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SUMMARY

In this thesis singular perturbation methods of 

analysis have been applied to the design of algorithms 

that will produce effective, robust and high integrity 

fast-sampling control of the longitudinal motions of 

two types of vehicle systems. Both centralized and 

decentralized control of vehicle cascades is considered and 

the expected differences in the responses of the closed- 

loop systems identified by the use of asymptotic transfer 

function matrices. Furthermore the terms used by other 

authors are explained by use of the analytical asymptotic 

expressions. It is also explained how the fast-sampling 

controllers are able to entrain vehicles in cascades 

without requiring excessive control actions or loss of 

accuracy. The results of computer simulations of a ten 

vehicle cascade undergoing a constant speed entrainment 

manoeuvre with both centralized and decentralized controllers 

are presented to emphasize the results of the study. 

The dynamical properties of trains of vehicles are 

presented and fast-sampling controllers are designed 

for the control of the speed of trains having single 

leading locomotives both without and with another 

locomotive in the train. The transmission zeros of such 

systems are identified and their physical meaning used to
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explain why the fast-sampling control algorithms are 

able to cope with trains of differing lengths and 

configurations and still produce good disturbance- 

rejection and tracking properties. Finally, the theory 

is illustrated by the presentation of the results of a 

digital computer simulation study of the passage of a 

very long train over a vertical reverse curve.



CHAPTER 1

INTRODUCTION

1.1 Introduction

In this thesis recent developments in multivariable 

control system theory are extended and applied to the 

problem of the longitudinal control of vehicle systems. 

Two types of vehicle systems are considered. Firstly, 

vehicle cascades [1! ,12, 13 J are considered as these 

reflect the control problems arising from the operation 

of rapid transit systems and, secondly, connected vehicles 

L^J'lsJ [6J are considered as these reflect the control 

problems arising from the operation of very long freight 

trains over undulating terrain.

The control theory presented in chapter two, for 

the analysis of these vehicle systems and the design of 

suitable controllers, includes and extends the work carried 

out by Porter and Bradshaw I 7J , \S\ on fast-sampling 

error-actuated control of time-invariant linear 

multivariable continuous-time systems. Fast-sampling 

techniques incorporate fundamental concepts of modern 

control knowledge and as a direct result can be readily 

applied to the above class of systems, which includes 

vehicle systems, to produce robust and economical controllers



It is the primary objective of this thesis to 

utilize the afore mentioned control theory to investigate 

the properties of fast-sampling controllers for vehicle 

systems. The design and analysis of closed-loop vehicle 

systems will indicate the problems arising from the 

choice of particular structures of control algorithms.



1.2 Outline of the Thesis

The two vehicle systems to be considered are 

introduced in chapter one together with the primary 

objective of the thesis. A review of the work on 

singularly perturbed systems is made, although it must
\

be emphasized that open-loop singularly perturbed systems 

are not considered in this thesis. Fast-sampling control 

techniques are introduced and the two classes of systems 

considered in chapter two are described.

Porter and Shenton's [9] treatment of the open-loop 

transfer function matrices is summarized in chapter two, 

and is then used in the analysis of the closed-loop 

transfer function matrices of systems controlled with 

fast-sampling error-actuated controllers.

The synthesis of fast-sampling controllers is 

considered in chapter three, together with the implications 

of employing different structures of controllers . 

Transmission zeros are defined since they play an important 

role in the analysis of systems and are particularly 

relevant to the control of trains, considered in 

chapters six and seven.

In chapter four a mathematical model of a vehicle 

cascade is developed and a review of the relevant 

literature is made. The control theory developed in



sections (2.3) and (3.2) is utilized to produce both 

centralized and decentralized controllers. These two 

closed-loop systems are then studied using the general 

expressions for the transfer function matrices derived 

in chapter two and the results related to the work of 

other authors. The transfer function matrices also 

indicate how to formulate the command inputs in a 

sensible way in order to avoid undesirable effects. A 

ten vehicle cascade is considered and the results of 

digital computer simulations are presented in order to 

emphasize the findings of the study.

Early attempts to understand the dynamics of trains 

are summarized in chapter five. This includes a review 

of Dudley's |lOj work using a lumped parameter model 

and Wikander's [H] findings using an elastic bar 

model.

In chapter six single locomotive powered trains are 

considered and a mathematical model is developed. The 

theory developed in sections (2.4), (2.5) and (3.2) 

is then used to develop a fast-sampling speed controller 

for the train model and to predict the affects of 

implementing such a controller. The fast-sampling speed 

controller is simple and effective and is also independent 

of the train length. The performance of the controller 

is illustrated by presenting the results of digital 

computer simulations of three trains of different lengths 

running over a single gradient change. The results are



related to the position of the open-loop poles and 

transmission zeros.

Trains with two locomotives are considered in 

chapter eight. Again tight speed control is achieved by 

using the theory developed in sections (2.4), (2.5) and 

(3.2). The independence of train length is again 

illustrated by presenting the results of digital computer 

simulations, which are also related to the position of 

the open-loop poles and transmission zeros. A review 

of the relevant literature on the problems and control 

of extra-long freight trains is then made. The results 

of a digital computer simulation of the fast-sampling 

control of a one hundred vehicle train travelling over 

undulating terrain are presented and related to the 

previous results in chapter seven and also to those 

presented in chapter six.

Finally chapter eight summarizes the results and 

suggests further areas of research.
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1.3 Singularly Perturbed Systems

A system of n+m first order linear differential 

equations in which m of the derivatives are multiplied 

by a small parameter, e , can be expressed in the matrix 

form

In 0

0 elm

x

A

X B

B

u (1.1)

, r,n ~m  £. . n nxn . D nxm 
where xeR , zeR, u e R A-. e R ,A0 eR

Rmxn e Rmxm R   Dmx£ , , B 0 e R and
2

it is assumed that A. is an invertible matrix. These 

systems are usually referred to as singularly perturbed 

since when e = 0 the matrix

In

0

0

elm

is singular. It follows directly from (1.1) that when 

e = 0 the number of differential equations is reduced 

to n because m of the equations have become purely

algebraic since (1.1) assumes the reduced form



  

X

0

A.

A.

2

A

x B.

u (1.2)

or, equivalently,

x =

and

z = -A -1
(A Qx + Bu)

(1.3)

(1.4)

where x e Rn , z e Rm , u e R £ and the bars are used 

to differentiate between the full system governed by (1.1) 

and the reduced system governed by (1.2). As e -»  0 it 

follows from (1.3)that the eigenvalues representing the 

slow modes in (1.1) approach the eigenvalues of the matrix 

(A n -A 0A ~ 1A Q ). As e -> 0, it follows from (1.1) that
J. £ ~t o

the eigenvalues representing the fast modes in (1.1) 

approach the eigenvalues of the matrix ( /e. A ) and 

are clearly infinite for the case e = 0. The fast modes 

represent high rates of change inside the system (1.1) 

and these occur in a short interval of time following 

the instant t = 0, known as the boundary layer. Following 

this boundary layer the solutions x(t), z(t) rapidly 

converge onto the solutions x"( t) , z(t) as e  > 0. Thus 

singularly perturbed systems are characterized by high 

rates of change inside the boundary layer and by low rates 

of change away from the boundary layer.
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A fundamental exposition of the singular perturbation 

theory of differential equations is due to Tihonov [12] ,

[isl , [.14j wh° considered the dependence of the solutions 

of systems of autonomous non-linear differential equations 

of the form

x = f (x,z) (1.5)

and

ez = g (x,z) (1.6)

on the perturbation parameter e. It was shown that all 

trajectories from the set of initial conditions x(0), 

z(O) giving a stable response for the system

ez = g(x,z) (1.7)

for sufficiently small e and for continuous f and g, 

converge rapidly onto the trajectories of the reduced system

 
x = f(x,z) (1.8)

0 = g(x,z). (1.9)

In 1961 Klimushev and Krasovskii [l5j showed that certain 

systems are asymptotically stable by utilizing singular 

perturbation techniques together with a Liapunov function. 

The application of singular perturbation techniques to 

optimal controller design (see, for instance, Sannuti and 

Kokotovic [_16j ) simplifies the design problem by reducing



the plant size. Porter Ll7J proved that the common 

practice of neglecting parasitic elements in the design 

of certain feedback systems was justified by showing that 

the asymptotic stability was unaffected by the introduction 

of small parameters. Shenton I18J and Sangolola 

also obtained notable results concerning the structural and 

dynamical characteristics of time invariant singularly 

perturbed multi-input linear systems. A very important 

result (see section (2.2)) was obtained by Porter and 

Shenton £ 9J who showed that as the parasitic elements of 

a system approach zero then the open-loop transfer function 

matrix can be expressed as the sum of a 'fast' transfer 

function matrix and a 'slow' transfer function matrix. 

Equally important, the digital computer simulation of 

singularly perturbed dynamical systems has been greatly 

facilitated by the contributions of Gear [20J and Lapidus 

and Aitken [_2lJ , among others, who have developed 

efficient algorithms for the effective and automatic 

integration of stiff systems of differential equations. 

However Merson's method (see, for instance, Spencer et al

[22J ) of integrating a set of differential equations 

has been utilized in this thesis since the nature 

of the closed loop systems considered is such that the 

necessary computer processing times were far from 

excessive.

In chapter two Porter and Shentons' I 91 analysis of 

the open loop transfer function matrix is used to 

analyse the transfer function matrices of closed-loop 

control systems incorporating fast-sampling controllers.
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1.4 Fast-Sampling Control Techniques

The two main questions facing control engineers 

when designing sampled-data controllers for linear 

multi-variable continuous time plants are the choice of 

sampling frequency and the choice of the feedback gains. 

Problems can arise if these are considered independently 

but are obviated if the control law is expressed as an 

appropriate function of the sampling frequency and the 

controller gain matrices, and if the controller gain matrices 

are designed in accordance with the continuous-time 

high-gain techniques of Porter and Bradshaw L 2 3J   Tne 

design of sampled-data controllers then becomes a 

root-locus problem in the discrete-time domain where, 

as the sampling frequency is increased, the roots either 

tend to the origin (fast modes) or to the inside edge 

of the unit disc (slow modes). Porter and Bradshaw [?J , 

used this approach for a class of systems that satisfy 

two criteria. The first of these criteria requires that 

the matrix equal to the product of the output and input, 

matrices respectively , of the state-space representation 

of the system, has rank equal to the number of outputs 

and the second requires that all the transmission zeros 

(see Popov ["24J ) lie in the left half plane. If these 

criteria are satisfied then fast-sampling error-actuated 

output feedback controllers can readily be designed so 

that as the sampling frequency is increased the outputs are
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(i) increasingly characterized by the fast modes in

the system,

(ii) increasingly non-interacting 

and 

(iii) increasingly insensitive to plant parameter variations

This substantial advance in the analysis and design 

of sampled-data systems was only possible because Porter 

and Bradshaw I 7J , I 8 1 expressed the characteristic 

roots in the discrete-time domain in terms of the 

characteristic roots in the continuous-time domain.

If the criteria expressed above are not satisfied 

then a fast-sampling error-actuated controller can only 

be employed if extra-measurements are included with 

the outputs in the feedback loops. Such a fast-sampling 

controller will be robust if designed in accordance with 

the techniques presented in sections (2.3) and (3.2). 

It follows directly from sections (2.3) and (3.2) that 

such a fast-sampling controller can be designed so that 

the outputs are increasingly insensitive to plant parameter 

variations.

In this thesis it is the above techniques that will 

be utilized in order to design controllers for the two 

vehicle systems mentioned in section (1.1), and to 

illustrate their properties with relation to the 

possible controller structures.
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CHAPTER 2

THEORY

2.1 Introduction

In this chapter the fast-sampling control theory 

used to synthesize the vehicle system controllers in 

chapters four, six and seven is presented in the 

form of singular perturbation analyses of the closed-loop 

transfer function matrices. The singular perturbation 

analyses are carried out by applying Porter and Shentons' j9| 

treatment of the transfer function matrices of open-loop 

singularly perturbed systems, summarized in section (2.2). 

The analysis of closed-loop systems having fast-sampling 

error-actuated controllers incorporating extra-measurements 

is considered in section (2.3). The analysis of closed- 

loop systems having fast-sampling error-actuated 

controllers is considered in section (2.4), summarizing 

Porter and Bradshaws' [?] , |81 results. Finally, 

in section (2.5) the rejection of disturbances from closed- 

loop systems having fast-sampling error-actuated 

controllers is considered.
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2.2 Singular Perturbation Analysis of the Transfer 

Function Matrix

A singularly-perturbed linear time-invariant system 

is a multivariable dynamical system whose behaviour can 

be described by state and output equations of the 

respective forms

X

and

y =

A,

x 

z

B.

u (2.1)

(2.2)

nwhere e is a small positive parameter, x e R ,
r> r> r> A ^ . ^.zeR,ueR,yeR ,A 1 eR ,AeR

-L ^i
e Rmxn , ,-,mxm ,_. T-,nxm R , B I e R Rmxm

o , and

The corresponding transfer function matrices of the open-loop 
singularly perturbed systems governed by (2.1) and

(2.2) assume the form

/
-1

G(A,e) =

C 'u

C ' U

B

e R £xn! (2.3)

Porter and Shenton [9] showed that as e ->  0 the transfer 

function matrices given by (2.3) approach the

asymptotic form
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where

and

r(x) = r(x) + r(x) e R£xm (2.4)

r ( x) = co ( xi^r BO (2.5)

?(X) = C0 (eXI -A.) l B0 (2.6)

are respectively the slow and fast parts of the asymptotic 

transfer function matrices. In (2.5) and (2.6)

Rnxn , (2.7)

Bo = BrA2 V B2 £ R > (2 ' 8)

(2.9)

and it is assumed that A4 is non-singular
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2.3 Fast-Sampling Error-Actuated Controllers with 

Extra Measurements

Digital control of continuous-time plants requires 

that any measurements used for control are available 

in a discrete time form. Similarly since the plant exists 

in the time continuum it is clear that any control actions 

have to be in either a continuous-time or piecewise 

continuous-time form. Figure (2.1) shows the type of 

digital control used in this thesis and illustrates the 

typical interconnections in the control system. The 

samplers convert the continuous-time output signals y(t), 

the extra-measurement signals r(t), and the command 

input signals v(t) into discrete-time form. The discrete- 

time error signals, e(kT), are processed by the digital 

controller to produce the discrete-time control actions 

u(kT). The control actions are converted into piecewise 

continuous form u(t) by the 'zero order hold' that 

maintains u(t) at u(kT) for T seconds.

The theory presented in section (2.2) can be used 

to investigate the structure of the closed-loop transfer 

function matrices of the class of tracking systems 

incorporating controllable and observable linear 

multivariable plants and fast-sampling error-actuated 

controllers. The plants of such discrete-time tracking 

systems are governed on the continuous-time set 

T = [o, + °°) by state, output and extra-measurement equations 

of the respective forms
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v(t)

I
SAMPLER

v(kT)

e(kT)
CONTROLLER u(kT) ZERO

ORDER
HOLD

u(t)

r(t)

SAMPLER

r(kT) + y(kT)

y(t)

SAMPLER

r(kT) y(kT)

DIGITAL CONTROL WITH EXTRA-MEASUREMENTS

Figure 2.1
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x2 (t)

y(t) =

and

r(t) =

L21

R.

