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ABSTRACT

This thesis documents research undertaken on state and parameter estimation 

techniques for stochastic systems in a maintenance context. Two individual problem 

scenarios are considered. For the first scenario, we are concerned with complex 

systems and the research involves an investigation into the ability to identify and 

quantify the occurrence of fault injection during routine preventive maintenance 

procedures. This is achieved using an appropriate delay time modelling specification 

and maximum-likelihood parameter estimation techniques. The delay time model of 

the failure process is parameterised using objective information on the failure times 

and the number of faults removed from the system during preventive maintenance. 

We apply the proposed modelling and estimation process to simulated data sets in an 

attempt to recapture specified parameters and the benefits of improving maintenance 

processes are demonstrated for the particular example. We then extend the modelling 

of the system in a predictive manner and combine it with a stochastic filtering 

approach to establish an adaptive decision model. The decision model can be used to 

schedule the subsequent maintenance intervention during the course of an 

operational cycle and can potentially provide an improvement on fixed interval 

maintenance policies.

The second problem scenario considered is that of an individual component subject 

to condition monitoring such as, vibration analysis or oil-based contamination. The 

research involves an investigation into techniques that utilise condition information 

that we assume is related stochastically to the underlying state of the component, 

taken here to be the residual life. The techniques that we consider are the 

proportional hazards model and a probabilistic stochastic filtering approach. We 

investigate the residual life prediction capabilities of the two techniques and
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construct relevant replacement decision models. The research is then extended to 

consider multiple indicators of condition obtained simultaneously at monitoring 

points. We conclude with a brief investigation into the use of stochastic filtering 

techniques in specific scenarios involving limited computational power and variable 

underlying relationships between the monitored information and the residual life.
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Chapter 1. Introduction

The general objective of the research documented in this thesis is to provide a 

contribution to the goal of optimising the performance of operational systems that are 

stochastic by nature and subject to some form of degradation over time. This 

categorisation incorporates almost any operational system from a complex industrial 

production line with many sub-systems to a simple photocopier or printer. The 

objective is achieved through the efficient scheduling of activities that are often 

overlooked as a viable means of boosting operational availability and performance, 

such as the use of planned preventive maintenance and effectively timed component 

replacements. These are activities that are often carried out in an opportunistic 

fashion when systems either fail (or are not currently operational for some other 

reason) or are conducted according to an inappropriate model producing decisions 

that are not cost effective or result in excessive downtime.

The particular focus of this research is on the techniques that assist in the 

characterisation of stochastic systems including both complex systems and individual 

replaceable components. Accurate representation of said systems is achieved 

through the use of an appropriate model specification and parameterisation. It is the 

parameter and state estimation techniques that are the primary topics of interest here. 

Using the constructed models, maintenance and replacement decision modelling can 

be optimised to reduce costs, identify areas of the current operational procedure that 

are lacking and limit the downtime of the system, thus increasing availability and 

operational efficiency.

Two types of scenario are addressed in this thesis with the first being covered by 

chapters 3 and 4 and the second by chapters 5 to 9. The first scenario involves the 

modelling of complex systems that incorporate the potential for human error at



maintenance interventions. We primarily consider the type of human error that 

manifests itself in the form of artificial fault injection during the course of planned 

inspection and preventive maintenance procedures although the model constructed is 

not limited to specifically human error based injections. The focus of the research is 

on the ability to characterise from relevant failure data, using an appropriate model 

specification and parameter estimation techniques, the fault arrival and failure 

processes of the system with emphasis being placed on the estimation of the level of 

fault injection that may be taking place. The subsequent modelling of complex 

systems concerns the on-line estimation and characterisation of the underlying fault 

arrival process using stochastic filtering and a hidden Markov model formulation. 

Modelling the system in a dynamic manner allows for the construction of adaptive 

decision models rather than fixed interval maintenance policies. 

The second scenario concerns the condition-based maintenance (CBM) of an 

individual component or a piece/part of machinery with a single dominant failure 

mode. The research involves comparing CBM models where indicatory condition 

monitoring (CM) information, such as vibration levels or metal concentrations in oil 

samples, may be used to estimate the probability of component failure within a 

specified time frame and schedule maintenance or replacements accordingly. We 

assume that the CM parameters are stochastically related to the actual condition or 

residual life of the component. The two techniques that we compare are the 

proportional hazards model and a probabilistic stochastic filtering approach. The 

comparisons are conducted using industrial CM data, the first using the overall 

vibration level as a single CM input and the second considering multiple oil-based 

CM parameters. Issues regarding the handling of multiple information parameters



are also addressed and finally, some theoretical developments on the use of filtering 

theory in the context of CBM are introduced in the final chapter of the thesis.

The outline of the thesis is now discussed;

Chapter 2 documents the necessary modelling and theoretical background and 

presents the key introductory points for the techniques that are applied in subsequent 

chapters.

Chapter 3 covers research undertaken regarding the provision for human error in 

maintenance models of complex systems using delay time modelling; Initially a 

discussion of the relevant delay time modelling and general modelling background 

and literature is presented. Then the work undertaken using maximum likelihood 

estimation to capture the necessary parameters is documented. A number of case 

studies are presented to demonstrate the application of the proposed techniques and 

the ability to compare differing model forms and combinations of the different 

aspects of human error during inspection and maintenance procedures is also 

addressed.

Chapter 4 is a continuation of the fault injection work contained in the previous 

chapter. Initially we present an alternative description and solution methodology for 

the problems addressed in chapter 3 by combining delay time modelling and a hidden 

Markov model (HMM). The ability to construct adaptive decision models that 

respond to the failure history of the system is of particular interest in this chapter. 

Chapter 5 contains a discussion of relevant CM techniques and some associated 

literature. We then document the necessary CBM literature that is available for 

modelling replacement decisions that are associated with the monitoring of



individual components and discuss the differences when modelling information that 

is directly or indirectly related to the underlying state of the component. 

Chapter 6 presents two models for condition-based maintenance applications that are 

compared for industrial case studies in subsequent chapters. The techniques 

described are the proportional hazards model and a probabilistic stochastic filtering 

approach. We consider the potential for utilising multiple information sources and 

the need for data reduction techniques, such as principal components analysis (PCA), 

is addressed. The chapter concludes with a discussion of additional means of 

tackling some of the problems raised. These techniques include dynamic principle 

components analysis (DPCA) and independent components analysis (ICA). 

Techniques for comparing the models and establishing optimal replacement 

decisions are also introduced in this chapter.

Chapter 7 is a case comparison of proportional hazards modelling and probabilistic 

stochastic filtering when applied to vibration based CM information. 

Chapter 8 is a comparison of the PHM and the filtering approach for condition-based 

maintenance applications using oil-based CM parameters. In this chapter, we also 

discuss the use of incomplete condition monitoring information and the impact on 

both parameter estimation and the ability to compare the two techniques.

Chapter 9 presents some further uses of filtering theory in the context of condition 

based maintenance applications. Attention is reserved for non-linear problems and 

approximate means of tackling the state estimation problem. The techniques 

described are applicable in situations where limited computational power is 

available, a large number of components are under scrutiny or the underlying 

dynamics of the systems degradation and the relationship with the monitored 

condition information are not known to a satisfactory degree of precision.



The thesis concludes with a list of the associated references that are cited within the 

body of the text.



Chapter 2. Modelling background

2.1 Introduction

In this chapter, the necessary modelling background and preliminaries for the 

research documented in subsequent chapters is presented. The techniques used for 

estimating the parameters of the various stochastic models developed in the thesis are 

introduced in section 2.2, section 2.3 introduces the hazard and reliability functions 

for systems that will fail at some unknown time and sections 2.4 and 2.5 introduce 

some of the techniques that are available for estimating the underlying state of 

discrete time and continuous time stochastic systems, respectively. The references 

and background that are relevant to the research on complex systems are given in the 

introduction to chapter 3 and those pertaining to the research on the monitoring of 

individual components are given in chapter 5. However, there are some general 

references that have been particularly useful in the development of the research 

contained here and these are now introduced. For information on system 

identification and related topics, see Ljung (1999), for state space models and the 

Kalman filter, the primary references have been Harvey (1989) and Jazwinski 

(1970), and for further non-linear stochastic filtering information, see Krishnan 

(1984), Jazwinski (1970) and Kallianpur (1980). Other general references have been 

Bernardo & Smith (2000) for background on Bayesian inference and analysis and 

Aoki (1967) and Liptser (1997) for information on control theory for the stochastic 

systems considered here.

2.2 Parameter estimation

To estimate the parameters of the stochastic models discussed in this thesis, we seek 

an estimator that exhibits some nice statistical properties. A good estimator utilises



all the relevant and required information from the data under investigation. The first 

statistical property of an estimator that we consider is the level of bias, which is the 

difference between the expected value of a parameter given by an estimator and the 

true underlying value of that parameter. Amongst the class of unbiased estimators 

for a given problem, an efficient estimator is the one with a minimal variance and as 

such, a minimal mean-square error (MSB). An additional property for consideration 

is that of consistency. A consistent estimator is one that converges probabilistically 

to the true value of a parameter with an increasing sample size. In fact it is often 

necessary to consider the asymptotic (large sample) properties of estimators when 

selecting an approach for practical scenarios.

2.2.1 Maximum likelihood estimation

The models used in the research presented in this thesis are characterised by 

parameters that are estimated from data using an appropriate modelling approach and 

maximum likelihood estimation. The maximum likelihood estimates of the 

parameter set are the values that maximise the likelihood function but they may not 

necessarily be unbiased estimates. The bias of ML estimators may be quite large and 

the estimator may not be unique or even exist for particular cases. Under the 

regularity conditions that the first and second derivatives of the log-likelihood 

function must be defined and the Fisher information matrix must not be zero, the 

MLE can be considered to be asymptotically optimal, see Kendall & Stuart (1979). 

For instance, the estimate is asymptotically unbiased in that the bias tends to zero as 

the number of samples gets large. This property is a result of the fact that the 

distribution of the estimate tends to a Gaussian distribution as the sample size 

increases. In addition, the MLE is asymptotically efficient achieving the Cramer-



Rao lower bound which is an asymptotic lower bound on the variance of any 

unbiased estimator.

If x is a continuous random variable with probability density function f(x;0), where 

0 = 0i,02 ,...,0/c is the set of A: parameters under scrutiny, the likelihood of observing 

the information set x = x\,X2,...,xr is given by the product

si*) = n/(*/#) [2.1]

Maximisation is often eased by taking logarithms of the likelihood function. The 

optimal parameter estimates are equivalent under either function. The log-likelihood 

function is

1(0 \x) = [2.2]
1=1

The maximum likelihood parameter estimates are then obtained as the simultaneous 

solutions of the k equations

dl(0 x) = 0 [2.3]

for7 = 1, 2, ..., k. The covariance matrix for the estimated parameters is established

as

Z =

d 2 l(9 1 x) d 2 l(9\x) 
Q0* '" 60} d0k

d 2 l(0\x) d 2l(0\x) 
d9k d9, '" dffS

[2.4]

When using the standard maximum likelihood approach to parameter estimation, the 

observations are assumed to be independent from one another and identically 

distributed. As such, the likelihood of observing the given data is simply the product



of the individual probability associated with each observation. In chapters 6-8, the 

observed information is assumed to be conditional on previous observations and as a 

result, the standard approach is to establish the likelihood of observing the r pieces of 

information as the product of conditional probabilities, see Harvey (1989). The 

functional form of the likelihood function becomes

*2>*i )><    */(*/  \xr-i,xr_2 ,...,x2 ,xl ) [2.5]

where, f(a \ b) is the probability of observing event a given that event b has already 

been observed.

With the likelihood function in hand, an optimisation algorithm is still required for 

maximisation of the expression with respect to the unknown parameters. In general, 

a local optimisation method is designed to generate a sequence of points that will 

converge to a local minimum. The algorithm is stopped or the sequence terminated 

once a convergence criterion or criteria are met. Often a criterion is that the norm of 

the gradient is small because theoretically at a local minimum the norm of the 

gradient is zero. One approach that is available is the Broyden-Fletcher-Golfarb- 

Shanno quasi-Newton (BFGS) algorithm. The BFGS algorithm is based upon the 

second order Taylor polynomial of the objective function and the Newton-Raphson 

method and has a convergence rate that is much faster than other optimisation 

algorithms such as conjugate gradient methods. This is due to the fact that the search 

directions for the BFGS are often more accurate however, more computational power 

is required for each iteration. The approximate second order representation for the 

log-likelihood function is

1(0 \x) * l(a\x) + Sa TVl(a\x) + -Sa T H(0\x)Sa [2.6] 

where, both V/(01 x) = (dl(9_ \x)ldOl ,..., dl(9 \ x) / ddk ) and the Hessian matrix



H(0\x) =

~d 2 l(0\x)

80^

8 2l(0\x)

d 2l(9\x)\
60l d0k

8 2 l(0 \ x)
90k d0l '" d0k 2

[2.7]

are evaluated at 0 = a and da = (Sal ,...,Sak ) T is 0-a . The well-known Newton- 

Raphson method for solving Vl(0 \ x) = 0 is given by the algorithm

where, c is the index. /l (c) is defined as an approximation to the inverse Hessian

matrix [//(# | x)]" 1   The Hessian matrix is the square matrix of second partial 

derivatives and is often used in optimisation algorithms. This is due to the fact that if 

the Hessian is negative definite at a critical point (when the gradient of a scalar 

function is zero), then we have a local maximum. The inverse of the Hessian matrix 

also gives the variance-covariance matrix for the estimated parameter values. 

The BFGS algorithm is

A
aa ab_ T +baT 

(a Ag ̂  )
[2.9]

where, q = 0 (c+l) -0(c\ b = A (c) Ag {c) and

\x) p.10]

When the algorithm converges, the optimal parameter estimates are obtained. The 

BFGS algorithm is presented here and used in the proceeding research in preference 

to other candidate solutions to the optimisation problem, such as the Davidon- 

Fletcher-Powell (DFP) method, due to the fact that it is widely regarded as being the 

most robust search algorithm.
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2.2.2 Alternative methods

In this section, we will discuss some (but by no means all) of the alternatives to 

maximum likelihood estimation. An alternative and frequently used means of 

estimating the parameters of a stochastic model or probability density is the least 

squares approach which involves the minimisation of the squared errors between the 

observed information and the model or density expectation. However, unlike 

maximum likelihood estimation, probabilistic statements can not be made about the 

estimated values using the least squares approach. A method similar to the least 

squares approach involves the minimisation of the chi-square function using the 

expectation from the model or density, see Kendall & Stuart (1979). Another 

technique is the Rao-Blackwell theorem, see Rao (1965), that utilises sufficient 

statistics for a given data set and modifies existing estimators to find an improved 

estimator. A sufficient statistic is an observable random variable constructed from a 

set of data that provides enough information to construct the conditional probability 

distribution for the data set and is not a function of the population parameters. 

Applications of the Rao-Blackwell theorem often use a maximum likelihood 

estimator as a starting point. Alternatively, if the original estimator is unbiased and 

complete then, according to the Lehmann-Scheffe theorem, the Rao-Blackwell 

technique provides a means of finding the minimum unbiased estimator. 

Another parameter estimator is given by the generalised method of moments which, 

as the name implies, is a generalisation of the method of establishing the moments of 

a probability distribution. In principle, it is similar to the minimum chi-square 

estimator. Minimum variance unbiased estimators also exist however, although 

theoretically sound, the restrictions placed on the bias can easily produce unrealsitic 

and misleading parameter estimates. Maximum a-posteriori (MAP) parameter

11



estimates are obtainable with the availablility of prior information, see Sorenson 

(1980). The MAP estimates are achieved by maximising the product of the 

likelihood function and an a-priori probability distribution for the parameter. 

Another technique that utilises prior distributions for the parameters is the 

expectation-maximisation (EM) algorithm which is a recursive procedure that 

defines some of the unknown information as latent variables and can also utlise the 

likelihood function in aquiring optimal estimates. In terms of constructing 

probability distributions, some techniques are available which do not require 

parameterisation. The Kaplan-Meier approach is a nonparametric technique for 

survival function estimation based on data only, see Kalbfeisch & Prentice (1973).

2.3 Hazard and reliability

The hazard and reliability functions are often utilised in applications involving the 

analysis of the expected life of a system. For a given system or individual 

component, we define/(O as a continuous failure time distribution on t > 0, and the 

reliability function R(t), also known as the survival function, is the probability that 

the system survives beyond time t. We have the relationship

/Z(r)=l-F(r) [2.11]

where, F(t) is the cumulative failure time density given by F(t) = \ f(s)ds. The

hazard h(f) is often referred to as the instantaneous failure rate and is given by

h(f)=f(t)IR(t) [2.12] 

We also have

F(0=l-exp{-//(0} [2.13]

where, H(f) is the cumulative hazard at time t given by H(t) = \ h(s)ds. Using 

equation [2.11], equation [2.13] can be manipulated to give

12



[2.14]

Chapters 6-8 utilise a proportional hazards model (PHM) for determination of the 

life expectancy of individual components. In a general sense, to establish the hazard, 

the PHM weights the impact of the unit's age and the input from monitored 

information that is assumed to be in some way related to the degradation of the 

component. The hazard for the PHM is given by

[2.15]

where, ho(t) is a baseline hazard function that is dependent on the age of the system 

only, y represents the information available about the system at time t and h(yy) is a 

function of y with a co-efficient y . The function A can be extended to incorporate 

the information from multiple sources (denoted by the vector y) as A,(yjy). In

chapters 6-8, the PHM is investigated as a methodology for condition based 

maintenance applications and its derivation is contrasted with the technique of 

stochastic filtering that is used in this context as a probabilistic approach to the 

problem that arises from the methodology outlined in the next section.

2.4 State estimation for discrete time stochastic systems

2.4.1 The conditional estimation problem

Much of the research documented in this thesis centres around the estimation of the 

state or condition of a complex system or individual component using both the age 

and any available monitored information when the state is not directly observable. It 

may not be the state of the system that is measured directly but rather, some signal or 

output that is assumed to be stochastically correlated with the system state and as 

such, the underlying condition of the system is inferred from this information. When 

modelling the underlying state of a complex system (see chapter 4), our monitored

13



information consists of failure times and the number of defects removed during the 

course of planned preventive maintenance interventions. The modelling objective is 

the characterisation of the underlying dynamics of the system regarding the fault 

arrival process and the potential for human error related fault injections, with a view 

to improving a given process and establishing a fixed decision model. As such, the 

underlying (unobservable) state is the number of faults that have arisen in the system 

by that point in time. However, in the context of condition based maintenance (see 

chapters 5 - 9), the state of an individual unit is not easily definable and we are 

required to consider variables that are related to or are functions of the severity of a 

fault at a given moment, or functions of the general operational capability, such as, 

the remaining useful life of the component before the defect leads to failure. 

Monitoring techniques such as vibration monitoring and oil analysis provide the 

indicator information that is used to estimate the state.

Techniques such as statistical process control (SPC) are limited when considering 

data that is non-stationary and evolving stochastically. One of the techniques that is 

suitable for data of this type is the stochastic filtering approach to state estimation 

that utilises any knowledge of the system and the characteristics of the particular 

indicatory information that is in use. The filtering approach assumes a statistical 

description for the system and the observation noise (measurement errors) and 

incorporates any uncertainties in the dynamics of the system. The recursive filtering 

process is relatively straightforward for systems that are characterised by linear 

relationships and perturbed by Gaussian white noise, (Harvey, 1989). The 

methodology can be generalised into a general Bayesian filter using a probabilistic 

approach and relaxing the linear assumptions to reveal an optimal filter designed to 

handle non-linear state space models, see Meinhold & Singpurwalla (1983, 1986)

14



and Jazwinski (1970). As such, it can be demonstrated that the linear filter is merely 

a special case of the general non-linear filter. However, by relaxing the assumptions 

of normally distributed noise and linear system equations, the computational 

complexity is greatly increased and approximate or numerical solutions are required, 

as is illustrated in chapters 4, 7 and 8. An understanding of multivariate random 

variables, Gaussian distributions, white noise processes, conditional probabilities and 

Bayes' theory are of particular relevance to the proceeding research. In this section, 

we focus on the discrete time state estimation problem where, information is received 

and knowledge of the state is updated at discrete time points during the life of the 

system or component. The estimation problem is addressed using the least squares 

method and a probabilistic filtering approach for a general state and condition input 

where, the state and observation processes are described by vector processes. 

An important element of the discrete probabilistic filtering approach is the Markov 

property of independent increments that implies that current states are independent of 

their history and as such, future states may be inferred solely from knowledge of the 

current state vector. For discrete time systems, the conditional probability density 

function

P(xi+ i |*o»*i'-»*/) = P(XM I*/) P- 16]

describes the transition for a state vector x from one stage to the next where, in some 

applications, the stages may correspond to monitoring intervals. Using the transition 

densities, the state at the next discrete time point * /+1 can be modelled as the

conditional mean

[2.17]
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Many stochastic systems can be modelled effectively using a first-order Markovian 

discrete time representation of the form

*/+ i=/(*/,'/+i) + v/ [2.18]

where, /,- is the age of the system at the fth check-point and v, is a random 

disturbance that is often assumed to be normally distributed and independent in time. 

The expression describing the evolution of the stochastic process, equation [2.18], is 

used in control theory with the inclusion of an additional control input M, 

as /(*»>'/+!>«/)  See Aoki (1967) for details on control theory for discrete time 

stochastic systems. 

The observed information vector y is assumed to be a function of the state of the

system and a level of measurement noise e t is incorporated in the observation 

expression as

y.=h(xi ,ti ) + e i [2.19]

When considering systems where the observed data is not directly related to the state 

or condition that is the objective measure of the estimation (filtering) or prediction 

process, the observations and the state are assumed to be correlated stochastically 

and in many estimation problems (see the hidden Markov modelling undertaken in 

chapter 4), it is a necessary requirement that the subsequent state xi+ \ may be 

determined uniquely from the current state x/ as

P(XI+I I */>£,) = P(*M I */) t2 - 20]

where, the state and measurement noise are assumed to be mutually independent. 

However, it is often possible to transform the situation when the assumption does not 

hold by augmenting the state vector to create a model in the standard state-space
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form. See Harvey (1989) for details. The conditional mean can be used to estimate 

the condition x when an observation y is obtained as

'* t \y t } = J*,/fe, I >,)«/*,= -' -'-' dXi = '-"-"'-'' -' [2.21]
— / J * —/ * J r\(-\i \ — r../— .. \ J

assuming that the various probabilistic relationships are defined. The conditional 

mean gives the mean square optimal estimate, however, it is complicated to update 

for dynamic systems, see Jazwinski (1970). A notable exception is that of linear 

systems perturbed by Gaussian noise where, the approach using the properties of 

conditional mean estimation is known as the Kalman filter. Estimation and the 

resulting analysis is far less complex when considering linear estimates, the Linear 

Least Mean Square (LLMS) estimation process produces results identical to the 

conditional mean approach for Gaussian distributed random variables. The LLMS 

approach involves the estimation of a and b in the expression xt = a + byi to find the 

parameter values that minimise the error covariance. However, the LLMS filter only 

gives optimal estimates in the special linear case described.

2.4.2 The least squares approach

We now consider a general least squares approach to the state estimation (not 

parameter estimation) problem for the system and observation process described by 

equations [2.18] and [2.19]. With the probabilistic stochastic filtering approach 

described in the next section, the errors in the system and observation expressions are 

defined as random inputs with known properties. However, when applying the least 

squares approach, they are defined as merely errors of an unknown quantity. 

Assuming that an estimate of the initial state *0 is available, upon the availability of 

the rth observation at time //, the least squares approach minimises
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[2.22] 
with respect to {*0 ,...,x, ; Vi, >v,-} and subject to the constraints

'i+i) + v* [2.23] 

for k = 0,1,..., /-1. In this context, the contributions Pg 1 , Q~ l and R^ are simply

defined as weighting matrices. The series of estimated state vectors {x 0 , x\,..., x t } 

that minimise equation [2.22] are the smoothed solution and xt is the filtering 

solution at time /,. The major drawback of the least squares approach is that upon 

observing each new vector of stochastically related information, y. , an entirely

new problem must be solved. An alternative is the recursive least squares (RLS) 

algorithm involving the minimisation of JM in terms of y. and the estimate of the

state from the previous recursion xt . Analogous to the least squares approach for

estimating parameters, probabilistic statements can not be made about an estimated 

state using least squares state estimation.

2.4.3 Probabilistic stochastic filtering

When conditioned on stochastically related observations, an optimal estimate of the 

state is obtained using the following general framework for the majority of systems. 

Consider a non-linear stochastic system with state and measurement equations;

x , = f(x t- i v.) F9 941 — i+l I vi/''»+l'i;/ V--*-^\

y_i =*(*,-,',-) + «/ [2.25]

where, the state and measurement error v, and e^ are vectors with elements that are 

assumed to follow 0-mean white noise processes. If 7/ denotes all the available 

measurements at the rth discrete time point, then the optimal mean square estimate is
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x t = E[Xj 1 Y_ t ] which must be computed recursively. Firstly, using Bayes' rule, the 

functional form of the conditional probability density function p(x f |7( ) must be 

determined as 

P(x.i,y. I £M ) = p(x t | y^Y^pfy | 7M ) = p(y. |* r ,FM )X*; I IM ) t2 - 26!

For the non-linear system defined in equations [2.24] and [2.25], the measurement 

contains white noise and we may therefore assume that the estimated condition 

contains all the necessary information regarding the measurements and as such, we 

have

p(y i \x i ,Y i_l ) = p(y.\x l ) [2.27]

Using equations [2.26] and [2.27], the probability density function of a particular 

state given the monitored condition history to date can be established as

p(y I*,-)
P(x t \li) = ~' , />(*, I Lt-i ) [2.28]p(y f II M)

Using the transition density, the probability of a one-step predicted state is given by

where, all the densities can be conditioned on the observed data and due to the 

Markovian nature of the process, the conditional predictive density becomes

P(*t I L-i) =
[2.30] 

Combining equations [2.28] and [2.30] produces

. i
' \p(x i | x i_l )p(x i_l | !M )</JC M [2.31] 
IM)

and this can be written as
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, ,
j }p(y t I *,

Equation [2.32] is the formulation used in chapter 4 and is adapted for a model with a 

discrete state space. In chapters 6 - 8, the particular definition of the state as the time 

remaining before failure provides a deterministic relationship between subsequent 

underlying states and enables the updating equation

P(x t I */-i )/>(*M I I M ) = X*, I r/_i ) [2.33] 

to be established.

For non-linear, non-Gaussian systems the conditional probability density given by 

equation [2.32] is intractable and sub-optimal policies or approximations are required 

to obtain an estimate of the state. For linear systems, the aforementioned Kalman 

filter provides a convenient means of updating the conditional density using the 

properties of the Gaussian distribution. In highly non-linear problems, it may be 

desirable that the system be modelled continuously between observations. Defining 

xt . +s as the estimate of the underlying state at time (f, + s), the system expression

that describes the evolution of the state is utilised as x(j+s = /(*,-, tit (tt + s)) for

2.4.4 The Kalman filter

There are a number of different ways of representing and deriving the Kalman filter 

and the approach described here is based on the propagation of the conditional 

distribution. The Kalman filter may be applied to any linear system model in the 

state space form, see Harvey (1989) and Aoki (1967) for extensive information on 

the Kalman filter in the probabilistic framework and the augmentation of state 

expressions to produce a model in the state space form.
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Although the various definitions of state in this thesis are univariate, here we present 

the matrix form of the linear system expressions and the Kalman filtering equations 

in order to provide the appropriate background for the development of approximate 

Kalman filters applied to non-linear systems in chapter 9. Consider the following 

observation expression in the state space form for a system observed at equidistant 

time points;

£,=£/*/+*, [2.34]

where, the vector y_ has N elements and H is a time dependent matrix of dimension 

(Nxm). The underlying state is then defined as a first-order m-vector Markov 

process

*,-+ i=£,*,-+G/«/+v/ [2.35]

where, F is an (mxm) time dependent matrix. The contributions v, and Cj are TV- 

vector white noise processes that are assumed to be mutually independent and the 

(ax 1) vector u is a control input such as, the effect on the system state of a 

maintenance intervention with a time dependent matrix G of order (mxa). It is 

assumed that the control input is to some extent within the control of the user and 

that the effect is either known or determined uniquely from knowledge of the 

observations. However, one cannot always be certain of the effects that may arise as 

a result of actions taken and attempting to quantify the impact of maintenance 

procedures can prove difficult. The control is usually derived subject to some 

criterion function and is often used in control theory to obtain some type of balance 

when deviations in the estimated value of the state are occurring, see Aoki (1967). 

The units of the control function are likely to be shared by the state that is the focus 

of the particular filtering application. For instance, if the state of the system is taken 

to be the residual time of a defect in the system before it results in failure, the
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corrective action taken at maintenance interventions may result in a decrease in the 

systems virtual age and as such, an increase in the residual life would be expected. 

The notation tt is defined as the time of the /th iteration of the filtering process that, 

in the context of a maintenance process, could represent an intervention or 

monitoring point. Assuming that 7, represents all the available information at tj 

including any control actions taken and that the objective is to ascertain the state at th 

the problem is one of prediction when (, < tt, filtering or estimation when (,  = tt and 

smoothing or hindsight when tj > /,-. The covariance of the estimation error is given 

by

P l[j=ElXi-x l[j]\x l -x,v]T P.36] 

where, x,y represents the optimal estimate. As noted previously, the LLMS estimate

and the conditional mean propagation approach derive identical results for this 

scenario under different assumptions. This is due to the fact that, the LLMS estimate 

is reliant on the assumption of white noise disturbances and coincides with the 

conditional mean for Gaussian distributed data. Here, we consider the system 

described by equations [2.34] and [2.35] and assume that both the measurement and 

system disturbances are 0-mean Gaussian white noise processes and mutually 

independent as

For most of the estimation approaches used in this research, some prior knowledge of 

the initial state or condition of the system is required and it is often a requisite that 

this initial state has no relationship with either of the noise sequences included in the 

model. With this particular case, we assume the initial state to be normally 

distributed as x0 ~ N(XQ,P^Q ). The conditional distributions utilised for state
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estimation and prediction purposes, given the available information, are also taken to 

be Gaussian;

X*,IZ,)~;V(*,,£,) [2.38] 

P(*i+i I !,) ~ tf(*/+ i|/,£>n/) [2.39]

and the parameters are obtained using the Kalman filtering process. The expressions 

are presented in two stages for prediction and updating purposes. The prediction 

equations that are used between observations are

x l+]V =F l x l +G i u i [2.40]

p. ... = F P F T +R [2.41]f_/+l|j i_;i_;i_; ^ £i l J

The updating equations upon observing the next piece of information are

*] [2>42]

where, the Kalman gain function is

The system is initialised using the mean and variance of the prior distribution for the 

initial state. Parameter estimation for the Kalman filter is undertaken using the 

conditional probability of observing each piece of information to formulate the joint 

density. The parameter values are then obtained using the maximum likelihood 

approach discussed earlier in this chapter. See Harvey (1989) and a furnace erosion 

prediction case study in Christer et al (1997) for more details of the parameter 

estimation process for the discrete Kalman filter.

As noted previously, when considering non-linear systems (as all the scenarios 

modelled in subsequent chapters are), sub-optimal schemes and approximations are

23



required for estimation and prediction of the underlying state. Applying an extended 

Kalman filter (EKF) to non-linear systems essentially involves applying the standard 

Kalman filter to linearised versions of the non-linear systems (see chapter 9 for 

details). There are many variations on the EKF in the literature. For instance, the 

'iterated' EKF is designed to consider situations where it is not obvious what the 

relevant linearisation point is when computing the Kalman gain function. The 

process involves iterating over the measurement equation and the iteration means 

that the linearisation point is changed. In some situations, this modification can 

result in improved performance of the filter, (Jazwinski, 1970). 

Another variation on the basic EKF is a 2nd-order EKF where, the recursive 

procedure deals with the 2nd-order terms in the Taylor series expansion of the state 

expression. See chapter 9 for details. The resultant equations contain quadratic 

terms that are replaced by their expected values. Gaussian sum estimators are 

frequently described in the literature available on approximate non-linear state 

estimation techniques. The complexity associated with the recursive computation of 

the conditional density functions is simplified through approximation. The method 

involves approximating an arbitrary density function by a weighted sum of Gaussian 

distributions. The process of propagating the conditional means and covariance 

matrices involves applying a number of EKF's simultaneously and weighting the 

respective output. To ensure that the covariance matrices are small, it is a general 

requirement that a large number of filters are used in achieving the best possible 

approximation. The primary approach pursued in the research presented here is the 

probabilistic approach whereby, the characteristics of the various relationships and 

the associated error processes are described by probability distributions. For the 

examples considered in chapters 7 and 8, a closed form solution to the filtering
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problem is attainable however, an analytical means of solving the expression is not 

and approximate or numerical techniques are required.

2.5 State estimation for continuous time stochastic systems

2.5.1 Stochastic calculus and Brownian motion

In this section, we are concerned with modelling the state of a system or a

component as a continuous-time stochastic process {^/}o</«»   A realisation of the

process X is called a sample path and is usually continuous however, jump 

discontinuities are viable on the condition that the functions involved are right- 

continuous. A necessary component of much of the continuous time non-linear 

filtering theory is Brownian motion. A Brownian motion is a process that has 

independent and Gaussian distributed increments with a mean of zero and an 

incremental variance that is proportional to the size of the increment. This property 

is attributable to the fact that each increment is comprised of many smaller, 

independent sub-intervals. Brownian motion is utilised in Ito processes (or 

diffusions) which are the primary tools in stochastic calculus. An Ito process is 

described by a stochastic differential equation

dXt =Ut dt + Vt dWt [2.45] 

where, { W,} is a Brownian motion. For a small time increment At, we have

Xt+At -Xt ~N(U,At ,V?At) [2.46]

where, the Gaussian distribution is conditioned on the processes W, U, V and X over 

the interval [O,/]. The process U represents the rate of change inland V represents 

the level of random diffusing. Both U and V are assumed to be non-anticipating or 

adapted processes. The adaptive property means that they are not reliant on the 

outcome of the Brownian motion after time t although, they may be dependent on it
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until that point. With V being an adapted process, the stochastic integral of X can be 

given with respect to a Brownian motion W as

Xt = \Vs dWs = li
0 " /=!

p.47]

The limit is very complex in most situations and indeed often does not exist. 

However, the limit always exists in quadratic mean or if the adapted process has 

bounded variation. The Ito process given by equation [2.45] can be expressed as a 

sum of stochastic integrals as

/ t
X,=XQ + Jt7, ds + \VS dWs [2.48] 

o o

For X, =f(t, Wt), partial differentials are taken to ascertain the change in the rate of 

the process as

dXt = ft (t,Wt )dt + fw (t,Wt )dWt + fww (t,Wt )dt [2.49]

and this is known as Ito's lemma. Equation [2.49] can be written in the form of a 

stochastic integral as

t tj i N

Xt = X0 + \fw (S,Ws }dWs + I ft (s,Ws ) + -fww (s,Ws ) Ids [2.50]
o (A L j

where, the final term is included because even squared increments of a Brownian 

motion can have an impact on the overall process. Another integral form that is 

available for stochastic processes is the Stratonovich integral which can be expressed 

in terms of the Ito integral. Although, it is a useful approach for problems involving 

stochastic differential equations, it lacks some of the necessary properties that are 

required for stochastic filtering, see Krishnan (1984) for details. 

The continuous observation process {¥} is stochastically related to the state as
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Y,=h(t,Xt ) [2.51] 

The change in the observation process is described by

dYt = ht (t, Xt )dt + hx (t, Xt )dXt + i hxx (t, Xt )(dXt } 2 [2.52]

where, (dXt ) 2 = V 2 dt is the quadratic variation of X. In keeping with the

description of the observation process, a stochastic differential equation for a general 

Ito process Xt is given by

dXt = /(/, Xt )dt + g(t, Xt )dWt [2.53]

for functions/and g that are dependent, in this context, only on the current value of 

the process X. Meaning that the process is of a Markovian nature where,/and g are 

analogous to the transition probabilities of a Markov chain. A further important 

element of the stochastic calculus discussed here are martingale processes. A 

process X, is a martingale if for t < u, E \XU \ Xs ,0 < s < t] -Xt and as such, the

expectation is E[JTJ -E[^"0 ] for all t. An Ito process is a martingale if it satisfies 

the property dXt = VtdWt . Importantly, Brownian motion is itself a martingale and 

can be expressed as

Xt = \Vs dWs * £ P,M (Wt . - Wt.^) [2.54] 
o »=i

t 
where, the expectation is E [Xt ] = 0 and E [X? ] = J E [V 2 ] ds.

o

2.5.2 Continuous time filtering preliminaries

Liptser & Shiryaev (1989) show that, if the state is governed by a stochastic 

differential equation and the process describing the evolution of the state over time is 

of the diffusion type, the diffusion process has an equivalent Ito process

27



representation. An Ito process can be represented as a diffusion process relative to 

the innovations process V. In the filtering representations discussed here, the 

innovations process is a Brownian motion process that represents the new 

information that is available and consists of the differences between what is expected 

to be observed and what is actually observed. The innovations process is derived 

with respect to the cr-field generated by the observation process $ and is crucial 

when deriving the non-linear filtering representations. The innovations process is an 

^-martingale, this property is implied by the fact that the innovations process is 

assumed to be of the Brownian motion type. Doob's decomposition theorem also 

illustrates this property and Kallianpur (1980) gives a more in depth discussion of the 

innovations process.

We are concerned with the estimation of the state (Xt, teT] of a system with respect 

to a cr-field. As with the problem scenario for the discrete time case in section 2.4, 

the state is not observable directly and must be ascertained via an observation 

process that is assumed to be correlated with the state. In contrast to the discrete 

time case, we are interested in updating our knowledge of the state continuously as 

observations arrive continuously. The state estimates are derived using the 

observation process and an optimal criterion such as the MSB function. As with the 

discrete systems, the conditional expectation of the state provides an optimal 

estimate for most criterion functions however, the expectation will in general be a 

non-linear function of the observations. The issue is further complicated by the fact 

that both the state and observation process are assumed to be governed by stochastic 

differential equations and the resultant expression for the conditional expectation of 

the state will also be a stochastic differential equation. For non-linear cases, the 

conditional mean is dependent on higher moments of the conditional distribution and

28



as such, approximations or sub-optimal policies are required. The linear scenarios 

require only the second moments of the conditional density and therefore the 

evaluation of the conditional mean is a tractable problem. Analogous to the 

treatment of discrete time systems, the estimation procedure for linear systems can be 

derived within the framework of a general non-linear model, see Krishnan (1984). 

