
MULTIFACETED FACADE TEXTURES

FOR 3D CITY MODELS

Jurgen BOGDAHN

Ph.D. Thesis 2012

Multifaceted Fagade Textures

for 3D City Models

Jurgen Bogdahn

School of the Built Environment

Salford University

Submitted in Partial Fulfillment of the Requirements of the Degree of

Doctor of Philosophy (PhD)

March 2012

Contents

List of Figures vii

Listings x

Acknowledgements xi

Declaration xii

Glossary xiii

Abstract xv

1 Introduction 1

1.1 Research Problem 1

1.2 Contribution to Knowledge 3

1.3 Aim & Objectives 4

1.4 Structure of the Thesis 7

2 Background & Motivation 10

2.1 Relevant Work 11

2.1.1 Use of 3D city models 11

2.1.2 Data Acquisition 16

2.1.3 Procedural Modelling 17

2.2 Background 19

2.2.1 Six Types of 3D City Models 20

2.2.2 Multipurpose Model Management 23

2.2.3 Management Systems for Urban Models 25

2.2.4 Spatial Data Infrastructures 28

2.3 Motivation 31

2.3.1 Textures in current 3D City Models 31

2.3.2 Photo-Realism and 3D City Models 34

CONTENTS

2.3.3 3D City Models & Map Illustration 38

2.3.3.1 2D Map Rendering 40

2.3.3.2 2.5D Map Rendering 41

2.3.3.3 3D Map Rendering 42

2.3.3.4 Extension of Map-Space 44

2.3.4 Level of Detail and Level of Realism 45

2.3.5 Additional Information in Fagade Textures 48

2.4 Summary 50

3 Methodology 52

3.1 Constructive Research 52

3.1.1 Six Stages of Constructive Research 54

3.2 Realizing the Stages of the Constructive Approach 55

3.3 Literature Review 57

3.4 Proof of Concept by Prototyping 60

3.5 Validation by Case Study 62

3.6 Summary 66

4 Texture Content Model 68

4.1 The Image 70

4.2 Video 72

4.3 The Texture 74

4.4 Data Sources for Textures 77

4.5 Texture Atlas 79

4.6 Modelling of Null-Texture Content 81

4.6.1 Zones 81

4.6.2 Layer 82

4.6.2.1 Description The Pulse Function 85

4.6.2.2 Alternative Descriptions 90

4.6.2.3 Operations 91

4.6.3 The Real-Time Layer 93

4.6.3.1 Real-Time Content Integration 95

CONTENTS

4.6.3.2 The Player Components 97

4.6.3.3 Summary 99

4.6.4 Mapping of Information to Zones/Real-time layer 99

4.6.4.1 Image to Zone 99

4.6.4.2 Measurement Set / Attributes to Zone 101

4.6.4.3 Real-Time Content to Real-time Layer 101

4.7 The Reconstruction Implementation 102

4.8 Integration into Spatial Data Infrastructures 104

4.8.1 Flexible Integration into Client-Server Process Chains 105

4.8.2 Scenario 1: Server Side Texture reconstruction 105

4.8.3 Scenario 2: Client Side Reconstruction and Processing 107

4.8.4 Scenario 3: Pre-processing for Clients with
Special Requirements 109

4.9 Discussion 112

4.9.1 Pulse Function Approach 112

4.9.2 A Similar Approach for Thematic Visualization 113

4.9.3 Real-Time Layer 115

4.9.4 Integration into (3D-) SDIs 116

5 Proof of Concept 117

5.1 The Rendering Pipeline 118

5.2 The Programmable Elements of the
Rendering Pipeline 121

5.3 Data Management and 3D Viewer Integration 124

5.4 The Pre-Processing Step implemented as
Utility Functions 128

5.5 Data Texture 129

5.6 The Texture Atlas 134

5.7 The Rendering Concept 135

5.7.1 The Construction of Fagade Texture Content 136

5.7.2 The Real-Time Content 141

5.7.3 Video 142

5.7.4 Metering Data 144

iv

CONTENTS

5.7.5 Rendering Real-Time Data embedded in the Fagade Texture . . 145

5.8 Summary 148

5.8.1 Performance 149

5.8.2 Scalability 151

5.8.3 Real-Time Content 153

6 Pedestrian Navigation using 3D City Models - a Case-Study 154

6.1 Concepts of Navigation - Cars compared to Pedestrians 156

6.2 Landmarks 161

6.3 The MoNaSD Project 163

6.3.1 The MoNaSD Spatial Data Infrastructure 165

6.3.2 Storage Efficient Synthetic Textures 167

6.3.3 The Smartphone Client Prototype 169

6.3.4 Summary 169

6.4 Visualization of Buildings and Landmarks for Pedestrian Navigation . . 170

6.4.1 Level of Realism 170

6.4.2 Navigation Hints 174

6.4.3 Shop Signs 179

6.4.4 Link to Indoor Navigation 180

6.5 Summary 182

7 Conclusions & Future Work 186

7.1 Conclusions 186

7.1.1 Objective 1: Flexible Description 186

7.1.2 Objective 2: Adjustability and additional Information 188

7.1.3 Objectives: Real-time Content Changes 189

7.1.4 Objective 4: 3D-SDI Integration 191

7.1.5 Objectives: Evaluation of the presented Approach 193

7.1.6 Summary 194

7.2 Future Work 195

7.2.1 Layer/Zone Model 195

7.2.2 Data Acquisition 196

CONTENTS

7.2.3 Real-Time Layer 197

7.2.4 3D Spatial Data Infrastructures 198

7.2.5 Pedestrian Navigation 198

References 199

VI

List of Figures

1.1 The Thesis Structure 8

2.1 Example for 3D building models in a Nav-System 13

2.2 Visualization of air pollution 14

2.3 Visualization of simulation scenarios 15

2.4 Obligue imagery for generating 3D city models 17

2.5 Fagade grammars 18

2.6 Type-3 Model 22

2.7 Type-6 Model 23

2.8 CAT3D as basis for OGC Services 28

2.9 Schema of Surface Properties 33

2.10 Simple World Map 40

2.11 2.5D-Surfaces as Map-Space 41

2.12 3D Map with Tree-Icons 42

2.13 3D Map-Terrain with Building-Icons 43

2.14 Extension of Map-Space 44

2.15 CityGML LoD concept 46

3.1 Constructive Research 53

3.2 Research Stages 56

4.1 Image coordinate system 71

4.2 Texture Mapping 76

4.3 Null-Texture Concept 77

4.4 Texture Atlas Concept 80

4.5 Using BSP to create texture atlas 81

4.6 Defining a Zone 82

4.7 The Layer Concept 84

4.8 The Level of Realism concept 85

VII

LIST OF FIGURES

4.9 Pulse functions overlap 87

4.10 Multiple use of Pulses 88

4.11 False Zones 89

4.12 Painter's Algorithm 92

4.13 Thermal Image Content vs Fagade Structure 94

4.14 Real-Time Layer Concept 96

4.15 Real-Time Layer Implementation Concept 98

4.16 Possible reconstruction levels for texture content 106

4.17 Portrayal W3DS 107

4.18 Thin Client using Shader on GPU 109

4.19 Fat Client using Shader on GPU 111

4.20 Surface Properties Tool 114

5.1 OpenGL Operations 119

5.2 OpenGL Programmable Processors 122

5.3 Fragment processor inputs and outputs 123

5.4 The CAT3D Architecture 125

5.5 The CAT3D Data Model 126

5.6 The Extended Texture Model 127

5.7 Layer encoding into Data Texture 130

5.8 Pulse Rows in DataTexture 132

5.9 Bounding Box for Zones in one Layer. 137

5.10 Two level rendering 140

5.11 Video-Player implementation 143

5.12 Pachube-Player implementation 145

5.13 Real-Time Layer Rendering 147

5.14 Prototype Rendering Performance Measurement 149

6.1 Example for decision support in car navigation systems 157

6.2 Lines to Approximate Square 158

6.3 Kunstmuseum Stuttgart 162

6.4 MoNaSD Architecture 165

VIII

LIST OF FIGURES

6.5 Emphasizing landmarks in 3D Scene 172

6.6 Sketch Rendering 173

6.7 The Pre-verbal Message 175

6.8 Visual Hints for Landmarks 176

6.9 Navigation Hints in Fagade 177

6.10 Bubbles for linking nav-instruction to landmark 178

6.11 Highlights for fagade elements 181

6.12 Navigation hint for correct entrance and floor of a building 183

7.1 Window Extraction Example 197

IX

Listings

4.1 Pseudo code for screen scanning (Heckbert, 1986) 75

Acknowledgements

First and foremost I would like to thank my supervisor Mr. Andy Hamilton, head of the

Virtual Planning Group at Salford University and my second supervisor Prof. Dr. Volker

Coors from HFT Stuttgart University of Applied Sciences. Both of my supervisors

always supported me during this PhD research with invaluable advice. I want to thank

both of them for their continuous efforts to guide me through this process and I am

grateful for their patience and positive attitude, which provided a very fruitful working

environment.

I would also like to thank my colleagues in the projects MoNaSD, VEPs and CityNet for

their support. I always enjoyed discussions, meetings, coffee breaks and all the other

occasions for a little chat. I learned a lot of things in these very interesting projects, not

only in terms of my research but also for life.

I would also like to thank all the colleagues at HFT Stuttgart for their support and the

never ending interest in my work. Very special thanks to the staff at the School of the

Built Environment at Salford University, who helped me with all administrative questions

and who were very supportive throughout the years.

Finally I would like to thank my family for their encouragement and support. And I am

especially grateful to have my girlfriend Michaela by my side, who, as always, believed

in me.

XI

Declaration

I herewith declare that I have produced this thesis without the prohibited assistance of

third parties and without making use of aids other than those specified; notions taken

over directly or indirectly from other sources have been identified as such. This work

has not previously been presented in identical or similar form to any other UK or foreign

examination board.

March 14, 2012

XII

Glossary

ADE Application Domain Extension

API Application Programming Interface

AR Action Research

Bbox Bounding Box

BRep Boundary Representation

BSPTree Binary Space Partitioning Tree

CAD Computer Aided Design

CAT3D CityModel Administration Toolkit 3D

CityGML City Geography Markup Language

dpi Dots per inch

DSM Digital Surface Model

DIM Digital Terrain Model

EDA Exploratory Data Analysis

FBO Frame Buffer Object

GIS Geo-lnformation System

GLSL OpenGL Shading Language

GML Geography Markup Language

GPU Graphics Processing Unit

HCI Human Computer Interaction

JMF Java Media Framework

KML Keyhole Markup Language

L-System Lindenmayer-System

LIDAR Light Detection And Ranging

LoD Level of Detail

LoR Level of Realism

Ipi lines per inch

MoNaSD Mobile Pedestrian Navigation in 3D (project)

NPR Non-Photorealistic Rendering

OGC Open Geospatial Consortium

OpenLS OpenGIS Location Service

PDA Personal Digital Assistant

XIII

Glossary_______________________

PV Photovoltaic

SDI Spatial Data Infrastructure

SWT Standard Widget Toolkit

TBO Texture Buffer Object

TIN Triangulated Irregular Network

VEPs Virtual Environmental Planning System (Project)

ViSC Visualization in Scientific Computing

VR Virtual Reality

VRML Virtual Reality Modelling Language

W3DS Web 3D Service

WFS Web Feature Service

XIV

Abstract

Three-dimensional digital representations of cities are widely used today, from urban

planning to navigation systems, emergency response and to energy and flood simu

lations. Many of these scenarios can be served by one multipurpose 3D city model

that has the semantic and attribute information depth that is required (besides the ge

ometrical detail). These multipurpose models do not only represent the geometrical

properties and textures and materials, which would be sufficient for pure visualization

of the urban space, they also model semantic entities like walls, roofs, ground, etc. And

all these parts , as well as the buildings, as specific, identifiable entities, can be linked

to additional information and data sets from other sources.

However, although these models have the required information-richness and can be

used beyond pure visualization, one part of these models is still treated the same way

as for pure visualization models: the textures. Textures in most of today's city models

are still a tool to enhance the photo-realistic appearance. The primary task of the

textures is still to add the 'naturalistic' elements that are not modelled in geometry.

These elements are mainly located in the fagades, namely windows, doors, signs, fire

escapes and many more.

The presented work investigates how textures can be used for information visualization,

which is more useful for the aforementioned multipurpose city models. A new texture

concept is presented that is based on flexible content, which is managed in layers. In

this way it is possible to adapt the appearance of buildings (especially fagades) to the

actual scenario. The concept also allows the integration of additional information into

the fagade, enhancing the 3D city model. In this way it is possible to generate scenario

specific fagade textures integrating the relevant information into the texture content.

xv

Chapter 1

Introduction

1.1 Research Problem

In recent years many new applications for digital three-dimensional urban models have

appeared. Many cities have a digital counterpart nowadays either modelled by private

companies or by municipalities themselves. Very often these 3D city models were

built for urban planning purposes and have the task to represent the urban space in a

(photo-) realistic way to assess newly planned buildings in the existing spatial context.

These models are more or less built from a computer graphics perspective, which

intends to build an indistinguishable digital model of the real world.

However, over time more and more focus has been laid on 3D urban data and 3D visu

alization in the GIS (Geo-lnformation System) field as well. In this world a 3D city model

is not only a graphical representation (a 'collection of triangles and textures' that rep

resents the form of urban space) it also carries semantic information. In GIS features

are defined, which can be identified and linked to other data. This 'GIS perspective'

on 3D urban models created a further type of city models with different intensions.

Photo-realistic representation is still a scenario, which these models want to serve,

but in addition they also address issues of (visual) analysis, information modelling and

information creation as well as other similarly related aims. These additional aims be

yond realistic visualization turn these models into 3D geo-data models. This becomes

very obvious when looking at the CityGML standard defined by the Open Geospatial

Consortium (OGC), which defines a semantic data structure for 3D urban models. This

1. INTRODUCTION

structure includes much more information than necessary for pure visualization pur

poses. Hence, the intension of the model is to serve more than this single scenario.

This intension opened the way into a new research field on its own, which includes

aspects of various related disciplines, like computer graphics, GIS, geovisualization,

etc. The city models that are under investigation in this field are multipurpose data sets

and can be used for many different applications ranging from urban planning, disas

ter and emergency response to navigation systems and simulation tools (e.g. energy

consumption or photovoltaic potential).

However, looking at these multipurpose 3D city models in terms of textures not much

has changed in comparison to models for photo-realistic visualization. For the graph

ical models textures were and are still used in order to enhance the photo-realistic

appearance of the model. The textures do normally apply a certain material to a sur

face or they add elements visually, which are not modelled in geometry. Especially

fagade textures have the purpose to add details that are not present in 3D city models

geometrically. Windows, doors, signs, ledges and other fagade elements are normally

not modelled in geometry and are visually added by applying a photo-texture. And

this is also true for today's multipurpose models. As the geometrical acquisition and

the modelling of fagade details is too expensive and time consuming textures are still

used to add these elements in order to achieve a photo-realistic coherence with the

real world, although photo-realistic visualization is only one purpose of these models

among many others.

This is why this work is going to investigate how textures can be used in additional

ways to realistic visualization. As the purpose of 3D city models is not only the realistic

representation of urban space other illustration types need to be supported as well.

Like in a thematic map, not representing spatial information in a photo-realistic way,

urban objects might represent thematic information on their surface. Therefore this

work investigates how the texture content model needs to be designed to better serve

requirements of thematic and non-photorealistic visualization of 3D city models.

1. INTRODUCTION

1.2 Contribution to Knowledge

As already mentioned in the previous section there are city models, which are cre

ated as multipurpose semantic information spaces rather than graphical visualization

models. This difference in purpose also demands other ways of visualization and il

lustration of multipurpose models. They are not only a 'perfect visual copy' of the real

world that can be freely navigated and observed from different perspectives, e.g. for

urban planning purposes. Models are of an information space nowadays. They consist

of identifiable objects, which can be linked to an almost unlimited number of external

data sets, which could be visualized in specific ways in order to analyse urban phenom

ena. Models can also be used to for simulations or can be integrated into applications

like navigation support systems. In many applications city models act as an integral

part of the problem solving process and not only as visual background information. It

is quite obvious that the intension of 3D city models, when they are modelled in ways

like CityGML defines, has grown from pure photo-realistic representation to multiple

purposes in different scenarios. This requires a different visual appearance for each

specific use-case.

However, this work addresses an element of 3D city models, which has not adapted

to the aforementioned changes. Textures are mainly used to apply the real-world

(fagade-) image to the geometry of the model in order to enhance its realistic ap

pearance. Textures are used to hold image information, which represents one fixed

representation of the fagade/building at a given point in time (when the picture was

taken). For today's 3D city models a texture is the 'container' for an image, which in

most cases shows the real-world representation of the fagade. This is still the same

purpose as for purely visually oriented models. But this concept is limiting in regards

to today's multipurpose city models.

Therefore this work defines a new model for (fagade-) texture content. This new model

helps to organize content (with focus on building fagades) in a way so it can be rear-

1. INTRODUCTION

ranged for specific purposes. The content is sub-divided into zones and layers, which

allow adding further information into the texture content mixing it with realistic elements

if necessary. This new way of texture content definition makes it possible to generate

thematic map-like textures, which integrate different information into one visual repre

sentation. In this way the presented work helps to see textures of urban objects not only

as a container for static real-world images but as a channel for flexible and adjustable

content in order to serve a multitude of visualization needs.

1.3 Aim & Objectives

In the previous section the standard use of textures was identified as limiting in terms of

3D city models and a more flexible solution is needed for today's multipurpose models.

It is necessary to have a closer look at the concept of texture content, especially in

regards to emerging hardware capabilities and new possibilities to directly influence

the rendering process. Therefore the overall aim of this work can be formulated as:

Determine how fagade textures can contribute to information visualization for

multipurpose, semantic 3D city models.

This aim concentrates on the texture content as such and how it can be changed into

a flexible and adaptable channel for various types of information and how different city

model representations can be supported. In addition this work also looks at issues of

3D spatial data infrastructures and the possibility to integrate a new texture concept

and its capabilities into this context. This is a necessary step as multipurpose 3D city

models are often part of this kind of environment and are often integrated into SDI

(Spatial Data Infrastructure) processes and workflows. Furthermore this work also

evaluates the capabilities of the new concept in a case-study in order to find out how

well the new content model supports 3D city model use-cases.

1. INTRODUCTION

Objective 1: Find a way to describe the content of (fagade-) textures that allows

the flexible representation and combination of different content as well as the

integration of additional (non-photorealistic) information.

This objective describes the need to flexibilize the texture content. Normally a photo

image is used as the fagade texture, which consists of one fixed representation of

the fagade at a specific point in time (when the photo was taken). For multipurpose

models there needs to be a multipurpose visual representation as well. Therefore it is

necessary to define the texture content according to specific use-cases and scenario

dependent requirements. Therefore a texture content concept needs to be found that

can add specific content and can exclude other content if the scenario requires this.

Another aspect of this flexibility is that scenarios might require additional content to be

added besides the photo-realistic elements of the fagade. As the multipurpose models

consist of identifiable objects that are often linked to significant amount of additional

attribute data, the need for visualizing these attributes is very immanent in specific

use-cases.

Objective 2: Define concepts in order to adjust the ratio of realism as well as the

ratio between realistic elements and the integrated additional information

As photo-realism is not the appropriate form of visualization for all use-cases in regards

to multipurpose models it should be possible to adjust the ratio of realistic content in

textures. Nowadays the adjustability of realism for most models consists of the options

'with photo-textures' or 'false coloured' (coloured icons, see chapter 2.3.3.3). A more

fine-grained adjustability should be achieved by a new texture model, providing the

possibility to accentuate relevant information. For example, when attribute information

is visualized the number of realistic fagade elements should be able to be reduced in

order to make the other information more prominent.

1. INTRODUCTION

Objective 3: Implement a suitable prototype in order to test the flexibility of

(fagade-) texture content and its appearance in regards to real-time contextual

events.

In regards to flexibility and the ability to use the new texture concept in analysis scenar

ios or for use-cases where context dependent changes of the model's appearance are

required, it would be necessary that the texture content can change in real time. Real-

time in this context is defined by an acceptable response time from the point when the

new appearance was requested to the point when the change in the texture content is

finished. When the response time can be held relatively low this would allow interactive

changes of illustrations. In combination with the first two objectives formulated above

this would mean that switching between different fagade representations and different

sets of information/data can be realized for the user in a similar way to a GIS. This

would allow using the texture content model for knowledge retrieval and analysis of

urban space and support the multipurpose nature of 3D city models in this respect.

Objective 4: Investigate how the new texture model can be integrated into 3D-

SDIs and how services can address the absence of certain client capabilities.

As multipurpose 3D city models are used in various different scenarios they are nor

mally managed in a special way. Very often they are stored in spatial databases and

managed by a dedicated system, which provides (web-) interfaces for clients to retrieve

the suitable model for a specific purpose. Furthermore these dedicated management

systems are often integrated into SDIs where the 3D model can be merged with other

data on request and be integrated into scenario related workflows. Because multipur

pose 3D city models are often used in a SDI environment it needs to be investigated

how the new texture concept can be integrated into this environment. Aspects on

client/server capabilities and related distribution of workload need to be addressed.

The texture content model should be able to be used in a flexible way and be able to

integrate into different stages of workflows and processes common in (3D-) SDIs.

1. INTRODUCTION

Objective 5: Evaluate the capabilities of the new texture content model in a spe

cific use-case.

The newly developed model for describing (fagade-) texture content is evaluated for a

specific use-case. It needs to be found out how the new capabilities and the flexibility

of the concept can support certain scenarios in which 3D city models are used. The

work presents a case-study that evaluates how flexible texture content can be used in

the case-study scenario. By generalising the findings of the case-study, this work tries

to estimate the benefits for the whole field of digital 3D urban models.

1.4 Structure of the Thesis

The remainder of this thesis is organized in the following way (see figure 1.1).

Chapter 2 shows the wider context of the research and provides a selection of relevant

work. The chapter describes the background on how 3D city models are produced and

in which scenarios they are used. Different types of models and variations in their

structure are also presented based on the work of Stadler and Kolbe (2007). From this

description of the background the chapter develops the motivation for this research and

the rationale for investigating a new texture content model for 3D city models.