A 12

22

x 1 (t)

x2 (t)

x 1 (t)

x (t)

x2 (t)

0

B

u(t), (2.10)

(2.11)

(2.12)

The fast-sampling error-actuated digital controller 

employed is governed on the discrete-time set

0,T,2T, , } by a control law equation of the

form

u(KT) = f e(KT) (2.13)

where

e(KT) = v(KT) - y(KT) - r(KT) (2.14)

z{(K+l)T} = z(KT) + T e (KT) (2.15)

and v(KT) is the command input vector. It is assumed 

that K , K-. and f are such that the controlled system 

is stable and hence (see Porter and Bradshaw
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lira e(KT) = lim

K+oo

v(KT) - y(KT) - r(KT)

= 0 (2.16)

for arbitrary initial conditions. It follows directly 

from (2.10) that, in any steady state,

lim I Au A12

x(t)

and hence the vector

0 (2.17)

r(t) = MA 11 MA 12 x 1 (t)

x2 (t)

(2.18)

of extra measurements is such that

lim r(KT) = 0

for any M e R

(2.19)

In view of (2.16) and (2.19)

it is clear that the control input vector u(t) = u(KT), 

t e [ KT, (K+1)TVJ, KT e T T , will cause the output 

vector y(t) to track any constant command input vector v(t)

on T T in the sense that

lim { v(KT) - y (KT) } = 0 . (2.20)
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In (2.11) to (2.21), x 1 (t) £ Rn * , x 2 (t) e R ,

*
u(t) £ R , y(t) e R , r(t) e R ,

A 12 21 R £ R

, z(KT) ee (t) £ R, v(t) £ R

2x2
K., £ R , the sampling frequency f

£ R

e 

£x£

+
£ R ,

rank { C 0B } < a (2.21)

rank {(C2+R2 )B>

and

R. M A,.. M A, 2

(2.22)

(2.23)

Furthermore condition (2.2:2) requires that C 2 and A,« 

are such that M can be chosen so that

rank (C2 +R2 ) = rank (C2+MA-, 2 ) (2.24)

It is evident from (2.10) to (2.13) that such 

discrete time systems are governed on T T by state, output 

and extra-measurement equations of the respective forms

x2 ((K+l)T}

-TF. -TF,
a l 2

*ll- f *lKoF l *12- f *lKoF2

z(KT)

x ]_(KT)

x2 (KT)

T I

v(KT) (2.25)
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y(KT) = 0 z(KT)

x2 (KT)

(2.26)

and

r(KT) = 0
z(KT)

x 1 (KT)

X0 (KT)

(2.27)

where

F i • 1 + c ij (2.28)

• [F2 • R2 R (2.29)

*

*

12

22

(
= expj

I

"A ll

.A 21

A 12

A 22.
(2.30)

and "*l"

*2
^ aM

T

= / exp •«

0

^ "A A ~
all a !2

A A 
A21 A 22

• ^

•J "o

B
b •"

dt (2.31)

The transfer function matrices relating the plant 

output vector and the extra-measurements vector to the 

command input vector of the discrete-time tracking systems

governed by (2.25) to (2.27) are respectively



0

- f*2Kl

and

Gr (A)=

0

Rl'

R2'

'
A]

-J- f * K
ll

TF

TF

-*21 +f *2KoF l

21

TF

f *2Ko

(2.32)

TF

n +f *lKoF 2

X V*22 +f *2KoF 2 f *2Ko

(2.33)

and the fast-sampling tracking characteristics can be 

elucidated by using the results of Porter and Shenton |9| 

summarized in section (2.2). In view of (2.30) and (2.31)

it is clear that

lim f
f ->-oo

and

A11

A21

lim f
f ->oo

"*r

_* 2
=

0

B

A 12

A22

(2.34)

(2.35)
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and hence it follows that as f->« the transfer functi on

matrices GV (X) and G^A) assume the asymptotic forms

r y (X) = (2.36)

and

= r r O) (2.37)

where

VA) - Co, Bo- (2.38)

BKQ , (2.39)

Bo' (2.40)

XI -I -A} Ko> (2.41)

A = 
o 0

(2.42)

Bo

°y
'

0

A F A *
-1

•K.

(2.43)

(2.44)

Q. (2.45)

and

A 4 = - (2.46)
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It follows from (2.36), (2.38) and (2.42) that the

set of 'slow' modes Z of the tracking system corresponds

as f->« to the set of poles Z,UZ 0 of F (A) and ? (A),JL ILI r v

where

Z, = {A*C:|AI - I + TK "K, = 0 } (2.47)
J- X/ A/ \J -L

and

7 ~~ -T \ tf ^* * I AT — T T1 A -^'"P A T^1 T^1 1 — ^\ \ / o /i Q ^

and from (2.18) , (2.39), (2.41), (2.52) and (2.53) 

that the set of 'fast' modes Z f of the tracking system 

correspond as f-»-« to the set of poles Zo of
A A
r (X) and r (A), where

<j

»- l t +F2BKol ' ° } ' (2 ' 49)

Furthermore it follows from (2.23), (2.38) , (2.40) 

and (2.42) to (2.45) that the 'slow' output and 

extra-measurement transfer function matrices assume 

the respective forms
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F yU>

and

(2.51) 
and from (2.23), (2.39), (2.41) and (2.46)

that the corresponding 'fast' parts assume the 

respective forms

(2 ' 52)

and

?r (A) = MA F^O WFjjBK^FgBK . (2.53)

Hence in view of (2.50) to (2.53) it is evident 

from (2.36) and (2.37) that as f+°° the output and 

extra-measurement transfer function matrices G (X)
<j

and G (A) of the discrete-time tracking systems assume 

the respective asymptotic forms

(2.54) 

and
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(2 ' 55)

in consonance with the facts that both the set of 'slow' 

modes corresponding to the set of poles Z 2 and the set of 

'fast' modes corresponding to the set of poles Zo 

possibly remain both controllable and observable as f-»•«. 

However the 'slow' output and extra-measurement transfer 

function matrices reduce to the form expressed by (2.50) 

and (2.51) precisely because the set of 'slow 1 modes 

corresponding to the set of poles Z-. definitely become 

asymptotically uncontrollable as f-»-» in view of the 

block structure of the matrices A and B given by 

(2.42) and (2.43).
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2.4 Fast-Sampling Error-Actuated Controllers

The closed-loop transfer function matrices developed 

in section (2.3) can now be utilized to illustrate the 

results reported by Porter and Bradshaw 7 , 8 , 

who considered a class of tracking systems incorporating 

plants governed by state and output equations of the 

forms given by (2.10) and (2.11). Extra-measurements were 

not needed since Porter and Bradshaw I7J , j_ 8J guaranteed 

stable fast-sampling control by assuming that

rank (C2B) = (2.56)

and

- C C (2.57)

where the v. (j=l,..,n-£) are the transmission zeros
cJ

(see Popov £24] ) °^ tne "triple

11 A12

A21 22

0

B

In order to

utilize the theory developed in section (2.3) the error- 

actuated control law given by (2.13) is employed, 

where it is assumed that

M = 0 (2.58)



since no extra-measurements are needed, so that in 

view of (2.23), (2.28) and (2.29)
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C l C2 . (2.59)

It follows from (2.14), (2.16), (2.18) and (2.58) that 

the fast-sampling control law equation given by (2.13) 

will now cause the output vector y(t) to track any 

constant command input vector v(t) on T T in the sense that

lim
K+oo

(v(KT) - y(KT)}= 0 (2.60)

as a consequence of the fact that the error vector

e(t) = v(t) - y(t) (2.61)

still assumes the steady-state value

lim e(KT) = 0
K+oo

(2.62)

It further follows from (2.59) and (2.32) that the 

transfer function matrix relating the plant output 

vector to the command input vector of the discrete-time 

tracking system governed by (2.25), (2.26) and (2.59) 

is



G(X) =

28

0 -TC. -TC,

-I

TI

(2.63)

It finally follows from (2.36), (2.38), (2.39) and the 

simplification of (2.42), (2.43), (2.44) and (2.46) 

by using (2.59), that as f+« the output transfer

function matrix assumes the asymptotic form

r(x) = r(x) (2.64)

where

F(X) = C (XI -I -TA )~ 1TB 
^ ' o n n o o (2.65)

A

A r ~ K ~
A12L2 o

0

A -A r c12L 2 U

(2.66)

(2.67)

Bo =
0

A12C2
-1

C = 
o

(2.68)

(2.69)
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and

= - BKQC2 . (2.70)

It is evident from (2.64), (2.65) and (2.67) that the 

set of 'slow' modes Z of the tracking systems correspond
o

as f-»-«> to the set of poles Z-. U Z 2 of ?(X ) where

= (X£(7 : |Xl £ -I Ji +TKo~ 1K1 | = 0 } (2.71)

and

Z 2 = Ut<7 ; *I n_ 1 -I n_ t -TA11+TA12C2 - 1C 1 = 0 } (2.72)

and from (2.66), (2.70) and (2.75) that the 'fast' 

modes Z- of the tracking systems correspond as
A

to the set of poles Zo of F(X) where

XI £ -I £ +C2BK0 .0} . (2.73)

Furthermore it follows from (2.64) and (2.66) to 

(2.68) that the 'slow' transfer function matrix

r(X) = 0 (2.74)

and from (2.66) and (2.70) that the 'fast' transfer 

function matrix assumes the form

(2.75)
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In view of (2.74) and (2.75) it is clear from 

(2.64) that

lim G(X) = F(x) = r(x) (2.76)
f

in consonance with the fact that the 'fast' modes 

corresponding to the set of poles Zo remain controllable 

and observable as f->«. However the 'slow' transfer function 

matrix F(A) is null because the 'slow' modes corresponding 

to the sets of poles Z-, U Z 2 respectively become 

uncontrollable and unobservable as f-»-« in view of the 

block structure of A , BQ and CQ given by (2.67) 

to (2.69).
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2.5 Fast-Sampling Error-Actuated Controllers and 

Disturbance Rejection

The disturbance rejection properties of the tracking 

systems developed in section (2.4) are now considered. 

It will be shown that the outputs are increasingly 

unaffected by disturbances as f -*•«. This will be achieved 

by considering the plants of the class of discrete-time 

tracking systems that are governed on the continuous 

time set t = [0,+ °°) by the state equation

*

X2 (t)
=

A A 
H ll 12

A A

21 22

x^t) 

x 2 (t)

+

0 

B

u(t)

D.

D

d(t)

(2.77)

and by an output equation of the form given by (2.11). 

In order to utilize the theory presented in section (2.4) 

it is further assumed that d(t) is a constant unmeasureable 

disturbance so that the control law equation given by 

(2.13) can achieve complete rejection. It follows from 

(2.13), (2.15), (2.26), (2.30), (2.31), (2.59), 

(2.61) and (2.77) that such discrete-time disturbance 

rejection systems are governed on T T by state and 

output equations of the respective forms



32

-TC. -TC, z(KT)

x 1 (KT)

x2 (KT)

f * K2o

v(KT)+

0

d(KT) (2.78)

and

y(KT) = 0 C-
z(KT)

X0 (KT)

(2.79)

where it has been assumed that d(t) is of such a 

form that

" A
Q_

A 
2

T

-/v- J exp-

0

'

i

All A 12

A 21 A 22

**

t • dt

Dl

D 2

(2.80)



The transfer function matrix relating the plant output 

vector to the disturbance vector is

GD (X) =

33

0 TC. TC.

-*12+f*lKoC2

0

A.

- f *2Kl

and the fast-sampling characteristics will again be 

elucidated by using the results of Porter and Shenton |_9j . 

It follows from (2.80) that

(2.81)

lim f
f -»-oo

A l
A 2

=

~ °r
D 2

(2.82)

which together with (2.34) and (2.35) indicates that, as 

f^« , GD (A) assumes the asymptotic form

r D (x) (2.83)

where

r D (x) = K 1 K 1 0 o 1
0

D i
(2.84)



AQ is given by (2.67) and A. by (2.70). It follows 

from (2.84) and the structure of A that

and hence

34

-1
r D (x) = 0 = 0 (2.85)

r D (x) = o (2.86)

lim GD (X) =
f -

r D (x) = o . (2.87)

It is therefore clear that as f -> °° the class of

tracking systems developed in section (2.4) is increasingly

unaffected by disturbances.
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CHAPTER 3 

CONTROLLER SYNTHESIS AND STRUCTURE

3.1 Introduction

The extreme example of a 'centralized' controller 

is a controller that simultaneously adjusts all the 

inputs with a change in any one, or more , errors. Similarly 

the extreme example of a decentralized controller is a 

controller that simultaneously adjusts only one input with 

a change in the corresponding error. Clearly a whole 

range of controllers exists between these two extremes. 

It follows from the theory developed in sections (2.3) 

and (2.4) that it may be possible to vary the structure 

of fast-sampling controllers between two such extremes, 

and these extremes are considered in sections (3.3) 

and (3.4).

Finally in section (3.5) a definition of transmission 

zeros is given in the light of the work initiated by 

Popov [24] .
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3.2 Synthesis of Fast-Sampling Controllers

For the closed-loop systems developed in sections (2.3) 

and (2.4) it is clear that tracking will occur in the sense 

of (2.16) and (2.60) provided that

Z U Z--CZT (3.1)
o -L

where D~ is the open unit disc. In view of (2.47) to (2.49) 

and (2.71) to (2.73) the 'slow' and 'fast' modes will 

satisfy the tracking requirement (3.1) for sufficiently 

small sampling periods if the controller matrices K , K,, 

and, where applicable, M are chosen so that

Z ]_ CzT (3.2)

and

Z 2 CZT (3.3)

Z 3 CZT (3.4)

where it has been assumed that M can be chosen so as to 

satisfy the measurement condition (2.24) when extra- 

measurements are needed, or that (2.56) and (2.57) are 

satisfied when extra-measurements are not utilized.

It follows from (2.49) and (2.73) that the set of closed- 

loop poles Zo(=l- a H ,i=l,..,*) are assigned by a suitable choiceo i

of the eigenvalues <J.(i = l,..,M of the matrix ^, where 

either

2 = F2 B KQ (3.5) 

for the closed-loop systems utilizing extra-measurements in

the controller as in section (2.3), or

2 = C2 B KQ (3.6)

when output feedback alone is used as in section (2.4). Hence
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it is clear that the respective controllers are given

either by

KQ = (FgB)' 1 z (3.7)

or by

Ko = (C2 B) " 1 Z (3<8)

and that (3.4) will be satisifed if

a i = 1 (i=l,..,*) (3.9)

which will cause the corresponding closed-loop poles 

to approach the origin as f+». The structure of Z or

K may be chosen within the limits imposed by either F0B o £

or C2B, and is further discussed in the next two sections.

It follows from (2.47) and (2.71) that the set of 

closed-loop poles Z-, ( = l- p .T, i = l,..,£) are assigned by 

a suitable choice of the eigenvalues P. (i=l,..,£) 

of the matrix

RA = KO~ K! ' (3.10)

Hence the controller required to achieve the assignment 

is designed by setting

— V T? /" Q 1 "I '\-. — ft. it. ( J. II ;

where a typical choice for R A is

RA = diag ( PI ,..., P £ } (3.12)
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and (3.2) will be satisfied if

P i > 0 (i=l,..,£) . (3.13)

Such an assignment will cause the corresponding closed- 

loop poles to approach the edge of the unit disc from 

the inside as f -»•« .

The final part of the synthesis is concerned with 

satisfying condition (3.3) and the closed-loop systems 

developed in sections (2.3) and (2.4) are now 

considered separately.

For controllers utilizing extra-measurements, as 

in section (2.3), it follows from (2.48) that the set of

closed-loop poles Z 0 (=l-n -T, j = l,..,n-£) are assigned
£ J

by a suitable choice of the matrix M, since the n- (j=l,..,n-£)
«J

are the eigenvalues of the matrix

(3.14)

Clearly (3.3) will be satisfied provided that

n . > 0, (j = l,..,n-£). (3.15)

Such an assignment will cause the corresponding 

closed-loop poles to approach the edge of the unit 

disc from the inside as f •



39

For the closed-loop systems considered in section 

(2.4) it follows from (2.72) that the set of closed-loop

poles Z 0 (=l+v-T, j=l,..,n-O are not assignable ^ J
since the v . (j=l,..,n-&) are the transmission zeros 

j
which are assumed to satisfy

v. C C" (j=l,..,n-£) (3.16) 
j

and, for the systems considered in sections (2.4) and 

(2.5),are the eigenvalues of the matrix

Ru •

In view of (3.16) it is clear that (3.3) will be satisfied 

and the corresponding closed-loop poles will approach 

the edge of the unit disc from the inside as f •*• °° .

The closed-loop tracking systems developed in section 

(2.4) will always exhibit high accuracy in the face of 

plant parameter variations since as f-*-« it is clear from 

(2.74) and (2.75) that G(A.) is increasingly independent 

of the plant matrix. The same is true of the closed-loop 

tracking systems developed in section (2.3) if the steady- 

state conditions expressed by (2.17) correspond to 

kinematic relationships which hold between the state 

variables as a consequence of the dynamical structure of 

the plant (see Porter and Bradshaw |25| ).



40

3.3 Structures of Fast-Sampling Error-Actuated 

Controllers with Extra-Measurements

It is assumed , in this section, that there are no 

transmission zeros in the right half plane, but that

rank (CJB) < £ (3.18)

and therefore extra-measurements are required in order to 

implement fast-sampling output feedback controllers. It 

follows from (3.7) and (3.8) that the extra-measurements 

cause the previously linearly dependent rows of 

to become independent so that

rank (FgB) = £ (3.19)

and therefore allows a design to be accomplished. Hence 

it follows from (2.49) and (2.73) that extra-measurements 

should only be used to change the dependent rows of (C 2B) 

since this allows the outputs having independent rows to 

retain their fast responses and to produce the best design 

for a given system. This means that the minimum number of 

extra measurements should be used, otherwise slow modes 

will be introduced into the output responses that may have 

been dominated by fast modes. It follows that the structuring 

of the controller falls into two parts, firstly the outputs 

that have extra-measurements added to them are considered 

and secondly the remaining outputs that have no extra- 

measurements added to them are considered. In the remainder 

of this section only the first of the above two parts is
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considered since the second is effectively considered 

in the next section.

