comparing it to scattered pressure distribution

measurements.

The research proved that the diffusers fail to provide substantial and evenly distributed
scattered pressure regardless of the distribution of the reflective and absorbing elements.
While some uniformity of the scattered response in the non-specular reflection zone is
achieved, this is low in energy compared to the specular reflection which is insufficiently
suppressed. The specular lobe is diminished only by the existence of absorption on the

surface.

Both absorbing and reflecting elements have been shown to deviate from the required
behaviour. The reflective elements must perform like omni-directional scatterers which they
achieve for wavelengths larger that the width of the element. But at higher frequencies the
reflection 1s more specular. Furthermore, at low frequency little sound energy is reflected.
Over a narrow bandwidth, when (w < 4 < 3w), substantial reflected energy and uniform
scattering from a flat rigid element is achieved. For a surface with a variety of different
element widths it is impossible to have a bandwidth were all the reflective elements display

substantial dispersion.

At low frequencies the surface acts as an absorber as all the rigid parts are too small to reflect
significant energy. At mid-frequency, the larger elements will reflect substantial energy
uniformly but the device is still too absorbing as the smallest elements do not contribute to
the scattered field. At higher frequencies when the smaller elements start scattering energy

the larger ones reflect energy specularly.

In order to extend the non-specular behaviour of the reflective elements to higher frequencies
the idea of using reactive elements has been suggested. In particular the use of a non-
absorbing Helmholtz Resonator with a resonant wavelength % of the width of the reflective
element has been incorporated into the surface. This was shown to extend the high frequency

limit of the non-specular response of the reflective element was been moved from 4, =
0.83w to Apin = 0.58w.

This configuration was used for diffusers generated from 4 periods of MLS (k = 3) which

consists of reflective elements of width w and 3w. The larger elements were replaced with
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Helmholtz Resonator with resonance at the frequency where the edge diffraction of the
smaller elements is a maximum (4 = 2w). The initial investigation conducted showed an
improvement of the scattered pressure distribution only at resonance leaving the other
frequency responses unaltered. This results points to the possible use of other reactive

elements for these diffusers.

Diffusers where the absorbing elements are only partly absorbing were investigated. By
implementing the diffuser in this fashion some cancellation was achieved between waves
reflected from the solid and absorbing parts of the surface resulting in behaviour similar to a
two level phase grating diffuser. The frequencies of ideal diffusion have been moved to lower
frequencies due to the lower propagation speed of sound in the porous media. This has lead to
the conclusion that porous materials can be used to make Phase Grating Diffusers shallower,

if some absorption is desirable.

Attenuation is higher for low frequencies since then the porous material is more resistive. For
a device designed for higher frequencies (e.g. 3kHz) the diffuser manages to absorb 50% of
the energy while the rest is evenly distributed for over an octave. It displays the ‘ideal’

performance but over a limited bandwidth.

Finally, the idea of using absorption in the wells of PRDs and QRDs has been discussed
pointing towards a case that could be used to combine diffusion and absorption without
altering the concept of the diffuser’s design. The case of a PRD that has a layer of porous
material with the same depth as the shallowest well is a device that could display interesting

properties.

Further Work

The research presented in this thesis showed that common Absorption Grating Diffusers do
not achieve substantial diffusion regardless of the distribution of elements on the surface. Can

the design concept be rescued or should it be scraped with future research focussing on phase

grating diffusers with absorption?

The scattering response of the reflective elements must be improved. In this thesis the use of
Helmholtz Resonators has been used to improve this feature with small improvement only at
the resonant frequency. Another approach would be to try and increase the edge diffraction of

the elements. In order to do this the reflective elements must not be flat. Element such as
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semicircles or other extruding geometries must be studied to investigate whether they can

provide better dispersion.

Following the same reasoning the whole diffuser can be curved. Given that the absorption
grating will provide 50% absorption the overall geometry of the structure will provide added

diffusion. This is a concept that has been suggested before[70], but for a configuration that is

now know to be overly absorbing.

On the other hand the concept of using non-perfectly absorbing element could be further
exploited. In order to do so investigation into different absorbing materials must be
conducted. If high absorption is required then a very resistive material must be used but if the
aim 1s to scatter a substantial amount of energy then the material needs be less resistive. Most
porous material display high resistivity at low frequencies which means that low frequency
diffusers cannot be created in this way. So it is important to investigate materials that display

low resistivity at low frequencies.
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