Using the properties of martingales, a closed-form representation for the general non­ 

linear stochastic system is given by Liptser, Krishnan (1984) and Kallianpur (1980) 

and some approximation is required to obtain the estimate. Under general 

conditions, any martingale can be given as a stochastic integral. Krishnan (Theorem 

8.4.1) shows that a square integrable martingale can be given as a stochastic integral 

with respect to the innovations process and it is this fact that makes the closed-form 

representation possible.

2.5.3 Non-linear filtering for continuous time systems

We are considering the complete probability space (Q $, P) and are attempting to 

compute the least squares estimate of the state of the system {X,, teT} given the 

availability of the current value and history of the observation process {7,, s < t, 

teT} and as noted previously, this involves finding the conditional expectation of the 

state given the cr-field generated by the observation process {<F,, teT}. Further, we 

require that the conditional expectation be updated recursively and continuously. 

The state of the system adheres to the process {Xt, J3,, teT} and is taken to be an Ito 

process defined on the complete probability space as

[2.55]
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The observation process {Y,, /?,, t&T} is also an Ito process and is defined on the 

complete probability space as

t
Y,=X0 + JX dT + Vt [2.56] 

o

where, unique solutions exist for both the state and observation at time t and Xo is an 

arbitrary initial condition that is assumed to be independent of all processes involved 

in the system equations, {/?,, teT} is the filtration cr-field defined by 

/3( iDcr{X0 ,Xs ,Ws ,Ys ,Vs ,s<t,teT} and $= a{Ys,s < t, teT} is the filtration a-

field generated by the observation process, where ^ c /?,. The state and the 

observation process are defined as semi-martingales on the cr-field /?/, and/ and ht 

may be functions of X, and are /7rmeasurable. Finally, W, is a general right- 

continuous martingale process and { Vh /3t, t&T} is a Brownian motion process with 

parameter crv . The innovations process v, has the same statistics as V, and is given by

dvt =dYt -ht dt [2.57]

where, the cr-field generated by the innovations process is equal to the cr-field 

generated by the observation process. The same representation for the non-linear 

filtering theorem can be derived without this assumption but the derivation is much 

more complex.

The conditional estimate for the state of the system with respect to the cr-field at time 

/ is given by

1dXt =ft dt   -
dt 

or as a sum of integrals as

E 3<—(W,V)t +E 5'(Xt _ht )-'E 3'Xt _E 5'ht dv [2.58]

30



dvT [2.59]

where, (W,V), is the quadratic covariance between W and V. However, as noted 

previously, this expression is generally intractable except in the linear Gaussian case. 

See Krishnan (1984) and Kallianpur (1980) for proofs of the filtering theorem. A

useful modification is to consider the error quantities XT = XT_ - XT_ and 

hT = hT _ - hr_ that enable the representation

1
2 ^ dvt [2.60]

If Wand Fare independent martingales then (W,V^ = 0 and the filtering expression 

becomes

dXt =ft dt + — E 3l (X,ht )dvt [2.61]

which is a useful representation for many cases. Krishnan (1984), Kallianpur (1980) 

and Liptser & Shiryaev (1989) present very similar treatments of the filtering 

problem from a martingale perspective. Engineering applications including Koch 

(1986) tend to utilise a Poisson counting process with independent positive 

increments as

N, = No + *t + mt [2.62] 

where, N, is the number of events and mt is a martingale.

2.5.4 An alternative approach

An alternative approach to the continuous conditional estimation problem involves 

partitioning the range [0, t] into sub-intervals AQ = 0, A\, A2, ..., An - t. Then, 

defining a = max, (4+1 - 4)» tne objective is to establish

31



,y.,y_A >->y_A ) [2.63]
H » 00

for the continuous information path Y t ={y ;0<s<t}. Redefining the

observation expression in a manner consistent with the probabilistic framework 

developed in section 2.4.3, we have

0 + dt] [2.64]

where, E(drj dtj ) = Q(t)dt for Q(t)>Q, and p(XQ ~) is assumed known and 

independent of 77 . To establish a conditional density for the underlying state at time 

t, the approximation

£xexp

-~\h(Xs , S)T Q-\S)h(Xs ,s)ds+[ 
2 o o

can be used where, the expectation is taken over {Xs ;0<s<t}.
[2.65]
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Chapter 3. Recognising and measuring the potential for human 

error at maintenance interventions using delay time modelling

Within the context of Delay Time modelling, we investigate an approach whereby 

the injection of defects at maintenance maybe ascertained from basic inspection and 

failure data. The model is developed in the context of a competing risks scenario and 

the objective of the research is not to assist management in optimising existing 

situations that incorporate substandard procedures but rather, the intention is to 

highlight the existence of such inefficiencies and to demonstrate the benefits that 

may be achieved through improved practice. Although the model is constructed with 

the provision for human error based fault injection in mind, the structure of the 

model does not limit its application to situations that incorporate specifically human 

error. The form of the model is appropriate for scenarios incorporating any kind of 

fault injection. A number of cases are investigated using simulated data to test a 

methodology for establishing the existence and indeed the level of potential human 

error injected faults. This entails the selection of an appropriate form for the model 

and accurate estimation of the necessary parameters.

Initially, a review of the relevant background and supporting literature is presented. 

The basic delay time model and the associated parameter estimation approach are 

then introduced with a view to extending the modelling and estimation for the cases 

incorporating human error. The impact of potential fault injection on the resulting 

downtime modelling phase is discussed and the methodology adopted for simulating 

the process and obtaining the necessary failure and preventive maintenance (PM) 

repair information is introduced. Some modelling options are proposed and 

implemented on the simulated data sets and the ability to differentiate between a 

process with and without human error at PM using the suggested techniques is

33



assessed. The model selection approach is then extended and tested for comparison 

of models incorporating fault injection and models incorporating fallible detection of 

existing defects at PM. The chapter concludes with a discussion of general 

modelling recommendations, potential extensions to the work and the limitations of 

the modelling approach encountered.

3.1 Literature review

3.1.1 Modelling literature

For the research documented in this chapter, delay time modelling is used to 

represent the failure and inspection process for complex dynamic systems. The 

delay-time concept was first introduced in an appendix to Christer (1973) and then in 

a cost based decision model utilising subjective estimation in Christer (1982). The 

first formal presentation of the delay-time model for systems in a steady state of 

operation was given in Christer & Waller (1984a). Initially, the model was 

developed for systems with a homogenous fault arrival rate and then extended for the 

non-homogenous case. The paper also addressed the issue of non-perfect detection 

of existing faults at inspection. Industrial case studies include the application of 

delay time modelling to a canning line, Christer & Waller (1984b), and to the 

maintenance of coal mining equipment, Chillcott & Christer (1991). 

In this chapter, objective parameter estimation techniques are applied to failure times 

and data collected at inspections in order to characterise the proposed delay time 

models. Baker & Wang (1991, 1993) introduced the objective approach for 

estimating the parameters of a delay time model when applied to a single-component 

system and Christer et al (1995) applied delay-time modelling to the maintenance of 

a copper production plant with objective estimation being used to ascertain the 

parameters for a complex system representation. In situations where incomplete data
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sets only permit the accurate estimation of some of the model parameters using 

objective methods, subjective input is required to establish the model of the system. 

Christer & Waller (1984a) discussed the subjective estimation of delay time 

distributions using expert opinion obtained from experienced engineers. Further 

work on the subjective engineering-based estimation of delay time distributions can 

be found in Wang (1997) and Christer & Redmond (1992) presented objective 

parameter updating techniques for subjectively estimated delay time models. The 

maximum likelihood estimation of optimal inspection intervals is addressed in Baker 

et al (1997) and Christer et al (1998, 2000) considered parameter estimation 

problems with either limited or deficient data sets. Christer & Wang (1992, 1995) 

developed a delay-time model to represent the condition monitoring of a plant for the 

single component case and subsequently, a multi-component system. Reviews of the 

developments in delay time modelling can be found in Baker & Christer (1994) and 

Christer (1999).

With regard to the type of physical process and preventive action under investigation, 

Ascher & Feingold (1984) present an extensive account of maintenance techniques 

for repairable systems. When modelling the impact of potential fault injection in this 

chapter, the delay time model is presented in the context of the competing risks 

model. See Bedford & Cooke (2003) and Crowder (2001) for information on 

competing risks and the associated problems of parameter identifiability. Counting 

processes are used to model the system failures as a stochastic process and a 

thorough treatment of the Poisson process, and variations of, can be found in Ross 

(1983). Barlow & Hunter (1960) give the initial presentation of the non-homogenous 

Poisson process (NHPP) and Barlow & Proschan (1965) showed that for complex
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systems incorporating negligible failure repair times, the type of failure process that 

we consider in section 3.2 follows a NHPP in the limiting steady-state case.

3.1.2 Literature on fallible maintenance

Many studies have highlighted the presence of human error related defect injections 

at maintenance interventions. Steedman & Whittaker (1973) estimated that in a 

particular ICI plant, up to 30% of system failures were directly attributable to defects 

injected at some point during the course of the previous PM. An ASRS air transport 

report, Patankar & Taylor (2003), claimed that up to 40% of defects that are present 

in an aircraft at any given time are due to the unintentional release of further errors 

during substandard inspection and repair procedures. It is feasible that the inspection 

or repair process for existing faults could result in the accidental injection of further 

and potentially more severe defects. For instance, Jia et al (2002) encountered a case 

where one specific error-prone maintenance procedure consistently produced defects 

that subsequently resulted in a system failure. In cases such as this, it may be 

beneficial to reduce the level of maintenance or indeed forgo it altogether and rely 

solely on breakdown maintenance. Alternatively, the modelling and identification of 

a defective process can reveal areas for potential improvement. In a limited PM data 

and 'selective repair' case, Christer et al (1998), the modelling process revealed 

defects that could potentially be removed and the resulting improvement in 

maintenance procedures produced downtime savings of approximately 15%. This 

illustrates the potential benefits of modelling human error, and although the focus of 

that particular study was on the failure to identify and remove existing defects, the 

quantities and levels of reduction in downtime are of interest. 

Similar scenarios and alternative modelling solutions for problems that include 

fallible maintenance can be found in the following references; Kaio & Osaki (1989)
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present a comparison of inspection policies for a single component that may be 

detected as failed only by potentially fallible inspections, Jack (1991) investigates a 

scenario with non-perfect inspection repairs and a finite planning horizon, Makis & 

Jardine (1992) present a replacement model which again facilitates the existence of 

human error in the form of imperfect defect repair, Parmigiani (1996) looks at the 

scheduling of fallible inspections where, the inspections take the form of time 

consuming tests with two possible test types considered namely, fallible and error- 

free, and Dagg & Newby (1998) consider a scheduling problem with imperfect 

inspection and repair for three system states; good, faulty and failed and a Markov 

structure is utilised in the computation of average costs that are subsequently used to 

determine the optimal number of inspections before overhauling. There are 

numerous cases in the maintenance literature involving poor data detection 

capabilities, McKone & Weiss (1998) and Baker & Wang (1992) are just a couple of 

examples. However, although the existence of fault injection based human error in 

maintenance procedures is recognised as being common-place, few modelling-based 

studies have considered the actual creation of defects as a direct consequence of the 

inspection process or indeed the potential for poor quality maintenance resulting in 

the insertion of further defects into the system.

3.2 Modelling and analysis

This research is concerned with industrial plants that are subject to regular periodic 

inspections. The aim is to incorporate the potential for fault injection during routine 

planned preventive maintenance (PM) into the modelling process and to determine 

whether we can recognise and quantify the level of injection when it is indeed 

present. Also, by optimising resulting downtime or cost models with and without 

human error, we can then quantify any potential benefits, such as a reduction in
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downtime that may be achieved through improved maintenance practice. Carr & 

Christer (2003) discussed how the expected number of defect injections could 

subjectively be estimated under certain convenient assumptions and illustrated how 

an existing maintenance process could be optimised using downtime or cost control 

functions. The downtime functions utilise the interval between inspections as the 

key decision variable. The potential benefits of improving maintenance procedures 

can then be demonstrated by comparing the optimal maintenance policies obtained 

using delay time models with and without the facilitation for defect injection at PM. 

In this chapter, we investigate the ability to characterise, through appropriate model 

specification and parameter estimation, the fault arrival process, the fault injection 

process and the resulting failure process from objective failure data. We require the 

approximate failure times where for instance, they may be recorded as occurring '«' 

hours/days/weeks etc after the last inspection. The primary objective is the 

identification of human-error based fault injection when it is not necessarily known 

to be taking place.

3.2.1 The basic delay time model

The basic fault, failure and inspection process for defects arising naturally during 

standard operation of the system is illustrated in figure 3.1 and provides the 

framework upon which this research is developed.

»time

Figure 3.1 - Illustrating the failure process for defects arising during the course of operation
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Figure 3.1 illustrates the alternative outcomes for a defect, consisting of a failure 

later in the same cycle or detection and removal at the subsequent PM. The process 

can be represented by the basic delay time model, see Christer (1999), and is subject 

to the following assumptions;

- Defects are assumed to arise during standard operation according to a 

homogenous Poisson process (HPP) with a constant arrival rate k. As such, 

the expected number of faults arising over a regular inspection interval 

((/-l)r, iT) iskT.

- The delay time h of a standard fault is assumed to be independent of its time 

of origin u and is governed by a probability density function flh).

- Defects detected at inspection are repaired within the PM interval d.

Upon failure of the system, repairs are initiated immediately and only the 

defect that has resulted in the particular failure is attended to. All other 

defects that are present in the system remain untouched.

- The plant or equipment being modelled is in a steady state, i.e. has been in a 

similar operational state for a substantial amount of time. This is reflected in 

the constant fault arrival rate k.

Once an appropriate form has been selected for the delay time distribution, j(h), we 

are required to estimate the parameters of the delay time model. There are both 

subjective approaches, see Christer & Waller (1984b) and Wang (1997), and 

objective approaches, see Baker & Wang (1992) and Christer et al (1995), that are 

available for parameter estimation purposes. E[Nf((i-l)T, iT)] is defined as the 

expected number of failures over the interval between inspections ((/ - V)T, iT) and 

is given by

39



= E[Nf (Q,T)] = E[Nf (T)] = k\F(T-u)du [3.1]
T

\
o

The steady-state assumption implies a consistency in operational conditions. As a 

result, we use the notation E[Nj(T)] in preference to E[Nf((i-\)T,iT)] as all the

intervals can be treated equally from a statistical perspective. Another factor in 

establishing this property is the fact that, from a fault detection perspective, we 

initially assume a perfect inspection process to be in place and as a result, any 

failures that arise in a given interval are assumed to be attributable to defects that 

originated within the same interval. Therefore, we can classify each operational 

interval ((/ - 1)7\ /T) as independent. For fault arrivals that adhere to a homogenous 

Poisson process (HPP), the resulting failure process follows a non-homogenous 

Poisson process (NHPP);

Nf ((i-\)T,iT) -Poisson (E[Nf (T)]} [3.2] 

Ross (1983) states that the following properties characterise a non-homogenous 

Poisson process (NHPP);

2. Nf(t) has independent increments for t > 0,

3. P(Nf(t,t + dt) = Y) = r(f)dt + o(df) where, r(f) is a time-dependent rate

function,

4. P(Nf (t,t + df)>\) = o(dt).

Properties 1, 2 and 4 are easily verified in practical situations. Addressing property 3 

for the basic delay time model, we have

, t t
r(i) = — E[Nf (t)} = k\f(t-u)du + kF(Q) = k\f(t-u)du [3.3]

dt 0 0

40



The Poisson process properties are very useful as they enable the construction of the 

probabilities associated with observing a specific number of failures in a given 

interval. These probabilities are then utilised to formulate the maximum likelihood 

expression that is used to estimate the required parameters. A similar result applies 

to the number of faults detected and removed at the /th inspection (PM); 

Np (iT)~Poisson{E[Np (T)]}. Under steady state conditions, E[Np (T)] 

represents the expected number of faults found and removed at any given inspection;

T

= kT-k\F(T-u-)du [3.4]
0

As the observations are independent, the likelihood of observing the given data set is 

just the product of the Poisson probability of observing each cycle of data where, m, 

is the number of failures observed in the zth interval and y, is the number of faults 

removed at the /th PM. The reasons for selecting the maximum likelihood approach 

for estimating the parameters (regarding the asymptotic properties of the estimator) 

are discussed in chapter 2. The likelihood function for L intervals of data is

i
Z = H \P(Nf((i - W,iT) = mt )P(Np (iT) =;,.) 

1=1

An alternative likelihood function can be derived that utilises the exact failure times, 

see Christer (1999), however in practical situations, data is rarely recorded in such a 

precise fashion. As such, we opted to pursue the likelihood formulation described 

here. The likelihood function is maximised with respect to the parameters to obtain 

the estimated values. The optimisation process can be simplified by taking natural 

logarithms of the likelihood function as
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L
/

( L

v/=i

[3.6]

Omitting the constant terms that are not a function of any of the parameters under 

investigation and inserting the expressions for E[JV/(7")] and E[NP(T)] gives

/ = 5>, log k\F(T-u)du + £./, log kT-k\F(T-u)du \-LkT [3.7] 
V/=i ) \ o J V/=i ) L o

We can obtain an estimate for fc by taking the partial differential

IT L ( T

i, \F(T - u)du X Ji \T-]F(T- u)du
[3.8]

- u)du k\T- \F(T - u)du
0 (. 0

Setting 81 1 dk = 0 and re-arranging for k, we obtain

which we could have arrived at by induction. However, the derivation serves to 

illustrate the parameter estimation process that is built upon in subsequent sections. 

Each event, whether a failure or defect removed at inspection, represents the 

outcome of one defect and as we are only interested in the average rate of arrival, it 

is obvious that this is given by

k = (Total number of fault arrivals) / (Total time over all cycles) [3.10] 

which is a standard result in statistics when dealing with Poisson processes, see Ross 

(1983). The estimate of k can then be inserted into the likelihood function thus
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easing the estimation process for the parameters of f(h). However, with the 

introduction of faults injected at maintenance interventions, the derivation of k and 

the other parameters becomes more complex. Maximum likelihood estimation is not 

the only approach available for parameter estimation problems of this nature. As 

discussed in chapter 2, a number of alternative methods are available for parameter 

estimation purposes such as the least squares approach.

Using the established delay time model with the estimated parameters, a downtime 

control function can be constructed and then optimised for the decision variable T 

(the regular interval between inspections). An appropriate control function for the 

basic inspection model is the expected downtime per unit time and is given, under 

steady-state conditions, as;

= Expected Do^tune =
Cycle Length ' J

where, dfis the average duration of a failure repair.

3.2.2 Modelling the injection of faults at PM

Extending the basic process, our objective is to model the potential for defect 

injection at maintenance interventions. Figure 3.2 illustrates the potential failure 

process for defects injected at inspection. The model is constructed in the context of 

a competing risks scenario (see Bedford & Cooke (2003)) which implies that if a 

system or piece of equipment can fail, it can usually fail in a number of ways. A 

problem that is typically associated with the modelling of competing risks is one of 

'identifiability' and can result in an inability to identify the marginal distributions 

associated with the times to failures that are attributable to different sources of risk. 

The problem often manifests itself during the parameter estimation process as 

observed later in this chapter.
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As with standard defects, the injected faults may result in failures within the same 

operational cycle or they may be captured at the next inspection. The outcome is 

dependent on the duration of their respective delay-time.

f\ ->. time

Figure 3.2 - Illustrating the failure process for standard faults and faults injected during PM

In addition to the considerations associated with the arrival and subsequent outcome 

of standard defects and the basic delay time model inspection process, we make the 

following additional assumptions regarding the injection of defects at PM;

- Inspections are not benign, in that defects may be injected as a direct result.

- Detection at inspection is perfect.

Injected defects begin deteriorating at the start of the next operational cycle.

- The average number of defect injections at a maintenance intervention is v. 

The delay time of an injected defect has pdf g(h). Note that, in principal we 

allow the delay-time distribution for injected defects to differ from that of 

standard defects. This implies that, although the defects are assumed to be of 

the same type, their severity may differ due to the fact that their creation is 

likely to be more abrupt and attributable to some form of system incursion. 

However, estimation becomes much more complicated when the distributions 

are allowed to differ.

As with the basic inspection process, a downtime control function can be 

constructed. The structure of the function is unchanged and the expected number of 

failures occurring over an interval (0, 7) is now discussed. In the context of 

competing risks, we have
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[3.12] 
0 i=\

for n potential sources of fault injection where v, is the expected number from source 

i and F(f) and G,(-) are cumulative distribution functions. Competing risks models 

are often constructed for scenarios where a number of different faults from a number 

of potential sources can cause a failure but, we only observe the first failure and the 

system/component is then renewed/replaced with all other existing faults also being 

attended to. In addition, the cause of the particular failure is often identifiable. For 

our particular scenario, we are only considering a single source of fault injection, the 

source of individual failures is not identifiable from an engineering perspective and 

we potentially have multiple failures in the interval between inspections with an 

unknown origin for each failure from which the parameters of our model must be 

estimated. The expected number of failures over (0, 7) is

T
V[Nf (T}} = k\F(T-u}du + vG(T) [3.13] 

o

and the non-homogenous failure rate function is established as

dt
[3.14]

Therefore, as with the basic case without the provision for fault injection, the number 

of failures arising over an interval between inspections, ((/ - \)T, IT) , is Poisson 

distributed with the mean being the expected number of failures, E [N f (T)] , as

Nf ((i-\)T,iT)~Poisson{E[Nf (T)]} [3.15]

The number of defects detected and repaired at an inspection is also Poisson 

distributed with the mean being the expected number;
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Np (iT)~Poisson{E[Np (T)]} [3.16]

where, Np (iT) represents the number of existing faults that are detected and 

removed at the fth PM.

The potential benefits of this research can be seen in figure 3.3. Accurate estimation 

of the model parameters, including v, would enable the construction of the downtime 

control function (see equation [3.11]) and determination of the optimal inspection 

interval T*, with and without the injection of defects at inspection for comparison. 

The parameters used for the demonstration in figure 3.3 are representative of values 

that have been observed in practical scenarios. We assume the average downtime for 

a failure to be df = 0.5 hours and for an inspection, we have d = 0.35 hours. The 

delay-time distribution is taken as negative exponential with /I = 0.05 for both faults 

created during production and those injected during the course of an inspection,

flji) = g(h) = Q.Q5e~ ' ; h > 0

The average fault arrival rate during standard operation is k = 0.1 per hour. The 

average number of defect injections v is taken to be a binomial random variable with 

5 being the maximum number of potential fault injections. Each potential fault 

injection is independent and has an associated probability of p = 0, 0.3 and 0.7. 

Expected values are then obtained for the mean number of fault injections of v = 0, 

1.5 and 3.5 respectively. The downtime expression is given by equation [3.11].
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Inspection Interval, T
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Figure 3.3 - The expected downtime under a prospective inspection interval where the 

maximum number of fault injections is 5.

As can be seen in figure 3.3, with probability 0.3 of injecting a defect at each of five 

statistically identical opportunities, the minimum expected downtime increases by 

over 70% when compared with the perfect PM case, where p = 0, which corresponds 

to the basic delay time model. As more faults are injected during inspections, the 

optimal region becomes flatter, and any change in the inspection interval within this 

region has little effect on the resulting downtime. However, with the introduction of 

an excessive number of faults, the behaviour of the downtime function alters to the 

extent that, an optimal solution is no longer available as the curve continuously 

decreases well beyond any reasonable range for setting a regular PM interval. In this 

situation, the recommended procedure would be to invest in improving the actual 

inspection process or to forgo inspections altogether in favour of a breakdown or 

'contingency-repair' policy with an associated downtime D(T) = kdf, which is the 

asymptotic expected downtime per unit time for all the models as T -» oo. However, 

it is the parameters of E[Nf (T)] and their estimation from failure data that are the 

focus of this investigation. In a practical scenario, the construction of the downtime
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(or cost) control function would form the final stage of the analysis and would be 

used to demonstrate the benefits of improving maintenance practice by preventing 

further human-error based defect injections at PM. As mentioned previously, we 

assume the plant to be in a steady state of operation and therefore, we assume the 

data to be reflective of this condition. The type of data we are concerned with 

primarily consists of; the number of recorded failures and their associated times 

within each operational cycle and the number of defects detected and subsequently 

repaired at each inspection. In a practical scenario, we would also have information 

on the duration of the interval between inspections T (assumed throughout this 

section to be a regular interval) and the number of cycles of data, represented by L.

3.2.3 Simulating a process with potential fault injection at PM 

In our investigations into the ability to accurately estimate the necessary model 

parameters, we have used simulated sets of data. Simulating the data has a number 

of advantages; firstly, we can simulate many data sets and therefore try numerous 

runs and combinations of the model parameters to investigate the behaviour of the 

specified models structure, and secondly, given that we have specified the form of 

the delay time model and the parameters that are used to simulate the data, we 

already have knowledge of the actual underlying parameter values that we are hoping 

to recapture. The steps for simulating the arrival and subsequent outcome of 

standard defects are given as follows;

1. Generate the number of defects arising in an operational cycle as a Poisson

random variable with the expected number being kT. 

Each defect is now treated individually;

2. Assign a time of origin u uniformly over the cycle ((i-\)T, iT).
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3. Assign a delay time h from the delay time distribution J(h) using inversion 

techniques on the cumulative density function.

4. Extrapolate the outcome of the defect according to the time of origin and the 

associated delay time until failure. The outcome will be either a repair at the 

next inspection or a failure within the same cycle.

An analogous approach is utilised to simulate the failures and inspection repairs that 

arise as a consequence of fault injection at inspection. The number of injections is 

generated as a binomial random variable and the delay times are acquired from the 

delay-time distribution g(/z). The time of origin for each injected defect is the start of 

the subsequent operational cycle. As we have prior knowledge of the inspection 

interval, the parameters and the number of cycles of data specified for simulation, the 

following expression can be used to validate the simulated data set;

kT + v « - [3.17]
LJ

where, M is the total number of failures and J is the total number of repairs at PM. 

Also, by inserting the parameter values used for simulating the data into the 

expressions E[Nf(T)] and E[NP(T)], the following approximate equalities are useful 

for validation of the simulation process,

E[Nf (T)]*M/L and E[Np (T)]*J/L [3.18]

where, E[NP(T)] represents the expected number of defects that are found and 

removed at any given inspection as

T

[3.19] 
0

In summary, the simulated data sets include the approximate failure times within 

specific increments of each interval and the number of faults removed at inspection.
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3.2.4 Model specification and parameter estimation

It is a necessity when commencing modelling that we already have possession of the 

data. The modelling process begins after an initial analysis of the type of data we 

have at our disposal. We initially apply an entirely objective approach to the 

parameter estimation process using maximum likelihood estimation (MLE), see 

Baker & Wang (1992). The key steps to consider when attempting to estimate or 

recapture the required parameters from maintenance data using MLE are;

1. Collect the data into appropriate groups/intervals.

2. Determine the functional form for the expected number of failures that occur 

during the course of an operational cycle E[Nf(T)] and the expected number 

of defects detected and repaired at an inspection E[NP(T)].

3. Select forms for the delay time distributions/(/z) and g(h).

4. Determine the functional form of the likelihood function as a product of the 

probabilities associated with observing each piece of available information 

i.e. the number of failures that we observe in specified groups or intervals and 

the number of faults removed at inspections.

5. Insert the available objective data into the likelihood expression.

6. Maximise the specified likelihood function with respect to the parameters 

under investigation.

7. Use selection criterion such as the AIC (Akaike Information Criterion) to 

choose between potential model forms when the number of parameters under 

investigation differs.

The AIC provides a means of comparing the maximum likelihood values obtained 

for different candidate distribution forms and is derived on the assumption that the 

actual underlying fault arrival process and resulting failure process can be described
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by a given delay time model if its parameters are suitably adjusted, see Akaike 

(1974). The AIC was developed around the concept of entropy and is an estimator 

based on the maximised log-likelihood function and corrected for asymptotic bias. 

The AIC provides an estimate of the expected, relative Kullback-Leibler information. 

The Kullback-Leibler information is a quantification of the meaning of information 

that is related to the concept of sufficient statistics. The AIC for a given likelihood 

function applied to a particular data set is

AIC = -21og(Z) + 2q [3.20] 

where, .Z°is the maximum likelihood value for the formulation and q is the number of

parameters under investigation. Naturally, we seek to minimise the AIC and as can 

be seen from the 2q component of the function, a penalty is applied for excessive 

parameterisation. A model with a larger number of parameters may be more tailored 

and hence provide a better fit to the data used to establish it, but is likely to be less 

flexible when applied to new data and the AIC takes this into consideration i.e. 

discourages over-fitting.

However, grouping the data for parameter estimation purposes is more complicated 

than the basic case. Essentially, the problem is that a range of values for k and v will 

satisfy the equality given by expression [3.17] and grouping the data according to the 

number of failures in each interval will not suffice. We must examine the behaviour 

of the failure process within the intervals to obtain the parameter estimates. Each 

interval ((/ -1)7", IT) is partitioned into z non-overlapping, equidistant increments of

length A as

(/-1)7' + zA = iT [3.21] 

and we apply the following index for/ =1,2, ...,z;
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I'j = [(/ - 1)7- + (j - V)A , (i - \)T + JA] [3.22] 

If we are considering the limiting case (steady-state conditions), in terms of the 

associated probability, we expect the corresponding increment./ from each interval i 

to exhibit similar behaviour as regards the number of observed failures. The 

definitions given in [3.21] and [3.22] reduce to the following for/= 1, 2,..., z;

Ij = [(j-l)A,jA\ and zA = T [3.23] 

Similarly, the number of failures in each increment of every interval is Poisson 

distributed where, under steady-state conditions the mean is simply the expected 

number of failures for that increment regardless of the particular cycle;

Poisson{E[tf ,(/,)]} [3.24] 

This follows from the fact that a Poisson process has the property of independent 

Poisson distributed increments and the expected number of failures over an interval 

is the sum of the number expected over all non-overlapping sub-intervals;

] [3.25]

The likelihood function can then be established as the product of the individual 

probabilities associated with observing the number of failures in each increment of 

all the intervals and the number of repairs undertaken at each inspection as

Inserting the probabilities, the expression becomes

L 

(=1 Jir,! n [3.26]
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where, E[NP(T)] is given by equation [3.19] and the expected number of failures

over an increment /; is derived as

] = E[Nf «J-V)AJA)] = E[Nf (0,jAj\ - E[Nf (0,(j-l)A)] 

E[Nf (Q,T)] is given by equation [3.13] and it follows that

(J* 0-D/i "\
E [Nf (Ij )] = k\ \F(jA -u)du- \F((j - \)A -u)du\ + v(G(jA) - G((j - 1) A)) 

U o }
[3.27]

Again, taking logarithms of the likelihood expression reduces the complexity from 

an optimisation perspective;

L ( :
I = Z \Ji^S(^[Np (T)])-E[Np (T)]-loS(jl \)+^ mo log(E[Nf (Ij)])...

(=1 V y=l

...- E[Nf (Ij)]-\og(mij\)} [3.28]

3.2.5 Assessing the fit of the model to the data

A simulation test can be used to check the validity of the general form of the 

proposed likelihood function and to examine whether or not the maximum likelihood 

estimates are subject to bias. A number of sets of data are simulated under the 

specified process with known parameter values and the ML estimates are obtained. 

The bias is the difference between the mean parameter estimates and the true values 

used to simulate the data set and the standard error of the mean (SEM) is the standard 

deviation of the mean parameter estimates obtained from the various simulations. If 

the parameters can be recovered whereby the bias is less than the SEM; the 

likelihood formulation can be deemed appropriate and subsequent parameter 

estimation for the actual data set can commence. If the results are successful, the 

process also lends weight to the validity of any optimisation algorithm that may also
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be under scrutiny. To analyse and give statistical verification of the fit of a model to 

data we use a chi-squared (x2) test.

Although we are using simulated data for the analyses conducted in this chapter, the 

testing process is described and applied in order to demonstrate the methodology for 

practical situations. In order for the test to be conducted, the data has to be arranged 

into a reasonable number of groups, each containing at least 5 events. Appropriate 

grouping of the available case data is an essential part of the parameter estimation 

process. Similarly, it would be impractical to consider every failure time or the 

number of failures in each interval. Instead we group the data into a smaller number 

of classes for the analysis of the model fit. As we are considering the steady-state 

case, the failure data can be conveniently grouped according to the increments with 

all cycles expected to exhibit the same pattern of behaviour within the interval. 

However, with cases that are not assumed to be steady state, the expected number of 

defects and the parameter estimation process is influenced by the number of PM's 

the system has previously been subjected to. As a result, the issue of grouping the 

data is more complicated as the same increments from different cycles cannot be 

treated equally. The steady-state assumption may not hold in cases where there are 

non-perfect inspections taking place and the data has been collected from a system in 

a new or post-overhaul/restoration state or in cases that incorporate an age based 

fault arrival rate and again, the system has not been recently initiated. The basic x2 

test value is given as

2 v^(«;-«;) 2 
X 2 = Z ~

i=\ ni
[3-29]

where, the range of data is divided into c suitable groups, «,is the number of 

observed events in the /'th class and «, is the expected number of events in the fth
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class calculated from the fitted model. For testing purposes, the model has c - p 

degrees of freedom, where, p is the number of estimated parameters. The chi- 

squared test statistic for analysing the fit of the delay time models constructed in this 

chapter is defined as

pp 
% E[Np (n)}

where, Np (ri) is the number of observed fault removals in group n and E [Np («)] is 

the number predicted by the model. The number of degrees of freedom for this test 

procedure is I + z - I - p where p is the number of model parameters. The y^-test 

can also be used as a selection criterion.

3.2.6 Optimal maintenance policies with fault injection at PM 

Once the delay time distributions have been selected and the parameters estimated 

from the data and verified, a control function can be established. The downtime 

control function D(T) represents the expected downtime per unit time and is of the 

same form as that prescribed for the basic delay time model. The downtime under a 

PM policy of perfect inspection on T hours is

D(T) =(E[Nf (T)]df +d)/(T + d) [3.31]

where, df is the average duration of a failure repair, dis the average duration of a PM 

and E[Nf(T)] is given by equation [3.13]. The expression is minimised with respect 

to the decision variable T. The optimal policies and associated unit downtime can be 

compared for the current situation, incorporating substandard maintenance 

procedures, and a hypothetical situation where, the identified fault injections are 

removed thus, demonstrating the benefits of improving maintenance practice. It is 

obvious that the injection of faults at PM will make the inspection maintenance
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process less desirable and this will be reflected in the minimisation of D(T). As we 

discussed previously, an excessive number of fault injections could result in a 

situation where the optimal policy recommendation is to forgo inspections altogether 

in favour of a breakdown or 'contingency repair' process, if the issue cannot be 

resolved. The associated cost per unit time can be established by evaluating the limit 

of D(T) as T -> oo. If there are no inspections, both d and vare 0 and the expected 

downtime per unit time is

' T
= \-\F(T-u)du\df

o

As T -» oo, the cumulative density F(T - w) -» 1 and we have

T

0(00) = \-\du \df
r o

kT
= kdf [3.32]

This value can then be compared with D(T*~) obtained from the ideal scenario model 

with defect injections at PM removed from the process.

3.3 Numerical example 1

In this example we consider two separate cases. We assume that root cause evidence 

is not available upon the occurrence of each failure, the model is defined for 

situations where management or engineers suspect that the PM process is in some 

way fallible and specifically that fault injection may be taking place during 

inspection and repair procedures. For the first case, the delay time distributions 

associated with each fault type (i.e. injected at PM or arising naturally) are taken to 

be identical. We present a numerical comparison of the basic perfect inspection 

delay time model and the model incorporating fault injection for two different 

parameter sets. Selection criteria are applied and the fit of each model to the data is
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analysed. Appropriate recommendations are then made utilising the long-term 

expected downtime per unit time control function. In the second case, we drop the 

restriction placed on the delay time distributions and allow the parameters for each 

fault type to differ whilst retaining the same distributional form. This presents a 

problem for the estimation process.

Considering the basic delay time model with an exponential delay time distribution 

f(h) = Ae-M for h > 0, we have E [N f (/, )] J = 1 , 2, . . ., z, and E [Np (T)] as

[3.33] 

[3.34]
A,

For the delay time model incorporating the potential for fault injection at PM with 

identical exponential delay time distributions for both injected faults and those

arising naturally during operation; f(h) = g(h) = Ae~M for h > 0, the equivalent 

expressions for E[Afy (/,-)] andE[Np (T)] are

0 ~~Al \ . — A.1 rr* ** f-t 
-e ) + ve [3.36]

A

1 (a) We take the average fault arrival rate during standard operation to be k = 0.08 

per hour, the delay time distribution is parameterised with A = 0.1 and the average 

number of faults injected at an inspection is v = 4. Given that the parameters have 

been specified, the fault arrival and inspection process are simulated over a period of 

5000 hours with a constant inspection interval of 100 hours.
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To recapture the parameters we group the simulated output. The failure time 

information from the 50 cycles is organised into z = 5 non-overlapping intervals of 

duration A = 20 hours. We also consider the total number of faults removed at PM 

producing an additional (/ = 1) class/group. The resulting output for the 6 event 

types is given in table 3.1 below.