Chapter 3 presents the methodology used for the presented work. The chapter de

scribes the process of constructive research and in which way it aims to generate new

knowledge. In a second part this chapter shows which research methods are actu

ally used in this work to perform the different stages of constructive research, namely

literature review, prototyping and case-study.

Chapter 4 describes the new model for (fagade-) texture content that is going to be

used to arrange information appropriately for flexible visualization of city models. The

chapter develops the new texture content model based on basic elements (image,

texture, etc.) and introduces new elements (zones, layers, etc.) and concepts (Level of

1. INTRODUCTION

Chapter 1:
Introduction

Chapter 2:
What are 3D Models used
for and how are they
created. What is the current
concept for facade textures

ChapterS: Methodology
How will the area of interest
be investigated? What
methods are used to create
new findings?

Chapter 4:
The suggested model for
flexible texture content.
Having more flexibility is
supposed to provide new

^possibilities of visualization ^

ChapterS:
Proof-of-Concept: Shows the
feasibility of the suggested
approach. Provides the basis for
reflections on the created artefact.

Chapter 6:
Case-Study: This case study describes
how the new concept supports certain
scenarios. This helps to reflect which
impact the newly introduced texture
model has in a task-driven scenario j

Chapter?:
Discussion and Conclusions: What are the
pro'sand con's. What is the impact of the
changes? How do they influence the field
of 3D city models? Compare .before' and
.after'-states.

Figure 1.1: The Thesis Structure - The structure of the remaining parts of the dissertation

1. INTRODUCTION

Realism, Real-Time Layer) in order to manage the content. This chapter also discusses

issues about how to integrate the new content approach into the environment in which

3D city models often exist. This integration into (3D-) SDIs is a very important part that

the texture content model needs to achieve. Hence, the use of the texture model in

client-server scenarios is discussed in this chapter as well.

Chapter 5 presents the prototype that is implemented in order to prove the feasibility of

the new texture content model. The second aspect that the prototype should prove is

the ability to change the texture content in real-time according to user input or changes

triggered by the system/application during rendering. This issue is important when 3D

models are used in scenarios where the model appearance needs to change during

the visualization and the model is not loaded in a specific representation that does not

change while the model is in use.

Chapter 6 presents a case-study in which the new texture content model is assessed

and it is expected to be of mutual benefit for the task-solving process. Some aspects of

the new content model are compared to the traditional texturing approach and benefits

of the new approach are discussed. The chapter intends to show the applicability of

the texture content model and to outline extended visualization capabilities, which are

regarded as contributions to existing knowledge and concepts.

Chapter 7 provides conclusions and an outlook on future work. This chapter revisits

the objectives formulated in chapter 1.3 and sums up the results in regards to these

objectives. The second part of the chapter formulates starting points for future research

in relation to specific aspects that were discussed in this work.

Chapter 2

Background & Motivation

This chapter is going to provide an overview of the current state-of-the-art and the

context in which this research is conducted. It starts with relevant work in the field

of 3D city models in order to provide an overview of the wider research field and it

also includes a section discussing different data acquisition methods. The variety of

acquisition and modelling approaches reflects the different types of models that exist as

well as the aspect that models are captured and built differently for different purposes.

A further part of the context summary is going to present the definition for six types of

models and their differences, how they are managed and integrated into spatial data

infrastructures.

The state-of-the-art and relevant work in this chapter provides the current situation

of 3D city modelling and visualization and shows the existing situation in this field.

Besides demonstrating and clarifying the context of the research it also describes the

current situation to which the results of the work need to be compared (see chapter 3).

In the sphere of differences between current state-of-the-art and the newly developed

model for texture content (presented in chapter 4) new findings are expected to be

found and to be evaluated.

The second aim of this chapter is to show the motivation and rationale for the conducted

research. By looking at the current situation it identifies drawbacks and limitations of

the state-of-the-art and specifies the need for the development of a novel artefact/con

struction in order to change and improve the current situation (chapter 2.3).

10

2. BACKGROUND & MOTIVATION

Hence, the chapter acts as the context of the work and provides a basis for validating

the result of the work on the one hand. On the other hand it uses the current situation,

more precisely the lack in current knowledge, to explain the rationale and motivation of

the work.

2.1 Relevant Work

In this part examples of relevant work are presented. The section provides an overview

on the state-of-the-art in 3D city modelling as well as a selection of use cases, in which

these models are used. Besides the different forms of use this part of the work also

includes state-of-the-art data acquisition methods and a section on procedural model

generation based on grammars and specialized algorithms. Knowing the current state

of 3D city models and their purpose provides the context in which this research is

undertaken. Therefore it describes the 'status quo' of the research field to which the

results of this work is going to be compared to. Hence, a profound knowledge about the

relevant work and the current concept of 3D city models is essential. The use-cases

and ways of data capture presented in this section reflect this existing concept.

2.1.1 Use of 3D city models

Three dimensional urban models play a growing role not only in terms of visualization

purposes but also as well regarded data sets in CIS and related disciplines. This 'is

illustrated by some state-of-the-art cases, worldwide, suggesting that rapid changes

are taking place in the ways such visualisations are being developed. We note devel

opments in remotely sensed survey and in the development of 3D models integral to

spatial databases as reflected in G/S'(Shiode, 2001). They are useful in many scenar

ios and can provide an extra benefit when integrated into other applications. Shiode

(2001) identified 'four different categories of use, (1) planning and design, (2) infrastruc-

11

2. BACKGROUND & MOTIVATION

ture and facility services, (3) commercial sector and marketing, and (4) promotion and

learning of information on cities'. In specific scenarios it appears beneficial to have a

visual/photo-realistic representation of the city (planning and design) in order to make

design decisions or to learn about the geographical layout of the city ((4) promotion

and learning of information on cities). 'Planning and detailed design reviews as well

as problems of site location, community planning and public participation all require

and are informed by 3D visualisation. The focus is upon aesthetic considerations of

landscapes as well as daylight and line-of-sight. Visual representation of environmen

tal impact is also widely supported by 3D models' (Shiode, 2001). In other scenarios

like infrastructure and facility services it might be necessary to work with more detailed

models with a set of semantic information and attributes attached to the semantic enti

ties. This allows performing analyses of the urban objects, etc.

When 3D models are integrated into other applications there are two ways how the

models can support the specific scenario and the application in which it is integrated.

For some scenarios the 3D model provides the context for other spatial information. In

recent car navigation systems, for example, the 3D model acts as the background for

the visualized route and the direction instructions of the system (fig. 2.1). For some

scenarios the 3D model provides the context for other spatial information. In recent

car navigation systems, for example, the 3D model acts as the background for the

visualized route and the direction instructions of the system (fig. 2.1).

The process of calculating the route and providing guidance instructions as such does

not include any 3D data or is linked to the 3D model. Placing 3D building models onto

the tilted map with the route visualization should provide the context for the user to

support the self-localization and navigation process. However, there are also efforts to

integrate 3D information/the 3D model into this process directly. The project MoNaSD

(Mobile Pedestrian Navigation in 3D) (Coors and Zipf, 2007) tries to integrate 3D city

models into the pedestrian navigation process by including landmarks, building objects

'knowing' about their function as landmark, into route instructions and visualize them

12

2. BACKGROUND & MOTIVATION

rr*

EBERTSTRASSE __

40 m SCHEIDEMANNSTRASSE^

Oplionen

600 m
17:38-Tl

Figure 2.1: Example for 3D building models in a Nav-System - An example for 3D build
ings in a car navigation system providing spatial context (from http://www.navigon.com/,
copyright Navigon AG)

accordingly. Here the 3D model is tied stronger into the application and the solution of

the actual task. The landmarks for the specific route are automatically identified by an

algorithm that scans the 3D model and they are integrated into navigation instructions

(see chapter 6).

Another example is using 3D city models for simulations of environmental influences.

Floods as well as air- and noise pollution need to be based on some kind of 3D data.

Three-dimensional digital city models can be used to provide the geometrical input data

for these simulations. Kokas (2008) provides some flooding simulation results based

on his models and Czerwinski et al. (2006) provides a report on noise simulations

using 3D city models as a basis. Another example for using 3D city models as input

for simulations is presented in Strzalka et al. (2010). Here the modelled 3D buildings

are used to extract properties like volume, height, orientation and area of walls, etc.,

which are then used as one of the required inputs for an energy demand estimation

simulation. This simulation cannot only be performed for one single building but for

a whole borough or a whole city. In addition digital city models can also be used to

13

2. BACKGROUND & MOTIVATION

visualize simulations results and provide the spatial context for the produced output.

Other examples are the Air Pollution Map for London (www.londonair.org.uk, 2011)

(fig. 2.2) and Kokas (2008) provides some examples on flood simulation visualizations

in his thesis for Heerbrug, Switzerland and London.

Figure 2.2: Visualization of air pollution - Air pollution overlaid onto the 3D model (LoD1;
of London (from http://www.londonair.org.uk/london/asp/virtualmaps.asp)

In the field of flood simulations Schulte and Coors (2008) present an Application Do

main Extension (ADE) in order to integrate hydrological data into the CityGML stan

dard. In this way the 3D city model and flood data can be exchanged together in an

open data format and can also be processed together, e.g. for visualization or for

rerunning the simulation and verifying it.

A further example for using 3D city models in an application context is presented in

Knapp et al. (2007). The presented system for public participation in urban planning

uses digital 3D models of the development area in a web-based system to commu

nicate with citizens about existing and planned buildings. In their prototype the 3D

model is not only a visualization tool but part of the user-interface. Citizens can post

14

2. BACKGROUND & MOTIVATION

a comment, or access the comment of others, by selecting the according building di

rectly in the 3D model. Exploring what-if scenarios is also possible by switching certain

planning proposals (modelled in 3D) on/off in the 3D scene. In this case the model

is not only a way of visualizing a planning proposal and thereby communicating in a

one-to-many fashion (municipality to citizens) but also allowing a discussion which is

a many-to-many fashion (municipality o citizens and citizen <^> citizen). In literature

one can find more scenarios in which 3D city models are used beyond pure visual

ization and to help to solve other tasks. There are examples for emergency response

(Kolbe, 2008), simulation of wave propagation ((Fabritius et al., 2008), (Schmitz and

Kobbelt, 2006)), simulation and training (Bildstein, 2005) (fig. 2.3), public safety (Qiu

et al., 2004) and the visualization of change in urban areas over time (Weber et al.,

2009).

Figure 2.3: Visualization of simulation scenarios - Examples for simulation and training
scenarios using virtual 3D environments(from Bildstein (2005))

15

2. BACKGROUND & MOTIVATION

2.1.2 Data Acquisition

The 3D models for these and many other applications are generated in many differ

ent ways, which can include various sensors and algorithms. As cities are quite large

structures and it is necessary to model a quite significant number of objects, therefore

normally sensors are used that can acquire a big amount of data in reasonably short

time (for a comprehensive summary see Hu et al. (2003)). Appropriate and intelligent

algorithms and software tools help to manage and analyse these large data sets in or

der to extract the required information (urban objects). Another strategy is to produce

city models procedurally (e.g. Fabritius et al. (2008)) according to a specific algorithm

which can also use a set of rules that can be combined in an intelligent way. This

procedural approach will be described in detail in the next section. A quite common

approach to model buildings, vegetation and streets is based on aerial photogram-

metry. Aerial photos can be used to gather urban structures in an (semi-) automatic

way. Examples can be found in Brenner et al. (2001) giving an overview on differ

ent modelling concepts for 3D city models. In Kokas (2008), Schwalbe et al. (2005)

and Brenner and Haala (1998) approaches for acquiring building data from aerial laser

scans (LIDAR) are described and an approach using satellite images for automatic 3D

building reconstruction can be found in Lafarge et al. (2007). A relatively new data

source for detecting and modelling the geometry and acquiring textures (fagade tex

tures) of buildings is oblique imagery (Wang et al. (2008), Lorenz and Dollner (2006)).

Hamruni (2010) also describes an approach using oblique images to model 3D urban

buildings and fagade textures. The retrieval of fagade images is possible because not

only vertical images (nadir) are taken but oblique views are recorded as well. In the

oblique pictures the fagade structures can be better analysed and modelled.

Especially the generation of fagade images and textures, respectively fagade struc

tures, is investigated by many researchers. Different data capture methods are pre

sented, e.g Laycock and Day (2006), as well as algorithms to remove objects that

occlude parts of the fagade (Ortin and Remondino, 2005). As well as the problem of

16

2. BACKGROUND & MOTIVATION

occluded areas another aspect of textures is investigated: The automatic mapping of

the image to the building's geometry (Kada et al., 2005). As the process of applying

textures manually to the building geometry is very time-consuming and expensive an

automated solution is beneficial. Besides the concepts for terrestrial images there are

also methods presented for oblique imagery (Frueh et al. (2004), Lorenz and Dollner

(2006)).

Figure 2.4: Obligue imagery for generating 3D city models - (a) Visible 3D lines of the
model in green; (b) 2D lines in the image in red.(from Frueh et al. (2004))

2.1.3 Procedural Modelling

As mentioned before, the modelling process for entire cities is still time consuming

and rather expensive because it is still not fully automated. In scenarios where it

is not necessary to produce an identical copy of a real world city (or the real world

city does not exist as a reference) procedural approaches can be used to generate

buildings and other urban objects according to (user-) defined rules. Coelho et al.

(2007) presents an approach that is based on Lindenmayer-Systems (L-Systems). A

further example for modelling fagades using 'a hierarchical typed graph' is given by

17

2. BACKGROUND & MOTIVATION

Finkenzeller and Schmitt (2006) and described in detail in Finkenzeller (2008). Parish

and Muller (2001) present a further concept that is based on extended L-Systems for

creating street networks and building geometry. Wonka et al. (2003) do present con

cepts for procedural modelling for virtual cities based on what they call split grammars,

which 'draws from the work on shape grammars pioneered by Stiny' (Wonka et al.,

2003). Muller et al. (2006) consequently combined the approaches of Wonka et al.

(2003) and Parish and Muller (2001) to the CGA Shape-concept for procedural mod

elling of even more detailed building mass models. In their paper Muller et al. (2007)

the concept is also extended on the modelling of fagades. This approach allows ex

tracting fagade elements and rules for the fagade structure. The 'style' of the extracted

fagade grammar can then be applied to arbitrary building geometries (fig. 2.5). A more

general procedural approach for texture synthesis for wall materials can be found in

Legakiset al. (2001).

Figure 2.5: Fagade grammars - Fagade that is subdivided into smaller elements. A gram
mar is derived from this description(from Muller et al. (2007))

18

2. BACKGROUND & MOTIVATION

Lipp et al. (2008) developed a concept for users to vary the fagade rules giving design

ers more influence on the final appearance of the facade style. A comparable similar

approach for fagade texture construction based on real world images is presented in

Ricard et al. (2008). In contrast to Muller et al. (2007), this approach 'uses a merging of

various histograms resulting from image analysis algorithms (hough, edge and back

ground detector) to detect the main features of a fagade' (Ricard et al., 2008) inside the

real world image. Fagade grammars are also interesting for the concept presented in

this work. For generating fagade grammars features and elements of the fagade need

to be detected and their distribution on the wall needs to be identified. This information

could also be used as the input for the texture model described in chapter 4.

Other authors also investigate fagades and try to detect and extract features inside

of fagade images. Lee and Nevatia (2004) presents a concept for automatic window

detection using 'a profile projection method, which exploits the regularity of the vertical

and horizontal window placement'. In Wang et al. (2002) another approach for fagade

structure extraction is presented. Ripperda and Brenner (2007) present a concept for

fagade reconstruction that is 'based on a formal grammar to derive a structural fagade

description in the form of a derivation tree and uses a stochastic process based on

reversible jump Markov Chain Monte Carlo (rjMCMC)'. Becker et al. (2008) describes a

method for fagade reconstruction based on terrestrial laser scan point clouds. Missing

windows that are not detected due to low data acquisition quality are inserted into the

fagade using a formal grammar that is extracted from formerly reconstructed fagades,

which act as a knowledge base.

2.2 Background

This part of the chapter is taking a closer look at the actual structure of 3D city models

and at definitions of various manifestations of actual models. Stadler and Kolbe (2007)

provide a very good discussion on six types of 3D city model structures. The different

19

2. BACKGROUND & MOTIVATION

types of models can be related to different ways of data acquisition/modelling as well as

different terms of use (described in the previous sections). More sophisticated models

in terms of additional information and semantically rich data sets can be modelled

using formats like CityGML. These models can be characterized as multi-purpose data

sets as they can include much more information about urban space/urban objects than

necessary for pure visualization purposes. Therefore these models are also managed

in a different way in order to provide access to information included in the data models.

The relevant infrastructure and concepts for model management are also presented in

this section to show the (technical) environment in which these 3D city models exist.

2.2.1 Six Types of 3D City Models

As one can see in chapter 2.1, 3D city models can be created in very different ways for

very different purposes. Therefore the structure as well as the amount of (semantic)

information that is included into these models can differ quite significantly. There are

different types of city models and not all of them can be used for all purposes. Stadler

and Kolbe (2007) provide a profound discussion on different 3D city model manifesta

tions and define six types of models. In their paper they discuss the two characteristics

of 3D city models, the geometric and the semantic model, based on the CityGML stan

dard (OGC, 2008a) and show the interrelation and detail in which the two parts are

represented for the six model types. This thesis follows their definition of the six model

types and refers to them using the same numbers (type-1 to type-6 models).

The six cases from Stadler and Kolbe (2007) are:

 Case 1: Only geometry, no semantics

 Case 2: Only semantics, but no geometry

 Case 3: Simple objects with unstructured geometry

 Case 4: Simple objects with structured geometry

20

2. BACKGROUND & MOTIVATION

 Case 5: Complex objects with unstructured geometry

 Case 6: Complex objects with structured geometry

The distinct cases (1-6) defined by Stadler and Kolbe (2007) depend on the two afore

mentioned characteristics of 3D city models: geometry and semantics. The authors

refer to ISO 19109 and the GML3 standard (Geography Markup Language) for the

CityGML model, which describes building objects. Basically all classes in CityGML's

semantic model are 'derived from the basic class feature, defined in ISO 19109 and

GML3' (Stadler and Kolbe, 2007). For the geometrical model the CityGML standard

uses 'objects of the GML3's geometry model which is based on the standard ISO

19107 'Spatial Schema' (Herring, 2001), representing 3D geometry according to the

well-known Boundary Representation (BRep, Foley et. al, 1995). CityGML actually

uses only a subset of the GML3 geometry package' (Stadler and Kolbe, 2007).

For example, a type-3 model (fig. 2.6) defines a simple building object in the semantic

model and unstructured geometric instances to form the shape of the building. Type-1

models do not even have a semantic entity for 'urban objects'. These models exist only

of unstructured geometry that models the visual appearance of urban space. Models of

this type are 'based on 3D graphics formats like VRML, X3D, KML, U3D or legacy CAD

formats' (Stadler and Kolbe, 2007). However, introducing a minimum of conventions it

is possible to generate type-1 models that can easily be converted into type-3 models.

In VRML (Virtual Reality Modelling Language) (WebSD Consortium, 2003) for example,

it would be possible to define each semantic building as a group node named after the

ID of the actual building (as a link to further non-visual data). This group node would

act as a container for the formerly unstructured geometry. Hence, it is possible to a

certain extent to transform models from one type to another.

Besides type-6 models, which will be described later in this section, type-3 models are

in focus in this work, because they provide sufficient semantic information to fulfil the

requirements of a number of scenarios in which 3D city models are used. In type-3

21

2. BACKGROUND & MOTIVATION

Building Semantics Geometry

Figure 2.6: Type-3 Model - Simple object with unstructured geometry (Case 3)(Stadler
and Kolbe, 2007)

models it is possible to identify semantic objects (and their type). It is possible to

identify single buildings in the data set and retrieve an identifier, which allows accessing

any non-visual data that is linked to the object, e.g. building attributes like year of

construction. Therefore, these models can be used in information systems where the

city model acts as a freely navigable 3-dimensional interface to further data linked to

the 3D representation.

For example, in the EU-project 'VEPs' (Knapp et al., 2007), which investigated the use

of 3D city models in public participation in urban planning, it is possible to navigate

a 3D scene of existing and planned objects. It is possible for users to get additional

information about objects in the scene and to leave comments (linked to buildings) by

choosing the building in the 3D scene. In this case the visual aspect of the model

was important, but also the semantic entity that needs to be present in order to link

data/comments or access additional information. Semantic modelling of walls, roof or

building floors, etc. was not necessary because the scenario did not require them in

this case.

The models that this work investigates in detail are the type-6 models (fig. 2.7). This

type of model provides a very high 'spatio-semantic coherence' (Stadler and Kolbe,

2007), models semantic and geometry in the same detail and also links the two el

ements of the 3D model. Walls, roofs and ground elements of the building hull, for

example, are modelled in semantics and a separate geometry is associated with them.

Hence, in type-6 models each semantic entity has a geometrical counterpart. Ad-

22

2. BACKGROUND & MOTIVATION

ditional attributes can be assigned to the semantic entities and an information-rich,

meaningful model can be created. In contrast to type-3 models even more scenarios

can be served as more information about the objects and their structure is present.

Type-6 models can therefore be regarded as multipurpose models, especially in con

trast to type-1 pure visualization models. The CityGML data format is a well-known

format that can describe type-3 as well as type-6 city models 1 . Many examples can be

found in literature for CityGML use cases supporting the multipurpose nature of type-6

models.

Figure 2.7: Type-6 Model - Complex object with fully coherent spatio-semantic structure
(Case 6) (Stadler and Kolbe, 2007)

2.2.2 Multipurpose Model Management

Multipurpose, semantically rich models demand for better management systems, which

can provide specific subsets of the model as well as scenario specific information.

Having this kind of management systems at hand appears to be crucial as the models

are supposed to be used in different scenarios. Therefore it is necessary to be able to

query exactly the 'form' of model that is required in the specific scenario.

The previous section outlined that type-6 models have a high coherence between the

semantic and the geometrical part of the model and that these models can be also

1 'CityGML supports cases 2 to 6. Case 1 is not directly covered, because CityGML is based on
the feature model of ISO 19109 and therefore always needs to assign geometries to (at least simple)
semantic objects' (Stadler and Kolbe, 2007). In this work case 3 and 6 models are in focus, which can
be described by CityGML.

23

2. BACKGROUND & MOTIVATION

linked to various external data sets. This can be regarded as one of the major rea

sons for the multipurpose nature of type-6 models, they can serve various scenarios

because they provide more information about the semantics and structure of urban

space and they can be linked to scenario specific information on data level (not only

visually superimposed).