It was shown in section (2.3) that as f+<=° the 

slow part of the transfer function matrix of fast-sampling 

controllers utilizing extra measurements is non-zero 

and hence the response of the outputs will be slow. 

However it follows from (2.50) and (2.52) that it may 

be possible to structure M and K so that the outputs 

will be increasingly non-interacting as f->«, if M can

be chosen so that F (A) is diagonal and if C 0F0 ~y z z
A

is such that K can be chosen so that r (A) is diagonal.
•7

It is clear from (2.52) and (3.7) that r (A) will only
J

be diagonal if C2F ~ and I. are diagonal.

These 'centralized1 controllers have the greatest 

structure necessary since further structuring would not 

improve the response of the system and would probably 

cause some deterioration in performance as well as 

incurring additional capital costs. It is clear that the 

cost of the extra hardware to implement these 'centralized' 

controllers is repaid by the responses being least 

interactive.

However it follows from (2.48) that the response 

of the outputs is dominated by the slow modes that are 

increasingly independent of K as f-»-<» , and hence it 

could be argued that K should be designed so that it is
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diagonal . This would usually result in initially

interacting 'fast' responses followed by increasingly

non-interacting 'slow' responses as f-»•<», where it has

again been assumed that M is such that r (A)
•/

is diagonal.

3.4 Structures of Fast-Sampling Error-Actuated Controllers

It is assumed , in this section, that conditions 

(2.56) and (2.57) are satisfied and hence fast-sampling 

error-actuated control is possible. It is clear from 

(2.74) to (2.76) that the response of such systems is 

increasingly dominated by the 'fast' modes as f ->«. 

Furthermore it follows from (2.75) and (3.6) that when Z 

is a diagonal matrix the response of the closed-loop 

systems will be fast and non-interacting as f -»•«. The 

resulting K from (3.8), to produce these responses would 

have the greatest structure necessary, since increasing 

the structure would not improve the response of the system 

and would probably cause some deterioration in performance 

as well as incurring extra capital costs. It is clear 

that the cost of the extra-hardware to implement these 

ideal 'centralized' controllers results in the responses 

of the systems being least interacting. Moving away 

from these controllers reduces the capital cost by 

reducing the size of the communications system until, 

finally, it may be possible to have each output controlled
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by a corresponding input namely 'single-loop' control. 

These ideal 'decentralized' controllers have diagonal 

controller matrices, thus minimizing the capital cost 

although the interaction, indicated by the asymptotic 

transfer function matrix, may have substantially 

increased. Fast control is still maintained though 

since the 'slow' transfer function matrix is null.

However if C 2B is a diagonal matrix then both Y. 

and the controller matrices K , K-, will be diagonal 

and the 'range' of controllers from centralized to 

decentralized will be a single controller. This is a 

special situation where a decentralized controller will 

produce increasingly non-interacting responses as f->•«>.
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3.5 Transmission Zeros

Transmission and decoupling zeros of linear 

multivariable continuous-time systems, governed by state 

and ouptut equations of the respective forms

x(t) = A x(t) + B u(t) (3.20) 

and

y(t) = C x(t) (3.21)

*

will now be considered . It is known (see, for instance, 

Porter and D'Azzo [26J ) that the open loop transfer 

function matrix

G(A) = C (AI n-A)~ 1 B (3.22)

can be expressed in the form

G(A) = U(A) S~ 1 (X) (3.23)

where, in (3.20) to (3.23), x(t) £ Rn , u(t)cRm ,

/ ^ \ r>P A n nxn r> r> nxm ny(t)eR, AeR , BeR , Ce

and S(A)eRmxm . Popov [24] utilized the fact that the

transfer function can be brought into the irreducible form

where

GQ (A) = UQ (A) SQ (A) (3.24)

U(A) = UQ (X) R(A), (3.25) 

S(A) = SQ (A) R(A), (3.26)
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R(X) £ Rmxm , Uo (X)eRpxm , So (X) £ Rmxm , andUQ (X), SQ (X) 

are relatively right prime polynomial matrices. The

set of X that causes the numerator matrix U (X) too
lose rank were identified by Popov |^4J as a 'system of 

invariants', and by Rosenbrock [2?]] as the 'zeros of 

G(X)' and were finally called 'transmission zeros' 

(see , for instance, Pugh J28J ). In addition Rosenbrock

|_27J identified the set of X that causes R(X) to lose 

rank as 'decoupling zeros' and went on to explain 

in detail the relevance of the different types of 

decoupling zeros. Since the vehicle systems considered 

in this thesis are both controllable and observable then 

R(X) will be a constant matrix and there will be no 

decoupling zeros.

If the triple (A,B,C) of controllable and observable 

systems governed by the state and output equations given 

by (3.20) and (3.21) has a transmission zero, v, then 

there exists an initial state, x(o), and inputs u(t)=u(o)e v 

so that only the mode corresponding to the transmission 

zero is excited in the plant. When this occurs the 

outputs will be unaffected by the motions of the plant 

since modes corresponding to transmission zeros lie 

in the kernel of the output matrix and as a result 

are unobservable. The fast-sampling control theory 

presented in section (2.4) causes the relevant closed-loop 

poles to approach transmission zeros as f-»•<», and hence
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leads to the automatic exploitation of the 

unobservability of the corresponding modes

It can be shown that U (A) is a constant matrixo

(I ) for the vehicle cascades considered in chapter four 

and so these systems have no transmission zeros. However 

transmission zeros play an important role in the fast- 

sampling control of trains considered in chapters 

six and seven, and are calculated by finding the 

eigenvalues of R , given by (3.17).
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CHAPTER 4

CASCADES OF VEHICLES 

4.1 Introduction

The two main considerations in the design of an 

automatic controller for vehicle cascades are passenger 

comfort and controller reliability. It is shown in 

this chapter that the application of the techniques 

developed in section (2.3) allows individual mathematical 

treatment of the above criteria. Both centralized and 

decentralized fast-sampling controllers are developed in 

section (4.4) for the linearized mathematical model developed 

in section (4.2) and the properties of the resulting 

closed-loop systems related to the work of other authors, 

summarized in section (4.3). Since both the centralized 

and decentralized fast-sampling controllers cause the 

outputs to closely track the command inputs it is clear 

that the designer has the problem of choosing sensible 

command inputs in order to guarantee passenger comfort. 

Accordingly in section (4.5) the properties of the closed- 

loop systems are investigated with regard to the command 

inputs and the results are both utilized and illustrated 

by the results of digital computer simulations presented 

in sections (4.6) and (4.7). Finally in section (4.8) 

a discussion on the chapter is presented.
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4.2 Mathematical Model of a Vehicle Cascade

The vehicle cascade to be controlled is illustrated 

by figure (4.1) and consists of 'w' vehicles of masses 

m,,m0 ,...,m moving in a rectilinear cascade with absolute
-L fj W

velocities c,(t), c 0 (t),.., c (t) and absolute
J- £ W

displacements d-L (t), d2 (t),.., d (t). The driving force
J_ V.^

applied to the j vehicle of the cascade is F.(t) and 

the corresponding linearized drag force is a.c.(t). The 

absolute acceleration of each vehicle can be expressed 

in the form

/m... (j = l,...,w) (4.1)

and the w-1 relative accelerations are

6c (t) = c.(t) - c (t) (j=l,..,w-l) (4.2) 
J J J -^

where

6c.(t) = 6d.(t) (j=l,..,w-l) (4.3) 
J J

and 5d.(t) (j=l,..,w-l) are the separations 

between the vehicles and can be expressed in the form

6d,(t) = d,(t) - d^dO-L. (j = l,..,w-l) (4.4)(t) = d.(t) - d (t
iJ \j

where L.(j=l,..,w) are the vehicle lengths.
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dj-

l—l —

J

n (t)
mj+l
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« c j( t)

A Vehicle Cascade

Figure 4.1

Equations (4.1) to (4.3) can be combined to describe 

the motion of a vehicle cascade and one such combination 

takes the form

x(t)

A 12

A A 
H21 22

Xj^Ct)

x 2 (t)

-
0

B

u(t) (4.5)



where
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6d2 (t),....,6dw_ 1 (t)J , (4.6)

x2 (t) = (4.7)

(4.8)

21 (4.9)

A12 t 0 (4.10)

A22

-a
1/m.

a 2 a.

a 3 a

a
m

0

- a 2/m2

a a
ni

1
13

a a... i a

0__ . _ _

a- ^3 
m0

w w-l -l - aw aw-l aw
mw mw-l mw-l mw mw

..0

0

a a T1 w _ w-1 _ __
m m , m w w-1 w

(4.11)
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B=

1
1
0

0
1
1
1
1

0

0

0

_1

1
0

1
1
1
1
0

0

0

0

-1
1

0

0

0 .... 0

0 .... 0

0 .... 0
I-1

\ 1.
1x •

1-10

.....0 1 -1

(4.12)

and

u(t) =

where

F 1 (t) F2 (t)
m. m0

u

F (t)w v '
m'w

eR™' 1 , x 2 (t) eRW , u(t) eRW ,

£R (w-l)xw Rwx(w-l)

(4.13)

nwxw , _. nwxw eR and B eR

If the outputs of the system are taken as the 

absolute velocity of the first vehicle and the 

vehicle separation distances then it follows from 

(4.6) and (4.7) that

and

C = 
2

0-

•w-1

0,

,wx(w-l)

0-

0

;RWXW

(4.14)

(4.15)
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in the output equation

y(t) =

x2 (t)

(4.16)

It can be shown that the triple

A A
11 H 12

>

0

B
• C 0 given by (4.8) to (4.12),

(4.14) and (4.15) is both controllable and observable.



53

4.3 Review of the Literature on Vehicle Cascades

Fenton I 3J attempted to assess the progress of 

automatic vehicle guidance and control and suggested the 

need for automatic vehicle systems stems from the large 

numbers of accidents and fatalities resulting from the 

steady growth in the use of automobiles. Fenton [si 

explained the need for radical changes in order to 

prevent the chaos which would result from the unplanned 

growth of present vehicle systems and claimed the 

most frequently proposed solution for achieving automation 

consists of fully automated major roads and non- 

automated minor roads.

Some system for the automatic longitudinal control 

is required in every type of automated vehicle system 

incorporating unconnected vehicles. Levine and Athans 111 

used Optimal Control Theory to control the corrective 

accelerations of each vehicle in a string. The resulting 

controller required full state feedback for each vehicle 

which, they admitted, would impose serious limits on 

their systems. Peppard and Gourishankar £29] also 

used Optimal Control Theory and found that the choice of 

the cost function greatly affected the behaviour of 

the resulting closed-loop system.
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In marked contrast to the limitations of the size 

of system imposed by Optimal Control Theory is the way 

a Modal Controller greatly reduces the size of the 

communications system which was highlighted by Porter 

and Crossley [2] . These modal control laws are simple 

to compute and require only three state variables per 

vehicle.

Stefanek and Wilkie Tsol claim the control strategy 

of several vehicles following a lead car may become 

unstable if the motion of the lead car is perturbed. 

Referring to the work done by Levine and Athans Til , 

they proposed moving cell control in order to overcome 

the problems with the high number of feedback paths 

encountered with Optimal Control Theory.

Bender, Fenton and Olson 131] examine the practical 

application of a vehicle born system, whose performance 

had previously been examined by computer simulations. 

They described their multimode control system and the 

control of a 'string' of vehicles with respect to the 

lead vehicle. In their tests they equipped a saloon car 

and controlled it with respect to a phantom lead car, 

and claimed the entire system gave the effect of additive 

reaction times and hence increased the system capacity.

Whitney and Tomizuka [32J considered the sampled-data 

control of a string of vehicles. This took the form of a 

fixed reference system along the highway in the form of 

information posts'. They claimed this overcame the
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communications problem and also prevented the 'shock- 

wave' phenonomon present in moving reference systems when 

the motion is controlled with respect to a lead 

vehicle.

Rouse and Hoberock 13 3j considered the emergency 

control of vehicle platoons by utilizing a control law 

equation of the form

UK (t) = P l (6cK (t)} + P2 (6dK (t)}-

P3 { v ~ GK (t)

where h^ is the steady state distance between the
IV

vehicles and v is the required velocity of the cascade. 

Rouse and Hoberock I 3 3J stated that a cascade is 'string 

stable' when the amplitudes of the relative velocities 

and displacements are non-growing.

Schladover [34J utilized a non-linear controller 

in order to allow vehicles to entrain and extrain vehicle 

platoons. Schladover |34J stated that linear controllers 

cannot achieve entrainment or extrainment since high gains 

are necessary for accuracy at the final stages of the 

entrainment manoeuvre whilst the same controller would 

produce excessive control actions at the start of an 

entrainment manoeuvre. Both the analogue and sampled- 

data controllers presented were developed through computer 

simulations.



56

4.4 Fast-Sampling Control of Vehicle Cascades

For the linear model of vehicle cascades presented 

in section (4.2) it follows from (4.12) and (4.15) that

rank (C B) = 1 (4.17)

and hence extra-measurements will be necessary in

order to utilize a fast-sampling controller. Accordingly

if

M =

0-

(4.18)

it follows from (2.18) , (4.6) to (4.8) and (4.10) 

that the extra-measurements vector assumes the form

r(t) = o,
8c 1 (to"i ' Sc2 (t)

n 2
*>-!<*>

"w-1 J
, (4.19)

where no extra-measurement is added to the first 

output in order to preserve the one fast response that 

a fast-sampling controller would produce as f-n». Hence 

it follows from (2,12), (2.28) (2.29), (4.14), (4.15)

and (4.19) that

= C (4.20)
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F = diag 
£ n (4.21)

w-l

and from (2.50) and (2.51) that the 'slow' output

and extra-measurement asymptotic transfer function matrices

assume the respective forms

r (A) = 
y

and

r (A) - r v ' —

o

0

0

0

o -

diag

(4.22)

0-

diag

(4.23)

as f ->•«.

It further follows from (2.53), (4.10), (4.12), 

(4.18) and (4.21) that the 'fast' extra-measurement 

asymptotic transfer function matrix assumes the form

as

0 0-

0 diag -
(4.24)
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when

I = I (4.25)

in (3.7) and the corresponding 'centralized' controller 

matrices assume the form

K =

and

1
1
1

1
1

0 0-------

0

-n,
\

I 
\ °

(4.26)

Ki •

PI °

P 2 -P 2 n 1

P 3 " P 3 n l
•i
i 
i
i
i 
i
P — P n 
w w 1

^M

0- - - -- -_0
1

0 i
1

3 2 |
x i
V '1

^ 1
N 1

^ N , 0

-P wn 2 ___ _l-fVw_-L

(4.27)

from (3.7) (3.11), (3.12), (4.12) and (4.21). It can 

further be shown that the 'fast' extra-measurements 

asymptotic transfer function matrix assumes the form 

given by (4.31) as f+« when a decentralized fast- 

sampling controller, whose controller matrices are of the 

form
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KQ = diag {1, -n 1 ,..., (4.28)

and

K = diag {p n , -P 0 n n , . . . , -P n2"! w"w-l (4.29)

is employed. For both the centralized and decentralized 

controllers it can readily be shown from (2.52), (4.12), 

(4.15), (4.21), (4.25) and (4.27) that the 'fast- 

asymptotic output transfer function matrix assumes the 

form

V x) =
1.
A

0

0-

0 (w-l)x(w-l) as f ->•

(4.30)

It is clear from (4.22) and (4.30) that as f->~ 

the responses of the outputs will be increasingly 

non-interacting following step command changes when 

either centralized or decentralized controllers are 

employed. Furthermore (4.22) and (4.3O) indicate that 

the response of the first output is dominated by a 

'fast' mode as f->°°, and the responses of the remaining 

outputs are dominated purely by 'slow' modes as

f -><».

It follows from (4.23) and (4.24) that as

the centralized fast-sampling controller, whose

controller matrices are given by (4.26) and (4.27),
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produces increasingly non-interacting relative velocities 

following command changes since both the 'fast' and 'slow' 

transfer function matrices are diagonal. Hence if 

the centralized controller is employed any command changes 

only causes local changes as f -*•».

It is clear that the 'shock-wave' phenonomon noted, 

but not explained, by Whitney and Tomizuka [32j can be 

identified using the asymptotic transfer function matrices. 

