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Echo (DHxcb) in ancient mythology was a mountain nymph well known for

her melodic voice and beautiful singing. Myth has it that during a quarrel

with Pan (god of shepherds and flocks), he caused confusion in nearby

shepherds that led them to kill her and tear her to pieces which they

scattered throughout the land. Gaea (Earth) out of mercy collected the

scattered pieces which she buried where she found them. However, the

pieces kept her godly melodic voice. Thus, she remains scattered throughout

the planet trying to make herself heard by repeating what she hears.
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ABSTRACT
This thesis investigates room acoustic diffusers based on number sequences, exploring their 
shortcomings and presents improvements.

Standard Phase Grating Diffusers display frequencies where they act like flat plates and fail 

to diffuse. To overcome this, two new sequences (Luke and power residue) are introduced. 

The diffusers based on these sequences display extended frequency range compared to 

standard ones such as Quadratic Residue and Primitive Root Diffusers. Their performance is 

studied using Boundary Element Modelling which shows that they can avoid flat plate 

phenomena in the audible frequency range. Furthermore, it is shown that by taking advantage 

of their inner symmetries Quadratic Residue and Primitive Root Diffusers can be created 

from smaller components thus allowing for the flat plat effect to be mitigated.

Next, Absorption Grating Diffusers are investigated. They consist of ideally absorbing and 

reflecting elements. For their implementation heavily damped Helmholtz Resonators are 

investigated showing that they give an approximation of the required distribution of 

admittance on the surface.

Then the performance of ideal Absorption Grating Diffusers is investigated using Boundary 

Element Modelling. Even with idealised completely absorbing elements, the performance of 

the diffuser is shown not to achieve substantial diffusion. This arises because edge diffraction 

from the reflecting elements weakens at high frequencies. At frequencies where smaller 

elements are creating substantial scattering, larger elements are producing specular 

reflections. Furthermore, due to the lack of cancellation, the specular reflected lobe is 

insufficiently attenuated, because it can only be changed through absorption.

Improvements to the original design are suggested. By changing reflective elements to 

reactive ones, scattering can be extended to higher frequencies. This allows for a range of 

frequencies were more reflecting elements display substantial dispersion. Also, implementing 

the absorbing elements using porous material in a shallow well allows some reflection, 

resulting in cancellation in the specular reflection lobe due to interference.

Measurements of the scattered pressure distribution of absorption grating surfaces are carried 

out and then compared to Boundary Element Modelling simulations using surface admittance 

data measured in an impedance tube. The agreement between measurement and simulation is



excellent proving the accuracy of this simulation method for these applications. The results 

show that the samples tested perform as two level Phase Grating Diffusers, with some energy 

loss, while their diffusion characteristics are shifted to lower frequencies. This arises because 

of the lower speed of sound in the porous medium. This implementation is shown to absorb 

50% of the incident sound while the rest is scattered uniformly but only over a limited 

bandwidth.



INTRODUCTION
The acoustical quality of any performance space such as a concert hall, an auditorium, a club 

or a studio is the key factor in the perception of sound in it. For this reason these spaces are 

designed specifically for their application as they require different characteristics based on 

their use[l]. The sound field in a room consists of the interaction of the direct sound with the 

indirect reflections from its boundaries. The relationship between the amount of absorption 

on the walls and the sound decay of a room was established by Sabine[2] which launched 

modern room acoustic designfl].

The density and amplitude of the reflections dictates the acoustic characteristics of the 

space[3] and relates to its performance. The response of a boundary can be characterized in 

terms of absorption, reflection or diffusion. While the application of the right amount of 

absorption can be used to set the required reverberation time of a room[2] it does not 

necessarily take care of strong reflections from the boundaries of the room that can produce 

echo problems[4]. Furthermore, in cases that very little absorption is required in a small room 

there is need for diffusers to deal with the modal response of the space. Diffusers are 

structures whose main goal is to scatter the incident wave rather than attenuate it[5]. For this 

reason they can be used to deal with strong reflections from boundaries without removing 

sound energy from the space.

Diffuser research was ignited by Schroeder who suggested using number sequences to create 

diffusing surfaces[6]. Based on his concept, a category of diffusers was created known as 

Phase Grating Diffusers. Using the same mathematical approach Angus later presented the 

concept of Absorption Grating Diffusers[7] which are structures that combine the use of 

absorbing and reflecting elements to achieve diffusion.

In this thesis the characteristics of both Phase Grating and Absorption Grating Diffusers are 

investigated. The thesis is split into three parts:

The first part of the thesis presents the theoretical background to sequence based diffusers. It 

discusses the measures that are used to assess diffusers, simulation techniques that are used to 

predict their performance and methods that have been established to measure their scattered 

field. The limitations and the disadvantages of Phase Grating Diffusers that have been 

established in the literature are presented and two new Phase Grating Diffusers are presented



that, based on their characteristics, have the potential to perform better than the many in 

common use. Boundary Element Modelling is used to predict their performance and compare 
them to commonly used Phase Grating Diffusers.

The second part of the thesis centres on Absorption Grating Diffusers. Their design concept 

is presented and their requirements are discussed. Porous absorbers and absorbing structures 

that can be used for their implementation are discussed along with measurement methods and 

analytical models that are used to assess their absorbing characteristics. The use of densely 

layered mineral wool behind a perforated structure is investigated as an implementation of 

highly absorbing elements. Boundary Element Modelling is used to investigate the absorbing 

and scattering capabilities of ideal Absorption Gratin Diffusers. Finally methods of 

improving their performance are introduced either by using reactive elements or by using less 

absorbing elements.

The third part of the thesis summarises the conclusions and contributions of the thesis and 

presents new areas of research that can stem from its findings.



PART I. PHASE GRATING DIFFUSERS

Phase Grating Diffusers (PGD) were invented in the 1970's by Manfred Schroeder, when he 

introduced the concept of using maximum length sequences to improve sound diffusion in 

concert halls and reverberation chambers[6, 8-10]. He suggested that by pseudorandom!y 

arranging wells of a constant depth on a surface (Figure 1-1) sound diffusion can be 

achieved[6]. This would be the case when the wave reflected out of the wells has opposite 

phase from the one reflected from the front surface.

Figure 1-1. One period of a Maximum Length Sequence Diffuser (MLSD) of well width w
thand depth of the n well, dn .

Based on the same concept Schroeder later suggested using wells of varying depth that would 
be dictated by integer based pseudorandom sequences such as quadratic residue (Figure 1-2) 

and primitive root sequences[8]. These diffusers were soon to become commonly used by the 
industry[5, 8, 11-12]. In 1983, the first sequence based PGD product was created by RPG that 

was presented in 1984 by D'Antonio et a/[13]. It was a Quadratic Residue Diffuser (QRD) 

that found application in recording studios at first and later in other architectural spaces[5, 

12].

Figure 1-2. One period of a Quadratic Residue Diffuser (QRD) of well width w and depth of 
the n'h well, dn .



PGDs suffer from limited bandwidth. When the wavelength becomes small in comparison to 
the width of the wells sound wouldn't propagate as a plane wave in the well causing 
cancellation in the well. Moreover, when the wavelength becomes double the common factor 
of the well depths all the wells re-radiate in phase resulting in the diffuser acting like a flat 
plate.

Hence, concepts to increase the bandwidth have been developed. First, a fractal diffuser was 
designed. This considered reforming the bases of the wells into smaller diffusers that would 
disperse sound at higher frequencies when the wavelength would be small compared to the 
width of the wells[14].

To make products easy to handle, small structures that would be repeated to cover a 
substantial surface are often used. The problem is that periodic repetition of a structure 
introduced periodicity lobes in the scattered pressure distribution. The problem of periodicity 
was first addressed by Angus who introduced the idea of modulation to achieve wide band 
diffusion in 1995[15-16]. She suggested using a binary pseudorandom sequence to position 
two different diffusers that resulted in a wider band of application.

Other suggestions abandoned sequence-based diffusers altogether and focused on using 
optimization algorithms to generate a sequence with a wide band of diffusion[17].

In this part of the thesis Phase Grating Diffusers (PGD) are discussed. Prediction models and 
measuring methods are examined. Coefficients and characteristics of diffusion quality are 
debated and the principles of diffusion design are depicted. Later, standard PGDs such as 
QRD and MLSD are presented and their characteristics and limitations are discussed. Finally, 
new pseudorandom sequences are introduced and their performance is compared with the 

industry standards.



Chapter 1. Introduction to diffusers
In this Chapter, some background theory is presented which is used in the thesis. Firstly, the 

descriptors used to evaluate the performance of diffusers are presented and their merit and 

quality discussed. An introduction to 1-D pseudorandom sequences is made and the methods 

of generating 2-D sequences are presented.

1.1. Measures of diffusion

While polar plots of the scattered pressure distribution are useful, there is a need for a 

coefficient that represents the "quality" of diffusion in a more compact way. When 

introducing Phase Grating Diffusers (PGD), Schroeder suggested the equality of energy 

contained in the periodicity lobes[8]. While this concept had some merit at the time, it 

requires periodic repetition of the diffuser which is not only unnecessary but undesirable as 

well (see Section 3.3). So another measure of diffuser quality is required. An ideal descriptor 

as has been suggested by Hargreaves et a/[18] should:

• have a solid physical basis;
• be clear in definition and concept, and related to the current role of diffusion in room 

	 acoustics;
• consistently evaluate and rank the performance of diffusers;
• apply to all the different surfaces and geometries found in rooms;
• be measurable b\ a simple process;
• be bounded;
• be easy to predict.

A number of descriptors have been presented over time that satisfy some of the above 

characteristics[18]. There are two descriptors, which are globally accepted, that vie for the 

position of the most representative measure of diffusion; these are the scattering coefficient 

and the diffusion coefficient.

7.7.7. Scattering coefficient
Mommertz and Vorlander developed the scattering coefficient 19-20]. The total energy E,ota i 

leaving the element is split into the specular reflected energy Espec and the scattered energy 

EW( ,, where:

E total = ^spec ' ^scat '••'•



where Espec is the energy referring to the angular pressure that is due to the dimensions of the 

surface and thus is correlated with that reflected from a plate of the same dimensions whilst 

Escan is the energy that is scattered due to the surface structure.

The scattering coefficient 6 is defined as:

total total

As is evident from equation 1.2 the scattering coefficient does not take into account how the 

energy is distributed into different angles of reflection. It only takes into account whether the 

energy is in the specular direction or not.

Another expression for the scattering coefficient when the pressures at reflection angles #,- of 

constant angle difference are known is:

?=iiPi(0i)i 2 -i?=1 iPo(0i)i 2
where p\(9) is the reflected pressure distribution of the surface under investigation, po(0) is 

the reflected pressure distribution of a plane surface of the same size and n is the number of 

reflection angles.

The expression 1.3 allows for the measurement of the coefficient to be made when the 

scattered pressure distribution is known. The measurement of the random incidence scattering 

coefficient has been standardised[21].

1.1.2. Diffusion coefficient

Hargreaves et al[lS] developed the autocorrelation diffusion coefficient:

i v^—11— iirv-ixi^ *—*i — 111 v L ^ i 1 .dr — ——————————————y——— 1.4

where p(6i) is the pressure in the i'H angle of reflection Ot and n is the number of receivers in 

the polar response.

Autocorrelation gives the similarity of the energy distribution with itself, how invariant it is 

with the angle of reflection. In order to take the pattern of the diffusion coefficient due to the
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dimensions out of the criterion the concept of a normalised diffusion coefficient has been 

suggested! 1 1]. It is referred to as the normalised diffusion coefficient:

1.5

where dc is the diffusion coefficient of the sample in question and dps is that of a rigid plane 

surface with the same dimensions of the sample.

The measurement of autocorrelation diffusion coefficient has been standardised by the Audio 

Engineering Society[22] and is in the process of being included in ISO17497-2[23].

1.1.3. Discussion

There is a lot of discussion on the subject of which coefficient most accurately characterises 

the diffusion characteristics of a surface. Both the scattering and the diffusion coefficient 

have values that range from 0 (specular reflection) and 1 (perfect diffusion). However, an 

issue arises when one considers what the perfect scattering refers to. The scattering 

coefficient does not consider the pattern of the polar reflection of the surface. It only takes 

into account that there is no energy in the angle of specular reflection. On the other hand the 

diffusion coefficient requires exactly the same reflection in all angles regardless of the angle 

of the incident wave.

The scattering coefficient has found application in geometric acoustic models[24J. The 

diffusion coefficient, on the other hand, gives a better idea of the diffusion characteristics of a 

surface as its aim is homogenous dispersion of sound in all directions rather than focusing in 

a specific angle of reflection. For this reason it is usually preferred in diffusion design.

1.2. Sequences
Since this thesis is centred on diff users that are generated from number sequences it is 

important to discuss their origin. For good diffusion, the sequences should display a flat 

power spectrum (see Chapter 3). Consequently, they should have an autocorrelation function 

that resembles a Kronecker delta[6, 8]. In order for a sequence to have this property it must 

have a random arrangement of coefficients. Given the small length of the sequences that is 

required for the design[ll], 7 is most common for a QRD[13], it is unlikely to achieve a 

random arrangement. For this reason, pseudorandom sequences have been designed that 

display random properties.
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1-2.1. 1-D sequences

1-D pseudorandom sequences have been studied and applied by other fields of science[8] 
resulting in a large number of them being created over the years[25]. The most well known in 
acoustics is the binary Maximum Length Sequences (MLS)[25] as they are widely used in 
measurements[ll]. The ones used for PGDs are integer based pseudorandom sequences [1 1]. 
The most famous of which are the quadratic residue e.g. [0,1,4,2,2,4,1] and primitive root 
sequence e.g. [1,3,2,6,4,5] based on the prime number p = 7[25].

1.2.2. 2-D sequences

When a 1-D sequence in used a 1-D diffuser is created that scatters sound only in a semi­ 
circle. In order for the sound to be scattered in all directions (hemisphere) a 2-D diffuser is 
required.

Superimposing a 1-D sequence on 2 dimensions

A simple way of creating such a diffuser is to use one sequence in each direction (Figure 1-1) 
[26]. If the two sequences s\ and .VT to be used are generated by the functions f\ and j\ by the 
equations:

1.6 
n) =/2 (n)modp2

where p\ and p2 are the generators of the sequences, mod is a function giving the minimum 
positive remainder and n is the position of the coefficient in the sequence.

One of them is used to generate the grating of the rows and the other of the columns. The 
coefficient of the 2-D sequence that is positions in x h row and v"' column is given by the 

equation:

s(x,y) = f(x,y)modp 1.7 

where f(x,y~) = AC*) + /2 (y) and/? is the smallest common product of p\ and/; 2 .

In Figure 1-1 an example is presented of a 2-D sequence created from a 1-D quadratic residue 

sequence of prime 7. Since only one sequence is usedp, = p2 = p = 7 and f(x,y~) = f^x} + 

/i(y). This construction is illustrated in

Figure 1-2.
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Figure 1-1. Generating a 2-D sequence from a 1-D quadratic residue sequence.

Figure 1-2. From 1-D to 2-D QRD.

Chinese Remainder Theorem

Another way of creating a 2-D sequence is to fold a long 1-D sequence into a 2-D array. A 
way of doing this is to use a technique known as the Chinese Remainder Theorem[10]. This 
technique preserves the sequence's autocorrelation characteristics^?]. So by folding a 1-D 
sequence with 1-D Kronecker delta autocorrelation function using the Chinese Remainder 
theorem the resulting 2-D sequence will display an autocorrelation function in the form of a 
2-D Kronecker delta.
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Figure 1-3. The positions of the coefficients of a 20-coefficient long sequence when folded 
in a 4x5 array using the Chinese Remainder Theorem.
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Figure 1-4. Generating the positions of the coefficients of a 20-coefficient long sequence 
when folded in a 4x5 array using the Chinese Remainder Theorem throught the use of a space 
of parrallel arrays.



13

The Chinese Remainder Theorem[28] suggests that if n states the position of a coefficient in 

a 1-D sequence of length N, while /;, and n 2 are the coordinates of that coefficient in a 2-D 

N! x A/2 array (where N{ and W2 are co-prime) then they are connected by the equation:

H! = n mod A/i
1.8 

n2 = n mod N2

where W = A^ • A/2 .

To give an example, a 1-D sequence of length 20 can be folded in a 4 x 5 2-D array (given 

the fact that 4 and 5 are co-prime) (Figure 1-3).

Folding in this way coincides with positioning the coefficients diagonally in a space of 

parallel A^ x N2 arrays. The position on the 2-D grid is dictated by its position in its given 

array (Figure 1-4).

Changing the folding steps in the Chinese Remainder Theorem

The Chinese remainder theorem dictates positioning the coefficients diagonally, moving one 

step left and one step down. But, the autocorrelation properties can be retained even with 

different folding steps. In this case the positions of the coefficients are set by the equations:

ni = (n + (n - 1) • (step! - 1)) mod A/x
1.9 

n2 = (n + (n - 1) • (step2 - 1)) mod N2

where step\ and stepi are the folding steps. In order for positions not to coincide the steps 

must not be divisor of the respective dimension. For instance, if a 20 coefficient long 

sequence must be folded in a 4x5 array the value of 2 can't be used for slepi. If this value is 

used then equation 1.9 will give n2 — (2ri)mod 4+1. This means that ni takes up only odd 

value which cannot be accepted since the lines 2 and 4 of the array will be empty while the 

locations of lines 1 and 3 will correspond to two coefficients.

An example of folding the sequence using folding step\ = 2 and stepi = 3 is displayed in 

Figure 1-5. This method allows for a sequence to be folded in any number of different ways 

resulting in 2-D sequences with the same ideal autocorrelation characteristics. This offers the 

diffuser designer more options as he can choose the configuration that is more aesthetically
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appealing or even take advantage of the diffusers inner symmetries (as will be shown in 
Section 4.4.2).
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step\ = 2

Figure 1-5. The positions of the coefficients of a 20-coefficient long sequence when folded 
in a 4x5 array with step\ = 2 and stepi = 3.

1.3. Summary
In this Chapter an introduction to some aspects of diffuser design were made. The 
coefficients that are used by both the scientists and the industry to assess the performance of 
diffusers have been presented and their characteristics have been discussed. Furthermore, 1-D 
sequences that can have been used to generate 1-D PGDs have been mentioned. Methods of 
creating 2-D arrays from 1-D sequences that have been used in the past were presented. 
Finally, a novel method to produce more than one 2-D array from a given 1-D sequence has 
been introduced. In the following Chapter simulation techniques and measuring methods of 
the scattered pressure distribution from a diffuser are going to be presented.
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Chapter 2. Assessing a diffuser
hi order for the quality of a diffusing structure to be established there is need for the scattered 

pressure distribution to be attained. In this Chapter numerical methods for the prediction of 

the scattered pressure of a surface will be discussed, while the measuring method that was 
used in this thesis will be presented.

2.1. Prediction methods
When Schroeder introduced the concept of using phase grating to achieve sound diffusion he 

suggested that the far field polar pattern would be given by the Fourier transform of the 

reflection coefficients of the surface[8]. If a structure that displays variation of its reflection 

coefficient in one dimension was sampled every w and /?„ was the reflection coefficient of 

each sample then the far field scattered pressure would be:

N-l

f\« G 2,. L 

n=0

where 9 is the angle of reflection, n is the sample number, k the wavenumber and TV the 

number of samples. Note that this is a Discrete Fourier Transform of kwsinO, and for this 

reason the prediction method is often referred to as a Fourier model.

Since then a number of methods for the prediction of the scattered pressure distribution from 

a surface have been developed[l 1].

2./. 1. Boundary Element Modelling (BEM)
This method uses the Helmholtz-Kirchhoff integral equation to estimate the pressure at a 

given point by adding the pressure direct from the source with the sum of the pressure 

reflected from different patches of the surface. The reflected pressure is estimated by the 

surface integral of the pressure and its derivative over the reflecting surface[29]:

f E E

f E S 

f E D

where E, D are the domains outside and inside the surface s (Figure 2-1). r(x,y,z), 

rl (xi ,yi ,zi ') and rbO0 ,y0 . zo) are tne position vectors of the point of interest, a point on the
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surface s and the source of the wave respectively. p(f), Pl (f,f0 ) and p(fs ) are the pressures 

at the point of interest, the direct radiated pressure of the source to the receiver and that at a 

point on the surface, n is the normal to the surface pointing outwards, ds is an infinitely small 

portion of the surface and G(f,fs ) is the free field Green's function:

C(r,fs ) = where r = If —

For a 2-D case Green's function is given by the Hankel function:

2.3

2.4

Where H^ is the Hankel function of the 2nd kind of order 0.

In the case that the surfaces are considered locally-reacting the pressure derivative can be 

connected with the pressure using the surface admittance:

2.5

where /? is the surface admittance pointing outwards from the surface. In the case of a 

reflective surface /?—*•() and consequently the pressure derivative can be omitted from 

equation 2.2.

source

point on surface s
D

Figure 2-1. The Geometry of the boundary integral equation.
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For the numerical calculation the surface must be meshed into N small elements (Figure 2-2). 
Their size is set usually much smaller than the wavelength so that the pressure and its 
derivative can be considered constant[12]. In this thesis this limit is set to a tenth of the 
wavelength (/1/10). The solution is then carried out in two steps. First the surface pressures on 
the elements are estimated and after that the pressure at any point in space can be calculated.

Figure 2-2. A plane surface meshed for a BEM.

In order for the surface pressures to be estimated eq. 2.2 must be solved simultaneously for 
the N surface elements. The simulation rests on solving the system of TV equations that is 
shown here in the form of a matrix:

2.6

where 1N is the (N x N) identity matrix, P and P, are (1 x N) matrices of the surface pressures 
and the pressure directly from the source to the surface respectively and A is the (N x N) 
matrix which states the contribution from the m'h element to the n" and sm is the surface of 
the mth element. Its coefficients are formed by introducing eq. 2.5 in the integral of eq. 2.2:

-G(f,fs)ikpm \sm 2.7
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The solution of equation 2.6 can be reached by calculating the inverse of the matrix (-1N + 

AJ. As a result of that the surface pressures can be estimated:

p. 2.8

Once the surface pressures are known the integral equation, forf 6 E, gives the pressure at 
any point in the E domain.

This method offers a direct solution to the Boundary Integral Equation and is used in the Part 
2 of the thesis for the prediction of the scattered pressure distribution of Absorption Grating 
Diffusers[30].

Thin panel Boundary Element Modelling

In order to reduce the computation time of the method other formulation must be used. 
Terai[31] presented equations that connect the surface of the two sides of an infinitely thin 

surface which are used to form the thin panel BEM. The pressure difference p(rs i) — p(fs 2 ) 

between the front and back of the plate is given by the equation[31]:

n dpi(r0 ,rs<1 ) ff /- \ (~ \\ ac2 (f'^,i)0= . V ^ + lP(rs,i)-p(rs,2))T-———TT-dn(rs,i) i dn(rJdn(rSi i
2.9

With the pressure difference known the pressure at a given external point is given by the 

equation:

f f ^ \ f^ M c'Hr' rsi i(r) = PiCro.rJ + J {p(rs>1 ) - p(rSi2 )} d ,f 'p.(r) = w.-irn.r, ) -t- I itMrv-i i — ZM/C? ir——7-—r~ris 2.10

The use of the thin panel BEM becomes very useful when modelling the scattered pressure 
distribution from Phase Grating Diffusers (PGD) (Figure 2-3(a)). Their geometry considers 
the existence of very thin fins that can be easily modelled with this method.
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Thin panel 
BEM ..