However, as there is not only one specific use-case into which the model is perma

nently integrated, there are probably many different 'user'-systems, which have very

specific requirements and also different hardware capabilities. Furthermore, it is ex

tremely unlikely that arbitrary clients in various scenarios work with exact the same

part of the model or with the model as a whole. Moreover, it is necessary to provide

different spatial parts of the model for a specific use-case, most probably in a specific

style or an adequate Level of Detail (LoD) (see chapter 2.3.4).

With all these requirements in mind (and there are certainly several more) it is obvi

ous that this flexibility can hardly be achieved by a file-base city model. Especially

when separate (file-based) models are used for separate use-cases, e.g. in specific

departments of a municipality there is a danger of inconsistency, storage of the same

information in several places (inefficient) and possibly the establishment of 'information

islands' that produce considerable problems when need to be merged with 'outside'

data or models.

A possible solution for managing the models more efficiently and in a more flexible way

can be found in the GIS world. Geographic data is very often managed in dedicated

Gl systems that very often make use of spatially enabled database systems. A similar

approach can be observed in the case of multipurpose 3D city models, which show the

characteristics of 3D geo-data. These models are also managed in spatial database

systems and administered by dedicated 3D model management systems (e.g. J. Haist

(2005)). The next section is going to describe these systems in more detail.

24

2. BACKGROUND & MOTIVATION

2.2.3 Management Systems for Urban Models

As outlined in the previous section it is very complicated to serve multipurpose models

by a file-based approach and therefore dedicated systems are in use to provide models

in diverse scenarios. This section looks at the 3D management systems in more detail

and on the requirements they have to fulfil. It will also look at the CAT3D framework

(CityModel Administration Toolkit) that was developed by the author of this thesis and

extended in term of this work. By using this framework as an example possible imple

mentation options for service processes are discussed to show how the flexible output

of these systems can be achieved.

The management systems that this work refers to need to serve different outputs based

on one centralized model (not based on separate models for each scenario) in:

 the right size (spatial extent as well as data size)

 the right data format

 the right type (1-6)

 with the right information density

 in the appropriate visual representation

The size of the model depends on two aspects: 1) for specific scenarios it is not nec

essary to use the whole 3D model. The application scenario only focuses on a specific

quarter or the area along a certain route. Here size refers to the spatial extent and is

scenario-driven. In some cases the streaming of small portions of the model is also

part of the scenario. 2) Specific client hardware can only handle small amounts of data

(e.g. a mobile device) because of their hardware configuration or limits in the trans

mission of data (wireless networks, mobile phone networks). In this case the model

should be small in terms of data size. This refers to the extent of the model but also

to information density or the LoD. This aspect is influenced by hardware requirements,

but is also influenced by the use-case in which the model is used.

25

2. BACKGROUND & MOTIVATION

The correct data format is a quite obvious requirement as different client platforms

usually work on different data formats. This format is also linked to the way the model

is used on client side. For visualization data formats like VRML (Web3D Consortium,

2003) are used. When transmitting data to a remote information system (e.g. a CIS

or another application server in a SDI) the full range of information is needed and a

format like CityGML would be preferred.

Aspects like information density and suitable visualization are more scenario-driven

as certain use-cases do not require the full information that is present in the model. The

system itself and the implemented interfaces should allow filtering content accordingly.

But not only the capabilities of the middle-tier and the interfaces are important in this

aspect, the data model as such needs to be in a form that allows combining informa

tion streams and not only represent pre-defined, fixed representation of one type of

information. In terms of visualization not only the standard representation of photo

realism might be required by the client, but a combination of information sets to solve

specific tasks. In the field of geovisualization this is regarded as very important for

knowledge construction and information retrieval (Dykes et al., 2005). Interfaces and

the management system should support these capabilities in order to allow multiple

visual representations of the 3D city models.

In order to fulfil these requirements and flexibly provide output for scenario-driven

mash-ups of SDI services the 3D city model management system needs to be im

plemented in a flexible way and to handle most diverse requests and serve various

information requirements. Systems like the City Server (J. Haist, 2005) provide this

kind of flexibility and the required functionality. Another system that is developed by

the author of this thesis can also act as a centralized 3D model repository. The CAT3D

framework provides functionality for managing 3D city models and serves them to other

systems through the OGC WebSD Service interface (W3DS). The framework acts as

a basis for developing the solutions presented in this work and to assess SDI related

questions. The flexibility of the framework is ensured by a modularized architecture

26

2. BACKGROUND & MOTIVATION

that groups modules in several logical layers. The general architecture and description

of CAT3D can be found in fig. 2.8 (grey boxes). The framework is built of three general

layers: Data Connection, Data Mapping and Format Creation. The Data Connection

layer symbolizes modules that establish a connection to a data source and translate the

external information into the internal data representation (Data Mapping Layer). Here

the information can be integrated with data from other sources or transformed (e.g.

coordinate reference system). The translation from the internal representation into a

specific output format is done by one of the modules in the Format Creation Layer.

Here the required information is read from the internal representation and translated

into an output format requested by the client application through one of the service

interfaces.

It can also be seen in figure 2.8 that it is not only possible to support one specific

data service interface. It is possible to implement a W3DS (red), for example, that

provides 3D scene graphs for rendering (e.g. type-1 or type-3 models). However,

it is also possible to implement a Web Feature Service (blue) interface (WFS) that

provides CityGML output, which includes the full type-6 model with all of its semantics

and attributes in addition to the geometry. The two interfaces on top of the 3D data

management system ensure the aforementioned requirements of delivering the right

'model type' for a specific scenario or workflow through the appropriate interface.

Feeding the data that is requested through those interfaces involves several compo

nents of the framework to be linked together to a process chain. One process chain

is needed for the WFS workflow (blue elements) and one for the W3DS workflow (red

elements). As modules of the framework are reusable the specific functionality does

not need to be re-implemented for each new process chain of other service interfaces.

The flexible management systems provide an appropriate repository in which ideally

type-6 models should be stored in order to have the full range of information avail

able. Upon request of specific clients it is still possible to provide type-1 or type-3

models depending on the intended use and the capabilities of the client system. As

27

2. BACKGROUND & MOTIVATION

Web Feature Service Web 3D Service

(Format Creation Layer)

Internal Data Format (Data-Mapping-Layer)

(Data Connection Layer)

^~ •/

Figure 2.8: CAT3D as basis for OGC Services - Service implementations using specific

modules of the framework (red - W3DS; blue - WFS)

the presented type of management systems are capable of providing several types of

output and serve a multitude of scenarios, they are also integrated into (3D-) spatial

data infrastructures in order to support external process chains and interact with other

systems in this infrastructure.

2.2.4 Spatial Data Infrastructures

As already discussed a file-based per use-case solution for the investigated multipur

pose models appears to be inefficient and keeps the danger of inconsistencies and is

also inefficient in terms of data storage, as models or parts of them have to be stored

multiple times. But not only serving multiple clients/scenarios is an issue for the man

agement of 3D city models. City models can also exist of data that is provided from dif

ferent distributed sources. Especially within municipalities data for the 3D model can be

acquired, maintained and distributed by separate departments, e.g. trees/vegetation,

roads, terrain, buildings can come from separate departments or organizational units.

28

2. BACKGROUND & MOTIVATION

In order to exchange this information, link and merge it in order to build the 3D model

of the city a certain infrastructure and management needs to be established. This is

especially true if the required information, respectively the required model for a specific

scenario is generated in (near) real-time on request and is not a pre-processed model

for the specific use case. This interaction can become very complex and achieving

acceptable results grounded on file-based models is almost impossible or very costly.

So for real-time integration of data into a model various (sub-) systems of the SDI need

to communicate with each other. This is often achieved by open standard interfaces

and data formats inside the SDI.

According to Wytzisk and Sliwinski (2004)

'a SDI can be understood as a multi-levelled, scalable, and adaptable collection of

technical and human services, which are interconnected across system, organisa

tional, and administrative boundaries via standardized interfaces. Those services

enable users from different application domains to participate in value chains by

gaining a seamless access to spatial information and geo-processing resources.

Scalability and adaptability reflect here the evolutionary nature of a SDI where stake

holders join or leave, technical or human services are launched, substituted, or dis

continued, and novel means are integrated without any interference with already

existing SDI operations. It also mirrors the need to allow users to adjust their usage

behaviour as well as to reconfigure the processes executed in their application do

main. In this context, technical services refer to interoperable and modular software

entities that provide users with an access to distributed geo-processing functionality

and spatial information resources through an open and standardized interface. Geo

graphic information (Gl) services are a subset of technical services. They enable the

discovery, retrieval, processing, manipulation, analysis, and visualization of spatial

data from multiple sources via a communication network.'

Several of the technical services, respectively their interfaces, Wytzisk and Sliwinski

(2004) refer to are defined by open OGC standards, for the field of (3D-) geospatial

29

2. BACKGROUND & MOTIVATION

data and they also apply for 3D city models. The new content concept for textures

needs to be able to integrate into these concepts and the relevant interfaces to be

used for type-6 city models in a consequent manner.

A very important aspect of a SDI is the exchange of data and information in a standard

ized way. By having standardized interfaces at hand different services and systems can

be linked and utilised in order to build scenario specific processes and workflows. For

different processes the relevant services can be linked in different ways in a relatively

uncomplicated manner, as the interfaces are well known. The OGC defines several

different data standards and interfaces, which can be used to build up SDIs. Inter

faces include specifications for data access (WFS, W3DS, etc.) but also access to

geo-processing services like the Web Processing Service, Web Coverage Processing

Service or parts of the OpenLS services 1 (OpenGIS Location Service). These inter

faces can be used to perform specific processes for given geo-spatial data sets.

Looking at the concept of exchanging data for different purposes and different clients

type-6 models can hardly be managed in a file-based multi-instance way. In order to

assess the possibility to integrate the new texture content model this work looks at the

scenario in which the 3D city model is managed in a centralized system that provides

the urban model to various clients and other services inside the SDI. The centralized

system for 3D model access is assumed to be similar to the CAT3D framework pre

sented in the previous section. It was outlined that it is necessary to manage this type

of model in a system that is flexible in terms of data management and data processing.

This system facilitate the maintenance of one type-6 model (e.g. for a whole city) and

provide it, through appropriate interfaces, to other systems in the SDI (other services)

or to end-user applications. The centralized city model can be better maintained and

there is only one 'contact point' within the SDI for accessing the required city model

data. Examples for specific client-server scenarios are provided in chapter 4.8 sug

gesting possible ways of integrating the developed texture model.

1 see the OGC Website for mentioned standards: www.opengeospatial.org

30

2. BACKGROUND & MOTIVATION

2.3 Motivation

2.3.1 Textures in current 3D City Models

Despite the multipurpose nature of type-6 models and the assumption that versatile

visualization is needed, textures currently still appear to be regarded as containers for

photo-images of the real world object. Textures are mapped to geometry in order to

enhance the realistic appearance of the model (as in type-1). Textures normally add

missing geometrical detail visually. In terms of fagades this would mean an observer

can see building floors, windows, doors, ledges, etc. although there are no geometrical

entities modelled. The texture holds a pixel matrix that is filled with colour values

normally taken from a photo. Of course, the content of the matrix can be replaced by

loading different colour values, e.g. a thermal image. However, the loaded information

(thermal or real world image) shows one fixed representation of the object and photo-

textures are used for one fixed purpose: provide a maximum of realism for the 3D

building. Examples for other forms of texture content are rare. As buildings are mostly

modelled in LoD2, without fagade details, for the majority of buildings, textures are used

to add the missing elements visually. In terms of a whole city with several thousand

buildings, acquisition of fagades through photos is currently easier than modelling the

windows and other elements geometrically, when visualization matters are concerned.

Nevertheless, there are some examples in recent literature that use textures for infor

mation visualization, hence holding other content than the photo-realistic representa

tion and adding additional information. Buchholz (2006) presents a use-case for his

multi-resolution texture atlas. Here pre-computed visibility information is used as tex

tures for the 3D model. In this case the combination of realistic and thematic content

is pre-generated and it is not clear if interactive changes of content can be achieved.

MaaB (2009) describes approaches for automatic placement of textual annotations (la

bels) in 3D city models and also examines building surfaces as spaces where this extra

31

2. BACKGROUND & MOTIVATION

content can be placed. This approach can be compared to equivalent approaches in

cartography for placing text in maps. Lorenz and Dollner (2010) present a concept for

'Surface properties and their application' using the programmable rendering pipeline of

modern graphics hardware to combine, analyse and visualize these properties in the

3D model.

Surface properties 'describe data attached to 3D feature surfaces; i.e., for each sur

face location, a data value of an arbitrary, but homogeneous, type can be stored.

Surface properties are not limited to the Earth's surface but apply to any 3D fea

ture, such as buildings or bridges. The simplest surface property is a constant

value assigned to the feature's entire surface. Usually, surface properties provide

location-dependent, varying values. Typically, such a property is sampled regularly

and stored as a collection of 2D rasters along with one unique mapping function per

surface patch (e.g., a polygon). A surface property covers the complete surface and

maps a unique raster portion to each surface patch' (Fig. 2.9) (Lorenz and Dollner,

2010).

The visualization approach presented by Lorenz and Dollner (2010) supports the hy

pothesis of this work that 3D city models do not necessarily have to be photo-realistic.

When used for analysis or information visualization purposes other visualization princi

ples need to be applied in order to communicate the relevant aspects that are actually

in focus. Lorenz and Dollner (2010), as well as this work, argue that surfaces of build

ings and other objects are more than the geometrical frame for photo-textures.

Surfaces can transport much more information than the naturalistic appearance of an

object and textures can act as information channels within 3D city models. In their

work two examples are presented where surface properties can be used: photovoltaic

potential (PV-potential) and residential quality. For distinct raster points on the surface

relevant input values can be combined and the surface property can be calculated.

The colour coded result is then applied to geometry. For the PV-potential analysis

input information can be shadowing values, radiance levels, etc. that are distributed

32

2. BACKGROUND & MOTIVATION

2D raster(s) 3D geometry

Figure 2.9: Schema of Surface Properties - Schematic view of a raster-based surface
property. Each surface patch is mapped to an associated unique raster area.(Lorenz and
Dollner, 2010)

over the surface of the building. These values are combined and the resulting PV-

potential value for each distinct position on the surface is calculated. In their prototype

system this process is implemented directly as part of the rendering pipeline using

shader programmes. The analysis of the input data and the combination with other

information can directly be influenced by altering the shader code.

The described approaches work on solutions to place information on the surface of

building objects and use them for information visualization. Especially the work of

Lorenz and Dollner (2010) tries to integrate several information sets and visualize them

on the object's surface. However, the texture is still regarded as a pixel matrix, which

is filled by calculating a certain colour value for each texel 1 . A structure to organize

specific content inside the texture is not exposed to the user. In digital maps, as well

as GIS and CAD (Computer Aided Design) systems layers are used to organize con

tent and provide specific control over the content. This should also be achieved for

the model presented in this work. Looking at the aspects of flexibility and real-time

changes of content as well as combination of different information the standard texture

approach does not work well. Of course, flexibility can be achieved by providing many

images containing different content combinations that are pre-processed. Switching

between those pre-created representations is possible but can be regarded as ineffi-

1 a texel in a texture is the equivalent to a pixel in an image

33

2. BACKGROUND & MOTIVATION

cient. Besides, if there are many possible combinations of content this would multiply

the numbers of individual textures/images that need to be stored and transmitted.

As already mentioned before, when textures for 3D city building fagades are regarded

as links to digital images, they provide one fixed representation that is contained in

the image. Looking at procedural fagade concepts (e.g. Muller et al. (2007)) these

are more flexible and can produce different output. However, the grammar appears

to be designed to produce valid fagades for arbitrary building forms. The purpose of

the fagade is to be valid and realistic. Once the right representation is found it would

remain constant over the lifetime of the model visualization. So it is more or less a

design tool.

In general textures are widely used in order to provide a photo-realistic appearance

of digital models and this is quite sensible for visually oriented models, hence when

realism is the intended goal of a specific visualization. However, there is some evidence

that non-photorealistic representations, especially for more geo-data oriented models,

in specific scenarios can be beneficial for knowledge generation and analysis. But

even in the related research field of computer graphics where the photo-realistic aspect

plays an important role (see next section) one can find evidence that other visualization

approaches are also useful.

2.3.2 Photo-Realism and 3D City Models

In computer graphics traditionally there was, and still is in many applications, a focus

on achieving the most naturalistic appearance of a computer generated scene in com

parison to the real world. The correctness of the depicted scene is seen as the most

important aspect and achieving the perfect illusion in making the computer generated

rendering indistinguishable from the real world scene.

34

2. BACKGROUND & MOTIVATION

Schirra and Scholz (1998) describe this tendency as:

'Most approaches in model-based computer visualizations carry a more or less im

plicit dedication to naturalism. Realism is seen as the ultimate goal of any effort of

creating pictorial representation of reality as it is or could be, and naturalism as the

single stylistic method to achieve realism.'

Stappers et al. (2003) identified a similar tendency:

'Most work in developing VR' (Virtual Reality) 'has been aimed at reproducing the

natural world, making the stimulation the observer receives indistinguishable from

the 'real' thing. We argue that this 'stimulation correspondence' view of VR has

a number of drawbacks if we want to make optimal use of VR as a tool. Corre

spondence to the natural world is not always necessary or even desirable, is often

wasteful, and tends to inhibit the development of new possibilities that VR offers.'

In Stappers et al. (2003) the basic problem with virtual reality and realism 'is that it puts

an objective world first, the user's experience, his tasks, and the information he needs

for those tasks second'. Thereby it is underpinned that a naturalistic representation is

not always the required information a user needs to fulfil a specific task, a fact which

is sometimes not taken into consideration when 3D city models are generated or vi

sualized. 'But if VR is treated as an expressive medium to be used as a tool, rather

than a slavish reproduction of the everyday world, interesting shortcuts and extensions

emerge, including possibilities for creating more 'expressive' forms of VR' (Stappers

et al., 2003).

The 'ultimate goal' of (photo-) realism in computer graphics is accompanied by a more

recent trend of non-photorealistic rendering (NPR) that is actually focusing on other

aspects of real world objects and the question if naturalism might be the wrong way

of visualization for each and every application of computer generated renderings or

real time visualization. Schirra and Scholz (1998) provide a very sophisticated and

elaborate review on the question if realism and abstraction exclude each other or if

35

2. BACKGROUND & MOTIVATION

they are rather mutually dependent. At this point a selection of their arguments will be

examined on the background of fagade textures of 3D city models.

Abstraction can be defined as the 'intentional omitting of aspects that would have to be

present for a realistic representation ...or as the pictorial representation of aspects that

are actually not visible at all' (Schirra and Scholz, 1998). This definition of abstraction

is regarded as the contrast of 'realism seemingly guaranteed by a causal relation, in

photography, holding between the scene represented and the image produced'. How

ever, a strict either-or approach seems not appropriate for them in terms of computer

visualization.

Intentional omitting of (visual) aspects can be underpinned by the argument that in

some cases the focus of a task is not merely on the visual appearance of objects.

Objects generally have much more properties than the ones that can be observed

visually. Non-visual aspects like function, meaning, semantic relevance, etc. cannot

be perceived visually in a naturalistic representation. On the other hand, a completely

abstracted representation can also be counter-productive, when the naturalistic aspect

is omitted completely the anchor point for the non-visual information is not given and

the reference to an actual spatial object is not present anymore (compare Schirra and

Scholz (1998)).

The definition by Schirra and Scholz (1998) of a 'Purposeful Picture' shows that taking

the scenario into account in which a rendering is going to be used is essential for the

question how much realism and abstraction needs to be used in order to support the

task that has to be solved. In that way the term 'realism' does not define one definite

state of representation, but a property that is dependent on the circumstances in which

a rendered image is used. And this is also true for urban models. For 3D city models

possible application scenarios are numerous.

As described in the previous section multipurpose virtual cities can be used in many

different fields with a variety of different requirements for the specific task they are

36

2. BACKGROUND & MOTIVATION

going to support. Taking this into account the visual representation of the model in

use can definitely not be reduced to a naturalistic representation. Furthermore, the

depiction in an either naturalistic or 'completely' abstracted way seems to be restricting

as well. Some scenarios tend to require a more fine-grained adjustability of the degree

of realism/abstraction in terms of the visualization of urban space. Ferwerda (2003)

described functional realism as one of three types of realism that can be defined for

computer generated visualizations. For him functional realism is defined by 'knowledge

about the meaningful properties of the objects in a scene' is provided, 'such as their

shapes, sizes, positions, motions, and materials', which 'allows an observer to make

reliable judgments and perform useful visual tasks.' This definition of realism supports

the concept of the previously mentioned purposeful pictures and suggests a similar

point of view on the rendering of 3D city models. Especially virtual cities with their

characteristics of an urban information space and their multipurpose nature should be

rendered in a task driven way. Taking this requirement into account the use of static

photo-images in order to apply the fagade material to the model seems to be non-

optimal for these kinds of models. The texturing of prominent elements of these models

should be more flexible and should provide a set of capabilities in order to enable the

user to adjust the representation of the model according to its purpose of use. And

as well as in computer graphics a black-or-white approach of naturalistic or abstracted

representation would not really solve the problem completely. An adjustable level of

realism/abstraction, where realistic and abstracted elements can be integrated into the

textures needs to be provided, so that numerous applications can be served in terms

of textures for urban objects.

Looking at the concept of purposeful pictures for computer graphics there is a similar

philosophy that could be named purposeful 3D models. This type of models should

serve a specific task and therefore provide a meaningful set of information. This in

formation must then be visualized in an appropriate way. Appropriate here means

meaningful for the scenario in which the model is used. As data sets of 3D city models

37

2. BACKGROUND & MOTIVATION

can include a vast amount of information it is certainly necessary to filter the required

information for the given use-case and find the best way to visualize this information in

order to generate the purposeful 3D model. The 'best way' for visualizing the model

lies in the appropriate ratio between realism and abstraction, where abstraction also

means integrating non-visual information into the depiction.