Event Total Number

failures in (0, 20) over 50 cycles 227

failures in (20, 40) over 50 cycles 92

failures in (40, 60) over 50 cycles 87

failures in (60, 80) over 50 cycles 74

failures in (80, 1 00) over 50 cycles 77

fault removals at PM 38

Table 3.1 - The events simulated in each group/class for numerical example 1, case la

As we demonstrated earlier in the chapter, the basic delay time model can be 

parameterised using a simpler likelihood function with a reduction in the necessary 

grouping of the data. However, in this example, we opt to retain the same form for 

the likelihood function and apply the same grouping to the data, thus enabling a 

direct comparison of the maximum likelihood values produced by both models. In 

situations where a more complex distribution is required to reflect the behaviour of 

the delay times, the likelihood formulation in this example would probably be 

required anyway. Using equation [3.28], we can establish the likelihood function 

(applicable to both model formulations) for this case as

where,
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and v = 0 in the case of the basic delay time model. Using the Matlab0 algorithm 

'fmincon' from the optimisation toolbox, the parameter estimates obtained for case 

la are given in table 3.2. The constrained version of the optimisation algorithm is 

selected due to the fact that the parameters k, v and 1 can not be less than 0.

Parameter Basic DTM Fault Injection DTM

k 0.1190 0.0777 

i 0.3471 0.1047 

v 4.1278 

Table 3.2 - The estimated parameters for numerical example 1, case la

To select the most appropriate model for the data set using the proposed likelihood 

function and taking into consideration the number of parameters used to characterise 

the relevant failure processes, we use the AIC as given in equation [3.20]. The 

results of the model selection process for case la are given in table 3.3. It is clear 

that the model incorporating fault injection at PM produces a substantially lower AIC 

and hence is the model that would be selected in a practical situation. However, the 

parameter values obtained are merely the best estimates for the particular models 

chosen. We are still required to validate the model by establishing the level of fit to 

the data.

Max. Log-Likelihood

No. Parameters

AIC

v = 0 (Basic DTM)

-450.89

2

905.78

v> 0 (Fault Injection)

-358.77

3

723.54

Table 3.3 - Selecting between the two proposed models for numerical example 1, case la

Figure 3.4 illustrates the actual number of events observed for each category over the 

50 cycles and compares them with the expected number predicted by the basic delay 

time model.
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Figure 3.4 - Illustrating the observed number of failures and PM repairs against the 

basic delay time model predictions for numerical example 1, case la

Similarly, figure 3.5 compares the observed data and the associated predictions given 

by the delay time model incorporating fault injection.
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Figure 3.5 - Illustrating the observed number of failures and PM repairs against the

predictions obtained from the delay time model with fault injection at PMfor

numerical example 1, case la
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Figures 3.4 and 3.5 clearly demonstrate that the model incorporating fault injection 

produces the best fit to the data of the two proposed models by comparing the actual 

and predicted results. To statistically verify the fit of each model to the data, we use 

the /- test given by equation [3.30]. For the basic model with 3 degrees of freedom, 

the / value of 225.7 is substantially larger than the test value of Zoos@) = 7 - 815 at 

the 5% significance level. As such, the basic delay time model of the failure process 

is rejected. The model incorporating fault injection has just 2 degrees of freedom 

and produces a / value of 1.0257 that is then compared with a test value

of Jo. 05 (2) = 5.991 . We can conclude that the model provides an adequate fit to the 

data as expected. Using equation [3.11] the downtime control function can be 

constructed as

D(T) = ± ——— - —— - —————— *• ———— [3.37] 
T + d

Only the model with fault injection is investigated here as the basic model would not 

be adopted in practice due to the lack of fit. For an average PM duration of d = 1 

hours and an average failure repair time of df = 2 hours, the expected downtime per 

unit time under an inspection interval of T hours is

0.15547 - 6.7714e"ai047r + 7.7714 
( } ~ 7+1

Figure 3.6 illustrates the potential benefits of improving maintenance practice and 

removing the artificial injection of defects at PM. The solid line represents the 

downtime per unit time against the PM interval T for the current existing process and 

the broken line represents the improved version of the same process with the impact 

of injected faults excluded.
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Figure 3.6 - Illustrating the benefits of improving PMfor numerical example 1, case la

It is clear that improving maintenance procedures for this case and removing the 

injection of defects from the existing process would result in a reduction in the 

expected unit downtime. This will change the situation from one where an optimal 

maintenance policy on cycle T is not available and a contingency repair policy would 

be the appropriate recommendation, to a situation where the optimal policy would be 

to perform a PM approximately every T* = 18 hours. This rather extreme case 

illustrates the potential benefits that can be achieved by modelling the injection of 

faults at maintenance interventions. Returning to the primary objective of this 

research, the example has demonstrated that the proposed methodology is capable of 

recapturing the necessary parameters from the data. The estimated values are very 

close to those used to simulate the data for this particular example. However, it 

should be noted that, a large number of cycles of data were generated to obtain this 

level of accuracy. To further verify the functional form of the proposed likelihood 

expression, a simulation test was conducted and the level of bias in the estimated 

values found to be insignificant for this case.
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In case la, we adopted parameter values that characterised an extreme version of the 

scenario under consideration with defects attributable to injection at the previous PM 

contributing a third of the total number expected. In addition, a large number of 

cycles of data were simulated to obtain the results. In case Ib, we consider a less 

extreme injection process and simulate a limited number of cycles of data. We take 

the average fault arrival rate during standard operation to be k = 0.1 per hour, the 

delay time distribution is parameterised with A = 1/30 and the average number of 

faults injected at an inspection is v= 1.25. The process is simulated for just L = 20 

cycles of duration T = 100 hours. The fault detection process at inspection remains 

perfect.

Following the same process as case la, the parameter estimates obtained for case Ib 

are given in table 3.4.

Parameter

k

X

V

Basic DIM

0.1125

0.0462

-

Fault Injection DIM

0.0992

0.0367

1.3315

Table 3.4 - The estimated parameters for numerical example 1, case Ib

When comparing and selecting between the two models, the results in table 3.5 

illustrate that the model with fault injection at PM is the best choice based upon the 

minimum AI criterion. However, as we expected, the difference is far less 

pronounced than that observed in case la. This is due to the fact that the injected 

defects contribute (proportionally) less to the total number of failures and PM 

removals and therefore, with faults arising naturally being the substantial contributor, 

a basic model representation of the process is almost good enough.
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v = 0 (Basic DIM) v > 0 (Fault Injection)

Max. Log-Likelihood 
No. Parameters 
AIC

-187.1163
2 

378.233

-183.269 
3

Table 3.5 - Selecting between the two proposed models for numerical example 1, case Ib

In some situations it maybe that the proportion of injected defects is so small, we 

cannot differentiate and choose between the two proposed models. However, it is 

also likely that the impact of standard defects would make inspections a necessity 

and that the comparative effects of injected defects would be negligible. 

Optimisation of the existing process with respect to the interval T would then be the 

recommended policy. Figure 3.7 illustrates the observed failure and inspection repair 

data and the expected number of events obtained from both models.
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Figure 3.7 - Illustrating the observed number of events against the predictions obtained from 
the two proposed delay time models for numerical example 1, case Ib

From the histogram in figure 3.7, the model with fault injection appears to provide a 

better fit to the data, although the difference is marginal. The statistical assessment 

of model fit produces results similar to those obtained in la. The basic model is 

rejected at the 5% level with a £ of 10.4355 being greater than the test value
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of ̂ o.os (3) = 7.815 . As with la, the model incorporating fault injection is deemed to 

be acceptable with a / of 1.7992 being less than the test value ̂ o 05 (2) = 5.

However, as is reflected by the AIC and the /-test, the difference between the two 

models is far less substantial than that observed in case la. This is due to the 

decreased proportion of injected defects and the limited number of simulated cycles 

of data, thus producing a greater variability in the estimates from the actual 

underlying parameter values.

Case 2:

In this second case, the delay time distributions for each fault type are allowed to 

differ from one another. This presents problems for parameter estimation but greater 

modelling flexibility. To assess the ability of the methodology when attempting to 

recapture the parameters, exponential distributions are used for both fault types as

f(h) = A,e~AlA and g(h) = ^'^ for h - °- Tne choice of distribution is by no 

means limited to exponential forms however a neat analytical solution is available 

for this case. The expressions for E[Nf(Ij)]J=\,2,...,z, and E [Np (T)] are

] = kA _ A^CH* _ e-W) + v(e -UJ-W - e-W } [3.38]
A!

E[Np (T)] = A(i_e-V ) + v,e-V [3.39]A!

The failure and inspection process is simulated using an average rate of fault arrival 

during operation of k = 0.08 per hour and the associated exponential delay time 

distribution is parameterised with Ai = 1/30. The average number of fault injections 

at PM is taken to be v = 3 and the delay time distribution has parameter A2 = 1/15. 

The process is simulated for L = 50 regular cycles of duration T= 100 hours.
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For parameter estimation purposes, the appropriate log-likelihood function is of the 

same form as equation [3.28]. However, convergence could not be achieved for the 

parameters under investigation as a range of optimal parameter combinations are 

available with each solution vector producing the same value for the maximum log- 

likelihood. The same problem was encountered with data sets simulated using many 

different parameter combinations. This relates to the identifiability problem, 

mentioned earlier, that is frequently encountered when modelling competing risks. 

To combat the problem, the causes of individual failures would need to be recorded 

or a subjective evaluation of the potential causes of faults undertaken. 

In this case, it appears that a blend of subjective and objective estimation techniques 

is required to obtain the parameter estimates when the behaviour of the two fault 

types differs with regard to the delay time until failure. Subjective input could 

consist of expert or engineering opinion that is applicable to the particular 

application. In situations where the different originating fault types can be tagged 

upon failure of the system, the estimation techniques described in this chapter are 

unnecessary and the individual delay time distributions can be established 

independently. Subjective estimation of one or more of the model parameters could 

in some situations ease the estimation process for the other values. Christer & 

Waller (1984) and Wang (1997) discuss the use of subjective estimation in the form 

of expert opinion, failure mode and criticality analysis in the construction of delay 

time distributions with a discussion of the different means of combining the expert 

opinion. Snapshot modelling techniques (see Christer & White law (1983)) can also 

assist in establishing a rough characterisation of the current process. Here, we 

discuss a couple of options for subjective input that are applicable to this example 

and a number of other cases considered with exponential delay time distributions.
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(i) A subjective estimate of the average rate of fault arrival during standard operation
«

k is the first part of the process. Alternatively, for many cases, including this one, 

the following substitution can be used

k = ^——J———J- - 1 [3.40] 
LT T

thus reducing the number of parameters to be estimated. However, assumed

knowledge of k or the suggested substitution cannot guarantee convergence of the 

optimisation algorithm with respect to the remaining parameters. We require a

second stage to combine with k or the substitution. For the case considered here, the 

delay time model incorporating fault injection with identical exponential delay time 

distributions (as used in cases la and b) is initially applied giving parameter

estimates of k= 0.0659, A= 0.0293 and v= 4.3864. The estimates clearly indicate a 

problem with the PM process however, given that it is simulated data under scrutiny, 

it is known that k has been under-estimated and that v has been over-estimated to 

compensate for the underlying shorter delay times imposed upon the injected faults. 

The useful element is the estimate A = 0.0293 which is very close to the value of \ 

used when simulating the data. The same closeness result has been obtained in other 

cases but not in all. Using a subjective estimate of k or the suggested substitution 

and the value ij = A, the remaining parameters can be established. In practical 

situations, the model can be compared with the results obtained from the identical 

distribution case using the AIC and chi-squared test procedures, 

(ii) An alternative approach for utilising subjective input in the parameter estimation 

process for case 2 is to establish a relationship between the parameters of the two 

exponential delay time distributions. The parameter of an exponential delay time
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distribution has the following property; A = 1 / h where, h is the mean delay time. 

In some situations, subjective estimation techniques could be utilised to reveal a 

relationship between the mean delay times for the two fault types, for instance; 

hi = ah2 the following relationship could be applied to the parameters; A2 = a /^, 

therefore reducing the number of delay time parameters sought by estimation. For 

the case considered, the relationship; \ = 2h2 provides the input necessary to obtain

the following parameter estimates; k = 0.0809, Aj = 0.0319, v = 2.8850 and^ = 

0.0638. All the parameters are very close to the actual underlying values used to 

simulate the data however, the ability to subjectively estimate the relationship 

between the mean delay times is naturally specific to the particular case under 

consideration.

The subjective approaches suggested in (i) and (ii) are worth attempting if plots of 

the data imply that the PM process is problematic. The model fit procedures will 

establish the adequacy of the model and accurate estimation of the actual underlying 

process will naturally improve the accuracy of any resulting downtime models.

3.4 Aspects of human fallibility

3.4.1 Identification of the underlying process

All that would actually be observed of the processes represented in figure 3.2 is

illustrated in figure 3.8 where, 'X' represents the removal of a defect at PM.

X
——*.time

IT (i+1)T (i+2)T 

Figure 3.8 - The observed information associated with the processes depicted in figure 3.2
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Failures that consistently arrive shortly after inspection may be attributable to faults 

injected at the previous inspection or to poor fault detection that would allow existing 

defects, at a more advanced stage of deterioration, to remain in the system at the start 

of the next operational interval.

IT IT
Figure 3,9 - Illustrating the potential origins of a fault leading to failure in the early stages

of an inspection interval

Figure 3.9 demonstrates the potential origins of a failure occurring shortly after an 

inspection. The model specification and parameter estimation process is applied to 

select between the proposed delay time model that incorporates fault injection and a 

model incorporating imperfect detection of defects at PM. The issue is whether or 

not the proposed methodology can enable accurate identification of the actual 

underlying process and differentiate between the two types of human error. Initially, 

the delay time model incorporating imperfect detection of existing defects at PM is 

introduced.

3.4.2 Imperfect detection case (/?< 1)

In this section, we discuss the modelling of an imperfect fault detection process at 

regular periodic inspections. The interval between inspections is again assumed to 

be of a constant duration T. Defining /3 as the probability that an individual fault is 

detected at a given inspection and Nj (t) as the number of failures occurring over an 

interval (0, t) after an inspection then, under steady-state conditions, we have
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t)]=E[Nf (Q,t)]=E[Nf (t)]. Under the specification 

given, Nf (t) adheres to a non-homogenous Poisson process with expectation

t oo T
EtJV/CO] = */*"(/ -«)<& + *£{!-/?}'' \{F(iT + t-u)-F(iT-u)}du [3.41]

0 »=1 0

for t > 0, and failure rate function

d ' oo r
[3.42]

o 1=1 o

As we are considering a system in a steady-state of operation with a constant interval 

between inspections of duration T, the expression for the expected number of 

breakdowns over a given interval can be arranged as

[ T \ 
i-^f]{i-/?}M f(i-^OT- M)W" [3.43] 

1 t=\ o J
see Christer & Waller (1984b) for details. The number of faults identified and 

subsequently rectified at an inspection under a constant inspection interval policy of 

duration Tis defined as Np (T) and is also Poisson distributed with expectation

7*

E[Np (T)] = */?£ {1 -/?} M J(l - F(iT - u))du [3.44]
»•=! 0

For parameter estimation, the structure of the likelihood function is the same, 

equation [3.28]. The same applies for the j^-test that is used to assess the quality of 

the model fit to the data. In addition, as both models use the same likelihood 

function for parameter estimation and the same groupings of the data apply, we could 

compare the two modelling approaches using the AIC criterion. When the same 

delay time distributions are used for both cases, the AIC is not required as the models 

have the same number of structural parameters and a direct comparison of the 

likelihood or log-likelihood is sufficient.
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3.5 Numerical example 2

The objective of this numerical example is to demonstrate the ability of the proposed 

model selection and parameter estimation methodology when differentiating between 

a maintenance scenario with fault injection at PM and a scenario incorporating a 

fallible detection process. Using simulated data, the actual underlying process for 

this case is established with an average of v= 3.2 fault injections at PM. The 

average rate of fault arrival during standard operation is k = 0.1 per hour and both 

fault types are governed by the same exponential delay time distribution with 

parameter /I = 0.05. The process is simulated for L = 50 cycles of duration T= 100 

hours.

We group the resulting failure data into z = 5 non-overlapping equidistant intervals of 

duration A = 20 hours and figure 3.10 illustrates the simulated output.
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Figure 3.10 - Illustrating the grouped sim ulated failure and PM repair data for
numerical example 2

From figure 3.10, it appears that PM has a negative influence and the issue is 

whether or not the model selection process can distinguish between fault injection at 

PM and the fallible detection of existing faults. For parameter estimation purposes, 

the same likelihood function is used for both variants of the model (see equation
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[3.28]). With regard to the model incorporating fault injection, the expressions for 

the expected number of failures occurring in theyth increment, E[Nf (Ij)], and the 

number of repairs at PM, E[NP(T)], with exponential delay time distributions are 

given by equations [3.35] and [3.36] respectively. In the imperfect detection case 

(fi< 1) with an exponential delay time distribution, the expected number of failures in 

the steady state is

[3.45]

The expected number of failures over increment./, (E[Nf(j'A)] - E[Nf((j-l)A)]) is

P\ \-e J 1 P

- o - [3.46]

The expected number of faults found and removed at an inspection with an imperfect 

detection process is

i of i --AT" ^
[3.47]

*. \\-Q-fte-"

Using [3.28] and the BFGS optimisation algorithm, the parameter estimates given in 

table 3.6 are obtained for the two model variants.

A

k

A

A

V

p

Fault Injection DIM
0.0988

0.0512

3.2159

Imperfect Detection DTM
0.1311

0.0012

0.0153

Table 3.6 - The estimated parameters for numerical example 2

The AIC is not required for model selection purposes as both of the models contain 

the same number of estimated parameters. The maximum log-likelihood is -408.036 

for the fault injection model and -439.521 for the model with imperfect detection.
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This demonstrates that for the case considered, the model with fault injection would 

correctly be selected in a practical situation. Figure 3.12 compares the predicted 

output from the two models with the actual data used for parameterisation.
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Figure 3.11 - Comparing the output from the two models with the actual observed data for

numerical example 2

Figure 3.11 strongly indicates that the model incorporating fault injection provides 

the best predictions when compared with the actual data. This observation is 

confirmed by the/-test results with 0.2349 for the fault injection model and 73.9755 

for the imperfect detection model. When compared at the 5% significance level with

a test value of#005(3) = 7.815, the imperfect detection case is rejected whilst the 

fault injection model is accepted. The example demonstrates that it is possible to 

differentiate between the two scenarios when the impact of fault injection is 

sufficient and the injected faults and those arising naturally are assumed to behave in 

the same manner, i.e. have identical delay time distributions.
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3.6 Combining both aspects of human error

Combining the effects of the potential for fault injection at PM and a fallible 

detection process results, we define the number of failures observed over an interval 

(0, 0 after any given PM as Nf (t). Under steady-state conditions regarding plant 

performance and a substantial period of operation before the current interval between 

inspections, N/( f) follows a non-homogenous Poisson process with expectation

0 »'=! 0

+ vf] (1 - /?)' {GOT + /) - GOT)} [3.48]
(=0

for 0 < t < T, with failure rate function

d ' °° T 

dt o '=1 o

00

+ v^(\-p)'g(iT + i) [3.49]
i=0

In the limiting steady-state case with a constant interval between inspections, of 

duration T, we have

T oo

E [Nj- (T)] = kT- £/?]r (1 - /?)w J(l - F(iT - uj)du + v- v/?]£ (1 - /?)M (1 - G(zT)) 
/=i o »=i

[3.50]
Similarly, the expected number of faults detected and removed at an inspection is

00 T 00

E [Np (T)] = k/3^(\-P)'~l J(l- F(iT-u))du + vfi^(\- /?)w (1 -G(zT)) [3.51] 
/=i o i=1

However, using data sets simulated according to the process described, it was found 

that accurate parameter estimation is not possible using the proposed methodology 

and the likelihood functions established earlier in the chapter without the use of
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subjective input, see numerical example 1, case 2. This is another case of the 

'identifiability' problem discussed earlier in that, a range of different parameter 

combinations produced the same maximum log-likelihood and a single optimal 

solution vector could not be established.

To investigate the use of prior subjective input, such as expert engineering opinion, a 

combination of the proposed likelihood formulation and the expectation- 

maximisation (EM) algorithm is one avenue that we considered. See Russell & 

Norvig (2003) for information on the EM algorithm. The algorithm is given in a 

single expression as

,V = v\0) [3.52]

where, .0 represents the parameter set (excluding v) under investigation, M represents 

the information available on the failure process over all cycles, J represents the 

information available on the repairs undertaken at the inspections and c = 0, 1,2, ... 

is the index for the algorithm. A prior subjective distribution p(v) is established for 

the parameter v over a range of candidate values (av, bv) using expert opinion. The 

discrete distribution is then updated at subsequent iterations of the algorithm using 

equation [3.53] as

P(V | M, J,0 C ] = z(v,M,J,\ 0 C ] I X £(v,M,J,\ 0C ] [3.53]
^ ' ^ av ^ ' 

**
The objective is to establish 0 upon convergence of the algorithm and subsequently 

to evaluate the expression

= maxlL(M,J,0 v)\ [3.54]
v I
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However, it was discovered that, when the mean of the prior subjective distribution is 

within the range of optimal solutions that maximise the standard likelihood function, 

the algorithm converges to the mean value. As such, simply inserting the mean of 

the prior distribution into the original likelihood function produces the same results

for the parameter vector 0 . Similar results are observed when other system 

parameters are made the objective of the algorithm. When the underlying process 

contains both types of human error and the models incorporating fault injection 

exclusively and imperfect detection exclusively are applied to the data, the fault 

injection delay time model typically produces a better fit with an increase in v and a 

reduction in the standard arrival rate and the mean delay time. In a practical 

situation, the resulting conclusion that a review of maintenance procedures is 

necessary would still hold but, the modelling of potential gains would be hampered.

3.7 Discussion and further considerations

In this chapter, a number of modelling options have been proposed in an attempt to 

incorporate human fallibility. The principal developments include the incorporation 

of human error in the form of potential fault injection during the course of inspection 

based repairs with the major objective being the accurate identification of said 

process when it exists using the proposed model specification and parameter 

estimation techniques. Numerical example 1, cases la and b demonstrate that when 

the proposed functional form of the model effectively represents the actual 

underlying process used to generated the given data set, accurate estimation of the 

model parameters is achievable when fault injection is incorporated into the 

modelling process and both fault types behave in the same manner, i.e. we have 

flfi) = g(ti). The examples also demonstrate that with the proposed methodology for 

model selection and parameter estimation, accurate representation and estimation is

76



dependent on the ratio v: kT. We can correctly differentiate between the basic delay 

time process and a process incorporating fault injection at PM from objective data if 

the injected faults have a sufficient impact. In cases where the impact of fault 

injection is insignificant when compared with the effect of standard fault arrivals, a 

basic delay time representation will likely suffice. In numerical example 1, case 2, 

consideration was given to the parameter estimation problem when the delay time 

distributions for injected faults and those arising naturally are allowed to differ. The 

estimation process is much more complicated than the identical distribution case and 

due to a problem of identifiability, requires a blend of subjective and objective 

methods to achieve solutions.

In numerical example 2, the ability to differentiate between a scenario incorporating 

fault injection at PM and one incorporating imperfect detection at inspection was 

discussed. Again, when the impact of fault injection is substantial, the model 

selection methodology correctly identifies the underlying process. Further 

recommendations regarding model selection are now discussed. 

The parameters values used in the numerical examples have been chosen to 

demonstrate the modelling and estimation process for the models in question. 

Analysis over a range of values revealed a number of behavioural patterns and some 

general recommendations can be made. When the failure process is not affected by 

human error (fault injection or imperfect detection at PM) plotting the observed 

failures over time since the last PM often reveals a pattern similar to that illustrated 

in figure 3.12. A basic delay time model representation will probably be sufficient in 

cases such as this however, an AIC comparison of the basic model and an imperfect 

detection model is the recommendation proposed here.
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Time after last PM 

Figure 3.12 - Illustrating a typical failure process without human error at PM

Figure 3.13 illustrates a profile of the rate of occurrence of failures over time since 

the last PM that is often observed when the detection of existing faults at inspection 

is imperfect and some are allowed to remain in the system.

Time after PM

Figure 3.13 - Illustrating a typical failure process with imperfect detection of existing
faults at PM

Figure 3.14 illustrates a failure process against time since the last PM that often 
occurs when fault injection is taking place during maintenance procedures.

o

"i
2;

Time after PM

Figure 3.14 - Illustrating a typical failure process with human error based
fault injection at PM
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From figures 3.13 and 3.14 it is evident that in some situations, a process 

incorporating fault injection could be confused with a process with imperfect 

detection, however, both models would indicate that the maintenance process is 

problematic and a review of maintenance procedures would be the likely 

recommendation.

When the appropriate delay time model for a particular scenario cannot be 

parameterised using the techniques discussed due to a problem of identifiability, the 

following options must be considered. Firstly, we could consider a more direct 

approach to the estimation of the overall failure rate and provide recommendations 

on this basis. However, the approach would not enable quantification of the number 

of faults attributable to artificial injection and as such, the benefits of improving 

maintenance practice could not be ascertained. The second option for consideration 

would be the establishment of subjective Bayesian prior distributions for all or some 

of the parameters and application of a maximum a-posteriori (MAP) estimator. 

Alternatively, a version of the EM algorithm combined with the likelihood function 

and the Bayesian priors could produce better results than those obtained earlier in the 

chapter (for the combined fault injection and imperfect detection case) if the prior 

distributions have some kind of engineering (or expert) basis that is relevant to the 

particular application, unlike the uniform priors used in our unsuccessful 

investigation.

Consider the process incorporating fault injection at PM where, it is assumed that the 

injected faults have the same characteristics as the faults that arise naturally during 

production. An alternative means of representing the process and solving the 

problem of parameter estimation is to model the fault arrival process with a mixed
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arrival rate distribution. Defining a(u) as the fault arrival rate distribution for u 2 0 

we have the expected number of faults over an interval of duration Tas

T

E[Nf (T)] = KT\a(u)F(T-u)du [3.55]
o

and when a(u) is taken to be uniform, the expression reduces to the form utilised for 

the basic scenario without fault injection and K = k, see equation [3.1]. Now, 

considering mixed arrivals, the cumulative arrival rate density is

A(u) = \-(\-P)(\-(u/T)) = P + (\-P\ulT} [3.56] 

for P e (0, 1) . Upon differentiating the arrival rate density becomes

a(u) = (l-P)/T [3.57] 

and the number of failures expected over an interval (0, 7) is given by

T

= K(\-P)\F(T-u)du [3.58]
o

Considering the behaviour of the failure process within a cycle, the number of 

failures expected over a sub-interval ((_/ - 1) A, jA) is given by

E[Nf (U-l)A,jA)] = K(l-P)\ \F(jA-u)du - \F((j -\)A-u)du\ [3.59]
(o o

and the expected number of faults found and removed at PM is

E[NP (T)] = KT
T [3.60]

For parameter estimation purposes, the structural form of the likelihood function is 

akin to that given by equation [3.26] with the modified forms for 

E[Nf ((j-l)A,jA)] and E[Np (T)] as given by [3.59] and [3.60]. The maximum 

likelihood estimates of the standard fault arrival rate k and the average number of 

artificial fault injections v are given by

80



[3-61] 

v = KTP t3 - 62]

In terms of extending the current research, consideration could be given to modelling 

the potential impact of fault injection during the course of failure repairs, where the 

repairs are attributable to faults that arose or were injected earlier in the process. 

This would seem to be a plausible scenario as, the chances of poor quality 

maintenance would doubtlessly be increased when repairs are not scheduled or 

prepared for. Similarly, additional means of modelling the potentially negative 

impact of inspection maintenance include the application of a time based penalty for 

inspection repairs when establishing the downtime model of the system. For 

instance, defining dp as the duration of an inspection based repair, the expected 

downtime per unit time becomes

D(T) = (E[Nf (T)]df +d + E[Np (T)]dp )/(T + d + E[Np (T)]dp ) [3.63]

In the next chapter, an alternative representation for the maintenance scenarios 

discussed here is presented. Using the representation, on-line real time applications 

of the models presented in this chapter are proposed. The ability to represent the 

number of fault injections at PM in a distributional form rather than a point estimate 

is also assessed.
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Chapter 4. On-line modelling of fallible maintenance processes for 
complex systems using the delay time concept and probabilistic 
stochastic filtering

4.1 Introduction

As with the previous chapter, the problem scenario under consideration is that of a 

complex operational system subject to planned preventive maintenance (PM) where, 

the maintenance process is inspection based maintenance that incorporates a level of 

human error in the form of artificial fault injection. In this chapter, the delay time 

concept and the functional forms developed in chapter 3 are combined with a 

stochastic filtering approach to develop a state estimation and predictive decision 

model. The objective state of the system is the number of fault arrivals. Expressions 

for the evolution of the underlying fault arrival process and the stochastic 

relationship between the failure and fault arrival process are constructed for a 

discrete approximation of the continuous time system. The history of the failure 

process and the time that has elapsed since the last PM are used as input to the 

recursive stochastic filter. The filter is an application of the non-linear probabilistic 

framework given in chapter 2. However, the model in this chapter is developed for a 

discrete state space because the number of fault arrivals (including artificial 

injections) can only be a positive integer or zero. The form of the filter is that of a 

hidden Markov model (HMM) incorporating one-step transitions in the underlying 

state between increments of the PM cycle. HMM's are frequently used in image and 

speech processing as an application of approximate grid-based methods, see 

Arulampalam et al (2002), Forney (1973), Rabiner & Juang (1986) and Streit & 

Barrett (1990). There are two major advantages when modelling the process in this 

manner and these are now discussed.
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1) Firstly, related to the research described in the previous chapter, the model 

formulation and parameter estimation process proposed in this chapter allow for the 

parameterisation of a prior distribution for the underlying state and provide greater 

flexibility when modelling the system. Figure 4.1 illustrates a typical process for a 

complex system incorporating fault injection at PM, where the black circles represent 

system failures. The actual inspection process is assumed to be perfect from the 

point of view of detecting existing defects whose delay time until failure has not yet 

run its course. The identified defects are then removed during the maintenance 

element of the PM.

time 
PM(j) PMQ+1)

Figure 4.1 - An underlying fault arrival and injection process

However, all the information that we have available for estimating the underlying 

parameters for the case depicted in figure 4.1 consists of the failure times and the 

number of existing faults that are removed at PM. The failure and inspection data for 

the process is shown in figure 4.2, where the crosses represent faults removed at PM.

x
X

PMQ-1) 

Figure 4.2 - The observed failure process for the scenario depicted in figure 4.1

When all the observed failure and PM data are processed for estimation using the 

recursive filtering equations, we obtain the optimal Bayesian posterior estimate of 

the parameter set that characterises the fault arrival, fault injection and failure
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processes. Alternatively, in some scenarios, it may be more efficient to obtain the 

parameter estimates using the techniques described in chapter 3 as the functional 

form of the underlying process can be represented using both approaches. Naturally, 

the quality of the estimates under both approaches is dependent on both the 

suitability of the proposed functional form and the quantity of data that is available. 

2) The second advantage of modelling the process in this manner is the ability to 

construct an adaptive decision model in order to maximise the impact when 

scheduling maintenance activities. The decision making associated with the models 

developed in chapter 3 is of a fixed interval nature whereby, an optimal 

recommendation is to maintain the system on a regular cycle of T* units of time. 

With the model proposed in this chapter, information is obtained over time that is 

indicative of the underlying state. The current knowledge of the state is expressed in 

the form of a distribution that is conditional upon the observed CM history. The 

construction of said density can be extended to forecast the distribution into the 

future. Using this predictive density, an optimal time for the next PM can be 

established at each chosen time point or upon receiving new information. This has 

obvious benefits in terms of providing a complete representation of the likely status 

of the system and evaluating the most cost effective maintenance decision based 

upon all information that is currently available during the course of an operational 

cycle.

Initially, a continuous-time representation of the actual underlying fault process and 

the stochastically related failure information is presented. A recursive filtering 

algorithm is then developed for a discretised representation of the fault and failure 

processes. The issues of parameter estimation and the scheduling of maintenance 

activities are discussed and some examples are then given for a basic scenario
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without human error at PM and for a scenario where fault injection is incorporated 

into the modelling process. To illustrate the application of the filter, the forms 

selected for the various elements that define the state and observation processes are 

relatively simple in the examples given however, the concept is readily adapted to 

more complex forms.

4.2 Preliminaries

The modelling of a system using the proposed methodology is subject to the 

following assumptions;

1. Defects arise naturally during operation of the system.

2. Defects may be injected during the course of a PM.

3. All faults have a delay time until failure that is governed by some density 

function.

4. Detection is perfect when; (a) upon failure, ascertaining the particular defect that 

has become the cause of a system failure, this diagnostic process is required 

before subsequent unscheduled maintenance can attend to the problem, (b) 

performing PM and identifying existing defects that have not yet resulted in a 

failure. An implication of this assumption is that each PM cycle can be treated 

independently when modelling fault arrivals and the occurrence of failures 

because there are no faults from previous cycles remaining in the system after 

PM. This is an assumption that could be relaxed in some situations in a similar 

manner to that employed to derive the imperfect inspection model of chapter 3.

5. Only the offending defect that has resulted in failure is attended to with 

unscheduled maintenance. All other defects in the system remain untouched and 

progress from the same level of degradation as just before the failure occurred.

6. Upon failure, the causal defect is removed completely.
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The following notation is used to represent the various elements of the process;

- m is the number of observed cycles of data in an available sample.

- PM(j) represents the time of the^'th PM since the start of the observation period, 

7 = 1,2, ..., m.

- Tj is the duration of the operational period between PM(j - 1) and PM(j), and

j 
clearly we have the relationship PM(j) = ^TU .

u=\

The observed information that is used to estimate the model parameters consists of 

the following;

QJ is the number of faults removed at the7'thPM.

Wjj is the number of failures observed over {PM(j - 1), PM(j -!) + /}. 

The underlying dynamics of the system are described using the following elements; 

kj (t) is the fault arrival rate function after t units of operational time into the/th

cycle, for t > 0.

a j o is the (unknown) number of faults artificially injected at PM(j - 1) that are

then present in the system at the start of the^th operational cycle. 

v represents the expected number of faults injected at PM(j - 1).

ajt is the total number of faults to have arisen over the interval 

{PM(j-V),PM(j-\) + t} for 0<t<(PM(j)-PM(j-l)) . This includes 

those that are injected during the course of the previous PM, a}, >0 .

- h is the delay time until failure of a fault.

- All defects arising naturally have a delay time governed by some density f(h) and 

uniform time of arrival u within an interval (PM(j - 1), PM(j)) . The
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assumption of a uniform arrival distribution could be an issue for relaxation in

some cases.

- All faults injected at PM have a delay time h governed by some density g(h). 

Note that, when considering a system that is in a steady state of operation, i.e. the 

assumption of perfect inspection detection capabilities holds and we have 

kj (t) = k(t) and Vj = v , we can assume that each operational cycle is statistically

identical and independent. The impact of the steady state assumption is that we can 

analyse the failure pattern over m cycles of duration 7} where, the underlying 

dynamics are assumed to have the same properties for each cycle. 

For the delay time models discussed in chapter 3, a key element of the modelling 

process is the function describing the expected number of failures over an interval 

where, the underlying dynamics are assumed to be in a steady state. The expected 

number is a function of the chosen delay time distributions with estimated 

parameters and the number of fault arrivals. Considering an age based fault arrival 

rate process, we have

E[Nf (PMV-l), PM(j-l) + t)] = ( () kj(S)dS)bj (t) + v iG(t) [4.1]

as the expected number of failures over {PM(j - 1), PM(j - 1) + 1 } where, equations 

[4.2] and [4.3] represent the proportion of the relevant fault type (natural or artificial) 

that will fail on an interval (0, t) after the (/-l)th PM;

[4.2]

[4.3]

The functions given by equations [4.2] and [4.3] are essential elements of the 

proceeding research when developing the required relationship between the observed
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failure information and the underlying number of fault arrivals. It is clear that 

inserting equation [4.2] into equation [4.1] when £/s) = &0) produces the same 

expected number of failures over (0, t) as we had in the previous chapter.

4.3 Continuous time problem statement

In this section, we consider a sampling period of m consecutive PM cycles and more 

specifically, they'th cycle within that period and we define the underlying dynamics 

of the fault arrival and failure process for a complex system. During they'th cycle, all 

that is observed of the system dynamics by time PM (j -\) + t is the number of 

failures {WJt = 0, 1, 2, ...} that have occurred since the start of the sampling period 

for any t e (Q,(PM(j) - PM (j -1))} . At the end of the cycle, we also observe QJ}

the number of faults that remain in the system until they'th PM and are subsequently 

preventatively removed with probability 1 under the assumption of perfect detection 

capabilities, see assumption 4. The state of the system, a} t , is defined as the total

number of faults to have arisen in the interval {PM(j -1), PM(j-l) + t} and this 

includes faults that have occurred naturally during standard operation in the interval 

and faults that were injected via human fallibility at the last PM during routine 

inspection and maintenance procedures, denoted by ay 0 . In a stochastic filtering

context, the system equation for a discrete state, continuous time process describes 

the underlying dynamics of the fault arrival and potential PM fault injection 

processes and can be constructed as

aj,t = aj,0 + ^j(s)ds + noisejt [4.4]

for dj t = 0, 1, 2,... The number of failures in the interval {PM(j - 1), PM(j - 1) + 1 } 

is described by the expression
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wj,t = aj,o 6(0 + (flu - aj,o > bj W + noisej,t 

where, Wj$ = 0 and the time dependent functions bj(t) and G(t) are given by

equations [4.2] and [4.3] respectively. Alternatively, equation [4.5(a)] can be 

expressed as

WJ,t = (aj,t ~ Q̂ kj(s)ds)G(t) + (\ tQ kJ (s)ds)bj (t) + noisejt [4.5(b)]

In the case of a basic scenario without any provisions for the inclusion of potential 

fault injection at PM, the initial state is set as aJ>Q = 0 in equation [4.4] and in

equation [4.5(b)], we replace [ kj(s)ds with a^t .