(a) (b) 

Figure 2-3. Quadratic Residue Diffuser (QRD) geometry in the thin panel BEM.

The diffusers are attached on walls so the area of interest is the space on the front of the 

structure. This means that the structure can be meshed as is presented in Figure 2-3(b) since 

the back has very little interference with the scattering at the front of the diffuser in the higher 

frequency bandwidths where scattering is significant. Leaving the back open has the added 

advantage that there is no enclosure created that can produce non-unique solutions. This 

indirect solution to the Boundary Integral Equation is the ideal BEM formulation to simulate 

the performance of PGDs[32-33] and therefore it is used in Chapters 3 and 4[34].

When a large surface is to be modelled the Boundary Element Method can become very 

computationally expensive. The process can be sped up by making a number of 

approximations.

2.1.2. Fraunhofer or Fourier Model
The Fraunhofer Model starts from the same integral equation as the Boundary Element 

Method (eq. 2.2). The approximations that have been taken suggest that this model should 

only be considered in the far field. Consider normal incidence sound. The scattered pressure 

at a point in space is given by[l 1]:

jkb
8/r 2 rr

(-)
V r / / 2.11

In this equation the integration is the Fourier transform of the reflection coefficient in the 

kxs sind domain. This is a similar result to the one that Schroeder reached. It is common for 

the (cos9 + 1) factor to be neglected and to follow the Fourier approach (eq. 2.1).

This is an elegant method that connects the distribution of reflection characteristics of a 

surface with the scattered pressure but it refers only to the far field response.
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Far-Field

The far field is defined as the distance at which the difference between the minimum and the 

maximum path length from the panel to the receiver is small compared to the wavelength 

(Figure 2-4)[ll]. This region is located where the distance between the receiver and the 

surface is large compared to the maximum dimension of the surface:

2.12

Dn

Figure 2-4. Far-field determination.

The first requirement is rarely an issue if the second one is met. When they are met all the 

point on the surface can be considered to be the same distance from the receiver[35]. The 

surface is in the far field when[l 1, 23, 35]:

2.13

The region that falls under the far-field category changes for oblique positions. The furthest 

case for small surfaces is when the receiver is in the normal of the surface. If the surface is 

wide, then the receivers must be further away for grazing angles.

Far-field conditions are not always possible in measurements. In these cases other 

requirements are needed. Such a case is referred to in Section 2.2.
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2.2. Scattered pressure distribution measurement methods
The measurement of the scattered pressure distribution is in the process of being 
internationally standardized ISO:17497-2[23]. The standard is at the moment a committee 
draft based on the Audio Engineering Society standard AES-4id-2001[22] and it considers 
measurement in a three or a two dimensional domain under free field conditions.

The simplest way of measuring polar plots is if the diffuser is 1-D. Such diffusers scatter 
sound in one plane and the polar response of interest is limited to two dimensions. For this 
measurement a semi-anechoic chamber is used[22]. The reflective floor of the chamber is 
taken into account by considering the image of the sample (Figure 2-5).

sample sample

D

mic—*— source
2D

mic source

Figure 2-5. Free-field equivalent of the semi-anechoic chamber.

The setup of the measurement is depicted in Figure 2-6 with the speaker being at the bottom 
of the figure. 37 microphones are set in an arc spaced apart by A<p-5° with a radius of R = 
1.4m. The radius was dictated by the width of the room which is 3.3m. The samples that were 
tested had a maximum width of 10cm and a height of 30cm. If the mirror image of the 
samples is taken into account then they appear to be 60cm tall.

The measurements were carried out in the semi-anechoic chamber of the University of 
Salford. For the recording a 44 channel NetdB real-time analyzer was used (Pro-121 and Pro- 
132 combined)[36-37]. The source needed to be as close to the floor of the chamber as 
possible (see Figure 2-5) so the Visaton SC 4 ND[38] speaker was used which has a flat 
response from \kHz up to 22kHz and is 5cm in diameter which resulted in its centre being 
2.5cm from the floor. Since the microphones are in the path of the loudspeaker they needed to 
be as small as possible so as not to interfere. So they were made less than 5mm in diameter 
using miniature omni-directional capsules that have flat response in the range of operation of 

the speaker.
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Although far-field measurements are the ideal case for diffusion measurement they are not 

realistic for high frequencies (eq. 2.13) as they require a very big anechoic chamber unless 

the sample is really small. So the international standard requirement of 80% of the receivers 

being outside the specular reflection zone was met. This led the source to be placed at a 

distance of 3.7m for the 70cm wide samples and 3.2m for the 40cm ones. The measurements 

were carried out only for normal incidence due to geometric restrictions of the room.

Figure 2-6. Single plane polar response measurement set-up in the semi-anechoic chamber.

In order for the scattered impulse response of the sample to be estimated the impulse 

response of the sample must be de-convolved with the loudspeaker-microphone response at 

each scattering angle. Furthermore, the interference of the room needs to be accounted for as 

well. The de-convolved sample response /? is given by the equation[23]:

2.14

where FT and I FT are the forward and inverse Fourier transforms respectively. hs and hb are 

the impulse response with and without the sample respectively and h,.m is the loudspeaker- 

microphone response.

The impulse responses are measured using a Maximum Length Sequence. First the 

microphone-loudspeaker response h\.m is measured by positioning the loudspeaker in the 

place of the sample facing each microphone. Then the loudspeaker is placed facing the 

sample-area and two measurements are carried out one with hs and one without the sample hb 

(Figure 2-7).
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Figure 2-7. Measured impulse responces with and without the sample.
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Figure 2-8. Measured scattered impulse response of the sample.
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The common peak corresponds to the incident wave that gets recorded by the microphone 
before it reaches the sample area. The second peak of hs contains the scattered response from 
the sample. After the application of equation 2.14 the response is windowed to remove the 
residue from the incident sound. Thus the scattered impulse response that is used to generate 

the polar response of the sample is acquired (Figure 2-8). The polar plot for each frequency is 
obtained by Fourier Transforming the impulse responses of the 37 miniature microphones 
(Figure 2-9).

Despite the efforts to follow the standard to the letter the requirement for signal to noise ratio 
was not met. The standard suggests a value of at least 40dB for a reference flat plate. In the 
measurements carried out for this thesis the signal to noise ratio did not exceed 25dB due to 
the low sensitivity of the microphones used. Despite this deviation the measured scattered 
pressure distribution displayed the expected behaviour.

Since the sample is a flat reflective surface the scattered pressure distribution is expected to 
be symmetric. As can be seen in Figure 2-9 there is a notable difference for instance at ±5^/8. 
The reason for this is the fact that the plot suffers from errors in the positioning of the 
microphones in the arc. Due to the existence of sharp variations in the plot even a 0.1° error 
in the position of the microphone can result in a substantial error in measurement.

-71/8

-37I/: 371/8

Figure 2-9. Measured normal incidence scattered pressure distribution of a rigid surface 10cm 
wide at I MHz.

2.3. Measurements Vs Simulations
Measurements are tedious to conduct and time consuming, so simulations are used in this 
thesis for the estimation of the performance of diffusers. In order to establish the validity of 

the prediction models comparison with measurements need to be carried out.
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The measured sample is a Hat rigid plate of 70cm width, 10cm depth and 30cm height. Since 

the system discussed in the previous Section measures the scattered field in one plane 2-D 

simulation is going to be used for the investigation. The simulation will consider an infinitely 

tall surface but the measured sample is tall enough for that not to be a factor given that the 

area of interest is that close to the floor of the chamber.

2.3.7. Boundary Element Modelling

The geometry of the measurement is introduced in 2-D BEM and Figure 2-10 displays the 

polar plots of the scattered field at a number of distinct frequencies. Although the patterns are 

not dissimilar the reflected pressure predicted by BEM diminishes as the frequency increases. 

This is due the fact that the 2-D BEM considers cylindrical wave propagation which is given 

by a 0' order Hankel function (eq 2.4) that attenuates the sound wave with distance r as a

function of r

-Ji/8 IS? 7i/8

-71/4 X

-37I/8/

-71/8 100 n/8

-71/2

-71/4 ,- '

3K/8 -37t/8/

7t/2 -71/2

3n/8 -371/1

-71/2

Figure 2-10. Normal incidence scattered pressure distribution (dB) measurement Vs BEM 
prediction from a rigid surface, (a) \kHz, (b) 2kHz, (c) 4kHz and (d) 6kHz. ——— Measured, 
——— Predicted.

In order to compensate for this effect, the reflected pressures must be normalised to a 

reference pressure. In order for the reference pressure to be representative of the distance the 

sound wave travels the reference point can be the scattered pressure at the 0° receiver. In this 

way reflected energy will be lost so the normalisation will be done to the same overall 

reflected energy per frequency. This allows for the patterns of the scattered pressure 

distribution to be compared. The results are displayed in Figure 2-11.
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371/8

Figure 2-11. Normal incidence scattered pressure distribution (dB) measurement Vs BEM 
prediction from a rigid surface normalized to the same sum of the reflected pressure, (a) 
IkHz, (b) 2kHz, (c) 3kHz, (d) 4kHz, (e) 5)k//c and (f) 6W/z. ——— Measured, ——— 
Predicted.

BEM simulation manages to predict quite accurately the distribution at small angles of 

reflection (< ±7r/4) while seemingly failing only at oblique angles of reflection at high 

frequencies. The reason for this difference is the existence of a large number of narrow 

periodicity lodes at high frequencies that occur so close together that they fall within the error 

of placing the microphones in their arc as discussed in Section 2.2.

Comparison of measurements and simulations from partly absorbing surfaces will be 

conducted in Section 9.2.1 where the performance of Absorption Grating Diffusers is going 

to be investigated.

2.3.2. Fourier Model

While 2-D BEM considers the geometry of the source and sample; the Fourier Model 

considers plane wave incidence and only models the front surface of the sample. Instead of a 

point source plane wave propagation is considered and the receivers are considered to be 

located in the far field so only the angle of reflection is taken into account.
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Figure 2-12 displays the polar plots of the scattered field at a number of distinct frequencies 

as predicted by the Fourier Model compared to measurement. Given the fact that the model 

does not consider wave attenuation the graphs have been normalised to the same sum of 

reflected pressure. At I kHz the prediction is in agreement to the measurement with the 

exception of the oblique angles of reflection, at 2kHz the agreement occurs only in the 

locations and width of the lobes while at higher frequencies there is no agreement.

-Tt/4

-371/8/

-71/2 J 71/2

-71/2

-n/4/ //T8^ "~N.1t/4

J 71/2

Figure 2-12. Normal incidence scattered pressure distribution (dB) measurement Vs the 
Fourier Model prediction from a rigid surface normalized to the same sum of the reflected 
pressure, (a) IkHz, (b) 2kHz, (c) 3kHz, (d) 4kHz, (e) 5kHz and (f) 6kHz. ——— Measured, 
——— Predicted.

The Fourier Model considers that a plane surface consists of a series of point omni­ 

directional sources which results in overestimation of pressure in the non specular reflection 

lobe which is evident in Figure 2-12(b). The limitations of the Fourier Model are coupled 

with the fact that the comparison is done between far field prediction and near field 

measurement to result in the disagreement at higher frequencies. At Figure 2-12(c-f) the 

measured specular reflection lobe has widened containing more receivers (see Section 2.2) 

while the Fourier Model considers only a single receiver in that lobe. To the Fourier Model
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can show only the potential of a structure to diffuse and not be used to access its 
performance.

2.3.3. Discussion

There is a trade-off between accuracy of prediction and computational speed with the 

different models. The Fourier Model is very fast but it is an idealization of the problem. It 

does not correctly model evanescent waves close to the surface, it considers incident plane 

waves and is only applicable in the far field. However, it is an elegant model that connects 

the distribution of the reflection coefficient on the surface with the scattered response. That is 
why it finds application in diffuser design.

The Boundary Element Method is more accurate and has been shown to give accurate 

predictions for Phase Grating Diffusers[31] but is computationally expensive. There are 

methods that allow for the number of elements to be reduced such as the thin-panel Boundary 

Element Method[31] or exploitation of the symmetries of the surface[ll] but even then it 

remains time consuming.

The angular resolution of the polar plots in this chapter have been dictated by the 
measurement procedure were the receivers were placed with an increment of 5°. At later 

stages of this thesis angular resolution of 1° will be used when predicting the performance of 
diffusers. This will give a better representation of the performance of diffusers.

2.4. Summary
This Chapter contained the various methods that have been use in the past to attain the 

scattered pressure distribution from a diffuser. Boundary Element Modelling has been shown 

as the most exact but at the same time more computationally expensive simulation technique. 

The Fourier Model on the other hand has been shown to give a very elegant connection 
between the distribution of reflection coefficients on a surface and the scattered pressure 

distribution from it. Finally, the method to measure the scattered field that was used in this 

thesis has been presented and compared with both 2-D BEM and Fourier Model. In the two 

following Chapters PGDs are going to be discussed. In Chapter 3 the reasoning behind 

standard PGDs is going to be presented and issues surrounding diffuser design such as 

periodicity and modulation are going to be addressed. Later, in Chapter 4 new PGDs are 

going to be introduced.
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Chapter 3. 

Diffusers
Standard Phase Grating

The most common category of diffusers is Phase Grating Diffusers (PGD). In this Chapter 

these structures are going to be presented. Their inherent limitations are going to be discussed 

and the issue of periodicity is going to be addressed. Modulation techniques are going to be 

used to be deal with the problem of periodicity.

3.1. The diffusers
The introduction to this thesis presented sequences for PGDs, here the diffuser design is 

examined in more detail.

Figure 3-1. One period of a Maximum Length Sequence Diffuser (MLSD) of well width vr
r/iand depth of the n well, dn .

Figure 3-2. One period of a Quadratic Residue Diffuser (QRD) of well width u- and depth of
ththe nm well, dn .

The depth of the «th well dn in the diffuser is set using a pseudorandom sequence[8]:

3.1
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where sn is the n term of the pseudorandom sequence, A0 is the design wavelength, and P is 

the integer the sequence has been generated using, e.g., a prime/? for QRDs.

The distribution of the phase </>„ and the reflection coefficient Rn is given by[8]:

3.2

3.3 

where/is the frequency of the incident wave and/o is the design frequency of the diffuser.

The pseudorandom sequences are chosen based on the Fourier Method. So a structure that 

has reflection coefficients whose Fourier Transform has a uniform magnitude should diffuse 

well. The Wiener-Khinchin theorem states that the square of the magnitude of the sequence's 

Fourier Transform is equal to the Fourier transform of its autocovariance (or autocorrelation) 

function. As a result a sequence of reflection coefficients whose autocorrelation function is a 

Kronecker delta function, will display good diffusion properties. Such sequences include the 

quadratic residue sequences (Figure 3-3).

The quadratic residue sequences are generated for any prime number P by the equation[25]:

sn = n2 mod P 

where n E [1, P] and mod is a function giving the minimum positive remainder.

For this type of pseudorandom sequences the integer number generator P is prime and it is 

equal to the length of the sequence (N - P). The autocorrelation function RXX of the sequence 

is[25]:

P T = 0
P-1 P-1 . 

0 - —^— < T < —j- , (T * 0) 3.5

where r denotes the autocorrelation delay.

The distribution of reflection coefficients displays these autocorrelation properties for 

frequencies/, that the phase distribution is:



31

3.6

6-

-6 -4 -2

Figure 3-3. Magnitude of autocorrelation function of a quadratic residue sequence (P=7).

Due to phase's modular nature the distribution on the surface is the same for most integer 
multiples of the design frequency:

3.7
fa — afo

where a is an integer that is not a multiple of P.

At these frequencies the reflection coefficients retain the same phase differences (Figure 3-4):

3.8

This suggests that the diffuser performs best at these frequencies. When a becomes equal to P 
then the diffuser perform like a plane surface (see Section 3.2.1).
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There are sequences that although their autocorrelation functions do not go to 0 when it is out 

of phase (T # 0) they still display a steady level. Other sequences that have found application 

in diffuser design are the primitive root sequences, the maximum length sequences etc.

0.5

I
I o

-0.5

-1

© • 0 .

-1 -0.5 0 0.5
Real Part

1 -1 -0.5 0 0.5 1
Real Part

Figure 3-4. Reflection coefficients of a 1-D QRD (N = 7) at 1,2 and 4 (left) 3, 5, 6 (right) 
times the design frequency.

3.2. Disadvantages
PGDs display notable limitations. Some are inherent problems of their design while others 

steam from the inaccuracy of the Fourier Model that is used to choose the sequence that 

generated them.

3.2.1. Flat plate frequencies
When a is a multiple of the integer generator the phases of all the reflection coefficient will 

become multiples of In, and so all the reflection coefficients will be 1[16]. This will result in 

the structure acting like a flat reflective surface. These flat plate frequencies, as shown in 

Figure 3-5, are given by:

3.9



Figure 3-5. The flat plate effect of a QRD (P=l).
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While in theory every such structure displays an infinite number of flat plate frequencies, in 
reality it is rare for there to be more than one of these frequencies in the bandwidth of 
concern. When that is the case, it is common to refer to the first of them as 'the' flat plate 
frequency.

3.2.2. Well cut-off frequencies limitations
Due to the fact that plane wave propagation in the wells is assumed, there is an upper 
frequency limit to the design. When half the wavelength becomes smaller than the well width 
then the waves will no longer propagate as plane wave within the wells. This will cause the 
reflection coefficients to deviate from the ones required. The upper frequency limit is:

or Jmax ~ W 3.10

where r is the speed of sound and w is the smallest dimension of the wells cross-section.

3.3. Periodicity
Probably the most controversial issue surrounding diffuser design is periodicity. Since their 
introduction PGDs have been considered as structures with regularly spaced patches of 
different reflection coefficient generating an inherent regularity to the structure. Later the 
choice of sequences with good autocorrelation properties steered towards periodic repetition 
of the diffusers[8]. Even the standard for the measurement of the scattered pressure 
distribution from a surface requires a structure of several periods to be tested if the diffuser is 
to be used periodically[23].

Any type of repetition causes periodicity lobes to be introduced in the autocorrelation 
function of the reflection coefficient. This results in the introduction of periodicity lobes in 
the pattern of the scattered pressure distribution above a low frequency limit.
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A typical case of periodicity comes from the regular distribution of the reflection coefficient 
on a surface. In order to portray this problem a 1-D diffuser will be considered. It will be 
considered that its reflection coefficient is constant for patches of width w throughout its 
surface:

= fl(nw) = Rn , for n = 0,1, 2,... , N - 1 3.11

where N is the number of patches.

The scattered intensity distribution Is can be estimated using the Fourier Method (see Section 
2.1.2):

we
-jk'Nwi

'2 • c;2 • sine
w-i

71 = 0

3.12

where 6 is the angle of reflection, k '=ksin$ and N is the number of patches of the diffuser.

The sinc1 (x) function that has been introduced in equation 3.12 causes lobbing to be 
introduces in the distribution of scattered intensity. The pattern it introduces can be seen in 
Figure 3-6 for w//l = 0.5. This lobe causes the distribution to be less uniform and therefore 
degrades the performance of the diffuser.

-71/8

-71/4

-71/2

Figure 3-6. Lobing introduced by the constant patches of reflection coefficient when the 
width of the patches is equal to half of the wavelength (w//l = 1/2).

To cover large surface areas more than one period of a diffuser structure is commonly used. 
The repetition of the sequences causes harmonics to be created in the autocorrelation 
function. This creates sharper grating lobes and as a result a less uniform scattering 
distribution. The scattered intensity distribution in the case of Q diffusers is given by the 
interference pattern of Q identical source:
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sm2\Qk'W, /2
= /s (6>) 3.13

where 7S(0) is the scattered intensity distribution of a single period of diffuser, Q is the 

number of periods, k' is equal to ksinO and W is the width of one period of the diffuser.

The interference pattern degrades the performance of the diffuser as it causes for more lobing 

to be introduced to the scattered intensity distribution. In Figure 3-7 the lobing effect is 

displayed for Q = 3, W/A = 2.

The superposition of the two types of periodicity is displayed in Figure 3-8. This is an effect 

that will become more evident in absorption grating diffusers, as will be shown in Chapter 5.

71/4

37t/8

-71/8

•371/8

-71/2

Figure 3-7. Lobing introduced by 3 periodic repetition of the diffusers when the width of a 
single diffuser is equal to two times the wavelength (WIX = 2).

71/4

-71/8

-71/4

v-3n/8

-71/2

Figure 3-8. Lobing introduced by the combination of constant patches of reflection 
coefficient and periodic repetition of the diffuser (Q = 3, N= 4, w/A = 1/2).
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3.4. Modulation
Ways of dealing with periodicity have been devised as regular arrangement of the reflection 

coefficients is ill-advised. While in cases that more than one period is required it is necessary 

to modulate the base sequence with another [15-16, 39-41]. In order to modulate two 

sequences a binary pseudorandom sequence is required. The binary sequence defines the 

order in which the sequences will be placed with 1 corresponding to the first sequence and 0 

to the second (Figure 3-9).

Modulation will be used extensively in Chapter 4 to deal with the degrading effect that 

periodicity has on the performance of PGDs. It will also be used to improve the beam 

steering effect of Luke Diffusers (Section 4.2.2).

Figure 3-9. Modulation of two PGDs using the binary sequence [1,0,1,1].

There are three major ways of choosing the second sequence to be used in the modulation. 

The simplest way of presenting them is by considering PGDs (Section 3.1).

3.4.1. Using the inverse of the base sequence:

An inverse sequence is created by subtracting the original sequence from the integer that it 

was generated from. So, for example, the sequence that will generate the inverse diffuser of 

the quadratic residue sequence with P = 1 [0,1,4,2,2,4,1] is calculated by subtracting this 

sequence's coefficients from its integer number generator, 7 in this case, to give 

[7,6,3,5,5,3,6] as the inverse (Figure 3-10).

'A777A

Figure 3-10. The inverse of a QRD (P=7).
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The inverse diffuser reflects the opposite phases from the original. Since the arrangement is 

done using a pseudorandom sequence the resulting structure will display the phase grating 

behaviour of a larger PGD with two levels. This technique is widely used[41] and, as will be 

further used in Chapter 4.

3.4.2. Using the base sequence in reverse order:

Another technique for modulation is to use the same sequence but in reverse order. In 

practice this is easily achieved by rotating the diffuser in its plane such that its left becomes 

its right. The modulation is essentially a diffuser and its mirror image. For example, for 

primitive root sequence with P = 7 [1,3,2,6,4,5] the mirror diffuser is simply [5,4,6,2,3,1]. 