2.3.3 3D City Models & Map Illustration

In the previous section it was outlined that a purposeful representation is not always

achieved by photo-realistic modelling of the real world. More specifically looking at

3D city models in relation to useful visualization approaches it is certainly beneficial to

consider geovisualization and map illustration to find appropriate solutions. In terms

of geovisualization the goal is to present the information that type-6 models provide

in a meaningful way that is easy to understand. Additional information linked to these

models can come from various sources, examples are: the use of buildings (or building

parts), the year of construction, energy consumption of different apartments, occu

pancy, insulation level of windows, etc. The number of data sets that can be linked to

building entities or their semantic sub-parts is almost unlimited.

In terms of 3D city models and geo-spatial data in general the task of meaningful rep

resentation is highly complex and involves several research challenges. The mere

size of geographical data sets can be significant and data usually comes from different

providers or sources. In most cases the form of the data is not homogeneously mod

elled and in some cases the reference system also differs and the data needs to be

transformed before it can be visualized. Hence, the appropriate combined visualization

of heterogeneous data sets is a challenge in itself, if visual analysis of interrelations and

links needs to be conducted.

38

2. BACKGROUND & MOTIVATION

In order to achieve this goal geovisualization integrates 'approaches from visualization

in scientific computing (ViSC), cartography, image analysis, information visualization,

exploratory data analysis (EDA) as well as GIScience' (Dykes et al., 2005).

Especially influences and knowledge about geographic visualization comes from the

field of cartography. MacEachren and Kraak (1997) describe the role of cartography in

this way:

'Cartography has much to offer the scientific community through its long history of

design and production of visual representation of the earth, its knowledge of geo

graphical (and cartographical) information systems, and its experience with linking

digital and visual geographic representation.'

However, they also recognized that cartography, on the other side, can also bene

fit from developments in computer science, interface design (HCI), three-dimensional

computer modelling and related methods and technologies can also enhance and sup

port cartographic visualization. This links back to the field of 3D city models. The

advancements of computer technology generate a whole new challenge for cartogra

phy and geovisualization, which is actually centred on purposeful systems for (spatial)

knowledge generation.

Dykes et al. (2010) identified cities as a space where an increasing amount of data is

collected and is also essential to processes within the city or to the citizens living in

urban space. The data analysis and information construction is, in this geo-referenced

scenario/environment, also a field which geovisualization can help to recognize inter

relations and patterns in the data and draw conclusions from the analysis of this data.

Urban space can therefore be a very important 'use-case' for appropriate data man

agement, visualization and knowledge construction, as we might need to manage our

cities better in the future due to many challenges concerning the environment, increas

ing numbers of people moving to cities, traffic, public transport, health, urban (re-)

development, etc.

39

2. BACKGROUND & MOTIVATION

Reconsidering that cartography plays a vital role in terms of geovisualization this work

is taking a look at map visualization and how buildings (and other urban objects) being

part of 3D city models are used in (3D-) maps.

2.3.3.1 2D Map Rendering

Figure 2.10 shows a simple map of the earth. In this case the map is a 2D map, which

means the space that holds the map content (referred to as map-space in this work)

is a 2D plane. This plane is the screen plane in case of a digital map or the 'paper'-

plane for a printed map. The content in this map (or the data set) are flat 2D-polygons

representing the borders of countries (white fill). The map implicitly contains a further

polygon describing the oceans and other water bodies on earth (blue fill). This 2D map

therefore has a 2D map-space with polygonal map content. Icons or text can be placed

'on top' of the content, e.g. the flag of each country inside the country's border. The

icons are not part of the actual map data, but visual elements that can help to better

understand the data, thus enhancing the visual information.

TO*.

ViA

v-
Figure 2.10: Simple World Map - Two-dimensional map representing the world's countries
and water-bodies (from Wikipedia, accessed 10.02.2012)

40

2. BACKGROUND & MOTIVATION

2.3.3.2 2.5D Map Rendering

In this case the map-space, the surface on which the map content is placed, is not 2D

anymore. The map-space is a 2.5D element where each x,y-coordinate is linked to

exactly one z-value. These structures are normally represented by a grid or a TIN (Tri

angulated Irregular Network). Very often digital terrain models (DTM) or digital surface

models (DSM) are used as map space in this case (see fig. 2.11).

800m 800m

Figure 2.11: 2.5D-Surfaces as Map-Space - Top: Schematic depiction of 2.5D Ter
rain and Surface Model. Digital Surface Model in red, Digital Terrain model in light blue
(from Wikipedia, accessed 10.02.2012). Bottom: example of two DTMs modelled as grids
(MacMillanetal.,2004)

When the 2D map of the earth is projected onto a DTM the map elements are still

2D polygons, only the topography can be better understood because of the 2.5D map

surface. The icons (flags) from the previous example are also still 2D as they are

mapped onto the DTM as well.

41

2. BACKGROUND & MOTIVATION

2.3.3.3 3D Map Rendering

Three-dimensional map rendering is similar to 2.5D map visualization. In the case of a

3D map the map-space is often a DTM, or in some cases a flat 2D plane in 3D space.

In figure 2.12 an example for the latter case is depicted. The map data is a set of

points, which represent the position of trees. The 3D map visualization uses 3D icons

at these positions to generate a 3D representation.

Figure 2.12: 3D Map with Tree-Icons - A flat map-space in 3D with tree icons generating

a 3D impression

The icons are visual models of trees, no semantics or attached attributes; this is just a

visual three-dimensional representation for the real world object. In figure 2.13 there is

a DTM used as map-space and the map content is an aerial photo. The 3D buildings

are icons that represent the buildings in the map area. Nevertheless, these buildings

are just visual icons, like the trees in the previous example, in most cases they do not

have any semantic structure or attached attributes, in some cases even the semantic

information that the icon is a building is missing. The map-space is still the surface

of the DTM and map content can only be placed here. Using photo-textured building

icons does not change this situation, because the icons would just look more realistic.

However, they would still be icons. The KML standard (Keyhole Markup Language)

42

2. BACKGROUND & MOTIVATION

(OGC, 20086) used for GoogleEarth reflects this concept quite well. Buildings can be

modelled as 3D-polygonal geometry inside a 'placemark'-element, hence an icon that

'marks a place'.

Figure 2.13: 3D Map-Terrain with Building-Icons - A DTM map-space in 3D with building

icons representing real world buildings

Even when certain semantic elements are modelled, e.g. separate wall and roof ge

ometry these are often just photo-textured or coloured differently. This can be used

to represent two attributes at the same time, e.g. year of construction is represented

by the roof colour and use of the building by the wall colour. Nevertheless, the actual

map-space is still the DTM surface. Further examples for this representation can be

found in chapter 2.1.1. In figure 2.1 the map of a navigation system is depicted. It can

be seen that the map content with the integrated route visualization is placed onto the

terrain, which acts as the actual map-space. The 3D buildings are textured icons in the

map, which provide context for the route visualization. In figure 2.2 a similar situation

can be observed. The pollution information (map content) is mapped onto the terrain

surface (map-space). The grey building blocks are 3D icons helping the observer to

relate the map information spatially. In both cases the surface of the buildings is not

part of map-space in which the actual map content is placed.

43

2. BACKGROUND & MOTIVATION

2.3.3.4 Extension of Map-Space

The contribution of this work is to change textures of 3D (building) objects. They should

not solely be a container for icon textures (photo-images), which enhance the appear

ance of 3D icons. When 3D buildings are modelled in type-6 (see chapter 2.2.1) and

linked to additional data, they do not act as icons (type-1 model). They are part of the

map-data and the information should be integrated into the map illustration. However,

currently the building surface cannot act as map-space because there is no way to or

ganize the content of textures in a way map-content is organized (e.g. layers, z-order

of layers, separate fagade elements, etc.). The contribution of this work is a model to

organize texture content and provide basic capabilities to turn them into map-space

(fig. 2.14).

Red: Map-Space where map elements
and content can be placed

Blue: Type-6 semantical^ modelled
building entities with attached

attribute data

Figure 2.14: Extension of Map-Space - The map-space in 3D maps should also cover
the surface of buildings and other objects in order to visualize object specific map-content

This enhancement of texture content in order to represent map-space (in basic and

narrow terms) needs to be achieved by using current computer graphics capabili

ties and methods (e.g. a programmable Graphics Processing Unit (GPU)) to achieve

state-of-the-art map rendering. This would allow interactive and/or situation depen

dent changes of map content, comparable to currently existing 2D digital maps (e.g.

switching different content on/off). But not only is the rendering performance in focus in

this work. The presented approach (see chapter 4) will also suggest ways to organize

44

2. BACKGROUND & MOTIVATION

texture/fagade information in order to enable the management of map-content. One

aspect is the introduction of a layer structure for into the texture content model.

2.3.4 Level of Detail and Level of Realism

In the previous sections we learned that the surfaces of 3D objects, e.g. buildings,

need to be developed into a part if map-space to be able to contain and visualize

'map-content'. But what needs to be achieved? What are the requirements for texture

content and what are the capabilities these textures need to provide? In this and in the

next section two basic aspects are discussed that should be investigated in terms of

texturing for (3D-) map-rendering. This section is going to discuss adaptable detail in

(fagade-) textures. The next section looks at additional non-photorealistic information

that needs to be integrated into 3D model textures.

The need for adaptable detail and the fact that one specific representation cannot be

suitable for a multipurpose data model is already identified in the CityGML standard for

the aspect of geometrical detail. However, the standard distinguishes different levels of

detail only in terms of geometry, not for textures yet. The CityGML standard, which in

this work would be regarded as a good practice when it comes to multipurpose 3D city

models, defines 4 distinct LoDs for buildings (OGC, 2008a). It therefore argues that for

different scenarios in which a model can be used, different geometrical levels of detail

can be most appropriate. LoD in this case means one entity/feature/building does

not consist of one single geometrical/semantic representation, but at maximum four

different ones. They range from LoD1, the extruded footprint up to a certain (building-)

height resulting in the approximate building volume, to LoD4, the detailed model of the

building and its interiors like rooms, inner walls, internal doors, etc. (figure 2.15)

It can be seen that the LoD can also reflect the capabilities of the model acquisition,

which leads to different levels of detail. However, scenario driven aspects do also

require the use of a LoD1 model even if the LoD3 geometry would be available in

45

2. BACKGROUND & MOTIVATION

LODO LOD1 LOD2

LOW LOD4

Figure 2.15: CityGML LoD concept - The five levels of detailed defined by the CityGML
OGC standard (OGC, 2008a)

addition. For example, for simulations like noise or mobile phone network distribution,

it would be sufficient to use a LoD1 model because the interior elements or detailed

roof geometry might not be so much in focus for these scenarios.

Therefore, adapting the appearance, respectively the complexity of the model, to the

particular use-case is achieved for geometry by the introduction of the LoD concept.

The equivalent concept for textures is missing. In order to have the flexibility to gen

erate purposeful representations adapted to the particular scenario textures, or to be

more precise the texture content, should also be able to adapt to user and scenario

requirements.

The question is: how can a new texture content model reflect different levels of detail

in order to provide multipurpose representations? Hence, how can differently detailed

representations for (fagade-) textures are achieved in order to reflect the idea of ex

tended map-space (see section 2.3.3.4). When the extended map-space on building

surfaces should be able to hold different content in terms of detail, similar to the LoD

concept for geometry, the new texture model should integrate this idea.

46

2. BACKGROUND & MOTIVATION

Conceptually it needs to be possible to define a fagade texture LoD in order to be able

to differentiate between diverse fagade representations in terms of detail. As the term

'Level of Detail' is already used for the geometrical detail 1 , this work introduces the

term Level of Realism (LoR) to reflect the level of detail in textures. The purposes of

introducing the LoR concept are quite similar to those for the LoD. On the one hand it

should reflect the capabilities of the acquisition method, for example, window extraction

from fagade photos. This method can extract window positions and the portion of the

texture that represents the window element. This information might result in a fagade

texture with a 'background material' and the window elements. Other features of the

fagade were not extracted. On the other hand the LoR should also reflect different

requirements for different scenarios in terms of visualization, as we learned that photo

realism or naturalism is not always the suitable solution.

An important aspect, for LoD and LoR, that one should definitely recognize, is that

both concepts are not changing the 'resolution' of the model, but the 'density' of the

information and content. Both concepts are not aiming to simplify the content, but to

omit a specific, semantic portion of it.

For the geometrical part of a 3D city model there are approaches to simplify geometry

(Kada (2007), in chapter 5) and still preserve the main characteristics of the object,

which does not work for many mesh simplification approaches in computer graphics.

These approaches generally simplify the geometry of the object; hence try to reduce

the number of polygons or triangles (geometric primitives). However, the LoD concept

specifies certain features that are present in a higher LoD but not in a lower one (e.g.

interiors, roof geometry, etc.). For the LoR concept this should work in a similar way.

For a texture not the resolution should be changed (filtered/mip-mapped) to change

the 'detail' and e.g. reduce size, but the content of the texture should be adaptable. It

should be a matter of which semantic entities (windows, doors, ledges, signs, etc.) are

1 LoD has a further meaning in computer graphics: Here the LoD refers to numbers of triangles in a

mesh, respectively the resolution of an object's geometry

47

2. BACKGROUND & MOTIVATION

going to be included into the texture. In the presented work the author refers to this

aspect as 'information density' or 'density of fagade elements'.

But not only is the density of information in a fagade texture an aspect that is investi

gated in this work. As already mentioned it is also important for multipurpose models to

be able to provide multipurpose representation. Therefore it is not only interesting how

the information density can be adjusted by concepts like the LoR, it is also valid to ask

if it is useful to integrate and combine different information in the fagade representation

(real world fagade elements + non-visual attribute data).

2.3.5 Additional Information in Fagade Textures

At this point we are coming back to the idea of 'purposeful pictures' (see Schirra and

Scholz (1998)) that are providing the right information for a specific task that a 3D visu

alization is used for. The discussion on the LoD/LoR concepts shows that the adjusta

bility of the amount of information can be beneficial in certain cases. This adjustability,

however, focuses on naturalistic elements of the fagade and how many of them should

be present in the fagade texture. In the end the user would be able to choose between

different depictions like 'full detail', 'wall material plus windows/doors', 'material only',

etc.

Nevertheless, in specific scenarios it can be also important to add additional informa

tion to the texture, which is not part of the naturalistic appearance, in order to make it

visible to the user. 3D city models, especially sophisticated type-6 models, normally

provide links to attribute data sets at least at building level. This additional information

is one more aspect that differentiates the multipurpose models from purely graphical

models. As we find semantic entities with a meaning and a purpose, properties of the

semantic entities can be linked even if they are stored in another data set (when shar

ing a common ID). Visualizing attribute values in the 3D scene is often achieved by

colouring the building, or a building's geometrical parts (roof, walls, ground) according

48

2. BACKGROUND & MOTIVATION

to a colour scale representing the values the attribute can have. One example would

be the year of construction. Buildings can be coloured according to the year they were

built and a kind of 3D thematic map is created. This works quite well for a single at

tribute that refers to the whole building. In principal, this visualization method is based

on the idea of using differently coloured icons (see section 2.3.3). In this case, for ex

ample, icons for buildings built in 1990 are coloured green, buildings in 1995 in blue,

and so on. Hence, the icon can represent one attribute at a time. This approach can

only reflect the extension of map-space in a very limited way.

In another example this solution is much more complicated. Having a building with a

shop on the ground floor and a flat on the first floor and an attribute data set storing the

two types of use it is rather complicated to symbolize this information by colour coding

when there is no explicit geometry for building floors. Current models mostly consist

of walls representing the building's outer hull. It is quite difficult to colour the upper

portion of the wall geometry in one colour and the lower portion in another colour. This

becomes even more complicated the more information is intended to be visualized.

Therefore as there are no explicit geometrical representations of fagade elements and

building floors to which the colours can be applied one solution would be to look at the

texture in this case as well. One would need to suggest a definition for texture content

that allows specifying that the upper half of the texture should have colour A and the

other half colour B. When the texture is applied to the wall geometry the colours can

represent the two different types of use although the separate floors are not present

and there is only a single geometry for the wall. Besides the LoR this is another way

to use textures scenario specific and not only for enhancing 'realism'. Managed and

modelled in an appropriate way they can also answer questions discussed by Ferwerda

(2003) and Schirra and Scholz (1998) mentioned in earlier sections of this chapter.

A further advantage of combining information inside a texture can be very useful for

knowledge creation and understanding the links between different information and

coming to new conclusions. Combining information and changing the content by switch-

49

2. BACKGROUND & MOTIVATION

ing to other combinations in real-time might also be useful in this case. Using the

example from above one might want to mix the two colour-coded areas (top residen

tial, bottom for commercial use) with e.g. an electricity consumption graph for the last

month and superimpose the two types of information to solve a specific task analysing

the situation. This flexibility in terms of content, combination and density of information

is already achieved in other disciplines and systems (e.g. digital maps, GIS, CAD, etc.)

by using layers. This concept is well known and widely accepted and therefore this

work is going to investigate if and how it can be used within the presented texturing

model for fagades in 3D city models.

2.4 Summary

In this chapter the current state-of-the-art in the field of 3D city models was presented

by providing examples of their current use and different ways of data acquisition. It

becomes obvious that digital 3D urban models are used in various scenarios and in

very different forms in terms of semantic detail.

The different forms of manifestation of 3D models was addressed by adopting the six

types of models defined by Stadler and Kolbe (2007). The definition of type-1 to type-6

models is used throughout this work in order to refer to the differently modelled in

formation and semantic content of 3D city models and the resulting consequences of

visualization.

As type-6 models transport much more information about urban objects they can be

used in many more ways than photo-realistic visualization. This chapter described why

these models need to be managed in a flexible and efficient way in order to serve many

different scenarios and use-cases. Different clients must be able to access the exact

right portion of a model and to receive the appropriate information that is necessary

to fulfil a specific task. When flexible systems are used to manage the models, these

50

2. BACKGROUND & MOTIVATION

models can be integrated into a wider infrastructure in order to server as a 3D data

repository in a 3D-SDI and to server in multiple process chains built by distributed

systems.

As described in this chapter the type-6 models can be used in multiple-scenarios and

for very different purposes, of which photo-realistic representation of the real world is

only one possible solution. Visualization of city models in a 3D-map can be realized

by 'placing an icon' in the real world position, as a symbol in a 3D map. However,

it could be more useful to extend 'map-space' onto the surface of the 3D object by

defining a new texture content model, which enhances the capabilities for map-like

visualization. Evidence for the need of this type of visualization can also be found in

related fields of science, where it is argued that photo-realistic representation is not

always the right way to visualize 3D scenes. Hence, the extension of map-space can

lead to a more 'scenario/task centred' approach for 3D map-rendering. Extending map-

space can be regarded as useful for a very simple reason: the more space is available

for map content, the more information can actually be transported by a map. Of course,

this assumption is a much reduced view on information visualization as not only the

quantity of the information is relevant but also the quality of the information visualization

approach. However, it seems sensible that extended map space is beneficial because

there is more available space that can be used to place and visualize information. This

information still needs to be shown in a useful way, of course.

Two aspects for the new texture content model, hence 3D map-space on building sur

faces, were identified and suggested as a first step towards the extended map-space.

This chapter discussed issues on Level of Detail/Realism as well as ideas on how addi

tional information (besides realistic fagades elements) can be integrated into the model

textures. These two aspects as well as other related issues will be investigated and

addressed by the texture content model presented in chapter 4.

51

Chapter 3

Methodology

This research focuses on the rendering and visualization of city models as part of 3D

maps. In chapter two this work outlined several approaches for map rendering and

how 3D building models are used inside 3D maps. Looking at the concept of using

3D building objects as icons appears to be somehow limiting when the actual data set

that is referred to as type-6 is taken into account. Therefore it has been outlined that

this limitation could be overcome by extending map space to the surface of the 3D

building entities. In this chapter ways in which the question of (fagade) texturing of 3D

city models can be investigated are addressed. Validation of the suggested solution is

also considered.

The chapter is subdivided into two major parts. The first part is going to discuss the

constructive research methodology and in which way it is used in this PhD research.

The second part is going to describe three research methods used in this work in order

to perform the six stages defined for the constructive research process.

3.1 Constructive Research

The constructive approach in this methodology tries to solve problems through the

'construction of models, diagrams, plans, organizations, etc. Several examples of ap

plied constructive studies are found in technical sciences, in clinical medicine and in

operations research. Some are found in management accounting. Mathematical al

gorithms and new mathematical entities provide theoretical examples of constructions.

52

3. METHODOLOGY

Constructive research can be found even in philosophy in those cases where the world

is constructed, step by step, from supposedly basic elements like objects, time-space

slices, observations, thoughts or logical relations. Creating an artificial language (e.g.

Morse alphabet, Braille's alphabet, computer languages) is an example of a construc

tion at its purest' (Kasanen et al., 1993). The actual aim of constructive research is to

create new knowledge about a certain aspect in a specific domain by constructing an

adequate artefact/construct, which solves an existing problem. Therefore, the research

is based on a concrete problem that has been identified by the researcher in a specific

field of science. The new knowledge is created during/by the construction process of

the solution. 'Constructive research gives results which can have both practical and

theoretical relevance. The research should solve several related knowledge problems

concerning feasibility, improvement and novelty' (Crnkovic, 2010).

Practical
relevance

Theory
connection

CONSTRUCTION,
problem
solving

Practical
functioning

Theoretical
contribution

Figure 3.1: Constructive Research The idea of constructive research solving practical

and theoretical problems. (Kasanen et al., 1993))

The important part about the construction or the constructed artefact is stated in Crnkovic

(2010): 'A construction, be it theoretical or a practical one, when it differs profoundly

from anything previously existing, constitutes a new reality against which a pre-existing

one can be examined and understood, so it has an undeniable epistemological value.'

As stated earlier, the knowledge gain in constructive research takes place during the

construction process and by the evaluation with regards to the situation that existed be-

53

3. METHODOLOGY

fore the innovation was introduced by the researcher. However, not only the question

of solving a real world problem contributes to the assessment of the research work.

Also the comparison against the previous situation generates new insights and creates

knowledge. Checkland and Holwell (2007) describe the same aspect for the field of

action research (AR), a similar research approach: the existing framework of ideas

(F), the methodology (M) and the area of interest (A) need to be described in detail,

before the concrete action is performed. The 'susceptibility to change F, M and A in

research in which the researcher becomes involved in the flux of real-world social sit

uations leads to a (or probably the) most important principle in AR.... In keeping your

intellectual bearings in a changing situation in which the adequacy of F and M and

the appropriateness of A are likely to be tested, it is essential to declare in advance

the elements of F, M and A. ... Without that declaration, it is difficult to see how the

outcome of AR can be more than anecdotal' (Checkland and Holwell, 2007). Although

AR focuses more on learning from a social situation, whereas constructive research

is concerned on the process of creating a novel artefact, the aspect described is also

essential for the latter.