The objective of the stochastic filter is to provide the best conditional estimate 

E[OJ , | Wj t ] of the total number of faults ay t that have arisen after t units of time

have elapsed in they'th cycle. The estimate is conditioned on the failure history that 

has been observed until this point. From this result, an estimate of the number of 

fault injections at the (j -l)th PM, a^ 0 _ can also be established as

E[ajtt | WJit ] = E[aJi0 \ ^,J + E[ J^yW^I WJit ] + E[noise^ \ Wjjt } [4.6]

where, the expected noise level is 0 and independent of W^t and the rate of arrival 

ki(s) is also not a function of Wjit , rather, the relationship applies in reverse

because the number of failures is a function of the number of defect arrivals during 

operation as well as those that are artificially injected. We are therefore left with the 

result

E[(ajiQ \WJit ] =E[aJJt \WJJt ] - \[kj(s)ds [4.7]
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where, the parameters of the pre-specified arrival rate function k . (s) are estimated

from the available failure data pertaining to previous PM cycles. Obviously, with the 

real-time, on-line operation based on a model established from prior data, the 

estimate of «y 0 is expected to get more accurate as t increases. An additional result

that must be incorporated into the parameter estimation process is the number of 

faults that do not result in failure but are captured during the course of scheduled PM 

inspections. Defining gy as the number of defects identified and removed at PM(j), 

we have

Qj = (aj^-^kj^dsW-GVjV + ^kj^dsKl-bjVjV + noisejj. [4.8]

for Qj< = 0, 1,2,... where, the noise has a mean of 0. Given that we are employing 

the assumption of a perfect detection process for existing faults at PM, we have the 

following result for they'th cycle;

Qj= aJjrj- wJJj -> aj,Tj=Qj +wj,TJ 

which means that at time PM(j -1) + Tj = PM(j) we have knowledge of a^T . , the

total number of faults (both injected at the previous PM and those arising naturally) 

that have occurred during the cycle and therefore, assuming that kj(s) has been 

appropriately defined and parameterised, we also have the best available estimate of 

the number of faults injected at the previous PM, Uj>0 .

Although the continuous time representation given in this section is an appropriate 

representation of the underlying processes and reflects the manner in which the 

observed information is obtained, a satisfactory stochastic filtering approach has not 

been found to provide accurate estimates of the underlying state when the 

information is obtained continuously. The general result when applying the
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stochastic Ito calculus based approach described in chapter 2, section 2.5.3, is an 

infinite sequence of stochastic differential equations and approximate solutions are 

required. As a result, we now consider a discretised version of the same problem 

scenario and apply the probabilistic Bayesian filtering approach described in chapter 

2, section 2.4.3.

4.4 Non-linear stochastic filtering (discrete-time, discrete-state case)

In terms of the manner in which systems of this nature are typically monitored, a 

discrete time representation may actually be more realsitic. Although a constant 

interval between discrete time points is used in the proceeding research, this is by no 

means a necessity. The model can easily be constructed to facilitate for additional 

updating of the proability density for the number of faults that have arrived upon the 

occurrence of each failure. In order to differentiate between the state and 

observation processes for the continuous and discrete time definitions of the problem 

scenario, we apply the following notation. The processes are defined at discrete 

intervals within an operational cycle and *, represents the unknown number of faults 

that have arrived by the /'th time point since the start of the current cycle with x0 

being the number injected at the previous PM. The number of failures that have 

occurred by the /th time point is denoted by Nt. All additional functions and 

parameters are unchanged from the continuous time problem definition.

4.4.1 The filtering equations

We assume the system to be in a steady state of operation and a perfect detection

process to be in place. We therefore have £,•(*) = k(t), v;- =v and the inspection

process is essentially treated as a renewal process in the sense that, current 

operational cycles are not affected by the events of previous cycles. Each interval
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(0,ry ) is divided into z, equidistant sequential increments of length A, for

7 = 1,2,..., m. We can therefore express the system state dynamics (representing the 

fault arrival process) as a first-order Markov process;

*/ = *M + l'( ._l)A k(s)ds + e, [4.9]

for / = 1,2,..., Zj on any PM cycle 7 where, et is the error in the description of the rth

transition. Representing the evolution of the state as a Markov process enables the 

construction of a discrete-time probabilistic stochastic filter for estimation of the 

state using stochastically related failure information. Using equation [4.5(b)J, the 

observation dynamics for the failure process can be written as

N, = (Xi - k(s)ds)G(iA) + (\ iA k(s)ds}b(iA) + rj t [4.10]

for / = 1,2,..., Zj where, 77, is the observation error at the /th discrete time point. As

with the continuous problem statement, an additional and crucial observation (that 

must be incorporated into the parameter estimation process) is the number of existing 

defects removed at PM. Rewriting equation [4.8], we have

k(s-)dS)(\-b(ZjAj) + ej [4.11]

for QJ = 0, 1, 2, ... and 7 = 1, 2, ..., m where, Oj is the^th 0-mean estimation error.

The initial state XQ is assumed to be governed by a probability distribution p(xo) that 

is taken for convenience to be Poisson in the examples given later in this chapter 

however, other forms such as a binomial distribution may be more appropriate in 

some situations. In addition, we assume that the relationship between the observed 

NJ and the underlying JE, can be described by a distribution p(Nt \ x,). The objective of 

the probabilistic filtering approach is to obtain an expression for this distribution and 

in the context under consideration, the distribution is utilised in a predictive manner
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to schedule the next maintenance intervention. By the application of Bayes rule, the 

conditional density can be established as

P,(*i I £/) = />(*/ 1 ty,#w ) = 1 * [4-12]

for xi, Nt = 0, 1,2, ... and xt > Nf . The numerator is established using the chain rule

and hidden Markov one-step transition probabilities between potential realisations of 

the discrete-state process. In the context of hidden Markov modelling, this step of 

the derivation can be regarded as an application of the discrete Chapman- 

Kolmogorov equation;

p(xi ,Ni \Ni_l ) = p(Ni \xi ,Ni_l )p(xi \Ni_l ) = p(Ni \xi )p(xi \Ni_l )

= P(Ni I */) Z P(*i I *i-i)Pi-i (*i-i I #M) [4- 13]
xi-\= Ni-\

The denominator is obtained by taking the summation over all potential values of xt 

considering that it is known that xt must be greater than Nt ;

i(*Ml#,-i) [4.14]
Xi = Nj JCM = #/-1

Substituting equations [4.13] and [4.14] into equation [4.12] produces

Xj

PifrilN,) = ———————*M = "M——————————————— [4.15]
•** * —* oo %i

There are three separate functions included in the conditional density p,{xt \ N,) that 

require further explanation;

(i) p(Nj | Xj) is a conditional density function that describes the probability of 

observing Nt failures in the interval (0, iA) given that an underlying number of faults 

Xi have arisen. In chapter 3 it was established that the number of failures in a given
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interval follows a non-homogenous Poisson process (NHPP) with a time-dependent 

failure rate. As such, we have

p(N, | *,.) = E[N, | x,f' exP {-E[AT(. | *,]}/#,! [4.16] 

when Nj < xf and p(Nt \ *,) = 0 when AT, > jc, . We also have the expectation ofN, 

given Xj as

E[Nt |*,.] = (xt - Q k(s)dS)G(iA) + ( o k(s)ds)b(iA) [4.17]

where, b(iA) and G(iA) are given by [4.2] and [4.3] for / = iA and k/(s) = k(s). 

(ii) Pi-\(Xj_i \N_f_i) is given by the previous stage of the recursive filter and 

PO(XQ I ^o) = ^(^o) • ^ 's assumed that the number of faults injected at a given PM 

is governed by a Poisson distribution with mean vas

/>o(*ol£o) = O^O/V [4-18] 

forjc0 = 0, 1,2, ...

(iii) P(XJ \Xj_i) are one-step Markov transition probabilities where naturally we 

must have xt > xt_\ . From the system expression, equation [4.9], it can be 

established that the number of faults arriving over an interval ((i-\~)A, iA) follows a 

non-homogenous Poisson process (NHPP);

xt - *M ~ Poisson( J ' k(s)ds) [4. 1 9] 

The one-step transition probabilities are thus defined as

when x, > ^,-_! and 0 otherwise.
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4.4.2 Parameter estimation

As with the delay time models of chapter 3 the technique of maximum likelihood 

estimation (MLE) is employed for parameter estimation purposes. Unlike the MLE 

approach in the previous chapter, the likelihood function for this model is developed 

as the product of conditional probabilities. At each discrete time point for they'th PM 

cycle, the probability that A/, failures have occurred in the interval (0, iA) conditional 

on the failure history over the interval (0, (i-\)A) is denoted by p(Njj |^7- ,-_,).

Considering the availability of m cycles of data, the likelihood of observing all the 

information is

L=Yl P(Qj I *--, ) T\P(NJi I ^-1) [4-21]
7=1 V V/=l ))

forj =1,2,..., m. The functional form of p(Njt | N_, M ) is given by equation [4.14] 

and the conditional probability that Qj defects survive until they'th PM is 

p(Qj\*Sj ) = E[fi,|* f'expHe,!* ]>/gy !
I/4.Z/J

forig7 = 0, 1,2, ...where, 

E [Qj x2j ] = (x=j - ft* k(s)ds)(\ - G(zjA)) + ( ft* k(s)ds)(\ - b(Zj A)) [4 .23]

The log-likelihood function can be optimised with respect to the parameters of 

interest using a BFGS quasi-Newton search algorithm, see chapter 2.

4.4.3 Scheduling maintenance activities

As discussed previously, one of the advantages of modelling a complex system in 

this manner is the ability to make adaptive decisions using the observed failure 

pattern. There are a couple of ways of establishing a decision model that are 

discussed here. The first involves an opportunistic PM process whereby, upon the
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occurrence of a failure, an optimal estimate of the pre-inspection state of the system 

is used in determining

A, = Xi-N, = E[x, | #,]-#, [4.24] 

where, A t represents the expected number of faults currently present in the system.

The decision to perform PM is then based upon some threshold level for A that is a 

function of the associated costs. Upon performing the inspection phase of the PM, 

Az = Q becomes known information and can be used to update knowledge of the 

system parameters. The second approach to decision modelling in this context and 

the method employed in this chapter is to forecast or project the conditional density 

that is established using the stochastic filter at intervals of A. The predictive density 

is then used to establish the expected number of failures over the range of the 

projection. With the relevant cost information, an optimal PM time can be selected 

from prospective intervals of duration 0, A, 2 A, .... The conditional distribution 

established at the /'th time point for jc, given Nj is projected at intervals of wA as

M 251

for w = 1, 2, ... where, *,+M, | Jt, ~ Poisson J k(s)ds\. The conditional

probability that Ni+w - Nt failures will occur in the interval (iA, (i + w)A) is 

established by evaluation of

p(Ni+w \N( )=
xi+w=Ni

Denoting cj and cpm as the average cost of a failure and a PM respectively, the cost 

function is defined as
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[4.27] 

where, the expectation is given byE[Ni+w \ Nt ] = Nt for w = 0 and

[4.28]

for w = 1,2,.... The optimal time at which to schedule a PM using all the information 

currently available is then established as (/ + w*)A where w* is evaluated as 

w* = min(C(/,w)) for w = 0, 1, 2, ...

4.5 Case 1 - basic scenario, XQ = 0

The objective of this first example is to illustrate the modelling and parameter 

estimation process using specific delay time distributions and parameters for the 

various component elements and to demonstrate the ability of the filtering approach 

when tracking the underlying number of faults that have arisen in the system. The 

scenario under consideration is a single PM cycle from a simple fault arrival process 

with no artificial fault injection occurring during maintenance interventions. In 

addition, it is assumed that there is perfect detection of existing faults at PM and a 

constant defect arrival rate during standard operation, k(t) = k.

4.5.1 Modelling the process

The state equation is given for the number of faults that occur in the interval (0, iA) 

and is derived from the discrete-time problem statement and specifically equation 

[4.9] in section 4.4.1. The state at the fth time point is described by

*,. =*M +fcd + *,. [4.29]
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for i - 1,2, ..., z. Due to the assumptions regarding perfect PM, the number of fault 

injections is x0 = 0. The observation equation dictates the underlying dynamics of 

the process that results in the observed failures and is given by

Ni =xi b(iA) + TJi [4.30]

for / = 1, 2, ..., z, where, N0 = 0 and the proportion of defects resulting in failure over 

(0, iA) for uniform arrivals is given by b(f) for t = iA, see equation [4.2]. The choice 

of an appropriate delay-time distribution is an important part of model building in 

this context however, in this case and with the subsequent example in mind, for 

simplicity, exponentially distributed delay times are used. Considering exponential 

delay time distributions and the assumption of a constant fault arrival rate, a more 

basic model could provide equivalent results for this case, however, the example 

serves to demonstrate the methodology.

We have f(h) = te~*h for h>0 and the proportion of defects resulting in failure 

becomes

b(iA) = \-(\HA)(\-e-aA ) [4.31]

Completing the equation set, the number of defects identified and subsequently 

removed at PM is;

Q = xz (l-b(zA)) + 0 [4.32]

The filtering estimate is provided by the discrete-state conditional density p,{x,\Nj) 

given in equation [4.15]. The first two component elements ofp,(x,\N,) are subject to 

adjustment as follows;

(i) The distribution p(N,,\ Xj) is still a standard Poisson distribution for NJ<XJ 

given by equation [4.16] where, under the assumptions of the basic scenario with no
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fault injection at PM, the conditional expectation becomes E[W, \xt ] = xtb(iA) and 

b(iA) is given by equation [4.31].

(ii) The only change to />M (*M | NM ) concerns the initialisation of the recursive 

filter. Under the assumptions of this basic system, we have p0 ((x0 = 0) | N0 ) = 1 . 

An expression for the conditional density p,{xi\Ni) is developed for the particular 

scenario described. An example is then presented using simulated data with 

specified parameters to demonstrate the use of the filter in tracking the underlying 

fault arrivals.

4.5.2 The filtering expression pt (xt \ N_ t )

As already noted when discussing the component elements of the filtering expression, 

the initialisation of the filter requires modification under the assumptions of the basic 

scenario. For the first stage of the process we have a reduced form for the filter due 

to the fact that there are no faults present in the system at the start of operation. This 

is attributable to the assumptions regarding perfect PM. A closed form filtering 

expression is obtainable as

XY ^t
£—>

\ x,_d N,_d_} -b(A)xi_d_1Z x'-d:> I v
Ox^^N,.^ Vi-d-Xl-d-l)-

[4.42] 

where, JCQ and N0 are 0. Equation [4.42] is necessary for parameter estimation

purposes (as discussed in the next section) however from a computational 

perspective the following recursive expression is more suitable;
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[4.43] 
An alternative non-recursive formulation of a conditional density for this case is

given as

Pi(Xi | tf/} = //o [4-44] 
,- 1 */)/»(*/ l*o=o)

where, ./V, | *,- is as before and xt \ XQ ~ Poisson J k(s)ds . However, thiso

formulation does not utilise the failure pattern that has been observed until this point 

in the current cycle. The issue of parameterisation of the density for this case is now 

discussed.

4.5.3 Parameter estimation

For this basic scenario, only the interval and inspection data are needed for parameter 

estimation, the failure times within each cycle are not required. This is attributable 

to the fact that the behaviour of the failure process during the course of an inspection 

cycles is not of concern here with the reasoning being that a constant rate of fault 

arrival k is assumed and there is no defect injection being modelled in this initial trial 

case. As such we take the number of increments for they'th cycle, Zj = 1, and for 

simplicity we consider a constant interval between inspections for all available cycles 

of data, denoted by A - 7)•• = T. Nj is defined as the number of failures observed in 

cycle j, Qj as the number of faults found at inspection y and x, as the number of faults 

that arise during cycle; where, { NJ,QJ,XJ = 0,1,2,...}. Using equation [4.21], the
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likelihood function is modified for this simplified case to incorporate the minimum 

necessary information for parameter estimation as

m
[4-45]

/=!

From equation [4.14] we have the conditional probability

p(Nj | NJQ = 0) = | XJ)P(XJ I xJQ = 0)po(xj0 = 0 1 NJO = 0) [4.46]

where, for the basic scenario with no fault injection at PM, we have the initial 

probability p0 (xj0 = 0 1 NjQ - 0) = 1 . We also have knowledge of the total number

of faults to have arisen in each interval as;cy = N f- + Q. . As a result, the conditional 

probability reduces to

p(N, NJO = 0) = p(N, | Xj )p(Xj | Xjo = 0) [4.47]

Naturally, it follows from the relevant definitions that Nj , Qj < Xj and Xj > XJQ .

J e~kT

The constituent elements of equations [4.45] and [4.47] are

p(Nj

p(Xj | xjo = 0) =

p(Qj\Xj) =

Inserting these expressions into the likelihood function gives

(d -

[4.48]

[4.49]

[4.50]

where, b(T) = l-(\/AT)(l-e~ZT ). Re-arranging the likelihood function and 

cancelling some of the exponential terms produces
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-^+ [4.52]
/=!

We then simplify the likelihood function further by omitting all the terms that are not 

a function of the parameters under investigation and are merely multiplicative 

constants established from the known variables Nj,Qj and Xj . The likelihood 

function reduces to

tn X7 —
-T = Y[b(T) NJ (1 - b(T)) QJ kxJe~kT [4.53]

7=1

As with the maximum likelihood functions that we established in the previous 

chapter, taking natural logarithms of equation [4.53] can ease the estimation process 

considerably. The log-likelihood function is

m
/ = £#,. Iog0(r)) + Qj logO - b(T)) + Xj log(£) - kT [4.54]

y=i

If we make the substitution Xj = Nj + Qj and expand the summation in the log- 

likelihood function, we obtain

[4.55] 
The function can now be easily maximised with respect to the system parameters

under investigation using an optimisation algorithm. Alternatively, if we take the 

partial differential of the log-likelihood function with respect to k and equate with 0, 

we acquire the following estimate;

k = (l/mT)(N + Q) [4.56]

Note that the grouping of the failure time information over each interval j and 

equation [4.56] only apply on the assumption of a constant average fault arrival rate. 

Estimating the parameters of a non-constant fault arrival function k(s) would require

102



the partitioning of each interval and consideration of the number of failures occuring 

in each sub-interval.

This is the same result obtained for the basic model in chapter 3 and is again an 

estimate that could have been derived easily as the total number of faults divided by 

the total time over all available cycles. We then would have been left with the basic 

task of solving either of

for the single remaining parameter A using equations [4.17] and [4.23]. However, 

the objective of this basic scenario is to demonstrate and test the methodology of the 

stochastic filtering formulation and the associated maximum likelihood parameter 

estimation process. In this initial case, we use a simple exponential distribution for 

the delay time until failure of a given defect. However, the framework that we have 

developed allows for the use of more complex distributional forms.

4.5.4 Example

This example serves to demonstrate the application of the filter in estimating the 

underlying state under the assumptions of a basic inspection process. The process is 

simulated for 50 cycles of duration 200 hours with a constant arrival rate £=0.1 per 

hour and exponential delay time distribution with parameter X = 0.025.

Using equations [4.56] and [4.58] and applying a BFGS algorithm from Matlab® 

function 'fmincon', the parameters are recovered from the simulated data as 

k= 0.107 and i= 0.0262. As simulated data is being used, the actual underlying 

fault arrival process is known for any available cycle of failure data. As such, a
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further cycle of data is simulated with the same parameter set and the filter given by 

equation [4.42] is applied to track the progress of the fault arrival process. Figure 4.3 

illustrates the recursive filtered estimates at increments of duration A = 20 hours 

against the actual underlying process.

30 n

50 100 
Time

150 200

Figure 4.3 - Comparing the actual and filtered estimates of the fault arrival process

From figure 4.3, it is clear that the filter tracks the underlying fault arrival process 

reasonably effectively although an excessive number of faults over the range 25-40 

hours complicated the estimation process. For this basic case, a simpler model could 

have provided the same results however, the application is intended to demonstrate 

the use of the filter and the process is extendable to more complex situations as is 

demonstrated in case 2. Figure 4.4 illustrates the evolution of the filtering 

conditional density over time for the simulated cycle of data and it is clear that the 

number of failures observed over time has the desired influence on the structure and 

range of the conditional density and this effect would ultimately carry forward to 

modify the replacement decision accordingly.
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faults

Figure 4.4 - Illustrating the conditional density obtained at each recursion of the filter

The analysis of the subsequent case demonstrates the adaptability of the replacement 

policy using the filtering approach.

4.6 Case 2 - fault injection scenario, JCQ > 0

The system described in this second case is subject to human error and the number of 

fault injections at PM is assumed to be governed by a Poisson distribution with mean 

v. As with the first case, a constant arrival rate k is assumed during the course of 

standard operation.

4.6.1 The filtering expression pt (xt \ N_t )

When programming the stochastic filter for on-line estimation, the conditional 

probabilities obtained at each recursion can be stored in an array and used directly as 

input at the next recursion. This approach is more efficient than the utilisation of a
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closed form representation as it reduces the level of computation. Using equations 

[4.15] - [4.17] and [4.20], we have

(*/ ~ xi-\ ) !

[4.59] 
For parameter estimation purposes, we require a closed-form expression for the

conditional distribution. The following general expression is available for the rth 

recursion;

*--*'-') ((JCM - (f - l)Jfc4)G((/ -1)4) + ((i -

«[n
i -d-l)A) + ((/-</-

I x,=N, 

( '-'>< n
. , -r. . , V '-d xi-d-\)-

] y "\ 

——————* 

x0 \ J

[4.60] 

4.6.2 Parameter estimation

The likelihood function given in structural form by equation [4.21] is used to 

estimate the parameters of the conditional distribution given by equation [4.60].
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Attention is now given to the constituent elements of equation [4.21]. Considering a 

single history, we have the likelihood of observing the history of failures and the 

number of faults removed at PM as

^=P(Q\xz )Ylll p(Nl \Nl_l ) [4.61]

Under the assumption of perfect detection of existing faults, the probability of 

removing Q faults at PM is conditioned on xz = Nz + Q, the total number of fault 

arrivals (natural and injected) over the cycle, as

(1 / Q\)((xz - kzA}(\ - G(zAj) + (kzA)(\ - b(zA))}Q e -((
[4.62] 

The estimation process for the product element of equation [4.61] is also simplified

in this case with the availability of xz. All summations to infinity with respect to x, 

are converted to summations with the limit xz as at no prior stage can the total 

number of arrivals have been greater. In addition, the final term in the product is 

simplified to incorporate knowledge of the total number of fault arrivals as

Z | Nz_,} = p(Nz | x, =NZ +Q) >(*z I *z-i )/».-! (*r-i I Ks-i) [4-63]
*:-l=tf--l

As noted previously, the estimation techniques discussed in the previous chapter are 

simpler to apply and can also be employed here to obtain the parameters for the 

filtering expression as the same structural forms for the system apply with the only 

difference being, in this chapter, the modelling of a distribution for the number of 

fault injections at PM. However, for the cases discussed here, the initial distribution 

is assumed to be Poisson and the average number of injections estimated using the 

techniques documented in chapter 3 can be taken as the mean of the distribution. 

Similar means of parameterisation could be used if other distributional forms are 

selected.
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4.6.3 Predictive equations

The cost function established by equations [4.27] and [4.28] is dependent on the

predicted distribution p(Ni+w \Ni ) given in structural form by equation [4.26]. For

this particular case, with the assumption of a constant fault arrival rate during 

operation of the system, the constituent elements of equation [4.26] are

((i + w)kA)b((i +
P(Nii+w

"i+w

and
x'+w ~x' ! ~ wlcA

_ P,(*i \ £/) [4-65]
XI =NJ »+w Xi>-

The example presented in the next sub-section illustrates the estimation of the 

underlying state for the system described in case 2 and compares the estimates 

obtained at each discrete time point with the best estimate available when the failure 

information of the current cycle is not utilised. Also, the potential benefits of 

modelling the system in this manner are demonstrated using the cost function given 

by equation [4.27].

4.6.4 Example

In the context of the system described for case 2, we simulate a cycle of data with a 

constant arrival rate during standard operation of k = 0.1 per hour, and an average 

number of fault injections at PM of v= 1.5. The delay time distribution is taken to 

be exponential for both fault types, f(h) = /UT^ for h>0 with parameter /I = 0.05. 

In order to illustrate the forecasting of the predictive density and the adaptive 

maintenance scheduling policy, we assume costs of c/ = 8 and cpm = 14 for a failure 

and a PM respectively.
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The simulated data is grouped and the analysis conducted at equidistant intervals of 

duration ^1=10. As discussed previously, the modelling is easily modified to relax 

the assumption of equidistant intervals between recursions of the filtering process. 

For instance, upon failure of the system, the filter could be applied to evaluate 

whether or not an opportunistic PM could replace the impending failure repair 

process.

Iteration, /

0
1
2
3
4
5
6
7
8
9
10

Time, z'zl

0
10
20
30
40
50
60
70
80
90
100

No. faults, xt

I

1
2
3
3
4
6
7
8
9
10

No. failures, Nt

0
0
1
2
2
2
4
6
6
7
9

Table 4.1 - The simulated fault arrivals and failures

Using the cost model proposed by equations [4.25] - [4.28], the optimal PM time can 

be established at each discrete time point or upon receiving further information, such 

as the occurrence of a failure. As is illustrated in figure 4.5, with / = 0 and 

E [Ni+w \Nj] = Nj for w = 0, the initial optimal PM time for the system upon 

commencing a new operational cycle is approximately 54 hours. This estimate can 

also be obtained using the techniques discussed in the previous chapter with the 

models adjusted to incorporate cost rather than downtime.
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Figure 4.5 - Illustrating the expected cost of a cycle against the duration for the system 

described in case 2, with parameters k = O.I/hour, 1 = 0.05 and v = 1.5.

When the dynamic failure information pertaining to cycles that utilise a model 

(rather than those that are used to establish the model) is not incorporated, the best 

estimate of the underlying state at a given recursion / within a cycle is simply E[x,] 

rather than E[x,|7V,]. For this example, the best estimate would be 

E[xi ] = 'E[xQ ] + kiA = v + kiA . Figure 4.6 illustrates the actual underlying fault

arrivals, the filtered estimate and the best estimate available without incorporating 

the failure information. It is clear from the figure that the filter provides a substantial 

improvement in describing the stochastic behaviour of the system for this cycle than 

would have otherwise been available.
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Figure 4.6- Comparing the actual number of fault arrivals with the filtered estimates and 
estimates obtained without incorporating the failure history

The expressions for the predictive density and the cost function, equations [4.25] 

[4.28], are established at intervals of identical duration to the interval between 

subsequent recursions of the filter, A. However, for this particular example, the state 

estimation process takes place at intervals of A = 10 hours which is not convenient 

for forecasting purposes. As such the predictive density and cost function are 

established (at the rth time point) at intervals of duration iA + wd rather than (i+ \v)A 

and 0 is taken to be 1 hour. Therefore, at each recursion we can obtain the most cost 

effective time to schedule a PM to the nearest hour. Figure 4.7 compares the PM 

scheduling decisions obtained at each stage using the stochastic filtering process, the 

predictive equations and the cost model. As noted previously, when considering a 

static maintenance policy that does not incorporate the failure history corresponding

to the current cycle, the optimal time at which to schedule the next PM is found to be
r

a fixed T* = 54 hours. As such, the maintenance decisions associated with this 

policy decrease linearly over time, as is illustrated in figure 4.7. The expected cost 

of this decision is C(T* = 54) = 0.78646. In comparison, when using the adaptive 

policy that incorporates the stochastic filter, the optimal decision obtained at 60
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hours into the cycle is to perform a scheduled PM in 6 hours and at no previous 

discrete time point is the decision to perform PM less than the interval between 

check points of 10 hours. As such, the total cost associated with applying the 

adaptive decision policy for this particular cycle is

C(i = 6,7- = 66) = (6(8)+ 3) 766 = 0.77272 

as 6 failures occur in the 66 hours.

50 -,

J 40 " 

a! 30 -

§ 20 - 

P 10 H

0

0 10 60 7020 30 40 50 

Decision time (hrs)

Figure 4.7 - Comparing the scheduling decisions that are available using the stochastic filter
and a static PM policy

To conclude, for this second case with the example given, we have demonstrated that 

discretising the fault and failure processes and applying the stochastic filter 

incorporating hidden Markov state transitions can provide improved estimates of the 

state of a complex system (that incorporates fault injection during the PM process) 

than would have been available without incorporating the failure history attributable 

to the current cycle. In addition, we have demonstrated that the failure process can 

be used to provide replacement decisions that potentially result in additional 

operating time and/or improved costs than a static maintenance policy that does not 

cater for this information. The adaptive maintenance policy takes into consideration 

the current failure history and the number of faults that are estimated (using the filter)
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to be currently present in the system. For the particular cycle simulated in the 

demonstration, fewer failures are observed during the cycle than the prior expected 

number and using the filter, fewer faults are expected to exist in the system at each 

check point than expected prior to commencing the cycle. As such, the adaptive 

policy enables an additional 22% operating time for the cycle at a reduced cost. 

However, it is important to note that the example given is just one potential 

realisation of the various events and processes.

4.7 A continuous time stochastic filtering representation

In this section, we return to the continuous time definition of the problem scenario 

given in section 4.3 and the form of an appropriate continuous time stochastic filter is 

derived in accordance with the modelling discussed in chapter 2, section 2.5.3. The 

filter is tailored for this particular application where, both the evolution of the 

underlying state and the continuous observation stream are described by positive 

integer counting processes. For simplicity, we assume the system to be in a steady 

state of operation. Considering an individual PM cycle, the number of fault arrivals 

(underlying state), over any interval (0,0 after a PM, is defined as a counting process 

and represented as a semi-martingale of the form

«/ = «o + k(s)dbs + m, [4.66]
o

where, bs is a time dependent function and m, is a martingale adapted to a tr-field 

that is generated by all the available processes. The observed number of failures is 

also a counting process defined as
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where, Wt is {/3t } -adapted and Mt is a martingale. A problem that arises from the 

continuous time definition of the problem scenario when attempting to apply the 

filtering process is now discussed. From equation [4.67], we require the function hs 

to be an integratable function of the state a over the range (0, t) as we are defining a 

failure rate that is proportional to the number of faults that have arisen. However, the 

relationship is not specified in this manner in the delay time based representation of 

section 4.3 when fault injection is incorporated. As a result, we propose the use of an 

alternative function such as

sas [4.68]

which can be parameterised to produce either a constant, increasing or decreasing 

failure rate over time as relevant to the particular application. However, the 

expression does not contain the rationale of the delay time approach when defining 

the relationship between the state and observation. This is an obvious drawback 

particularly with regard to defining and parameterising the constituent processes of 

the state and observation processes using the techniques of documented in chapter 3. 

The objective of the methodology outlined here is to obtain the conditional estimate 

or filter of the state, given the a-field generated by the observation process

3f =<r{Ws ,s<t,teT},as

at =E[a,\37] [4.69] 

where, 3,c /?, . The result that M,2 -(Af,Af) is a martingale is utilised in the

derivation of the filter and in general, for a counting process, we have

t 
(M,M) = \hs ds, i.e. the quadratic variation of the martingale Mat time t is equal

o 

to the compensator of the process N. We also have the result Mt mt -(M,m){ is a
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martingale and that typically (M,m)t = 0. The optimal estimate of the underlying 

state at time / is given by

f [dWs -hs ds] [4.70] 
o o

where,

"-i d 
<pt =h t E[a,ht ]-E[a,]E[ht ] +—(M,m) [4-71]

- t=i-

for h, > 0 and 0 otherwise. However, as noted in section 4.3, the output of the 

estimation or filtering process is an infinite sequence of stochastic differential 

equations and approximate solutions are required. This factor, combined with the 

necessity to approximate the dynamics of the function hs, makes the probabilistic 

Bayesian approach, given in the previous section, more appealing for this particular 

problem. This conclusion is made on the assumption that the interval between the 

discrete time points is appropriately small to approximate the continuous time 

manner in which the observations are obtained.

4.8 Summary and discussion

In this chapter, we have investigated the ability to utilise the modelling processes of 

the previous chapter and develop adaptive maintenance scheduling models that 

utilise the observed failure information during the course of an operational cycle. 

The continuous time definition of the problem scenario is used to describe the 

underlying dynamics using a state space form and the delay time approach. However, 

as discussed in the last section, an appropriate continuous time estimation procedure 

could not be established. Discretising the dynamics of the fault and failure arrival 

processes enabled the construction of a probabilistic Bayesian stochastic filter. The 

filter utilises the failure history and the time that has elapsed in the construction of a
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conditional density for the total number of fault arrivals since the last PM. The 

parameters of the proposed filter can be estimated using the techniques of chapter 3 

however, alternative approaches are discussed that enable the parameterisation of a 

density function for the number of faults injected at PM. We then proposed an 

extension of the state estimation methodology in forecasting future failure patterns 

during the course of an operational cycle and using the forecasts and the relevant 

costs to optimally schedule the next PM. Examples are given, using simulated data, 

for a basic fault arrival process and then a process with fault injection at PM. In the 

first example, we demonstrate the state estimation approach and illustrate the 

construction of the conditional density. In the second example, the state estimation 

process is illustrated for the fault injection scenario and the scheduling of the next 

PM, using the failure pattern of the current operational cycle to date, is demonstrated. 

For the particular cycle of data considered, use of the PM scheduling model provides 

an increase in operational availability when compared with a fixed interval policy. 

Fewer failures than expected occur during the course of the particular cycle we 

consider and the adaptive model takes this into consideration and recommends 

prolonging the operational period at each discrete time point. Naturally, different 

cycles will produce different failure patterns and the stochastic filter is designed to 

adapt accordingly. The examples are given for relatively simplistic versions of the 

constituent processes however the approach is the same for more complex systems.
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Chapter 5. Condition monitoring and condition-based maintenance

S.I Introduction to condition-based maintenance

The use of condition monitoring (CM) information in industrial and technological 

applications is continuously increasing to provide estimates and predictions 

regarding the condition or state of dynamic systems that are stochastic by nature and 

subject to some form of random deterioration. Condition-based maintenance (CBM) 

involves the utilisation of monitoring information in guiding decision making when 

scheduling maintenance activities. The type of system under consideration in this 

and the subsequent three chapters is a single working component or system with a 

dominant failure mode that is monitored using one or more of the CM techniques 

discussed in the next section. The key topics of interest in CBM applications can be 

loosely divided into two categories with the first including the identification of any 

available indicatory condition information and the subsequent monitoring and 

interpretation of said information. In some cases, this first category could also 

include a fault diagnosis process designed to indicate that, although the system has 

not failed, it is operating at a substandard level of performance. The second category 

of topic in CBM involves the estimation and prediction of the underlying state of a 

system and the use of this information in associated maintenance decision making 

activities. In many applications, there will not be a clear distinction between these 

two categories.

In this chapter, the concept of the state or condition of a single working component 

and the means by which this information can be inferred from condition data are 

discussed. The issue of initial fault detection and the various techniques that are

117



available using CM information are then addressed. The chapter concludes with a 

review of the relevant CBM literature.

Defining the state is a complex issue in CBM applications and is dependent on the 

particular system and the available condition information. When considering an 

initial phase of operation and any fault detection problems, the component can be 

defined as either in a normal state or defective. However, it is beyond this point that 

defining the state is non-trivial. Also, some systems or types of monitoring 

information are not modelled using a two stage process. A measure of the 

underlying condition is required. Typical applications of many of the state 

estimation techniques discussed in this report include financial issues or tracking 

objects through 3D spaces etc. In contexts such as those, the state that we may wish 

to estimate can be defined as a monetary value or a set of co-ordinates, respectively. 

However, in the context of CBM, the state/condition of a component is not easily 

given a value. As such, we consider variables that are related to or are functions of 

the quality and efficiency of the components operational state at a given moment in 

time after conception. In chapters 6 - 8, we consider the remaining useful life of a 

defective component before failure. Many of the systems are also subjected to 

regular maintenance activities, with the typical scenario being; at planned 

maintenance checks or inspections, the necessary restorative action is diagnosed and 

subsequently implemented. The usual assumption is that maintenance produces only 

a partial restoration of the component/system and that the useful application of 

maintenance to the same system has a finite duration. As such, when maintenance 

can no longer restore the unit to a satisfactory workable condition, a replacement is 

scheduled.
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5.2 Condition monitoring

Condition Monitoring refers to techniques that are used to determine or indicate the 

condition or state of a component. On the subject of CM there is a substantial 

amount of information available. Of particular use for reference purposes are 

Collacott (1977) and Tandon & Choudry (1999). Starr & Rao (2001) and the 

COMADEM proceedings (2001, 2002) provide an extensive account of available 

monitoring techniques. Condition monitoring information can be classified 

accordingly; 'Direct information' consists of variables which directly determine the 

condition or state of the system, such as the wear of a component. The observed 

information is usually contaminated by noise and as such the actual condition of the 

component must be inferred from the data. 'Indirect information' is a condition 

output that is not a direct deterministic measure of the system but is assumed to be 

stochastically correlated with the unknown underlying state of the system. This 

includes techniques such as oil analysis or vibration monitoring. A typical approach 

in this scenario is to model the hazard rate thereby incorporating the condition 

information into the modelling process. Available CM techniques include;

- vibration analysis

- thermography

- spectometric oil analysis and ferrous debris quantification 

optical microscopy 

ultrasonics and x-ray analysis

- motor current analysis

amongst many others. More recent techniques include the use of larger ranges upon 

the spectra of a signal, such as the analysis of acoustic emissions however, 

processing difficulties are common with large amounts of input data requiring
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reduction before a fault detection technique could be applied to extract the necessary 

features in an attempt to inform the user of the likely condition of the component. 

Techniques such as infra-red imaging for electrical components experience the same 

kind of processing problems. For many of the techniques described in later sections 

concerning both fault detection problems and the estimation of the condition or the 

remaining useful life of a component, the particular monitoring technique is 

irrelevant as the modelling process is the same for different types of CM input and 

only differs according to the type of data employed. For instance, whether the 

information is of a discrete or continuous nature or is stationary etc. In most cases, a 

direct or indirect/stochastic relationship must be established between the state or 

remaining life of a component and the indicator information. With many 

components involved in a system, it becomes necessary to consider which of the 

components require specific types of monitoring. Techniques such as Fault-tree 

Analysis or Failure Mode and Effect Analysis can be used to assign monitoring 

priorities to different components. Improved condition monitoring is likely to 

develop with the introduction of on-line continuous monitoring of components e.g. 

with smart sensors and built in vibration sensors being more prevalent on key 

equipment. This will enable the increased use of CM indicator information in 

ascertaining or estimating the reliability of components, (as is demonstrated in the 

next two chapters) in addition to the more commonplace usage in defect 

identification.