This method has the added advantage of the overall structure having the same depth as the 

base diffuser; in addition it only requires one base diffuser. However, it only works if there is 

a degree of asymmetry in the base diffuser (Figure 3-11), as shall be shown for the new Luke 

diffusers later. For instance the QRD of P = 1 is [0,1,4,2,2,4,1] and is mirror [1,4,2,2,4,1,0] 

which display the only variation of the 0 which is moved from the beginning to the end of the 

sequence.

mirror

Figure 3-11. The mirror of a PRO (/>=?)

3.4.3. Using a different sequence to that of the base diffuser:

In principle any alternate sequence may be used, but it is usual to use one that is performing 

better than the base sequence at the frequencies where it is performing badly. For example, 

two sequences with different flat plate frequencies. Angus, for instance, used a combination 

of P - 5 and P = 7 QRDs[39] while Cox et al used a combination of P = 1 and P = 11 

PRDs[42]. Since they used the same design frequency for the diffusers their flat plate 

frequencies occurred at different points. It can also be used in cases of families of sequences 

such as the Power Residue and the Luke Diffusers that will be examined in Chapter 4.
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3.5. Diffusion
The diffusion coefficient for a standard PGD can be seen in Figure 3-12. In this plot the 
normalised diffusion coefficient of 5 periods of QRD of prime generator p=l is displayed. 
The design frequency is set to [kHz (Figure 3-13a) and the well width to 5.1cm. The overall 
width of the structure is 1.8m. The key frequencies to be noted are the peaks of diffusion at 
approximately the multiples of the design frequency. At these multiples the phase changes 
generated by the wells is the same with that at the design frequency (eq 3.8) resulting in good 
diffusion (Figure 3-13b). The exceptions lie in the 7 th multiple that is the first flat plate 
frequency (Figure 3-13c) of the diffuser (eq 3.9).

It is noteworthy to point out that the diffuser performs like a plane surface, when the 
normalised diffusion coefficient is equal to 0. Apart from the flat plat frequencies this 
happens consistently for frequencies below 860//Z. This frequency coincides with that when 
A, becomes comparable to the width of the period of diffuser W. This is a low frequency limit 
of the diffuser:

or /mm — /]/]/ 3.14
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Figure 3-12. Normalised diffusion coefficient Fourier Model prediction of 5 periods of QRD 
(p=7) with the design frequency set at 1 kHz ( •••• upper frequency limit).
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The frequency of 3.36 kHz is the high frequency limit associated with the wave propagation 
in the well as discussed in Section 3.2.2. The prediction for frequencies higher than this limit 
will deviate from the performance of the diffuser. They are included in the graph as they 
present the diffusion trend.

-71/8

-371/8,

-71/2

-37E/8/

-71/2 L

(a)

(b)

o
-71/8 __ —————— ° 71 a

QRD 
flat plate

-7T/4 71/4

-37T/8 \37i/8

(c)

Figure 3-13. Normal incidence scattered pressure distribution Fourier Model prediction of 5 
periods of QRD (p=7) at the design frequency at/ = /0 = U//z (a),/= 2/0 = 2Wfe (b) and the 
flat plate frequency/= 7/0 = IkHz (c).

A very important factor in the location of the peaks of the diffusion coefficient has to do with 
the periodicity of the structure. The scattered field contains the pattern of 5 point sources
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positioned at the centre of each diffuser (Figure 3-14). These sources would be spaced a 
diffuser width W apart. If the diffusers were wider the interference pattern of these sources 
would change. This change would alter the peaks of the diffusion coefficient.

Figure 3-14. The periodicity equivalent of 5 periods of a QRD.

It is important to remember the limitations of the Fourier Model that was used for the 
simulations here. The model considers plane wave propagation in the wells without taking 
into account the cut off frequency of the well (eq 3.10). For the given well-width the high 
frequency limit is at C/2 W — 3.3kHz. This suggests that the behaviour for most of the 

bandwidth of this graph will only be approximately correct. For more accurate predictions 
Boundary Element Modelling must be used.

3.6. Summary
With the conclusion of this Chapter the foundation of PGDs is completed. How they are 
generated from pseudorandom sequences has been presented and their frequency limitations 
have been outlined. The modulation techniques that can be used to address the problem of 
periodicity that arises from the periodic repetition of a single diffuser have been explained. 
Finally, the Fourier Method was used to investigate the characteristics of a standard 
Quadratic Residue Diffuser. In the following Chapter new PGDs are going to be introduced.
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Chapter 4. New sequences for Phase 
Grating Diffusers

The research question being examined in this Chapter is whether it is possible to design 

diffusers with higher flat plate frequencies by applying new number sequences based on 

larger integer generators.

Standard Phase Grating Diffusers (PGD) like Quadratic Residue Diffusers (QRD) and 

Primitive Root Diffusers (PRO) have a limited frequency range due to the flat plate effect 

that occurs when all the wells radiate in phase. The frequencies at which this occurs are 

directly linked with the integer P that generates the pseudorandom sequence. For both QRD 

and PRD the flat plate frequency is P times the diffuser's design frequency. In order for the 

phenomenon to take place outside the audible range a large number generator is needed 

which will result in a long sequence as their length is similar to the generator (NQRD - P, NPRD 

= P-l). As a small diffuser is easier to construct and handle, the length of the pseudorandom 

sequence is usually small limiting its integer generator as well. In this Chapter an alternative 

approach using number sequences is presented that, although short in length, are based on 

large integers. Two pseudorandom sequences, Power Residue and Type-II Luke, have this 

desired characteristic. The performance of Power Residue Sequence Diffusers (PWRD) and 

Luke Sequence Diffusers (LSD) is investigated using numerical simulations. Of the two 

PWRDs are shown to move the flat plate effect to much higher frequencies as expected, 

while LSDs are shown to require modulation in order to achieve substantial diffusion.

4.1. Power Residue Sequence Diffusers (PWRD)
Power residue sequences are generating by under-sampling primitive root sequences (Figure 

4-1). The relationship between the generator and the length of the sequence changes 

dramatically. For every PRD a number of PWRDs can be created that preserve the prime 

generator but reduce the width of the structure by a fraction equal to the sampling step. By 

changing the sampling starting point a family of PWRDs can be formed.



Sampling 

Every 2

PRO 
P=11, W=10

PWRD 
M=2, N=5

Figure 4-1. PWRD (P = 11, M = 2, r = 0) generated from a PRO (/> = 11).
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4.7.7. TTie sequence
Power residue sequences are based on any prime number P that can be expressed in the form:

p = N + 1 4.1

where M and ,/V are integers. M power residue sequences of period N can be generated usinj; 

theequation[25]:

S (D = *n 4.2

where 0 < r < M, 0 <n < N, a is a primitive root of P and mod indicates the least non- 
negative remainder. A primitive root of P is any number a with the property that any co- 

prime to P is congruent to a power of a mod P[25].

In the case that a set of M integers D = [sn>1 , sn>2 , ...,sn,M ] are modulo an integer P they are 

said to form an integer difference set if every integer m # 0 can be expressed in exactly x 

ways in the form:

sn< -snj = mmodp , where G[1:M] 4.3

The properties of the difference set are usually represented using the nomenclature 
(P,M,/)[25]. If, and only if, the power residue sequence forms a cyclic difference set (P,M,/), 
then the reflection coefficients that it generates displays two level autocorrelation 

magnitudes[25]:
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N

N 1 N-l N-l
-^T~ < T < ^^ , (T * 0)

4.4

where Rxx is the ACF and r is the delay variable. Figure 4-2 shows the magnitude of the ACF 

for a number of power residue sequences of the same length that have been created from 

different generators. As is obvious from this figure, their out-of-phase magnitude is always 

greater than 0 and becomes greater as M increases. This means that they display worse ACF 

properties than QRD that displays out-of-phase magnitudes equal to 0 (Figure 3-3).

8-

7-

— 5

a:
— 4

-«— P= 19(M=2)
-o-P = 37(M=4)
-*- P = 73 (M=8)

-8 -6 -4 -2 0
T

Figure 4-2. Magnitude of autocorrelation function of all power residue sequences of period N 
= 9 that can be generated from different prime numbers.

The out of phase non-zero value of the ACF is not uncommon as other pseudorandom 

sequences display such a characteristic. When the out-of-phase is real, it translates to a DC 

component in the Fourier Transform of the reflection coefficient which dictates an added 

feature in the angle of specular reflection. For primitive root and maximum length sequences 

that have out-of-phase ACF[25] equal to -1 this manifests as a null in the angle of specular 

reflection, a characteristic that has been exploited in diffuser design[42-43].
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In the case of power residue sequences the ACF is not constant out-of-phase. While the 
magnitude is constant the phase is not so (Figure 4-3). This effect deviates from the 
requirement of a Kronecker-delta like behavior and undoubtedly will degrade the evenness of 
the spectrum.

8-

-2

— real
— imag

-8 -6 -2 0
I

Figure 4-3. Autocorrelation function of a power residue sequences of period N=9 and 
generegator/'=19.

As already mentioned, power residue sequences are under-sampled primitive root sequences, 
with a sample taken every M1 *1 coefficient, with a different starting point (dictated by r), as 

shown in Figure 4-1.

In the case of primitive root sequence of P = 11, the primitive root is 2, and the sequence is 
[1, 2,4, 8, 5,10, 9, 7, 3,6]. For M = 2, and r = 0 every other coefficient is taken to form the 

power residue sequence starting from the first s^} = [1, 4, 5,9, 3] while for r = 1 the starting 

point is the second term of the original primitive root sequence s£1} = [2,8,10,7,6]. Note 

that the one sequence is the inverse of the other: if the coefficients of s£1} are cyclically
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shifted left 2 positions, it becomes [10,7,6,2,8]. So in this case, the two power residue 
sequences are connected via the equation:

s (o) = p _ (i)
n ' 5n-2

This connection between the two sequences results in pairs of diffusers in a family that 

perform similarly, because pairs have reflection coefficients with opposite phases. For 

families of power residue sequences with more than 2 sequences this phenomenon takes 

place for those that are spaced Mil sequences away with the required shift left being (- - 1\

r -, (M/2 - r)
^' = P - S 4.6

There are three cases that form cyclic difference sets that can be applied in the creation of 
power residue sequences [25]:

M = 2 and N is odd

M = 4 and N - <" 2 where ( is odd 4.7 

M = 8 and p = 8 • ( 2 + 1 = 62 • m 2 + 9 where <" and m are odd

Since the goal is to push the flat plate effect to higher frequencies, the most promising cases 
follow the last rule as it combines higher primes P with short sequences. The first case that 

falls under this category is:

M = 8,n = 3,m = 1 => p = 73 4 - 8

This generates a short sequence typical of the length used in practical Schroeder diffusers 

(period N = 9) but with a prime number generator of 73. One such sequence is snl = 
[1,2,4,8,16,32,64,55,37], which is the first of the family (/- = 0). The higher prime 
number gives a first flat plate frequency of 73 times the design frequency. This fact becomes 
more impressive if one considers that a QRD with the same characteristic frequencies would 

consist of 73 wells (Figure 4-4).

A primitive root sequence with period N = 10 being generated from the prime P = 11 will 
have a flat plate frequency at 1 1 times the design frequency, less than 6 times lower. It will 

actually display 6 flat plate frequencies before the power residue diffuser displays its first.
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QRD 
(P=73)

NQRD=73

PWRD 
(P=73, M=8, r=0)

ffp.PWRD = ffp.QRDi = 73fn

NPWRD=9 

Figure 4-4. A QRD and a PWRD with the same design and flat plate frequency.

4.1.2. The diffusers
The cases of PWRD of period N = 9 are taken into consideration. They have a length which is 
similar to many commercial devices while they can be generated using all the cases of cyclic 
difference sets that have been suggested in 4.7. This allows the performance of sequences 
with the same length but of different autocorrelation properties and different prime number 
generator to be examined.

Given that the choice of sequence is based on the Fourier Model the performance of the 
diffusers will be examined using the same technique. The structures to be tested will consist 
of 5 periods of 40cm wide PWRDs. The resulting structure is 2m wide resulting in a low 
frequency limit of 857.5/ft (eq. 3.14). The well width is 4.4cm which results in the upper 
frequency limit of the diffuser being 3.9kHz. The design frequency is set to IkHz.

The first case is created when a PRO of length 18 (P=19) is sampled every other well. Then 2 
PWRDs (M = 2) of length TV = 9 can be formed:

4.9
= [2,8,13,14,18,15,3,12,10]
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Figure 4-5. Argand diagrams of the reflection coefficients of the PWRDs (P = 19) for the 
different frequencies.

The two sequences are the inverse of one another (see Section 4.1.1) which results in 
reflection coefficients, at multiples of the design frequency, to display opposite phases, as can 
seen in the Argand diagrams of Figure 4-5(a). The different sign in the phases will result in 
the same scattered pressure distribution from the two diffusers with an inversion of the angles 
of reflection (Figure 4-6(a and c)). This relationship is not the same for other frequencies. At
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these frequencies the distribution of the phases is the same for both diffusers but the values of 

the phases are not opposite as before (Figure 4-5(b and c)). This factor manifests itself in the 
polar responses of the diffusers (Figure 4-6b) which no longer display the symmetry that 
evident at the multiples of the design frequency.

was

-71/8

-37T/a

(a)

(b)

(c)
-7C/2 L J 7T/2

Figure 4-6. Fourier Model prediction of the normal incidence scattered level distribution of 
the two PWRDs (P=19, M=2) at the design frequency/o (a), at/= 1.5/0 (b) and /= 2/0 (c).



49

The normalised diffusion coefficients of these PWRDs are presented in Figure 4-7. They 
display their flat plate frequency at 19/0 = 19kHz as expected. The two diffusers display 
similar diffusion characteristics throughout this frequency range. The coefficient takes the 
same value for both cases at the multiples of the design frequency and displays only small 
variations at other frequencies. Variations that are due to the different position of their phase 
distribution in the Argand diagram.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
500 1k 5k 7k 10k3k

f(Hz)
Figure 4-7. Normalised diffusion coefficient of 5 periods of PWRD (P = 19, M = 2) with a 
design frequency /o = IkHz, the width of the wells was set to 4.4cm, estimated using the 
Fourier Model ( ---- upper frequency limit).

The PWRDs (P=19, M=2) did not allow diffusers with the same periodic autocorrelation 
characteristics but different reflection coefficient's distribution to be compared.

Such a comparison is possible for the following example. The PWRDs are taken from a PRD 
of length 36 (P=37) when samples every 4 wells (Af=4). The result is 4 distinct diffusers of 

length N=9\
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s£° = [1, 16, 34, 26, 9, 33, 10, 12, 7]

s™ = [2, 32, 31, 15, 18, 29, 20, 24, 14]

s£° = [4, 27, 25, 30, 36, 21, 3, 11, 28]

s£° = [8, 17, 13, 23, 35, 5, 6, 22, 19]
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Figure 4-8. Argand diagrams of the reflection coefficients of all PWRDs (P=37, M=4) at the 
design frequency/Q.

These diffusers can be paired again with their inverse as can be seen in Figure 4-8. For this 
reason the diffusion coefficient of the first two is presented in Figure 4-9, since that of the 
other two will be similar. The coefficient displays similar trend for both PWRDs but it is 
obvious that it is not the same. While outside the frequency range of the plot the flat plate 
effect occurs at 37/0 = 31kHz as expected, which is outside the audible frequency range.
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Even though the two diffusers display identical periodic autocorrelation properties at the 
multiples of the design frequency they do not have the same polar responses (Figure 4-10). 
This raises a new limitation of the design procedure. The desirable autocorrelation properties 
are only an indication of which surface phase grating can achieve uniform dispersion, as it 
refers only to the design frequency of the diffuser and does not contain information of its 
performance at other frequencies.

3k
f (Hz)

Figure 4-9. Normalised diffusion coefficient of 5 periods of PWRD (P = 37, M = 4) with a 
design frequency f0 = IkHz, the width of the wells was set to 4.4cm, estimated using the 
Fourier Model ( ——— upper frequency limit).
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-71/4
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Figure 4-10. Fourier Model prediction of the normal incidence scattered level distribution of 
the two PWRDs (P=37, Af=4) at the design frequency/o (a), at/=1.5/0 (b) and /=2/0 (c).

The last family of PWRDs that is going to be considered is the one that corresponds to the 
largest sampling step (eq 4.7) possible. When sampling every 8 th well (M=8) the PRD 
generated by P = 73 a family of 8 PWRDs, of length N = 9, is formed:
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0.1

iOO

si0) = [1,2,4,8,16,32,64,55,37]

si1} = [5,10,20,40,7,14,28,56,39]

42) = [25,50,27,54,35,70,67,61,49]

s£3) = [52,31,62,51,29,58,43,13,26]

s£4) = [41,9,18,36,72,71,69,65,57]

s£5) = [59,45,17,34,68,63,53,33,66]

s£6) = [3, 6,12, 24,48, 23,46,19,38] 

s£7) = [15,30,60,47,21,42,11,22,44]

4.11

1k 5k 7k 10k3k
f(Hz)

Figure 4-11. Normalised diffusion coefficient of 5 periods of PWRD (P = 73, M = 8) with a 
design frequency/0 = \kHz, the width of the wells was set to 4.4cm, estimated using the 
Fourier Model ( ---- upper frequency limit).

In Figure 4-11 the normalised diffusion coefficient of the first 4 of PWRDs of this family. In 

this case the flat plate frequency is 73-/0 = 13kHz which is far outside the audible frequency
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range. An interesting phenomenon that is evident from this graph is that the first of the 

PWRDs of the family start diffusing at a lower frequency than the rest. This is another 

example of the autocorrelation properties of a sequence not "telling the full story"

As has been stated earlier, the lower frequency limit of the diffuser geometries being tested 

here is when the wavelength fits into one period of the diffuser. This suggests that the PWRD 

(r=0) in question appears to have the behaviour of a larger structure when applied 

periodically. If one looks to the form of this PWRD a difference from that of the other 

diffusers becomes evident. Its wells are arranged in groups of similar depths, which suggests 

that at lower frequencies the wells do not act individually but as averages of these groups 

(Figure 4-12).

Figure 4-12. PWRD (P=73, r=0).

The predictions presented for PWRDs have been made using the Fourier Model which is the 

one that was used in the choice of the pseudorandom sequences. As has been discussed 

before (Section 3.2.2) this simulation technique does not account for the high frequency limit 

of the diffusers (eq. 3.10). For a 4.4cm well width of the PWRDs this frequency is 

approximately 3.9kHz. This means that the predictions above this frequency will be 

inaccurate unless the wells are themselves partitioned into sub-wells.

The more accurate BEM[44] is going to be used now in the comparison with more standard 

PGDs. Since the Fourier Model considers only a surface of a given distribution of reflection 

coefficients the structures have been regarded as 1-D. So the diffusers were compared with a 

rigid plate. BEM on the other hand models the whole structure in 2-D. The comparison is 

going to be made with a reflection structure of the same outer dimension that is going to be 

referred to as "plane surface".
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Figure 4-13. Fourier Model prediction of the normal incidence scattered level distribution of 
the two PWRDs (P = 31,M = 4) at/= 0.8/0 (a) and the design frequency/o (b).

The following configuration is considered. Overall structures of 2m wide and the same design 
frequency are examined. Given that the main point of interest is the flat plate frequency the 
design frequency will be set to 500//Z in order for the flat plate effect to occur within the 
frequency range of examination.

The PWRDs are arranged in 5 periods with their well widths set to 4.4cm. Given their design 
frequency and their prime number generator their flat plate frequencies are expected to be 
8.5, 18.5 and 37.5 kHz respectively which will be outside the frequency range of 
examination. For comparison 8 periods of PRD (P = 7) and 6 periods of QRD (P = 7) are 
used. As can be seen in Figure 4-14 they both diffuse like a plane surface at 3.5 and IkHz. 
Noteworthy is the second flat plate frequency which although higher than the application 

bandwidth of the diffuser it is still evident.
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The reason behind the peak that appears for the case of the PRD at 3507/z is that it displays a 
similar structural behaviour with the one described for the latest PWRD(P = 73,r = 0) (Figure 
4-12) since its coefficients are [1,3,2,6,4,5]. The difference in the pattern of the diffusion 
coefficient is related more than anything with the different number of periods that were used 
in the two cases, as periodicity is the dominant factor in these cases.
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Figure 4-14. BEM prediction of periodic QRD (P=7) and PRD (F=7) of the same total width 
(2m) and design frequency (fo=500Hz).

When the overall performance is regarded, it is easier to compare diffusion coefficients in 
l/3rd octave band averages. While it is good for the comparison between diffusers it fails to 
display the flat plate frequencies as it averages them out.

One case from each family of PWRDs is presented in Figure 4-15. These 3 diffusers where 
chosen over others of their family because they performed better. Both PWRD (P = 19) 
performed identically on their own, as one is the inverse of the other. The other two PWRDs 
were chosen because they appeared to perform better than, or at least as well as, the rest of 
the diffusers in their family. Overall, the most promising are the diffusers of larger integer 
number (P = 37 and P = 73) as they display more uniform diffusion over the bandwidth. 
Furthermore, the fact that there are more than 2 diffusers in these families, allows more
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design options. The shallowest diffuser from the PWRD is the one based on the prime P = 73 
which displays a maximum depth of 26.4cm. The other 2 cases have maximum depths around 
30cm. While shallowest of the diffusers in this graph is the QRD (maximum depth around 
20cm) it does have two flat plate frequencies in the graphs bandwidth.

The PWRDs have no problematic frequencies within this bandwidth. From this comparison 
in particular, P = 73 has better diffusion than all the other ones. While it is not obvious in 
Figure 4-15 it displays more stable diffusion than the other PWRDs when it is not averaged 
over l/3rd octave bands.

——— PRD(P=7)

— QRD(P=7)
—— PWRD(P=19,M=2,r=0)
—— PWRD(P=37 1 M=4,r=0)
—— PWRD(P=73,M=8,r=1)

f(Hz)\ —/
Figure 4-15. l/3rd octave band BEM prediction of different types of periodic PWRD, PRD 
and QRD of the same total width.(Note: Both PRD and QRD have plate plate frequency at 
3.5kHz which is averaged out)

Their performance can be further improved if modulation is used to minimize the problem of 
periodical repetition of the same diffuser. Since PWRDs do not present any notable problems 
until their flat plate frequency, the problem of periodicity is the only one that needs 
addressing. The widely used modulation with the diffuser's inverse can be applied in this 
case. The modulations with the mirror diffuser and another diffuser of the same family can be 
used as well. Usually a pseudorandom binary sequence is used for the modulation, hi this
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case since there is a requirement for comparison with other diffusers finding pseudorandom 
sequences of the appropriate length is not possible. For this reason non-periodic sequences 
with the best possible autocorrelation properties were used. The binary sequence 
[1,0,1,1,0] has been used to modulate the PWRD.