If the decentralized controller, whose controller matrices 

are given by (4.28) and (4.29) is employed then a 

command change will cause changes in the relative velocities 

further down the string since (4.31) is not diagonal. 

Furthermore since (4.31) is the 'fast' transfer function 

matrix it is clear that a command change will cause an 

impulse (for a step command change) to travel rapidly 

down the cascade. It is this impulse or 'shock-wave' 

that carries the information about the command change 

down the cascade, that is transmitted by the controller 

structure if the centralized controller is employed. It 

immediately follows that utilizing the decentralized 

controller produces the 'shock-wave' phenonomon and 

that utilizing the centralized controller avoids the 

presence of 'shock-waves'. It must be emphasized that 

the above 'shock-waves' are purely a fast phenonomon 

since the 'slow' extra-measurements transfer function 

matrix is diagonal.
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Finally it is clear from the structures of both 
the centralized and decentralized controllers and the 
nature of the feedback information that the controllers 
are of high integrity. This is a direct result of the 
fact that information is only taken from the forward 
direction and in the centralized controller is only passed 
back down the cascade. If an input fails and the 
vehicle decelerates non-catastrophically then it is 
clear that the leading vehicles will continue normally 
whilst the trailing vehicles will come to a halt by 
treating the 'failed' vehicle as a new lead vehicle. 
The above comments are not true for the Optimal Controller 
developed by Levine and Athans ll that used full state 
feedback and full controller matrices. Similarly the 
Modal Controller developed by Porter and Crossley J2J 
used information from behind each vehicle which also 
indicates problems with integrity.
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4.5 Entrainment of Vehicle Cascades

The fast-sampling controllers developed in section 

(4.4) can be used to decrease or to increase the 

separations between the vehicles in a cascade. When 

the separations between the vehicles are decreased the 

manoeuvre is known as 'entrainment'. Similarly when 

the separations are increased the manoeuvre is known 

as 'extrainment'. Schladover 34 I claimed entrainment 

and extrainment manoeuvres are not possible when linear 

controllers are employed. However if sensible use 

is made of the command inputs then fast-sampling 

controllers will readily entrain or extrain vehicle 

cascades. Accordingly, in this section, the use of 

command inputs will be considered.

Assuming that step command changes of the form

Vi (KT) = v,.(o) (4.32)

(i = l, . . ,w:K=0, . . ,°°)

are made and that the n •= n ( j = l , . . ,w-l) , then it
J

follows from (4.22), (4.23), (4.30) and (4.31) that as 

f+°° the absolute velocity of the first vehicle and 

the relative velocities approach the forms

= v 1 (0) (4.33)
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and

6cp {(K+1)T> = (l-nT)K nvp+1 (0) (4.34)

(p=l,..,w-l)

when the centralized controller, whose controller 

matrices are given by (4.26) and (4.27) is employed, 

and approach (4.33) and

6cp {(K+1)T) = (l-nT) K nvp+1 (0) + V;L (0)6 {(K-p)T>

P 
• i 6 {(K-p+i-l)T} n v.(0)
i=2

(p=l,..,w-l)
(4.35)

when the decentralized controller, whose controller 

matrices are given by (4.28) and (4.29), is employed 

and where

1 K=p

6 { (K-p)T } =
0

It is clear from (4.2) that

c (t) = c.(t) - 6c.(t)
tj -*" <J «J

and therefore it follows from (4.32) to (4.35) that 

as f->« the absolute velocities approach (4.33) and
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vKj , {(K+1)T> = v (0) - (l-nT) z nv.(O) (4.36) y i=2 X

(p=l, . . ,w-l)

when the centralized controller is employed, and 

approach (4.33) and

Cp+l t(K+l)T} = v x (0) - (1-nT) Z nv i (0)
i=2

P 
- v,(0) Z

P P-J+1
+ Z nv.(O) Z 5{(K-i)T} (4.37)

j=2 J i=l

(p=l, . . ,w-l)

when the decentralized controller is employed. It 

follows directly from (4.36) and (4.37) that the use of 

simultaneous command changes to entrain or extrain a 

cascade of vehicles will rapidly cause velocity 'build-up' 

along the cascade and so result in the need for increasingly 

unrealistic driving force amplitudes. It is clear that 

the only sensible procedure is to apply the command 

changes sequentially so that velocity 'build up' does 

not occur. It further follows from (4.36) and (4.37) 

that a single change of command input will cause all the 

absolute velocities down the cascade to change in a 

similar manner. Also since the driving forces,

Fp (t) = mp cp (t) + a p cp (t),

(p=l,..,w)
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are a function of the absolute velocity and absolute 

acceleration of the vehicles it is clear that a single 

command change will cause changes in the driving forces 

of all the following vehicles in the cascade.

It is apparent from the above analysis that some 

form of hierarchical command input control is desirable 

in order to prevent velocity 'build up' in the general 

situation. However no attempt will be made to present 

an hierarchical command input control scheme, although 

it is clear that the structure of such a scheme should 

maintain the integrity of the fast-sampling controllers 

by only allowing command changes further up a cascade 

to affect the implementation of a command change.

It is now clear that the fast-sampling control theory 

presented in section (2.3) not only allows a high 

integrity digital controller to be designed for a 

cascade of vehicles, but is easily extended to indicate 

how command changes should be implemented in order to 

produce a sensible and complete closed-loop system.
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4.6 Entrainment of a Ten Vehicle Cascade Using a 

Decentralized Fast-Sampling Controller

A digital computer simulation of a ten vehicle 

cascade undergoing entrainment will be presented in this 

section. The entrainment is achieved by employing a 

decentralized fast-sampling controller and command inputs 

that are changed in sequence in order to avoid the 

velocity 'build-up 1 discussed in section (4.5).

If it is assumed that

i = 0.4 . (4.38)

^ = 0.25, (4.39) nir.

a
-2 = 0.3, (4.40) m3

a
-1 = 0.35, (4.41) m4

-^ = 0.15, (4.42) m5

^ = 0.20, (4.43) m6

a y

= 0.22, (4.44)

m8 = °' 18 ' (4.45)
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a 9
-2- = 0.32
m9

(4.46)

and
a

m
10
10

= 0.38 (4.47)

then it follows from (4.5) to (4.12), (4.14), (4.15),

(4.20) and (4.21) that the plant, input, output and

extra-measurement matrices assume the respective forms

e R9x9

12

(4.48)

(4.5O)

= 0 R10x9 (4.5O)

22

-0.4 0 0

-O.15 -0.25 0

0.05 -O.05 -0.3

0

0

0

-0.2 0.2 0.2 0.2

0

0

0

0.05 -0.05 -0.05 -0.35 0

0

0

0

0

0.15 0

0.05 -0.05 -0.05 -0.05 -0.05 -0.2

0

0

0

0

0

0

0

0

0

0

0

0

0.02 -O.02 -0.02 -0.02 -O.02 -O.02 -0.22 0

0

0

0

0

0

0

0

-0.04 0.04 0.04 0.04 0.04 0.04 0.04 -0.18 0

0

0

0

0

0

0

0

0

0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -O.14 -0.32 0 

0.06 -O.06 -0.06 -O.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.381

(4.51)
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B =

1
1
0

0

0

0

0

0

0

0

0

-1
1
0

0

0

0

0

0

0

0

0

-1
1
0

0

0

0

0

0

0

0

0

-1
1
0

0

0

0

0

0

0

0

0

-1
1
0

0

0

0

0

0

0

0

0

-1
1
0

0

0

0

0

0

0

0

0

-1
1
0

0

0

0

0

0

0

0

0

-1
1
0

0

0

0

0

0

0

0

0

-1
1

0

0

0

0

0

0

0

o
0

-1

, (4.52)

Co =

0-

9

0-

:R10x10

(4.53)

(4.54)

R-, = 0 eR10x9 (4.55)

and

R2 = di ro ±2. 10 10 12I VJ , „, * , o , Q
10 10 10 10 10 . .

J v ^ • ou /

when

= 0.3, (1=1,..,9). (4.57)
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A fast-sampling decentralized controller is readily 

synthesized for the ten vehicle cascade from the 

theory developed in section (4.4). Setting

P;L = 2 (i = l, . . ,10) (4.58)

together with (2.13), (4.28), (4.29) and (4.57) 

produces

u1 (KT) = f (e 1 (KT) + 2z ;L (KT)} (4.59) 

and

u.(KT) = f {-0.3e.(KT)-0.6 z.(KT)} (4.60)
tj iJ «J

where

= v 1 (KT) - c 1 (KT) (4.61)

e.(KT) = v.(KT) - 6d.(KT) - 6c (KT)/0.3 (4.62) 
J J J J

= z i (KT) + Tei (KT) (4.63)

(i=l,..,10) 

and

f = 10 samples/second (4.64)
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giving

T = 0.1 s . (4.65)

Since all the closed-loop poles for the sampling 

period given by (4.65) not only lie inside the unit 

disc but are approaching the asymptotic closed-loop 

poles (see table 4.1) it follows that the control law
V

equations given by (4.59) and (4.60) will not only produce 

a stable closed-loop system but also be approaching non- 

interactive control of the outputs.

Simulation of the ten vehicle cascade, when controlled 

in accordance with (4.59) to (4.64) and subjected to 

the changes in command inputs illustrated by figures (4.2) 

and (4.3), produced the results given by figures (4.4) 

to (4.15) when the initial steady-state conditions were 

assumed to be

v 1 (0) = 10 m/s , (4.66)

v± (0) = 7m, (4.67)

c 1 (0) = 10 m/s, (4.68)

6c i (0) = 0 m/s, (i=l,..,9) (4.69)

6di (0) = 7m, (i=l,..,9) (4.70)

u 1 (0) = 4 m/s 2 , (4.71)

u2 (0) = 2.5 m/s2 , (4.72)

U3 (0) = 3 m/s2 , (4.73)

U4 (0) = 3.5 m/s2 , (4.74)

u5 (0) = 1.5 m/s 2 , (4.75)
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u6 (0) = 2 ra/s 2 , 

u? (0) = 2.2 m/s2 

ug (0) = 1.8 m/s 2 , 

u9 (0) = 3.2 m/s 2 , 

u1Q (0) = 3.8 m/s2 , 

e i (0) = 0, (i=l,..,10), 

z 1 (0) = u 1 (0)/20.0 ,

and

z i (0) = -ui (0)/6.0 (i=2,..,10)

where the u.(0) (i=l,..,10) are non-zero because of 

the resistance to motion, and it is assumed that the 

cascade travels over level terrain. The controller will 

cause the outputs to track the command inputs so that 

the separations between the vehicles are reduced sequentially 

from 7m to 4m (see figure (4.3)) and the cascade 

maintains a velocity of 10 m/s throughout the whole 

manoeuvre (see figure (4.2)).
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DECENTRALIZED CONTROLLER

ASYMPTOTIC 
CLOSED-LOOP 

POLES 
T=0.1S

0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0

0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97

0.8, 0.8
0.8, 0.8
0.8, 0.8
0.8, 0.8
0.8
0.8

CLOSED-LOOP 
POLES 

T=0.1S

0.2118*! 0.0192
0.2365±'. 0.0511
0.2758+i 0.0644
0.31591'. 0.0526
0.3400±i 0.0198

0.97041
0.97042
0.97044
0.97045
0.97047
0.97048
0.97049
0.97050
0.97050

0.7092ti 0.0044
0.7161* 0.0102
0.7245±i 0.0098
0.7304* 0.0056
0.7325
0.7428

TABLE 4.1



74

20

15

10

0
0 20 Time(s) 60 

Figure 4.2
80 100

8

6

V I (KT;

0
0 20

Figure 4.3
80 100



Decentralized Controller 75
o

6
6d 1 (KT)

4

(m)

2

0

1 ' , 1 | ' ———— . ——————— I ——————— . ——————

r\
: V :

^^^
• 

•

• 
•

**m 

^ 

^

^

K

•1,1,1,1."

0 20 40 60 80 100
Time(s)

Figure 4.4

8

6
&-~\ ( IT T1 ^QJU.J- ^ JV1 )

4
(m)

2

0

1 ' 1 ' 1 ' 1

'•- \ •

'. \ :
^^^

.

— —

, i , i , i • i •

0 20 « Tine(s) 60 80 100
Figure 4.5

8

6
d9 (KT)

4

2
(m)

0

i i I i --| r- —— i ——— , —— ——

- \ _

\

•
xtN^ —

-

i ;
•

' 1 i 1 , I , 1 ,

0 20 40Time (s)60 80 100
Figure 1.6



0.0

-0.4 -

-0.5
0

uecenrralizecl Controller

20 40 60Time(s)80 
Figure 4.7

76

100

0.1 

0.0

-0.1
6C 5 (KT)
-0.2
(m/s)

-0.3

-0.4

-0.5
0

0.1 

0.0

-0.1
6c 9 (KT)

-0.2

(m/s)
-0.3

-0.4 -

-0.5
0

20

20

40
Figure 4.8

60 m . , ^80Tir?e(s)

60 80

100

100
Figure 4.9



10.5

10.4
C2 (KT)

10.3
(m/s)
10.2

10.1

10.0

Decentralized Controller 77

0

10.8

20

T

Time(s£0 
Figure 4.10

80 100

T

10.6

C 5 (KT)

10.4

(m/s)

10.2

10.0
0

10.8

10.6 h

C 1Q (KT)

10.4
(m/s)

10.2 h

10.0
0

20

20

_L

40 Time(s)60 
Figure 4.11

40
Figure 1 . 12

80

60 80
Tjmp(^)

100

100



2.8

2.7

2.6
(m/s 2 ;

2.5

2.4
0

Decentralizea Controller

20

T

40
Figure 4.1

60 80
Tirr.e(s)

78

100

0

1

20 _ 40
Figure 4.14

60 Time(s 100

0 20 Fi|&e 4.15 60 T ime(«) 80 100



79

4 . 7 Entrainment of a Ten Vehicle Cascade Using a 

Centralized Fast-Sampling Controller

A further digital computer simulation of the 

ten vehicle cascade considered in section (4.6) will 

be presented in this section. The entrainment will be 

achieved by employing a centralized controller and the 

same command inputs as utilized in section (4.6).

The fast-sampling controller is again synthesized 

from the theory developed in section (4.4) and it 

follows directly from (2.14), (4.26), (4.27), (4.57) 

and (4.58) that

u 1 (KT) = f { e 1 (KT) + 2 z^KT) } (4.84) 

and

u.(KT) = f {-0.3e.(KT)-0.6 z.(KT)} 
j j j

+ u. 1 (KT) (4.85)

where e i (KT), z j[ (KT) (i=l,..,10), f and T are

again given by (4.61) to (4.65). Again since all the

closed-loop poles for the sampling period given by

(4.61) not only lie inside the unit disc but are

approaching the asymptotic closed-loop poles (see table 4.2),

it follows that the control law equations given by (4.61)
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to (4.65), (4.84) and (4.85) will not only produce a 

stable closed-loop system but also be approaching non- 

interactive control of the outputs and also approaching 

non-interacting relative velocities.

Simulation of the ten vehicle cascade, when 

controlled in accordance with (4.61) to (4.65), (4.84) 

and (4.85) and subjected to the changes in command inputs 

illustrated by figures (4.2) and (4.3), produced the 

results given by figures (4.16) to (4.27) when the 

initial steady-state conditions were assumed to be given 

by (4.66) to (4.82) and

z. = (u (0) - u.(0)} / 6.0 . (4.86) <j j -*- j

(j=2,..,10)
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CENTRALIZED CONTROLLER

ASYMPTOTIC
CLOSED-LOOP

POLES
T=0.1S

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0, 0.0

0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

CLOSED-LOOP
POLES
T=0.1S

0.2681
0.2712
0.2817
0.2764
0.2850
0.2743
0.2872
0.2377
0.2894* (0.43E-10)

0.97041
0.97042
0.97044
0.97045
0.97047
0.97048
0.97049
0.97050
0.97050

0.7282
0.7265
0.7248
0.7236
0.7188
0.7206
0.7176
0.7163
0.7428
0.7163

TABLE 4.2
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4.8 Discussion

It is clear from figures (4.4) to (4.6) and (4.16) 

to (4.18) that the decentralized and centralized fast- 

sampling controllers entrain the ten vehicle cascade 

considered whilst producing no overshoots in the outputs 

and also little interaction between them. Furthermore 

the centralized controller produces little interaction 

between the relative velocities (see figures (4.19) 

to (4.21)) whilst the decentralized controller does 

produce some interaction (see figures (4.7) to (4.9)) 

between the relative velocities which has been referred 

to as the 'shock wave' affect in sections (4.3) and (4.4) 

It is also evident from figures (4.10) to (4.12) and 

(4,22) to (4.24) that there is no absolute velocity 

'build up' when either of the controllers is utilized 

because of the sequentially implemented command inputs. 