3.1.1 Six Stages of Constructive Research

The research process for constructive research is described by the following six stages:

 Find a practically relevant problem which also has research potential.

 Obtain a general and comprehensive understanding of the topic.

 Innovate, i.e., construct a solution idea.

 Demonstrate that the solution works.

 Show the theoretical connections and the research contribution of the solution

concept.

 Examine the scope of applicability of the solution.

54

3. METHODOLOGY

'The innovation phase is often heuristic by nature; stricter theoretical Justification and

testing of the solution typically come afterwards. The innovation phase is the core ele

ment of a successful constructive study' (Kasanen et al., 1993). Constructive research

is not necessarily a linear, but more likely an iterative process in which the working

solution (stage 4), the research contributions (stage 5) or new knowledge about appli

cability (stage 6) lead to a better understanding of the problem (stage 4) and this leads

to further innovation.

In figure 3.2 the research architecture in this work is depicted and the separate el

ements of the process are related to the desired research outcomes. One can see

that the results of each stage are the basis for the next element and the process is

consequently built on the previous elements, which is related to the structure of the

constructive research methodology. In this diagram the elements 'City Models' and

'Current Visualization' covers stages 1 + 2 of the constructive research process, the

element Texture Model' covers stage 3, 'Proof of Concept' realises stage 4 and the

element 'Case Study' covers stages 5 and 6 of the constructive approach.

On the left side the connection between elements that form an iterative process are

depicted. As described above it is desired that stages 4, 5 and 6 produce new insights

into the area of interest and create new knowledge about the visualization of models

and the relevance for research. Therefore they enable the researcher to acquire new

knowledge which can lead to further innovation of the constructed artefact.

3.2 Realizing the Stages of the Constructive Approach

In order to actually perform the defined stages above this work uses three research

methods that appear to be most appropriate to cover the constructive research pro

cess:

55

3. METHODOLOGY

c
o

Research Stages:
<" ^^^™"~ ^^^^ ^^^— •

City Models:
Identify current use of
3D city models
(State-of-the-Art)

Research Outcomes:

Current
Visualization:
How are 3D city
models used/visualized
in 3D maps?

Texture Model
(Innovation):
design an idea for
flexible facade
textures

Proof of Concept:
Develop Prototype to
show feasibility

Case Study: solve
real-world problem?
The contributions to
research?

Understand background
and concept of current 3D
City Models

Understand the use of 3D
city models and their
textures in (3D-) map
rendering/visualization

A more flexible model for
texture content with
enhanced capabilities.

1
A tool for testing new
capabilities+gaining
insights into new
knowledge.

Validation of texture
content model in real-
world scenario.

Figure 3.2: Research Stages - The steps taken in this work in order to conduct the re
search project (schema structure adopted from Wang (2007))

56

3. METHODOLOGY

• 'Learning' - phase (stages 1 + 2): in this phase of the presented research the

state-of-the-art is analysed in various respects of the investigated field of science.

This is mainly done by a literature review. Closely related disciplines and their

findings are included into a broader view of the subject. The understanding of the

research problem was fostered and this also reinforced the motivation to change

the state-of-the-art (see chapter 2).

• 'Innovation and proof-of-concept'- phase (stages 3 + 4): In this phase the

new model for texture content was developed, hence the construction of the new

artefact was done (see chapter 4). In order to perform stage four of the construc

tive research approach a prototype was developed to show that the solution is

feasible (see chapter 5).

• 'Validation' - phase (stage 5 + 6): In phase research contributions are presented

by conducting a case-study. Here the capabilities of the new texture content

model are assessed and reflected in a real-world scenario. The case study shows

example of use, which helps to estimate the potential scope of applicability and

to understand the degree of novelty and feasibility. By generalising the findings in

the case-study it is also possible to create new knowledge for the wider research

field of 3D city models and information visualization.

In the following sections the three phases of literature review, prototyping and case-

study are explained in greater detail.

3.3 Literature Review

The literature review in this phase builds the basis for the emergence of the texture

content model in this work. A profound knowledge of the structure and use of 3D city

models as well as the technical capabilities in terms of rendering 3D scenes is crucial

to come to a feasible and useful concept.

57

3. METHODOLOGY

'Presenting what has been researched and written on a subject is one way of show

ing what needs to be done' (Murray and Hughes, 2008) and therefore grounding one's

own work upon existing work and the gap in the existing research and knowledge. 'By

building on the findings of previous studies'and 'by taking them a step further' (Murray

and Hughes, 2008) the rationale for a research project can be provided. The rationale

for this work can be extracted from the presented scenarios in literature in which 3D

models are used. Another aspect that can be found in literature is a new concept for

modeling 3D city models (type-6 models, see chapter 2), which indicates a need for dif

ferent visualization forms. Furthermore, meetings in the MoNaSD project also provided

certain requirements for the specific use case of pedestrian navigation, which also acts

as a case-study in this research. Another important aspect about the literature review

was to learn about the existing standards and system interface definitions that are used

in the field of 3D city models and the related system infrastructures. Integrating the new

texture model into the technical environment and existing standard definitions is an im

portant objective in this work and good knowledge about the related standards and

concepts is indispensable. A further aspect where the current state-of-the-art needs

to be investigated is the capabilities of current systems for 3D model management

and especially the capabilities and algorithms for 3D rendering. An in-depth literature

review is also necessary in this field.

In general the literature review should provide an in-depth knowledge about work of

other researchers. Research is always conducted in context of previous work and is

not started independently from all other research. That means knowing about con

cepts of others can help to apply concepts from related disciplines to own problems

and research tasks, merging approaches and extend algorithms instead of inventing

completely new ones, for example.

Murray and Hughes (2008) describe the need of a profound literature review as: 'show

where your study fits into the broader scheme of things; how it connects with the ex

isting body of knowledge on the subject or on other related issues. In doing so, it also

58

3. METHODOLOGY

shows how your own research is original and promises to contribute to that pool of

knowledge. In other words, along with the introduction, it helps to contextualize or 'po

sition' your research by placing it within a broader framework. This also helps you to

avoid reinventing the wheel by needlessly repeating the work (and mistakes) of others.

This can lead to efficient and effective processes for generating new knowledge and

findings on a reliable basis (previous work). In this work concepts from computer graph

ics, procedural modeling and rendering techniques are used and extended in order

to define a new texturing concept tackling research questions for geovisualization for

3D city model fagade visualization. Concepts from computer graphics on task driven

non-photorealistic rendering support the idea of flexible fagade textures for the afore

mentioned type-6 models. In this way literature review helped to support the idea of a

more flexible fagade representation and that it is worth to be investigated and to define

a new model for (fagade-) texture content.

The literature review and the reviewing of existing systems and other related disciplines

also provided concepts and technical approaches that appeared to be very useful for

the required flexibility of the new texture concept. One example is the layer concept that

is part of the proposed texture concept approach. This method of arranging content

is successfully used in other fields and systems and appears to be well understood,

which would give a new texture concept a strong and reliable basis in terms of content

management.

In general one can say that the literature review lays the basis for defining the new

texture content model (Objectives 1 + 2) and also for integrating this concept into 3D-

SDI environments (Objective 4). For defining the new texture model as well as the

integration into the wider 3D-SDI infrastructure it is essential to know existing concepts

and work as well as specifications and technical solutions (e.g. from related disci

plines). Besides conferences, workshops and project meetings where these things are

discussed, literature review is a very important source of information and knowledge.

In addition to these aspects the second function of summarizing relevant work and the

59

3. METHODOLOGY

state-of-the-art is to describe the existing situation and reality, in terms of the construc

tive research approach. As this methodology defines an innovation process as its core

element of knowledge creation it is essential to describe the status quo in order to be

able to evaluate the innovation and acquire new knowledge by comparing the situation

before and after the innovation.

3.4 Proof of Concept by Prototyping

In order to prove the readability in terms of technical aspects a prototype is produced

(chapter 5) that implements the functionalities that are conceptually defined.

'A prototype is the partial implementation of a system built expressly to learn more

about a problem or a solution to a problem.... A software prototype implements part of

the presumed software requirements to learn more about actual requirements or about

alternative designs that could satisfy the requirements' (Davis, 1992). In this work the

main method used is 'evolutionary prototyping', which 'builds quality systems from the

start - evolutionary prototypes - which are evolved over time' (Davis, 1992). In contrast

to 'a throwaway prototype an evolutionary prototype

• is built in a quality manner (including a software-requirements specification, de

sign documentation, and thorough tests)

• implements only confirmed requirements (after all, why implement poorly under

stood requirements when you know you'll probably understand them much better

after you build and implement the first prototype?)

• is used experimentally

• is used to determine what requirements exist that haven't been thought of

When the prototyping is complete, the developer modifies the software-requirements

specification to incorporate what was learned.... To minimize risk, the developer does

60

3. METHODOLOGY

not implement poorly understood features.... In contrast to conventional development,

which attempts to build the entire set of requirements, the evolutionary prototyping

acknowledges that we do not understand all requirements and builds only those that

are well understood' (Davis, 1992).

As one can see (evolutionary) prototyping in software development allows iteratively

developing a system that is not fully implemented and only provides a subset of spe

cific features, however, for the existing features it is fully functional and therefore can be

tested against the requirements that are specified for the implemented subset. When

the subset implementation is verified and works according to the specification another

implementation cycle can be started and further functions can be added. By prioritiz

ing defined requirements in the conceptual phase according to their importance for the

envisioned concept it is possible to define exclusion criteria. If one of these criteria

is not met, then it is not necessary to start implementing less important or not fully

defined functions. Instead it is possible to plan modifications of the concept, change

the (hardware-) environment or to define certain preconditions for the feasibility of the

proposed concept. Prototyping and an iterative development process allow splitting the

overall research task into smaller units, keep track of the findings and related conse

quences and in case sub-tasks are prioritised it also helps with risk management and

counter measures.

Nevertheless, prototyping is not only a measure for the technical development of sys

tems and technological feasibility. It also links back to the conceptual phase. When a

prototype shows significant weakness in performance or is not easily extended to the

next development level, this also indicates drawbacks of the underlying concept and is

an indication that the concept should be reviewed.

One final aspect about prototyping is discussed at this point, which is also beneficial

in a research project. Developing a prototype allows implementation of a concept and

shows its feasibility and properties as well as its appearance and some basic func

tionality without the necessity to implement a complete scenario dependant system

61

3. METHODOLOGY

providing all end-user functions (e.g. intuitive user interface). This is the case when

there are certain time constraints (remaining time of the project or funding) or when

specific resources are not available at a specific time. This can happen if previous

work is done in a specific programming language and should be used, a prototype in

this language can be developed. Porting the prototype and developing it further in a

new programming language or environment can be part of future work, when the feasi

bility is verified. When certain hardware is not available (e.g. smartphones with certain

hardware configurations) and the suitable products are just about to enter the market,

the prototype can be developed on another hardware (e.g. a PC) that can emulate

the intended platform. In this aspect prototyping can also help to 'secure' findings and

extend or port them to other scenarios in the future. This was the case for the MoNaSD

project, where the required graphics chips were not available at the time of developing

the prototype. The project team therefore decided to implement the texture concept

prototype based on available graphics hardware for PCs and port the implemented so

lutions to mobile devices as soon as smartphones with the required graphics hardware

enter the market. This enabled the project team to test the concept even before the

final target platform was available.

Evolutionary prototyping is used in this work to achieve objective 3 in order to show

that the concept can be realized technically. The prototype also proves that content

can be changed interactively in real time and allows user interaction or context sensi

tive changes. This aspect also supports the multipurpose nature of today's models in

contrast to pure visualization models where only one texture representation is loaded

together with the model and does not change during the visualization.

3.5 Validation by Case Study

Case-studies are one method of testing a hypothesis. The case-study tries to evaluate

how good a certain concept (the hypothesis) works in a given context and to generalize

62

3. METHODOLOGY

the findings to a general problem. That means this method tries to draw conclusions

from a significant case and to estimate if this performance is valid generally or in other

contexts.

Gillham (2000) defines a case-study as a study 'which investigates' ... a phenom

ena. .. 'to answer a specific research question... and seeks a range of different kinds of

evidence, evidence which is there in the case setting, and which has to be abstracted

and collated to get the best possible answers.' The case-study should therefore provide

a specific environment for the case that is investigated to ensure its significance.

For Gillham (2000) a case is:

• a unit of human activity embedded in the real world

• can only be studied and understood in context

• exists in the here and now

• merges in with the context so that precise boundaries are difficult to draw.

In the presented work the evaluation in terms of constructive research (stages 5 + 6) is

done by a case-study (chapter 6).

The case-study that was chosen for this research is mobile pedestrian navigation. One

reason is the participation of the author of this work in the MoNaSD project, which inves

tigated the use of 3D city models for pedestrian navigation. Nevertheless, the scenario

of using 3D models for pedestrian navigation support also fits the formulated research

problem. As pedestrians navigate urban space, the city as such is part of the problem

that needs to be solved and at the same time part of the solution of the task, as pedes

trians make use of landmarks within the urban environment. Therefore the 3D model

is not only a visual 'background' in order to provide a (photo-)realistic representation

of the environment, it is used to provide additional information to the user (landmarks)

and the model should be visualized according to the scenario requirements.

The aspects on the integration of the new texture content model into the technical envi

ronment (3D-SDIs) that is described in chapter 4 are also an important issue that is rel-

63

3. METHODOLOGY

evant in the case-study. The MoNaSD project defines a system architecture based on

an open data infrastructure. The capability to integrate the new texture model in such

an infrastructure appears as a crucial requirement in the investigated case. Therefore

the case-study provides general constraints and requirements for the integration of the

concept into the wider technical environment of 3D city models. When real-world ap

plications normally exist in a specific environment a newly developed concept needs

to fit into this environment as well, otherwise it would not be accepted in the specific

domain.

Evidence for this case-study was acquired by accessing and discussing project out

comes and by attending project meetings. However, the scenario was also investi

gated by matching the texture model capabilities to requirements that are formulated

for pedestrian-navigation in relevant literature (see chapter 6.4).

It was necessary for the presented work to put parts of the case study onto a theoretical

level as prototypes of the pedestrian navigation system in the MoNaSD project did not

evolve to the stage where they could have been used for user-tests (the future stage

of user tests would also be better performed by action research methodology). Proto

types developed in the project showed that existing 3D data sets (provided by one of the

project partners), which navigation system manufacturers use in their products can be

used for pedestrian navigation systems. Also the textures in the data sets (tile-based)

could be used for the zone/layer-based texture approach that is presented in chapter 4.

The concept was implemented on a smartphone during the project. However, the re

construction of the complete fagade texture was done in a pre-processing step on client

side and not on the graphics chip during rendering. The existing smartphone prototype

developed in the MoNaSD project also integrated navigation hints into fagades for one

test route, however, other capabilities like fagade detail adaption, real-time changes of

routes and real-time appearance changes of landmarks were not implemented.

The prototype did show some results for specific questions asked in the project, how

ever, it was only just about to reach the level where it would have been possible to

64

3. METHODOLOGY

conduct user tests (sending users out into the streets). It was therefore not possible to

validate visualization concepts for the given scenario with users in a real-world setting.

However, in order to evaluate the fulfillment of requirements for the layer/zone-based

textures it is sufficient to present profound reasoning for aspects of the case-study to

validate the presented texture model. Real-world observations might support these

findings but are not essential to evaluate the fagade texture model.

As the case study was based on the MoNa3D project scenario, which defined a system

that supports pedestrian mobile navigation by using 3D city models, the investigated

case was based on previous work and findings in research in this field. Sources in

literature suggest that pedestrians navigate in a different way to cars, e.g. make much

more use of landmarks, etc. These findings were incorporated into the project aim and

goals were defined for appropriate visualization of landmarks and other buildings to

optimally support the navigation scenario. One example for such a goal was to be able

to adapt the detail of specific buildings and adding additional information.

Hence, as the scenario requirements are known, in terms of visualization capabilities,

they can be checked against the 'proof-of-concept'-prototype. This prototype just visu

alized one building/landmark and generates a kind of 'laboratory'-test, however, this is

sufficient to test if the project requirements are met. As the prototype also implements

the reconstruction process inside the rendering pipeline and allows real-time changes

of the texture content, it can be estimated if solutions for further requirements found

in literature can be met. This part of the validation can be done without a fully func

tional navigation prototype, because just the capabilities of the new texture model are

evaluated taking the requirements defined by the case-study scenario into account.

However, the benefit of a fully functional pedestrian-navigation prototype would be that

the concept can be tested in terms of user-friendliness, navigation-support, cognitive

load, etc. Nevertheless, as these aspects are outside of the scope of this work it is

sufficient to know the visualization-dependent requirements of the scenario and to in-

65

3. METHODOLOGY

vestigate if the proposed texture model can meet these requirements. A fully functional

pedestrian navigation system is not necessary to evaluate these visualization aspects.

By evaluating how well the presented concept can meet the scenario requirements in

the case of pedestrian navigation this work attempts to generalize the findings and

estimate how the concept would perform generally and how flexible it is (Objective 5).

In terms of constructive research the case-study actually tests the scope of applicability

and the novelty of the introduced innovation. Regarding knowledge creation the new

artifact should be tested against the situation before the innovation was introduced. In

the case-study presented in chapter 6, this work compares visualization capabilities

of 'traditional texturing' to the new texture content model and how well this model can

address requirements formulated in relevant literature on pedestrian navigation. By

generalizing the findings for the investigated case it should be possible to estimate the

contribution of the new texture content model for the wider field of 3D city model use-

cases. Finding general results for the wider research field by looking at a specific case

is the actual goal of the case-study.

3.6 Summary

The presented methodology is based on six stages, which are realized in three more

general phases in this work.

Stages one and two are addressed by a literature review. An overview about the re

search field, a description of the actual problem and its research potential as well as

the general motivation for this work can be found in chapter 2. This phase of the work

is an essential one, as it describes the currently existing reality (and its lack of knowl

edge). This existing situation needs to be described carefully because it is going to

change due to the introduced innovation. In order to be able to assess the innovation

66

3. METHODOLOGY

and its contribution to knowledge the current situation before the intervention needs to

be declared.

Stage three of the research process, the actual innovation, can be found in chapter 4.

Here the novel model for texture content for 3D city models is presented.

Chapter 5 of this work describes the second phase of the work, which actually covers

stage four of the constructive research methodology. Here the feasibility of the model is

tested by developing a prototype. Proving the feasibility of the innovation is necessary

because constructive research also aims on solving a practical problem (map rendering

in this work), besides creating new knowledge. Moreover, as the new knowledge is

created by constructing a solution for a real-world problem, the new knowledge can

only emerge when a functional solution is generated. Hence, proving the constructs

feasibility is part of the knowledge creation process.

The third phase of the work covers stages five and six where research contributions

are extracted and where the scope of applicability is assessed. In this work a case-

study is performed and general findings are deduced concerning texturing/visualization

of 3D models in a pedestrian navigation scenario (see chapter 6). By generalizing the

findings of the case-study it is also possible to formulate general findings for the wide

field of 3D city modeling and visualization.

67

Chapter 4

Texture Content Model

In chapter 2 we learned that building objects are often used as icons in 3D map illus

trations. They provide one fixed visual representation of the object in order to generate

a three-dimensional visualization that is very often focused on photo-realism. In some

cases one can find coloured icons to represent a specific attribute for the buildings,

e.g. red icons for residential buildings, etc. Looking at textured icons using standard

photo-image textures, the textures can add missing (fagade-) elements visually. How

ever, this is only one specific, hardly changeable, photo-realistic way. As described in

chapter 2 it would be beneficial to use buildings not only as icons because type-6 city

models provide much more information about urban objects and urban space. There

fore, in order to visualize this information included in type-6 models it would be useful

to extend map-space to the surface of these objects (compare chapter 2)

In this chapter a new model for texture content in 3D city models is suggested. This

new model tries to provide capabilities in order to represent content in a way com

parable to a digital map, where content can be combined and ordered according to

specific scenario requirements. At the same time as 'map-issues' are addressed, the

new model still keeps rendering issues in mind as well as the nature of textures in 3D

computer graphics and tries to find joint solutions. In this chapter and the remainder of

this thesis the focus is put on building fagades as they appear to be the most appro

priate and prominent surfaces for extra map-space inside urban models. However, the

new content model should be valid for other surfaces as well and should be able to be

applied accordingly.

68

4. TEXTURE CONTENT MODEL

The presented concept is built upon the construction/synthesis of textures and it uses

three elements, which are necessary to generate the final texture representation. The

three elements are:

• The description - defines the structure as well as elements and additional infor

mation that are to be included into the fagade texture. The description in general

terms defines the appearance and the content of the fagade texture. Furthermore

the description can also be a specialised and extended specification of content

that can be used in an optimized way by a reconstruction implementation on a

specific platform.

• The texture tiles hold the actual image information. Normally they contain the

visual representation of a semantically defined element (e.g. a window). But

texture tiles can also be used for other purposes besides the standard use, for

example, integrating a thermal image into the fagade texture as a single tile in a

separate layer.

• The reconstruction implementation this is the process that constructs the

final fagade texture using the description and the texture tiles. This process can

run on different levels of complex system architectures (e.g. client-server), in

different scenarios and on different hardware platforms.

The chapter starts with some definitions of basic elements (image, texture, video, tex

ture atlas) that are needed in order to build the new model on top, thus understand the

new content model. It is important to understand these basic elements and the fact

that this work does not want to change their nature, e.g. an image/texture being a pixel

matrix. However, the new model tries to change the way texture content is defined and

managed for the field of 3D city models. After the description of the basic elements the

chapter presents elements and the structure of the new texture content model (zones,

layers, etc.) and how they are organized. As zone-, layer- and other elements only

69

4. TEXTURE CONTENT MODEL

describe the skeleton of the content the chapter also provides a section on how this

frame is filled with actual content, e.g. how texture tiles are applied to zones.

The final part of the chapter looks at the environment (see chapter 2.2) in which 3D city

models often exist, how the texture content model fits into this environment and how it

can contribute to flexible and effective solutions in client-server scenarios within (3D-)

SDIs.