Figure 4-16 shows the normalised diffusion coefficient of a PWRD of period N = 9, prime 
number generator P = 73 and r = 1. All modulations diffuse much better than the periodic 
case; in addition modulation with the inverse diffuser performs more uniformly compared to 
the others.

—— periodic
—— inverse modulation
—— mirror modulation
—— PWRD(r=0) modulation

0.2 h

0.1

300 500
f(Hz)

Figure 4-16. BEM prediction of different modulations of a PWRD (/>=73,Af=8,r=l) of the 
same total width.

4.2. Luke Sequence Diffusers (LSD)
Type-II Luke sequences are generated by superimposing steady step sequences to primitive 
root sequences. Due to the primitive root sequences' length being different from their integer 
generator the resulting type-II Liike sequences will have an integer generator will be the 
product of the two. For any PRO of length N and generator P, N different Luke sequence
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diffusers (LSDs) are created for different step-sizes, with N-P generator. A schematic of the 
creation of a LSD (P=42, r= 1) in shown in Figure 4-17.

Steady step 

Figure 4-17. LSD (P=42, r=l) generation from the PRO (P=7).

In this case, a steady step sequence is imposed on a PRD increasing the generator while 
preserving the PRDs size.

4.2.1. The sequences
Type-II Luke sequences are generated for any given prime p. They are formed in families of 
p-l sequences which are given, for different values of /-, by the equation [25, 45]:

£r) = a n (p - 1) + rnp mod p(p - 1) 4.12

where a is the primitive root of p.

The sequences are generated via the integer P = p(p - 1) and have a period length of 
N — p — 1. A necessary condition isO<n,r<p-2.

The reflection coefficients of type-II Luke sequences have the following, two valued, 
autocorrelation magnitudes[25]:

fV-1 * = °I LJ -*- 
/I 1 OI r» f_\ I _ I n —1 n — 1 ^ ~x 4. 13

where RXX is the autocorrelation and r is the autocorrelation delay variable. This 
autocorrelation function magnitude is the same as that of a primitive root sequence of the 
same period. Figure 4-18 shows the properties for an example family of sequences based on/? 
= 7. It is important to note while primitive root sequences have purely real periodic 
autocorrelation function type-II Luke sequences have complex.
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Essentially the type-II Luke sequences are formed by superposing the primitive root sequence 
q of prime p:

qn = a n mod p 

and a steady step sequence t of the same period:

tn = rn mod (p — 1) 

with r giving the step size, as shown in Figure 4-17.
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Figure 4-18. Magnitude of the autocorrelation function of the family of Type-II Luke 
sequences (p = 7, P = 42).

For the above reason, every primitive root sequence can be considered to be the first 
sequence (r = 0) of each type-II Luke sequence family. On the other hand it can be 
considered that from any primitive root sequence a set ofp-2 new type-II Luke sequences can 
be generated, each one with a different step size. This is possible because a linear ramp can 
be added to any number sequence, provided the period is correct, without changing the 
autocorrelation properties. This theorem is known as the shift theorem.

To give an example for P = 1 the primitive root sequence is qn = [1, 3 , 2 ,6 .4 , 5]. In order 
for all the coefficients to become equal the sequence has to be multiplied with 7 which is the
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generator of the sequence. The first type-II Luke sequence (P=42, r=l) is created by 
superimposing the steady step sequence tn = [1,2,3 ,4,5,6] resulting in 
sn = [6,25,26,15,10,23]. In order for thes coefficient to do the same they need to be 
multiplied with 42. Therefore, by using type-II Luke sequences it is possible to increase the 
frequency at which all the wells radiate in phase by a factor of 6.

4.2.2. The diffusers
Type-II Luke sequences are formed by the addition of a step sequence to a Primitive Root 
sequence. Consequently, diffusers that are generated with steady step sequences of opposing 
inclinations can be paired as they perform similarly. This leaves one sequence that cannot be 
paired, the middle one which is generated for r = N/2.

——— LSD(r=1)
—•—LSD(r=3)

— PRO

1k 3k 5k 7k 10k
f(Hz)

Figure 4-19. Diffusion coefficient, as predicted using the Fourier Model, of different types of 
periodic PRO (P=42) and PRD (P=7) of the same total width.

The case of Luke Sequence Diffusers (LSD) generated by the integer P = 42 is considered. 
These are diffusers of period N = 6 and well width approximately 4.2cm. Their design 
frequency is /o = 500Hz. 8 periods of the diffuser are used. This gives a structure with an 
overall width of 2m. Given their equal size they are going to be compared with their 

equivalent PRD.
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Figure 4-19 displays the diffusion coefficients of some diffusers of this family of LSDs along 

with the equivalent PRD. The PRO as expected displays a flat plate effect at 7/0 = 3.5kHz. 

Surprisingly though, while LSDs are expected to display their first flat plate effect at 42-/0 = 

2lkHz, the one with r=l displays a dip in the diffusion coefficient similar to the PRD's flat 

plate effect at 3.5kHz. On the other hand there is sharp peak in the case of r=3 at that 

frequency.

This is because the LSD with r - 1 causes redirection rather than diffusion at this frequency. 

The reflection coefficients at 3.5kH~ have phases of 0, ji/3, 2?r/3, x, 4x/3, 5?r/3 which have 

equal phase shift increment of x/3 from one well to the next. This constant phase increment 

of the reflection coefficients is why the main reflected lobe is redirected into another 

direction; it is identical to the phase shifts used to beam steer loudspeaker arrays. This 

behaviour is inherent in LSDs because they are formed by adding a PRD to a linear stepped 

ramp. At the frequency in question, all the reflection coefficients of the base PRD are equal to 

1 with a phase shift of 0, leaving only the linear stepped ramp. Essentially the PRD 

disappears and the diffuser acts like a tilted flat plate. This can be seen in Figure 4-20 where 

the scattered intensity distribution from two periods of this LSD (r = 1) is compared to that 

from a plane surface of the same size and shows that the diffuser is redirecting instead of 

scattering the incident wave.

This is a very interesting example of why the scattering coefficient has not been chosen. The 

scattering coefficient for the tilted flat plate frequency of the LSDs would be high as the 

energy is scattered out of the zone of specular reflection; and this phenomenon would go 

unnoticed.

All the LSDs of the family display this behaviour with the exception of the middle one (in 

this case r = 3) (Figure 4-19) which appears to be dispersing the incident wave uniformly. 

However, a closer inspection reveals that the reflection coefficients at this frequency are 

simply +1 and -1 one after the other (representing a steady phase shift of n). Based on the 

Fourier Model, cancellation in the specular reflection direction occurs (Figure 4-2la). In 

reallity, mutual interactions between adjacent wells will tend to 'smooth out' the surface 

pressure distribution and reduce the cancellation in real surfaces. At the same time the 

periodicity of the reflection coefficient will result in sharp periodicity lobes to be introduced 

in the scattered polar response. This can be seen in Figure 4-2 Ib where the same 

configuration is examined using the more exact BEM.
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Figure 4-20. Normal incidence scattered level distribution (dB) at the tilted flat plate 
frequency of 2 periods of LSD (P = 42, r = 1) predicted using the Fourier Model.

All sequences of the same family perform almost identically when considered in a l/3rd 
octave band. They vary in their performance at specific frequencies and in the overall 
variation of their diffusion coefficient with frequency. The diffusers that have r - 2 and r = 4 
display more variation of diffusion with frequency and have many dips in the diffusion 
coefficient. For this reason they are considered to perform worse than r = 1, 3 and 5. On the 
other hand the diffuser with r=3 displays a flat plate effect just like PRD it was generated 
from.

Another aspect worth taking into consideration is the maximum depth of the diffusers 
because of the space it removes from the room. For this family of LSDs r = 1 displays the 
smallest maximum depth of 21.3cm which is considerably smaller than that of the equivalent 
PRD which is 29.5cm, for the given design frequency. However, although LSD (r = 1) 
appears to be the most promising it does not perform any better than the equivalent PRD.

The dips that are evident in the diffusion coefficients of all three structures around 1.2 and 
2.4kHz are due to the periodicity caused by the repetition of the base diffuser 8 times. 
Because of this, the structures can be considered as 8 point sources spaced 25cm apart which 

will generate additional minima due to the grating lobes generated by that periodicity.
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-71/8

——— LSD (r=3)
-- - - • plane surface

-71/4

-37I/&

(a)

-71/8

LSD (r=3) 
plane surface

-37C/8,

-71/2
(b)

Figure 4-21. Normal incidence scattered level distribution (dB) at the tilted flat plate 
frequency of 2 periods of LSD (P = 42, r = 3) predicted using the Fourier Model (a) and 
BEM (b).

Using Boundary Element Modelling the performance of LSDs can be more accurately 
compared with that of the equivalent PRD (Figure 4-22). The initial prediction of the 
behaviour of the other LSD (r = 1) is shown to be quite accurate. It also becomes evident that 
it does not perform any better than the PRD with the exception of the area around 500Hz.

As shown above, at some frequencies the LSDs simply redirect the sound because they act 
like beam steerers. In general, diffusers should be dispersing sound and not simply 
redirecting it. An effective solution is to modulate the diffuser with another that, at the 
problematic frequencies, redirects sounds into another angle. Such a diffuser could be the 
inverse or the mirror image of the first diffuser or an LSD from the same family constructed 
from a step sequence of opposing inclination. Figure 4-23 displays the scattered distribution 
from such composite structures at this frequency. The main lobe of the periodic diffuser has 
been substituted by two wider lobes of less energy. Thus the incident wave is scattered more 
uniformly in comparison to the periodic diffuser.
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f(Hz)
Figure 4-22. Diffusion coefficient, as predicted using the Boundary Element Model, of 

different types of periodic Luke and Primitive Root diffusers of the same total width.

The binary sequence [1,0,0,1,1,0,1,0] was used to modulate the base diffuser, LSD (P=42, 

r=l), in the three different ways discussed in Section 3.4. Modulation improves the overall 

performance of the diffuser, as shown in Figure 4-24, because the diffusion coefficient is 

higher for all frequencies compared to the periodic case.

-71/8

——— periodic LSD
— --modulated LSD 

plane surface [

-71/4

-71/2

Figure 4-23. BEM predicted normal incidence scattered level distribution (dB) at the flat 

plate frequency for 2 periods of LSD (p = 7, r = 1) periodic and modulated with its inverse in 

comparison with a plane surface of the same width.
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periodic
inverse modulation 
mirror modulation 
LSD(r=5) modulation

0.1

300 500 1k 3k
f(Hz)

Figure 4-24. Normalised diffusion coefficient, as predicted using the BEM, of different 
modulations of LSD (P = 42, r = 1) of the same total width.

It is important to note that for the periodic case and the modulation with the mirror diffuser 
the maximum depth is 21.3cm while for the inverse it is 29.5cm and for the LSD of opposing 
inclination (r = 5) it is 32.7cm. From these three modulations the one with the inverse 
diffuser and the other with the LSD (r = 5) seem to disperse best. However, if the maximum 
depth is taken into account, the fact that the modulated with the mirror diffuser will take up 
less space from the volume of the room could make it more desirable for some applications.

The phenomenon of periodicity could be used to treat the problem of beam steering occurring 
with the LSD. Consider a structure that is composed of periodic repetition of LSDs. If the 
maximum reflection lobe could be set on the angle that a minimum of the periodicity pattern 
occurs, it could be cancelled out. Unfortunately in order for that to be accomplished a large 
number of periods must be considered while the wells must be thinned down to unrealistic 

values.
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4.3. Discussion
Two new types of diffusers have been presented and their performance has been investigated 
in comparison to a standard PRD. But which is the best sequence, Type-II Luke or Power 
Residue?

300 500 1k 3k 5k
f(Hz)1 v •—/

Figure 4-25. l/3rd octave band normalised diffusion coefficient, as predicted using the BEM, 
of different types of modulated diffusers, with their inverse, of the same total width.

Figure 4-25 indicates that the PWRDs seem to be better. It shows that the PWRD modulated 
with the inverse has better diffusion coefficients than the other surfaces. They have no 
problematic frequencies, where they are unable to scatter the incident wave, and they have a 
more uniform diffusion coefficient over this bandwidth.

The LSD (P = 42, r - 1), shown in the above figure, is more ambiguous. It is evident that 
they do not diffuse as well as the QRD and the PRD. It must be noted that these two diffusers 
display a flat plate effect at 3.5kHz even when modulated with their inverse; the l/3 r octave 
band spectra hide this effect. The periodic version of the LSDs have a tilted flat plate at that 
frequency, but when modulated manages to avoid the problem. Modulated the LSD is 
preferred to a PRD or QRD because it is well behaved until the flat plate frequency at 2lkHz.
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4.4. Further Suggestions

It is possible to use the inner symmetries of the sequences to ones advantage. Such cases are 

discussed here. In the first Sections methods to make the industry standards QRDs and PRDs 

through the use of smaller components is presented while in the second Section a new 2-D 

PRO with interesting characteristics is introduced that should be further investigated.

4.4.1. Using half a QRD or PRO instead of the full one

The use of small sequences is dictated by the need for a period of the diffuser to be small. 

This makes it easy to move and apply. For standard PGDs this results in a small integer 

generator and low flat plate frequency. PWRDs and LSDs have been presented as options of 

sequences that have generators substantially greater than their size.

QRDs and PRDs display symmetries that can be exploited to achieve a similar effect. 

Quadratic residue sequences are symmetric around the centre of the device. For P = 7 the 

sequence is sn = [0,1,4, 2, 2, 4,1], which could be rearranged in the form [2,4,1, 0,1,4, 2]. 

The diffuser can be split in half (Figure 4-26) and only one half of it to be constructed. The 

other half is the same as the first but put in a different orientation.

Figure 4-26. Half a QRD used to form a full diffuser.

So instead of using a QRD of length TV = 7 and generator P = 1 half a QRD of length At 13 

can be used. The structure to be moved and positioned would be the same approximate length 

but the generator and with that the flat plate frequency would be double.

In the case of primitive root sequences the second half is the inverse of the first half. Take for 

example the primitive root sequence of prime P = 7 which is sn = [1,3,2,6,4,5]. The 

sequence s^ = [6 ,4 , 5] is the inverse of the sequence s^' = [1,3,2]:

4.16
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The coefficients of a primitive root sequence are connected via the equation:

/ p- 1\ p-1sn = p - sn I n -1- - ' -- * ^ p
P-1 

2 4.17

This symmetry can allow for only half of a primitive root sequence to be constructed if the 
structure is has thin well terminations (Figure 4-27). In a similar scenario with the one 
suggested for QRDs the ratio of generator-to-width can be doubled.

1

Figure 4-27. PRD (p-1} split into two half that are inverse of one another.

N = 5
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Figure 4-28. The positions of the coefficients of a 20-coefficient long sequence when folded 
in a 4x5 array with the Chinese Remainder Theorem.

4.4.2. Folding PRO forming parallel PWRDs
When folding a 1-D sequence using the Chinese Remainder Theorem (see Section 1.2.2) into 
a M x N 2-D sequence one effectively samples it every M coefficients with a different 
starting point and arranges it, in inverse order, into the rows dictated by that starting point. As 
can be seen in Figure 1-3 the 1-D sequence (length 20) is folded into a 4 x 5 sequence. The 
first row of the 2-D sequence consists of the coefficients [1,5,9,13,17] inverse order
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which can be obtained from sampling the 1-D sequence every M = 4 coefficients. The second 
row displays a similar pattern ([2,6,10,14,18]) but with a starting point the 2nd 
coefficient.

As discussed in Section 4.1 power residue sequences are generated by sampling primitive 
root sequences. This suggests that by folding a primitive root sequence in the appropriate 
dimensions it can be arranged in pattern where its rows are power residue sequences. These 
sequences will be in reverse order than expected though. In order for that to happen though 
the folding dimensions have to be consecutive numbers otherwise the coefficients of each 
row will not be in the required order.

Based on the cases that have been presented (Eq. 4.7) the dimensions possible are 2x3 and 
8x9. The first case corresponds to a very small sequence but the second one looks ideal. The 
folded 2-D sequence will be:

1

10 
27 
51 
72 
63 
46 
22

37 
5 
50 
62 
36 
68 
23 
11

55 
39 
25 
31 
18 
34 
48 
42

64 
56 
49 
52 
9 
17 
24 
21

32 
28 
61 
26 
41 
45 
12 
47

16 
14 
67 
13 
57 
59 
6 
60

8 
7 
70 
43 
65 
66 
3 
30

4 
40 
35 
58 
69 
33 
38 
15

2-

20 
54 
29 
71 
53 
19 
44-

4.18

The rows as expected consist of mirrored power residue sequences.

As discussed in Section 1.2.2 a 2-D sequence with the same autocorrelation properties can be 
achieved with different folding steps. If the folding step is set to the same as the number of 
columns, 8 in this case, the power residue sequences will be in order.

1
10
27
51
72
63
46

1-22

2
20
54
29
71
53
19
44

4
40
35
58
69
33
38
15

8
7
70
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3
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6
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9
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48
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37-

5
50
62
36
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&
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When comparing the folded primitive root sequence with the power residue sequences in 
equation 4.11 it is seen that the only difference is a shift of one coefficient per row.

A PGD based on this 2-D sequence should display very good diffusion properties in the 
horizontal dimension. The performance of this diffuser needs to be tested in the future.

4.5. Summary
In this Chapter the problem of the flat plate frequency of Phase Grating Diffusers (PGD) has 

been discussed. Two new pseudorandom sequences have been presented which have much 

larger integer generators than their length. From them Power Residue Diffusers (PWRD) are 

shown to move the flat plate frequency outside the audible frequency range while Luke 

Sequence Diffusers (LSD) redirect rather than disperse the incident wave at the flat plate 

frequency. While the performance of LSDs is corrected at the critical frequency with 

modulation they are shown not to perform better than the industries standards. On the other 

hand a PWRD was proven to perform better and more uniformly than industries standards 

without displaying any frequencies were they acted like a flat plate.

In the concluding Section of this Chapter some practical suggestions were introduced as to 
how the inner symmetry of QRDs and PRDs could be used to mitigate the flat plate 

frequency problem. Furthermore, a 2-D diffuser that consists of parallel PWRDs has been 

presented that displays good potential and should be further examined.

This Chapter concludes the first Part of the thesis that investigates ways to improve Phase 

Grating Diffusers. The second Part of the thesis investigates Absorption Grating Diffusers.
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PART II. ABSORPTION GRATING 
DIFFUSERS

In 1995, the theoretical concept of a new class of sequence-based diffusers was presented by 
Angus, Absorption Grating Diffusers (AGD)[7, 27, 46]. Instead of wells of different depths 
they consisted of absorbing and reflecting patches that were positioned in a grid based on a 
binary unipolar sequence. Not being subject to the requirement of sound propagating in wells, 
as was the case with PGDs, they have a much smaller profile. Cox took the idea even further 
and introduced phase gratings in ADGs forming ternary and quadriphase sequence 
diffusers[47].

There has never been a comprehensive study on the effectiveness of AGDs. The published 
work on the subject is based on approximate prediction models that while an indication of the 
behaviour of these devices cannot conclusively prove their performance. Furthermore, there 
hasn't been any discussion of how these surfaces are going to be implemented in reality given 
that their requirement of ideally absorbing element at all frequencies is unattainable 
especially at low frequencies. The only suggestion was made by D'Antonio who used a 
pseudorandomly perforated mask in front of a layer of absorbing material[48] without 
investigating though if its behaves as an AGD.

In this part of the thesis Absorption Grating Diffusers (AGD) are being discussed. First, their 
theoretical concept is presented and a review of the related literature is made. Then methods 
of assessing the absorbing properties through analytical models and measurements are 
presented. The types of absorbing elements that can be used to implement these surfaces are 
presented and their characteristics and limitations are discussed. Later a realistic way to 
implement a surface that consists of nearly perfectly absorbing elements is presented. Then 
the performance of ideal Absorption Grating Diffusers is investigated using Boundary 
Element Modelling and their diffusion capabilities are explained. Finally, improvements to 
the performance of these devices are presented by either introducing reactive elements or 

using less absorbing element.
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Chapter 5. Introduction to Absorption 
Grating Diffusers

In this Chapter the theory behind Absorption Grating Diffusers (AGO) is presented. Their 

requirements are discussed and their advantages and disadvantages presented. Existing 

devices are mentioned and their deviation from the original concept is pointed out.

While phase grating diffusers achieve different reflection coefficients by acting on the sound 

wave's phase, binary amplitude diffusers act on the wave's magnitude by either absorbing or 
reflecting the incident wave.

5.1. Introduction
The concept was presented by Angus[7] in 1995 who used the same foundation of the 

number theory that Schroeder used for the Phase Grating Diffusers[8] presented in Section 

3.1. She suggested that if the grating the magnitude of the reflection coefficient of a surface 

rather than its phase[7]. So instead of a structure consisting of wells that produce the required 

phases of the reflection coefficient the structure would be flat and consist of areas of ideal 

absorption and ideal reflection resulting in reflection coefficients of 0 and 1 respectively.

The grating of reflection coefficients still needs to display two-level autocorrelation function 

in compliance to the Fourier Theorem (Section 2.1.2) thus a binary unipolar pseudorandom 

sequence is needed. Most binary pseudorandom sequences are designed bipolar so they 

contain coefficients of -1 and 1 but they can be converted to unipolar by switching the -Is to 

Os. While the bipolar sequences display ideal autocorrelation properties, this characteristic is 

compromised when transformed into unipolar ones as is displayed in Figure 5-1 for the case 

of a Maximum Length Sequence (MLS).

There are a number of binary sequences that consist of approximately 50% absorbing and 

reflective elements that can be used for this application such as Maximum Length Sequence 

(MLS), Legendre, Golden, twin prime, Hall sequences and others[25, 49]. Given the 

requirements of pseudorandom sequences[25] and their limited number of coefficient values, 

the short binary pseudorandom sequences are the same regardless of their type. If a sequence 

with smaller weight is required Angus[27] suggested another category of binary sequences 

with good autocorrelation function known as optical sequences. They consist of a small
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percentage of Is (around 25% for long sequences) which results in the surface being too 
absorbing or too reflecting based on whether the Is will state the reflective or the absorptive 
patches. The number of Is can be increased by combining sequences of the same family but 
that will deteriorate the autocorrelation properties of the final sequence[50].

15

12

o

—— bipolar
—— unipolar

10 12 14-14 -12 -10 -8-6-4-20246)
I 

Figure 5-1. Autocorrelation function for a bipolar and a unipolar MLS(/c=4) of period N = 15.

In this thesis MLSs are going to be used as they have good autocorrelation properties and 
they display approximately the same number of Os and Is. The percentage of Is in the 
sequence gives its weight which in the case of unipolar MLSs is close to 5Q7c. This suggests 
that at high frequencies we can expect the diffuser to absorb half the incident energy. Given 
that this thesis considers short pseudorandom sequences the MLSs used may also be another 
type of binary sequences. Even when that is the case they will be referred to as MLS in 
tribute to Schroeder who used them in their bipolar form for the introduction of PGD[6].