5.3 Initial fault detection

Applying a fault detection process to the monitored indicator information is often the 

first stage in the CBM modelling process. The detection of a component in a 

defective state can be a complex task and the sensitivity of 'alarm' systems varies
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according to the importance of the individual component or the equipment/unit 

within which it resides. Many factors may influence both the performance and the 

condition of a component such as;

- different types of fault

- the type or quality of the installed component

- the severity of the operating cycle

- environmental conditions

Much of the research into fault detection problems has used vibration monitoring or 

oil-based information as the primary indicators of the state of a component. The 

vibration monitoring of bearings is most commonplace with rolling element or ball­ 

bearings being amongst the more abundant components in rotating machinery. 

When considering the vibration monitoring of a bearing, the type of fault may be 

misalignment, poor installation, rotor imbalance or flow-induced vibration or one of 

a number of other fault types. The type of bearing installed will obviously have an 

impact as will the type of lubrication and the environmental conditions such as the 

ambient temperature. An idealistic fault detection process would incorporate all 

available factors including the age of the component and the considerations already 

discussed into the modelling and decision making process in order to asses whether 

the condition indicators are consistent and whether irregularities or rapid increases in 

a signal that may indicate the presence of a fault are natural occurrences, such as 

normal periodic behaviour or increasing trends over time as the component ages, or 

whether the effects are indeed attributable to the arrival of a defect in the component. 

More advanced techniques are required to distinguish between said scenarios.
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Defect Initiation

Time

Figure 5.1 - Illustrating a change in the vibration level of a monitored component after the

initiation of a defect

Techniques for analysing and deconstructing the vibration signal in order to identify 

defective components include the following; (i) Spectral analysis using orthogonal 

decomposition. This essentially involves comparing and testing for significant 

differences between the spectra of the vibration signal for the two contrasting states; 

normal operation and defective, (ii) Statistical signal processing and statistical 

process control (SPC) includes techniques from simple control charts to more 

complex methods of moment and kurtosis monitoring. Many detection processes 

monitor the mean2 level of the signal or examine specific frequencies. Significant 

changes are assumed to indicate the existence of a defect, (iii) Bispectral analysis 

provides more information than basic spectral analysis and although it may be more 

complicated to implement, it is capable of extension to signals that are non-linear and 

non-Gaussian by considering the phase relations between elements of the signal. 

Most approaches to detection of defects using a vibration signal, including those 

given above (excluding Bispectral analysis), are based upon assumptions regarding 

the stationarity of the signal however, the signal often includes modulation and there 

are a variety of signal processing algorithms available that can be used to extract key 

indicative features of a signal. The algorithms incorporate techniques such as higher- 

order statistics (extensions of 2nd-order measures e.g. autocorrelation and variance)
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such as skewness and kurtosis, cyclostationary statistics, time-frequency analysis and 

wavelet transforms. These methods can be useful in providing additional 

information, when compared with standard spectral analysis, as to the structure of the 

input information. Principal components analysis (PCA) and autoregressive 

algorithms are useful techniques that can be used to reduce or compress the 

dimensions of observed temporal and spectral indicator information in order for 

feature extraction to be implemented. The method can be applied at the start of the 

process to ascertain the factors that have greater potential as indicators of the 

condition or alternatively, PCA could be applied iteratively, in a more dynamic 

manner, at each stage in an attempt to focus on the effects that may currently be 

indicative of the condition/state of the component. This is particularly useful in 

situations where different fault types produce irregularities in different monitoring 

processes. See the application documented in chapter 7 for more information on the 

use of PCA for reducing the dimensionality of multivariate data. 

Advances in condition monitoring and fault detection are constantly arriving via the 

use of improved fuzzy logic, neural network techniques, genetic algorithms and the 

development of "expert" systems that interpret and fuse sensor data with prior and 

expert knowledge to improve condition classification and automation opportunities. 

Genetic Algorithms (GA) are becoming more popular as a means of selecting 

features of inputs that are currently indicative of the state of the monitored 

equipment, see Man et al (1999) for details of the available GA's. 

Artificial neural networks are increasingly common as regards general pattern 

recognition with many architectures and training algorithms now available to classify 

high-dimensional non-linear indicator information, examples of these include; Multi- 

layered Perceptron's (MLP), Tree-structured Self-organising Map's (TS-SOM) and
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Self-organizing Map's (SOM). Support Vector Machines (SVM) now exist for 

pattern recognition via recent developments that now provide improved classification 

using modified kernels and feature selection (GA's). See the DAME project and 

Quick system for further information on the use of these techniques for CM 

diagnosis and prognosis applications, Austin et al (2003) and Nairac et al (1999). 

Further recent developments in condition monitoring and fault diagnosis include; the 

use of a Hidden Markov modelling (HMM) approach to the problem of defect 

detection, see Wang (2004), and Morphological Signal Processing that encompasses 

a broad collection of concepts and tools for signal analysis and non-linear operations 

that are derived through mathematical morphology which draws upon results in set 

theory lattice algebra and stochastic geometry.

5.4 CBM background

In this section, some of the notable contributions in the CBM literature are discussed. 

As noted in section 5.2, the choice of CBM technique is dependent on the type of 

condition information being utilised in the model, i.e. whether the monitored 

information is of a direct or indirect nature. The direct monitoring of actual 

condition has been prevalent in condition based maintenance literature to date, see 

Christer & Wang (1995), however, the issue of indirect monitoring is far more 

complex from the point of view of constructing reliable decision models. With direct 

CM information such as the analysis of the wear of a unit or measuring crack depth, 

the cumulative component degradation is often subjected to state space discretisation 

and subsequently modelled as a jump process, see for instance Easry et al (1973) or 

Mercer (1961) for examples. Studies incorporating direct monitoring where the 

cumulative component wear is modelled as a continuous process, include Abdel- 

Hameed (1975), Gilgmayr (1987), Park (1988) and Christer & Wang (1992, 1995).
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Aven (1996) and Heinrich & Jensen (1992) developed stochastic counting process 

models for degradation applied to directly observed systems and Wang (2000) 

presents a random co-efficient growth model for state estimation and prediction. 

With indirect CM information, a common approach is to model the hazard; Newby 

(1993) presents an overview of hazard based models. The most widely used hazard- 

based technique is the proportional hazards model (PHM). The proportional hazards 

model has seen frequent applications in a medical context for quite some time, see 

Cox (1973), but has only been applied to industrial maintenance problems relatively 

recently. Studies using the PHM in a maintenance or replacement based context 

include Ansell & Philips (1989), Bendell et al (1986), Makis & Jardine (1991a and b) 

and Kumar & Westberg (1997). Banjevic et al (2001), Banjevic & Jardine (2004) 

and Vlok et al (2002) use a proportional hazards model where the covariate process 

is approximated by a discrete state Markov chain. However, the PHM and a 

Markovian model developed by Gong & Tang (1997) amongst others, only use the 

current CM observation and not the entire component history when estimating the 

expected residual life of the component. This issue is discussed in more depth for 

the PHM in the subsequent chapters. Coolen & Dekker (1995) explore the 

sensitivity analysis of a 2-stage approach to maintenance decision making however, 

the paper does not include any recommendations regarding parameter estimation 

which forms a substantial part of the problem. Scarf (1997) presented a review of 

papers in condition monitoring until that point in time and notes that many more 

models and applications are required in the area of CBM in order for industry to 

utilise the CM information that is often obtained at some expense, effectively. Wang 

et al (2000) use a gamma process and vibration monitoring for state estimation and 

CBM applied to plant.
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It is vibration monitoring that provides the stochastically related condition 

information for the analysis in the next chapter. The focus of the investigation is on 

the ability of different CBM techniques to predict the expected time remaining 

before a component fails. The state of the system is defined as the residual life and 

the objective is to make optimal recommendations regarding the scheduling of 

replacements. The vibration information is obtained from the irregular monitoring of 

components in a laboratory fatigue experiment and the techniques employed and 

compared are the aforementioned PHM, see Makis & Jardine (1991), and a 

probabilistic stochastic filtering approach. Chapter 7 provides a similar comparison 

of the two techniques using the level of metal wear particles found in oil samples as 

the indicator information. The modelling process is modified slightly for both the 

PHM and the filter and the issue of multiple indicators of condition is addressed. See 

chapter 2 for details on the filtering methodology. Both modelling approaches are 

established in the CBM literature. The first paper to utilise a stochastic filtering 

approach and the concept of'conditional residual time' is Christer et al (1997) where 

a linear state space model and the Kalman filter are developed and applied to a case 

study on an industrial furnace erosion problem. In the paper by Wang & Christer 

(2000), the convenient assumptions of linearity and Gaussian distributed 

disturbances are relaxed in an attempt to propose a general probabilistic stochastic 

filtering model for CBM applications that incorporates the partially restorative 

effects of maintenance interventions. The model is subsequently applied to a specific 

case using vibration monitoring in Wang (2002). The topics of appropriately 

selecting monitoring intervals and replacement times for CBM applications are 

discussed in Wang (2003). Lin & Makis (2002) present a stochastic filtering process 

for a continuous-discrete model using oil analysis and more recently, Wang (2004)
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presented a hidden Markov model for state estimation with an emphasis on the 

identification of the different operational phases for a 2-stage monitoring process.
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Chapter 6. The proportional hazards model and a stochastic filter for 
condition based maintenance applications

6.1 Introduction

In this chapter, we discuss two established techniques for estimating the probability of 

failure and the expected time until failure (or residual life) of a component given 

stochastically related condition monitoring (CM) parameters. The CM parameters are 

collected at regularly or irregularly spaced discrete time points. The techniques that 

we consider for establishing the conditional probability densities for the residual life 

are stochastic filtering and the proportional hazards model (PHM). We consider a 

probabilistic approach to the filtering problem (see chapter 2, Jazwinski (1970) and 

Aoki (1967)) whereby the initial condition and the relationship between the observed 

monitoring parameter and the condition of the component are both modelled using a 

probability density function. The PHM was introduced in Cox (1972) and the form of 

the general PHM as used throughout chapters 6 -8 is given in Cox & Oakes (1984). 

The issue of parameter estimation is addressed for the two approaches before a brief 

section on the selection of an appropriate measure of the underlying state or condition. 

Before discussing the modelling process for the two state estimation techniques, some 

general assumptions and notation that are applicable to both approaches are presented;

CM can be regular or irregular and takes place at discrete time points.

There is no maintenance or preventative means other than replacement. 

When considering the estimation of the state and the decision model for an individual 

component, the following notation is applied;

- T is the failure or suspension time of the component,

- tj is the time of the /th CM point,

y = {yij,y2i>-—>yri} is a vector °f CM information parameters observed at
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time tt where yki is the Mi element of y. for k = 1,2, ...,r.

- Y t = {^y^,-,^} is the CM history of the unit that is available at the z'th

monitoring point.

When analysing a given data set consisting of m components (j = I, 2,..., m) and 

estimating the necessary parameters for both models, it is necessary to define a 

distinction between the individual components. An additional subscript y is added to 

the notation given above and rij is the number of CM points for they'th component 

before failure/replacement.

6.2. The proportional hazards model

In this section, we discuss the proportional hazards model (PHM) where the evolution 

of a covariate process is approximated by a continuous-time, discrete-state Markov 

chain. The use of a conditional reliability function in establishing an iterative failure- 

time distribution is addressed. For the failure time distribution, we consider the 

expected failure time and optimal replacement times at monitoring points throughout 

the lifetime of the component.

6.2.1 The hazard and reliability function

The hazard rate is a common feature of reliability analysis and is usually defined as

the instantaneous failure rate. The hazard rate for the PHM is given by

Wt.y,) = WWtTiy,) [6.1]

where, h0(t) is the baseline hazard that is dependent only on the operational age of the 

unit and A(y, y. ) is an adjusting functional term consisting of a vector of coefficients

7 and the time dependent covariates y.. The function A(y,y) can take a number of 

different forms with the most common choice being the exponential form;
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(^'.V/) = exp{7>.} utilised in the next two chapters. When the baseline hazard is

left unspecified, the model utilising the hazard rate given by equation [6.1] is known 

as the 'semi-parametric Cox PHM'. There are two kinds of covariate that the PHM 

can incorporate into the estimation process with the first being 'concomitant' factors. 

This categorisation applies to factors or variables that are not functions of the 

particular unit but have a bearing upon the condition and performance of the 

component, such as the environmental conditions. The second type of covariate 

catered for by the PHM is the category of 'diagnostic variables' consisting of 

covariates that indicate the likely state or expected time until failure of the 

component. To ascertain the reliability of a component at time t with hazard rate 

given by equation [6.1], we are required to approximate a continuous vector sample 

path y(s) from the observations taken at discrete time points. The monitoring points

are denoted by (0 = to) < t\ < . . . < t. Using the approximated y(s) the reliability can be 

evaluated as

R(t,Y) = exp{-f/(r,7)} = exp - /z(s,X*)W [6.2]
o J

where U(t, 7) represents the cumulative hazard until time t. Makis & Jardine (1991) 

advocate the use of a constant value for y(s) between the inspection points due to the

variability that is typically observed in monitored information however, linear 

interpolation between monitoring points is also an option.

A similar model to the PHM is the accelerated life model, see Cox & Oakes (1984), 

however, the vector of covariates are uilised within the hazard as

rather than in the form given in equation [6.1] for the PHM. In accelerated life
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testing, stress covariates are increased over time until a failure occurs. See Lawless 

(1982) for an example of accelerated life testing using voltage as a covariate.

6.2.2 Modelling covariate behaviour

There are a number of approaches that can be used in order to model and predict 

covariate behaviour including regression models and time series. In the research 

documented here, an approach outlined by Makis and Jardine (1991) is used whereby 

the PHM is combined with a discrete Markov process for estimation and prediction of 

the covariates in question. The Markov process is designed to predict the covariate 

development and also indicate the probability that the component will move to a 

failure state over specified intervals, i.e. prediction of residual life expectancy. The 

covariate process is subjected to discrete approximation thereby reducing the 

condition information to a finite number of states and a state transition probability 

matrix is established. Differing behaviour of covariates over time can be modelled 

using a non-homogenous Markov chain. The non-homogeneity can be established 

using a number of different options such as a time dependent transition matrix or the 

time scale can be divided into intervals of approximately identical transition 

probabilities, see Therneau & Grambsch (2000) and Fisher & Lin (1999). The 

following results for the transition rates or probabilities are presented for an individual 

element of the CM process y on the assumption that the individual elements are

independent. In practical situations this is often not the case and some suggestions for 

resolving the issue are discussed later in this chapter and applied in chapter 8. For 

cases involving regular (identically spaced) condition monitoring, the interval 

between inspections is denoted by A. Considering an individual element of the CM 

covariate process, the transition probabilities
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Pk,ab W = P(yk ,(M)A = b I ykM = a) [6-3] 

are easily estimated from the data on a classical frequency basis for k = 1, 2, ..., r. 

With irregular condition monitoring, the rates of transition must be estimated first and 

the transition probabilities established from these. If we define the CM observation 

process {yk (t), t> 0} as a continuous-time, discrete-state Markov process with state 

space Sk={l,2,...,sk} and establish the probability matrix

Ik (0 = pk,ab (0 = P(Vk (t} = b\ yk (0) = a) [6.4] 

from the matrix of transition rates Ak = [Ak ̂ab ] , the transition rates between the states 

of yk (t) can be expressed as

(\-Pka (h)\1 i • K,a- v / PX- ^-1A*« = im —— —— [6-5]

[6 - 6]
for a,b e S/c where /^ a .(/z) is the total probability of moving to any state other than a.

To estimate these transition rates from data we use the maximum likelihood approach. 

The log-likelihood of observing the m independent sample paths of yk (t) is given by

[6.7]
a b a

where, C is a constant that is omitted from estimation, Nk (a,b) is the number of 

transitions from a to b during all m sample paths and W^a) is the total time spent in 

state a during all m sample paths. Using a result

from Doob (1953), we can derive the maximum likelihood estimate for each rate of 

transition between states as
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' [6.9]
0 if a^b and Wk (d) = Q.

When converting the transition rates to probabilities over a suitably short interval a> 

we assume that, at most, one transition between states could occur. The transition 

probabilities over a> are derived as

( \ 

^k,ab [6.11]

The second component of /i is for situations where more than one state is directly

communicable from the current state. Note that c represents the directly 

communicable states from the current state and also that b&c. For non-homogenous 

processes, the transition probabilities must be calculated separately for each phase of 

homogenous behaviour.

6.2.3 Parameter estimation

Conditional or partial likelihood techniques (developed by Cox) can be used to 

estimate the parameters of the PHM. This technique can also be used to estimate the 

parameters of the functional term when the form of the baseline hazard is not 

specifically defined in a functional form. However, the subsequent non-parametric 

estimation of the baseline hazard can be complex. Other approaches such as extreme 

value transformation can be used to obtain the parameter estimates however, for the 

proceeding research we follow an approach recommended in a CBM context in Vlok 

et al (2002). For the model developed in Vlok et al (2002), parameter estimation can
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be undertaken with a distinction between units operated until failure and those that 

operated until a 'suspension' (censored data) that could be the end of a test period 

(calendar suspension) or a preventive replacement. Failures are indicated by cy = 1 

and suspensions by c; = 0. The number of failures in a data set is given by 

<t> = X cy and tne number of suspensions is m-<j) as the data consist of m

independent lifetimes with each unit denoted by (T,, 7 , , c,), fory = 1, 2, ..., m,i j<"j j

where Tj is the failure or suspension time. Maximum likelihood estimation can be

used to obtain the parameters of the PHM. The likelihood function includes the 

hazard and conditional reliability functions and is constructed as

where, / indexes failure times only, j represents both failures and suspensions and 

h(Tt , y ) is given by equation [6.1]. In the reliability function R(t,Y) at time t,

equation [6.2], the cumulative hazard is represented by U(t,Y) and in the context of 

establishing an approximate reliability function for parameter estimation purposes, we 

have

y.(T,))} [6.13]

Finally, we construct r continuous-time sample paths for the y'th component that are 

collectively represented by y .(t) for t> 0. The individual path for unity, principle
— J

component k, (k = 1, 2,..., r), is a constant stepwise function that is constructed from 

the CM parameters available at the discrete monitoring points. It is denoted by 

yjk (t) and defined on the discrete state space Sk = 1,2, ...,Sk where, sk represents the 

number of states. When there is a transition in the state-space of any of the
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paths yjk (f), we have a transition in y .(/), i.e. when any of the r elements in the 

continuously evolving vector y .(t) changes value, we have a transition in the overall

state. To obtain an approximation of the cumulative hazard, we convert the 

continuous y_.(t) into a discrete semi-Markov process {Ajd , rjd } where, rjd is the

elapsed time in the dth state, Ajd is a vector representing the dth state of the observed 

path y_.(f) for d= 1,2,..., qj and <jj is the number of consecutive states observed for

the y'th component. Semi-Markov processes are used frequently in queuing and 

reliability theory. Markov renewal processes are related to semi-Markov processes 

and describe the number of times a process is in a given set of states during a period 

of time. The cumulative hazard at the failure or suspension time of they'th unit, 7^-, is 

approximately

U(Tj,y(Tj)) =
V
\h(s,Ajd )ds [6.14]

where, Vjd is the time of the dth transition and we have V/o = 0 and Vjq =Tj. The

d
transition times are established as Vjd =

a=\

6.2.4 The conditional reliability function

In this section, we consider the incremental approximation of the conditional 

reliability function as a discrete semi-Markov process at discrete time points 

throughout the life of a component given the monitored history to date. Using the 

conditional reliability function, a conditional failure time distribution (or residual life 

distribution) is established at each of the discrete time points on the assumption that, 

within a very small increment, only one transition between covariate states may occur
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with an associated probability. From equation [6.2], the reliability at time t is defined 

as R(t,a) = P(T>t,y(t) = a) where a represents a vector state of the covariate 

Markov process and y(tt ) is an approximation of the discrete observation vector y..

Given that at time th the observed CM information is within covariate state 'a', the 

conditional reliability at time tt +xt with a covariate vector that is within state 'V can 

be expressed as

R(ti +xi ,b\tii a) = P(T>(tl +xi ),y(ti +xi ) = b\T>ti ,y(ti ) = d) [6.15] 

where, R(ti ,b\ti ,d) = lim R(tt + jc,•. ,b\ tt ,d) = dab , and dab represents a

Kronecker-delta. At time ft, with the continuous-space CM output from the 

component,^., converted to the discrete-space, continuous-time series y(tt ) and

taking co to be a suitably small increment, we have 

R(ti +co,b\ti ,a) = 

P(y(ti +co) = b\T>(ti +co), y(tt ) = a) P(T > (tt +co)\T> ti , y(t, ) = a) [6.16]

As noted above, within (ft, ft + co), we assume that one or no transitions between states 

of the covariate process can occur, the conditional reliability after a single increment

is given by

( 1 r° ~ 
- \h(s,b)ds\Pab (a>) [6.17]

where, Pab (co) is the probability of a transition from covariate state vector a to state 

vector b within an increment co. As discussed previously, the kth covariate in the 

vector y(t) can be in any one of sk prescribed states, yk (t) e Sk = {1,2,...,^^} at time

t. Now, considering this discretised observation process, the Chapman-Kolmogorov 

equation for a discrete-time, discrete-state process is a recursive formula for the
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derivation of rc-step transition probabilities using the associated one-step probabilities 

between all known states. Taking y to be a general state and h < u, the Chapman- 

Kolmogorov equation is

p(yu \yh)=^p(yu \ yu-\ *)p(yu-\ I y* ) [6-18] y«-\
We can now define an approximation to the conditional reliability function at time tt 

given the vector of CM information parameter^.. For the conditional reliability

function constructed here, the cumulative hazard approximately incorporates the 

transitions between states and the potential for multiple transitions. From equations 

[6.16] and [6.17], the conditional reliability after a single increment of duration co is 

given by

[ 't+a> ] 
R(tt + co, y(ti + co) | tt , y(tt )) = exp - j/z(s, y(tt + co))dt p(y(ti + co) \ y(tt )) [6.19]

Generalising equation [6.19] using equation [6.18], we can obtain an expression for 

the approximate conditional reliability for the vector y_(t t + uco) after u increments,

«= 1, 2, 3..., as

{ tj+UCO 
- $h(s, y(tj + uco))ds | 

t,+(u-\)a> \

X<( +(«-l)ffl)

[6.20] 

where, for u = 1, we have R(t; +(u- i)co, y_(t, +(u- l)co) \ tf , y(tt )) = 1. The joint

transition probabilities are

r
p(y(t,:+ uco) | y(t,:+ (u - l)co)) = Y\p(yk (tt +uco)\ yk (tt +(u-l)co)) [6.21]

k=\
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for M - 1,2, ... Equation [6.21] is established on the assumption that the individual 

CM parameters are independent and therefore their joint transition probability is 

simply the product of the individual transition probabilities. The transition 

probabilities for the CM parameters are derived from the transition rates between the 

discrete states, see equations [6.10] and [6.11]. In reality, it is likely that the 

parameters will be correlated with one another, which will have a negative impact 

upon the parameter estimation process. A number of different means of addressing 

this problem, using data transformation techniques, are discussed later in this chapter 

and applied to real case data in chapter 8. Defining the residual life at the rth 

monitoring point as x, = ua>, the conditional reliability at time tt + jc, can be discretely 

approximated as 

RI (Xi\y t ) = R(ti +ua>\ti, y(tt )) = £ R(tt +ua>, y(f, + uco) \ t, , X/,- )) [6.22]
y(t,+ua>)

Accuracy could potentially be improved by adjusting the model so that transitions 

occur at the mid-point of an increment. Further possibilities include applying the 

same probabilistic approach to the cumulative hazard as

(y(t,+ua>)) Hm~

' ~

[6.23]

y_(ti + «fi>) I X',-

where, H^ = 0. The conditional reliability at time //+*,- is

with Xj = uo) for u= 1, 2, 3...

Z zj-Wi H u~

y(ti+uoj)
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6.2.5 The conditional failure-time distribution

At time tt, with xt as the time remaining before the component fails, we are able to

establish the conditional failure time distribution pt (Xj \ 7,) at the rth CM point as

which is a standard result, see Cox & Oakes (1984). As the conditional reliability 

function is defined at discrete intervals (jc, = co, 2co, 3<y...) and incorporates transitions 

between states of the CM covariate processes, we normalise the conditional density 

given by equation [6.25] as

. x . y
ax; —' [6-261

0 — *=1"«

for suitably large D. Alternatively, the denominator can be approximated using a 

numerical integrator such as a trapezium approximation, Simpsons quadrature or 

Romberg integration which is an adaptive routine using refinements of the extended 

trapezium approximation, see Stoer & Bulirsch (1980). In situations where the choice 

of baseline hazard prevents an analytical approach to establishing the conditional 

failure time distribution, the following approximation can be used for suitably large c;

[6.27]

6.3 Stochastic filtering

6.3.1 Introduction

The stochastic filter explored here is constructed on the following premise. The

delay-time (Christer& Waller (1984)) is the time that elapses between the origin of a
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defect in the component and the time when the defective component fails and is no 

longer operational, XQ . As is illustrated in figure 6.1, the residual delay-time at time /, 

after the origination of a defect is denoted by jc,.

delay-time

failure

TIME

Figure 6.1 - Illustrating the residual delay-time until failure of a component

The illustration given in figure 6.1 is particularly relevant to vibration monitoring 

applications where distinct phases of the components life are identifiable, as 

demonstrated in the following chapter. When modelling oil-based CM information, 

as in chapter 8, these distinct phases can not be recognised from the data and as such, 

we begin the modelling of the residual life at the start of the components life. The 

standard delay-time distribution p(xo) is estimated from failure time data pertaining to 

similar components and provides the initial estimate of the delay-time. If it were 

found that the condition readings shared no correlation with the residual delay-time or 

indeed in cases where the CM information is not available, the probability distribution 

p(x0) and the time tt would be the only information to guide decision making. 

Otherwise, at the rth checkpoint at time th the posterior distribution for the residual 

delay-time, jc/, is updated using both the CM information j; and the age of the

component tt . The filtering model prescribed here is subject to the following

assumptions;

- The residual delay time x, is a random variable with its posterior estimate
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conditional on the observed condition monitoring history Y_ t .

- The CM information y. is assumed to be a random vector that is a function of the

residual delay time with random noise. 

The following notation applies in a filtering context throughout this chapter;

- Xj is the residual delay time at th

Pi(xi IZ/) is the posterior conditional probability distribution for the residual

delay time at time tt given the monitoring history to date,

P(y_i I */) is the conditional probability distribution for the condition monitoring

vector, y., at time tt given that the residual delay time is xh

6.3.2 The residual delay time distribution

Given that the unit is in a defective state and has survived until the rth CM point at 

time tj, the residual delay time can be expressed as the residual delay time at the 

previous CM point, time tj.\, minus the interval between the two points as

*/=*M-('I-'M) [6.28]

If the delay time is not sufficient for a unit in working condition at the previous 

inspection to survive until the current inspection at time th then the delay time is non­ 

existent and hence is not defined at tt . The objective of the stochastic filtering 

approach is to obtain an expression for /?,(jc( |7 ( ), the posterior conditional 

probability distribution for the residual delay time of a defective unit given the 

monitored condition history to date. A key element of the recursive filter is 

p(y.\Xj), the conditional distribution of the condition vector y. given that a

particular underlying state (residual delay time) exists. If the individual observations 

yki are independent from one another (for each7) at time th then the joint conditional
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distribution can easily be established as

r
xi}=Y\p(yki\xi ) [6.29]

k=l

where, p(yki \ *,) is constructed according to the nature of the observed data and the 

parameters are estimated from available CM data pertaining to analogous units. If the 

individual observations yki are not independent, the construction of p(y_,\xi ) is

more complex. One option is to directly employ a multivariate probability 

distribution such as a multi-gamma or multi-exponential distribution, see Johnson & 

Kotz (1972). The other option is to use a data reduction technique as discussed later 

in this chapter in section 6.4.

For a complete description of the general formulation for the probabilistic stochastic 

filter including the provision for control functions such as component maintenance as 

a data contaminant, the reader is referred to Wang & Christer (2000). The specific 

case of the stochastic filter used here and a more complete description of the 

derivation can be found in Wang (2002). The conditional distribution is given by

P(xi ,y i IZ/-i) 
Pi(*i IZ,) = P(*i I y^i-i) = , -' . [6.30]p(y_ t i Li-i)

where, the numerator is

P(xi ,y i Z M ) = P(y t I xi ,Y i_,)p(xi | 7M ) = p(y. | *,.)/»(*, I ZM) t6 - 31 ] 

and integrating over all potential values of the residual delay time xt at time r, gives 

the denominator of PJ(XJ \ 7; ) as

00

P(y, I ZM) = \P(y t I xtMxi I ZM)*/ [6-32]
o

Using the relationship established in equation [6.28] we obtain the following one-step 

predictive distribution,
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I Y \ - '-1 ,,-/-! ,-l „ „, / II/-i) - —— - —————————— [6.33]

where the denominator normalises the distribution. As noted above, the expression 

that we are interested in evaluating is Pj(xt |7 ( ) given by equation [6.30]. If the 

initial standard delay-time distribution pQ (xQ \ 70 ) = p(xQ ) and the conditional 

distribution p(y . \ jc,) are known, then equation [6.30] can be evaluated recursively.

6.3.3 Parameter estimation

The first consideration when fitting the filtering model to a data set is the selection of

appropriate forms for p(x0) and p(y . \ xt ) which are dependent on the specific data

set and estimation of the relevant parameters. The distribution p(xo) is the standard 

failure delay time distribution for the components and the parameters can be estimated 

from prior objective failure data pertaining to similar components using the maximum 

likelihood approach. To estimate the parameters of p(y \ *,) it is necessary to apply

the maximum likelihood technique as a product of conditional probabilities. 

According to Wang (2002), the likelihood function for an individual component is 

given as

" }
••-! } k» (x» = T - tn ! £» } t6 - 34!

)
where a lower-case p represents a density function, an upper-case P represents a 

probability and

PM (*M >tt - 1^ 1 7M ) -
t

Extending equation [6.34] to consider multiple component histories, the likelihood
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function for m components is

j \ 
II P& ,1 ?-jj-\ )Pj,i-\ Oy,M>Oi - fy/_,| Yj M ) \p .n (x •„ = T • -1 n | Y )

[6.35] 

6.4 Multiple indicators of condition

In sections 6.2 and 6.3, the PHM and the filter are presented for a condition based 

maintenance scenario involving multiple indicators of condition. Much of the 

modelling for both techniques has been presented on the assumption that the 

individual condition monitoring parameters are independent from one another. 

However, in reality, multiple indicators of condition are potentially correlated and this 

can affect the estimation of the relevant parameters for both techniques. In this 

section, we discuss a number of different means of removing any correlation between 

the condition indicators and potentially reducing the dimensions of the CM 

information used in the models. This is achieved in the case studies of chapter 8 by 

classifying, at time?,, the condition input to both models, y., as a vector of linearly

independent transformed data obtained from the original condition information vector, 

represented by z,.

6.4.1 Principle components analysis (PCA)

6.4.1.1 Establishing significant principle components

Principle components analysis (PCA) is a well-known linear transformation technique

that is used for reducing the dimensionality of multivariate data whilst still preserving

most of the variance, and has seen frequent use in multiple regression applications.

See for example, Chatfield & Collins (1980) and Jolliffe (1986). PCA can be applied

to remove any collinearity between CM indicators and it potentially reduces the

number of inputs to the next stage of the modelling process. This is achieved for a
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vector of;? random variables z = (zl ,z2 ,...,zp y by creating/? uncorrelated linear 

combinations of the variables. The combinations are established such that the Jfcth 

linear combination has the Mi largest variance amongst all possible linear 

combinations; k = 1,2, ...,p. The Mi combination is then labelled the 'Mi principle 

component'. In the majority of cases, most of the variation contained in the data for 

the p random variables can be described by the first few linear combinations and as 

such, the number of variables used in modelling can be reduced without the loss of 

too much information. Now, considering the information available from a single 

history, the observation matrix Z consists of n observations for each of the p random 

variables and therefore has dimension « x p. In theory, if we know the values of the 

actual covariance matrix Z corresponding to the vector z, the principle components 

can be calculated as

yk=°k* [6-36] 

for k = 1, 2,...,p where, ak is the eigenvector of Z that has the Mi largest associated

eigenvalue. However, we are rarely in possession of this knowledge. In our scenario, 

the CM data represents a sample from a population and as such, we are required to 

use the sample covariance matrix S. For a sample of data containing the p random 

variables observed at n consecutive condition monitoring points, the sample 

covariance matrix is given by

S=QQI(n-\) [6.37]

where, Q represents the centred observation matrix that has the same dimensions as

the original data set, n x p. The centred observation matrix is obtained by subtracting 

the mean for each of the p random variables in the vector z from n data entries. An 

alternative approach for obtaining the principle components of a multivariate data set
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is singular value decomposition (SVD). SVD is applied to the centred observation 

matrix Q and solutions are obtained for the following matrices

[6.38]

where, A and C are unitary matrices and B is a diagonal matrix of the same 

dimensions as the covariance matrix with non-negative diagonal elements of 

decreasing magnitudes. The matrix C contains the principle component coefficients 

and the squared diagonal elements of B are the eigenvalues of the covariance matrix. 

Principle components analysis has been found to be particularly useful in multivariate 

applications when there is an excessive number of variables and a large amount of 

cross-correlation between some or all them. It is true that some information is lost 

from the original data set when reducing the content of the data in this manner. When 

considering the application of PCA to data obtained in the context of condition 

monitoring, there are a number of problems that must be addressed. Firstly, when 

applying PCA, the samples from a population are usually assumed to be independent 

however, in CM applications the sample data will likely contain a large amount of 

auto-correlation implying that the data corresponding to each variable (element of z) 

may be time-dependent and, as a result of this, the entries in the sample may be 

dependent upon one another. However, this issue is not particularly important in our 

setting as we are not utilising PCA for inferential purposes, but as a data 

transformation technique that merely prepares the data for input to the CBM model. 

Another problem is that the cross-correlation structure between the p variables 

contained in z could change over time. This is an issue that when present, can be 

tackled using dynamic principal components analysis (DPCA) that typically utilises 

time series such as autoregressive models and applies the techniques to the principal 

components histories. DPCA is also useful when modelling time-dependent variables.
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A further problem that must be addressed when applying PCA is the relative 

magnitude of the data pertaining to the/? random variables in the original vector z. If 

the variance of one variable is substantially greater than another, it will have a greater 

weighting in the first few principle components. To address this problem, the 

elements of z can be standardised by subtracting the mean from the associated data 

and dividing by the standard deviation. The correlation matrix can then be established 

in preference to the covariance matrix and the eigenvectors evaluated. PCA can then 

be applied to the standardised data set. In addition, the number of observations 

included in each history will be different and the determination of principle 

components must consider this. The final issue that we should consider is that, 

although PCA can be applied for the removal of collinearity between the original 

variables and as such, produces linearly independent components, a higher-order of 

dependence may still exist. A technique called independent components analysis 

(ICA) has recently been developed to consider this problem. The use of ICA for 

dimension reduction is discussed later in this section.

6.4.1.2 Using PCA when modelling CBM

There are a number of options that can be considered when using PCA as a means of

transforming data for use in CBM applications. Option A involves the use of PCA for

dimension reduction but, still using some of the original untransformed data as the

input to the CBM model. Option B involves using the transformed data only i.e. the

principal components, directly in the model.

Al. After applying PCA to the original data set, we may find that some of the original

elements of z contribute the majority of the variance contained in the evaluated

principal components. These elements could then be retained and used as the input to

the CBM model. The other elements of z could then be ignored resulting in a
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reduction in the input to the model and a reduction in the amount of actual monitoring 

required. However, the problem of cross-correlation between the selected original 

CM variables still exists.

A2. When a data set has been transformed using PCA, the transformed data can be 

converted back to the original data set using the inverse matrix. However, the original 

data set can only be retrieved in its entirety if all the principle components are 

retained as having a significant impact. When, some of the principle components are 

deemed to be insignificant and as such, are omitted, back-transformation of the data 

will produce a reduced version of the original data set. This reduced data set can then 

be used as the input to the state estimation models.

Bl. An alternative approach involves using PCA to remove the collinearity between 

the variables in z and to use all the principle components as a direct input to the CBM 

model. Although the dimensions of the data used to establish the parameters and 

build the CBM model have not changed (r=p), and the problem of an excessive joint 

sample space may still exist, the fact that the individual elements of y are linearly

independent from one another, should improve the parameter estimation capabilities. 