4.1 The Image

This work often uses the notion 'image' (the term 'texture', which is also used regularly

in this work is explained in a later section). This term is mainly used for digital images

that are generally used in the field of information technology. Images can be produced

by digital cameras, airborne camera systems, satellites, apparatus in medicine (like a

computed tomography), etc. In this work images are often referred to photo-images

taken from a fagade in order to generate a texture of it, but also other sources of image

data will be described.

A general definition of the properties of a digital image is given in Poynton (2003):

'A digital image is represented by a rectangular array (matrix) of picture elements

(pels, or pixels). In a grayscale system, each pixel comprises a single component

whose value is related to what is loosely called brightness. In a color system, each

pixel comprises several components usually three whose values are closely re

lated to human color perception.'

Looking at a digital image in more detail it is a '2-dimensional, regular matrix of values.

In a more formal way, a digital image I is a two-dimensional function of coordinates

N.?-N in a set of image values P, which is:'

/(».<>) € P with ii, u e N

70

4. TEXTURE CONTENT MODEL

'The size of the image is therefore defined by its width Al and height A' of the im

age matrix I. The resolution of the image is specified by its spatial extent in the

real world, e.g. 'dots per inch'(dpi) or 'lines per inch' (Ipi)... or in kilometres per

pixel for satellite images. In most cases it is assumed that the resolution of an

image is identical for each direction, hence the image elements are square. This

is not necessarily true as most video cameras show non-square image elements'

(Burger and Burge, 2005).

Defining a position in an image is done by specifying the coordinates of the pixel in the

matrix coordinate system. For digital images this coordinate system varies from the

mathematical one.

'In order to define a position in an image a coordinate system is needed (fig. 4.1). For

digital images the general convention is to place the origin in the upper left corner.

The x-axis is the normal horizontal axis but the y-axis is inverted and runs from the

top of the image to the bottom' (Burger and Burge, 2005).

0 - u A/-1o ' ' ' ' ' ' ' ' ' ' ' ' ' r~~

v

Ar-l

Figure 4.1: Image coordinate system - The image coordinate system with width M and
height N (Burger and Burge, 2005)

One image element can hold data according to the image format. The pixel element

consists of 'binary expressions of length k and therefore it can represent 2 A different

values. Here k is referred to as the depth of the image.' (Burger and Burge, 2005).

71

4. TEXTURE CONTENT MODEL

The type of data that is stored in a pixel depends on the image type. In this work

mostly RGBA images are used, providing one channel for each of the colours red,

green and blue, plus one channel for alpha. Thus, a value of a pixel in a RGBA image

can therefore be described as:

RGBA = /(i/,j.)

In the data texture (see chapter 5.5) the channels can hold float values with 32-bit

depth. This float texture is used to encode information that is later needed for the

texture synthesis process implemented in a shader programme for the implemented

prototype presented in the next chapter. A detailed description of the encoded infor

mation will be presented and discussed.

4.2 Video

A video is a sequence of digital images. 'A sequence of still pictures captured and

displayed at a sufficiently high rate - typically between 24 and 60 pictures per second -

can create the illusion of motion' (Poynton, 2003)

The number of pictures per second is influenced by a number of aspects regarding the

display and the environment in which it is used. Effects like flicker have an effect on the

viewing experience.

'Many displays for moving images emit light for just a fraction of the frame time: The

display is black for a certain duty cycle. If the flash rate - or refresh rate is too low,

flicker is perceived. The flicker sensitivity of vision is dependent upon the viewing

environment: The brighter the environment and the larger the angle subtended by

the picture, the higher the flash rate must be to avoid flicker. Because picture angle

influences flicker, flicker depends upon viewing distance.' (Poynton, 2003)

72

4. TEXTURE CONTENT MODEL

Therefore, 'using displays that are designed in way that the user observes very concen

trated in high brightness and the image occupies a large horizontal visual angle (e.g.

computer screens), the image refresh rate should be higher than 70 Hz' (Schmidt,

2009).

For the transmission of video sequences the frames are not handled as rectangular

matrices but serialized into a continuous one dimensional stream of information:

'The brightness values that are produces by the optical transformation are spatially

and temporally discretized and are available as information for the particular pixel

in reduced form, but still simultaneously in vast numbers' (the pixel matrix) '... The

parallel transmission of all information would be very inefficient. An essential idea

is therefore to transmit the pixel information in serial rather than in parallel way.

... When the scanning of the image, the transformation and the reconstruction dur

ing the replay are fast enough, the human eye perceives a complete image, although

at a discrete point in time only one pixel is transmitted' (Schmidt, 2009).

The scanning of the pixel matrix in Poynton (2003) is generally described as:

Video scanning represents pixels in sequential order, so as to acquire, convey, pro

cess, or display every pixel during the fixed time interval associated with each frame.

In analog video, information in the image plane is scanned left to right at a uniform

rate during a fixed, short interval of time the active line time. Scanning establishes

a fixed relationship between a position in the image and a time instant in the signal.

Successive lines are scanned at a uniform rate from the top to the bottom of the

image, so there is also a fixed relationship between vertical position and time.'

For aspects that are investigated in this work it is sufficient to regard videos as a set of

frames arranged along a time axis. Each frame can be consequently treated as a digital

image where all image information is parallel present. The serial data arrangement for

transmitting and visualizing video frames is not taken into consideration here.

73

4. TEXTURE CONTENT MODEL

Therefore, based on the definition of an image and the information that can be received

from a certain element within an image the pixel information for a given frame t is:

Consequently, for each frame in the video sequence there is an image, which pixels can

be accessed using the u,v-coordinates. In the chapter on the implemented prototype

it can be seen that video frames representing real-time information are handled as

textures, hence, extracted frames are regarded as images and processed in the same

way.

4.3 The Texture

A texture is a digital image that is applied to geometry in a 3D model. Textures are nor

mally used to increase the realistic appearance of otherwise 'flat' rendered polygonal

geometries. In Heckbert (1986) this is described as:

'one of the most frequent criticisms of early synthesized raster images was the ex

treme smoothness of surfaces they showed no texture, bumps, scratches, dirt or

fingerprints. Realism demands complexity, or at least the appearance of complexity.

Texture mapping is a relatively efficient means to create the appearance of complex

ity without the tedium of modelling and rendering every 3-D detail of a surface.'

The process of applying the image to the geometry of the digital model is texture map

ping (Blinn and Newell, 1976). In this process 'the source image (texture) is mapped

onto a surface in 3-D object space, which is then mapped to the destination image

(screen) by the viewing projection. . . . The mapping from texture space to screen space

is split into two phases. . . . First is the surface parameterization that maps texture space

to object space, followed by the standard modelling and viewing transformations that

74

4. TEXTURE CONTENT MODEL

map object space to screen space, typically with a perspective projection.' (Heckbert,

1986)

In order to draw a textured surface onto the screen, there are several possibilities to de

termine the particular pixel colour on screen: 'a scan in screen space, a scan in texture

space, and two-pass methods. ... Screen order' (scan in screen space), 'sometimes

called inverse mapping, is the most common method. For each pixel in screen space,

the pre-image of the pixel in texture space is found and this area is filtered. This method

is preferable when the screen must be written sequentially.' (Heckbert, 1986)

Listings 4.1 : Pseudo code for screen scanning (Heckbert, 1986)

for y

for x

compute u(x ; y) and v(x,y)

copy TEX[u,v] to SCR[x ; y]

In general the process of texture mapping can be regarded as applying a portion of an

image onto the geometry of an object in a 3D scene (which is later rendered onto a 2D

screen).

The texturing approach in this work, or to be more precise, the approach for texture

content generation is based on an empty texture. The texture coordinates, hence,

the way the empty texture is applied to geometry, are already defined. Nevertheless,

the content of the texture is still undefined. The empty texture that needs to be filled

with the appropriate content is called null-texture in this work. None of the pixels is

filled with any values. The state of the null-texture should not be misinterpreted by a

texture that is completely coloured in black (all pixel values set to 0) or a completely

transparent texture that is invisible, because these two states might be intentionally

chosen for specific representation purposes. The null-texture is empty or rather its

content is 'none-existent' and it needs to be filled.

75

4. TEXTURE CONTENT MODEL

a)

b)

Figure 4.2: Texture Mapping - a) texture coordinates to assign texture corners to vertices
(own depiction) b)Region of texture pattern corresponding to picture element: left-hand
side shows texture; right-hand side shows image(the image is the screen content in this
case). (Blinn and Newell, 1976)

The reconstruction of the fagade texture, hence filling the null texture, is based on

a description that integrates data from different sources into the texture and on the

tiles mentioned in the introduction of this chapter. These tiles need to be managed

in a texture atlas for performance reasons. Therefore the data sources for generating

textures are described next, followed by the concept of the texture atlas and the new

texture content model.

76

4. TEXTURE CONTENT MODEL

Description

_____f

Reconstruction

Geometry Null-Texture

Figure 4.3: Null-Texture Concept - Null texture concept: The re-construction of the fagade
texture. The null-texture mapping to geometry is known, but the content needs to be gen
erated.

4.4 Data Sources for Textures

Textures, respectively the images that are used as textures, can be filled by using spe

cific inputs. In this work mainly fagade textures are in focus, which can be generated,

processed and applied in very different ways.

Kada et al. (2005) present an approach for texture mapping using geo-referenced real

world images that are automatically orientated and mapped onto geometry. Frueh et al.

(2004) present a method for texture mapping using oblique imagery for fagades. And

there are a lot more examples for texture generation for 3D city models. Images are

relatively easy to use as sources for textures because only the mapping of the image to

the geometry needs to be defined. Images need some kind of post-processing before

they can be used as textures (rectification, etc.). However, the content is implicitly cre

ated through the process of photography using an image sensor (digital photography).

The post-processing is dependent on the way the photos are created: oblique airborne

77

4. TEXTURE CONTENT MODEL

images need a different type of treatment than terrestrial images (see aforementioned

literature). Photo-Images are not limited to 'standard photography' as well. Other sen

sors, e.g. for thermal images, can produce digital information that can also be used as

a texture.

Textures in the presented research are intended to transport other information than

'naturalistic content' and photo-images are not the only source of information. One

example is the integration of video streams into a 3D city model texture. This data

changes very fast and needs to be updated at a very high frequency. The concept of

video that is used in this work, already explained in an earlier section, regards a video

as an arbitrary number of frames (digital images) arranged on a time scale. Therefore

single frames can be used as content for a texture and mapped to geometry or used

to fill a part of a texture. The concept is comparable to normal images in terms of

mapping. However, the time dimension requires the texture content to change at the

video frame rate. These fast changes are realized in a special layer that is described

in section 4.6.3.

Other types of data can be inserted into textures as well after they are converted into

an image matrix. Metering data can be converted into a chart (e.g. line chart) and

used as a texture. There are several chart-Tools available (e.g. Google Chart API 1 ,

JFreeChart2 , etc.), which create charts for a given data set. The output of the tool is a

digital image that can instantly be used as a texture for geometry. One example would

be electricity consumption data that can be visualized as a line chart and applied to the

according building geometry. In this way the metering information, the spatial position

of the consumer and the building type can be visually integrated in the 3D city model.

These are just examples for possible texture information sources and many more could

be defined. By specifying the transformation process from the input data to the digital

image matrix, any information could be represented through textures. This work will

1 code.google.com/apis/chart/
2 http://www.jf ree. org/jf reechart/

78

4. TEXTURE CONTENT MODEL

especially investigate how to integrate different sources of information in one texture

and not just use the texture 'channel' for one specific information stream (e.g. metering

data ->• chart).

4.5 Texture Atlas

A texture atlas is a special structure to manage textures before they are applied to ge

ometry. The atlas is a collection of (smaller) textures that are arranged in an optimized

way, so that the atlas can hold a maximum of textures. According to Wloka (2005) the

activation and deactivation of textures, the so-called texture switch, has got a high per

formance cost and need to be minimized in order to achieve acceptable frame rates.

The solution that is presented is a texture atlas, which is also called texture page. The

packing of several textures into an atlas reduces the need for texture switches; how

ever 'models using these atlases need to remap their texture coordinates to access the

relevant sub-rectangles out of the texture atlas' (Wloka, 2005).

The generation of the texture atlas can be achieved by different algorithms and ap

proaches. Heuristic algorithms like the one presented in Igarashi and Cosgrove (2001),

which is also used by Buchholz (2006) for his multi-resolution texture atlas concept,

can be used to generate texture atlases as well as data structures like Binary Space

Partition Trees (BSPTrees).

For texture atlas creation using a BSP approach the overall texture space is divided into

half-spaces defining free regions where textures can still be placed inside the atlas and

occupied regions where other textures were already placed. When inserting a texture

into the atlas the splits of space are placed at the borders of the inserted textures in

order to define empty and occupied half-spaces 1 (fig 4.5a). An example for a resulting

texture atlas for fagade tiles can be seen in fig 4.5b.

1 http://www.blackpawn.com/texts/lightmaps/default.html (last accessed 02. June 2011)

79

4. TEXTURE CONTENT MODEL

T<vtw« A

Trvnvc .Vita

105.1) Ml)

Figure 4.4: Texture Atlas Concept - Combining textures into an atlas. The texture co
ordinates for accessing data out of an atlas are adjusted according to where the original
texture is in the atlas. (Wloka, 2005)

In the presented work the use of texture atlases for fagade textures is necessary be

cause the presented approach for texture synthesis is based on small texture tiles (see

fig 4.5b). Therefore the number of textures for a single fagade would be unacceptably

high when representing each tile as a separate texture, increasing the aforementioned

problem of texture switches even more. Hence, the use of texture atlases to pack the

tiles for one fagade into a single texture is inevitable.

80

4. TEXTURE CONTENT MODEL

Figure 4.5: Using BSP to create texture atlas - a) example for a BSP tree for texture atlas
creation (from http://www.blackpawn.com/texts/lightmaps/default.html) b) Example texture
atlas from the prototype implementation

4.6 Modelling of Null-Texture Content

4.6.1 Zones

The content for the null-texture is flexible and varies according to the request of the

user or according to definitions of the system or the scenario. Therefore it is a result of

a process that combines arbitrary content to produce the final fagade representation.

The basic element of the texture content model is a zone. A zone is a closed polygonal

area of any shape. This zone defines an explicit number of pixels inside the null-texture

that are about to be set by a specific procedure. The procedure can be simply a texture

look-up that defines the colours of the pixels in the specified zone. However, any other

algorithm can be used to produce the content for a zone, and the process is not limited

to applying a texture to the zone.

In this research the investigated forms are restricted to rectangular zones. The zones

are described by the coordinates of the upper-left and lower-right corners of the zone.

The coordinates of the zones are defined in the texture-coordinate system of the null-

texture in the range [0, l].

81

4. TEXTURE CONTENT MODEL

The zones in this concept define the spatial extent and the position of an element inside

the null-texture in texture space. The content is added to the pixels in the area by the

reconstruction process, which reads the information how the zone should be filled from

the description. In order to manage and arrange zones with content of similar kind

layers are introduced.

v

Zone

Figure 4.6: Defining a Zone - zone corners in u,v of null texture

4.6.2 Layer

A layer in the presented concept is a set of zones that share a common property.

Normally one would include all zones representing one type of window in a layer, or

all doors, all shop signs, etc. In this way content can be grouped and displayed (or

omitted) together. This and similar concepts of layers are comparable to GIS, CAD and

online map applications.

Using a well-known and accepted method, which the layer concept certainly is, would

allow having flexible content for fagades and other planar surfaces of buildings in 3D

city models. Data providers as well as users are familiar with using layers. Therefore

82

4. TEXTURE CONTENT MODEL

this concept would support model creators to organize the acquired fagade information

in a meaningful way. They would be able to categorize the elements and put them

into the correct layer, generating a classified set of extracted elements, which can be

used very well for interactive visualization and flexible content combination. This would

support approaches in knowledge construction through 3D maps and geovisualization,

for example (compare chapter 2.3).

Geovisualization relies on the ability to combine specific data sets in a meaningful way

in order to generate new knowledge. Layers do support this by allowing switching con

tent on/off, for example. This is also a well-known concept for (non-) expert users of

digital maps. Almost all map-providers on the Internet offer a layer based content con

cept. On the GoogleMaps-Website 1 , as one of the prominent map providers, it is possi

ble to choose between different 'base-map' representations (terrain, map, satellite). In

addition various types of additional content can be overlaid using additional layers. Ex

amples for additional content are Wikipedia articles, photos, points-of-interest (labels),

etc. Hence, to introduce a layer concept in terms of textures for fagades in 3D city

models seems to be promising in terms of usability and acceptance both in the expert

community and for data providers as well as with less experienced users, because the

basic concept is already well understood.

This work would therefore define a layer as a collection of non-overlapping zones that

can be used to arrange and manage content in a meaningful way. It is important to

notice that zones in one layer cannot overlap by definition (section 4.6.2.1), whereas

zones of different layers can overlap. That is why operations need to be defined how

to handle overlapping content of different layers when the null-texture is filled (sec

tion 4.6.2.3). Layers can be linked to a set of texture tiles (1 ... n), which will be applied

to the zones of the layer (or one colour is defined that fills all zones). There are two

ways of attaching meaning to the layer in addition to the 'classification' of content due

to its character (window, door, etc.): the first one is the introduction of the LoR concept

1 http://maps.google.com (last accessed 25.08.2011)

83

4. TEXTURE CONTENT MODEL

Background-Material

Door-Laye

Upper Windows-Layer

LowerWindows-Layer

Figure 4.7: The Layer Concept - Content/Zones can be arranged in different layers

(see chapter 2.3.4). This attribute of layers allows defining distinct levels of realism and

which type of content of the fagade belongs to which level of realism. By assigning

a LoR to each layer, the content 'density' of the final texture can be modified by the

application quite easily. Selecting a specific LoR would switch all layers on that have

a LoR value equal or smaller than the selected value. All layers holding elements of

higher detail are switched off.

In figure 4.8 the combination of pulse layers forming distinct LoRs is shown. Higher LoR

can also contain ledges, signs, ornaments, fire ladders, etc. LoRs cannot only be used

to visualize models in lower detail for specific use-cases; moreover a low LoR is more

appropriate when adding thematic content (non-realistic). The lower level of fagade

detail would distract the user less when observing integrated thematic information.

In this way content based control of detail can be achieved for fagade textures, compa

rable to the LoD concept for 3D city model geometry specified in the CityGML standard

(OGC, 2008a).

84

4. TEXTURE CONTENT MODEL

Background-Colour Background-Material Background + Door Background + Doors
•fWindows

Figure 4.8: The Level of Realism concept - By assigning a LoR-value to each layer
differently detailed representation of facades can be achieved

A second possibility to combine content would be the introduction of a layerSet-ID.

This ID would allow switching all layers of a set on, and all other layers off. The pa

rameter would work for 'naturalistic' content as well as 'thematic' content, and for any

combination of the two. The useful aspect for data providers is the possibility to select

specific content and group it to a useful pre-defined visualization, which would support

specific user groups, especially non-expert users, with a standard selection of useful

representations. For more experienced users, who create their own combinations of

content, the layer set can store a previously defined visualization for later use or for

exchanging specific visualization settings with others. A further well-known concept in

regards to layers is the z-order. Layers can be placed on top of each other and specific

information can be in the foreground or act as the background for other information.

This capability of layer-based content fundamentally adds to the flexibility of content

that wants to be achieved for fagade textures.

4.6.2.1 Description - The Pulse Function

As we have the possibility to define the size of single zones in the null-texture as well

as aggregate zones in layers, it needs to be outlined how the position of the zones is

defined. In this work the concept of pulses that follow each other along the two axes of

the null-texture is used.

85

4. TEXTURE CONTENT MODEL

The pulse function (or rectangle function) defining one pulse is mathematically de
scribed as:

0, ,r| > 1/2

1/2, ,r| = 1/2

1, |.r < 1/2

For each axis of the null-texture (u, v) there is a pulse-function defined which can

contain multiple pulses. The distance between two pulses is not unified as well as the

size of the pulse. For the presented use of the pulse concept the definition of 1/2 for

:r| = 1/2 is also not necessary. The required function to determine if a texel of the
null-texture is inside a pulse for one of the axes can be formulated by:

rtpu i sei] /\[u < .^oppu / se j) \J([u > startpulse^\ f\[u < stoppulse2 }) V • • • V

([u > fitartpuisep,} /\[u< stoppu i seN })

With ^(iripuise i < StOppul se i < ... < Startpuiseff < StoppuiseN

A layer is defined by two pulse functions, the u-function and the v-function. By defining

pulses in u- and v-direction a structure is built where zones become active when both

functions equal to 1 (true). Graphically the concept can be depicted as in figure 4.9. A

similar concept can also be found in Loya et al. (2008), although their work assumes

periodic appearance of fagade elements for each layer.

Each pulse in the u-function defines a vertical stripe over the fagade area, defining a

fagade as a rectangle covering the area of the associated wall (even if the wall is non-

rectangular, e.g. L-Form). The v-pulses define horizontal stripes accordingly. Where

these stripes overlap they generate an active zone where a related action should be

performed. In most cases the action is applying a texture tile, which is linked to this

pulse function/layer. Nevertheless, any other action can be defined as well. The defi

nition of action is not limited to applying a texture. It is also possible to assign a RGB

colour, etc. Thinking about future developments and research it should also be inves

tigated if any arbitrary algorithm could be associated with an active zone. This might

86

4. TEXTURE CONTENT MODEL

Figure 4.9: Pulse functions overlap - When pulses overlap they define zones for which
an action should be performed

lead to scenarios where any algorithm or process can produce content for the active
zone according to a set of input parameters, for example, visibility calculations, shadow
calculations, heat loss etc. This information can be arranged in additional layers which
would allow to limit the output of the associated algorithms to specific 'zones' and pre
serve the rest of the fagade in a naturalistic appearance. In this research work actions
are limited to texture tiles and fixed colour values for thematic colouring in order to fill
zones. More complex algorithms and concepts are left aside and are considered as

subject to future research.

One benefit of using pulse functions in order to describe fagade structures is the
reusability of functions in one direction (e.g. a u-Function) and to combine them with
more than one function of the other direction (v-Functions). Because of the specific
structure of fagades and their nature of mainly consisting of horizontally and vertically
aligned elements (Royan et al., 2007), the use of one u-function would be possible
for several content layers. A layer actually holds a u- and v-function for one specific
element of the fagade (see section 4.6.1). The concept of reusing and referencing
one function in multiple layers is shown in figure 4.10 for three types of windows for

separate floors of the building.