The case of a 1-D AGO created from the MLS (k = 3) of length N = 1 is presented in Figure

5-2.
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Reflecting 
surface
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Figure 5-2. 1-D Absorption Grating Diffuser constructed using a MLS (k = 3), sn = [0, 0, 1,0, 
1,1,1]

5.2. Advantages and Disadvantages
AGDs do not require well propagation. This means that they do not have the frequency limit 
of PGDs that are associated with well propagation which require half the wavelength to be 
larger than width of the well (Section 3.2.2). Furthermore, while PGDs have a design 
frequency that is associated with the profile of the structure this is not the case for Absorption 
Grating Diffusers. They do not have in principle a design frequency. So an Absorption 
Grating Diffuser could be implemented in theory with a small profile as long as the absorbing 
elements meet the requirement for ideal absorption. Another advantage that they have is that 
they are flat, a desirable characteristic that makes them more appealing to architects and 
decorators.

On the other hand a notable disadvantage in AGDs as presented comes from the fact that the 
reflection coefficient can take only two values. On the surface with a regular spaced grid of 
such a 2-value reflection coefficient the periodicity induced by the constant width of the 
elements will be a problem to be reckoned with. Payne-Johnson et o/[46| have presented the 
concept of varying the dimensions of absorbing patches in order to tackle this problem. 
Another improvement has been suggested by Cox et al[47] who introduced ternary and 
quadriphase diffusers that contain wells in the grating achieving added diffusion through 

cancellation.
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5.3. Reasons for Doubt
No thorough study has been carried out to identify the diffusion and absorption qualities of 
AGDs. Most of the discussion around them has used the approximate Fourier Model to 
predict their performance.

The idea of AGDs has been based on the Fourier Model which, as discussed Section 2.3.3 for 

PGDs, is an approximation of the performance of a structure, hi the case of AGDs this model 
considers that the surface performs like an array of omni-directional sources positioned in the 

place of the reflecting elements. This means that in order for the Fourier Model to apply the 
reflecting elements must scatter energy uniformly (Figure 5-3).

Fourier o n o nTheory u u u u

Absorption 
Grating 
Diffuser

O point source V//////\ reflecting plate

vacancy l.;:. : i::l:"" : :1 perfect absorber 

Figure 5-3. Fourier theory equivalent of a AGD.

So the questions that arise are:

"Can the reflective elements scatter energy uniformly as required by the Fourier Model?"

In the case that they can:

"Is the scattered energy substantial to achieve diffusion?"

Another issue with their design concept is its requirement for elements of ideal absorption 
steady with frequency. This is difficult to achieve in reality especially at low frequencies. So 

another question is:

"How can an ideal or near ideal absorbing element be implemented in reality?"
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An AGO has been constructed by RPG and bears the name BAD™ panel[48]. It consists of a 

mask with pseudorandomly arranged perforations positioned in front of a layer of porous 

material (Figure 5-4). The holes are considered to perform as Helmholt/ Resonators and act 

as the absorbing elements of diffuser while the rigid areas of the mask act as the reflectors. 

The mask is covered by an acoustically transparent fabric for aesthetic reasons. This 

implementation of an AGD is easy to construct and light in comparison to PGDs which 
makes it cheaper to make and easier to mount on a wall.

Figure 5-4. BAD IM panel manufactured by RPG.

The perforated mask in front of a porous material is a configuration that is used to form 

absorber as will be discussed in Section 6.4.2. The holes are arranged periodically in that 

setup and the whole surface acts as an absorber consisting of Helmholtz Resonator with 

identical absorption which is enforced by the regular arrangement of the holes. There is no 

evidence to support that by making the mask pseudorandom the holes will behave 

independently with the same absorption characteristics. On the contrary the behaviour of a 

perforation is dependent on its spacing with neighbouring ones. So the question is:

"Is it possible to construct an Absorption Grating Diffuser using a perforated mask in front 

of a la\er of porous material?"

In this part of the thesis the answer to the above questions will be investigated. In Chapter 7 

impedance tube measurements are used to investigate the performance of perforated masks in 

front of porous materials and to establish whether they can meet the requirement of the theory 

of AGD for ideally absorbing and reflective elements. Then in Chapter 8 the prediction of the 

performance of AGD is conducted using Boundary Element Modelling. Their characteristics
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are investigated and their diffusion and absorption capabilities are discussed. Finally, in 

Chapter 9 improvements to the original design are suggested.

In order to set the theoretical background of study presented in Chapters 7 and 8, an 

introduction to the coefficients, prediction models and measurement techniques that are used 

in this part are presented in the following Chapter.
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Chapter 6. Absorbers
Before investigating the scattered pressure distribution from partially absorbing surfaces a 

surface must be characterised. In this Chapter absorbers are discussed. Measures used to 

describe their performance are presented along with different types of absorbing elements. In 

addition, measuring methods are outlined.

6.1. Measures
The term absorber is used for materials or structures that absorb significant acoustical energy. 

Absorbers have been studied meticulously for over a century, and there are accepted 

measures that can be used to access their performance.

The design concept of the sequence generated diffusers is based on the Fourier Model (see 

Section 2.1.2) which requires knowledge of the distribution of the reflection coefficient. It is 

defined as the fraction of the reflected pressure pref and the incident pressure on the surface 

Pine over the from the surface:

R = P^L
Pine 6.1

reflected

Figure 6-1. Sound reflection from through a surface.

Its magnitude gives the amount of pressure reflected of the surface while its phase is the 

phase change between the incident and the reflected wave. All the information required to 

characterise a surface as far as its reflecting and absorbing properties are contained in the
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reflection coefficient for a given surface but it is angle dependent. There is another 
coefficient that is not dependent of the angle, the surface impedance[51]:

1 + R 
Zs cos 0/>) 'l-R 6.2

where pQ and c0 are the density and the speed of sound in air and i// is the angle of incidence 
(see Figure 6-1). The real part of the surface impedance is known as the resistance and it 
gives a measure of the energy loss while the imaginary is known as the reactance and it gives 
the phase change.

As mentioned in Section 2.1.1 Boundary Element Modelling (BEM) requires the surface 
admittance as an input. The surface admittance is the inverse of the surface impedance:

1 = cosQ/Q 1 - R
zs Po c0 'l + R 6.3

In most practical application, the real valued absorption coefficient based purely on energy is 
most commonly used to characterise the absorbing capabilities of a surface:

In this thesis all impedance and admittance coefficients are going to be normalised to the 
characteristic impedance of air (z0 = ppC0 ):

_
n p0 c0 cosO/>) l-R

6.5

The aforementioned coefficients all refer to the characteristics of a surface. There are others 
that refer to the characteristics of the material. Such coefficients that are going to be used in 
this thesis are the characteristic impedance z< and the characteristic wavenumber kc which are 
used to estimate the surface characteristics of different layers of absorbing materials as is 
discussed in the following Section.

6.2. Prediction models
The use of analytical models has been studied in acoustics to allow for the prediction of the 
surface characteristics of a layer of porous absorbing material. The main interest of this thesis
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is centred on the surface characteristics, as this knowledge is required from all scattering 
simulation techniques used (BEM and Fourier Model).

Transfer Matrix Model

Allard[52] describes a model for predicting the surface impedance zs . +i of a multi-layered 

absorbing surface if the characteristic impedance z,, the characteristic wavenumber k, and the 
depth di of each layer are known. In the case that the wave is propagating normal to the 
surface (Figure 6-2) the problem has only one dimension.

(i+l flayer
k " D

incident

reflected

i* layer

transmitted

reflected

Pl, Px,

(/-I flayer 
k,.\, z,.\, p,.\

transmitted

d, 
Figure 6-2. Geometry of the propagation of sound through a multi-layer medium.

By taking into account the continuity of the pressure and the velocity at the boundaries, the 
surface pressure and velocity on the boundaries of the layer can be connected if the 
characteristics of the layer are known:

Pit PXi

Ur

7

COt(Mi)
6.6

•thwhere the subscripts /, and x, refer to the values at the top and the bottom of the / layer 
respectively and the subscript / refer to the characteristics of the /th layer, while p is the 
density, d is the width of the layer and (o is the angular frequency.

From equation 6.6 the surface impedance of the / th layer zs . +1 can be estimated if the surface 

impedance of the (M)th layer zs . and the characteristics of the /'th layer are known:
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6.7

In the case of only one layer of absorptive material in front of a rigid backing (Figure 6-3) the 
surface impedance (M)th layer is infinite. Equation 6.7 is simplified to:

_ -jzSi Zj +
= —jZi cot(kidi)

6.8

Equation 6.8 allow for the characteristics of any surface to be calculated from the 
characteristic impedance and wavenumber of the layer behind it.
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Figure 6-3. Geometry of the propagation of sound through a single layer medium in front of a 
rigid backing.

Prediction models of the characteristic properties of a porous material
There are a number of prediction models that estimate the characteristic impedance and 
characteristic wavenumber of a porous material[52]. These are empirical or theoretical 
models that focus on the characteristics of an infinite layer of a known acoustic medium. For 
their application a number of characteristics of the medium are needed, for example the flow 
resistivity in required for the Delany and Bazley model[53]. Furthermore, they have 
limitations in their bandwidth of application.

hi this thesis the characteristic impedance and wavenumber of the porous materials 
investigated are going to be obtained by measurements in an impedance tube as will be 
presented in Section 6.3.2. This method has the advantage that it does not require previous 
knowledge of the characteristics of the material and it is limited in bandwidth only by the 
limitations of the tube. Furthermore, they will allow for better comparison of scattering
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between measurements and simulations for the performance of Absorption Grating Diffusers 

(AGO) as the characteristics used in the simulations will correspond to the actual material 

used in the measurement rather that their estimation from its properties.

6.3. Impedance tube measurements
To develop AGDs requires knowledge of the absorption properties of porous materials and 

Helmholtz Resonators. In order to attain this information impedance tube measurements were 

carried out. In this Section the measurement methods to acquire either the surface impedance 

or the characteristic impedance and wavenumber used in this thesis are going to be discussed.

6.3.1. Surface impedance measurement

The surface impedance of a structure can be measured in an impedance tube. The 

measurement is carried out under the plane wave conditions enforced by the tube. The 

method used during this thesis was the transfer function method[54] the setup of which can 

be seen in Figure 6-4.

loudspeaker ;r

, X] v • ^'••'••.••.'•:
^ s a

A'2 ">:i

Figure 6-4. Impedance tube setup for measuring surface impedance.

By measuring the pressure at two positions (A,, .\2 ) the transfer function between the two 

positions is found:

p2 e jkX2 + R • e
H = — = ——————————— 6.9 

+ R • e-

The reflection coefficient is found by re-arranging 6.9:

R = 6.10
e -jkx2 _

Once the reflection coefficient is known then the surface impedance zs and the absorption 

coefficient a can be found via equations 6.2-6.4.
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In order for this method to work the pressure at the two points must be different. So the 
spacing between them must not be too small compared to the wavelength while being smaller 
than it. This translates to the transfer functions frequency limits:

0.45c
fu<

-*2 1
6.11

™20 • I*! - x2 \

where x\ and x2 are the distances of the two microphones from the sample (see Figure 6-4).

The frequency range can be extended by using more than two microphone positions. That 
would create more pairs of measurements and as a result a wider applicable bandwidth.

This solution applies only for plane wave propagation. Such conditions can be reached in an 
impedance tube (Figure 6-4) up to the cut-off frequency:

JU -""* -ft .- , 02 a 6.12

where c is the speed of sound of the medium (air in this case) and d is the maximum width of 
the tube. In the case that the tube has a circular cross-section, d is the diameter while if the 
cross-section is rectangular it is the diagonal. The system of equations 6. 1 1 and 6.12 gives the 
overall frequency limits of this measuring system.

This method used to measure the surface impedance of Helmholtz Resonators is going to be 
discussed in the following Chapter. The square impedance tube of Figure 6-5 is used. It has a 
cross-section of 5.4x5. 4cm 2 and Vi inch microphones are positioned at x\ - 9.93cm and x2 = 
15.03cm from the end of the tube. So the frequency limits of the tube are 3007/z and 3kHz 
and the Briiel & Kjaer Pulse 3560 was used for the data acquisition and analyses[55]. Swept- 
sine signal[56] that was generated from the analyser was used for the measurement.

In order for Helmholtz Resonators to be tested in front of a volume of air or a layer of porous 
material an extension of varying depth is used (Figure 6-6). In this way perforated plates can 
be securely fixed between the tube and the extension. The termination and parts of the sides 
of this extension are wooden so it is not perfectly rigid. When tested the extension gave an 
absorption coefficient of 0.05.
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Figure 6-5. Square impedance tube with cross-section 5.4x5.4cm2 , ¥2 inch microphones 
positioned at*i = 9.93cm and x2 = 15.03cm (frequency range 3QQHz <f< 3kHz).

Figure 6-6. Impedance tube extension of adjustable depth with wooden termination.

The plates that are used for the measurement are substantially larger than the cross-section of 

the tube (Figure 6-7) as they need to be big enough to be screwed on. By creating a hole on 

the plate a Helmholtz Resonator is formed. Measurements using this technique will be 

presented in Section 6.4.2.
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Figure 6-7. Plate geometry.

6.3.2. Measurement of characteristic properties

The knowledge of the surface impedance characterises a specific layer of an absorbing 

material, but it does not contain any information about the behaviour of a layer of different 

depth. In order to obtain that information, the characteristic impedance and characteristic 

wavenumber are needed which though eq. 6.8 can give the surface characteristics of any layer 

of a given material. These properties can be acquired through impedance tube measurements.

The measurement can be done through the measurement of the surface impedance of two 

different thicknesses of a material[57] but in this thesis the estimation was from transmission 

loss measurements[58]. The reason the two thickness method is not used is because it 

requires measurement of the surface impedance two samples of exactly the same properties 

that are cut in two different thicknesses. The existence of two different samples introduces 

possible errors in the measurement method that are not present in the transmission loss 

method that uses a single sample.

d

Figure 6-8. Impedance tube setup for measuring characteristic impedance and characteristic 
wavenumber.
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The material characteristics can be measured using an impedance tube in the setup displayed 

in Figure 6-8. The characteristics of a medium are contained in the four transfer matrix 

components 7,,, r, 2 , 721 and T22 that connect the pressure p and particle velocity u of the 

sound wave at the two surfaces of the material[58].

-u heft -721 T22 . u •
6.13

right

This is a system of two equations with the four transfer matrix components unknown. By 

testing the same sample under two different impedance tube terminations a solvable system 

of four equations is created:

•p r p°-
U r U°- left

Tn T12

^21 ^22-

=

p r p o-

ur u°.
6.14

J right

where the superscripts indicate the two different impedance tube terminations, r for rigid and 

o for open-tube.

The pressure and particle velocity at each side of the sample can be expressed as[58]:

pleft = Ae>kx + Be-' kx, uleft =—

De~ikx, uriht = -
6.15

right

By measuring the pressure at two points on either side of the sample the coefficient A, B, C 

and D are estimated:

A =
- p(x2 )e~JkXl

B =
2jsin(k(xl -

6.16

C =
p(x3 )e~jkx* -

2jsin(k(xl -
D =

2jsin(k(x1 —

Substituting eq. 6.15 in 6.14 one gets:
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6.17

The system of equations 6.16 and 6.17 can be solved to produce the transfer matrix 

components Tn , T\ 2 , T2 \ and Tn from the pressure measurements.

Once these components are known, the characteristic impedance and wavenumber of the 
material can be calculated[58]:

6.18

6.19

where d is the depth of the material tested.

The system used for the measurement was the Briiel & Kjasr 4206-T impedance tube kit[59] 

displayed in Figure 6-9. It consists of two tube components of different diameter that can be 

attached to the speaker (left end of the tube) and four !/4 inch microphones. The wider tube 

component is supplied with three microphone positions on each side of the sample allowing 

for the frequency ranges of eq. 6.11 to be extended. The wide one (diameter of 10cm) (Figure 

6-9a) has frequency range from 500//Z to 6AkHz and the smaller one (diameter of 2.9cm) 

(Figure 6-9b) has 50//z to 1.6kHz resulting in the kit having a combined frequency range 

from 50//z to 6.4kHz. The signal that was used for the measurement was a swept-sine[56] 

generated from the Briiel & Kjasr Pulse 3560[55] analyser.

The characteristic impedance and wavenumber of black open cell was measured with this 

method and they are presented in Figure 6-10 and Figure 6-11. These measurements will be 

used in Section 9.2 where the scattered pressure distribution from a surface that partly 

consists of this material is going to be simulated in BEM.
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Figure 6-9. Bruel & Kjaer 4206-T impedance tube kit for measuring characteristic impedance 
and characteristic wavenumber.

450
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Figure 6-10. Impedance tube measurment of the characteristic impedance c, of black open 
cell foam.
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Figure 6-11. Impedance tube measurement of the characteristic wavenumber kc of black open 
cell foam.

6.4. Types of absorbers
Since there is a requirement of absorbing elements in the design of absorption grating 
diffusers it is important to point out methods for their implementation.

6.4.1. Layer of porous materials
The most common absorbing materials are porous. Their absorbing characteristics are due to 
viscous losses as the sound penetrates through the pores. The surface impedance of a layer of 
porous material can be either measured directly in an impedance tube (see Section 6.3.1) or 
can be estimated from the characteristic impedance z, and characteristic wavenumber kc of 
porous material using the Transfer Matrix Model (eq. 6.8). When the surface impedance is 
known the other surface coefficients of the material can be calculated as discussed in Section 

6.1.

The trend of the absorption coefficient of 5cm of foam estimated from the characteristic 
impedance and wavenumber, measured in the previous Section, can be seen in Figure 6-12. 
The disadvantage of implementing the absorbing element, of an Absorption Grating Diffuser,
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in this fashion is the requirement of a substantial depth of the absorbing material to achieve 
absorption close to 1 at low frequencies. This becomes evident in this graph where the first 
peak of substantial absorption is achieved when a quarter of the wavelength fits into the depth 
of the material (f= I.ikHz).

1000 2000 5000 60003000 4000
f(Hz)

Figure 6-12. Absorption coefficient of 5cm deep open cell estimated from its characteristic 
impedance and wavenumber.

6.4.2. Helmholtz Resonators
A simple device that can achieve low frequency absorption without requiring too much space 
is the Helmholtz Resonator (Figure 6-13). They are devices that absorb acoustic energy and 
re-radiate it when the acoustic pressure drops. They are named after Hermann Von Helmholtz 
who first wrote about them in 1863 [60]. He suggested them as tuners since they can be set-up 
very accurately to reinforce a specific frequency. Baron Rayleigh presented a more extended 
theoretical analysis of the function of such resonators in 1896[61]. Although these are the 
first scientific references on Helmholtz Resonators their history and applications go a long 
way back. They have been used in ancient Greek and Roman open theatres to increase the 
reverberation times and reinforce the performer's voice as well as in many early churches to 
provide absorption by resonance[62].
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A Helmholtz Resonator is the acoustical equivalent of mass on a spring and consists of an 

empty cavity with a neck (Figure 6-13). So its function can be split into two components the 

mass of air in the hole and that in the cavity. The volume of air in the cavity acts as a spring 

and the air in the neck as the mass that oscillates. When the device is exposed to the resonant 

frequency the air in the neck will oscillate and energy will be lost due to friction with the 

sides of the neck and also dispersed from the sides of the cavity. For frequencies away from 

resonance the absorption is minimal unless the hole is sub-millimetre in size[63].

Figure 6-13. A Helmholtz Resonator and its mechanical equivalent.

Similar to its mechanical equivalent the resonant frequency of the Helmholtz Resonator 

is[64]:

6.20

where c is the speed of sound, S is the area of the opening, V is the volume of the cavity and 

t' the length of the neck including the end correction:

t' = t + 28a ,.,
O.Zl

where a is a characteristic size of the opening (ex. the radius for a circular perforation) and S 

is the end correction.

The end correction is considered to approximate the fact that it is not only the mass of air in 

the neck that oscillates but air close to the opening as well due to the radiation impedance. 

This effect has its roots in the flow of air through a structure with varying cross-section. The 

flow lines narrow in the smaller cross-section and cause the particle velocity to increase. The 

opposite effect occurs when the air moves from the smaller cross-section to the bigger one.
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There is a transition state between the two cross-sections where the flow lines narrow and 
widen. In the case of Helmholtz Resonators this transition state of the flow lines results in 
more than just the air in the neck to participate in the oscillation. For a baffled circular neck 
opening where a is the radius of the opening the end correction is d = 0.85.

By altering the stiffness of the spring or changing the mass of the mechanical oscillator, the 
resonant frequency can be varied. By changing the size of the cavity or the neck of the 
resonator, the resonant frequency of the Helmholtz resonator can be tuned.

Figure 6-14. Helmholtz Resonator with cavity volume V, hole-depth d and hole-radius a, 
morphed into a surface.

A Helmholtz Resonator can be morphed into a flat surface as is depicted in Figure 6-14. The 
neck in this case is the hole-area of a perforated plate. The absorption coefficient of this 
structure can be measured in an impedance tube (see Section 6.3.1). The performance of a 
Helmholtz Resonator with design frequency fr = 9007/z (cavity volume V= 38cm 3 , hole-area 
5 = 2cm2 and hole-depth / = l.5mm) is displayed in Figure 6-15. It achieves maximum 
absorption at resonance while at other frequencies the absorption is minimal with the 
exception of the area around 1.9kHz. This second resonance is due to the vibrating plate of 
thickness t that forms the top of the device. If the plate was solid it would be expected to 
display resonance at 2AkHz. Here due to the hole it has less mass and therefore it has shifted 
to lower frequencies. By altering the stiffness of the plate this peak will shift and can be 
pushed out of the frequency range of interest.
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The Q factor of the absorption coefficient is relatively large and the bandwidth of absorption 

is small, as losses are relatively small. Given that the absorbing elements need to display 

ideal absorption for a substantial bandwidth the use of Helmholtz Resonators in this form 

does not meet the requirements for absorption grating diffusers. In order to achieve 

absorption for a wider frequency range absorbing material must be included in the volume. 

The Helmholtz Resonator when the cavity is occupied with absorbing materials is referred to 
as "loaded"

500 1000 2000 2500 30001500
f(Hz)

Figure 6-15. Measured absorption coefficient in an impedance tube of a Helmholtz Resonator 
morphed into a surface with resonant frequency/,. = 9007/z (cavity volume V = 38cm3 , hole- 
area S = 2cm2 and hole-depth t = l.5»un).

Loaded Helmholtz Resonators

The existence of absorbing material usually moves the resonance to higher frequencies and 

reduces the peak of absorption, while the Q factor will decrease as the hole-diameter 

augments. The shift in the resonant frequency and the increase in the bandwidth of absorption 

are results of the added damping in the cavity.

Periodically repeated loaded Helmholtz Resonators on an infinite surface have been 

studied[65]. They can be implemented by considering a perforated surface a distance from a
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rigid backing. Above a certain frequency, they can be approximated by considering only one 
period of the surface. Each period due to the symmetry of the surface can be considered as an 
independent Helmholtz Resonator. The volume of the resonator will be the one contained in a 
period as is portrayed in Figure 6-16.