Hence it is clear that utilizing sequentially implemented 

command inputs effectively entrains a vehicle cascade 

whilst not requiring excessive control input amplitudes 

(see figures (4.13) to (4.15) and (4.25) to (4.27)), 

and utilizing the centralized controller eliminates 

the 'shock wave' affects.

Finally it must be emphasized that the singular 

perturbation analysis of the closed-loop transfer function 

matrices has not only predicted all of the above phenonema 

but also indicated how to utilize the command inputs in a 

sensible manner.
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CHAPTER 5 

LONGITUDINAL DYNAMICS OF TRAINS OF VEHICLES

5.1 Introduction

A review of the early work on the problems of train 

control is made in this chapter. Dudley 35 assumed 

trains to be simple vibratory systems and presented 

important results concerning their natural frequencies and 

the propagation of waves. Wikander |36| considered the 

draft gear action of long trains by assuming trains could 

be represented by bars, from which the fundamental 

properties of waves travelling along trains can be 

understood. Expressions for the damped natural frequencies 

are presented in section (5.4) together with the 

expression for the exponentionally decreasing 

amplitude envelope.
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5.2 A Mathematical Model of Trains of Vehicles

The trains to be studied are illustrated by 

figure 5.1 and are assumed to consist of w vehicles 

of masses m. (i=l,..,w) with couplings that are 

represented by linear springs of stiffnesses K. 

(i=l,..,w-l). The trains are assumed to be moving over 

level terrain that has negligible resistance to motion. 

One set of equations that completely describes the 

motion of trains can be expressed in the form

K .. w-1 K
m.

Figure 5.1

m2*x*2 = -K2 (X2-X 3 )+K1 (X 1"X2 }

m3x3 = -K3 (X3~X4 } + K2 (X2~X3 }

(5.1)

m ,x , w-1 w-1 + Kw-2 (xw-2-Xw-l )

m x = K ,(x n -x )w w w-l v w-1 w'
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where the x ± (i=l,..,^) are the displacements of the 

vehicles about their equilibrium positions. Since these 

equations represent a simple vibratory system, putting

x i = x i sin (^ co n t ') (i=l,..,w) (5.2) 

leads directly to an eigenvalue problem of the form

ml "ni x l = K1 (X1-X2 }

K2 (x2 -x3 )

nj XX2 =

Kw-2 (5w-2-5w-l ) + mw-l%j ' Xw-l

(5.3)

_ 2 -
K ,(x ,-x ) + m oo. 'x = 0w-l v w-1 w y w nj w

where the oo . (j = l,..,w-l) are the natural frequencies 

and x. (i=l,..,w) are the amplitudes of the vibrations 

of the vehicles about their equilibrium points.
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5.3 Review of the Literature on the Dynamics of 

Trains of Vehicles

Dudley [35] used the analogous recti-linear case 

to the analysis of the torsional vibrations of identical 

discs equally spaced on a uniform shaft (see, for instance 

Karman and Biot [3?] ), to show that the natural 

frequencies of a uniform train of w vehicles, each of 

mass m and coupled by linear springs of stiffnesses K, 

could be expressed in the form

00

Furthermore Dudley [35] showed that the corresponding 

mode shape for each oo (j = l,..,w-l) could be found from

, - .x. = cos { 2" • ————— f
1 w (5.5)

~t~ Vi
where x. is the amplitude of the vibrations of the i 

vehicle about its equilibrium position. Dudley [_35j 

further showed that the velocity of a wave in a uniform 

train could be expressed in the form

(5.6)
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where

L = length of each vehicle,

w = 2 sin' 1 { » / > (5.7)

and GO is the angular velocity disturbing the system. 

Substituting w . from (5.4) for oj in (5.6) and (5.7) gives
AA J

(5 - 8)

and figure 5.2 illustrates the variation of wavespeed 

at the highest and lowest natural frequencies for 

increasing numbers of vehicles in uniform trains. 

Dudley [35J also considered specific examples of non- 

uniform trains by utilizing Holzer's method (see, for 

instance, Tong [38j ) to solve the resulting form of 

equations (5.3).

Finally it is interesting to note the properties 

of waves reflected from free and fixed ends of elastic 

bars. It has been shown (see, for instance, Tong [38J ) 

that the displacement u a distance x from a reference 

satisfies

~uincident = ureflected (5.9)

at the fixed ends, and

- f — ̂ = ( 5u>>k 8x ; incident ^ 9x ; ref lected

at the free ends. These properties are illustrated 

by figure (5.3).
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1. 1 L
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0.8L

0 .6L A>/ m
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i——I——i——i——i——i « »——i——i

O 20 40 60

A, Lowest Natural Frequency 
B, Highest Natural Frequency

Figure 5.2.

FIXED END FREE END

Figure 5.3.
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5.4 The Open-Loop Poles of a Uniform Train of Vehicles

The open-loop poles of a uniform train of w 

vehicles, of masses m connected by couplings represented 

by linear springs of stiffnesses K and linear dashpots 

of damping coefficients 5, can be found by utilizing 

difference equations. It can be shown that an equation 

describing the motion of the j vehicle assumes the form

+ 6 (x ,(t) - 2x.(t) + x (t)) (5.11) 
j -*• J <J

where x._,(t), x.(t) and x. + ,(t) are the displacements 
j -*- J «J

of the (j-l) th , j th and (j+l) th vehicles from their 

equilibrium positions.

Assuming the motions of the vehicles are of 

the form

x (t) = x eat (j=l,..,w) (5.12)
J J

produces the set of difference equations

0 = x..^ - (2-a 2 )x.. + x j + 1 (5.13)

(j=2,..,w-l)

where
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a = + .- 1
d (5.14)

2 -ma'a = ———
K+6a (5.15)

and the x\ (j=l,..,w) are the amplitudes. It is
<J

known (see, for instance, Karman and Biot [s?"] ) that 

one solution to (5.13) assumes the form

x. = A cos (qj) + B sin (qj) (5.16)

where

cos q = 1 - — 
1 2 (5.17)

In order to include the first and last vehicles in 

(5.13) it is necessary to assume that one extra vehicle 

is added to each end of the train, as illustrated 

by figure (5.5). It can be

K.
m L , w+1

w

6

m
K

-V*A
-IF-

6

K K K

w

-B-
6

m
K
-MU m

K o
— ff-

m o

Figure (5.5)

shown from (5.12) and the equations of motion of the

first and last vehicles in figure (5.5) that
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9 K
0 = x9 - (1-Ox, - —— x

* L K+5a
(5.18)

and
Kw
K+6a

xn
(5.19)

where

K = 
o

V6o

K +6 a o o

moa

(5.20)

and

K = 
w

Kw + V (5.21)

mw+la

It is clear from (5.13) that

0 = xo~(2-a 2 )x-L +x2 (5.22)

and

0 = xw_ 1-(2-a 2 )xw+xw w+1
(5.23)

and comparing these with (5.18) and (5.19), which 

take account of the end conditions, it follows that

xo

K

K+6a
- 1) x = 0 (5.24)
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and

Ji+oa

which are the boundary conditions for j=0 and j=w+l. 

Substituting for x , x, , x and x + , in (5.24) and (5.25), 

by putting j=0,l,w and w+1 in (5.17), leads to the two 

expressions of the form

A(l-cos q) - B sin q = 0 (5.26)

and

A(cos q(w+l) - cos qw)

+ B(sin q(w+l)-sin qw) = 0 (5.27)

when

Kw = KQ = 0 (5.28)

and the train has its original free ends. Equation 

(5.26) and (5.27) have a non-trivial solution for 

A and B when

(cos(q)-l)sinqn = 0 (5.29)

and it follows from (5.17) and (5.29) that either

a = 0 (5.30)
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or

aj = 2 sin ( . ) . (5.31)

Substituting (5.14) into (5.15) and squaring (5.31) 

and equating the two results produces an expression of 

the form

. ) (K + 5y i5u, d )

(5.32)

Equating the real and imaginary parts of (5.32) produces 

the expressions of the form

„ = -2 <£> sin2 (i . f ) (5.33)

and

J"dj • - - » (5 ' 34)

for the real and imaginary parts of the open-loop poles, 

where the ^ . (j=l,..,w-l) are given by (5.4). Finally 

it is clear that the open-loop poles, given by the
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y. - i wd - (j=l,..,w-l), will lie on the locus

jd2 + 2 y (| ) + y 2 = 0 (5.35)

whose bounds are given by

2c + ± r( 4K _ 4 6^ 36) 
m V m m2

as w -»•«> , and the origin since (5.30) produces the rigid 

body solution for all w.
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5.5 Summary

As the number of vehicles in a 'uniform' train 

increases the following characteristics become evident 

The highest natural frequency approaches

and the fundamental (non-zero) natural frequency approaches 

zero. The highest 'shock wave' velocity approaches

and the lowest 'shock wave' velocity approaches

2 L
IT

respectively for the lowest (non-zero) and highest 

natural frequencies.

It follows from figure (5.3) that the reflection 

of a series of waves at the free end of a train could 

result in amplitude build up and , eventually, to 

excessive coupler forces. This is one reason for having 

locomotives at the rear of a train. Another reason was 

suggested by Wikander sel who described a train reaching
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the bottom of a grade where the couplers successively 

go into tension. If at the same point the driver 

increases the tractive effort causing a positive wave 

to travel down the train, whose speed is equal to the 

speed of the train, then the tractive effort wave will 

be stationary and cause additive tension in the couplings 

and finally produce a 'crack-the-whip' effect as the 

last vehicle passes the grade change. Both these 

affects should be alleviated by a properly controlled 

rear locomotive which causes the rear half of the train 

to be compressed (neglecting resistance to motion).
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5.6 Conclusions

The theory presented in this chapter represents 

a successful attempt to understand the motions of 

trains through their open loop properties. Dudley 

and Wikander [36J explained how problems could arise 

in practice due to inexperienced or bad train control. 

It is clear that one solution to the problems outlined 

by Dudley |_35J and Wikander TsGJ is to remove the 

cause by automatically controlling trains. In the 

next two chapters the fast-sampling control theory 

presented in section (2.4) is utilized to develop 

effective speed controllers for trains and so remove 

the cause of possible 'crack-the-whip' affects and 

hence the need for rear locomotives.
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CHAPTER 6

SINGLE LOCOMOTIVE POWERED TRAINS

6.1 Introduction

Two important criteria when considering the 

automatic control of freight trains are those of 

cost and reliability. In this chapter it is found that 

these criteria can be readily satisfied since it is shown 

that trains having single leading locomotives and outputs 

as the speeds of the locomotives belong to the class of 

systems considered in sections (2.4) and (2.5). The 

fast-sampling controller developed in section (6.4) for 

the w-vehicle train model developed in section (6.2) 

is simple and copes with trains of different lengths. 

Three different lengths of train are considered in section 

(6.5) and the results of digital computer simulations of 

the trains travelling over a gradient change presented 

together with the respective closed-loop pole and 

asymptotic closed-loop pole positions. Finally in 

section (6.6) the results presented in section (6.5) are 

discussed.
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6.2 Mathematical Model

In this section a linear mathematical model of 
the w vehicle trains illustrated by figure 6.1 is developed 
for the case where the first vehicles are the only 
locomotives. It is assumed that the vehicles move with 
velocities c i (t) (i=l,..,w) and have masses m.(i=l,..,w) 
and are connected by couplings that can be represented by
linear springs of stiffnesses K. (j=l,..,w-l) and linear«j
dashpots of damping coefficients 6. (j=l,..,w-l) and

*J

where the extensions of the couplings from the free lengths 
are q.(~t) (j=l,..,w-l). It is further assumed that the«J

trains have negligible resistance to motion and the 
disturbances

c (t)w

TRUCK
m w

AAAAt-

cw-l
———— 1

TRUCK
m T w-1

(t)
»•>

•V*

^DF- -ffiH

c 9 (t)
^j

TRUCK 

m3

M*-

•tt-

TRUCK 

m2

^v

H

LOCOMOTIVE 
ml

FIGURE 6.1

take the form of gradient changes and that the outputs 
are the absolute speeds of the locomotives. It follows 
that the state and output equations can be expressed in the 
matrix forms
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x«(t)

A11

*21

A12

A22

x1(t)

x2(t)

0

B

u(t)
D.

d(t)

and

y(t) = x1(t) 
x2(t)

(6.1)

(6.2)

respectively where

x1(t) = V2(t) ,q3(t), Q2 (t)

x2(t) =

cw(t) '

c--(t)

' Cw-2(t) > ,c4(t),c«(t),c9(t)
^r «J £j

I
, (6.3)

(6.4)

11

0,0, .... 0,0,0,-1, 1, 0 ................ 0, 0, 0

0,0, .....0,0,0,0,-1,1, ................. 0, 0, 0

0,0, ...........0,0,0,0,0,0.............. -1, 1, 0

0,0, .... ......0,0,0,0,0,0, ............ 0,-1, 1

o,o ; ..... ..... 0,0,0,0,0,0, ............ o, a , i >
F w ,o, ....>.....,O,O,O,-YW , YW , o,........, o, o, o
-Vi'Vr • • • • - 0 ' 0 ' 0 'Vi» - (WVi} 'Vi' • • • •'°'°' 
o , -ew_2 ,...,o,o,o,o,yw_2 , -(Y^a^va),-.., 0,0,0

0, 0, .....J4 , 0, 0, 0, 0, 0, ....,-(Y4+T4 ),Y4 , 0

0, 0, ......-33 ,?3 , 0, 0, 0, 0,....,Y3-(Y3+T3 ),Y3

0, 0, ...... 0,-B2 ,iT2l 0, 0, 0, ...,0,Y2 ,-(Y2+Y 2 )

(6.5)
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12

L 21

[o, o, 

[o, o,

.o, o, i, o, o, o, ...... o, o,

,0, o,-e 1 , o, o, o, ...., o, o,

A 22

Y

B =

1= H-

D.

0 °.

i w-1

D 2 - [0- l] ,

u(t) =

d(t) = | -g sine w (t) sin6(t)

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)
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= 2w-l, (6.20)

x2 (t)

A P R (2w-2)xl . lx(2w-2) 1x1 
A e H , A21 e R , A e R

Rlx(2w-2) f C e R 1 , D s R (2w-2)xw

D2 e Rlxw , u(t) e R 1 , d(t) e RW , F ][ (t) is

the tractive force of the locomotive and 6.(t) (i=l,..,w) 

are the gradients of the terrain beneath the respective 

vehicles.

It can be shown that the trains are controllable, 

and only observable if the output is taken as a function 

of the absolute speed, as above.
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6.3 Transmission Zeros of Trains with Single Leading 

Locomotives

It will be shown in this section that trains having 

single leading locomotives belong to the class of systems 

considered in section (2.4) when the outputs are taken 

as the speeds of the locomotives, as in section (6.2). 

The transmission zeros of these trains are considered, 

and general expressions developed for the transmission 

zeros of "uniform" trains.

It is clear that (2.56) is satisfied since it 

follows from (6.13) and (6.15) that

rank (CgB) = 1 = *, , (6.21)

and as a result (3.17) can be used to calculate the 

transmission zeros. It follows from (3.17) and (6.14) 

that the transmission zeros are the eigenvalues of the 

matrix A^, given by (6.5). The matrix A.^ is also 

equivalent to the plant matrix of the trains illustrated 

by figure (6.1) when the locomotives become fixed rigid 

bodies since c ;L (t) and therefore x2 (t), given by (6.4), 

are null for such systems. It follows that the reduced 

system assumes the form

Xl (t) = Au x x (t) (6.22)
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where x^t) and An are given by (6.4) and (6.5). 

For the case where

fii > 0 (i=l, . . ,w-l) (6.23)

the systems described by (6.22) are always dissipative 

with the result that their open-loop poles will always 

lie in the left half of the complex plane. It therefore 

follows that the sets of transmission zeros of the original 

trains will also always lie in the left half of the 

complex plane. It is clear that (2.57) is satisfied 

and the methods developed in section (2.4) can be used 

to design a fast-sampling controller for trains having 

single leading locomotives since the resulting closed- 

loop systems will be stable under fast-sampling control.