87

4. TEXTURE CONTENT MODEL

Figure 4.10: Multiple use of Pulses - reuse of functions in multiple layers. The three
layers might define different window types for different floors that are located directly below
each other, so the u-function can be reused

On specific hardware platforms, especially mobile devices, it is important to minimize

data size in terms of data transmission, memory capacity as well as storage capabil

ities. Modelling information only once and referencing it when needed multiple times

helps to reduce data size. Here in this example in terms of the fagade description. As

mentioned already, this might be more important on specific platforms and neglectable

on others, but the concept of pulse functions allows minimizing data size in terms of

the fagade description.

However, the pulse function approach also has disadvantages that result from the hori

zontal and vertical stripes running over the wall area: the stripes cannot be cut off; they

run until they reach the opposite boundary of the fagade area. A situation where this is

a disadvantage is depicted in figure 4.11 a).

When certain elements in the fagade are of the same type but do not follow the

'chessboard-pattern', the pulse functions generate elements that are not present, re

spectively they are created unintentionally (elements in red in fig. 4.11). As one would

regard this case as very infrequent for most real world fagades, the pulse function ap-

88

4. TEXTURE CONTENT MODEL

proach is still feasible. For those cases generating false active zones it is necessary to

split elements up into two separate layers (figure 4.11 b)).

Figure 4.11: False Zones - a) green are intended zones, red are wrong zones that are
falsely defined. b)Locating pulses into different layers solves this problem.

The concept of zones also allows using the 'negative' of one pulse layer, the combina

tion of a u- and v-function combination (see next section for details), as the information

for the programme that reconstructs the fagade texture. By defining active zones when

both functions equal '1' (true), these functions implicitly define an inactive zone where

both functions equal to '0' (false). This information can be used by a programme to

apply window tiles to the zones. Instead of defining further functions/layers for the

(background) material of the wall, the programme could use the inactive areas to apply

the wall material tiles there. This would reduce the data size of the description because

two types of information are encoded into one layer.

The pulse function approach, which can also be found in Parish and Muller (2001)

used for their procedural approach for generating 3D city models, is certainly not the

only possible way to describe zones for synthesised texture content. A more detailed

discussion on the approach and use in Parish and Muller (2001) will be provided in

the discussion at the end of this chapter. The next section will discuss an alternative

concept for this description.

89

4. TEXTURE CONTENT MODEL

4.6.2.2 Alternative Descriptions

The presented concept for the fagade description is based on pulse functions in order

to describe what is called zones in this work. Benefits like reusing functions in multiple

layers, etc. are considered and examined and the prototype implementation using this

approach on the GPU is presented.

However, this type of description was adopted from Parish and Muller (2001) and re

flects a visualization solution. It provides benefits like the aforementioned reusability of

pulse functions and works as a light-weight model for rendering purposes. As this work

focuses on the use of 3D building surfaces as information space for 'map-like content'

the pulse function approach works very well.

Nevertheless, in terms of data modelling and management alternative descriptions

might need to be considered. To store the zones implicitly as overlaps of the two

pulse functions is useful when storing content for visualization. The concept is rather

compact and as the implemented prototype uses the same structure for the visualiza

tion process there is no structural conversion necessary between the data model for

data management and the GPU reconstruction programme. Only the format needs

to change in order to be readable by the shader programme. The concept of the de

scription stays the same. Nevertheless, as a pre-processing step has to be performed

anyway before the description can be used on the GPU it could be investigated if an

alternative description concept would be more useful on the data management and

storage side. When storing the zones using overlapping pulse functions these zones

do not explicitly exist as own entities. This makes it rather complicated to assign at

tributes to them or link additional data. Texture tiles are therefore assigned to pulse

layers as a sequence, meaning that the programme needs to be told to assign the tile

to all zones or apply them in a certain order (first zone -> first tile, second zone ->•

second tile, etc.). Hence, there is no direct reference between the zone and the tile,

as the zone is no explicit entity of the description. This is a disadvantage in terms

90

4. TEXTURE CONTENT MODEL

of storing/linking additional information to it. As the zones describe a feature of the

fagade, e.g. a window, one would want to store more information about it. When the

3D model, respectively the fagade description, is not only used for flexible visualization

but also for extracting information about the fagade as input for other processes (e.g.

window/wall-ratio), the additional information about the fagade features is important.

To be able to link attributes to the zones becomes fundamental.

For example, when estimating heating energy demands for buildings in a city the

window/wall-ratio of the buildings' fagades needs to be known. The extracted win

dow information from a photo-image could be transformed into the presented model

and the ratio can be calculated. In this way the description of fagade elements would

not only be used as visualization information but to hold data about the elements in the

fagade, e.g. if these elements are not modelled in the geometry of the building object.

Additional attributes for these elements like glazing type, window type, heat transfer

coefficient, etc. can only be assigned to all elements in the entire layer as the single

elements in the pulse function concept are not explicitly modelled. It might therefore

be more useful to store the elements with their rectangular bounding box as specific

entities and translate them into pulse function representation in a pre-processing step.

In that way the fagade description can also be used for other use-cases than visual

ization. This example shows that fagade descriptions are not only important for visual

ization purposes and it needs to be investigated how they can be used for a variety of

scenarios.

4.6.2.3 Operations

As layers are arranged to cover the whole of a given fagade and in a specific z-order

the content will certainly overlap in certain situations. Here the question is how the

construction process for filling the null-texture should apply the content and handle

overlapping areas.

91

4. TEXTURE CONTENT MODEL

Some examples for possible layer operations are given in the following list:

• Painter's algorithm (Priority fill) - As the layers are arranged in a specific z-

order the 'painter's algorithm' (see de Berg et al. (2000)) can be used to subse

quently draw the layers to the null-texture. Starting with the layer farthest away

and then drawing subsequent layers over them (fig.4.12).

Figure 4.12: Painter's Algorithm - The concept of the Painter's Algorithm (from de Berg
et al. (2000))

Another way to implement the effect of painting over the existing content is to find

the closest layer for which the specific pixel is inside a zone and apply the colour

to this pixel. For this solution the layers are arrange in opposite order (the nearest

is first in the list). The current pixel that is processed is checked against the zones

of the layers. If it is inside a zone the corresponding action is conducted and a

colour is assigned to that pixel. Subsequent layers are not checked anymore,

because if the pixel is inside another zone the colour value must not change as

the other layer is behind the first one.

• Blending/Transparency - another possibility is to define a transparency value

for certain layers, so that the content behind can shine through the layer on top.

• Erase zone - if the zone of one layer overlaps with a zone in another layer an

algorithm could be used to erase zones according to predefined rules or a specific

parameter. One parameter for example could be the z-order or depth to erase the

zone of the layer in the background or the zone of the foreground layer. A priority

attribute that can be freely set could change this behaviour and a zone is erased

according to its significance (e.g. a door will always erase a window). This type

92

4. TEXTURE CONTENT MODEL

of layer operation gives a lot of control about the content as the interaction of

semantic elements can be influenced by the data provider or the user.

These are just a few examples for operations and there are certainly others to be

added in specific scenarios or use-cases. The examples for different operations which

are combining layers are another aspect of adaptability and flexibility of the presented

texturing approach.

4.6.3 The Real-Time Layer

When looking at the presented concept of using pulse functions and the definition of

zones that are rectangular in this approach, the concept is focusing on the horizontally

and vertically arranged structures in the majority of building fagades. Doors, windows,

signs, etc. can be modelled as rectangular areas in a fagade that normally do not

overlap. Here the use of pulse functions can be regarded as a useful description for

such structures, as presented earlier in this chapter (reuse of pulse functions).

However, there is also information that one would not want to subdivide into rectangular

zones and add it as a layer to the fagade description. This information does actually not

include features that can be extracted and described as rectangular texture tiles. Data

like a thermal image, a noise pollution map of the fagade, etc. includes information in

the form of a digital image that needs to be integrated as a whole and not as subdivided

zones. The thermal image, for example, cannot be tiled by extracting fagade elements.

It rather contains continuous data about a surface property, stored in a regular 2D

matrix. This type of data will be called 'thematic image data' in the remainder of the

thesis. Another issue would be the integration of a video stream, which also includes

continuous information that can not necessarily be subdivided into zones in order to

be represented by texture tiles, as tiles normally contain the visual information of a

specific fagade element. What is even more important in case of a video is the fact that

93

4. TEXTURE CONTENT MODEL

the content changes very fast and the update of a tiled video image would probably

take too long to serve video frames at an acceptable rate.

a) b)

Figure 4.13: Thermal Image Content vs Facade Structure - a) The continuous thermal
image information has the character of an evenly distributed surface property in contrast
to b) identifiable objects of a fagade structure (copyright HFT Stuttgart, project Enff:Stadt
Ludwigsburg)

In order to integrate information like videos and thermal images the layer-based texture

approach needs to be extended and slightly modified. There are actually two ways of

integrating the aforementioned types of information that cannot be tiled properly. The

first option is to use the existing structures that the concept provides and use them as

a frame for the 'thematic image data'. Hence, it is possible to create another pulse

layer and name it appropriately as 'thermal image'. The pulse function would define a

single pulse for the entire image. Normally the whole wall area would be covered and

the thermal image would act as the texture tile that is assigned to the resulting zone.

By using the z-order of the layer other content can be placed in front of the thermal

image or behind it. This concept would work when the 'thermal information' is not

changing frequently, although it would misuse the zone concept. The thermal image

would be integrated into the texture atlas holding the other facade tiles, which would

make the use of the atlas less efficient. If the information would be a video captured

by a thermal camera the content would need to change very fast. Using the existing

94

4. TEXTURE CONTENT MODEL

approach as it is described in the previous sections each content change would require

the reconstruction of the entire fagade texture at the same rate of the video stream

(besides the fast changes of the video frames the concept of packing the tiles into a

texture atlas can hardly be integrated with video content). The reconstruction process

would need to be started even though the fagade content (the selected elements that

should be in the fagade texture) might stay unchanged and only the video content is

going to change. For this kind of (near) real-time data there needs to be a different

concept, which is going to be presented in this section.

4.6.3.1 Real-Time Content Integration

Real-time content in terms of information like noise, thermal data, videos, etc. is nor

mally represented as a sequence of images (compare next section on mapping infor

mation), where images and content change very fast. In terms of a video the single

images change so fast that the human eye cannot distinguish single frames and per

ceives a continuous motion. As videos are integrated into 3D scenes as textures, the

content of the texture needs to be loaded and changed very fast. As mentioned al

ready, doing this by using an additional texture layer and re-filling the null-texture at

each frame of the video is an overhead as windows, doors and other content might

remain unchanged for the majority of video frames. Besides this aspect the content of

the video cannot be integrated into the texture atlas for a fagade and would need to be

handled in parallel, which makes the zone/layer-concept inconsistent. For describing

the alternative concept using a separate layer the case of a video will be used although

the content that can be integrated is not limited to a video/movie.

As normal layers cannot be used to integrate real-time video frames an additional fixed

layer is included into the fagade texture content. This fixed layer can handle real-time

2D image data and is called Veal-time layer' (fig 4.14).

95

4. TEXTURE CONTENT MODEL

data channels for
shadersfraw values,
textures, video)

Facade elements in
front of real time data

Facade elements behind of
real time data

Background Facade Layers

Real Time Data Layer
Foreground Facade Layers

Figure 4.14: Real-Time Layer Concept - The position of the real-time layer

The real-time layer is based between two 'containers' for pulse layers: the foreground
and the background container. Basically there are two scenarios existing for the texture
synthesis process. In the first scenario there is no real-time content present for the
particular fagade texture, therefore there is no real-time layer. In this case there is

only one null-texture that will be filled with pulse layers. The concept of filling the null-
texture is described in previous sections. In the second scenario the real-time content

is present and therefore there is a real-time layer and an additional background null-

texture.

As we learned layers do have a z-order or depth. The z-level parameter makes it pos
sible to position content in front or behind other content. By allowing negative values

for the z-order attribute it is possible to put content behind the real-time layer, into the
background container, and content with positive z-level in front of the real-time layer

(foreground container). Consequently, the real-time layer has the z-level zero. By fill
ing the foreground and the background containers two separate null-textures are filled

and there is not only one texture for each fagade, instead there are 1) a foreground

texture, 2) a real-time texture (with content of the real-time layer) and 3) a background

96

4. TEXTURE CONTENT MODEL

texture. These textures need to be combined during the rendering process by suitable

multi-texturing concept. A possible solution would be to paint the textures on top of

each other starting with the background texture, and then paint the real-time layer. In

case the real-time layer only covers a part of the overall fagade the rest of the real-time

texture needs to be transparent. On top of the real-time layer the foreground texture is

painted. For the foreground all areas that do not belong to a zone need to be transpar

ent. By using separate null-textures the real-time content can change independently of

the fagade content. New video frames can be loaded without changing the front and the

back texture. Furthermore, the video can be put further into the fore- or background,

although the real-time layer is set to be at the z-level zero. By transferring more layers

into the foreground null-texture the video relatively moves more into the background

and vice versa when transferring more layers into the background null-texture.

Content for the real-time layer is not limited to video frames. Any data that can be

represented as a texture/image can actually be transferred into the real-time layer. For

example, real time electricity consumption metering data can be used to generate a

line chart of the last 20 measured values that is provided as an image. For each new

measurement (e.g. 10 seconds interval) a new chart image is created and replaces

the old chart in the real-time layer. In that way the real-time metering data is updated

independently from the fagade content although it is integrated in the fagade represen

tation.

4.6.3.2 The Player Components

In order to support different real-time content inside the flexible fagade texture rep

resentation an interface needs to be defined that describes the connection point for

this content. In the presented concept this interface is the 'RealTimeLayer' which is

implemented by the 'Player' components (fig. 4.15).

97

4. TEXTURE CONTENT MODEL

FaceSet

Texture

Procedural
Texture

PulseLayer

Real-Time
Layer

VideoPlayer Metering Etc.

Pulse
Function ---^ implements

Figure 4.15: Real-Time Layer Implementation Concept - The Player Components that
act as the Real-Time Layer content providers

A player provides an image (a frame) that can be used as input for the real-time layer.

The interface also provides functions to check if a new frame was created by the Player

and is ready to replace the current content of the real-time layer. The rendering pro

cess can check in each display-cycle if the player provides new content and if it needs

to load the new frame in order to render updated real- time information. Players that

implement the Real-time layer interface would normally run in a separate thread 1 and

implement the logic of transforming external real-time data streams into a 2D image

matrix. Examples will be provided in the next chapter presenting the prototype imple

mentation for the fagade texture synthesis.

1 a thread is a piece of code or a function that can be executed parallel to the main process of a

computer programme

98

4. TEXTURE CONTENT MODEL

4.6.3.3 Summary

The concept for real-time data integration is a straight forward extension of the pre

sented layered texture synthesis approach for fagades in 3D city models. It uses two

null-textures for foreground and background layers and embeds the real-time content

in the middle. The z-order parameter is used to define which layer is part of the back

ground and which are applied in front of the real-time content. By providing separate

'containers' for fagade representation and real-time content these two types of infor

mation can change independently, which also enables a better performance. Two ex

amples for Player implementations providing real-time content will be described in the

next chapter about the prototype implementation.

4.6.4 Mapping of Information to Zones/Real-time layer

After defining the zones, their position and extent, by the pulse functions and the com

bination of two functions to form a layer, the next question is how to fill the zones with

content. The information that is needed to fill the zones of a layer can come from dif

ferent sources (see section 4.4) and needs to be translated into a texture. In terms of

zones that represent real world fagade elements like windows, etc. the information is

represented by texture tiles.

4.6.4.1 Image to Zone

Appropriate content holding the visual information for the zones needs to be provided.

This content can be delivered in form of texture tiles, small rectangular pieces of the

overall fagade typically holding the visual information for one fagade element. Tiles can

be cut from the real-world photo image or gathered in any other way. It would also be

possible, for example, to read tiles from a database of standard elements in order to fill

specific zones.

99

4. TEXTURE CONTENT MODEL

The information that is normally used is the naturalistic representation of the real world

element, e.g. a window. An element can be regarded as 'atomic' or 'not dividable into

smaller elements'. These tiles are pieces of the real world fagade that are meant to

be applied to the zones. The tiles deliver the visual content for the semantic struc

ture. When a layer has two pulse functions describing the positions of the windows in

a fagade, for example, the texture tiles would actually hold the visual characteristics of

this type of window. Another layer could also form a window layer describing the po

sition for a second type of window, with a different texture tile associated to it, forming

the information for this second type. However, for one specific pulse layer the texture

tile concept also has an advantage in terms of recreating a photo-realistic impression,

if this is the aim of the visualization. Using one specific tile for all windows of one type,

for example, the resulting 'photo-realistic/naturalistic' fagade might look too synthetic,

because all elements of one type would look exactly identical. By defining not only one

specific tile for one layer, but a sequence of tiles, variations of the same 'window' can

be applied to the zones of a layer.

The texture tile can be applied to a zone in different ways, similar to textures that are

mapped to geometry. As a tile is not necessarily the same size as the zone there are

several possibilities to handle this problem:

• Scale - the texture is scaled to the extent of the zone. If the texture is smaller than

the zone it is stretched to fit the zone. If the texture is larger it is scaled down.

• Repeat the tile is repeated until the end of the zone. This can be controlled

separately for each axis. It is possible to define a repeat only on one axis. In this

case the repeat is performed only on the specified axis and a scale on the other.

The mapping of image information to a zone can be regarded as a painter process,

taking into account the settings for scale/repeat, filling the zone with the associated

texture tile information.

100

4. TEXTURE CONTENT MODEL

4.6.4.2 Measurement Set / Attributes to Zone

Attributes are often represented by false-colours in 3D city models. Value ranges of

attributes are assigned to a specific colour scale and geometry is coloured accordingly.

In this way it is possible to represent numerical, attributive data in a 3D city model

visually. The zone in this case is just filled with the corresponding colour; hence the

same colour is assigned to all texels inside the zone. There are ways to represent

single building attributes (see chapter 2), but it would also be possible to integrate

much more information. When considering a system controlling the blinds of windows,

the 3D city model could use that information and integrate it into the visualization. The

window zones could be coloured green when the blinds are open and red when they

are closed. When the frequency of changes is low enough this information can be

represented through the zone colour. However, if this information is likely to change

very often it might be considered to integrate this information into the 'real-time layer',

because the change in the zones would require a reconstruction of the entire fagade

texture.

4.6.4.3 Real-Time Content to Real-time Layer

Video

As described in the section on the real-time layer the concept of the additional 'chan

nel' is to integrate real-time information in form of an additional 'texture'. Hence, real

time information needs to be transformed into a digital image that can be used to fill

this real-time layer. For videos this is a quite simple step. By using appropriate soft

ware tools to access each frame of the video separately it is possible to extract single

frames as images. Each frame-image is loaded into the 'real-time' texture. This pro

cess needs to be realized in parallel to the normal rendering process, suitably realized

in a separate thread of the application. When a new frame is extracted from the video

101

4. TEXTURE CONTENT MODEL

the 3D visualization application needs to load it into the assigned texture object for the

real-time layer.

Metering

For other data that is not image based the process of generating the required (near)

real-time texture information is a little bit more costly. Information like metering data,

for example, needs to be transformed into a texture, respectively an image. One pos

sibility would be to define a colour scale (green -> orange ->• red) in order to visualize

the currently measured value and the colour would change according to increasing or

decreasing measurements. Another possibility would be to actually generate an image

that contains the current value as text. In that way it would be possible to represent the

value as such.

A further approach, which is also implemented in the prototype, is to convert the mea

sured data into a chart that illustrates measured values over time. There are a number

of libraries for different programming languages and systems to generate charts for a

given data set. The result of the process is a digital image containing the requested

chart type representing the provided data set. This digital image can be used as a

texture for the real-time layer. Changes in the data set would result in re-rendering of

the chart image, which would then replace the texture of the real-time layer.

4.7 The Reconstruction Implementation

The reconstruction stands for any piece of software or implementation of an algorithm

that actually performs the construction of the final fagade texture. The input for the

programme is the description providing the structure and semantics of the fagade rep

resentation and the texture tiles, which provide the visual content. Programmes would

normally differ depending on the platform they are implemented for, because they in

clude the logic of how to translate the information of the description and the tiles into

102

4. TEXTURE CONTENT MODEL

the most appropriate form to be utilized on the specific platform. As it will be de

scribed in chapters 5.5 and 5.7, the description of the fagade can actually include

platform-dependent additional information, which the associate programme can use to

perform its task in an efficient way. The generation of this platform-specific information

can be part of the actual reconstruction process of the final texture, an initialization

step or can be implemented as an independent pre-processing step. The latter case

will be described in the chapter on the rendering process of the implemented proto

type. The prototype implementation takes a pre-processing step in order to generate

a platform-dependent description containing additional information extracted from the

general fagade structure description. Besides the fact that the programme for the re

construction process can be implemented platform independent on various systems

using different programming languages and on different devices, it is also true that the

pre-processing step and the actual programme might need to be realized on different

platforms using different concepts and hardware. This is especially the case when

working in a client-server environment, e.g. a web-application or with a mobile device.

In such a scenario it is quite likely that the server and the client system are different.

The server might also need to serve multiple clients of different type. It is possible that

the server needs to implement multiple pre-processing steps for each specific client in

order to support each client in an optimal way. This and other issues on SDIs will be

discussed in detail in the next section of this chapter, looking at client-server scenarios

in detail.

Nevertheless, also on one single device the pre-processing step and the actual recon

struction process might need to be implemented based on different technologies due to

the underlying system architecture. In the next chapter on the implemented prototype,

the reconstruction is done on the GPU of the system, using the programmable parts

of the rendering pipeline. In order to achieve this goal a Java based prototype was

implemented. This 3D viewer application reads the 'general' fagade description (see

section description) and transforms it into a texture (see section data texture). This tex-

103

4. TEXTURE CONTENT MODEL

ture is loaded onto the graphics chip using the OpenGL-API (Application Programming

Interface), where the programme implementation uses it to perform the reconstruction

of the final fagade texture. In this case the texture generation procedure includes two

steps using different technologies on the same platform. However, having the ability

to split the two steps and perform them on different platforms and distributed systems

is especially beneficial in client-server environments (see chapter 4.8). Therefore the

presented approach for synthesized fagade textures is not only variable in terms of

content and visualization; it is also adaptable to in terms of implementing it in different

system scenarios.