2« 
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Figure 6-16. Periodically perforated surface backed by absorbing material in front of a rigid 
backing.

The resonant frequency of a perforated surface in front of a rigid backing can be found by 
adapting equation 6.20:

6.22

where c is the speed of sound in air d the distance between the perforated plate and the 
backing, /' is the plate thickness f including the end correction and e is the open area of the 

plate which is given by the equation:

na 2
6.23

where a is the radius of the hole and D is the period of the surface. 

The vibrating mass of air in the volume is:

-

where p is the density of air and 6 is the end correction.

The end corrections have been estimated by Ingard[66] for circular (where a is the radius of 
the hole) and square apertures (where 2a is the side of the hole) and small open areas (e < 
0.16). But Cremer and Muller[64] have presented an estimation of the end correction for open 

areas up to the limited case of e = 1 :
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8C = 0.8 (l - 1.47 • £ V2 + 0.47 • f 3
6.25

Even though the knowledge of how to estimate the resonant frequency is an important first 
step in understanding the behaviour of these devices, it is not enough to allow for accurate 
prediction of their behaviour. Another, important information is losses within the device. The 
losses when the cavity of the resonator is empty stem from the friction in the neck which is 
negligible if the holes are not sub-millimetre.

That is the reason why in order to achieve some absorption, away from the resonant 
frequency, absorbing material must be included in the volume. If the volume is filled with 
absorptive material as Figure 6-16 shows, the hole can be considered to be filled with the 
material as well due to radiation impedance. The air that flows through the hole will come up 
against the resistivity of the material. Due to radiation impedance the losses will be from the 
portion of absorber that is behind the cross-section of the hole:

_od_ 
Tm ~~ 6.26

The transfer matrix prediction model which was analysed in Section 6.2 can give a complete 
solution of the performance of a periodically perforated surface if the characteristic 
impedance zc and wavenumber kc , of the absorbing material, are known. The surface 
impedance of the absorber behind the perforation zx \ will be:

If the mass effect of the perforation is added to surface impedance of the absorbing material 
the surface impedance of the perforated surface can be estimated:

t' 
zs2 = -jup + Zsi 6 .28

In Chapter 5 where the concept of Absorption Grating Diffusers was presented they were 
described as surfaces with pseudorandomly arranged absorbing and reflecting elements. If 
loaded Helmholtz Resonators are going to be used for their implementation then the 
performance of non-periodic arrangements of resonators needs to be investigated. Such 
structures have not been meticulously investigated and the only reference to their 
performance is that they absorb like a periodic arrangement of Helmholtz Resonators with the



97

same open area, provided that the distances between the holes are large in comparison to their 
diameter[64].

6.5. Summary
In this Chapter acted as a literature review on absorbing structures. The basis for assessing 
the qualities of such elements was presented. The methods for the prediction and 
measurement, in an impedance tube, of their surface and characteristic coefficients that are 
used in this thesis were illustrated. Absorbing structures that will be used as elements of the 
Absorption Grating Diffusers were presented and their performance characteristics were 
discussed.

In the following Chapter whether an Absorption Grating Diffuser which can be implemented 
by incorporating loaded Helmholtz Resonators in a surface is going to be investigated. In 
order to do so a wider band of absorption from these devices will be attempted while the 
discussion on the behaviour of non-periodic arrangements of Helmholtz Resonators is going 
to be extended.
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Chapter?. Implementation of the 
absorbing elements with perforations on a 
mask

One way of implementing the Absorption Grating Diffusers (AGO) considers a layer of 
absorbing material behind a randomly perforated surface (Figure 5-4). It considers the holes 
to act as loaded Helmholtz Resonators (absorbers) and the rigid areas as reflectors. Such 
structures can achieve absorption in the hole-areas close to the ideal requirement of AGDs for 
a small bandwidth. Before work can be carried out in sequence design and optimization 
methods, a better understanding of how perforated surfaces act must be reached. Also a 
number of implementation issues need to be addressed. There is a need to make the absorbing 
parts performing the same regardless of how close the neighbouring absorbing parts are 
located. Finally, the absorbing patches must be made to display stable absorption coefficient 
equal to 1 for a considerably large bandwidth.

There is no analytical theory that can predict the surface admittance distribution on the 
surface of such a structure. Investigation of their behaviour is going to be conducted with 
impedance tube measurements while the applicability of using the measured surface 
admittance in Boundary Element Modelling (BEM) simulations is going to be studied.

7.1. Holes on a mask
The issues with using a perforated surface in front of layer of porous material is that the holes 
behave like Helmholtz Resonators resulting in very absorbing surfaces. Furthermore, away 
from resonance the absorption achieved is poor. So the resulting surface acts similarly to a 
periodic surface of the same open-area, as suggested in the previous Chapter. The holes 
interact both inside and outside the cavity resulting in the performance averaging out across 
the surface. In order for such a device to be used as an AGO it has to consist of purely 
absorbing and reflective elements.

Some insight to the behaviour of perforated surfaces can be found through surface impedance 
measurements in an impedance tube with a square cross-section (Figure 6-5). This setup 
allows for the prediction of the surface characteristics of periodic surfaces to be measured. By 
measuring a single period of such a surface it can be considered to be identical to an infinitely
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wide periodic surface by considering its mirror images in respect to the sides of the tube[67]. 
Two simple examples are portrayed in Figure 7-1.

H I ';•' m
Figure 7-1. The cross-section that is tested in the square impedance tube can be considered to 
be a single period of an infinitely wide surface.

7.2. Helmholtz Resonator impedance tube measurements
For the measurements the square tube presented in Section 6.3.1 is used using the adjustable 
extension (Figure 6-6) so that the perforated plates can be fixed in front of a volume of air or 
a layer of porous material. Some of the patterns of sample plates that were tested are 
portrayed in and Figure 7-2.

Figure 7-2. Sample plates out of 1.5mm aluminium sheets.

Helmholtz Resonators with empty cavity were tested with the hole located in the centre of the 
sample area. In Figure 7-3 the absorption coefficient of cases, with 29mm cavity depth and 
1.5mm plate thickness, for different hole-diameters are presented. Unfortunately, the
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resonances of the perforated plates around L6kHz limit the measurement bandwidth. As a 
result of this, the resonant frequency of large open area plates cannot be seen. In order to 
minimise the resonance of the plate either damping of the vibration of the plate must be 
imposed or a thicker plate must be used for the measurement. Another solution would be to 
use plates of a different material that would be stiffer than the aluminium used.
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Figure 7-3. Absorption coefficient of Helmholtz Resonators with the hole in the center of the 
sample of varying hole-diameters (d) for the same cavity volume (2.9x5.42cm3) and plate 
thickness (1.5mm).

The absorption achieved with the empty cavity does not achieve stable absorption for a 
substantial bandwidth. In order to achieve a broader bandwidth of application the cavity of 
the resonator must be filled with absorbing material. If the cavity is filled with highly 
resistive material then the resonance can be damped. This would result in a lower but wider 
absorption peak. To illustrate this effect layered mineral wool is used in the cavity. This 
material consists of layers of mineral wool densely packed and compressed resulting in a 
highly resistive material. The normalised surface impedance for a layer of 29mm in relation 
to air can be seen in Figure 7-4. The resistivity of the material which is given by the real part 
suggests that the surface displays twice the resistivity of air.
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Figure 7-4. Measured normalised surface impedance of a layer of 29mm of layered mineral 
wool.
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Figure 7-5. Absorption coefficient of Helmholtz Resonators with the hole in the center of the 
sample of varying hole-diameters (d) for the same cavity volume (2.9x5.42cm3 ) and plate 
thickness (1.5mm) loaded with layered mineral wool.
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Some measurements of the loaded Helmholtz Resonators with this mineral wool occupying 
its cavity are displayed in Figure 7-5. The depth of the cavity was set to 29mm and the same 
plate samples were tested as before. These results are very encouraging for AGO design. 
Their steady absorption with frequency can be adapted in the concept of the design; however 
the absorption coefficient is less than unity.

As can be noticed the plate resonances that were evident in the case of the empty cavity in 
Figure 7-3 have gone. The mineral wool is in contact with the plate providing damping to the 
plate. The small peaks of plate resonance that can still be seen in the figure would be reduced 
even further if the mounting conditions are changed; so it is something that isn't an issue for 
this discussion.

7.3. Helmholtz Resonator BEM simulation
Since BEM will be used in the prediction of the performance of AGDs a useful idea is to see 
if the same results can be produced through simulation. The input data that are going to be 
used are from measurement in the impedance tube. So the level of agreement between 
simulation and measurement will correspond to whether BEM can accurately reproduce its 
input.

For this reason the geometry of the measurement is introduced in a direct 3-D BEM[68] with 
all the surfaces being considered perfectly reflecting with the exception of the sample area. 
Instead of the speaker, a point source is considered close to the side were the speaker is 
located. This replacement should go unnoticed as inside the tube plane wave propagation will 
be forced. BEM can estimate the pressure at the positions were the microphones are located 
in the measurement. Once these pressures are known, the transfer matrix method can be used 
to estimate the surface impedance and absorption coefficient using eq. 6.9 and eq. 6.10.

Since the performance of this over-damped Helmholtz Resonator cannot be calculated from 
any model, the measured data will be used for the simulation. The sample area of the tube is 
considered to be uniformly absorbing with the surface admittance characteristics previously 
measured. Figure 7-6 presents the BEM estimation in comparison to the measured input. The 
agreement is within ±0.03 while it is even better in the low and mid frequencies.
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Figure 7-6. BEM prediction for uniform admittance distribution in the sample area. The input 
was the measured surface admittance of a Helmholtz Resonator with the hole in the center of 
the sample.

Given the acquired agreement over the bandwidth measured, a perforated surface can be 

considered to consist of 5.4x5.4cm2 patches with uniform admittance. For the absorbing ones 

the measured admittance of a Helmholtz Resonator can be used, while for the reflecting an 

admittance of 0 can be used.

Another way of considering the distribution is for the admittance to be concentrated in the 

hole-area; while the rest of the surface is considered to be totally reflective. In order for the 

adequate surface impedance to be estimated the surface impedance of the Helmholtz 

Resonator has to be multiplied with the open area of the perforated surface. The reason for 

this is the radiation impedance that occurs as sound propagates through the holes:

^holes 

$surf
uholes

uholes
=«
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7.1
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where uinc is the particle velocity above the perforated surface uholes is the particle velocity in 

the holes and SSttrf and Shoies are the surface of the plate and the holes respectively. The 
pressure p right outside and just inside the perforation is considered to be the same due to the 
radiation impedance of the perforation.

If the case of the measurement of a single perforation with a diameter of 16mm is considered 
then the absorption coefficient of the hole-area based on eq. 7.1 is displayed in Figure 7-7. 
The absorption coefficient is close to one throughout the investigated bandwidth which 
complies with the concept of perfectly absorbing and perfectly reflecting parts.
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Figure 7-7. Absorption coefficient when all the admittance of the Helmholtz Resonator (d 
16mm) is concentrated in the hole-area.

A way of seeing if this correspondence can be used is to see if the same results can be 

achieved using BEM. In this case the absorption is considered located only in the hole-area 

while the rest of the surface is considered perfectly reflecting.

For this reason the sample area has been meshed in the manner shown in Figure 7-8. The 

light grey area is the reflecting area while the dark grey is the absorbing. The BEM code used 

does not allow for curved elements to be modelled so the circle was approximated by a
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16side regular polygon. A rectangle with a large number of equal sides inscribed in a circle 
has almost the same surface with the circle. Such an approximation does not alter the 
simulation as the elements are much smaller than the wavelength.

Figure 7-8. Boundary Element modelling sample meshing (light - reflecting, dark 
absorbing).
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Figure 7-9. BEM prediction of the absorption coefficient of a Helmholtz Resonator when 
only the hole-area in absorbing. The input is the measured surface admittance of a Helmholtz 
Resonator divided by the open area.
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The BEM result in Figure 7-9 shows similar pattern with the measured absorption coefficient. 

It under predicts the graph by 0.01 at low frequencies a difference that keeps increasing with 

frequency resulting in a substantial error (>0.1) at high frequencies. The error is due to the 

imaginary part of surface impedance (Figure 7-10) that corresponds to the reactive behaviour 

of the sample. The reason for this increasing error in prediction is due to the fact that when 

estimating the surface impedance in the hole-area the contribution of the plate was included.
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Figure 7-10. BEM prediction of the normalised surface impedance of a Helmholtz Resonator 
when only the hole-area in absorbing. The input is the measured surface admittance of a 
Helmholtz Resonator divide d with the open area.

This suggests that perforated surface could be approximated with absorption occurring only 

in the hole-area. The case tested above refers to a periodic surface. In the case of non-periodic 

perforations, the impedance corresponding to each hole-area would be different as shown in 

the next Section.
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7.4. Different perforation patterns
In order to see how the performance changes for different patterns of perforations several 

measurements have been carried out and are presented in Figure 7-11. In all the cases the 

absorption coefficient is constant across frequency (Figure 7-7). If the admittance is 

considered to be concentrated only in the hole-area the resulting absorption coefficient of the 

hole would be close to 1 for all the perforation patterns as was seen for the case of a single 

perforation of 16mm in diameter (Figure 7-12).

500 1000 2500 30001500 2000
f(Hz)

Figure 7-11. Absorption coefficient of loaded Helmholtz Resonators of varying patterns of 
perforation for the same hole-diameters (16mm), cavity volume (2.9x5.4 cm3) and plate 
thickness (1.5mm).

The existence of the layered mineral wool results in the reactance of the device being very 

low. For the cases presented above the normalised surface admittance can be seen in Figure 

7-13. The imaginary part of the surface admittance is close to zero for the cases that consist 

of more than one perforation.
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Figure 7-12. Absorption coefficient of the hole-area of loaded Helmholtz Resonators of 
varying patterns of perforation for the same hole-diameters (16mm), cavity volume 
(2.9x5.42cm3) and plate thickness (1.5mm). 
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Figure 7-13. Normalised surface admittance of the hole-area of loaded Helmholtz Resonators 
of varying patterns of perforation for the same hole-diameters (16mm), cavity volume 
(2.9x5.42cm ) and plate thickness (1.5mm).
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Based on the pattern of the perforations, different performance is achieved. As can evidently 
be seen in Figure 7-14 devices with the same open area can perform differently based on how 
the holes are distributed. The top three graphs have an open area of 28% while the bottoms 
two have 7% open area.
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Figure 7-14. Loaded Helmholtz resonators in two groups with samples in the same group 
having identical open area (top 3 lines - 28%, bottom 2 lines - 7%).

As can be seen the perforation pattern plays a significant role in performance of the surface. 
Surfaces with the same number of holes provide different absorption based on the spacing of 
the perforations due to different end correction. This is obvious in the case of the absorption 
coefficient of a single 16mm hole. The absorption coefficient is higher for the perforation 
located in the middle of the sample area compared to the corner (bottom two lines of Figure 
7-14). These two cases, while having the same open-area, represent different perforation 
patterns and thus display different end corrections. The perforation in the corner performs 
like a larger hole in a wider pattern (Figure 7-1). This is evident from the fact that a single 
perforation of 32mm in diameter positioned in the centre and 4 perforations of 16mm 
positioned in the 4 corners display the same absorption coefficient (±0.05) (Figure 7-14). 
This is due to the fact that a hole in the corner combined with its three mirror images from the
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sides of the tube will result in a group of closely spaced perforations which will appear as one 
larger one (Figure 7-15). Two patterns with the same open-area that are different end up 
displaying the same end correction.

The drop in the absorption coefficient of patterns with perforation in the corners of the 
sample at high frequencies is due to the wavelength becoming similar to the width of the 
tube. This suggests that half a wavelength fits into the diagonal of the tube resulting in low 
pressure at the corners of the tube hence low absorption in the corners.

Figure 7-15. Same pattern emerging from different hole configurations.

This suggests that the pattern of the perforations plays a key role in the absorption 
characteristics of such surface. To the extent that a number of holes will appear as one larger 
one if placed close together compared to the wavelength. Be that as it may, if the absorption 
is considered to be concentrated in the hole-area it will be close to 1 regardless of the pattern 
and average achieved absorption of the surfaces.

So using dense layered mineral wool behind the perforated mask one can achieve the basic 
requirements for the implementation of AGDs. The high resistivity of the material dampens 
the resonant behaviour of the holes and results in stable absorption in the bandwidth 
investigated resulting in a surface that is not highly absorbing. The absorption coefficient of 
the perforations has been shown to be close to 1 regardless of their spacing. This agrees with 
the requirement of ideally absorbing and reflecting elements stated by the concept of AGDs.
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7.5. Summary
Using dense layered mineral wool some of the issues in the performance of perforated 
surfaces have been dealt with. The resonant behaviour of the perforations is damped resulting 

in a structure that does not behave like a Helmholtz Resonator but acts almost purely 
resistively in the frequency range investigated. This resolved the issue of varying absorption 
with frequency while achieving a level of absorption of the surface that is not too high. 

Furthermore, since the rigid area of the plate does not absorb substantial energy the absorbing 
elements of the surface are the holes. In this configuration the absorption coefficient that 
corresponds to the hole-area is close to 1 regardless of the spacing of the perforations. This 
resolves the issue of the varying performance of the absorbing elements. This implementation 

of AGDs paves the way for these devices to be created in reality.

Furthermore, BEM has been found to predict the absorbing performance of such surfaces. 
This in turn allows for the performance of the diffusion from these surfaces to be predicted by 
using BEM on an array of holes. Having shown that AGDs can be created, a more detailed 
investigation of their performance in carried out. In the following Chapter the performance of 

ideal 2-D AGDs is discussed.
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Chapters. Scattered pressure distribution 
from Absorption Grating Diffusers

In the previous Chapter a realistic approach to the implementation of surfaces consisting of 
ideally absorbing and reflecting elements has been discussed. In this Chapter the performance 
of the Absorption Grating Diffusers (AGD), as suggested by Angus are investigated. First, 
the characteristics of the different components of such a device will be looked into and 
comparison with the ideal ones will be made. Then, the scattered pressure distribution of 
AGDs will be tested.

The investigation is carried out in a 2-D domain using Boundary Element Modelling (BEM). 
The 2-D simulation allows for computational speed without being inferior to 3-D. Isolating 
the scattering from one dimension of the surface allows for the contribution of that dimension 
to be investigated while any results can be later expanded to 3-D.

8.1. Reflecting elements
In an AGD the reflecting elements based on the Fourier Theorem are the equivalent of omni­ 
directional sources. So they should scatter pressure equally in all directions which 
corresponds to a diffusion coefficient of 1. The performance of a thin plate is examined in 
BEM to find out the extent to which it agrees with the requirement.

The plate is vv = 50cm wide and d - \mm deep. The source is positioned 10m away from the 
sample while 181 receivers with 1° increment are placed in a semicircle with a 5m radius. 
The distance of the source and receivers from the surface are substantial for it to be in the far 
field. So the specular reflection zone corresponds only to the receiver normal to the surface 
(0°) while all the other receivers are in the non-specular zone.

In Figure 8-1 the diffusion coefficient of a flat plate is presented as a function of the 
wavelength of the incident wave. As is evident from this graph the plate does not perform to 
the standards required as it fails to even approach the value of 1.
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The trend of the reflected energy from the sample can be seen in Figure 8-2 where the mean 

reflected intensity is plotted along with the intensity reflected into and outside the specular 

reflection zone. All the intensities have been normalised to the incident pressure at the 
receiver that is normal to the surface.

w/8 w/4 w/2 4w 6w 10ww 2w
A

Figure 8-1. BEM predicted diffusion coefficient of a flat plate of width w.

20w

When the sample is small compared to the wavelength it does not reflect substantial energy 

as it does not pose an obstacle for the sound wave. As the wavelength becomes smaller the 

sample reflects more energy reaching -20dB when its width becomes comparable to the 

wavelength (1 = 3w). For smaller wavelengths than that the sample is large enough to be a 

substantial obstacle for the sound wave. The maximum reflected energy is displayed when 

half a wavelength is equal to the width of the plate (A = 2w). For A, < w the scattered energy 

stabilises at -20dB.

The scattered energy from the sample can be split into the specular and non-specular 

reflection zones which correspond to the areas inside and outside of the area of geometric 

reflection. The scattered energy in the non-specular zone is purely due to the diffraction from 

the edges of the surface. The edge diffraction is created by the interference between the
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waves that are reflected from different parts of the surface. The interference is dictated by the 

path difference from each point on the surface to the receivers.
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Figure 8-2. BEM predicted mean reflected intensity (dB) in all the angles of reflection, in the 
specular and non-specular reflection zone from a flat plate of width vr normalised to the 
incident pressure at the receiver that is normal to the surface.

The maximum effect of the edge diffraction is displayed when half a wavelength fits on the 

width of the sample (A/2 = w) (Figure 8-3b). This is the wavelength where the most positive 

interference is achieved as the largest path difference A/4 is achieved at oblique angles 

between the wave reflected from the centre and the edge of the sample.

As the wavelength becomes smaller the edge diffraction diminishes resulting in the first case 

of negative interference occurring when A, = w at oblique angles of reflection. For small 

wavelengths (A < w) the edge effect weakens as the interference pattern presents more points 

of negative interaction resulting in the scattered pressure distribution to become less uniform 

and the specular energy to increase (Figure 8-3a).
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Figure 8-3. BEM prediction of the normal incidence scattered level distribution (dB) from a 
flat plate of width w at A — w/4 (a), A = 2w (b) and A = lOw (c).

The ratio of the sound reflected in the zones of interest depicts the deterioration of the 
performance of the plate (see Figure 8-4). It shows that while for large wavelengths the 
difference between the scattered intensity in non-specular and the specular zone is -3dB it 
deteriorates when the sample becomes comparable to the width of the surface (A < 4w).
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In order to use the rigid surface in an AGD a bandwidth where it performs similarly to an 

omni-directional source has to be established. The low wavelength limit would be in the 

region where /I = w as that is the edge diffraction weakens. The value of lmin = 0.83w can be 

used as it is the wavelength the ratio of the non-specular over specular reflected energy drops 

by 3dB compared to the maximum value (Figure 8-5). The high wavelength limit is stated by 

the reflected energy. The value of /l^., = 3w is used as it is the wavelength that the overall 

reflected energy reaches the value of the energy reflected from the surface at high 

frequencies.

w/8 4w 6w 10w 20w

Figure 8-4. BEM predicted ratio of the mean reflected intensity in the non-specular over the 
specular zone of a plate of width vr.
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Figure 8-5. BEM prediction of the normal incidence scattered level distribution (dB) from a 
flat plate of width w at the wavelength limits of applicability for AGDs Amax = 3w (a) and 

= 0.83w (b).