B2. The final option for incorporating PCA into CBM model building is to include the 

principle components deemed as significant in the model and exclude the others 

(r < p). This option solves the problems of collinearity and dimension reduction 

however, a new question is raised; how do we evaluate the significance of a principal 

component? Should acceptance of a principal component as an input to the CBM 

model be based upon the variance, the p-value or both? Another option is to introduce 

the principle components one by one in a stepwise manner and assess the model fit 

until no further improvement is achieved.
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6.4.2 Dynamic principal components analysis CDPCA')

As has been discussed, the PCA approach can be applied to consider any potential 

collinearity between the different types of CM observations. However, PCA does not 

tackle the issue of potential auto-correlation between observations of the same 

variable at successive monitoring points. When the original data set; 

z i =(zlii ...,zpi y ; / = 0,±1,±2,...

is auto-correlated, dynamic principle components analysis (DPCA) can be used to 

reduce the dimensionality of the data and reduce both cross-correlation between the 

elements of z and any auto-correlation between observations. Typical applications of 

DPCA utilise time series in the evaluation of principle components. One option is to 

use an auto-regressive model of order w, AR(w). The PCA approach is then applied 

to the covariance matrix (of lag w) of the observed CM process. An AR(w) model 

represents the process z as;

£v 2/-v=2 + £/ [6.39]
v=l

The constituent elements of equation [6.39] are d = (I-& l -...-& w )z. where / is 

an identity matrix and z is the mean CM observation vector, <Z> V (v = 1, 2,..., w) is a 

p x p matrix of coefficients and s i is a ^-dimensional white noise process with 

covariance matrix E_. The matrix Z = [z w+1 ,...,zn ]' of dimension (n-w)x.p and 

/?' = [(/-^j -...-<£ W )I, ^i,---,^w ] are defined for the process z that consists of n 

sets of observations over time. The objective is to establish the following general 

linear model;

Z = aB + E [6.40]
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where, E_ - \£ w+l , £ w+2 , •••> £„]' is the matrix of errors for each CM parameter over 

the observations between the (w+l)th and «th time point, and a is a matrix of 

dimension (n - w) x (wp + 1) with rows of, = [l, z', , ..., z',_w ] for / = w +1 , . . ., n. The 

parameters are estimated using the method of least squares minimisation as

l = (a'a)~ l a > z [6.41] 

with the covariance matrix given by

'S [6.421 
— L J

A number of test and model validation procedures are given for the AR(w) model in 

Makis et al (2005), pages 7-9. The order w of the chosen AR model dictates the lag 

incorporated when applying DPCA. The principal components for the DPCA 

approach are obtained using the expression;

Lt=U. l Qt [6.43]

where, Ot = (z' t , z'M , ..., z' t_w y and U_ = (ul ,u2 ,...,up )' are the eigenvectors of 

the sample covariance matrix S. S is constructed as a block matrix with 

(w + 1) x (w + 1) blocks of dimension pxp. As such, the data vector considered when 

using DPCA is (z\ ;,z'M , ...,z',_vl,) rather than just z't with the standard PCA 

approach where the observations are assumed to be independent over time. A Scree 

test can be applied to assess the suitability of the DPCA approach when applied to 

specific cases. However, it should be noted that the application of an AR(w) model 

would require the observations in the data set to be spaced equidistantly. In cases 

where the data set consists of irregular CM readings, the data could be scaled 

according to the wear increment and the duration over which the wear is accrued;
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(l, -ZM) / (tj -fM ) . Alternatively, some data points that are of an inconsistent 

duration could be discarded in an attempt to approximate a regular process.

6.4.3 Independent components analysis (1C A)

As discussed previously in this chapter, PCA is limited in some applications as the 

resulting components are only linearly independent. As with PCA, independent 

components analysis (ICA) is a statistical technique for revealing hidden factors that 

underlie sets of random variables however, with the ICA approach, a non-Gaussian 

representation using a statistical 'latent variables' model produces components that 

are as statistically independent as possible, see Jutten & Herault (1991). At each CM 

point, it is assumed that we observe p linear mixtures z\,..., zp of p independent 

components as

for / = 1,..., p. At the rth CM point, the observed reading zfa) is a sample of the 

random variable z/. Defining z as a vector with elements z\,..., zp, s as a vector with 

the elements being the independent components s\,...,sp and A as a matrix containing 

the co-efficients a/*, we have z = As and are required to compute A and s from z. As 

with PCA, the independent components sk are latent variables that cannot be observed 

directly. With ICA, the components are assumed to be statistically independent and 

governed by non-Gaussian distributions. If the actual functional form of the 

distribution is known, the computation of the independent components is much 

simpler. The matrix A is known as the 'mixing matrix' and is usually assumed to be 

square although, this assumption can be relaxed in some cases. After computation of 

A, see Comon (1994), the independent components can be obtained as s = A' lz. For 

the specific cases investigated in chapter 8, only the first principle component is found
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to be significant. With only a single component being utilised as the CM input to the 

CBM models, there cannot be any correlation between the components and as a result, 

the use of ICA is not a necessity.

6.5 Failure time analysis and replacement decisions

6.5.1 MTTF and MSE analysis

Using both the proportional hazards model and the stochastic filtering approach we

are able to construct the conditional probability distribution pt (Xj |7,) where, Y_t

represents the history of condition information and xt represents the time remaining 

before failure. In the case of the stochastic filter, we call this value the residual delay- 

time, Wang & Christer (2000), and in the case of the PHM the distribution reduces to 

Pi(xi \Li) = Pi(xi y ) as only the current CM vector is used in its construction.

However, with the conditional distribution /?,•(*,• \Y_ t ) in hand we are still required to 

select an appropriate measure or point-estimate of the time remaining before 

failure, xt . For example, this estimate could be the mean, mode, median or some 

other measure. The prediction error, at time tt, for a point-estimate xt can be

expressed as

*,. = xt -xt [6.44] 

Define p(s) as a real-valued, non-negative convex function and L(xt ) as a

loss/criterion function with the following properties;

1(0) = 0, p(s2)>p(£ l )>0 -> L(£ 2)>L(s l )>0. 

Atypical choice of criterion function is

p(E) = \ £ \ = (l?s)m

According to Jazwinski (1970, Theorem 5.2 and 5.3), the conditional mean is the 

minimum variance estimate for all filtering and prediction problems, regardless of the
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properties of the conditional density function. The conditional mean is the 

expectation taken with respect to the observed condition history. At time th the 

expected time remaining before failure given monitored condition information to date 

is given by

*/ =E [*/IU [6.45]

In the stochastic filtering case, we are required to approximate the following integral 

to obtain an estimate of the conditional mean as

tipfalYjdXi [6.46]
o

with a variance about the mean estimate given by

- Xj: ) 2 PJ (x; | YJdXj \6 471
' •* * * —' ' L v * J

o

In the PHM case, the following expression is evaluated for an approximate 

conditional mean;

E [xt, | Y, ] = a£x xiPi (x, | Yt ) [6.48]

because, for *,• = a>, 2CD, 3 co... we have £ pt (xf \Y f ) = (1 / a>), and naturally it is a

requisite that the cumulative probability density to tend towards 1 as xt tends towards 

oo. As with the establishment of the denominator of the conditional failure time 

distribution, equation [6.26], the expectation of equation [6.48] can be approximated 

using an alternative numerical integrator. The variance about the estimate in the PHM 

case is given by

Var[jc, | Yf] = a>Y (x, -x,) 2 />,(*,-1Z,) [6.49]

153



To ascertain the fit of the two techniques when applied to data, two loss functions 

based on the residual errors obtained for each point estimate at all available 

monitoring points for all components are

[6501/' ' j i I • 1

yyl^il = 
j'( XJ> J tt *ft t6 - 51 !

However, we have more information contained in the conditional density pt (xt | 7,)

than a point-estimate and as such we are able to construct a measure of the mean- 

square error (MSB) at time tt . The actual time remaining before component failure, 

that is only available after failure, is T- tt and the MSB for the rth estimated 

conditional distribution about the actual value in the stochastic filtering case is

MSEt = (xt +t, -T) 2 Pi (xt | y,.)flfe, [6.52]

In the PHM case, for xt = (0,2ca,3(a..., we have

MSEi = co^xi (x, +ti -Tfpi (xt | Y , ) [6.53]

The resulting loss function that enables a direct comparison of the fit of the two 

modelling approaches to all available data can then be established simply as the sum 

of the MSB evaluated for all available monitoring points for each component under 

scrutiny. We have

Total MSE = 52 MSEjj [6.54] 
/ '

The decision to select an appropriate modelling approach for future monitoring and 

control purposes is then simply the model producing the lowest total mean-square 

error given above. If both models are seen to exhibit desirable elements, a
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combination of model estimates could be used based on a weighting scheme around 

the mean-square error loss function, assuming that sufficient computational power is 

available to run more than one model in parallel.

6.5.2 Replacement policies

A further advantage in establishing a conditional probability distribution over the 

evaluation of a single point estimate of residual life is the availability of the 

cumulative density function enabling the construction of decision models that 

incorporate the probability of failure before a particular instant conditional upon the 

monitoring history to date. A replacement policy can be established using renewal- 

reward theory and the long-run 'expected cost per unit time', see Ross (1996). 

Initially, some further notation is defined;

TR is the planned replacement time (to be optimised),

Cp is the cost of a preventive replacement,

Cp is the replacement cost due to a failure of the component.

The general form of the cost model is presented first. At time t, the expected cost per 

unit time is given by

E(Cycle Cost \TR ) _ CP +(CF - C P )P (Failure \TR ) 
E(Cyele Length \TR ) ~ E(Cyde Length \TR ) [6'55]

where, C(/,7/0 is to be optimised with respect to TR. The probability of failure given a 

specified replacement time is given by; P(¥ai\ure\TR)= P(x<TR -t). The 

replacement decision at the rth CM point is then obtained via the optimisation of

_, _, , ______CP +(CF -Cp)Pi (xi <TR -ti \Y_ i )______ CVi'TR) = ——'———————————————————'r~t,——————— [6.56]

'/ + PR ~ tf )0 - Pi (*/ <TR -ti\ Y, )) + J*,- Pt (xt 11, )dz
o

where, an upper-case P represents a probability and a lower-case p denotes a
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conditional density. In the filtering case, the integrals are solved by approximation 

and for the PHM we have

TR-'i TR -t,

\xt Pi(x, lYJtkj = <o ]T Xf Pi(xt \y.) [6 . 57]
0 xt =tu

for xt = a>, 2a>, 3w...( cco = TR -t t ). Again, this approximation may be improved 

using a numerical integrator.

6.6 Discussion

In this chapter, we have introduced two techniques that are available for condition- 

based maintenance applications. The techniques are proportional hazards modelling 

and probabilistic stochastic filtering. The models are presented in the context of a 

scenario involving the prediction of residual life at condition monitoring points 

throughout the lifetime of a component. The modelling and associated parameter 

estimation methodologies have been presented for both models and issues regarding 

the handling of multiple indicators of condition have been addressed. In addition, we 

have considered different means of comparing the two modelling approaches and 

establishing replacement decisions when the models are applied to case data. 

Additional tests of fit, for both models, are a topic for future research. In the research 

documented in the next two chapters, we focus on comparing the performance of the 

two models using the MSB criterion and the replacement cost model introduced in the 

previous section of this chapter. We establish specific cases of the PHM and the filter 

and apply the models to case scenarios involving vibration monitoring and 

subsequently, oil-based condition information.
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Chapter 7. A case comparison of the PHM and a stochastic filter for a 
CBM application using vibration monitoring

7.1 Introduction

The type of CM parameter considered in this chapter is the overall vibration level of a 

single working component. In order to provide a fair comparison, the two techniques 

are implemented on the same data set with the same two-stage approach to modelling 

where, the first stage corresponds to the normal operation of a component and the 

second stage is the defective phase of the components life, see figure 6.1. On starting 

this comparative investigation, one perceivable modelling advantage of the proposed 

stochastic filter over the PHM is the fact that discrete approximation is not required in 

the filtering case to handle the observed information parameter and the entire 

component history is utilised rather than just the current CM reading. There are other 

fundamental issues that mark the key difference between the two approaches 

particularly regarding whether or not the CM information influences the state of the 

component, which it does not in the case of vibration monitoring. The PHM is not 

particularly appropriate when modelling situations where the covariates are response 

variables, see Moore & McCabe (2003). In a filtering context, the CM parameters are 

taken to be a function of the residual life but the residual life is not a function of the 

CM reading. However, when applying the PHM, the hazard is a function of the CM 

parameters. In the former the CM parameters are treated as random variables that are 

assumed to be correlated stochastically with the residual life and in the latter the CM 

parameters are covariates that change according to a separate stochastic process. 

These issues are rather important as they are related to the fundamental principle in 

condition monitoring; in most CM applications, the observed parameters function 

merely as indicator information governed by the underlying system state, but this
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relationship does not hold in reverse. This is particularly true in cases involving 

vibration based monitoring where an extreme elevation in the amplitude of the 

vibration level is usually triggered by a hidden defect, but one cannot say that such a 

high reading caused the defect. The stochastic filtering approach follows this 

principle but the proportional hazards model does not. As has already been 

mentioned, the life of a component maybe divided into two phases namely, normal 

operation and defective. This classification of the different phases of component life 

is particularly appropriate for vibration monitoring applications as the vibration signal 

does not typically display trend in the initial normal phase of operation but begins to 

increase rapidly upon the commencement of the defective phase of its usable lifetime. 

As such, the vibration level is used to ascertain whether or not the component has 

become defective. To establish an appropriate threshold level between the two 

phases, a statistical process control (SPC) approach known specifically as a Shewharrt 

chart is employed.

Defect Initiation

Phase 2———————>

Threshold Level

Time

Monitoring Points 
Figure 7.1 - Illustrating the two phases of component operation and the initiation of a defect

When utilising a Shewharrt chart, a critical level for the vibration reading can be 

established using assumptions on the stationarity and the variance of the vibration 

signal. Points a and b in figure 7.1 represent CM parameter readings at monitoring 

points before and after the threshold is breached. The initiation point is then assumed
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to be the mid-point between the two monitored readings and estimation of the time 

remaining before a failure occurs commences from this point, see Wang (2002) for 

more details. The SPC approach to defect detection is quite crude but it enables a 

direct comparison of the two techniques. Recently developed hidden Markov 

modelling techniques in Wang (2004) would provide a more precise estimate of the 

origin of a defect in the filtering case. A further alternative to defect detection is the 

use of subjective expert opinion that is particularly useful when the signal during the 

normal phase of operation is erratic.

7.2 The data

A case comparison was conducted on the life histories of six bearings tested until 

failure in a laboratory fatigue experiment. As failure times were not recorded, ten 

hours is added on to the final monitoring time to give an approximate failure time, 7}, 

for each bearing. For more information on the type of data see Wang (2002). The six 

life histories comprising of the monitoring times with associated condition 

information (vibration level) are illustrated in the figure below.

35 -i 

30 - 

25 - 

20 -

> 15 -

10 - 

5 -

4.0 66.0 124. 211. 369. 494. 610. 754. 892. 964.

Time

Figure 7.2 - Illustrating the vibration data for the 6 bearings
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The data in figure 7.2 clearly lends itself to a two-stage approach to analysis as is 

illustrated in the introduction to this chapter in figure 7.1. A threshold vibration level 

of five signals the start of the second phase of the analysis; see Wang (2002) for 

details. Defects are assumed to initiate/originate at the mid-point between the CM 

point at which the vibration level is noticed to have breached the action limit and the 

previous CM point.

7.3 The proportional hazards model

7.3.1 The WeibullPHM

In the hazard given by equation [6.1], we employ an exponential form for the

functional term as ^(y,yt ) = expl^} in the scalar case as we are only considering

a single CM parameter in the form of the overall vibration level. The Weibull 

distribution is often used in survival analysis applications and is a suitable choice for 

the baseline hazard rate because of its adaptability. The hazard rate for a Weibull 

PHM incorporating an exponential function of the covariates is

h(tt ,yt) = -- explj/j,.} [7.1]

where, ft is the shape parameter, 77 is the scale parameter and /?, 77 > 0 .

7.3.2 Parameter estimation

In the case study explored in this chapter, there are no suspensions contained in the

data. For cases such as this, we consider m independent lifetimes (Tj,Y_j) where

j = 1, 2,..., m and Y- is the monitoring history for component j. Now, denoting 

y As) as an approximate continuous sample path for the discrete observations, the 

likelihood function given by equation [6.12] becomes
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7=1

From equation [7.1], the hazard at the failure or suspension of theyth component is 

h(T- (T = itllf'1^ (T

and R(Tj,Y_j~) is given by equations [6.13] and [6.14]. The likelihood expression

must be evaluated numerically and taking logarithms can ease this process. Using 

equation [7.2], the log-likelihood function is

7=1

[7.3]
where, from equation [6.14], the cumulative hazard at the failure time of they'th 

unit, Tj, is approximately

( V \ 
•rA "V 0 I S |U^T^yATj)) = > -~ exP{X-^/(f/"* F7 41J J J t—t J r7 n ^ ' j_i ,, 'l\'l/«=i y. , . * \ ' s\ J> d-1 /

where, Ajd is the dth state of the discretised covariate process y j (f) and Vjd is the

time of the dth transition. Expanding the log-likelihood, re-arranging and inserting 

the expression for the cumulative hazard gives

m 1j
V A . i f-l _ _ H

[7.5]
7 = 1 d=l

Vlok et al (2002) recommend the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi- 

Newton method for maximisation of the log-likelihood function given by equation 

[7.5], another possibility is the Davidon-Fletcher-Powell update. The log-likelihood 

function can also be used to estimate the variance-covariance matrix that in turn can 

be used to estimate the standard errors of the parameter estimates. As noted
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previously, the reliability function given by equation [6.2] can be expressed as 

R(t,y) = Qxp{-U(t,y)} where, U(t,y) is the cumulative hazard. If the Weibull PHM 

is the correct choice of model for the system, the cumulative hazard at the termination 

points of the sample data should follow an exponential distribution, i.e. U(Tj) are the

model fit residuals. See Vlok et al (2002) and associated references for details on 

assessing the model fit. Major indicators that the model is appropriate for the data are 

the mean time to failure (MTTF) at the start of the second phase with a vibration 

reading in the first covariate bracket, the MTTF should be close to the mean failure 

time for the component histories that are used to estimate the parameters, also, the fit 

residuals obtained at each CM point when attempting to predict the failure time will 

give us some measure of the accuracy when compared with other models.

7.3.3 The conditional failure time distribution

Using equations [6.20], [6.22] and [6.26] for a Weibull baseline hazard and 

exponential function of the CM covariates, the conditional failure time distribution 

can be established for this case as

-(tt

[7.6] 

for Xj = u(o, (u = 1,2, 3,..).
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7.4 The stochastic filter

7.4.1 The probability distributions

As noted in chapter 6, the CM information is assumed to be a random vector, or 

variable in the scalar case, that is a function of the residual delay time with random 

noise. There are many ways to model this relationship but the set-up proposed in this 

chapter is simple and works well. Modelling the impact of the residual delay time on 

the CM parameter reading and recognising the lack of impact on the delay-time from 

the CM information is definitely appropriate when considering the vibration level of a 

component and forms the key difference between the two approaches compared here. 

In the PHM case, covariates of any kind are seen to influence the hazard or failure 

rate. For the case study in this chapter, both p(yi \ xt ) and />o(*o) are taken to be 

Weibull distributions as

[7.7]

[7 . 8]

The scale parameter in p0(*o) is taken to be a, whereas in the case of the PHM we use 

the equivalent I/a as this simplifies the PHM parameter estimation process, see Vlok 

et al (2002). The following set-up is used to establish a relationship between yt and xt 

in equation [7.8];

p = \l(A + Be~CXi ) [7.9]

The set-up given in equation [7.9] enables the relationship E(yt \xi ) oc A + Be~Cxt 

that produces a negative correlation between yt and x, as required. See Wang (2002) 

for details on the selection of appropriate distributional forms.

7.4.2 Parameter estimation

We initially consider the estimation of the parameters of the Weibull initial delay-time
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distribution p0(xQ'), given by equation [7.7], using the lifetimes of m observed 
components. The likelihood function is

a \n n • ( __. \tf \

[7.10]j=\

and the log-likelihood function is

lit in/(a, P) = m log p + mp log « + (/?-!)£ log Xjo - a^ £ xj0fl [7.11]
/=i 7=1

Now we consider the estimation of the parameters of p(yi \xi ), given by equation

[7.8]. To establish the likelihood function and develop closed-form analytical 
solutions for the filtering equations, we define the function

yj,__

*^ [? ' 12] 

From equation [6.32] the probability of observing the vibration reading yt at time /,,
given the prior monitoring history, can be established as

h=l

j_a.
(A du

up~i e~(au) du
i = \

[7.13]
Using equation [6.35], the likelihood function for Weibull p(yt \ *,) is

) [7.14]
/=! 7=1
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Taking the natural logarithm of both sides of the likelihood function gives

, B, C, 77) = logCa (P - 1) log(r,) - (aTj f + nj logfa) + X (n ~
i=l

,,

[7.15]

and given that a, /3 and Tj are known, some of the terms are not required for 

maximisation with respect to the parameters A, B, C and 77.

7.4.3 The conditional failure time distribution

Using equations [6.30] - [6.33], the conditional residual delay-time distribution at

time tt can be derived as

/>,(*,!!,) =
h=\

[7.16]

using the function given in equation [7.12].

7.5 Results

We consider two separate cases for comparing the performance of the proportional 

hazards model and the probabilistic filtering approach; case 1 is a comparison of the 

models fit to all six of the available component life histories and in case 2, three of the 

bearings are used for estimation purposes as a training set and the remaining three are 

used to test the prediction ability of the two techniques when the models are 

effectively applied to new data. To compare the models we use the MSB criterion
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given by equations [6.52] and [6.53] for the filter and the PHM respectively. As 

discussed in chapter 6, the replacement policy given by equation [6.56] is used to 

compare the decisions produced by the models at each stage of the monitoring process 

where the time of origin of the defective phase of the components life is added to the 

denominator. Cost values are obtained from Wang (2002) and are CF = £6000 for the 

average failure cost and CP = £2000 for a preventive replacement.

7.5.1 Case 1

7.5.1.1 The proportional hazards model

In both cases, the individual rates of transition between states Aab are assumed to be

homogenous. In order to discretise the Markov process, we assign ranges of the

vibration signal to discrete covariate states as given in table 7.1

State Vibration Level Value

1 5-10 7.5
2 10-15 12.5
3 15-20 17.5
4 20 + 25

Table 7.1 - Covariate bandings for the PHM

Although the actual vibration reading at the time of failure is unknown, it is assumed 

to be the same as at the last available monitoring point. As such, a final measurement 

is created at Vjq =T.-. Table 7.2 documents the time that each component spent in

normal operation and the time the vibration level spent within the specified discrete 

covariate states after the initiation of a defect.

166



y=i
State Durat

Norm 88.5
1 19.5

4 10

2

State Durat

Norm 74.25

1 54.75
2 16.5
4 10

3

State Durat

Norm 79.5
1 22.5

2 3
4 10

4

State Durat

Norm 149.3
1 66.25
2 24.5

5

State Durat

Norm 119.3

1 136.8

2 24.5
3 10

6

State Durat

Norm 904
1 24

2 36
3 10
4 10

Table 7.2 - The duration that the vibration reading spends in particular covariate states for

each component

Using the likelihood function given by equation [7.5] and Matlab® v6.5 function 

'finincon' from the optimisation toolbox, the following parameter estimates are 

obtained for case 1.

Parameter Estimate

P

7

2.0857

0.2565

707.2768

Table 7.3 - The estimated parameters for the PHM, case 1

The transition probabilities can be defined over an interval at using equations [6.10] 

and [6.11]. For a given state a, the total amount of time spent in state a during the 

lifetime of all six bearings is shown by W(d) in table 7.4.

a

0

1

2

3

4

W(a)

1414.75

323.75

104.5

20

40

Table 7.4- The total time spent in each state over all bearings
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Using equation [6.9] and the numbers of transitions between the discrete states of the 

covariate vibration process, the matrix of transition rates is given in table 7.5.

1234

1

2

3

4

5/323.75 0 1/323.75 
0 - 2/104.5 2/104.5 
0 0 - 1/20 
000-

Table 7.5 — The matrix of transitions rates

The conditional failure time distribution and mean time to failure (MTTF) can now be 

determined at each monitoring point to establish the fit of the proportional hazards 

model to all the available data. An approximation interval of co = 0.25 hours is used 

throughout both cases for the PHM element of this case study. When the critical level 

is breached, the average time remaining before failure for the six bearings is 81.375 

hours. For a vibration level within covariate state 1, the MTTF given by the model is 

approximately 80.11 hours. At the start of the second stage of the analysis, the 

distribution of the time remaining before failure is identical for all the components 

and is illustrated in figure 7.3. The MTTF obtained after 50 hours into the second 

stage is 69.32 hours (state 1), 32.62 hours (state 2), 19.52 hours (state 3) and 8.58 

hours (state 4).
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Figure 7.3 - Illustrating the conditional failure-time distribution obtained at time 0 hours for 

a vibration level within covariate band 1.

The MTTF after 150 hours into the second stage is 63.38 hours (state 1), 26.96 hours 

(state 2), 14.11 hours (state 3) and 4.57 hours (state 4). As expected, the distribution 

obtained at 150 hours (for any given state) has a reduced mean value when compared 

with the equivalent distribution obtained at time 50. The results of the MTTF and 

MSB loss function analysis are given for the PHM in table 7.6 for all monitoring 

points within the second-stage. 

Bearing 1

Time

80.5

96.5
108

118

Vibration
Level

4.0744

6.6828
27.9877

F

Actual Time
Remaining

-

21.5
10

MTTF
-

77.83
16.10

Variance
-

2225
139.7

MSB
-

5397.6
176.9

Replace in

—

18.5
0.25

Expected
Cost

-

18.62
18.82

Bearing 2

Time

68

80.5
92.5
104

Vibration
Level

4.6055

5.4781
5.8982
8.2242

Actual Time
Remaining

75
63

51.5

MTTF

78.30
75.33
72.92

Variance

2219.9
2238.5
2230.6

MSB

2230.7
2390.5
2689.3

Replace in

—

21
16
12

Expected
Cost

-

21.47
19.83
18.26
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116.5
129

145.5

155.5

8.4698
12.6383
29.5518

F

39
26.5

10

70.62
31.93
6.30

2205.7
511.3
32.9

3205.4
540.7
46.7

8.5
0.25
0.25

16.69
15.51
14.73

Bearing 3

Time
74
85
102
105

115

Vibration
Level

3.4853

5.3865
13.0421
23.7722

F

Actual Time
Remaining

30
13
10

MTTF

78.50
37.95
13.90

Variance
-

2217.4
555.1
116.1

MSB
-

4569.8
1177.3
131.3

Replace in

—
-

20.5
3

0.25

Expected
Cost

-

20.50
19.43
19.47

Bearing 4

Time

142

156.5
176.5
188
203

215.5
230
240

Vibration
Level

3.5474

5.1302
6.4198
6.1929
8.0022
12.549

13.9129
F

Actual Time
Remaining

-

83.5
63.5
52
37

24.5
10

MTTF
-

78.03
73.42
71.24
68.72
30.42
28.79

Variance

2222.9
2233.8
2213.9
2173.7
491.6
466.6

MSB
-

2252.9
2332.1
2383.9
3179.6
526.6
819.6

Replace in

—

14.25
7.75
5.25
2.75
0.25
0.25

Expected
Cost

-

12.13
11.13
10.54
9.82
9.30
8.72

Bearing 5

Time

106

132.5
142
154

173.5
183

197.5
209

222.5
245
256

Vibration 
Level

4.3209
5.3062
6.3926
7.6985
6.908
7.3993
7.8458
7.8588
8.4337
9.1468
10.5077

Actual Time 
Remaining

-

158
148.5
136.5
117

107.5
93

81.5
68

45.5
34.5

MTTF
-

76.50
76.35
71.97
68.64
67.19
65.15
63.65
61.99
59.45
24.17

Variance
-

2235
2237.7
2222.2
2172.1
2141.5
2090.5
2048.1
1997.1
1911.7
379.4

MSB
-

8877.6
7736.7
6387.1
4511

3766.3
2866.3
2366.9
2033.2
2106.1
486.1

Replace in

13.75
10.5
7.5

3.75
2.5

1
0.25
0.25
0.25
0.25

Expected 
Cost

-

14.29
13.61
12.75
11.46
10.90
10.12
9.37
8.99
8.17
7.86
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269.5 

280.5

290.5

13.9153 

19.6412

F

21 

10

23.31 

10.69

361.2 

86.6

366.6 

87.0

0.25 

0.25

7.47 

7.33

Bearing 6

Time

892
916
928
940
960
964
974

984

Vibration
Level

4.2867
8.3994
11.8194
11.8065
14.9804
16.6054
21.2831

F

Actual Time
Remaining

-

68
56
44
24
20
10

MTTF
-

76.81
37.57
34.99
31.75
18.08
6.40

Variance
-

2233.2
554.0
540.7
509.2
181.5
33.9

MSB
-

2310.7
893.5
621.9
569.2
185.2
46.9

Replace in

—
-

2.25
0.25
0.25
0.25
0.25
0.25

Expected
Cost

-

2.18
2.16
2.13
2.09
2.09
2.20

Table 7.6- Results of the MSE and replacement decision analysis for case 1 using the PHM

The total MSE about the actual residual life for the PHM is 80269.2 and per 

observation the average MSE is 2293.41 for 35 observations. The total variance 

about the MTTF given by the PHM is 48430.3 and per observation the average 

variance is 1383.7.

7.5.1.2 The stochastic filter

In the case of the stochastic filter we initially establish the delay-time distribution 

PO(XO). Upon defect detection and commencement of the second-stage, the failure 

(delay) times for the six bearings are 29.5, 81.25, 35.5, 90.75, 171.25 and 80 hours 

respectively. Using the log-likelihood function, given by equation [7.11], we obtain 

estimates of a = 0.0109 and J3 = 1.8691. The next task is the estimation of the 

parameters in the conditional density Kv/l*/) Siven by equation [7.8] and the 

relationship between the delay-time and the vibration level that was established by 

equation [7.9]. Using the log-likelihood function, equation [7.15], and Matlab® v6.5 

function 'fmincon' from the optimisation toolbox, the parameter estimates obtained
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from the total sample of 35 observations are given in table 7.7.

Parameter

A
B
C

n

Estimate

7.3893
29.9213
0.0632
4.7060

Table 7.7' -The parameter estimates for the filter, case 1

The results of the MTTF and loss function analysis under the stochastic filter with an 

approximation increment of 0.05 hours are given in the following tables for all 

monitoring points within the second stage of component life. 

Bearing 1

Time

80.5

96.5
108

118

Vibration
Level
4.0744

6.6828
27.9877

F

Actual Time
Remaining

-

21.5
10

MTTF
-

92.79
8.20

Variance
-

1578.8
11.1

MSB
-

6661.2
14.4

Replace in

—
-

36
0

Expected
Cost

-

16.07
18.54

Bearing 2

Time

68

80.5
92.5
104

116.5
129

145.5

155.5

Vibration
Level

4.6055

5.4781
5.8982
8.2242
8.4698
12.6383
29.5518

F

Actual Time
Remaining

-

75
63

51.5
39

26.5
10

MTTF
-

96.19
94.91
84.57
73.52
30.84
6.78

Variance
-

1575.8
1388

1269.1
1109.2
56.1
8.7

MSB

2024.8
2406.1
2362.4
2300.8

74.9
19.1

Replace in

—
-

40.5
41.05
34.3
28.3
14.45

0

Expected
Cost

-

17.87
15.84
15.04
14.23
14.19
13.77

Bearing 3

Time

74

85

Vibration 
Level

3.4853

5.3865

Actual Time 
Remaining

-

30

MTTF
-

96.64

Variance

1582.2

MSB
-

6023.4

Replace in

-

40.35

Expected 
Cost

-

17.19
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102 

105

115

13.0421

23.7722

F

13 

10

29.83 

13.11

59.7 

11.9

342.8 

21.6

13.20 

3.60

17.83 

18.69

Bearing 4

Time

156.5
176.5
188
203

215.5
230

240

Vibration
Level

5.1302
6.4198
6.1929
8.0022
12.549

13.9129

F

Actual Time
Remaining

83.5
63.5
52
37

24.5
10

MTTF

96.18
89.40
88.26
77.65
32.09
20.17

Variance

1561.8
1330

1199.6
1066.2
62.4
35

MSB

1722.4
2000.6
2514.1
2718.3

120
161.2

Replace in

_
35.15
32.75
38.95
28.20
13.85
5.85

Expected
Cost

10.87
9.84
9.23
8.82
8.81
8.55

Bearing 5

Time
106

132.5
142
154

173.5
183

197.5
209

222.5
245
256

269.5
280.5

290.5

Vibration
Level
4.3209

5.3062
6.3926
7.6985
6.908
7.3993
7.8458
7.8588
8.4337
9.1468
10.5077
13.9153
19.6412

F

Actual Time
Remaining

-

158
148.5
136.5
117

107.5
93

81.5
68

45.5
34.5
21
10

MTTF
-

93.46
93.19
85.58
78.96
77.31
70.35
66.78
59.38
46.57
35.09
21.82
12.13

Variance
-

1504.2
1341.2
1227

1099.2
1000.5
889.7
802.7
672.4
460.7
147.9

37
17.2

MSB
-

5669.6
4400.1
3819.9
2546.4
1911.8
1402.6
1019.5
746.6
461.8
148.3
37.7
21.7

Replace in

—
-

35.05
37.50
33.25
28.35
29.20
25.40
24.15
20.70
12.90
11.65
5.30

0

Expected
Cost

-

12.52
11.54
10.97
10.16
9.63
9.14
8.72
8.34
7.86
7.55
7.33
7.13

Bearing 6

Time

892
916
928
940

Vibration
Level

4.2867
8.3994
11.8194
11.8065

Actual Time
Remaining

-

68

56
44

MTTF
-

80.94
34.18
25.36

Variance
-

1540
120.3

47

MSB
-

1707.4
596.3
394.3

Replace in

—
-

15.15
8.85
5.25

Expected
Cost

-

2.16
2.14
2.12
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960

964

974

984

14.9804

16.6054

21.2831

F

24

20

10

12.42

12.28

6.19

31.4

21.5

10.7

165.4

81.1

25.2

0

0

0

2.09

2.08

2.06

Table 7.8- Results of the MSE and replacement decision analysis for case 1 using the filter

The total MSE about the actual residual delay-time for the stochastic filter is 56643.8 

and per observation, the average MSE is 1618.4 over 35 observations. The total 

variance about the MTTF given by the filter is 24876.2 and per observation the 

average variance is approximately 710.7. Although the point predictions of residual 

life are often similar under the two approaches, it is clear from the MSE comparison 

that the distribution produced by the stochastic filter provides a substantially better fit 

to the data. This is reflected in the relevant replacement decisions where the more 

dispersed curve of the PHM produces an optimal replacement time that is invariably 

sooner and more expensive than that obtained with the filter. The reasoning for this is 

the lack of confidence in the conditional distribution represented by a flatter curve 

over a much longer range than the filter. As a result, the cumulative probabilities in 

the PHM case rise steadily from the start of the projection interval and affect the 

replacement decisions. However, in the filtering case the distribution is much tighter 

in range. The conditional probability distributions obtained using both the 

proportional hazards model and the stochastic filtering approach are illustrated for 

case 1, bearings 2 and 6 at each condition monitoring point.
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130 
Component Age (hrs) 105

80

100 
Residual delay-time (hrs)

Figure 7.4- Illustrating the conditional density p,(x,\yi) obtained using the proportional 
hazards model at each monitoring point for bearing 2.

130 

Component Age (hrs) 1 ^5

200
150

100
Residual delay-time (hrs)

Figure 7.5 - Illustrating the conditional density pj(Xj\Yj) obtained using the stochastic filter 
at each monitoring point for bearing 2.
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Figure 7.6 - Illustrating the conditional density p((x^>) obtained using the proportional 

hazards model at each monitoring point for bearing 6.

Component Age (hrs)
Residual delay-time (hrs)

Figure 7.7 - Illustrating the conditional density p^x^Y,) obtained using the stochastic filter 

at each monitoring point for bearing 6.

176



7.5.2 Case 2

For case 2, the vibration information from bearings 1, 4 and 6 is used to estimate the 

required parameters for both models and the fit of the model is established in the same 

manner as case 1. The model is then applied to the remaining bearings (2, 3 and 5) to 

evaluate how each model handles the new data.

7.5.2.1 The proportional hazards model

The parameter estimates for case 2 are given in table 7.9 and the matrix of transition

rates in table 7.10.

Parameter Estimate

/? 2.2738

Y 0.1935

77 306.1257

Table 7.9- The estimated parameters for the PHM, case 1

1
2
3
4

1

-

0
0
0

2

2/109.75

0
0

3

0
1/60.5

-

0

4

1/109.75
0

1/10
-

Table 7.10- The matrix of transition rates for the PHM, case 1

When the critical level is breached and the second stage begins, the average time 

remaining before failure for bearings 1, 4 and 6 is 66.75 hours. With a vibration level 

within covariate state 1, the MTTF given by the model is 67.68 hours. The results of 

the PHM; MTTF and MSB analysis for case 2 are given tables 7.11 and 7.12 for the 

model fit data and new data respectively.
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Bearing 1

Time

80.5

96.5
108

118

Vibration
Level

4.0744

6.6828
27.9877

F

Actual Time
Remaining

-

21.5
10

MTTF

63.81
18.06

Variance
-

1237.7
156.5

MSE
-

3027.9
221.4

Replace in

_
-

14
0.25

Expected
Cost

-

19.20
18.74

Bearing 4

Time
142

156.5
176.5
188
203

215.5
230
240

Vibration
Level

3.5474

5.1302
6.4198
6.1929
8.0022
12.549

13.9129

F

Actual Time
Remaining

-

83.5
63.5
52
37

24.5
10

MTTF
-

64.15
56.22
52.53
48.39
33.58
30.34

Variance

1237.9
1187.6
1133.7
1054.4
602.5
530

MSE
-

1612.2
1240.6
1134

1184.2
684.9
943.8

Replace in

—
-

10.50
2.50
0.25
0.25
0.25
0.25

Expected
Cost

-

12.34
11.29
10.64
9.86
9.33
8.75

Bearing 6

Time

892
916
928
940
960
964
974

984

Vibration
Level

4.2867
8.3994
11.8194
11.8065
14.9804
16.6054
21.2831

F

Actual Time
Remaining

68
56
44
24
20
10

MTTF
-

62.05
46.90
42.36
36.21
12.63
6.42

Variance
-

1234
830.9
769.3
656.7
80.3
33.4

MSE
-

1269.4
913.7
772

806.7
134.6
46.2

Replace in

—
-

0.25
0.25
0.25
0.25
0.25
0.25

Expected
Cost

-

2.18
2.16
2.13
2.09
2.11
2.20

Table 7.11 - The results for case 2 of the MSE and replacement decision analysis for the 
components used for model fitting under the PHM

Bearings 2, 3 and 5 are used to test the prediction ability of the model when applied to 

new data and the results are given in table 7.12.
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Bearing 2

Time

68

80.5
92.5
104

116.5
129

145.5

155.5

Vibration
Level

4.6055

5.4781
5.8982
8.2242
8.4698
12.6383
29.5518

F

Actual Time
Remaining

-

75
63

51.5
39

26.5
10

MTTF
-

64.62
59.51
55.37
51.51
36.56

6.3

Variance
-

1237.8
1220.1
1176.8
1115.8
664.6
32.3

MSE
-

1345.6
1232.2
1191.8
1272.2
765.6

46

Replace in

__

-

16.5
10

5.25
2

0.25
0.25

Expected
Cost

22.23
20.64
18.92
17.11
15.55
14.71

Bearing 3

Time

74

85
102
105

115

Vibration
Level

3.4853

5.3865
13.0421
23.7722

F

Actual Time
Remaining

-

30
13
10

MTTF

64.97
47.52
15.42

Variance
-

1237.5
837.8
129.9

MSE
-

2466.2
2029.7
159.3

Replace in

—
-

16.5
4.75
0.25

Expected
Cost

21.16
19.42
19.38

Bearing 5

Time
106

132.5
142
154

173.5
183

197.5
209

222.5
245

256
269.5
280.5

290.5

Vibration
Level

4.3209

5.3062
6.3926
7.6985
6.908

7.3993
7.8458
7.8588
8.4337
9.1468
10.5077
13.9153
19.6412

F

Actual Time
Remaining

-

158
148.5
136.5
117

107.5
93

81.5
68

45.5
34.5
21
10

MTTF

61.52
57.82
53.76
48.26
45.96
42.81
40.59
38.22
34.79
21.50
19.98
6.17

Variance
-

1231.9
1205.3
1153.6
1051.7
1000.4
923.9
866.2
802.6
707.2
321.6
286.2

27

MSE
-

10539
9429

7999.7
5776.5
4787.6
3442.5
2540.1
1689.2
821.9
490.5
287.3
41.6

Replace in

—
-

9
5

1.75
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25

Expected
Cost

14.64
13.92
12.96
11.53
10.94
10.14
9.59
9.02
8.20
7.92
7.54
7.50

Table 7.12 - The results for case 2 of the MSE and replacement decision analysis for the new
components under the PHM
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Considering the fit of the PHM developed for case 2, when the model is applied to the 

data used to establish the parameters (bearings 1, 4 and 6), the total MSB is 13991.6 

with a total variance about the mean estimates of 10744.9. When investigating the 

application of the PHM to new data (bearings 2, 3 and 5) we obtain a total MSB of 

58353.5 and a total variance of 17230.2.