It is known (see, for instance, Karman and Biot [37j ) 

that when

K± = K , (6.24)

6 i = 6 , (6.25)

mi = m (6.26)

and the locomotives in figure (6.1) are fixed, leaving 

w-1 vehicles free, then the undamped natural frequencies 

can be expressed in the form
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(r=l,2, . . ,w-l)

It follows from (6.27), and a similar analysis to 

the one in section (5.4), that the transmission zeros 

of "uniform 1 trains can be expressed in the form

+
= p - iqr (6>28)

where

pr = -2 (1) sin2^ . f ) (6.29)

and

,4K ( -lH .2 ,2r-l TT v 2 . ,~ Qr^ 
Sin ( T ' 2 } - Pr )• (6 ' 30)

Since the loci of the transmission zeros are of 

the form

2 + 2K p + p2 = 0 (6>31)

6

and are of identical form to that given by (5.35) 

for the open-loop poles and because both are also 

independent of w it is clear that the transmission zeros 

and the open-loop poles of any uniform train lie on the 

same curve for a given pair of damping and stiffness 

coefficients. It follows from (5.33), (5.34) and (6.28) to
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(6.3O) that the dampled-natural frequencies and 

the transmission zeros will be increasingly crowded away 

from the imaginary axis, and will also have the same 

bounds, namely

Pr = -2 (£) (6.32)

and

) (6.33)

as w->°°
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6.4 Fast-Sampling Speed Control of Single Locomotive Trains

It is clear from section (6.3) that trains with 

single leading locomotives belong to the class of systems 

considered in sections (2.4) and (2.5).

As a result the theory from section (2.4) can be 

utilized to develop a suitable algorithm for the speed 

control of such trains by using the mathematical model 

developed in section (6.2).

It follows from (3.8), (3.9), (6.13) and (6.15) 

that the 'proportional' controller constant assumes the 

form

KQ = 1 (6.34)

and from (3.11) and (3.12) that the 'integrator' 

controller constant assumes the form

K-L = p . (6.35) 

Substituting (6.34) and (6.35) into (2.13) 

produces a speed control algorithm of the form

u(KT) = f { e(KT) + pz(KT) } (6.36) 

where

e(KT) = v(KT) - c-KT) (6.37)
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and z(KT) is given by (2.15). It can further be shown 

from (2.75) , (2.76) , (2.87) , (6.13) and (6.15) 

that the asymptotic transfer function matrix that relates 

the output to changes in command and disturbances assumes 

the form

a

r(A)
S f-H».

rD (A) =
" 1

A 0 (6.38)

Hence it is clear from (6.38) that as f+°° the output 

will tightly track step command changes and be completely 

unaffected by step disturbances.

In the next section numerical examples are presented 

that utilize the theory developed in this section. 

These examples will underline the integrity of fast- 

sampling controllers since it will be shown that one 

control algorithm copes easily with trains of 

differing lengths.
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6.5 Five, Ten and Twenty Vehicle Trains

In this section the fast-sampling speed control 

of five, ten and twenty vehicle trains is considered. 

It is assumed that the trains consist of equal masses 

connected by identical couplings, as illustrated by 

figure (6.2).

S/t

TRUCK

m

K

X

c -,( w-l v

TRUCK

m

t) 

_AAAA -AAAA-

X X

c 2 (t)

TRUCK

m

K 
-AAAAVSA-

X.

c x (t)

LOCOMOTIVE

m

w = 5, 10, 20

Figure 6.2.

It follows from figure (6.2), equations (6.9)

to (6.12),

and

m = 1.0 x 105 kg 

K = 2.0 x 106 N/m

6 = 1.0 x 10 Ns/m

(6.39)

(6.40)

(6.41)

that

j = 6 J+1 = 20 (j=l, . . ,w-l) (6.42)
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and from (6.5) to (6.15) that, for the five vehicle 

train, the plant, input and output matrices assume 

the respective forms
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(6.43)

A=

•••

0

0

0

0

20

-20

0

0

0

B =| 0

and

0

0

0

0

0

20

-20

0

0

0

0

0

0

0

0

0

20

-20

0

0

0

0

0

0

0

0

0

2O

-20

0

-1

0

0

0

-1
1
0

0

0

0

1
-1
0

0

1
-2

1

0

0

0

0

1
-1

0

0

1
-2

1

0

0

0

0

1
-1

0

0

1
-2

1

•••

0 1
•^Ml

0

0

0

1
0

0

0

1
-1

ll

(6.44)

(6.45)

C = 0 0 0 0 0 0 0 0 1 (6.46)

and correspondingly similar forms for the ten and 

twenty vehicle trains when the state vector is as given 

by (6.3) and (6.4). Hence the transmission zeros of 

the three triples (A, B, C) for the five, ten and twenty 

vehicle trains can be found using (3.17) and are presented 

in table (6.1). The discrete-time domain equivalents of
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the transmission zeros and the remaining asymptotic 

closed-loop poles are presented in tables (6.2), (6.3) 

and (6.4) together with the closed loop poles for the five, 

ten and twenty vehicle trains when the fast-sampling 

controller given by (6.36) and (6.37) is utilized with

T = O.ls, 0.01s (6.47) 

and

P = 0.05. (6.48)

Since all the closed-loop poles, for the sampling 

periods given by (6.47) , not only lie inside the unit 

disc but are also approaching the asymptotic closed-loop 

poles it follows that the control law equation

u(KT) = f { e(KT) + 0.05 z (KT)} (6.49)

(T = = 0.1, 0.01)

will not only produce a stable closed-loop system 

but also give tight speed control of the five, ten 

and twenty vehicle trains.

Simulations of the five, ten and twenty vehicle 

trains controlled in accordance with (6.37) using T=0.1s, 

over a gradient profile illustrated by figure (6.3), 

produced the results given by figures (6.4) to (6.15) when 

the initial steady state conditions were assumed to be
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q i (0)*0 (6.50)

c.(0) = 10 m/s (j=l,..,w), (6.51)

y(0) = 10 m/s , (6.52)

v(0) = 10 m/s (6.53)

u(0) = 0 (6.54)

6 .(0) = 0 
j

(6.55)
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TRANSMISSION ZEROS

FIVE VEHICLE 
TRAIN

-0. 06±'«1.55
-0.50*: 4.45
-1.17*! 6.75
-1.77*-' 8. 22

TEN VEHICLE 
TRAIN

-0.01361-. 0.739
-0.1211'. 2.19
-0.323*. 3.58
-0.598*. 4. 86
-0.917* 5.99
-1.246*'«6.95
-1.547*-. 7.71
-1.79*58.27
-1.95*8.61

TWENTY VEHICLE 
TRAIN

-0.0032* 0.36
-0.029*1 1.08
-0.080*-. 1.79
-0.155*2.48
-0.251*'. 3.15
-0.368*1 3.82
-0.500*1 4.45
-0.645*'' 5.04
-0.800*'. 5.60

-0.96*1 6.12
-1.12* 6.60
-1.28*'. 7.04
-1.43*1' 7.42
-1.57*'' 7.76
-1.69* 8.05
-1.80*'. 8.29
-1.89*i 8.48
-1.95*58.61
-1,99*1 8.69

TABLE 6.1
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FIVE VEHICLE TRAIN

ASYMPTOTIC 
CLOSED-LOOP 

POLES 
T=0.1S

0.0 
0.995 

0.994*i 0.155 
0.950ti 0.444 
0.883±; 0.675 
0.823±'« 0.822

CLOSED-LOOP 
POLES 

T=0.1S

-0.0138 
0.9949 

0.939* 0.141 
0.834*1 0.387 
0.686*-' 0.540 
0.570*0.609

ASYMPTOTIC 
CLOSED-LOOP 

POLES 
T=0.01S

0.0 
0.9995 

0.9994*' 0.0155 
0.9950*10.0444 
0.9883* 0.0675 
0.9823*1 0.0822

CLOSED-LOOP 
POLES 

T=0.01S

-0.00416 
0.9995 

0.9989* 0.0154 
0.9937±J 0.0441 
0.9859*' 0.0666 
0.9791*-'. 0.0806

TABLE 6.2
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TEN VEHICLE TRAIN

ASYMPTOTIC 
CLOSED-LOOP 

POLES 
T=0.1S

CLOSED-LOOP 
POLES 
T=0.1S

ASYMPTOTIC 
CLOSED-LOOP 

POLES 
T=0.01S

CLOSED-LOOP 
POLES 
T=0.0 IS

0.0 
0.995

0.9986li 0.074 
0.988* 0.219 
0.968±i 0.358 
0.940* 0.486 
0.908* 0.599 
0.875* 0.695 
0.845* 0.771 
0.821±i0.827 
0.805*1 0.861

-0.0138
0.99472 

0.9737* 0.069 
0.9451'- 0.207 
0.892* 0.329 
0.823±i 0.429 
0.748±i 0.505 
0.675*0.558 
0.613*0.593 
0.566* 0.613 
0.537*0.623

0.0
0.9995

0.99986±i 0.0074 
0.9988* 0.0219 
0.9968* 0.0358 
0.9940iJ 0.0486 
0.9908±'« 0.0599 
0.9875* 0.0695 
0.9845* 0.0771 
0.9821* 0.0827 
0.9805* 0.0861

-0.00416
0.9995

0.99963* 0.0074 
0.9984* 0.0219 
0.9960* 0.0356 
0.9927*i0.0482 
0.9890* 0.0592 
0.9852* 0.0685 
0.9817t« 0.0758 
0.9789* 0.0811 
0.977111 0.0843

TABLE 6.3
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ASYMPTOTIC
CLOSED-LOOP

POLES
T=0.1S

0.0
0.995

0.9997* 0.036
0.997* 0.108
0.992* 0.179
0.985*0.248
0.975ti 0.316
0.963* 0.382
0.950*5 0.445
0.936*' 0.504
0.920* 0.560
0.904* 0.612
0.888* 0.660
0.872V, 0.704
0.857* 0.742
0.843±i 0.776
0.831* 0.805
0.820* 0.829
0.811U 0.848
0.8051*. 0.861
0.801* 0.869

TWENTY VEHICLE TRAIN

CLOSED-LOOP
POLES
T=0.1S

-0.0138
0.9944

0.988*1 0.034
0.981* 0.105
0.966*. 0.173
0.9451? 0.238
0.919* 0.298
0.888* 0.354
0.853* 0.404
0.816* 0.447
0.779* 0.485
0.741* 0.517
0.704* 0.544
0.670* 0.566
0.638* 0.583
0.609* 0.600
0.585* 0.607
0.564* 0.615
0.548* 0.620
0.536* 0.624
0.529* 0.626

ASYMPTOTIC
CLOSED-LOOP

POLES
T=0.01S

0.0
0.9995

0.99997±; 0.0036
0.9997H 0.0108
0.9992*? 0.0179
0.9985s? 0.0248
0.9975*0.0316
0.9963*0.0382
0.9950*5 0.0445
0.9936*0.0504
0.9920H0.0560
0.9904**. 0.0612
0.9888*10.0660
0.9872*; 0.0704
0.9857±1 0.0742
0.9843±> 0.0776
0.9831H 0.0805
0.9820*' 0.0829
0.98111* 0.0848
0.9805±» 0.0861
0.9801* 0.0869

CLOSED-LOOP
POLES
TO.01S

-0.00416
0.99949

0.99986-r. 0.00358
0.9996* 0.0108
0.9989i» 0.0178
0.9981H 0.0248
0.9969U 0.0315
0.9955i.' 0.0380
0.9939*; 0.0442
0.9922*; 0.0500
0.9904* 0.0555
0.9886* 0.0606
0.9867* 0.0652
0.9848±i 0.0694
0.9831JJ 0.0731
0.9815U0.0763
0.9800*0.0791
0.97881-' 0.0813
0.97804*. 0.0831
0.9771* 0.0843
0.9766*0.0851

TABLE 6.4
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OPEN LOOP POLE (X) AND TRANSMISSION ZERO (0) 
LOCATIONS FOR THE FIVE VEHICLE TRAIN
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OPEN LOOP POLE (X) AND TRANSMISSION ZERO (0) LOCATIONS 
FOR THE TEN VEHICLE TRAIN
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OPEN LOOP POLE (X) AND TRANSMISSION ZERO (0) 

LOCATIONS FOR THE TWENTY VEHICLE TRAIN
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6.6 Discussion

The responses of the three trains given by (6.4) 

to (6.15) shows the same fast-sampling controller can 

successfully reject a disturbance due to a gradient 

change in each of the trains considered, whilst not 

producing excessive or oscillatory coupler forces. It 

is clear that stable fast-sampling controllers always 

exist since it was shown in section (6.3) that the sets 

of transmission zeros of trains having single leading 

locomotives always lie in the left half of the complex 

plane and are equivalent to the sets of open-loop 

poles of the same trains when the locomotives become 

fixed rigid bodies. It was also shown in section (6.3) 

for uniform trains with the same stiffness and damping 

coefficients that the sets of open-loop poles and the sets 

of transmission zeros lie on the same curve with the 

same bounds (as w-*-«) and are increasingly closer 

together away from the imaginary axis, as illustrated 

by figures (6.16) to (6.18) for the three uniform 

trains considered in this chapter. Since as the sampling 

frequency increases the root loci move from the open- 

loop poles to the closest transmission zeros, and the 

'rigid-body pole' approaches the 'fast closed-loop zero' 

it is clear how the same controller is able to cope with
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all three trains and produce good performance. 

This is a very important factor in the choice of automatic 

controllers because any automatic train controller 

must be insensitive to variations in train lengths 

to be useful for day to day operation. The fast- 

sampling controller presented in this chapter not only 

satisfies this important criterion but also has good 

disturbance rejection properties , good tracking 

properties and is also insensitive to variations of 

the plant parameters.
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CHAPTER 7

MULTI-LOCOMOTIVE POWERED TRAINS

7.1 Introduction

In this chapter trains with a single leading 

locomotive and a second locomotive as the pth vehicle 

are considered. It is shown that such trains belong to 

the class of systems considered in sections (2.4) 

and (2.5) when the outputs are taken as the speeds of 

the leading locomotives and the forces in the (p-l)th 

couplings. A fast-sampling decentralized controller 

is developed in section (7.5) for the w-vehicle train 

model developed in section (7.2). This is an ideal 

decentralized controller since it produces increasingly 

non-interactive control of the outputs as the sampling 

frequency increases. Furthermore the control algorithm 

is simple and effectively controls trains of different 

lengths. The results of digital computer simulations of 

three trains (w=10,20 and 40) travelling over a gradient 

change are presented in section (7.6) together with the 

closed-loop poles and asymptotic closed-loop poles. The 

results presented in section (7.6) are discussed in 

section (7.7). A review of the literature on freight 

trains and the control of freight trains is made in 

section (7.4). The fast-sampling control of a one- 

hundred vehicle train is considered in section (7.8)
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and the results of digital computer simulations presented 

for the case where it travels over undulating terrain. 

Finally in section (7.9) the conclusions to the 

chapter are presented.
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7.2 Mathematical Model

A linear mathematical model of the w-vehicle 

trains illustrated by figure (7.1) is developed in this 

section, for the case where the first and the pth 

vehicles are locomotives. It is assumed that the vehicles 

are moving with velocities c.(t) (i=l,..,w) and have masses 

m^ (i=l,..,w) and are connected by couplings that can be 

represented by linear springs of stiffnesses

K. (j=l,..,w-l) and linear dashpots of damping coefficients j
5 -j (j = l,..,w-l) and where the extensions of the

«J

couplings from the free lengths are q.(t) (j=l,..,w-l).
j

It is further assumed

mw

t)

TRUCK

Tw-1 t)

mw-1

TRUCK

t) cp (t)

TRUCK LOCOMOTIVE TRUCK TRUCK LOCOMOTIVE

Figure 7.1

that the trains have negligible resistance to motion 

and the disturbances take the form of gradient changes 

and that the outputs are the absolute speed of the first 

locomotive and the force in the (p-l)th coupling. It



follows that the state and output equations can be 

expressed in the matrix forms given by (6.1) and (6.2) 

respectively, where
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x 1 (t) = qw-i (t) ' qw-2 (t) "----'Vi (t) 'y t)>qp-i (t) '
qp_ 2 ( t),...., q 2 (t),q 1 (t),cw(t),cw_.L (t),cw_ 2 (t) 

••••V2 (t) >Vl (t) ' Cp-l (t) ' Cp-2 (t) '"" C3 (t) '

x0 (t) =

B = I

cp (t)

(7.1)

(7.2)

(7.3)

C-, =

A 11

0 0 . 

0 0 .

0

000 0 ....00000 ....