8.2. Ideally Absorbing elements
In a AGD the absorbing elements of the diffuser need to display perfect absorption (/?„ = 1) at 

all frequencies. Their performance cannot be simulated for a single absorbing element in the 

way that was done in the previous Section for the reflective one. If a perfectly absorbing 

surface was realised with non-absorbing sides (Figure 8-6) the BEM wouldn't give realistic 

prediction of how it would perform when incorporated in a surface. The rigid sides and back 

would result in more energy being reflected from the sample especially at low frequencies.

d
——— rigid element

— — — absorbing element

w

Figure 8-6. BEM realisation of an absorbing surface of width \i\ normalised surface 
admittance of/?,, = 1 and rigid sides.
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Despite the inability to investigate their performance the absorbing elements are going to be 

considered to display normalised surface admittance of 1 at normal incidence for all 

frequencies. This of course is unattainable for any type of absorber but investigation in this 

idealised form allows for the performance of AGDs to be conducted as a function of the ratio 

of the wavelength with the dimensions of the elements of the surface.

8.3. Distribution of admittance on a surface
Having examined the building blocks that compose AGDs the scattered response from 

surfaces with distributed absorbing and reflected elements is examined. Since the absorbing 

elements are considered ideally absorbing, their normalised surface admittance will be /?,, = 1 
for all frequencies.

8.3.1. Pseudorandomly arranged

The pseudorandomly arranged surface of Figure 8-7 is discussed first. It is generated using a 

single period of MLS (k = 5) of length N = 31. Each 1 and 0 in the binary sequence 

correspond to a reflecting and an absorbing element respectively of width w. As a result the 

sample is 31w wide and consists of reflecting element ranging from w to 5w wide. The 

reflecting elements make up 51.6% of the surface.

The simulation was carried out for element widths w = 25mm, with the source and receivers 

placed 20m and 10m respectively away from the sample. The scattering estimated from this 

geometry refers to the far-field response of the sample.

OO

w 5w rigid element 

absorbing element

Figure 8-7. Surface with reflecting elements arranged pseudorandomly using a MLS (k-5)

The scattered intensity distribution from this sample can be seen in Figure 8-8 along with that 

scattered from a rigid surface of the same size. The intensity has been normalised to the
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specular reflection lobe of the rigid surface. At low frequencies the wavelength is much 
larger than any of the reflecting elements and the behaviour of the sample is that of an 
imperfect absorber (Figure 8-8a) as it is dictated by the evanescent waves on the surface that 
cause for an equalisation of pressure across front face of device. At higher frequencies when 
the wavelength is comparable to the largest element the surface fails to provide substantial 
diffusion (Figure 8-8b). The side lobe energy is increased by up to 15dB and displays some 
uniformity but it is still rather low to be important. The specular lobe, although attenuated by 
6dB due to the absorption of the surface, still dominates the scattered pressure distribution as 
it is more than 20dB higher than the side lobes. When the wavelength becomes comparable to 
the smallest elements the performance does not improve (Figure 8-8c).

-71/4 ,--'

-71/2 L

-7C/8 10

-10

———— MLS(k=5l 
]_ - ---- ngid
_ 

Tt/8

-37I/8/

J 71/2 -71/2 '
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Figure 8-8. BEM prediction of the normal incidence scattered level distribution (dB), 
normalised to the specular lobe of a rigid surface, of a surface with reflecting elements 
arranged pseudorandomly with MLS (k = 5) at X = 31w (a), A = 3w (b), A = w (c) and 
A = w/2 (d).

The overall behaviour of the surface as predicted using BEM is displayed in Figure 8-9 in 
terms of the normalised diffusion coefficient of the surface dn . In the same figure an 
approximate absorption coefficient ar is presented which is calculated from the fraction of 
reflected energy from the AGO EAGD and a rigid surface Ers of the same size:
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Crs 8.1

The diffusion coefficient that is achieved for this sequence is not substantial as it fails to 

exceed even 0.15. There appears to be a jump in diffusion when the wavelength fits onto the 

whole surface (A = 31w) but even that is very low.

From the reflected energy point of view, at high wavelengths (A > 40w) the diffuser acts as an 

average absorber since the reflecting elements appear too small. The absorption decreases as 

the wavelength becomes smaller and becomes 50% when half a wavelength becomes 

comparable to the width of the smaller reflecting element (A = 2w). That is the frequency 

that the smallest reflecting element reaches its maximum reflected energy (see Figure 8-2). At 

this frequency all the elements act individually due to reduced mutual interaction.
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Figure 8-9. BEM prediction of the normalised diffusion coefficient (dn ) and absorption 
coefficient (ar ) from a suface with reflecting elements arranged pseudorandomly using MLS
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When the wavelength is comparable with the smallest reflecting elements of the surface, it is 

very small compared with the largest one (A = 2wmm = OAwmax ). This wavelength is 

smaller than the low wavelength limit of omni-directionality of the largest element which is 

0.83HWv that was discussed in the previous Section.

The difference of performance between the reflecting elements of different sizes poses a 

significant defect of the AGDs. In order to achieve substantial reflected energy the width of 

the smaller element must be comparable to the wavelength which results in the largest 

element reflecting specularly.

This suggests that a sequence that would consists of a small number of single Is and not long 

series of Is could be a better candidate. Such a sequence is the lower order MLS (k = 3) [1, 1, 

1, 0, 0, 1] which contains a single 1 and the largest series of Is is 3. In order to have a surface 

of similar width 4 periods of the sequence are considered (see Figure 8-10).

00

rigid element

absorbing element 
Figure 8-10. Surface with reflecting elements arranged pseudorandomly using 4 periods of

MLS (k = 3).

The periodic repetition results in periodicity lobes appearing in scattered level distribution. 

The periodicity lobes appear at oblique angles when the wavelength becomes similar to the 

width of a single period of the diffuser (A = 7w). Figure 8-1 la displays the scattered 

response for /I = 7vv and the periodicity lobes appear at ± 3n/Q . As the frequency increases 

the number of periodicity lobes increase and become more narrow and closer together. In 

Figure 8-1 Ib all the sharp side lobes are periodicity lobes (/I = 2w).
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This phenomenon at first glance seems to compromise the uniformity of the scattered 
pressure distribution as has been discussed in Section 3.3. In the case of absorption grating 
surface though, that fail to scatter energy outside of the specular reflection zone, periodicity 
lobes are not necessarily a disadvantage. The periodicity lobes that are introduced are of the 
same height due to the use of the MLS[6] (except the lobe at the specular reflection 
direction). The existence of these lobes translates to sound scattered away from the specular 
zone. At A = 3vr of instance, the side lobes reach levels of -6dB compared to the specular lobe 
in comparison to the MLS (k = 5) that that didn't exceed -15dB at that frequency.

-Jt/8

—— MLS(k=3) 
0 I ----- rigid- 10 Tr/8———————

-71/4 (a)
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Figure 8-11. BEM prediction of the normal incidence scattered level distribution (dB), 
normalised to the specular lobe of a rigid surface, of a surface with reflecting elements 
arranged pseudorandomly using 4 periods of MLS (fc = 3) at A = 7w (a), X = 3w (b), X = w 
(c) and A = w/2 (d).

Its diffusion coefficient displayed in Figure 8-12 is not substantial though. An interesting 
characteristic is that dn is stable for wavelengths smaller that a period of the structure 
(A < 7vv) and 0 for wavelength larger than that, a behaviour similar to the one observed in 
Phase Grating Diffusers (see Section 3.5). Also the absorption a r shows a rapid decline at the 
same critical wavelength. It is the introduction of the first periodicity lobe that is the critical 

factor in this case (Figure 8-1 la).
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Figure 8-12. BEM prediction of the normalised diffusion coefficient (dn ) and absorption 
coefficient (ar) from a suface with reflecting elements arranged pseudorandomly using 4 
periods of MLS(k = 3).

5.3.2. Periodic

Given that periodicity improved certain aspects, this raises the question whether a purely 

periodic structure would perform better. For this reason the structure of Figure 8-13 is tested. 

It consists of reflecting elements of a fixed width W — 4w. The diffusion characteristics of 

the surface are centred again on the characteristic wavelength A — 8w = 2W which is equal

The diffusion coefficient from the periodic structure can be seen in Figure 8-14. The 

diffusion coefficient reaches its maximum value while the absorption reaches its minimum 

value in the region of 1 = Iw. In this region two effects coincide, periodicity lobes appear for 

oblique angles of reflection while the edge diffraction of the reflective elements reaches it 

maximum point as their width is equal to half a wavelength.
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Figure 8-13. Suface with periodicly positioned reglective elements (of width W) positioned 
every 2W.
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Figure 8-14. BEM prediction of the normalised diffusion coefficient (dn ) and absorption 
coefficient (ar) from a suface with periodically positioned reflective elements (width W — 
4vv) positioned every 2W.
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As can be seen in Figure 8-15 in this wavelength the wide periodicity lobes introduced at 

±7r/8 are displaying level just 6dB lower than the specular lobe which translates to increased 
diffusion with minimum absorption.

-71/4

-371/&

-71/2 J 71/2

Figure 8-15. BEM prediction of the normal incidence scattered level distribution (dB), 
normalised to the specular lobe of a rigid surface, of a surface with periodically positioned 
reflective elements (width W = 4w) positioned every 2 W at A = 7w.

The performance, although improved in a small bandwidth around 7w, is still low. 

Furthermore, it deteriorates at higher frequencies due to the inherent polar response generated 

by the periodic repetition of the reflecting elements. This is depicted in Figure 8-16 were the 

pattern of the scattered pressure distribution from the periodic surface is compared to that 

from one of its reflecting elements. The pattern of each element results in uneven periodicity 

lobes.

-7U/8

• periodic 
reflecting element

-71/4

-371/8,

Figure 8-16. BEM prediction of the pattern of the normal incidence scattered level 
distribution (dB) of a suface with periodically positioned reflective elements (width W = 
4w) positioned every 2Wat A = 2w in comparison with a single reflective element.
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8.4. Discussion
A number of different arrangements of AGDs have been presented in this Chapter. An outline 
of the behaviour of each is presented in the Tables below.

The periodic pattern has achieved some diffusion around A = 2W in a bandwidth smaller 

than one octave-band due to the coexistence of periodicity induced lobes and maximum edge 

diffraction in that frequency. The surface in this bandwidth is not very absorbing (less than 

50%) which is desirable. Even at the peak of diffusion, the scattering produced is weak. 

Consequently, the periodic device has limited scattering performance in terms of both the 
bandwidth and diffusion produced.

The MLS (k = 5) arrangement produced very weak diffusion for frequencies were the 
wavelength was smaller than the width of the surface (A < 31 w) and it remained very 

absorbing for wavelength larger than twice the width of the smaller reflecting element (A > 

2w). The structure did not manage to achieve substantial diffusion as the reflective elements 

displayed a larger variation of widths resulting in them displaying different bandwidths of 

strong edge diffraction that resulted in the surface performing as an average absorber.

Finally, a surface generated from 4 periods of MLS (k - 3) was tested. It displayed a peak in 

diffusion when the first periodicity lobes appears (X = Iw) which is close to the frequency of 
maximum edge diffraction from the larger reflective elements. The fact that most of the rigid 

area of the surface is included in the larger elements resulted in the absorbing properties of 
this configuration not being too high resulting in less than 60% absorption for wavelengths 

smaller that the width of a period of MLS (k = 3) (A < 7vr).

In all the cases discussed peaks of diffusion are achieved at the frequencies where grating 

lobe were introduced to the scattered pressure distribution. The absorption coefficient at any 

given frequency is dictated by the percentage of the reflective elements whose width is 

smaller than half the wavelength. Furthermore, the peaks of the diffusion coefficient don't 

reach substantial values as the side lobes achieved have much lower energy compared to the 

specular reflection lobe. The specular lobe is attenuated only by absorption so its level can 

only drop by 3dB for a 50% absorbing surface.

8.5. Summary
In this Chapter ideal AGDs were investigated. The behaviour of the elements they consist of 

was presented and their diffusion and absorption properties were discussed. Their reflecting
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elements were found to deviate from the require behaviour of omni-directional scatterers as 
the produced edge diffraction is weak and limited only to an octave. A variety of different 
structures was tested and their performance was explained. Their most dominant 
characteristic is that they fail to produce side lobes with comparable energy to the specular 
lobe.

It should be re-stated that the devices discussed in this Chapter are idealised. They are 
considered to contain perfectly absorbing elements at all frequencies, than cannot be achieved 
in reality. So although they represent perfectly the theoretical concept of AGDs, presented in 
the previous Chapter, they fail to justify the term "diffuser".

From the research presented in this Chapter it can be unequivocally concluded that the 
theoretical concept of AGD is flawed. In the following Chapter improvements to the 
performance of these devices is going to be attempted by deviating from the ideal building 
components to realisable ones with reactive characteristics.
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Chapter 9. Improvements to Absorption 
Grating Diffusers

The previous Chapter established that Absorption Grating Diffusers (AGDs) in their original 

form fail to achieve substantial diffusion. In this Chapter, ways to improve their performance 

are presented. First, reactive elements are used to increase the non-specular reflected energy 

from the reflecting elements. Then imperfect absorbing elements are used to allow for 

cancellation of the specular reflection to occur.

9.1. Reactive elements in the place of the reflective
The scattered field from a reflective element displays low energy in the non-specular zone 

when the wavelength becomes smaller than its width (see Section 8.1). In this Section an 

attempt to improve the performance at smaller wavelengths is attempted.

9.1.1. Helmholtz Resonators

A type of structure that scatters the incident sound is Helmholtz Resonators[69]. For this 

purpose the existence of a Helmholtz Resonator is going to be considered in the place of a 

reflector. The reasoning for introducing them in the AGDs is that ideal resonators will 

perform like a reflective structure away from resonance and as a scatterer at frequencies 

around their resonant frequency.

The resonator is considered ideal with no losses of energy occurring anywhere but the neck 

of the structure. As discussed in Section 6.4.2 such a structure would display negligible 

losses. The investigation is going to be conducted once more in a 2-D BEM as the geometry 

of a 3-D one would become computationally expensive.

2cr

•1 J L

Wc
\

hc

/ 

\

w

Figure 9-1. A Helmholtz Resonator formed in a 2-D surface.
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The structure of Figure 9-1 is considered where the third dimension is considered infinite. 

The resonant frequency of the 2-D Helmholtz Resonator is:

9.1

where c is the speed of sound in air and t' is the length of the neck including the end 

correction.

Since the width of the element can be considered as the low wavelength limit of the non- 

specular behaviour of a reflective element (f < c/w), the resonance should occur at a 

wavelength lower than the limit (fr < c/w).

The sample tested by the Boundary Element Modelling (BEM) can be seen in Figure 9-2. The 

outer geometry of the structure is not a rectangle as presented in Figure 9-1 in order to avoid 

errors in the numerical simulation. BEM only models surfaces and consequently solid parts of 

the diffuser can appear like cavities which resonate and lead to problems of non-unique 

solutions. Changing the geometry alters the pressure distribution in the domain behind the 

sample but does not affect the scattered response in front of the diffuser which is what is 

important for this study.

2o

t
r n

Wc

"7

>

hc

w

Figure 9-2. 2-D Helmholtz Resonators geometry used in BEM.

The sample tested is w = 40cm wide and h = 5cm deep. The Helmholtz Resonator is placed in 

the middle of the surface and it has hole-diameter la- \cm and hole-depth t = \cm while the 

cavity is Sc = n'< xh< = 2x3cm2 = 6cm2 . Using the end correction of eq. 6.25 the resonant
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frequency is expected at \.21kHz. In terms of wavelength this corresponds to approximately 

2vtV3 which is slightly lower than the width of the sample.

The source is positioned 20m from the sample facing the surface normally while the receivers 

are placed in a 5m in radius arch with 1° increment. So the only receiver that is in the specular 

reflection zone is the receiver normal to surface.

The ratio of non-specular over specular reflected level from this sample can be seen in Figure 

9-3 along with that from a plane surface of the same dimensions. Since the point of this 

investigation is to establish whether these structures can be used as reflective elements the 

wavelength is presented as a function of the width of the sample w. The Helmholtz Resonator 

performs like a plane surface at wavelengths away from the resonance while it displays a 

peak in the level reflected in non-specular angles around the resonant wavelength which is as 

expected at 2w/3.

Helmholz Resonator 
plane surface

w/4

Figure 9-3. BEM predicted non-specular over specular reflected level from a Helmholtz 
Resonator with a resonant frequecy at Xr - 2w/3 compared to a plane surface of the same 
width w.

By arranging the resonance to occur at a slightly lower wavelength from the width of the 

surface the bandwidth of non-specular response is extended. If the -3dB level of the non-
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specular over specular energy is used as the limit then it has extended from 0.83w as 
discussed in Section 8.1 to 0.58w. The scattered pressure distribution at characteristic 
wavelengths is plotted in Figure 9-4. The most noteworthy is Figure 9-4(b) which shows the 
resonance where the distribution is much more uniform for the Helmholtz Resonator 
compared to the plane surface.

-71/4

-371/8, 371/8

(a)

-71/8

1 Helmholtz Resonator 
plane surface

-71/4

-37i/a

(b)

-71/8

Helmholtz Resonator 
plane surface

-71/4

-371/a

-71/2
(c)

Figure 9-4. BEM predicted normal incidence scattered pressure distribution from a Helmholtz 
Resonators with resonant wavelength 2w/3 compared to a plane surface of the same width w 
at A = w/3 (a), 1 = 2w/3 (b) and A = w (c).
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The behaviour of a Helmholtz Resonator is not just of dispersion of energy it also causes 
change in phase. At resonance the reflection coefficient of a non-absorbing Helmholtz 
Resonator is -1 resulting in a phase change of K to the reflected wave compared to that from a 
plane surface. This suggests that using reactive elements on AGDs will add cancelation to 
their performance.

9.1.2. Discussion

In the case discussed in the previous Chapter of an AGO created using the pseudorandom 
sequence MLS (k = 3) the reflective elements came in two dimensions w and 3w. At smaller 
wavelengths where the smaller elements started reflecting substantial energy the larger ones 
were reflecting energy specularly. If a reactive element like the Helmholtz Resonator 
presented above was used in the place of the 3w wide element then there would be a 
bandwidth were all the elements would display significant scattering. Furthermore, if the 
resonant wavelength was set to 2/3 of the width of the large element then the resonance would 
occur when half a wavelength would fit onto the smallest elements. So at that frequency all 
elements would radiate substantial energy in the non-specular reflection zone.

w

ideal absorber CD rigid

Figure 9-5. 2-D BEM geometry of an Absorption Grating Diffuser generated from 4 periods 
of MLS (k = 3) implemented using Helmholtz Resonators in the place of the large reflective 
elements.

Such a device is presented in Figure 9-5 and it is investigated using BEM. The resonant 
wavelength is set to lr = 2w and the scattered pressure distribution is estimated. The results 
are displayed in Figure 9-6. While away from resonance diffusion is unaltered, at resonance 
the performance is improved. The use of the reactive elements has attenuated the specular 
lobe by 2.5dB while it has increased the side lobes at ±n/3 by about 6dB making them 
comparable in reflected energy. Their contribution would be deemed even more successful if 
attenuation of up to lOdB was not present at ±;r/8. This is an artifact that can be traced back 
to the scattered field of a single resonator (Figure 9-4b) at resonance that displayed minima in 
the same angles.
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The improvement in the uniformity of the scattered pressure distribution is small as it 
manages to increase the normalized diffusion coefficient at resonance from 0.06 to 0.15 but it 
has managed to increase the energy in the sidelobes at ±?r/3.
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Figure 9-6. BEM predicted normal incidence scattered pressure distribution (dB) from a 
Absrorption Grating Diffusers implemented using Helmholtz Resonators (/.,- = 2w) compared 
to a flat Absorption Grating Diffuser of the same dimensions at /I = u72 (a), A - A,- = 2w (b) 
ancj ^ _ jw (c ) 5 where vr is the width of smallest reflective element.
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9.2. Imperfect absorbing elements
Standard absorption grating diffusers do not change the phase of reflections and so are unable 

to use destructive interference to cancel and attenuate the specular reflection lobe beyond that 

achieved due to absorption (see Chapter 8). The use of absorbing elements that will allow for 

some pressure to be reflected back but with some phase change will be studied in this 
Section.

The simplest way of implementing these absorbing elements is to consider wells packed with 

porous material. In order to use BEM in the investigation of the performance of these 

surfaces, the appropriate surface admittance of the absorbing elements needs to be 

established. Up to this point the absorbing elements discussed have been considered perfectly 

absorbing at all frequencies so their normalized surface admittance was set to/?,, = 1. Methods 

of estimating the absorbing characteristics of a layer of porous material have been discussed 

in Section 6.2 but they have limitations for the bandwidth of application and the 

characteristics of the material. Furthermore, the characteristics of the material would still 

need to be measured or estimated. For this reason data for impedance tube measurements of 

the material are used.

Figure 9-7. Absorption Grating Diffuser to be measured. The black parts consist of porous 
absorber and the brown ones of wood.

9.2.1. Measurements Vs Boundary Element Modelling

For the implementation of the surface, black open cell foam with unknown characteristics 

was used The rigid elements of the structure were constructed out of Medium Density 

Fibreboard (MDF). An idea of the form of the sample to be tested is presented in Figure 9-7. 

In black is the open cell foam while in brown the wood. The backing is made from 2.5cm
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thick MDF which was considered sufficient to act as a rigid backing while to avoid leaks 
from the sides a 2mm thick MDF plate was used.

The dimensions of the sample can be seen in Figure 9-8. Depth of the absorbing elements is 

set to 7.5cm, the width of each element is set to 2.5cm. The order of the elements is set using 

4 periods of MLS (k = 3). The MLS used is 7 coefficients long so the overall structure is 

4x7x2.5cm = 70cm in width. The measuring method as described in Section 2.3 was followed 
to acquire the scattered pressure distribution.

Figure 9-8. Absorption Grating Diffuser to be measured. The black parts consist of porous 
absorber and the brown ones of wood.

Since the sample is to be tested only in one plane the 2-D BEM is used. The normalised 

surface admittance to be used as an input to the simulation is estimated from impedance tube 

measurements.

The characteristic impedance (Figure 6-10) and wavenumber (Figure 6-11) were measured in 

the impedance tube with frequency range from 50Hz to 6.4kHz. From that the normalised 

surface admittance ft,, of a layer of 7.5cm of the material has been estimated (Figure 9-9). 

These values were used in the simulation even though they refer to plane wave propagation. 

Since, locally reactive surfaces are considered in BEM the plane wave assumption is valid.
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Figure 9-9. Normalised surface admittance of a 7.5cm deep leayer of black open cell foam 
estimated from its characteristic impedance and wavenumber which were measured in an 
impedance tube.

The comparison between the measured and predicted scattered pressure distribution from the 
absorption grating surface is within ±3dB for most cases while it displays disagreement at 
some angles that can reach 20dB (Figure 9-10). Disagreements between measured and 
predicted are mainly a result of human error in the positioning of the microphones as well as 
residues from the room's response during the measurement as discussed in Section 2.3.1. 
The comparison was made for other absorption gratings and the agreement was equally good. 
The configurations tested included modulated MLS (k = 3) with the inverse (see Section 3.4) 
and periodic arrangements of absorbing and reflecting elements.