7.5.2.2 The stochastic filter

The failure times for bearings 1, 4 and 6 are 29.5, 90.75 and 80 hours respectively and 

estimating the parameters of the density p(x0) we obtain a = 0.0133 and /?= 2.925. 

The estimated parameters for p(yt \ xt ) are given in table 7.13.

Parameter Estimate

A 
B 
C

7.6566
25.2323
0.0555
3.9743

Table 7.13 — The parameter estimates for the filter, case 1

The results of the MTTF and MSB analysis under the stochastic filter are given for 
case 2 in the following tables where bearings 1, 4 and 6 are used to ascertain the fit of 
the model to existing data. 
Bearing 1

Time

80.5

96.5
108

118

Vibration
Level

4.0744

6.6828
27.9877

F

Actual Time
Remaining

-

21.5
10

MTTF
-

69.09
8.64

Variance
-

454.6
16.3

MSB

2719.5
18.1

Replace in

—

31.8
0

Expected
Cost

-

16.49
18.55

Bearing 4

Time

142

Vibration 
Level

3.5474

Actual Time 
Remaining

-
MTTF

-
Variance

-
MSB

-

Replace in

-

Expected 

Cost
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156.5
176.5
188
203

215.5
230

240

5.1302
6.4198
6.1929
8.0022
12.549

13.9129

F

83.5
63.5
52
37

24.5
10

71.28
61.37
58.44
50.15
33.02
20.99

450.4
340.8
279.6
224
97.5
53.1

599.7
345.3
321.1
396.8
170.1
173.8

30.55
25.05
24.85
19.65

11
2.70

11.08
10.19
9.60
9.14
8.95
8.66

Bearing 6

Time

892
916
928
940
960
964
974
984

Vibration
Level
4.2867
8.3994
11.8194
11.8065
14.9804
16.6054
21.2831

F

Actual Time
Remaining

-

68
56
44
24
20
10

MTTF

62.32
40.57
29.96
15.50
14.04
7.21

Variance
-

442
200.5
100.3
51.6
32.9
15.9

MSE
-

474.3
438.5
297.4
123.8
68.4
23.7

Replace in

_

13.50
8.05
3.95

0
0
0

Expected
Cost

-

2.16
2.14
2.12
2.08
2.08
2.06

Table 7.14 — The results for case 2 of the MSE and replacement decision analysis for the 

components used for model fitting under the filter

Bearings 2, 3 and 5 are used to test the model when applied to new data. 

Bearing 2

Time

68

80.5
92.5
104

116.5
129

145.5

155.5

Vibration
Level

4.6055

5.4781
5.8982
8.2242
8.4698
12.6383
29.5518

F

Actual Time
Remaining

-

75
63

51.5
39

26.5
10

MTTF
-

71.67
67.70
60.03
52.23
33.43
6.54

Variance
-

455.6
365.4
302.6
247.1
99.6
12.2

MSE
-

466.7
387.5
375.3
422.1
147.6
24.1

Replace in

—
-

35.25
33.70
28.70
23.45
13.15

0

Expected
Cost

-

18.48
16.65
15.65
14.73
14.38
13.80

Bearing 3

Time

74

Vibration 
Level

3.4853

Actual Time 
Remaining

-
MTTF

-
Variance

-
MSE

Replace in

-

Expected 
Cost

-
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85

102

105

115

5.3865

13.0421

23.7722

F

30

13

10

72.23

36.18

13.85

458.2

146

20.6

2241.9

683.1

35.5

35.35

14.15

2.05

17.72

17.80

18.92

Bearing 5

Time

106

132.5
142
154

173.5
183

197.5
209

222.5
245
256

269.5
280.5

290.5

Vibration

Level

4.3209

5.3062
6.3926
7.6985
6.908
7.3993

7.8458
7.8588
8.4337

9.1468

10.5077
13.9153
19.6412

F

Actual Time
Remaining

-

158
148.5
136.5
117

107.5
93

81.5
68

45.5
34.5
21
10

MTTF
-

67.37
65.43
58.82
49.39
47.71
41.63
38.49
33.56
23.39
21.81
15.38
8.82

Variance
-

427.3
343.6
284.8
235.6
197.7
165.4
142.2
121.2
103.5
80.4
49.6
23.1

MSE
-

8641.1
7244.1
6319.1
4806.9
3772

2804.5
1992.4
1307

592.4
241.5
81.2
24.4

Replace in

—
-

28.85
30.10
26.35
18.80
19.10
14.70
12.90
9.25

0
0
0
0

Expected
Cost

-

12.93
12.00
11.37
10.63
10.09
9.58
9.15
8.75
8.17
7.81
7.43
7.15

Table 7.15-The results for case 2 of the MSE and replacement decision analysis for

components under the filter

the new

Considering the fit of the stochastic filter when the model is applied to the data used 

to establish the parameters (bearings 1,4 and 6), the total MSE is 6170.5 with a total 

variance about the mean estimates of 2759.5. When investigating the application of 

the filter to new data (bearings 2, 3 and 5) we obtain a total MSE of 42610.4 and a 

total variance of 4281.7. In the comparison provided by case 2, the same behaviour 

and results are observed as those seen for case 1 with the stochastic filter 

outperforming the PHM with regards to the both the fit of the models to the existing 

data and the application of the models to new data. The total MSE and the variance 

about the mean both demonstrate that for this particular case the stochastic filter gives
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a tighter distribution about both the mean and the actual residual life. The 

replacement policy follows the same pattern as case 1 with the PHM producing much 

more conservative replacement decisions due to the uncertainty observed in the 

conditional density. In the following section, some of the reasons why the recursive 

filtering approach fits the data better in the cases studied here are discussed.

7.6 Discussion

In this chapter, we explored two cases using the vibration level data observed from six 

bearings; the first case exploring the fit of both models to all given data and the 

second examining the ability of the models to adapt to new input when only some of 

the available data is used to construct the actual model. Using both techniques we 

look to obtain an expression for the conditional distribution for the residual life at CM 

points throughout the life of a component. Confident predictions at all stages of the 

defective phase of component life are important however, one might argue that in 

practical on-line scenarios, a confident prediction in the later stages of component life 

(given reasonably spaced monitoring intervals) is indeed more important from the 

point of view of failure prevention than in the initial stages of defective operation, 

although admittedly this is a problem-specific issue. From figures 7.6 and 7.7 

illustrating the evolution of the conditional density for case 1, and figures 7.8 and 7.9, 

it is clear that for this case, the distribution obtained using the PHM is typically flatter 

indicating a greater variance or reduced confidence in the actual estimate of expected 

residual life.
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Figure 7.8 -A single stage comparison of the conditional density obtained using the PHM 

and the stochastic filter for bearing 2, CM checkpoint 4.

This is particularly evident in figure 7.9 where the probability associated with the 

mode of the stochastic filters conditional distribution is literally three times that of the 

PHM;

7.00E-02 

6.00E-02 -

5.00E-02 - 
.§•

1 4.00E-02
o
£ 3.00E-02

2.00E-02 

1.00E-02 - 

O.OOE+00
20 40 60 80 100 120 

Residual Life (hours)

140

Figure 7.9 -A single stage comparison of the conditional density obtained using the PHM 

and the stochastic filter for bearing 6, CM checkpoint 3.

The MTTF and MSB analysis for case 1 confirm the situation observed in the 

diagrams where, although point predictions from the two techniques are similar, the 

filtering approach offers increased confidence in the predictions than the PHM. A
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model that fits existing data well but is poor when applied to new data has little merit 

from an application perspective. This was the focus of case 2 where again the 

filtering approach provided a substantially better fit from an MSB perspective when 

applied to both the data used to construct the model and new data. As discussed in the 

case study, the flatter more dispersed curve of the PHM naturally leads to a more 

cautious replacement decision than the sharp, tight curve of the stochastic filter. This 

is because the probability of component failure before a particular instant is likely to 

be greater with the PHM, particularly in the early stages of monitoring. In addition to 

this, the PHM decisions tend to have a larger associated expected cost per unit time in 

both cases. Therefore, for the particular case studies investigated in this chapter, the 

decision model constructed around the PHM leads to less operational availability than 

the filtering model and at a greater expected cost. It is interesting to note that, when 

comparing the results from the two cases, the overall fit of the stochastic filter when 

applied to all the data used in case 2 is better than the fit of the filter to case 1 with 

less than half the data used for estimation. Clearly, the outlying case of bearing 5 has 

a greater than desired impact on parameter estimation and when excluded from the 

estimation and model fitting altogether, the fit of the stochastic filter to all the 

remaining data is much improved.

However, the key observation to be drawn from the research in this chapter pertains to 

the differing shapes of the conditional distributions produced by the two techniques. 

Greater variance in the PHM curve indicates a greater level of uncertainty in the 

expected residual life prediction. This could be attributable to the lack of monitoring 

history included in the model at each stage of the process with only the monitoring 

time and the current CM reading featuring in the conditional mean of the density and 

the true underlying value. In addition, the violation of the relationship between the
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observed information and the residual life makes the PHM appear inferior to the 

stochastic filter in a vibration monitoring context, particularly when considering the 

uncertainty observed in the conditional density. However, it is important to note that 

a conclusive comparison and definition of the stochastic filter as a more efficient 

estimator for vibration monitoring applications would be dependent on both a greater 

number of cases and larger sample sizes. We should also mention that there are also a 

number of ways in which both techniques could be further tailored to the particular 

cases described in this chapter.
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Chapter 8. A case comparison of the PHM and a stochastic filter for 
CBM applications using multiple oil-based condition monitoring 
parameters

8.1 Introduction

In this chapter, we continue the comparison of the proportional hazards model (PHM) 

and the probabilistic stochastic filtering approach that we introduced in the previous 

chapter. In the case study in chapter 7, both models were developed to consider the 

overall vibration level as a single indicator of a unit's condition. In this study we are 

investigating and comparing the prediction capabilities of the two approaches using 

multi-dimensional oil-based CM data. The information obtained from oil analyses 

will typically consist of the associated concentrations of worn metals and a number of 

different contaminants in an oil sample that are often called condition indicators. This 

means that when considering oil data, both models should be constructed to handle 

multiple parameters obtained simultaneously at CM points as described in chapter 6. 

As with the vibration information in the previous chapter, we assume that a stochastic 

relationship exists between the monitored information and the actual condition of the 

unit. Note that, in this chapter, a single piece or part of equipment that is subject to 

condition monitoring (CM), will be referred to as a 'unit' and not a 'component', in 

order to differentiate between equipment and the principle components established 

using PCA for data reduction purposes. The probabilistic filtering model, originally 

developed in Wang & Christer (2000) for vibration information, assumes the observed 

CM information be a function of the underlying residual life and this relationship is 

not assumed to hold in reverse. This assumption is appropriate in the case of 

vibration monitoring, as was discussed in length in chapter 7. However, when 

considering oil-based wear information, the standard assumption is that more wear
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metals means less residual life remains. This is due to the fact that oil-based 

monitoring is primarily designed for detecting wear related failures. Such wear is 

typically correlated with the underlying residual life in a negative manner, that is, 

more wear implies less residual life. On the other hand, the observed wear metals in 

the oil samples are good indicators of the underlying wear, that is, more wear results 

in more observed metals, but the relationship between them is complicated and 

requires a careful examination. On the one hand, observed metal concentrations are 

caused by the underlying wear, but these metal particles in the oil may also accelerate 

the wear process and generate more particles. It appears that the PHM may be a 

suitable candidate for this case since it treats the observed oil metal information as 

covariates that alter the hazard, and indeed the residual life. A recent development, 

Wang & Zhang (2002), used a concept called 'proportional residual', which adopted a 

recursive nature like the filtering approach, but assumed that the observed wear 

metals change the residual life. On a purely theoretical ground, we argue a simple but 

appropriate way to model the relationship between wear and observed wear metals is 

to treat these metal concentrations as random variables that are caused by the 

underlying wear. Due to the frequency of oil top up's and changes, the influence of 

metal particles in the oil on the wear process can be negligible as wear is directly 

related to the residual life, the same relationship exists between the wear metals and 

the residual life. This simplifies the relationship between the wear and the 

concentration of metallic contamination as we only need to model; wear caused 

observed metal particles. It is noted that the PHM uses a different modelling principle 

and when fitting the two models to the same data set, it is interesting to know which 

method provides a good fit. This is the aim of this investigation. An alternative is to
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use both modelling techniques in this situation but this approach will be discussed in 

future work.

The chapter is laid out as follows; firstly, we discuss in more depth the type of oil 

based CM data that we are using as the input to our models and the means by which 

the information might be obtained. Two case comparisons are then presented where 

significant principle components are used as the input to the models. In the filtering 

case, an alternative set-up is required to assist in establishing the relationship between 

each observed CM indicator or principle component and the underlying residual life 

of the unit. For the second case, we are required to address some of the issues 

associated with parameterising the models using censored CM histories with unknown 

failure times. At the end of the chapter, we discuss the respective merits of the two 

approaches for the particular cases considered.

8.2 Oil data

There are a variety of oil-based monitoring techniques that can be employed to 

ascertain the volume and type of foreign wear particles in an oil sample such as the 

spectrometric oil analysis program (SOAP), optical microscopy and ferrous debris 

quantification. Refer to chapter 5 for more details on oil-based monitoring. The 

cumulative metal concentrations obtained using SOAP will typically display a trend 

throughout the lifetime of the unit. This is in contrast to the information obtained 

using vibration monitoring, where the signal is usually flat and relatively stable in the 

initial stages of the unit's life and only begins to display an increasing trend upon the 

arrival of a defect. The foreign wear particles measured in SOAP are usually metallic 

elements that are measured in parts-per-million (ppm) and other contaminants. We 

note that the cumulative metal concentrations collected from SOAP, which is directly 

related to the wear process, usually display a naturally increasing process as the
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amount of wear cannot decrease. Figure 8.1 illustrates a typical oil-based wear 

measurement process over time.

3
3a>e

a
.0

f

Time
Figure 8.1 - Illustrating the cumulative wear metal process for a typical oil-based

condition monitoring measure

When utilising oil-based information and considering the typical wear patterns that 

we observe, we may (as is demonstrated in the stochastic filtering element of this 

chapter) choose to model the incremental cumulative wear process; i.e. model the 

level of total wear that is accrued over the interval between monitoring points in order 

to provide more information on the evolution of the wear process. In cases where 

irregular CM is employed, the prediction of wear over a particular increment should 

reflect the duration of that increment. For the case studies explored in this chapter, 

the issues of multiple (potentially correlated) indicators of condition and dimension 

reduction are addressed using principle components analysis, as discussed in chapter 

6. The CM vector y at time ti that is used directly as input into the models is a

vector of significant principle components obtained from the original oil-based 

information. The principle components are chosen based upon the variance and the p- 

values.
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8.3 Case study 1

8.3.1 Introduction

For this initial case, we only have a single history of multivariate CM data available to 

establish the models. To compare the performance of the PHM and the filter in terms 

of assessing the ability to estimate the residual life, we again employ the total MSB 

criterion given by equation [6.54] using equations [6.52] and [6.53] for the filter and 

PHM respectively.

8.3.2 The data

The data set under consideration consists of the parts per million (ppm) of 5 types of 

metallic contaminant in oil samples that are obtained at irregular CM points. The 

metallic elements in the set are iron (Fe), copper (Cu), aluminium (Al), chromium 

(Cr) and nickel (Ni). Figure 8.2 illustrates the data set applicable to the single history 

under consideration for parameter estimation purposes.

3000 -,

1164 1547
Time

Figure 8.2 - The CM history for the 5 metal elements in parts per million

Principal components analysis is applied to reduce the dimensionality of the condition 

information and to remove any collinearity. Only the first principle component was
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found to be significant and is illustrated in figure 8.3. As is evident from figures 8.2 

and 8.3, the first element iron dominates the principal component.

2400
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Figure 8.3 - The observed first principal component history

8.3.3 The proportional hazards model

When using the approximated Markov process to predict the future covariate state, we 

discretise the potential state-space for the CM parameter in question. The 

discretisation process is designed to approximate and enable efficient computation of 

the probabilities associated with particular transitions over the range of the parameters 

state-space and is necessary as there is not a continuous Markov model available for 

this case. However, even with the reduction in the number of potential states, the 

number of state combinations grows exponentially with the number of covariates 

included in the PHM and naturally this can lead to excessive computation and over 

fitting. Another issue is the potential collinearity between the covariates. 

As discussed in chapter 6, some covariates are likely to be highly correlated in a CM 

context and this would result in inaccurate estimation of the remaining model 

parameters. The issues discussed are the reasons that, in the context of proportional 

hazards modelling, some CM scenarios with multiple information parameters may
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require a means by which the removal of collinearity and data reduction can be 

achieved. As discussed in chapter 6, the technique of principle components analysis 

is appropriate for a problem of this nature. Lin et al (2002) state that the PCA 

approach is useful when combined with proportional hazards modelling, particularly 

when there is a large amount of correlation between the covariates, and when the 

number of covariates exceeds the number of histories used to estimate the parameters 

of the PHM. The approach we are utilising involves treating the significant principle 

components as actual covariates, discretising their respective ranges and inserting 

them directly into the parameter estimation and prediction processes. 

Considering the fact that we only have a single significant principle component for 

this case, the PHM is identical to the model proposed in the previous chapter with the 

hazard given by equation [7.1] for a Weibull baseline hazard and exponential function 

of the single condition monitoring input. The conditional failure time distribution is 

given by equation [7.6] and defined at discrete intervals of duration CD. The only 

difference is that in this case, the condition input at the /'th monitoring point, yh is the 

first principle component obtained from the original observation vector z,. Table 8.1 

defines the ranges for the first principal component over which the discrete states are 

defined for the proportional hazards model. The table documents the mid-range value 

that is used as the covariate reading when the first principle component is within the 

appropriate range specified for the discrete state and the elapsed time that the unit 

spent in each state. Figure 8.4 illustrates the elapsed time and the transitions between 

the discretised states that are used for estimating the parameters of the PHM for this 

case. The failure time of the unit is 1722 hours and the transitions between states are 

assumed to occur at the mid-point between the relevant monitoring points.
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State PC range Mid-value Duration

1
2
3
4

(0, 600)
(600, 1200)
(1200, 1800)

1800+

300
900
1500
2100

223.5
168
97

1233.5

Table 8.1 - Documenting the ranges, values and elapsed times for the states of the PHM

S 2 
O

1 H

0 - —I—r—I—i—i i i—i—i i i i i i i—i—i—I—I—I—i—i—i—r—i—i i i i i I i i i—r—n
0 215 282 416 507 706 961 1192 1571 1722

Time 

Figure 8.4 - Illustrating the transitions between the discrete PHMcovariate states

Using equations [7.3] - [7.5] from the example given in the previous chapter, the 

likelihood function for a single unit history, m = 1, is

q 

d=\

where, y(i) is the approximate continuous-time sample path for the discretised states 

of the principle component and all other notation is consistent with the formulation in 

chapter 7. Using the Matlab0 optimisation algorithm 'frnincon', the parameter 

estimates obtained for the PHM are given in table 8.2. As we are only utilising a 

single unit history for model parameterisation in this initial trial case and the range of 

the input information is discretised for use in the PHM, the amount of information 

included in the estimation process is minimal. As a result, the sample size is too small 

to enable accurate determination of the covariance matrix as described in chapter 2.
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Parameter Estimate

P 26.7216

rj 3.51 xlO"

Y 0.2432

Table 8.2- The PHMparameter estimates

Using an approximation increment of co = 1 hour, the mean time until failure (MTTF) 

given by the PHM with the estimated parameters is 1721 hours. This expected 

residual life is very close to the failure time for the unit of 1722 hours. This result 

goes some way towards establishing the validity of the PHM and the estimated 

parameters for case 1 however we would expect the fit to be good with only a single 

data set being used for parameterisation.

8.3.4 The stochastic filter

As with the PHM, we are using the first principle component, yh (obtained from the 

original observation vector & at time /,-) as our direct CM input into the recursive 

stochastic filter. However, for reasons discussed in section 8.2, we choose to model 

the increment^ yt = yt -y^. The form of the recursive stochastic filter is given by 

equations [6.30] - [6.33] with Ayt replacing;;.. The initial residual life distribution 

po(x0) is taken to be Weibull with parameters a and ft as given by equation [7.7] 

forxQ >0. Given the fact that the first principle component is obtained from wear 

metals and considering an irregular monitoring process, the following relationship is 

appropriate when modelling the expected change in the first principle component 

between successive CM points;

(E[Ay, I *,] *
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The relationship given by equation [8.1] is a reflection of the age, the underlying 

residual life and the duration of the increment over which the change has been 

observed. The numerator in the first bracket enables the expected value to increase 

over time as the residual life xt decreases. This is countered to some extent (defined 

by the appropriate parameters) by the increasing denominator over time enabling the 

curve of expectation against time to level off as indicated by our data. The second 

bracket (tt -rM ) in equation [7.1] enables consideration of the fact that the expected 

wear over a particular interval should reflect the duration of that interval. One 

suggested distribution, that is subsequently utilised in the case study and maintains the 

required relationship between the condition information and the residual delay time, is 

a 2-parameter Weibull distribution given by

p(Ayt \xt ) = p^pjAye- [8.2] 

where, O; = ——————— - ——— - , which is essentially a 3 -parameter Weibull

distribution with >>M as the location parameter. Equation [8.2] enables the realisation 

of the relationship in expression [8.1] since we have E[4y, |x,]ocp. At the rth 

monitoring point the conditional residual life distribution is

n (x- \Y •) — ———————————————-—————— ra "?i
A \*1 \ L-i ) m j [6.3J

f/ ^ \5—1 —(a(u+t,)r 1—T a /• ^ \ j
\(U + tj) S I I <f>h (U, tj)UU 

0 h=\

for which we define the function

(C+Dth )Ayh ^

* + ,, -„>-')'
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For parameter estimation purposes, the likelihood function for this case is given by 

equation [6.34] for a single component history with Ayi replacing;;.. It is evident

from the derivation given in Appendix 1 that the likelihood function for this particular 

case with the chosen distributions is simply

Z= p(x0 = TjlrtAyi I (x, =T-tt )) [8.5]
/=!

As with previous likelihood functions, optimisation with respect to the parameters of 

interest is made easier by taking logarithms of the expression giving

f 
n

/=!

[8.6] 

From the unit history under investigation and analogous units, the average lifetime is

taken to be 1722+ 20% hours. As such, the parameters of the initial Weibull delay 

time distribution PO(XO) can be estimated separately using equation [7.10], for m = 1, 

as a = 0.0005692 and ft = 27.5 As has already been discussed, the incremental shift 

in the first principal component between monitoring points is used as the input to the 

filtering model and the estimation process. Re-scaling the incremental shifts to 

consider the duration over which the shift occurred, i.e. the time between successive 

monitoring points presents more information regarding the interpretation of the data 

when used as input to the stochastic filter. Figure 8.5 illustrates the proportional shifts 

in the first PC over time for n = 30 monitoring points.
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Figure 8.5 - Illustrating shifts in the first PC relative to the time between CM points

Using the Matlab® optimisation algorithm 'finincon', the parameter estimates 

obtained for the stochastic filter are given in table 8.3.

Parameter

a

P

A

B

C

b
77

Estimate

0.0005692

27.5

2.3487

1.3358

0.2672

0.0027

0.5787

Variance

3.447*10'9

3.063*103

0.431
1.22*104

0.072
1.33*10'6

5.564*10-3

Table 8.3 - The parameter estimates for the stochastic filter

8.3.5 Results

The performance of the two models when applied to the data set is now compared. 

Figures 8.6 and 8.7 illustrate the conditional failure time densities obtained at each 

monitoring point for the PHM and the filter respectively.
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Figure 8.6 - Illustrating the conditional densities obtained at each CM point using the

proportional hazards model
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Figure 8.7- Illustrating the conditional densities obtained at each CM point using the
stochastic filter
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There is not a significant difference between the proposed PHM and filter for this 

case, as is evident in figures 8.6 and 8.7. The total MSB over all available monitoring 

points is 185215.7 in the case of the PHM and the filter fairs marginally better with 

175173.5. Similarly, the associated replacement decisions and expected attributable 

costs are almost identical with the PHM decisions being marginally more 

conservative with a slightly larger average cost. This is due to the slight increase in 

variance observed when using the PHM. Applying a standard Weibull survival 

analysis with parameters a = 0.0005692 and 0 = 27.5, we obtain an MSB of 175203.9. 

The results for this case indicate that with a single history for model fitting, it is very 

difficult to establish a correlation between the CM information and the underlying 

residual life. This conclusion is supported by the fact that the filter offers only a slight 

improvement on the Weibull survival analysis and the PHM is in fact worse.

8.3.6 Further

The set-up proposed for the stochastic filter in equation [7.1] is designed to model an 

incremental mean wear process where a pattern similar to that illustrated in figure 8.8 

is expected.

I

time

Figure 8.8- Illustrating the expected incremental wear process over time

200



However, as is illustrated in figure 8.9, when using the actual incremental data and not 

the mean process, the observed pattern is less consistent.

time

Figure 8.9 - Illustrating the actual incremental wear process over time

Taking these fluctuations into consideration, the following transformation of the 

condition information is proposed creating a smoothed input to the stochastic filter;

§r_K^7j [8-7]

where, yr is the principal component at the rth monitoring point and the history of 

condition information is denoted by 6_ t = {0\,&2,—,6j] • #, could be described as the 

moving average rate of wear over an increment however, note that 9t does not equate 

to yt I tt . The following relationship is proposed between the transformed information 

and the underlying residual life;

ffff) I V 1 rv f ~' Ao~^X'^ li PS 81fj\t>i I Xj\ °C / (- S1K L"-"J

As with the relationship proposed for the previous filter, the information is 

incorporated in the filtering process through the specification of p(9i \ xt ) as

t8 - 9!

where, pi = tt / Ae~BXi/ti . Using the filtering equations [6.30] - [6.33], a closed-form 

expression is established for the rth iteration of the filter as
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P,(x, 12,) = -————————————&—————— [8.10]

0 h=\

for which we define the function

[8.11]

Using equation [6.34] and the same process of iterative reduction and cancellation, the 

likelihood function for parameter estimation is obtained as

[8.12] 

The log-likelihood function for this case is

/(«, p,A,B,Tj) = log(a P ft) + 08-1) log(r) - (aTf + n IQ&TJ) + rjj^ log _

[8.13]

The parameter estimates for the stochastic filter using the proposed transformation are 

obtained using the Matlab® algorithm 'fmincon' from the optimisation toolbox and 

are given in table 8.4.

Parameter Estimate Variance

a 0.0005692 3.447*1Q-9

P 27.5 3.063*103

A 5739.3 1.496*106

B 0.2446 1.21 *10'3

fl 1.0012 0.077 

Table 8.4 - The parameter estimates for the stochastic filter using the data transformation
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The conditional densities obtained at each monitoring point for this second stochastic 

filter are given in figure 8.10. Although, figures 8.7 and 8.10 for the two filtering 

models are very similar, the second model incorporating the transformation of the data 

as the CM input shows an improved performance when compared with the PHM and 

the first filtering model.

0 J 
1800

1200 
Age (hrs)

2000

0 0

1500 
1000 

500 Residual fife (hrs)

Figure 8.10 - Illustrating the conditional densities obtained at each CM point using the 
stochastic filter with the data transformation

The MSB of the conditional density observed at the first few CM points is marginally 

greater for the second filter however confidence in the mean estimate increases over 

time and the total MSB observed is 164799.8. This increased confidence is reflected 

in the replacement decisions and associated costs which are slightly less conservative 

at a reduced cost. However, any differences in the model fitting between the PHM 

and the two filtering models for this first simple case are negligible.
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8.4 Case study 2

For case 1, both the PHM and the two proposed filters naturally provided a decent fit 

to the data used to establish them as only a single units CM history was used for 

construction. In this case, we apply the original filter and the PHM to a data set 

consisting of multiple unit histories and compare the fit of the two models. The 

second filtering set-up proposed by equation [8.8] and [8.9] is not pursued further as it 

did not provide a substantial improvement in the first case and initial analysis for this 

second case did not prove favourable.

8.4.1 The data

The original data set for this second case consists of 25 unit histories. The histories 

include the CM readings attributable to the concentrations of foreign metal particles in 

oil samples as the unit ages. However, the actual failure times are not recorded which 

complicates the estimation process and the model fit comparison. We immediately 

dismiss one of the available histories due to a lack of CM information. Of the 

remaining 24 units, m = 12 are selected at random and utilised in establishing the 

models (units 1, 4, 6, 10, 12-14 and 18-22). The remaining 12 units are used to test 

the applicability of the established models to new data of the same type. PCA is again 

employed to remove any collinearity and reduce the dimensionality of the available 

data for input to the PHM and the filter. A Scree plot is given in figure 8.11 that 

illustrates the necessity for principle component retention.
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Figure 8.11 -A Scree plot of principle components 1-5

From figure 8.11, it is clear that the first principle component incorporates a 

substantial amount of the original information. As such, we disregard components 2-5 

and retain the first as

PC_1 = 0.953*Fe + 0.247*Cu + 0.136*A1 + 0.097*Cr + 0.049*Ni 

Figure 8.12 illustrates the first principle component for the 12 unit histories that are 

used to establish the models. Linear regression is used to streamline the estimation 

process when the data is left-censored.
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Figure 8.12 - The first principle component for units 1, 4, 6, 10, 12-14, 18-22

1SOO
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8.4.2 Parameter estimation

Using the stochastic filtering and PHM methodologies, we look to establish the 

conditional density pt (xt \ 7,) or />,(*. | ^respectively, where, xt is the residual life 

of the component at time tt . The functional form of the distributions used for this case 

are the same as those used in the first case and are given by equations [8.1] and [8.2] 

for the filter and the hazard for the PHM given by equation [7.1] for a single condition 

input. However, for reasons that we will now discuss, the parameter estimation 

process and the analysis of the adequacy of model fit are subject to modification for 

this case. When the exact failure times of the units used for parameterisation of the 

models are known, the estimation process is relatively straightforward for both 

techniques. The PHM uses the failure times, and the final CM readings upon failure, 

directly in the construction of the likelihood function. See equation [7.3] - [7.5] for 

the log-likelihood function. In the case of the stochastic filter, knowledge of the 

actual underlying residual life as xt =T-ti enables a convenient reduction in the 

complexity of the likelihood function for optimisation purposes. See the Appendix 

for details. However, as discussed in the introduction to this case, the actual failure 

times of the components are unknown. We only have information on the time of the 

final CM readings. As a result, we are forced to establish the models on the basis that 

the data is right-censored and that each component could in fact have continued 

operating for a substantial amount of time after the final CM point and simply was not 

monitored because of preventative reconditioning. For reasons that will become 

apparent, we firstly introduce the estimation of the intitial residual life distribution, as 

typically used in the filtering process, under the condition that the failure times are 

unknown. We attempt to establish an approximate range over which the m = 12 units
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used for estimation purposes are assumed to fail. The lower limit of this range is 

established as

L = mm{tjnj } [8.14] 

where, tjHj is the final CM time for theyth unit, for; = 1, 2, .... m. It is obvious that

all the units considered must fail sometime after L. The upper limit of the range for 

the unknown failure times is constructed as

U = m^{tjnj +2^j} [8.15]

where, \y t is established as

i~tjj-inj [8.16]
;=1

Now, taking ^ to represent the unknown parameters of P(XQ), the expression

IL P(XO", 4)4*0 [8.17]

is established for the chosen distributional form and maximised with respect to the 

unknown parameters and subject to the constraint that 90% of the distributions 

probability mass lies within the interval (L, U) . The constraint is used to represent 

the uncertainty in the actual failure times. For this case, a Weibull form is assumed 

for the initial residual life distribution as *0 ~ We(ar,/?) and the estimated parameters 

are given in table 8.5.

Parameter Estimate Variance

a 0.0008191 2.836xlO'7 

ft 2.43 9.856

Table 8.5 — The parameters of the residual life distribution p(xo)
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Figure 8.13 (below) illustrates the density p(x0) with 90% of the mass shaded between 

the two limits L and U.

o.oot

S-10
-4
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L = 269 *Q */=1806 

Figure 8.13- The initial residual life distribution p(x0)

8.4.2.1 The proportional hazards model - parameter estimation

The observable range of the first principle component is divided into discrete

covariate states as shown in table 8.6.

State Range Mid-range

1 0 < z < 750 375
2 750<z<1500 1125

3 1500 < z < 2250 1875
4 z > 2250 2800

Table 8.6- The discrete covariate states for the PHM

where, the mid-range is the covariate value adopted for input to the PHM whenever 

the reading for the first principle component falls within the designated interval. 

From the 12 unit histories used to parameterise the models, we obtain the discrete 

state transition rate matrix as shown in table 8.7.
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1
2

3

4

1

-

0

0

0

2

0.006739

-

0

0

3

0

0.003245

-

0

4

0

0

0.002731

-

Table 8.7 - The transition rate matrix for the PHM

Equation [6.12] gives the likelihood function for data sets that incorporate a mixture 

of complete and right-censored unit histories. When the monitoring process is 

suspended at some point for all the unit histories and the failure times are not 

recorded, the likelihood function becomes

-Wj.j.yjVjtj))
[8.18]

7=1

For this particular case, we have

7=1

7=1 d=\
[8.19]

However, we found that the value of the log-likelihood function increased indefinitely 

as y _> o and 77 -> oo . We therefore concluded that more information was required to 

obtain appropriate parameter estimates. Returning to the initial residual life 

distribution developed in the previous sub-section, we define

f = x0 = [8.20]

as a further input to the PHM estimation process. The likelihood function becomes

m ____
Z=^\h(f,yj (tjn '))R(tjn ,Y_j) [8.21]

7=1

where,
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j » = e [8.22]

and R(tJnj ,Yj) is unchanged from the formulation given by equations [6.13] and

[6.14]. Note that, upon failure for a given unit, we assume the discretised covariate to 

be in the same state as at the final monitoring point. The mean parameter estimates 

and their respective variances are given in table 8.8.

Parameter Estimate Variance

P 2.82 0.387
?/ 1084 3.869x10"
y 3.286 x 10 -5 9.452 x 10 '"

Table 8.8- The PHM parameter estimates for case 2 with right-censored histories

A likelihood profile was then undertaken to confirm the parameter estimates by fixing 

the parameters individually and performing line searches on the remaining parameter 

spaces.

8.4.2.2 The stochastic filter - parameter estimation

To parameterise the filtering model, the likelihood function for this particular case is

= P^yj' 1 Zjj-i )fy-i (*u-i > tji - O.M I £y,w > KX <**, ~ u " '* ' ^ } j=\(i=\ )
[8.23] 

where, the only modification from previous expressions is the final term which is the

conditional cdf for the residual life (rather than the pdf) and represents the uncertainty 

in the actual residual life at the final monitoring point due to the lack of failure time 

information. The only information available to guide the estimation process is the 

artificial limit [/established in expressions [8.15] and [8.16].
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z=n
7=1 V o

U-t

'=1

A 7?

(A + B(u + t lH -t lt rljn .

Maximising equation [8.24] with respect to the unknown parameter set, we obtain the 

parameter estimates given in table 8.9. The variance about the mean estimate is also 

stated for each parameter. Note that, the estimates of a and ft that parameterise the 

initial residual life distribution were given previously in table 8.5.

Parameter Estimate Variance

A 
B 
C

0.033

2.441

0.015

7.349 x 10 ~
7.023 

1.851 x 1Q-
D 3.531 x 10' 6 2.771 x lO' 11

0.739 2.249 x 10

Table 8.9- The estimated parameters for filter 1

Optimisation of the likelihood function given by equation [8.24] can be quite complex 

and in some situations solutions may not be attainable. Further alternatives to the 

problem of parameter estimation for the stochastic filter include the use of the 

minimum mean square error (MMSE) criterion however, for this particular example 

the likelihood function given by equation [8.24] proved to be sufficient and the 

MMSE criterion was not required.