OOK .. 0....00000p-1

.000 0 ... 00

.005 , 0 ... 0 0p-1

0

-6
p-1 -

A,

A, = 0 e R (w-l)x(w-l)

(7.4)

(7.5)

(7.6)

A2 =

-1, 1, 0, , 0, 0, 0, 0, ..., 0, 0 

, 0, 0, 0, 0, ..., 0, 0

0, 0, 0, ...... -1, 1, 0, 0, ...... 0, 0
0, 0, 0, ...... 0,-1, 0, 0, ...... ,0, 0

0, 0, 0, ...... 0, 0, 1, 0, ...... ,0, 0

, o,
0, 0, 0, ...... 0, 0, 0, 0, ...... 0,-1

e R (w-l)x(w-2)
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8

-8

0,

0.

o,
o,

o,
o,

o,w ' '

w-r ew-i' ••
' Sw-2' • •

0, ......

0, .......

0, .......

0, .......

0, .......

...., 0, 0,

...., o, o,

...., 0, 0,

*' Bp+2' °'

., 0, 0

., o, o,

..,0, 0,

0, 0, ... ., 0, 0

0, 0, . ..., 0, 0

0, 0, . . .., 0, 0

0, 0, ....... 0, 0,

r o. o, ....... o, o,
Q (3 HO, "Pp-l'pp-l* • • • • • u ' u >

0, 0 ,....., 80, 0
o

f~\ ^^ o Q
' 2' 2

R(w-2)x(w-l)

A4 =

"V V °' 0,0,0,0,......, 0, 0

0,0,0,0,......, 0, 0

0 Y w_2 , -(YW_2+YW_2 ),..., 0,0,0,0,......, 0, 0

0, 0-,0,..,-(Yp+2+Yp+2 ),Yp+2 , 0, 0, 
0, 0,0,.., Yp+1 ,-(Yp+1^Yp+1 ),0, 0,

0, 0, 0,.., 0, 0, - 

0, 0, 0,.., 0, 0,

, 0,

Yp_2 , -(Yp_2+Yp_2 ),

0, 0

o, o
.. 0, 0 

.. 0, 0

0, 0, 0, ....... 0, 0, 0, 0, ....-(Y3+Y3 ), Y3

0, 0, 0, ....... 0, 0, 0, 0, ..... Y2 , -(Y2+Y2 )

••M*

R (w-2)x(w-2)
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L 12
0 0....01-1 0..... 00000....0 ~ , v , 0p+1 p-1

0 0....00 0 0..... 01000...0 0 0 0

0

0

0

7 (7.7)

21
o...o o o o o O...Q - B- o o o . . .

0...00-6 TOO...O 0

..0 0 0 0....0 Y 

.. 0 v_ 7, 0 .... 0 0

(7.8)

A22

D l =

o

vv
0

I

0

w-2

(7.9)

(7.10)

= o

d(

(7.11)

t) = f-gsinew (t), . . . ,-gsine p+1 (t),-gsine p _ 1 (t), . .

v
.... -gsine 2 (t), -gsine 1 (t),-gsine p (t)l (7.12)

u(t) = F(t)

Fp (t)/mp

(7.13)

x-L (t) e R
2w-3

A e R (2w-3)x2

... X 2 (t) e

A 21 e R

n ll 

2x(2w-3)

e R 

A

(2w-3)x(2w-3) 

2x2
22

R'
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D (2w-3)xw _ r>2xw J/.UN T-.W R v D e R dt e Rr> J/.UN T-. ,.^ ^ e R , d(t) e R , u(t) e R ,

2x(2w-3) 2x2 2x2
t } ^ e «• . Jb e K

Yj and Y (j=l,..,w-l) are given by (6.9) to (6.12), 

n is given by (6.20), F ][ (t) and F (t) are the tractive 

forces of the two locomotives and 6.(t) (i=l,..,w) are 

the gradients of the terrain beneath the respective 

vehicles.

It can be shown that the two locomotive powered 

trains are controllable and observable when the outputs 

are the speed of the first vehicle and the force in 

the coupler in front of the second locomotive, as 

considered above.



140

7.3 Transmission Zeros of Trains with Two Locomotives

It will be shown in this section that trains having 

locomotives as the first and pth vehicles belong to 

the class of systems considered in section (2.4) when 

the outputs are taken as the speeds of the first locomotives 

and the forces in the (p-l)th couplings.

It is clear that (2.56) is satisfied, since it 

follows from (7.3) and (7.5) that

rank = 2=1 (7.14)

and as a result (3.17) can be used to calculate the 

transmission zeros. It follows from (3.17) that the 

transmission zeros are the eigenvalues of the matrix 

(A..-,-A 0 C0 C, ) . Using the transformation matrix
11

T =

Iw-p

0

0

0

0

0

Vi
0

0

w-p

0

0

0

0

0

vl
€ R(2w-3)x(2w-3)

(7.15)

and (7.4) to (7.7) produces the new matrix

T 1 (A 11~A 12 C2 C 1 )T 1

A A, A a b c

0

0

e R

-K . p-1 0

0

(2w-3)x(2w-3
(7.15)
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where

Aa =

0 - ——— ------- _ 0 
i • 
i ii
i i i i
!

0 0----------0

B 0 -- -- - 0
w

1

-Vi Vi
V 1

; x *\ !
1 v ' ' '1 \ *; \ ••?

O _ _ _ r\ o oL ° ° ~ 6P+i 3p+i

-i i o o-------"-° ?
0-110 i
'«•»"*- '

! " ^ - ^ J - - ° ^~^^ -i~" i
A ---- -----0 -1o •- - - -

Y ~ Q-------0
w w

V * »

o 
^.o

'\ Yp+2 
0---- ------ OY -, -(Y -,+Y" n)

r p+l v r p+l r p+l

R 2(w-p)x2(w-p) (7.17)

0 e R

K -,/6 -lx

0 e R

Vi/5P-i

R2(w-p) (7.18)
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It follows directly from (3.17) and (7.16) that the

set of transmission zeros is comprised of -K ,/6r p-1 p-1

the eigenvalues of Aa given by (7.17) and the eigenvalues 

of Ad given by (7.20). Since the structures of Aa and Ad 

are identical to the structure of A,, given by (6.5), 

the set of transmission zeros can be pictured as comprising 

of the transmission zeros of two 'subtrains' with an 

additional transmission zero for the connecting coupling. 

Furthermore since it was shown in section (6.3) that the 

transmission zeros of single locomotive powered trains 

always lie in the left half of the complex plane it is 

clear that the transmission zeros of each 'subtrain' 

will also always lie in the left half of the complex plane. 

It follows directly that the sets of transmission zeros 

of two locomotive powered trains always lie in the left 

half of the complex plane when the outputs are the speeds 

of the locomotives and the forces in the (p-l)th 

couplings. It is clear that (2.57) is satisfied and a 

fast-sampling controller can be designed for the two 

locomotive trains of section (7.2) by employing the 

theory developed in section (2.4).

For any uniform trains it is clear that the sets 

of open-loop poles and the sets of transmission zeros 

of each 'subtrain' will lie on the same curve for any 

number of vehicles and given stiffness and damping 

coefficient*since the open-loop poles assume the form given 

by (5.33) and (5.34) and the transmission zeros of each
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'subtrain' can be expressed in the form given

by (6.28) to (6.30) . Finally it is clear that when

the second locomotive is the (^ + l)th vehicle then£

the sets of transmission zeros for each subtrain 

are identical, since the train has been split into 

two identical trains.
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7.4 Review of the Literature on Unit Trains

'Unit' trains, or extra-long freight trains, are 

used on long overland tracks in North and South America, 

South Africa and Australia for hauling bulk commodities. 

The increasing use of unit trains is a direct result of 

their economy of operation. Unit trains are more economic
*

to use because they require fewer staff to operate them, 

less manoeuvering and only single as opposed to double 

tracks.

Taylor, Tausch, Whitney and Kelly [Y] describe the 

concept of using unit trains by outlining examples used 

in the U.S.A.. The problems associated with coupler 

failure when operating trains over gradients is 

mentioned and one solution of limiting train sizes to 

suit particular routes is covered. The use of train 

and regenerative brakes is also detailed.

Ashman fs] describes the conventional methods of 

controlling locomotives in a train and goes on to describe 

a radio controlled system, 'Locotrol', that allows either 

independent control or duplication of the control applied 

to the leading locomotive(s) to be applied to other 

locomotives in the train. Parker [42j describes the growth 

in the use of 'Locotrol ; in America, Brazil and Australia, 

and also gives details of the problems and solutions of
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using remote radio controlled locomotives in tunnels.

Peppard, McLane, Sundareswaran and Bayoumi [6J , 

applied linear optimal control theory to two and three 

vehicle models, illustrated by figure (7.2), in order to 

design speed controllers for trains with multiple 

locomotives. The controllers for the two models were 

then assumed to be decentralized controllers for unit 

trains. It is clear, at the outset, that their 

'decentralized' controllers were not derived on the basis
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6900 SLUG
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LOCO 
12100 SLUG
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6900 SLUG

Figure 7.2

of decentralized control theory or even their own train 

model and as a result required extensive computer 

simulations to determine the cost function. Further 

computer analysis was required to assess the affects of 

their assumptions concerning some of the states used for 

feedback and finally further computer simulations were 

required to implement their analogue controller using 

digital equipment.
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7.5 Fast-Sampling Controllers for Trains 

With Two Locomotives

It is clear that trains with locomotives as the first 

and pth vehicles belong to the class of systems considered 

in sections (2.4) and (2.5) since it was shown in section 

(7.3) that transmission zeros always lie on the left half 

of the complex plane and that

rank = I = 2 . (7.21)

As a result the theory from section (2.4) is now utilized 

to develop a suitable algorithm for the control of two 

locomotive powered trains by using the mathematical model 

developed in section (7.2).

It follows from (7.3) to (7.5), (3.8) and (3.9) 

that the 'proportional' controller matrix assumes the 

form

0

K = 
o

0
-1 p-1

(7.22)

and from (3.11) and (3.12) that the 'integrator' controller 

matrix assumes the form

0

0 - p2 /6 p-l

(7.23)
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Substituting (7.22) and (7.23) into (2.13) yields the 

control algorithm

u(KT) = f
e 1 (KT)

/-e2 (KT)/6 p_ 1- p2 z2 (KT)/6 p_ 1

where

e 1 (KT) = v 1 (KT) -

e 2 (KT) = v2 (KT) - Fp_ 1 (KT),

F 1 (KT) is the force in the (p-l)th coupling and 

z-L (KT) and z2 (KT) are given by (2.19). It can further 

be shown from (2.75), (2.76), (2.87) , (7.3) and (7.5) 

that the asymptotic transfer function matrix relating 

the outputs to the command inputs and the disturbances 

assumes the form

r(A) ,
1
A

0
mm —

o
1
A

0

0

0

0

(7.24)

(7.25)

(7.26)

(7.27)

as f->°°, and hence as the sampling frequency increases the 

outputs will be increasingly non-interacting when the 

system is subjected to changes in command and be increasingly 

unaffected by disturbances.

In the next section numerical examples are presented 

that utilize the theory developed in this section. These
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examples will again underline the integrity of fast 

sampling controllers since it will be shown that one 

control algorithm copes easily with trains of different 

lengths.
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7.6 Ten, Twenty and Forty Vehicle Trains

In this section the fast-sampling control of ten, 
twenty and forty vehicle trains with leading locomotives 
and a second locomotive as the sixth, eleventh and 
twenty-first vehicle respectively is considered. It is 
assumed that the trains consist of equal masses connected 
by identical couplings as illustrated by figure (7.3).
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Figure 7.3

It follows from figure (7.2) and equations 

(6.9) to (6.12) that

= 20 (j=l,..,w-l) (7.28)

and

Y-j = Y-j+i = !
«J \J

(7.29)



151

and from (7.3) to (7.8) that, for the ten vehicle train, 

the plant, input and output matrices assume the 

respective forms

A =
A.

A, A

B = 0000000000000000010

0000000000000000001

and

C =
0000000000000000010 

OOOOK000000006000 0-6

(7.30)

(7.31)

(7.32)

where

A I = 0 e R9x9

A = 
2

-1

0

0

0

0

0

0

0

0

1
-1

0

0

0

0

0

0

0

0

1
-1

0

0

0

0

0

0

0

0

1
-1
0

0

0

0

0

0

0

0

0

1
-1

0

0

0

0

0

0

0

0

1
-1
0

0

0

0

0

0

0

0

1
-1

0

0

0

0

0

0

0

0

1
-1

0

0

0

0

0

0

0

0

1

0

0

0

1
-1

0

0

0

0

(7.33)

(7.34)
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A 3 =

20 oe o o oooo
-2O 20 0 0 0 0000 

0 -20 20 0 0 0000 

0 0 -20 20 0 0000 

0000 -20 20 0 0 0 

00000 -20 20 0 0 

000000 -20 20 0 

00 0 0 000 -20 20 

00 0 0 000 0 -20

000 -20 20 0 0 0 0

(7.35)

and

A, =

-1
1
0

0

0

0

0

0

0

0

1
-2

1

0

0

0

0

0

0

0

0

1
-2

1

0

0

0

0

0

0

0

0

1
-2

0

0

0

0

0

1

0

0

0

0

-2

1

0

0

0

1

0

0

0

0

1
-2

1

0

0

0

0

0

0

0

0

1
-2

1

0

0

0

0

0

0

0

0

1
-2

1

0

0

0

0

0

0

0

0

1
-1
0

0

0

0

1
1
0

0

0

0

-2

(7.36)

and corresponding similar forms for the twenty and 

forty vehicle trains and where the state vector is given 

by (7.1) and (7.2). Hence the transmission zeros of the
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three triples (A,B,C) of the ten, twenty and forty 

vehicle train can be found using (3.17) and are presented 

in table (7.1). The discrete-time domain equivalents 

of the three sets of transmission zeros and the remaining 

asymptotic closed-loop poles are presented in tables 

(7.2), (7.3) and (7.4) together with the closed -loop 

poles for the two sampling periods given by (6.47) 

and where

P 1 = P 2 = 0.05 (7.37)

in (7.23) to give K-.. Since all the closed-loop poles, 

for the periods given by (6.47) , lie inside the unit 

disc it follows that the control law equations formed 

from (6.47), (7.22) to (7.24) and (7.37), namely

u 1 (KT) = f { e x (KT) + 0.05 z-^KT) } (7.38) 

and

u2 (KT) = -f { e 2 (KT) + 0.05 z 2 (KT)} / 6 , (7.39)

where 6 = 6 given by (6.41), will produce stable 

closed-loop systems. Simulations of the ten, twenty 

and forty vehicle trains when controlled in accordance 

with (7.38) and (7.39), using T = 1 /f = 0.1 s over 

a gradient profile illustrated by figure (6.3), produced 

the results given by figures (7.4) to (7.21) when the 

initial steady state conditions were assumed to be
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TRANSMISSION ZEROS

TEN VEHICLE 
TRAIN

-0.06±il.55
-0.50*i4.45
-1.17*; 6.75
-1.77U 8.22

-20

-0.06±i 1.55
-0.50*i 4. 45
-1.17*i 6.75
-1.774i 8.22

-20

TWENTY VEHICLE 
TRAIN

-0.0136ti 0.739
-0.1211; 2.19
-0.323*; 3.58
-0.600U4.86
-0.917*.' 5. 99
-1.250*« 6.95
-1.550U7.71
-1.79*« 8.27
-1.95*'« 8.61

-20

-0.0136±i0.739
-0.12111' 2.19
-0.323±i3.58
-0.600*i4.86
-0.917U5.99
-1.250*«6.95
-1.550±t7.71
-1.79»i8.27
-1.95U8.61

-20

FORTY VEHICLE 
TRAIN

-0.0032±-i0.36
-0.029^; 1.08
-0.080*i 1.79
-0.155*2.48
-0.251** 3. 16
-0.368U3.82
-0.500*i4.45
-0.645f. 5.04
-0.800ti5.60
-0.96*V6.12
-1.121\6.60
-1.28*« 7.04
-1.43*1 7. 42
-1.57*'«7.76
-1.69ti 8.05
-1.80*«8.29
-1.89*i 8. 48
-1.95t«8. 61
-1.99*'«8.69

-20
-0.0032±'«0.36
-0.029ii 1.08
-0.080*i 1.79
-0.155±i2.48
-0.251U3.16
-0.368±i3.82
-0.500±i 4.45
-0.645U5.04
-0.800±i5.60
-0.96*'«6.12
-1.12*«6.60
-1.28*i7.04
-1.43*« 7.42
-1.57*\ 7.76
-1.69±« 8.05
-1.80*i8.29
-1.894i8.48
-1.95±;8.61
-1.99*i8. 69