The results from this investigation shows that using the surface admittance, measured in an 
impedance tube, as input to BEM gives good agreement with measured data. Furthermore, by 
establishing BEMs validity in predicting the scattered field from absorption grating surface 
allows for the further investigation to be carried out with this simulation technique. This 
results in easier testing but also in the freedom to use more receivers in the far field and so 
more accurately depict the scattered field.
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Figure 9-10. Normal incidence scattered pressure distribution (dB) measurement Vs BEM 
prediction from an absorption grating surface generated by 4 periods of MLS(fc=3) 
normalized to the same sum of the reflected energy, (a) IkHz, (b) 2kHz, (c) 3kHz, (d) 4kHz, 
(e) 5kHz and (f) 6fc/ft. ——— Measured, ——— Predicted.

9.2.2. Simulations
The diffusion coefficient of the sample that was used in the previous Section can be seen in 
Figure 9-11. What is noteworthy from this figure is the existence of peaks showing 
significant diffusion at 900Hz, 2.SkHz and 5kHz. The source of this behaviour can be 
explained by the Fourier Model. The reflection coefficient of the foam as a function 
frequency can be seen in Figure 9-12. The peaks in diffusion occur when reflections from the 
absorbing elements have opposite phase compared to those from the reflecting surfaces; this 
is behaviour similar to that of PGDs. When the reflection coefficient of the porous material 

has phase g> = n, cancellation occurs when the wave reflected from the absorbing areas 

interacts with that from the reflective ones.
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Figure 9-11. BEM prediction of the normalised diffusion coefficient (dn ) and absorption 
coefficient (ar) from an Absorption Grating Diffuser arranged using 4 periods of MLS (k = 3) 
with the absorbing elements implemented by 7.5cm deep layer of foam.

They do not coincide exactly with the out of phase frequencies of the reflection coefficient 

(950/fe) because the pattern is affected by the periodicity of the structure as well. As 

discussed in the case of PGDs (see Section 4.1.2) placing diffusers of constant width in a 

structure results in their scattered pressure distribution to contain the interference pattern of 

sources spaced apart the same distance as the width of the diffuser. In this case in particular, 

one can see that dn peaks between 700//Z and 1.2kHz but it displays a local minimum within 

the peak at IkHz. This is due to the periodic repetition of the diffuser which interferes with 

the diffusion pattern and prevents it from reaching an even higher value at 950Hz.
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Figure 9-12. Reflection coefficient of a 1.5cm deep leayer of black open cell foam estimated 
from its characteristic impedance and wavenumber which were measured in an impedance 
tube.

The cancellation is evident in the polar plots of Figure 9-13. Plots (a) and (c) correspond to 

such frequencies and the specular lobe is attenuated by 19dB and 9dB respectively. On the 
other hand at 2kHz (Figure 9-13b) where the phase of the reflection coefficient of the foam is 

close to 0, there is only a 3dB attenuation of the specular lobe via absorption.

The mitigation of this lobe is the reason for the peaks in the absorption coefficient ar of 

Figure 9-11. The absorption achieved at 900//- is so high that the structure acts like an 
absorber of limited bandwidth. The peaks of diffusion at 2.%kHz and 5kHz are much lower 

because in their case more that a wavelength (3A/4 and 5/1/4 respectively) fits into the porous 

media. This results in a much lower magnitude of the reflection coefficient and hence less 

cancellation occurs. Even though the diffusion coefficient is lower as these frequencies more 

energy is scattered from the diffuser making them the most well behaving frequencies of the 

diffuser.
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Figure 9-13. BEM predicted normal incidence scattered pressure distribution from an 
absorption grating surface generated by 4 periods of MLS(fc=3) compared to a plane surface 
of the same width at/= 900Hz (a),/= 1.9kHz (b) and/= 2.SkHz (c).

If the wells had not been occupied by the porous material the structure would be 4 periods of 
a Phase Grating Maximum Length Sequence Diffuser (MLSD) as presented in Section 3.1. 
The out of phase frequencies in the bandwidth of consideration would be its design frequency 
/o = 1.14kHz, where /1/4 fits into the depth of the well, and its odd multiples at 3.4 and 5.1kHz.
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The movement of these critical frequencies is a result of the lower speed of sound in the 

porous medium (Figure 9-14). The real part corresponds to the propagation speed of the wave 

in the medium while the imaginary in connected to the reactance of the material. The 

propagation speed in the porous medium is always smaller than 1 which is a result of the 

resistance of the material to the propagation of the sound wave. This means that the lower the 

speed of sound the higher the attenuation.

In the example discussed earlier the first peak of diffusion occurred at 950Hz where the speed 

of sound in the material is 25% lower compared to the one in air. This is the reason both for 

the substantial shift in the characteristic frequency and for the high absorption. Both these 

phenomena would not be so overwhelming if the speed of sound in the material was higher at 

that frequency or the frequency of interest was higher.

0.8

ro
0)

06

0.4
300 500 700 1k 2k 3k 4k 5k 6k

0.25

o

01
300

f(Hz)
3k 4k 5k 6k

Figure 9-14. Speed of sound cn in black open cell foam normalised to the speed of air c0 
estimated from its characteristic impedance and wavenumber which were measured in an 
impedance tube.
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The device that is used to portray this phenomenon consists of 4cm wide and 2.5cm deep 

wells that are arranged by modulating a MLS (k = 3) with its inverse using the modulation 

sequence [1,0, 1, 1]. If the wells were empty the Phase Grating Diffuser (PGD) would have 

/o = 3.4kHz. The resulting structure is 1.12m wide and its normalised diffusion coefficient is 
displayed in Figure 9-15.

300 500 700 1k 2k 3k 4k 5k 6k
f(Hz)

Figure 9-15. BEM prediction of the normalised diffusion coefficient (dn) and absorption 
coefficient (ar) from an Absorption Grating Diffuser arranged using 4 periods of MLS (k = 3) 
modulated with its inverse through the sequence [1, 0, 1, 1] with the absorbing elements 
implemented by 2.5cm deep layer of foam.

Although the frequency with the out of phase reflection coefficient for 2.5cm of foam is 3kHz 

the best performance is achieved at 2.5kHz, where both diffusion and absorption coefficient 

take the value of 0.5. At this frequency the diffuser has managed to attenuate the specular 

lobe by 15dB making is equal the level of the non-specular zone while the distribution of 

scattered pressure is uniform in the region of ±5^/16 (Figure 9-16). The performance of the 

diffuser is very good for a bandwidth of IkHz around this frequency where the diffusion is 

high (dn > 0.4) and the absorption is close to 50%.
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This configuration results in a behaviour closer to the ones aimed for AGDs from the ideal 

one discussed in the previous Chapter as it manages to balance the dual performance of 
diffusion and absorption for a given bandwidth.
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Figure 9-16. BEM predicted normal incidence scattered pressure distribution (dB) from an 
Absorption Grating Diffuser generated by 4 periods of MLS (k = 3) modulated with its 
inverse through the sequence [1,0, 1, 1] with the absorbing elements implemented by 2.5cm 
deep layer of foam at/= 2.5kHz.

It is apparent that there is some advantage to using absorbing materials in PGDs since a 

combination of absorption and diffusion can be achieved. Furthermore, their design 

frequency is reduced due to the lower speed of sound in the material. Due to the nature of 

sound propagating in porous media it is advisable to operate in frequencies where the speed 

of sound in the media is not very low unless the goal is to absorb sound. This suggests that 

only high frequency diffusers can be implemented in this fashion. Their application could 

only be extended to lower frequencies if the porous material used displayed high propagation 

speed at low frequencies.

9.3. Absorption in wells of Phase Grating Diffusers
The phase grating behaviour of the AGD presented above forces a discussion on whether 

absorbing materials can be used in all PGDs to reduce their design frequency /0 . In the 

previous Section how the depth of a Maximum Length Sequence Diffuser (MLSD) can be 

reduced for the same design frequency has been shown. The extent of the reduction is 

dependent on two factors. The first factor is the speed of sound in the porous media at the 

specific frequency while the second factor is how deep the well is. MLSDs are diffusers that 

consist of a single well-depth which allows for the wells to be fully occupied by foam.



147

9.3.1. Absorption in all the wells

If a PRO was used instead and all its wells where filled with a porous material each well- 

depth would need to be rearranged so that the appropriate phase of the reflection coefficient 

would be achieved. Even in the case that such a structure was devised the magnitude of the 

reflection coefficient of each well would be different resulting in different wave interference.

An idea would be to fill all the wells with the same amount of porous material. This amount 

can only be as deep as the shallowest well (Figure 9-17). This would reduce the depth by only 

a small amount as the layer of the porous material would not be deep enough to delay the 
wave substantially.

rigid porous

Figure 9-17. PRD (P = 7) with the same layer of porous material in all the wells.

Furthermore, MLSDs consist of about 50% wells, so when filled with foam half of the 

surface is still reflective. In the case of a PRD (exp. for P-l [1, 3, 2, 6, 4, 5]) that consists 

entirely of wells there should be concern as to whether the resulting device if too absorbing. 

Since the layer is shallow though the absorption is not be excessive and so the diffusion 

properties of the PRD will not be diminished. They will be shifted to lower frequencies and 

the structure will display added absorption due to the existence of the porous material.

9.3.2. Absorption in all selected wells
Since the depth of the device is dictated by the deepest well the case of adding porous 

material in it can be considered (Figure 9-18). If the design frequency is set to 2kHz then the 

well depth of the deepest well will be 4.9cm deep for the standard QRD (P = 7). If the foam 

was used in a well it would need to be 4cm deep to achieve the required phase change. The 

reduction of the depth achieved is 18%.
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Figure 9-18. QRD (P = 7) with porous material in the deeper wells.

While being able to reduce the profile of a diffuser is very useful in diffuser design it should 
be pointed out that the magnitude of the reflection coefficient from the well is 0.37 rather 
than 1 which is required by the design of the diffuser. This will result in the diffuser not 
meeting the design requirements of the distribution of reflection coefficient on its surface. 
Furthermore, while this implementation provides the desirable phase at the design frequency 
/o it will not do so for frequencies that are multiples of/0 where the diffuser is expected to 
behave ideally (see Section 3.1) due to the different speed of sound at those frequencies.

9.4. Discussion
Methods of improvement of the performance of AGDs have been presented in this Chapter. 
They are both aimed at making the device less passive as in the previous Chapter it has been 
pointed out that it fails as a diffuser.

One of the reasons for this is the inexistence of a frequency range where all the reflective 
elements of different width would scatter pressure uniformly. So the first approach was to 
incorporate reactive elements in the place of the larger reflective elements aiming at 
substantial dispersion at higher frequencies. Helmholtz Resonators were used, tuned to the 
frequency of maximum edge diffraction of the smaller elements. Even though some 
improvement is achieved it is only limited to the resonant frequency of the Helmholtz 
Resonator. Be that as it may, it points to a new method of implementation that considers the 
surface to consist of a series of reactive elements tuned to operate at specific frequencies.

The introduction of cancellation to AGDs has been attempted in the past by Cox[47] with 
ternary and quadriphase sequence diffuser where he included wells in the grid. The existence 
of such wells allows for out of phase pressure to be reflected from the well to interfere with 
the reflections from other parts of the surface.
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Following the same concept of adding cancellation to AGDs a new approach is attempted. 

The AGD is implemented with non-perfectly absorbing elements. These elements were 

realised by filling wells with porous absorber. This configuration allowed for part of the 

energy to get reflected from the absorber with a phase difference that is dictated by the depth 

of the well and the speed of sound in the material. The resulting device performed as a PGD 

with its diffusion characteristics shifted to lower frequencies, an effect enforced by the lower 

speed of sound in the material. The existence of the absorber in the well provides absorption 

that combined with cancellation result in a very absorbing surface. If the diffuser is designed 

to diffuse at higher frequencies were the resistance of the material is lower the resulting 

device combines good diffusion with moderate absorption for a given bandwidth (in case 

presented here IkHz).

The result of the investigation in the second part of the thesis can be summarised by two 

points:

"Ideal Absorption Grating Diffusers in their original concept do not perform as diffusers; 

thev behave like moderate absorbers but their performance could be improved with the 

addition of reactive elements. "

"Absorption Grating Diffusers implemented with wells of absorption can provide 50% 

absorption combined with good diffusion for a given bandwidth; which was the goal of the 

ideal Absorption Grating Diffusers. "
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CONCLUSIONS AND FURTHER WORK
This thesis has been centred on diffusers generated using pseudorandom sequences. The 

focus was to investigate their drawbacks and to inquire as to how these limitations can be 
dealt with.

Parti
The first part of this thesis investigated Phase Grating Diffusers, otherwise known as 

Schroeder Diffusers. These structures consist of wells of different depths which are set by a 

pseudorandom sequence for the design frequency /0 of the diffuser. The generator P of the 

sequence gives the number of possible depths by splitting a quarter of the design wavelength 

into P increments. The coefficients of the sequence dictate the depth of each well. Diffusion 

is achieved by the interference of the waves reflected out of the wells which display different 

phases.

In order to create a 2-D diffuser one needs to create a 2-D sequence. The Chinese Remainder 

Theorem has been used to generate a 2-D diffuser from a 1-D sequence. In this thesis a novel 

approach has been presented that can generate a number of 2-D diffusers with the same 

autocorrelation properties from any 1-D sequence by altering the folding steps in the Chinese 

Remainder Theorem. This allows for both the investigation of a number of 2-D diffusers with 

the same properties and the more choices in diffuser design.

All Phase Grating Diffuser have been shown to exhibit frequencies at which they fail to 

diffuse sound and act like a flat plate. This occurs when the wavelength fits into the 

increment of the well-depths as specified by the sequence generator. This phenomenon first 

occurs at Pfo and is referred to as the first flat plate frequency of the diffuser. Known types of 

diffusers such as Quadratic Residue Diffusers (QRD) and Primitive Root Diffusers (PRO), 

have generators that are similar to the length N of the sequence. As most applications use 

short diffusers (typically N = 7 for QRDs), these flat plate frequencies occur within the 

audible bandwidth.

In order to treat the flat plate effect a number of solutions have been presented. Two new 

classes of diffusers, Power Residue Sequence Diffusers (PWRD) and Luke Sequence 

Diffusers (LSD), have been presented. They both have much higher sequence generators than
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their length and allow a small diffuser to have a flat plate frequency well outside the audible 

range. Their performance was investigated using 2-D Boundary Element Modelling.

LSDs are the superposition of a PRD and a steady step. Because the PRD has a different 

length than a generator (N = P-l) the LSD has a generator of P(P-i). At the flat plate 

frequency of the PRD, redirection rather than diffusion is achieved. Since LSD is a 

combination of two structures, when the PRD acts as a flat plate the LSD acts like a steady 

step. By using modulation, an aperiodic arrangement of the diffusers, this defect has been 

reduced. However, with the exception of the flat plate frequency, LSDs fail to achieve the 
same level of diffusion as more standard designs.

PWRDs are generated by undersampling a PRD, creating a shorter sequence based on a large 

generator. PWRDs can have the first flat plate frequency outside the audible bandwidth. 

Specifically the case of the PWRDs of length N = 9 generated by sampling the PRD of 

generator P = 73 every M = 8 wells has been shown to achieve better diffusion than standard 

number theoretic diffusers across the design bandwidth.

In addition to these new classes of diffusers two simple configurations have been introduced 

that allow for the construction of 1-D QRDs and PRDs using smaller components. This is 

done by taking advantage of their inner symmetries and constructing them using an element 

that is half the width of the diffuser. The QRDs are symmetrical with respect to the axis going 

through their centre so the diffuser can be formed by positioning the same component with 

two different orientations. Similarly, in PRDs' the second half is the inverse of the first half 

so the diffuser can be created by using a single structure. In this way the ratio of generator-to- 

width is doubled for standard Phase Grating Diffusers. Given that the flat plate frequency is 

closely linked to the number of their wells this allows for the doubling of the problematic 

frequency for a diffuser that is created for components of the same width.

Further Work
PWRDs have been shown to perform better than the commonly used number theoretic 

diffusers, which shows that the search for new pseudorandom sequences must continue.

Since both PWRDs and LSDs are generated from manipulating PRDs further investigation 

must be carried out to see how sequences can be manipulated without altering their 

autocorrelation properties.
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For instance LSDs are created based on the fact that a linear ramp can be added to a 

pseudorandom sequence without affecting its autocorrelation function. It is applied to PRDs 

because their length is different that their generator. This is a characteristic that exists with 

other sequences like PWRDs. If this technique is applied to PWRDs it will not affect the 

magnitude of its autocorrelation function. The resulting diffuser will have a high number 

generator as it will be the product of the generators of the two structures. Given that PWRDs 

have large generators to begin with this factor is not that important. The important factor is 

that through this method a new class of diffuser is created that has the potential to display 

good diffusion properties and should be investigated. The discovery of new sequences will 

increase the arsenal of the designer in order to created better diffusing structures.

The relationship between PWRDs and the PRO they were created from can been further 

exploited. The fact that PWRDs are created from undersampling a PRD can be exploited by 

folding a PRD of generator P = 73 and length N = 12 into 8x9 diffuser. As presented in 

Section 4.4.2 2-D diffuser will consist of parallel PWRDs in one dimension. This device in 

principle should in addition to scattering pressure in a hemi-sphere perform ideally in this 

dimension. The performance of this diffuser should be further investigated.

Part 2

The second part of the thesis researched Absorption Grating Diffusers. Since their design 

requires the existence of ideally absorbing and ideally reflecting element to be 

pseudorandomly distributed on the surface, the first step was to establish a surface that could 

approximate the required reflection coefficient distribution.

The first configuration used densely packed layered mineral wool behind a pseudorandomly 

perforated mask. A similar configuration had been suggested in the past with the use of a 

typical porous material that resulted in the structure behaving as resonant absorbers. The use 

of the densely packed mineral wool resulted in the structure behaving as a damped resonator. 

The absorption as measured in an impedance tube displayed constant absorption in the range 

of 300//Z to 3kHz. The sample behaves like one that consists of nearly ideal absorption in the 

hole-area and ideal reflection in rest of the surface. Furthermore, using impedance tube 

measurements it was shown that the equivalent concentrated absorption can be considered 

independent of the perforation pattern. In this way it has been shown that a structure with the 

required distribution can be constructed.
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Having established a realistic implementation, the performance of the ideal surface was 

investigated using 2-D Boundary Element Modelling (BEM). The validity of using measured 

data as input to 2-D BEM was proven by comparing it to scattered pressure distribution 
measurements.

The research proved that the diffusers fail to provide substantial and evenly distributed 

scattered pressure regardless of the distribution of the reflective and absorbing elements. 

While some uniformity of the scattered response in the non-specular reflection zone is 

achieved, this is low in energy compared to the specular reflection which is insufficiently 

suppressed. The specular lobe is diminished only by the existence of absorption on the 

surface.

Both absorbing and reflecting elements have been shown to deviate from the required 

behaviour. The reflective elements must perform like omni-directional scatterers which they 

achieve for wavelengths larger that the width of the element. But at higher frequencies the 

reflection is more specular. Furthermore, at low frequency little sound energy is reflected. 

Over a narrow bandwidth, when (w < /I < 3vv), substantial reflected energy and uniform 

scattering from a flat rigid element is achieved. For a surface with a variety of different 

element widths it is impossible to have a bandwidth were all the reflective elements display 

substantial dispersion.

At low frequencies the surface acts as an absorber as all the rigid parts are too small to reflect 

significant energy. At mid-frequency, the larger elements will reflect substantial energy 

uniformly but the device is still too absorbing as the smallest elements do not contribute to 

the scattered field. At higher frequencies when the smaller elements start scattering energy 

the larger ones reflect energy specularly.

In order to extend the non-specular behaviour of the reflective elements to higher frequencies 

the idea of using reactive elements has been suggested. In particular the use of a non- 

absorbing Helmholtz Resonator with a resonant wavelength 2A of the width of the reflective 

element has been incorporated into the surface. This was shown to extend the high frequency 

limit of the non-specular response of the reflective element was been moved from Xmin =

This configuration was used for diffusers generated from 4 periods of MLS (k = 3) which 

consists of reflective elements of width vr and 3vv. The larger elements were replaced with
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Helmholtz Resonator with resonance at the frequency where the edge diffraction of the 
smaller elements is a maximum (A = 2w). The initial investigation conducted showed an 
improvement of the scattered pressure distribution only at resonance leaving the other 
frequency responses unaltered. This results points to the possible use of other reactive 
elements for these diffusers.

Diffusers where the absorbing elements are only partly absorbing were investigated. By 
implementing the diffuser in this fashion some cancellation was achieved between waves 
reflected from the solid and absorbing parts of the surface resulting in behaviour similar to a 
two level phase grating diffuser. The frequencies of ideal diffusion have been moved to lower 
frequencies due to the lower propagation speed of sound in the porous media. This has lead to 
the conclusion that porous materials can be used to make Phase Grating Diffusers shallower, 
if some absorption is desirable.

Attenuation is higher for low frequencies since then the porous material is more resistive. For 

a device designed for higher frequencies (e.g. 3kHz) the diffuser manages to absorb 50% of 
the energy while the rest is evenly distributed for over an octave. It displays the 'ideal' 
performance but over a limited bandwidth.

Finally, the idea of using absorption in the wells of PRDs and QRDs has been discussed 
pointing towards a case that could be used to combine diffusion and absorption without 
altering the concept of the diffuser 7 s design. The case of a PRD that has a layer of porous 
material with the same depth as the shallowest well is a device that could display interesting 

properties.

Further Work
The research presented in this thesis showed that common Absorption Grating Diffusers do 
not achieve substantial diffusion regardless of the distribution of elements on the surface. Can 
the design concept be rescued or should it be scraped with future research focussing on phase 

grating diffusers with absorption?

The scattering response of the reflective elements must be improved. In this thesis the use of 
Helmholtz Resonators has been used to improve this feature with small improvement only at 
the resonant frequency. Another approach would be to try and increase the edge diffraction of 
the elements. In order to do this the reflective elements must not be flat. Element such as
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semicircles or other extruding geometries must be studied to investigate whether they can 
provide better dispersion.

Following the same reasoning the whole diffuser can be curved. Given that the absorption 
grating will provide 50% absorption the overall geometry of the structure will provide added 
diffusion. This is a concept that has been suggested before[70], but for a configuration that is 
now know to be overly absorbing.

On the other hand the concept of using non-perfectly absorbing element could be further 
exploited. In order to do so investigation into different absorbing materials must be 
conducted. If high absorption is required then a very resistive material must be used but if the 
aim is to scatter a substantial amount of energy then the material needs be less resistive. Most 
porous material display high resistivity at low frequencies which means that low frequency 
diffusers cannot be created in this way. So it is important to investigate materials that display 
low resistivity at low frequencies.
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