8.4.3 Comparing the models

With the availability of the functional form of the conditional distribution 

Pji(Xjt I Yji) at the fth CM point for they'th unit and a known failure time, we can 

analyse and compare the fit of the two models using the MSB criterion of chapters 6

211



and 7 and case 1 of this chapter. However, as discussed in length in the previous two 

sub-sections, the failure times are not available for this case and we are required to 

use the approximate range constructed for all the failure times. We are assuming that 

the failure time for unity falls within the range Tf e (tjn , (/) where, tjn is the final

CM point for unity and the upper limit (/is defined by equation [8.15]. The criterion 

for model comparison employed here, involves the selection of the model that 

maximises the conditional probability of failure within the interval that starts 

immediately after the final CM point for the unit in question and ends at the 

approximate upper limit for all the units, U, as illustrated in figure 8.14.

V1 W ^ 

Figure 8.14 - Illustrating the failure interval of the conditional density

At the rth CM point for unity, the probability of failure within the prescribed interval 

is given by

[8.25]

The measure of comparison is simply the summation of the probability mass that is 

available at each CM point for all the units considered divided by the total number of 

CM points. For a given model, we have
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Total f (Model) = 7=1 /=i
[8.26]

and the most appropriate model for the particular case is then given by

ma\{Totalf(PHM), Total f (filter)} [8.27]

The advantage of this criterion is that the output from each model must be in the range 

%ji e (0,1) at any given monitoring point. This means that the quality of the

prediction is directly comparable across both the models that are under scrutiny and 

the various stages of the CM process for a given history. For most of the CM points 

considered, both models produced similar curve structures for the conditional residual 

life distribution. Figures 8.15-8.18 illustrate the conditional densities obtained using 

the filter and the PHM for units 5 and 16 from the new data set.

3000

CM time (hrs) 350 2000
1000

0 0
Residual life (hrs)

Figure 8.15 - Illustrating the conditional density obtained at each CM point for unit 5 using
the stochastic filter
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Figure 8.16 - Illustrating the conditional density obtained at each CM point for unit 5

using the PHM

0.5 -\

0
600

CM time (hrs) 300
3000

0 0

2000 

1000 Residual life (hrs)

Figure 8.17 - Illustrating the conditional density obtained at each CM point for unit 16

using the stochastic filter
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Figure 8.18 - Illustrating the conditional density obtained at each CM point for unit 16

using the stochastic filter

The filter and the PHM give very similar results for this second case in both the 

analysis of fit and when applying the models to new data. For the conditional residual 

life distribution developed using the filtering approach, the average probability mass 

falling within the desired range is 0.572. The PHM fairs slightly better with an 

average of 0.596. When applying the models to new data, the filter produces an 

average of 0.705 and the PHM produces 0.742. As with the first oil-based case, any 

differences between the models are negligible and as such, it is difficult to make any 

conclusive recommendations regarding model selection for this scenario.

8.5 Discussion

The objective of this chapter has been to demonstrate the use of the PHM and the 

stochastic filter for oil-based CM scenarios with multiple information parameters.
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The first case study illustrates the application of PCA as a technique for reducing the 

dimension of the CM information making estimation of the model parameters more 

efficient. In a practical scenario, both models would ideally require a greater number 

of unit histories for parameterisation purposes however, the case study does indicate 

how the models might perform in a scenario where limited monitoring information is 

available. Two different filtering set up's are compared with the PHM and the 

filtering formulations produced marginally better results for the first case. 

In the second case, multiple histories are available however, the data is both right and 

left-censored for some of the units and this produces problems for both model 

construction and testing. An alternative criterion is used to compare the models and 

the PHM produces slightly better results than those obtained using the filter. It is 

clear that the lack of exact failure time information has a bearing on the fitting of both 

models to the data with neither model providing a substantial improvement on results 

obtained using a standard Weibull survival analysis that does not utilise the CM 

information. Another reason for the lack of fit could be that there is not a sufficient 

level of correlation between the observed oil-based CM information and the 

underlying residual life of the components for the case considered. 

In terms of further research into the two models discussed in this chapter, it would be 

useful to develop a means of incorporating more variability in the failure time input to 

the PHM process to provide more flexibility in the resulting model when limited data 

is available for construction. With regard to the stochastic filtering approach, it is 

clear that the model formulation provides flexibility in the construction and as such, 

an alternative set-up could be considered to represent the relationship between the 

monitored information and the underlying residual life.
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Chapter 9. Further stochastic filtering options for condition-based 
maintenance applications

9.1 Introduction

In this chapter, we discuss some further stochastic filtering options for a discrete time 

CM observation process when the underlying system dynamics and relationships are 

non-linear. The techniques are proposed for situations when alternative 

approximations or sub-optimal approaches to the state estimation problem could 

prove useful. The most notable examples of this type of situation are as follows. 

Firstly, when an excessive number of components are under scrutiny and the 

necessary computational power is lacking to apply the probabilistic filter of chapters 

6, 7 and 8. Secondly, when the relationship between the observed information and 

the underlying state is not known precisely (possibly due to multiple potential failure 

modes) or can change over time. Initially, we consider linearisations of the non­ 

linear systems using Taylor expansions of the observation process to develop 

approximate filters for the residual life of a component. If appropriate distributional 

forms are selected and the relationship between the state and observation process is 

described effectively for a particular application, the probabilistic filtering 

framework used in chapters 6, 7 and 8 generally provides better estimates and is 

more flexible when compared with the techniques that we discuss in this chapter. 

This is due to the fact that there is no necessity for approximation when using the 

general non-linear probabilistic filter in either the treatment of the system and 

observation expressions or when establishing a closed form expression for the state 

estimation problem. However, it should be noted that there is a substantial amount 

of computation involved in recursively establishing the conditional density using the 

probabilistic filtering approach and numerical approximations are required to obtain
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solutions. We then discuss the potential for combining the output given by a number 

of candidate models when the underlying dynamics change over time or are 

unknown for the particular component being monitored and as such, a single 

definitive representation of the system is not available. As with the state estimation 

techniques explored in the previous two chapters, the state of a component/unit, for 

the problems discussed in this chapter, is defined as the residual life xt that remains 

before the component fails. At the rth CM point at time tt, the information vector y.

becomes available to refine estimates of xt and £ represents the CM history 

{y_,>y_2>--">y_} available until that point The update expression for the residual life 

between subsequent CM points is

*/=*M-('/-'M) [9-1] 

for Xj_i > /, -tf_i and is not defined otherwise. The relationship between y.andx, is

given by

y.=h(xi ,ti ,e i ) [9.2]

or is described using a probabilistic relationship as p(y_. \ *,) where ^ is the noise.

9.2 EKF's for CM applications with limited computational power

As discussed in chapter 2, there are a number of varieties of the extended Kalman 

filter (EKF) available in the literature on stochastic state estimation techniques. 

From a computational perspective, the Kaman filter for discrete time systems is a 

useful approach as it can be parameterised using just the first two moments. 

Efficient updating and prediction equations are easily established to obtain the 

parameters of the conditional distribution. Thus, it could potentially be a useful 

technique in a CBM context when a large number of components are monitored
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simultaneously. The Kalman filter can be derived within the framework of the 

general non-linear filter used in chapters 6, 7 and 8 when the system and observation 

dynamics evolve linearly and the model errors are assumed to be independent and 

follow 0-mean Gaussian white noise processes. However, in reality, these 

assumptions rarely hold. As noted briefly in the introduction, EKF's are designed to 

enable the application of the standard Kalman filtering methodology to a linearised 

version of the non-linear system in question. The linearisarion is achieved using 

Taylor expansions of the state and observation equations where, a typical EKF 

utilises the first term in the series and (as the name implies) the 2nd-order EKF also 

uses the second term. In this section, we introduce a semi-deterministic form of the 

EKF and then apply the principles to a CBM application where, the deterministic 

element is designed to facilitate the exact relationship between realisations of the 

actual underlying residual life at different CM points throughout the life of the 

component. We then illustrate the application of the model with a simulation-based 

example before discussing the potential for extending the modelling principles by 

incorporating the 2nd-order terms of the Taylor expansions.

9.2.1 A semi-deterministic extended Kalman filter (EKF)

Initially, we discuss the semi-deterministic EKF for a general deterministic vector 

state before applying and adapting the technique for a residual life estimation 

problem using vibration based CM information. The same principles will apply 

when using oil-based information with the only difference being the specification of 

the relationship between the current CM reading and the underlying residual life. 

The evolution of a general state vector x t is described by the non-linear function

x i+l = /(*,) + v/ [9.3]
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for a discrete time process where, for a deterministic relationship, v, is a 0- mean 

process with covariance matrix 0 and is henceforth removed from consideration. The 

relationship between the observed information vector and the underlying state at the 

zth discrete time point is described by the non-linear function

y_i = *(*,) + £,. [9.4]

where, the measurement errors are normally distributed as ^ ~ N(0, R,). Defining 

*/!/ = E(XJ | Yj) as the estimate of xt at time tf and X M\ ( = E(xM \ Y_ t ) as the one- 

step prediction of x_M at time /,-, the non-linear functions /and h are linearised as

(*,• -*#) [9.5] 

(x, - |;|M ) [9.6] 

Using these approximations, the state transition expression becomes

*/+i = /'(*#)*,+«, [9.7]

where, u t = /(x^)- f'(x^)x^. Similarly, the relationship between the observed 

information and the underlying state becomes

y, = *'(^,IM)^+«,-+W/ [9-8]

where, w t = A(x,. M ) - A'(i/|,-_i)^/|M • Applying the Kalman filtering process to the 

linearised system, the equation for updating the mean estimate of the state at the rth 

recursion of the filtering process is

= x^+kily.-h^^)] [9.9]

where, the gain function is

*, = P i\ i-ih'(x ili_l f(h'(x ili_l )P ili_l h'(x i{i_l ) T +R i rl [9.10]
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For a semi-deterministic version of the EKF, the one-step forecast for the mean state 

vector is simply

*«!/ = /'(*,|;) *,„+£, = /(*„,) [9.11]

using the original transition expression given by equation [9.3]. The covariance 

matrix is updated using

P,\* = £,M - WUM ) r ^U|M)£,MfcUM ) r + £r1 A'(*,,,-,)£|M [9.12] 

that can be written as

P-if = £,|M-M'(*(|M)^|M [9.13]

using the gain function given by equation [9.10]. Finally, the covariance is predicted 

using

£,+,„ = /'(*,,)£,|,/'(^)r [9.14]

This concludes the description of the semi-deterministic EKF algorithm for general 

discrete time state-vector and observation-vector processes. We now consider the 

application of the methodology to CBM applications using vibration information. As 

noted earlier, the application of the methodology would be identical when 

considering oil-based CM information with the only difference being the form of the 

function h.

9.2.2 A semi-deterministic EKF for residual life prediction using vibration 

monitoring information

We consider a single information parameter in the form of the overall vibration level 

of an individual monitored component. Modelling the transition in the underlying 

state between two successive monitoring points, from equation [9.1], we have

x = x ~(f ~ f

221



as the change in the residual life over the duration between the z'th and (/'+l)th CM 

point when we have xt > tM - t, . The relationship between the observed vibration 

parameter and the underlying residual life is described by the expression

yi = a + be~a' +et [9.15]

at the rth monitoring point where, et represents the measurement noise. A one-step 

prediction of the mean residual life is achieved using the current estimate *, / and the 

deterministic relationship given by equation [9.1] as

*i+i|i = *//-('«+!-'/) [9.16]

and due to the lack of uncertainty in equation [9.1], and the fact that f'(xiV ) = 1 for 

all /', the variance about the mean estimate remains as PM\ f = P^ until further 

information is obtained in the form of yM . Upon observing yt, the mean estimate of 

the underlying residual life is updated as

**/ =ill-i+k,(yl -a-be-<**-1 } [9.17] 

where, using equation [9.10], the gain function is

= w;(v.)
A'(Vi>^-.+*/ 

for /z'(£ ) = -bee'"*'1 . The variance is updated using equation [9.13] as

9.2.3 EKF for residual life prediction using vibration information - example 

In this example, we demonstrate the application of a predetermined semi- 

deterministic EKF to a vibration monitoring scenario using simulated data. Equation 

[9.15] is parameterised using a = 5, b = 20 and c = 0.012 and we assume that the 

parameters have been estimated using the CM histories of analogous components.
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The error terms are random variables that are distributed as et ~ N(0, 0.016y, 2 ) and 

the initial residual life distribution is taken to be x0 ~ N(200, 2000). Note that, we 

are only interested in modelling the second stage of component monitoring and the 

mean value of 200 is the expected residual life upon the initiation of a defect. As 

with the modelling of vibration information undertaken in chapter 7, we assume that 

a technique such as the statistical process control approach has been used to 

determine the origin of the defective operational stage. The form of the variance 

function for et is chosen to reflect the fact that in most vibration monitoring 

scenarios, the random variation increases as the vibration level increases. 

Three 2nd-stage CM histories are simulated using the following steps;

1. The duration of the lifetime of the particular component is simulated first. This 

is achieved using inversion on the initial density by the solution of

*0

u = $p0 (s)ds [9.20]
0

for XQ, where, u is a uniform random variable on the range (0,1).

2. At equidistant intervals, we simulate the vibration reading conditioned on the

underlying residual life at that CM point. We have

y, = E(yt | xt = x0 - tt:) + et = h(tt , XQ -1, ) + e, [9.21]

where, ei is also simulated using inversion on its probability density function. 

The simulated histories are illustrated in figure 9.1.
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Figure 9.1 - The simulated CM histories

We now demonstrate the ability of the model to track the underlying residual life 

using the age of the component and the monitoring information for the three cases. 

The third example is included to illustrate how the model copes with outlying cases. 

Figures 9.2 - 9.4 illustrate the mean estimate of the residual life at each monitoring 

point for component histories 1 - 3 respectively.
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Figure 9.2 - Comparing the mean estimate and the actual underlying residual life at each

monitoring point in history 1
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Figure 9.3 - Comparing the mean estimate and the actual underlying residual life at each

monitoring point in history 2
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Figure 9.4- Comparing the mean estimate and the actual underlying residual life at each

monitoring point in history 3

As we discussed at length in chapters 6, 7 and 8, a point estimate is not as useful as 

the definition of the conditional distribution in the construction of reliable decision 

models. If a suitable model has been defined, we would expect the variance about 

the mean to decrease over time as more CM information is obtained. Figures 9.5 -
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9.7 illustrate the conditional residual life distribution produced at each CM point for 

vibration histories 1-3 respectively.
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Figure 9.5 - Illustrating the conditional distribution obtained at each CM point for history 1
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Figure 9.6- Illustrating the conditional distribution obtained at each CM point for history 2
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Figure 9.7 - Illustrating the conditional distribution obtained at each CM point for history 3

It is clear from the various figures that the semi-deterministic EKF performs well for 

this particular example. Figures 9.2 - 9.4 demonstrate that the model tracks the 

underlying residual life quite rapidly for all the simulated histories considered and 

figures 9.5 - 9.7 illustrate the reduction in the variance about the mean estimate as 

more information is received. Naturally, the level of convergence is dependent on 

the accuracy of the proposed model for the particular case. In this case, the accuracy 

is reflected in the specification of the variance parameter, Rj, that is selected for this 

example in accordance with the analogous vibration monitoring histories used in the 

case studies of chapter 7.

9.2.4 Second-order extended Kalman filtering

In this section, we consider the second order terms in the Taylor series expansion of 

the non-linear equations that describe the dynamics of the system. In some 

situations, the extension proposed here will produce greater accuracy when applied
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to problems involving the estimation of the residual life of a component. Any 

improvement in accuracy will be dependent on the manner in which the relationship 

between the observed information and the underlying residual life is defined. 

Returning to the definition of a general vector state, the evolution of the state and the 

relationship between the observed information and the underlying state are given by 

equations [9.3] and [9.4] respectively. Incorporating the second order terms, the 

non-linear functions/and h are approximated as

*, )(*, - *) + / [9-22]

+ h [9.23]

where, f'(xiv ) and h'(xi}M ) are as before and /. is a vector with elements

^' = 2 (-' dx 2 [9.24]

that can be approximated as

j_
2 dx 2 [9.25]

Similarly, ^, is a vector with elements

a2*,
a^2 (^r */|/-l ) « -tr

2
A"* ! a,2

A

[9.26] 
The linearised system is given by equations [9.7] and [9.8] where, the compensators

«• and w, become

\_ f<(£ ) x + f [9271/ / \±i\i)±i\i ^ J . L^-^'Ju, =
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[9.28]

The filtering update and prediction equations for the general state 2nd- order semi- 

deterministic EKF are

*V = *<|M + */[Z f - A(*<|/-i)-£/] [9.29]

*j+H/ = /(*,/) + /, [9.30]

The remaining equations for the gain function, equation [9.10], and the covariance 

matrix, equations [9.12] - [9.14], are unchanged from the l st-order definition. This 

concludes the description of the algorithm. As noted in the introduction to this 

section, the necessity for utilising a 2nd-order version of the semi-deterministic EKF 

is dependent on the particular definition of the relationship between the observed 

information and the underlying residual life. When considering the vibration 

monitoring scenario modelled in section 9.2.2, the inclusion of 2nd-order terms is not 

necessary and the application of the model to the example of section 9.2.3 did not 

produce a tangible improvement on the results obtained using the standard algorithm. 

As such, the analysis is omitted here. However, there are many other means of 

condition monitoring and indeed other ways of modelling the relationship between 

vibration information and residual life for which, the 2nd-order semi-deterministic 

EKF could prove to be a useful approach.

9.3 Limited memory filter

If the dynamics of a particular state and observation process over time are not known 

to a satisfactory degree of precision or are particularly changeable (e.g. multiple 

potential failure modes), it may be useful to reduce the impact of earlier observations 

when estimating the underlying state. Each observation refines the estimation or 

filtering process and if subsequent observations maintain the expected path defined
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by previous observations, the variance about the estimate of the residual life 

decreases (i.e. the variance of the distribution pt (xj \ 7,) is reduced). It is therefore a 

logical conclusion that, if the dynamics of the process are changeable as the 

component ages, it may take a number of observations in a new direction for the 

filtering process to adapt given the fact that earlier observations still carry weight 

within the filtering formulation. One method of reducing this estimation lag is to 

remove the impact of these 'earlier' observations. The objective of the limited 

memory filtering process is to define the residual life as conditioned on a limited 

number of observations up until the current CM readings. This random variable is 

defined as *, \y_ k+l >—>y_-> f°r k<i, and any information obtained before t k+l is

removed from the estimation process by the definition of the conditional density for 

the random variable as

P(Xi\yk+l ,:.,y f ) = ——*-"""^"^=-'"^~"—— [931]

where, the constituent elements of the reduced memory filter are firstly

p(Xi \Yk ) = Pk(*i+ti ~ tkllk} [9.32]

\Pk (u\Yk )du 
'r'k

Secondly, we have
00

[9.33]
o 

where, the conditional density is established as

Finally, we have the probability of observing the history 7, as
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P(Y,) = Hp(y_j I I,-,) = n \P(y t I XJ)P(XJ I Yj^dxj [9.35]
>1 7=1 0

which is the product of the individual probability of observing each information 

vector conditioned on the previous observations. Determination of an appropriate 

lag k would also have to be undertaken in a practical scenario and would prove 

particularly difficult with a monitoring process undertaken at irregular intervals.

9.4 Model combinations

9.4.1 Introduction

The methodology proposed in this section essentially consists of running a number of 

probabilistic stochastic filters in parallel and defining an estimate of the residual life 

of a component as a weighted combination of their respective output. Firstly, we 

consider a situation where, the underlying dynamics are fixed and we assume that 

they conform to one of the proposed models for the case. This model is for use when 

the behaviour can correspond to a number of distinct behavioural types, we are 

simply unaware which type the current component conforms to. An example 

considered later in this chapter involves the modelling and estimation of the residual 

life of a component when the behaviour can correspond to one of two potential 

failure modes. The behaviour is assumed to manifest itself in the form of failure 

time clustering as demonstrated in figure 9.8. Separate models are established for 

each scenario and a recursive procedure is developed to determine, during the life of 

a component, which model the underlying dynamics conform to using both the age 

and the available CM history.

We then consider the potential for the dynamics to evolve or fluctuate during the life 

of a component. We assume that that, at any given stage, the dynamics conform to 

one of the proposed models and that unknown transitions between models occur over
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time. The transition probabilities must be estimated from available data and are 

modelled using a Markov chain.
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c
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O
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Figure 9.8 - Illustrating the clustering of failure times when two different failure modes exist

9.4.2 Fixed dynamics

We define r different models, each pertaining to an individual and distinct failure

type. The notation M • represents model y (fory = 1, 2, ..., r) and the models are

assumed to be parameterised using only available component histories that are 

relevant to the respective failure modes. The prior probability that the underlying 

dynamics of the CM process for a given component will correspond to model / is 

denoted as p(M | 7 0 ) and is assumed known. Considering multiple indicators of 

condition obtained simultaneously at each discrete monitoring point (denoted byy.)

at time/,, we have

p(Mj \Y i ) = p(MJ \y.,Yi_} ) [9.36]

as the conditional probability that the underlying dynamics of the current CM 

process correspond to model j given the monitoring history available until that point 

in time. By the application of Bayes' law we obtain
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,„ . „ . , P(M> ' y-''-'^ - ——— ——— [937]

where, the initial probability p(Mj \Y_ Q ) is assumed to be known and p(M • \ 7M ) 

represents the probability that the underlying dynamics conform to model j from the 

previous recursion of the process. This is the means by which our best judgement 

regarding the actual dynamics (and hence the underlying residual life of the unit) is 

updated at each monitoring point. We also have

P(y, I Z,-,,M,) = p(yt I x,,M,)/»(*, I L-fMj)*, [9.38]
0

on the assumption that p(y. \ x,,Y_ i,l ,MJ ) = p(^ \x,,MJ ), i.e. y is controlled by

xt and M j only. The denominator of equation [9.37] is obtained by enumerating 

over all the possible scenarios as

P(y, I ZM ) = Z P(y i I YI-I , Mk )p(Mk I !,_, ) [9 .39]
k=\

In the linear case we are able to establish a conditional density for the residual life 

that is fully parameterised using the weighted first two moments attributable to each 

model. In the general non-linear case, we are restricted to obtaining a weighted 

mean point estimate of the residual life as

x, = E(x, | 7,.) = £ \xiP(Xi | 7,, Mj )p(Mi | Yi )dxi [9.40]
7=1 0

9.4.3 Evolving dynamics

When the underlying dynamics of a given unit are assumed to vary over time as the

unit ages, we introduce a time-invariant Markov chain with transition probabilities

akj = p(Mt = MJ | MM =Mk ) = p(Mji | Mk >M ) [9.41]
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that corresponds to the conditional probability that the underlying dynamics currently 

conform to model j at the zth monitoring point given that they conformed to model k 

at the previous monitoring point. The objective of the combined modelling approach 

with evolving dynamics is to establish the conditional distribution

P,(x, \Y,) = LP(X > MJi ,Y_ i )p(Mj,\ 7,.) [9.42]
7=1

where, Mp is representative of the fact that the underlying dynamics conform to

model j at the rth monitoring point. Both terms in equation [9.42] require some 

explanation. The first is established as

f \i, v^ / ^ v s i'- P(xi \MJii Y i ) = p(x, Mj,,y 7M ) = — =i —— \ J ——— [9 .43]

where, the probabilistic relationship p(y_. \XJ,MJJ) is available from the model 

specification and we have

P(xt | Mji ,Y_ i_l ) = p(Xi | Mji,Mk>i_,,Yi_,)p(Mk^ | M,,,7M ) [9.44] 
4=1

where, in this context, p(xt \ Afy/,-Wt _,-_!, 7M ) = p(xt \ Mkj_i,Y_ t_{), as the one step 

prediction of xt is available from the previous recursion and is not dependent on the 

current model given the lack of reliance on y . . We also have the reverse transition

expression

p(Mji \Mkt_l ,Y_ i_l )p(Mkii_l \Y i_l ) 
p(Mki_l

[9-45] 

and the denominator of equation [9.43] is established as

P(y, | Mji,Yi_l )= \P(y. \ Xi ,Mji)p(Xi I M^Y^dxt [9.46]
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Now, we consider the second term of equation [9.42]. Assuming that the initial 

probability that the underlying dynamics (at the start of the CM process for a new 

component) correspond to modely, p(MjQ \ Y_ 0 ), is known, we again employ Bayes' 

theorem to recursively obtain

p(y • I Y-i-i > M a )p(M:: | Y_ •_,) p(Mji \Y_ i ) = p(M . t:| y., Y_ _i) = ———————-———-——— [9.47]

where, the constituent elements of the numerator are

00

P(y t I !,-i> Mjt ) = \p(y. I Xj , Mjf )p(x, | Y ,_!, Mji ) dx, [9.48]
0

and

p(Mj, \ Y (_j) = 2^p(Mj, | Mkj-\)p(Mki_i | l^ (_i) = y^fljb p(Mk i-i I Zi-i) 
&=i /t=i

[9.49]
The denominator is given by enumerating over the prediction available from all the 

potential models as

P(y f I £M) = i>Q!,. I IM. Mki )p(Mki \ 7M ) [9.50] 
*=i

In the following example, we return to the modelling of a component life with fixed, 

but unknown, underlying dynamics. The combined model with evolving dynamics is 

only presented here in a theoretical form. An example is not included due to time 

limitations.

9.4.4 Example - fixed dynamics

In this example, we consider the modelling and estimation of the residual life of a 

component using vibration information when two potential failure modes are 

assumed to have been identified from relevant data in a scenario similar to that 

illustrated in figure 9.8. When the monitoring process commences for a new
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component, the underlying dynamics are fixed but unknown. We develop two 

separate stochastic filters (model's 1 and 2) to represent each potential eventuality. 

The models are developed using the same functional forms but are parameterised 

independently using relevant analogous component histories. The models are 

conducted in parallel and their respective output weighted according to the 

probability that the underlying dynamics correspond to each model. In this example, 

we simulate a cycle of data according to each modelling formulation and investigate 

the ability of the prescribed methodology to track the appropriate underlying model 

and the residual life of the component. The estimate of the residual life at each 

monitoring point is compared with a general model (model 3) that is developed and 

parameterised using all the available monitoring information, i.e. the histories are not 

classified according to any 'failure type' and are all grouped together for parameter 

estimation purposes. This is achieved by simulating a large number of cycles of CM 

data corresponding to each of models 1 and 2 and parameterising a general model 

using all the simulated output. We then compare the weighted output from models 1 

and 2 with the output from model 3 to ascertain the benefit of the combined 

modelling approach for this particular scenario. 

The filtering expression for modely is

\P(yt I */>
0

for / = 1, 2, 3. The constituent elements of model / are the initial residual life 

distribution
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which is defined as a Gamma distribution for each model but parameterised 

independently. Similarly, the distribution governing the conditional relationship 

between the observed vibration reading and the underlying residual life is taken to be 

Gaussian for all the models as

1
e H °J> 

p(yi \xi ,Mj ) =——j=— [9.53]

where, for model; (M; ), we have //,, = A] +Bj e~c'"i as the expected vibration 

level at the rth monitoring point given a particular realisation of the underlying 

residual life and, analogous to the example of section 9.2.3, the standard deviation 

parameter is proportional to the vibration level as ajt = d}.yt . The parameters of 

models 1 and 2 are specified in table 9.1 where, x0 is the average life of a 

component under each scenario.

Parameter

A

B

C

d

XQ

a

P

Model 1

5
17.3

0.025
0.126
200 

0.218

44.205

Model 2

5
21

0.01
0.141
640 

0.115

74.504

Table 9.1 - The parameters of models 1 and 2

The expected CM paths for the average life corresponding to model formulations 1 

and 2 are illustrated in figure 9.9. The general model (model 3) is constructed with 

the same forms as models 1 and 2, given by equations [9.52] and [9.53], and the 

parameters are estimated using 100 simulated histories. 50 of the histories are 

generated according to model 1 and 50 according to model 2. The reasoning for this
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is that, for simplicity and to demonstrate the methodology, we develop a scenario in 

which both contingencies are equally likely, i.e. before the monitoring process 

begins, we have the initial probabilities p(M\) =p(M2) = 0.5.
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Figure 9.9 - Illustrating the expected CM path for each model

Using the simulated CM histories from models 1 and 2, the estimated parameters of 

the general model (model 3) are given in table 9.2 below.

j/ _***
*—~-**^*^ ------•'"

D 100 200 300 400 500

Model 1
. ...... Model 2

600 70

Parameter General Model

A 

B 

C 

d 

a 

J3

5.482
17.702
0.02

0.195
0.00778

3.266

Table 9.2 - The parameters of the general model (model 3)

Using the filtering expression given by equation [9.51] and the constituent elements 

defined by equations [9.52] and [9.53], the first three recursions of the filtering 

process are now derived for modely (j = 1,2,3). At the first CM point, we have
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y\-Aj-Bje
[9.54]

_...,2 

0

and at the second CM point, we obtain

--<*/(*2+'2)

= ————— -

du

[9.55] 
and finally, at the third CM point, we have

——— -

.- aj(u+t3)
du

[9.56] 
From the equations developed for recursions 1 - 3, it is evident that a closed form

expression is available for a general stage i as

-«/(*/+</) -Z
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An essential element in both the parameter estimation process and the determination 

of p(Mj | 7,.), see equations [9.36] and [9.37], is the distribution p(yt \ 7M ,M,) 

given by equation [9.38]. For the functional forms used in this example, we have

/(*,+//'«
- aj(xj+ti) -

'-' w 2^ ^
[9.58]

- aj («+/M ) -

du

As described for the EKF example earlier in the chapter, the failure times are 

simulated using inversion on the initial life distribution, p(x0). The vibration 

readings are then generated at each CM point using inversion on the conditional 

density p(yt \ xt ) . We now simulate a case corresponding to each of the two model 

formulations and demonstrate the ability of the proposed methodology to track the 

appropriate model and the underlying residual life. We compare the estimations of 

residual life and the prediction errors obtained using the combined weighted 

modelling approach with those obtained using the general model at each CM point in 

the simulated histories. The prediction errors are obtained at the fth CM point as

e|.=((jc,.-E[*i|y,])2 )1/2 [9.59]

As with the case studies in chapters 6, 7 and 8 the mean-square error (MSB) about 

the simulated failure time is used as a criterion for comparing the combined and 

general models. Considering the combined model, the MSB attributable to each of 

the contributing models is weighted according to the probability that each model 

provides an appropriate representation of the underlying dynamics for the particular 

component.
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9.4.4.1 Case 1

For this first case, a cycle of CM data is simulated with the underlying dynamics 

corresponding to model 1. The failure time for the cycle is 193 hours and figure 9.10 

demonstrates the ability of the recursive process to track the appropriate model 

according to equation [9.37].
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Figure 9,10- Illustrating the tracking of the appropriate underlying model for case 1

Figure 9.11 illustrates the tracking of the residual life at CM points throughout the 

life of the component. We compare the estimations of residual life given by the 

combined weighted modelling approach proposed in this chapter and the general 

model.
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Figure 9.11 - Comparing the residual life predictions obtained using the combined and

general models for case 1

Figures 9.10 clearly illustrates that the methodology tracks the appropriate modelling 

formulation for this particular case and figure 9.11 demonstrates a clear improvement 

on the residual life prediction capability when compared with the general model. In 

addition, the sum of squared errors for the combined model is 808.19 compared with 

1776.6 for the general model. The superiority of the combined approach is enhanced 

further by the MSB statistic of 345115 for the combined model and 732541 for the 

general model.
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9.4.4.2 Case 2

For this second case, the CM process is simulated according to the formulation for 

model 2 with a failure time for the component of 651 hours. Figures 9.12 and 9.13 

illustrate the tracking of the appropriate model and the residual life respectively.
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Figure 9.12 - Illustrating the tracking of the appropriate underlying model for case 2
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Figure 9.13 - Comparing the residual life predictions obtained using the combined and

general models for case 2
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As with the first case, it is clear from figures 9.12 and 9.13 that the combined 

approach tracks the appropriate model quickly for this second case and that the 

estimates of the residual life are more accurate when compared with those obtained 

using the general model. This conclusion is again confirmed by the fit statistics; the 

sum of squared errors is 1422.9 for the combined model and 2234.3 for the general 

model and the MSB is 585240 for the combined model and 1050250 for the general 

model.

Cases 1 and 2 have demonstrated that in some situations, it may be advantageous to 

group the available CM histories and construct a number of filters to represent the 

specified contingencies. The filters are then applied in parallel to new component 

CM information and the output from each filter weighted according to the likelihood 

that the model is the appropriate representation for the current components 

underlying dynamics. A further consideration could be to model the risk associated 

with parallel competing failure modes.

9.5 Discussion

In this chapter, we have introduced a number of variations on the general 

probabilistic filtering approach that are designed to represent particular scenarios or 

cater for specific modelling or computational needs. Initially, we considered the use 

of extended Kalman filters when limited computational power is available and/or a 

large number of components are being monitored in parallel. Then we discussed the 

potential application of a limited memory stochastic filter designed to facilitate for 

modelling inaccuracies or fluctuating dynamics over time. Finally, we investigated 

the potential to represent a number of potential contingencies for a monitoring 

process using individual stochastic filters and weight the resulting output 

accordingly. However, the potential usage of stochastic filtering in a CM context is
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not limited to the scenarios discussed in this thesis. For instance, in chapter 7 and the 

EKF example of this chapter, we consider a 2-stage approach to both the vibration 

monitoring of a component and the inferential process regarding the prediction of 

residual life. The stochastic filtering process begins once the component is deemed 

to be in a 'defective' condition (stage 2). The initial phase of monitoring and the 

fault detection process are tackled using some other means. However, it may be 

possible to obtain a more consistent probabilistic filtering approach by facilitating for 

both stages of the CM process. See also Wang (2004b) regarding an alternative 

solution to this problem. The approach suggested here is to model the relationship

y. as

p(y_i I */ ) = PO (y, I */ )0 -et ) + PI (y, I */ ) *,- [9.60]

where,
O ;r,

and T0 is a random variable representing the start of the defective stage of operation.

Time

Figure 9.14 -A two-stage CM modelling approach

We are required to estimate
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T0 \Y,) [9.61] 

at the fth CM point. The most crucial element of this modelling process is the 

estimation of T0 using the distribution developed to represent the relationship y . \ xt

during the initial 'normal' stage of component life, pQ (y. )*,.). One option is to

utilise the 'innovations' process that is a available for any predictable and observable

process. In this case, we have v . = v - y where-' — / ±-i

[9.62] 
o

At time /, , v, is a 0-mean vector with covariance matrix A t . For an appropriate lag, 

L, we define the measure

= [9.63]
k=i-L

The probability that, by time t f , a fault has arisen and the component is currently

operating in a defective state is then given by specification of

£,v = P(tt > TO | 7,.) = />(/,. > T0 I y._L , y._L+l , ..., y.) = P(t, > T0 \ £>,) [9.64]

Alternatively, an initial fault detection rule could be developed as

£ = f 0 ;D,Zc
£i ~(\ ; Dt >c

for some predefined limit c. The potential for constructing a 2-stage filtering process 

designed for CM applications such as vibration monitoring could be an interesting 

topic for future research.

In addition, future research on the topics covered in this chapter will require that 

consideration be given to the influence of preventive maintenance and changes in

246



other environmental variables. The inclusion of these additional factors will render 

the state expression

~ xi ~

invalid. As a result, the expression will have to be adapted to consider some further 

deterministic and random elements. Also, tests for the adequacy of model fit must be 

established. Further considerations for stochastic filtering applications include the 

use of alternative state definitions, such as the generic term 'wear', as it can be 

argued that the definition of residual life is subject to the assumption that the value is 

in some way predetermined, which it is not.
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Appendix:

The stochastic filter - parameter estimation 

(Chapter 8, case study 1)

Considering a single unit history, the likelihood function for stochastic filtering 

parameter estimation using the information from one significant principle component 

yt is given by equation [6.34] for m = 1 as

X= \Y[p(Ay> '\Yi-i)Pi-i(x,-i >tt -fM |7M ) \Pn (xn =T-tn \Yn ) [Al]
U=i )

The objective of this appendix is to demonstrate that for the stochastic filter proposed 

in chapter 8, case study 1, the likelihood function given by equation [Al] reduces to

Z=p(x0 = T)flp(Ayi \(xi =T-ti )) [A2] 
;•=!

We have p(Ayt Y_ t_-\) from equation [6.32] with Ayt replacing y. in the

formulation. Now, substituting p(xt \Y_i-\) from equation [6.33] into p(Ayt \Y_ t_{) 

produces

\P(Ayt I xjpi^xt +tt -/M I H_i-\)dXi
- ————— = ————————————— [A3] 

\Pi-\(u\lLi-\)du

Then substituting equations [A3] into equation [Al], the probabilistic form of the 

likelihood function reduces to

Z= ft ]/>(4Vi -\Xi)Pi-\(xt +*i -ti-i lYi-J&i \Pn(xn =T~tn Yn ) [A4]
U=l 0 )

With the chosen distributional forms, the conditional residual delay time distribution 

at the (/-l)th monitoring point is
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M

Pl-l(Xi-l |£M) =

where,

i-l
and Y[<t>h (.) = 1 for / = 1. From equation [8.2] we have 

h=\
( (C+Dt,)Ay,

C + Dt- , e*-' ' Uli n~ 1 C

[A5]

[A6]

———-,——— [A7]
V'i-'/-i; u + fix, T

Inserting equations [A5] and [A7] with the substitution JCM = xt +tt - fM into the 

likelihood function of equation [A4] gives

nj h=\

Now, with the result

and by recognising that for h = i, we have

[A8]

[A9]
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By equating the functions

(C+Dth )Ayh

e (A+B(Xi +trthrl )(th -th_{)
(Xt + tt ~ fW , f M ) = fa (Xj,tt ) =

(A + B(Xi +ti -th ri [All] 

the likelihood function becomes

" 0 *=1n. oo 
/=! \(u + ti_l )^e-

h=l

-^—————————————— [A12]

0 1=1

Finally, by the cancellation of successive terms we establish the relationship

/!=!

rJ^ [A13] 
o *=i

and the likelihood function reduces to
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(=1 h=\

C + Dt s
Ay? e

(C+Dt^Ay,

which is

i=\

thus establishing the desired result.

i \(xi =T-t,y>

[A14]
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