-20

TABLE 7.1
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TEN VEHICLE TRAIN

ASYMPTOTIC
CLOSED-LOOP

POLES
T=0.1S

0.0
0.9950

0.994±«0.155
0.950* 0.444
0.883*'. 0.675
0.823*10.822
0.0, -1.0
0.9950

0.994*.; 0.155
0.950ii 0.444
0.883*'. 0.675
0.823* 0.822

CLOSED-LOOP
POLES
T=0.1S

-0.0138
0.9948

0.957*; 0.162
0.840* 0.405
0.686«*. 0.550
0.573* 0.611
-.196«'« 0.833
0.9955
0.964U 0.129
0.857* 0.385
0.699*50.543
0.569*i 0.612

ASYMPTOTIC
CLOSED-LOOP

POLES
T=0.01S

0.0
0.9995

0.9994*0.0155
0.9950*'. 0.0444
0.9883*50.0675
0.98231-0.0822
0.0, 0.8
0.99950

0.999411 0.0155
0.9950* 0.0444
0.9883* 0.0675
0.9823U 0.0822

CLOSED-LOOP
POLES
T=0.01S

-0.00416
0.9995

0.9992S'. 0.0145
0.9941* 0.4340
0.9862J5 0.0662
0.9792*'. 0.0805
0.1097, 0.772
0.99951
0.9990*50.0164
0.9937U 0.0448
0.9859i'« 0.0670
0.9791*; 0.0807

TABLE 7.2
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ASYMPTOTIC 
CLOSED-LOOP 

POLES 
T=0.1S

CLOSED-LOOP 
POLES 
T=0.1S

ASYMPTOTIC 
CLOSED-LOOP 

POLES 
T=0.01S

CLOSED-LOOP 
POLES 
T=0.01S

0.0
0.9950

0.9986±; 0.074 
0.988*i0.219 
0.968±v0.358 
0.940H 0.486 
0.908±i0.599 
0.875±<0.695 
0.845*«0.771 
0.821*5 0.827 
0.805*i 0.861 

0.0, -1.0 
0.9950

0.9986±'«0.074 
0.988±i 0.219 
0.968*-'0.358 
0.9404". 0.486 
0.908*. 0.599 
0.875* 0.695 
0.845±'. 0.771 
0.821* 0.827 
0.805^5 0.861

-0.0138
0.99455 

0.984*'. 0.080 
0.952*; 0.217 
0.896±i0.339 
0.825*''0.437 
0.748* 0.511 
0.675U0.562 
0.613±i 0.595 
0.565*.'. 0.614 
0.537±i 0.624 
-.196U0.833 
0.99556 

0.9855±l 0.063 
0.958±'« 0.202 
0.904il 0.327 
0.833*! 0.429 
0.755*; 0.506 
0.681*: 0.560 
0.616* 0.594 
0.567*' 0.614 
0.537*'' 0.624

0.0 
0.99950

0.99986* 0.0074 
0.9988*; 0.0219 
0.9968s''0.0358 
0.9940i« 0.0486 
0.9908*1 0.0600 
0.9875*5 0.0695 
0.9845*'. 0.0771 
0.9821* 0.0827 
0.9805±; 0.0861 

0.0, 0.8 
0.99950

0.99986*1 0.0074 
0.9988*! 0.0219 
0.99681' 0.0358 
0.9940*'. 0.0486 
0.9908*; 0.0600 
0.9875*i 0.0695 
0.9845*; 0.0771 
0.9821*1 0.0827 
0.9805*' 0.0861

-0.00416 
0.99950

0.99977H 0.0069 
0.9985*10.0214 
0.9960* 0.0360 
0.9927*; 0.0485 
0.9890* 0.0595 
0.9851U0.0687 
0.9817±', 0.0759 
0.9789±". 0.0812 
0.977UJ 0.0843 
0.1097, 0.772

0.99951
0.9997* 0.0078 
0.9984*. 0.0223 
0.9961*. 0.0352 
0.9929*; 0.0479 
0.9891f. 0.0590 
0.9853*'. 0.0684 
0.9818*; 0.0758 
0.9789*; 0.0811 
0.9771*' 0.0843

TABLE 7.3
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FORTY VEHICLE TRAIN

ASYMPTOTIC 
CLOSED- LOOP 

POLES 
T=0.1S

0.0
0.995

0.9997±i 0.036
0.997*>;0.108
0.992±« 0.179
0.985*10.248
0. 975-*iO. 316
0.963*10.382
0.950*1 0.445
0.936*'. 0.504
0.920*1 0.560
0.904±t 0.612
0.888*'» 0.660
0.872H 0.704
0.857*; 0.742
0.843*10.776
0.831*50.805
0.820** 0.829
0.811**. 0.848
0.805** 0.861
0.801U 0.869

0.0, -1.0
0.995

0.9997*1 0.036
0.997*s 0.108
0.992* 0.179
0.985* 0.248
0.975±J0.316
0.963i; 0.382
0.950V. 0.445
0.936*10.504
0.920+; 0.560
0.904*50.612
0.888*1 0.660
0.872*50.704
0.857*; 0.742
0.843±» 0.776
0.8311'. 0.805
0.820*50.829
0.811U 0.848
0.805*'. 0.861
0.801H0.869

CLOSED- LOOP 
POLES 

T=0.1S

-0.0138
0.99407

0.9936*i 0.039
0.987*'. 0.102
0.973*50.170
0. 9521'. 0.236
0.925*i 0.297
0.894*1 0.353
0.859*\ 0.403
0.82115 0.448
0.783*i 0.486
0.745*'. 0.518
0.708*< 0.545
0.672*1 0.567
0.640*; 0.584
0.611*' 0.598
0.586*; 0.608
0.565*10.615
0.548ii 0.621
0.536* 0.624
0.529*1 0.626
-.196* 0.833

0.99562
0.9935±i 0.030
0.985±;0.110
0.970ii0.178
0.949*. 0.243
0.921*! 0.303
0.890*-, 0.359
0.854i; 0.408
0.817*50.451
0.779i50. 488
0.741*J0.521
0.704ii 0.547
0.670*-«0.568
0.638SI 0.585
0.609t(. 0.598
0.585U0.608
0.564±I0.615
0.548±'t0.621
0.536*- 0.624
0.529±.* 0.626

ASYMPTOTIC 
CLOSED-LOOP 

POLES 
T=0.01S

0.0
0.9995

0.99997*; 0.0036
0.9997H 0.0108
0.99922'. 0.0179
0.9985*'. 0.0248
0.9975* 0.0316
0.9963*-. 0.0382
0.9950*'. 0.0445
0.9936* 0.0504
0.9920* 0.0560
0.9904*i 0.0612
0.9888*'0.0660
0.9872*'. 0.0704
0.98571". 0.0742
0.9843*i 0.0776
0.983U' 0.0805
0.9820*'. 0.0829
0.9811*'- 0.0848
0.9805* 0.0861
0.9801** 0.0869
0.0, 0.8
0.9995

0.99997*; 0.0036
0.9997*; 0.0108
0.9992*.; 0.0179
0.9985*'. 0.0248
0.9975*10.0316
0.9963*5 0.0382
0.9950ti 0.0445
0.9936*'. 0.0504
0.9920*10.0560
0.9904ii 0.0612
0.9888*; 0.0660
0.9872H0.0704
0.98571.' 0.0742
0.9843* 0.0776
0.9o3i±i 0.0805
0.9820*i 0.0829
0.9811*'. 0.0848
0.9805Ji0.0861
0.9801U 0.0869

CLOSED-LOOP 
POLES 

TO.01S

-0.00416
0.99949

0.9999345 0.0034
0.9996*; 0.0110
0.9990*J 0.0181
0.9981*5 0.0250
0.9969±; 0.0317
0.9955*. 0.0382
0.9940*J 0.0443
0.9922J-. 0.0502
0.9904±« 0.0560
0.9988*'. 0.0607
0.9867** 0.0653
0.9848*5 0.0695
0.9831*1 0.0731
0.98154'. 0.0763
0.9800*'. 0.0791
0.9788*; 0.0813
0.9778s'. 0.0831
0.9771*i 0.0843
0.9766*'. 0.0851
0.1097, 0.7722

0.99951
0.99989*; 0.0038
0.9996±i0.0106
0.9990** 0.0176
0.9981*'. 0.0246
0. 9970*.i 0.0313
0.9956*1 0.0378
0.9940H0.0440
0. 9923*10.0499
0.9905*; 0.0554
0.988611 0.0605
0.9867ii0.0651
0.9849*'. 0.0693
0.9831*', 0.0730
0.9815±i 0.0764
0.9800*i 0.0791
0.9788t5 0.0813
0.9778*1 0.0831
0.977H; 0.0844
0.9766*.' 0.0851

TABLE 7.4
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7 -7 Discussion on the Fast-Sampling Control of Trains 

with Two Locomotives

It is clear, from figures (7.4) to (7.21) that the 

fast-sampling controllers effectively split the trains 

into two halves in the steady-state. Furthermore the 

responses corresponding to the speeds of the first 

locomotives, namely figures (7.4) ; (7.10) and (7.16), 

are clearly very similar to the speeds of the single 

locomotive powered trains given by figures (6.4), (6.8) 

and (6.12) which illustrates that even in the transient 

stages each train is behaving as a pair of coupled trains. 

This is further underlined by the inputs to the trains 

being almost identical save for an expected time delay 

and is illustrated by figures (7.6), (7.7), (7.12), 

(7.13), (7.18) and (7.19). The time delay between the 

input responses is dependent on the vehicle lengths, 

the number of vehicles between the locomotives and the 

train speed. It is clear from this that identical control 

of locomotives in a unit train at severe gradient changes 

would not be satisfactory, and a simple improvement to the 

'Locotrol' system could be the inclusion of a time delay, 

although it must be emphasized that 'sensible' handling 

of the leading locomotive is still required.

The open-loop pole and transmission zero diagrams 

(see figures (7.22), (7.23) and (7.24) have coincident 

pairs of transmission zeros separated by non-coincident



172

pairs of open-loop poles. This underlines the results 

from section (7.3) where it was shown that the set of 

transmission zeros consists of a set for each 'subtrain' 

with an additional transmission zero for the coupling 

'linking' the two 'subtrains' . It is also clear from 

figures (7.22) to (7.24) that the open-loop pole and 

the relevant transmission zero locations lie on the 

same curve with the same bounds (as w+°°) as those presented 

in chapter six (see figures (6.16), (6.17) and (6.18). 

It is therefore not surprising that the same fast- 

sampling controller can cope with trains of different 

lengths and also produces responses (see figures (7.4) 

to (7.21) ) similar to those presented in chapter 

six (see figures (6.4) to (6.15)).
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7.8 Fast-Sampling Control of a 100 Vehicle Train 

Travelling over Undulating Terrain

It has been suggested (see, for instance, Taylor 

et al. [4] ) that handling problems can occur when 

long trains encounter vertical reverse curves. Hence in 

this section the results from a simulation of a one 

hundred vehicle train travelling over the vertical reverse 

curve given by figure (7.25) are presented. The train 

is again assumed to consist of equal masses, given by 

(6.39), and identical couplings whose stiffness and 

damping coefficients are given by (6.40) and (6.41), 

and is illustrated by figure (7.3) in which

w = 100 

and

p = 51.

It is further assumed that the train is controlled in 

accordance with (7.38) and (7.39) with T = 0.1 s, and 

has initial steady-state conditions given by (7.40) to 

(7.47). The results of the digital computer simulation 

are presented as figures (7.26) to (7.31).
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7.9 Conclusions

It follows from figures (7.4) to (7.20) and (7.25) 

to (7.31) that not only does the fast-sampling controller 

given by (7.30) and (7.31) with T = 0.1 s provide tight 

control of the four trains considered, but is clearly 

stable for trains of greatly different lengths. Furthermore 

it is clear from figures (7.4), (7.10), (7.16) and (7.26) 

that the maximum loss of speed does not increase linearly 

with increasing numbers of vehicles. It also follows 

from figures (7.26) to (7.31) that the only totally 

successful solution to train handling must be an automatic 

controller since the inclusion of a simple time delay 

(as suggested in section (7.7)) in the 'Locotrol' system 

does not hold on undulating terrain and also requires 

'sensible' train handling. Such an automatic controller 

would have to be insensitive to variations in train length 

in order to be available for general use. It is clear that 

the fast-sampling controller developed in this chapter 

satisfies this criterion. Furthermore it produces good 

disturbance rejection and tracking properties, requires the 

minimum amount of information and could be extended to 

incorporate many 'sub-trains' into a train since no 

change in the fundamental properties would occur.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

8.1 General Conclusions

In this thesis the fast-sampling control theory 

presented in section (2.3) has been extended to include 

cases where the matrix equal to the product to the output 

and input matrices is not of full rank. The theory 

developed in sections (2.3), (2.4) and (2.5) has been 

successfully applied to the design of fast-sampling 

controllers for vehicle cascades and trains respectively. 

It is clear that the theory presented in chapter two 

is both readily applied and produces high performance 

controllers with the minimum amount of information.



180

8.2 Vehicles Cascades (Conclusion)

It is clear that both the fast-sampling controllers 

developed in chapter four produce non-interactive control 

of the outputs and good performance. No apparent benefit 

is gained from using the centralized controller, save 

that of eliminating the relative velocity interactions 

or 'shock-waves' which were small for the example 

considered. It has been shown that a linear controller 

can entrain (and therefore extrain) a cascade of vehicles 

by sensible use of the command inputs. Furthermore the 

controllers produce closed-loop systems that are both 

robust and of high integrity making them ideal bases 

for any further research and development. Finally it 

must be emphasized that the work in chapter five 

represents the first time the kinematics of a 

vehicle cascade have been deliberately exploited 

to produce effective centralized and decentralized 

control algorithms.
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8.3 Trains (Conclusions)

It is clear from chapters six and seven that when 

a train is controlled using the relevant fast-sampling 

controller then the ouptuts of the closed-loop system 

are tightly controlled. Furthermore since the transmission 

zeros of trains with single and multiple locomotives 

always lie in the left half of the complex plane it follows 

that such fast-sampling controllers will always exist 

for trains of different configurations. It was shown 

that single controllers can control trains of greatly 

differing lengths both with and without locomotives in 

the train. It is clear from chapter seven that when 

locomotives are used in trains then a fast-sampling 

controller can effectively divide a whole train into two 

or more (if more locomotives are used) subtrains. It must 

be emphasized that fast-sampling train controllers produce 

good performance and cope easily with trains of different 

lengths and as a result are ideal for general use on most 

railways. This represents the first time that fundamental 

properties of trains have been deliberately exploited 

in the design of train controllers to propose an effective 

solution to train handling problems.
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8.4 Recommendations for Further Work on the Theory 

in Chapter Two

The control theory presented in chapter two 

assumed the sensors and actuators had negligible dynamics; 

that is the relevant transfer functions are assumed to be 

unity. Incorporation of controllers designed using these 

assumptions will always lead to some deterioration in 

performance because of the additional phase lags introduced 

by sensors and actuators. Porter |44J has considered 

the design of fast-sampling error-actuated controllers 

for linear multivariable plants with explicit actuator 

dynamics. In order to ensure that no instability occurs 

due to the sensor and actuator dynamics further analysis 

of the systems considered in sections (2.3) and (2.4) is 

necessary.

It was assumed in chapter two that the calculations 

to determine the necessary inputs took a negligible amount 

of time. It is clear this assumption may not hold in 

practice and so requires further consideration. One 

solution is to delay the implementation of the required 

input for one or more time periods. A solution along 

these lines clearly requires an investigation of the 

effects of introducing further time delays into the 

closed-loop systems.
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8.5 Recommendations for Further Work on Vehicle Systems

Since the theory presented in chapter two was used 

to design the fast-sampling controllers for the vehicle 

systems it is clear that all the recommendations in 

section (8.4) have to be considered. It is clear that 

introducing time delays in the sensors and actuators 

would require reassessment of the analyses in this thesis. 

In particular it should prove interesting to investigate 

the advantages of centralized, as opposed to decentralized, 

control of a vehicle cascade when time delays are 

introduced into the cascaded vehicle model in chapter four.

The inherent non-linearities of the two systems considered 

in this thesis will also require further analysis of the 

closed-loop system. For vehicle cascades the only non- 

linearities are the drag coefficients which will vary 

considerably, although not unpredictably, at different speeds. 

An analysis of given systems should produce stable 

controllers for the worst conditions encountered. The 

trains have two main non-linearities. First the coupler 

parameters which as for the vehicle cascades could be 

assumed to take their worst operating values to calculate 

a stable controller. However the couplers also contain 

dead zones and the resulting effects may be more difficult 

to analyse without simply resorting to simulations.
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