4.8 Integration into Spatial Data Infrastructures

In chapter 2 it is outlined that type-6 city models very often exist in an SDI-environment

in order to be used in different scenarios and for different purposes. They are often

managed in GIS-like systems and are provided to various client systems via standard

ized open interfaces, e.g. from the OGC. In chapter 2.2 WFS and W3DS example

workflows in a 3D management system were described briefly. These services are the

relevant OGC interfaces for the scenarios in this chapter as well. The WFS provides

access to the raw model data, which can be further processed by the client, whereas

the W3DS provides scenegraph structures that are used for 3D visualization (see OGC

(201 Ob) and OGC (201 Oa)).

This part of the chapter investigates how the presented texture content model can be

integrated into the SDI context. As the model itself provides a considerable degree

of flexibility the integration can be done in various ways. Therefore, three example

scenarios are investigated in the following section, to show approaches and possible

benefits of layer/zone-based textures in an SDI-environment.

104

4. TEXTURE CONTENT MODEL

4.8.1 Flexible Integration into Client-Server Process Chains

The flexibility of services in an SDI depends on their capability of providing data in

just the right way for specific scenarios and client requirements (see section 2.2). The

integration of the flexible texture content into the various processes, which depends

on the client capabilities, scenario requirements and on the user request, can be re

alized in various ways and on very different levels of the server-client process chain.

Depending on the intended process the client can request data in order to process it

itself or delegate the majority of tasks to the server side. This would require that the

related functionalities are present on the server. For example, the server needs certain

basic capabilities to produce pre-processed output, e.g. generate a scenegraph from

raw model data when it wants to support the W3DS interface. This task involves ap

plying a certain user requested style to the model before the output is generated. This

capability is necessary to support the defined parameters in the OGC standard.

In terms of layer/zone-based texture content there are several scenarios that need to

be supported. Three of them are discussed here as examples for integrating the flexible

texture content concept, which this work is investigating. There are several points for

the texture content to be created from the zone/layer description. At which point the

reconstruction takes place depends on the scenario requirements but for the main part

it depends on client capabilities and how the zone/layer information can be handled

by the client. Different scenarios regarding these requirements are presented in the

next three sections. The different levels at which the fagade representation can be

generated in a client-server scenario are depicted in figure 4.16.

4.8.2 Scenario 1: Server Side Texture reconstruction

The client in this scenario can only perform the traditional texture mapping and is too

'thin' to handle the construction process in addition to its general tasks. However, the

scenario requires different representations for building fagades, which should be able

105

4. TEXTURE CONTENT MODEL

Server side rendering of
the textures. 'Classical'
textures are transmitted

Client using
service interfaces

3D Model Server

Construction on
graphics
hardware
using the
programmable
rendering
pipeline

Pre-processing on the
client-build normal
textures or special
format used in the
rendering pipeline

Figure 4.16: Possible reconstruction levels for texture content - The possible stages
of the client-server environment, which can be used to construct the texture content

to be requested from the server according to the user input (user can switch layers

on/off). Here the construction of the texture would be done on server side, querying

the fagade layers that are needed for the requested representation from the database

and the final facade texture would be generated by the management system. The

model can then be sent to the client in the usual visualization format. The rendering

and texture mapping is done in the normal way. In this case there is also no need to

send tiles packed into a texture atlas, as the tiles are processed on the server side

and the final texture is generated before the transmission to the client. Of course,

the server interfaces have to support ways to influence the output fagade content by

providing appropriate parameter sets, e.g. add additional parameters to the W3DS

interface.

The benefit of this solution for thin clients is that they can still benefit from the layer-

based texture concept in terms of flexible appearance of the 3D model although they

106

4. TEXTURE CONTENT MODEL

cannot handle the new texture concept themselves. However, a drawback is, when

content changes are required, it is necessary to request the new representation from

the server, because the 'raw' texture content information is not present on the client.

On the server new textures are pre-generated and sent to the client. If this needs to be

done for many buildings the response times can become very long, unless some kind

of streaming solution or transmission strategy is implemented for this scenario (e.g.

new textures for nearby objects first, etc.).

4.8.3 Scenario 2: Client Side Reconstruction and Processing

In this scenario the client's performance is high enough to handle the construction

process of the texture content. The client in this case is not necessarily an end-user

application (for end-user example see chapter 6.3.3). It can also be another service.

Here at this point the use-case includes an external W3DS that queries the 3D model

through an WFS interface and produces an appropriate scenegraph for its own client.

Features with
zone/layers classical textures

3D Model Server

features
requested

W3DS

style
requested

Web 3D Server Client

Figure 4.17: Portrayal W3DS - Portrayal W3DS querying features with layer/zone based
texture content and creating classical textures for its client

In this scenario the client of the 3D management system is another service that intends

to receive the original model information in order to process it in the appropriate way.

107

4. TEXTURE CONTENT MODEL

Here the zones, layers and tiles are provided in their original form, e.g. by a CityGML

ADE (Application Domain Extension). The information about the fagade content can

be used by the client (in this case the external W3DS) to generate the required fagade

representation according to the request the W3DS received. For the 3D management

system the task in this scenario does not involve any pre-processing of the texture

content, it just needs to generate the requested data format encoding and deliver the

information.

In the discussed scenario the WFS of the management system provides the genuine

model data to a W3DS in order to be processed further. However, when implementing

the WFS it is unknown if a client already supports the layer/zone-based fagade content.

Furthermore the new texture content model allows that building fagades within one

model can either have normal textures or layer based texture content (the layer-based

texture can be implemented as a sub-form of a standard texture, see chapter 5.3).

Therefore the request to the WFS needs appropriate filters to tell the system if the

output should contain layer based texture content or only normal image textures. In

this way also W3DS services and other clients that are 'not aware' of the layer based

texture concept can still use the WFS in the 'classical' way.

The management system in this scenario provides the genuine layer description of

the content to the client, which can further process and use the information in its own

workflow. This provides more control over the content and also enables the client

to use the fagade description for non-visualization purposes, e.g. calculate window

area. Changes of texture content are easier to realize as the description and the tiles

are already on the client side. The reconstruction of texture content does not include

reloading information from the server. However, the client needs to have the required

capabilities and needs to be 'aware' of the concept in order to handle the texture infor

mation. By using appropriate filters it might also be possible to query specific texture

layers through the WFS interface. In that way only specific layers are transmitted that

are relevant for the client's scenario and not the full set of texture content has to be

108

4. TEXTURE CONTENT MODEL

exchanged. However, this possibility using the WFS interface and the relevant filter

definitions needs to be investigated further, as it has not been tested in the scope of

this work.

4.8.4 Scenario 3: Pre-processing for Clients with

Special Requirements

In this scenario the 'raw' texture layer and tile/zone information is pre-processed but

no final fagade texture is generated. The description of the texture content is just

transferred into a suitable form so it can be better used by specialized clients. One

example for such a client is the prototype implemented for this work presented in chap

ter 5. It uses the programmable rendering pipeline of the graphics hardware in order to

construct the required texture representation. In order to do this it needs the layer de

scription as well as the pulses, which describe the zones, encoded into a data texture

(see chapter 5.5). This processing step, as well as the creation of the tile atlas, can be

delegated to the server for thin clients.

Pre-processing on
server-generates
DataTextureand
Tile Atlas

W3DS

1011010011
1010110101
•looioioooij

Texture Content
constructed on GPU

Web 3D Server

Texture Atlas Data Texture

Pre-processed
layer/zone info
requested

GPU

Thin Client +
Shader Support

Figure 4.18: Thin Client using Shader on GPU - The construction of the texture content
is done on the GPU. This thin client requests the layer/zone information from the server
instantly encoded into textures

109

4. TEXTURE CONTENT MODEL

The server in this case would produce the tile atlas and the data texture and include it

into the output, e.g. into an X3D or VRML scenegraph. The use of X3D/VRML, hence

using the W3DS interface, seems more suitable in this case, as these output formats

support elements to represent shader programmes. In this way it is also possible to

transfer the required shader code for the construction of the texture from the server

to the client. However, it would still need to be investigated how the 2-step rendering

process described for the prototype in chapter 5 can be realized in this way, receiv

ing the shader code from the server. At the moment it seems to be more feasible to

assume that a specialized client is using an existing rendering concept in a shader pro

gramme that already exists on the client side and the client receives the appropriate

pre-processed data texture and the tile atlas from the server.

As already explained the server (the 3D management system) provides specialized

output in this scenario, which allows using the latest graphics hardware capabilities.

By reconstructing the texture on the client's graphics hardware during rendering, hence

at the very end of the process chain, the data size in terms of textures is kept small

in comparison to full fagade textures. During transmission and in client memory only

texture tiles are used (packed into the texture atlas), which are significantly smaller

than normal fagade textures. Streaming content based on small portions of the texture

is also proposed in Ricard et al. (2008) as a useful function. The reduction of data size

is beneficial in terms of SDIs as data is transmitted over a network. However, data size

also plays a major role when mobile clients are part of the application scenario.

For scenarios in which the client utilizes the programmable rendering pipeline a second

solution is possible depending on the client's capabilities. In the previous solution the

W3DS interface would be used to query a scenegraph including the two 'information

textures' (data texture and tile atlas) for each layer-based fagade texture for immediate

rendering (type-3 model received from the server). Depending on the client it would

also be possible to shift the processing step of generating the information textures to

the client side (fig. 4.19).

110

4. TEXTURE CONTENT MODEL

3D Model Server

Features with
zone/layers

features
requested

Data Texture
GPU

Fat Client

Figure 4.19: Fat Client using Shader on GPU - The pre-processing (generating dataTex-
ture and tileAtlas) can be done on client side for fat clients

In this case the client can work with the full type-6 model and still use the shader

based reconstruction/visualization concept for the fagade textures. This approach can

be useful for 3D-GIS systems, for example. These 'fat clients' can access the full in

formation (type-6) and use the features with their semantics and additional information

for their own processes and workflows. However, they can at the same time visualize

the flexible texture content and use the rendering pipeline for the texture reconstruction

process. In this case the description needs to be transformed on the client to be loaded

onto the graphics hardware.

This scenario, as well as the other two, shows that separate processing steps can

be flexibly shared between client and server involving the two service interfaces WFS

and W3DS. How the processes are actually shared depends on the scenario and the

capabilities of the involved systems.

111

4. TEXTURE CONTENT MODEL

4.9 Discussion

After presenting the texturing approach for 3D city models the consequent question

would be: what is the advantage of a layered approach in comparison to simple 'pixel-

matrix' images? Content can be arranged and combined according to the require

ments of the user, in real time if necessary. That is also one of the main advantages of

a GIS system over paper based maps. Layers can be turned on/off and specific con

tent can be pushed into the background or pulled into the foreground, depending on the

importance for the user. When this flexibility should be achieved for building fagades

in 3D city models by standard image textures, it would be necessary to generate the

required textures for each and every content combination in a pre-processing step and

store them in a database. These textures would then be applied to the model accord

ing to user requests. This approach seems to be difficult to realize, not only because

of the issues about data size and storage of all the relevant textures, but also because

of the fact that the data provider would need to envision all possible combinations of

content in order to create the required image files beforehand. The presented concept

of flexible texturing for 3D city models in this thesis aims for the possibility to provide

content layers especially for buildings' facades, which can be changed interactively and

in real time.

4.9.1 Pulse Function Approach

A similar approach using a pulse function concept can be found in Parish and Muller

(2001) where it is used for generating valid fagade representations for rule based gen

erated cityscapes. The concept of arranging pulses in order to define fagade ele

ment positions and group them in layers is comparable to the presented layer/zone-

approach. The work of Parish and Muller (2001) supports the feasibility of the tex

ture content model presented in this chapter and is an additional example for dynamic

fagade content creation. However, the intention is different. Parish and Muller (2001)

112

4. TEXTURE CONTENT MODEL

use pulses that are equidistant, arranged in layers and which describe valid naturalistic

fagade structures. They also use operations among layers to generate valid content

avoiding overlaps between elements of different layers. Operations described in this

chapter, like 'erase zone', can be linked to this approach, which automatically adapts

content to make it more valid/realistic, e.g. erase a window that overlaps with a door.

Although in this work the procedural modelling of arbitrary valid fagades is not inves

tigated, the example shows that appropriate operations can be implemented for other

domains (and the texturing approach is influenced by other domains) and the layered

fagade content is very flexible and provides sufficient adaptability.

A difference of the presented approach compared to Parish and Muller (2001) is that

the constructed fagade structures in their work do not necessarily have a real world

equivalent. In their paper they describe the construction of valid fagade textures to

be used for their procedurally generated building geometries. The adaption of fagade

content and the integration of additional content into real-world fagades in terms of

information visualization are not described.

4.9.2 A Similar Approach for Thematic Visualization

As discussed in chapter 2 the aim of this work is to use textures of buildings (fagade

textures) and other urban objects differently. These textures should not only act as

containers for real-world photo images but the surface if the buildings should be able

to act as 'map-space' in order to present various types of information. Thus, 3D city

model textures need to be regarded as versatile displays for information visualization

rather than restricting them to be a kind of photo-realistic wallpaper. In chapter 2 the

work of Lorenz and Dollner (2010) was identified as relevant work, which shows that

this is a sensible direction to take and that there are attempts to achieve this goal.

So in general the work of Lorenz and Dollner (2010) supports the idea of this work

and shows that textures can be used as information channels and not only to apply

113

4. TEXTURE CONTENT MODEL

Figure 4.20: Surface Properties Tool - Residential quality visualization using surface
properties. Users can create their own weighting and color mapping from all available data
sources using small code fragments. Here, red tones denote suitable places and light
orange tones unsuitable places (Lorenz and Dollner, 2010)

photo-images (see 4.20). However, their approach differs in terms of information man

agement. In their case information can be merged by arbitrary operations. Having the

ability to change the shader code directly provides a maximum of flexibility and seems

to be appropriate for expert users. However, there is no clear way how to organize

surface property information and to merge it with fagade elements like windows, for ex

ample. This work argues that introducing a layer-based concept for textures can help

to organize content. The layer concept is well-understood and functions like switching

layers on/off are very familiar to both expert and non-expert users.

Looking at the approach presented in this work, it aims to provide a solution that is

closer to existing 2D digital maps where layers are already a common element of

map-content management. In terms of the map-use-cube defined by MacEachren and

Kraak (1997) this solution might be seen in the synthesis and presentation area. The

approach of Lorenz and Dollner (2010) might be considered as a tool for analysis and

114

4. TEXTURE CONTENT MODEL

exploration, which is more of an expert tool. Nevertheless, both approaches work as a

new way to use object surfaces as information displays and it would be very interest

ing to see a combination of the surface properties approach and the layer/zone-based

textures. It might be possible to integrate a calculated residential quality property, for

example, with a window layer to be able to relate the calculated surface property to

separate floors/flats of the building.

4.9.3 Real-Time Layer

Looking at the real-time layer as an extension to the basic layered texture content ap

proach it describes an additional layer with a fixed z-position. The other fagade content

is arranged around this layer using two null-textures, one in front and one behind the

real-time content. The question about this extension is, if it would be possible to inte

grate real-time texture content by using the basic pulse function/layer concept with one

null-texture. This needs to be investigated in future work, as it implies a need to define

a model to separate normal tile information that normally goes into the texture atlas,

and the real-time content. The real-time content would have to be linked to a zone

and it needs to be defined, that 1) the content is neither a primitive colour code (at

tribute representation) nor 2) a texture tile (from the atlas), but 3) a continuous stream

of images, respectively a periodically changing image. This approach would need to

be investigated, implemented and tested in the future as it changes the general as

sumption that zone information is either a simple colour or a texture tile from the atlas.

The feasibility of the presented real-time layer approach is tested by implementing a

prototype as a proof of concept. This implementation is going to be presented in the

next chapter.

115

4. TEXTURE CONTENT MODEL

4.9.4 Integration into (3D-) SDIs

In terms of using the new texture content model in client-server scenarios within (3D-)

SDIs the presented approach can be regarded as useful and practicable. The recon

struction of the final texture can take place either on the server or the client, hence on

different stages of the process, according to the capabilities of the involved systems.

The texture model shows sufficient flexibility and provides a structure that allows con

tent to be delivered according to user requests and scenario requirements. An aspect

for future work is the investigation of existing interface standards. The relevant stan

dards need to be extended or adapted in order to expose the new capabilities of texture

content definition. A further task for future work could be the definition of a CityGML

ADE for zone/layer-based textures. This ADE would make it possible to exchange the

raw texture content information together with the 3D city model between 3D manage

ment systems in a standardized way. These adaptions need to be examined and might

also be introduced into the standardization processes of the OGC in the future.

116

Chapter 5

Proof of Concept

In the previous chapter the model for fagade texture content for 3D city models was

presented: flexible content based on zones, layers and texture tiles that form the final

texture according to user requirements or scenario specific settings. As it is outlined in

chapter 4.8 the texture content approach can be integrated in very different scenarios

and hardware environments. In order to show that the concept can be implemented

and is feasible in a technical sense this chapter presents a prototype that realizes the

concept on a specific platform. The chapter is going to present an implementation

that shows how modern graphics hardware with a programmable rendering pipeline

can be used to realize the new approach for fagade texturing. The construction of the

texture content in this case is done directly on the graphics hardware, which implies that

all processes before rendering can work with texture tiles instead of complete fagade

textures. This reduces data size for storage and transmission and allows changing the

content of the fagade in an interactive way and relatively fast because the construction

of new content is part of the rendering process.

Integrating the concept into the rendering process is not absolutely necessary. Nev

ertheless, one major part of the concept is to be able to change content in real-time

or with acceptable response times. This capability allows combining different informa

tion and switching between different representations. This also allows context sensitive

changes of the representation of certain city model objects, which can be triggered by

the application/system. Therefore the integration of the reconstruction process into the

rendering pipeline allows changing texture content very quickly because this process

is managed by the dedicated graphics hardware.

117

5. PROOF OF CONCEPT

This chapter will introduce properties of the platform on which the prototype is imple

mented as well as special aspects of the programmable rendering pipeline. It will also

describe the developed pre-processing step that is needed to prepare the required in

formation to be loaded onto the graphics hardware. The rendering process as such

and certain particularities and algorithms are provided as well as a discussion on per

formance and scalability.

5.1 The Rendering Pipeline

In the presented prototype the null-texture is filled directly on the graphics hardware

during the rendering process. This rendering process is normally realized in the ren

dering pipeline of the graphics hardware, respectively the Graphics Processing Unit. A

common standard interface to the rendering processes is OpenGL

'OpenGL is an industry-standard, cross-platform Application Programming Interface

(API). ...Its intention is to provide access to graphics hardware capabilities at the

lowest possible level that still provides hardware independence. It is designed to be

the lowest-level interface for accessing graphics hardware. ... The OpenGL API is

focused on drawing graphics into frame buffer memory and, to a lesser extent, in

reading back values stored in that frame buffer. It is somewhat unique in that its

design includes support for drawing three-dimensional geometry (such as points,

lines and polygons, collectively referred to as PRIMITIVES) as well as for drawing

images and bitmaps. ... The fundamental purpose for OpenGL is to transform data

provided by an application into something that is visible on the display screen. This

process is often referred to as RENDERING' (Rost et al., 2006).

The process of rendering includes several steps to transform the three-dimensional

primitives, which are viewed from a certain perspective into a two-dimensional image

118

5. PROOF OF CONCEPT

that is written to the frame buffer in order to be visualized on the display screen. The

rendering operations that are performed in the OpenGL process are depicted in fig

ure 5.1.

Pixel Groups
Vertices
Fragments
Textures

Figure 5.1: OpenGL Operations - Overview of OpenGL operation (Post et al. (2006))

The major steps of the process are (detailed description in Post et al. (2006)):

• Per-Vertex-Operations (2): include transformation of vertex positions by the

ModelView-Matrix, colour and material are applied, texture coordinates are cal

culated if required and lighting calculations are performed. 'Because the most

important things that occur in this stage are transformations and lighting, the ver

tex processing stage is sometimes called T&L (Rost et al., 2006).

• Primitive-Processing (4): 'actually consist of several distinct steps that have

been combined into a single box to simplify the diagram' (Rost et al., 2006).

This step includes clipping, perspective projection, viewport transformation and

culling.

• Rasterization (5): primitives are decomposed into smaller units which match the

pixels in the frame buffer. 'Each of these smaller units generated by rasterization

119

5. PROOF OF CONCEPT

is referred to as a fragment ...A fragment comprises a window coordinate and

depth and other associated attributes such as color, texture coordinates and so

on. The values for each of these attributes are determined by interpolation be

tween values specified (or computed) at the vertices of the primitive' (Post et al.,

2006). The fact that each fragment has got a texture coordinate is used to imple

ment the content model presented in chapter 4.

• Fragment Processing (6): texture mapping happens in this stage, as well as fog

and color sum operations.

• Per-Fragment-Operations (8): this set of operations includes the scissor test,

alpha test, depth test, alpha test, etc. There are also operations for blending

different colours and dithering.

• Frame Buffer Operations (9): frame buffer operations determine into which part

of the frame buffer is written. For example, it is possible to write either in the front

or back buffer, respectively the one that is not used for screen display. When the

content is written completely to the back buffer it becomes visible and the front

buffer is used for rendering new content to the frame buffer (buffer swap).

The developed prototype is a 3D Viewer Java application which implements the tex-

turing approach and capabilities presented in chapter 4. Access to the OpenGL API

is achieved by the Java Bindings for OpenGL (JOGL) 1 , which implements the OpenGL

API for Java. The 3D model data is provided by the 3D management framework

'CAT3D', which is developed at HFT Stuttgart by the author of this thesis2 (see also

chapter 2). This framework is presented in Bogdahn et al. (2007) and in relation to

the presented texturing approach in Bogdahn and Coors (2009a). The link between

the CAT3D framework and the developed prototype will be described in more detail in

subsequent sections.

1 http://jogamp.org/jogl/www/, last accessed August 2011
2 Developed for the authors Diploma Thesis (unpublished)(Bogdahn (2006))

120

5. PROOF OF CONCEPT

However, as the prototype intends to implement a texturing approach different to the

fixed-function pipeline it depends on programmable parts of the pipeline where custom

code can be executed.

5.2 The Programmable Elements of the

Rendering Pipeline

The elements referred to in the previous section describe the fixed function rendering

pipeline that OpenGL defines. The processes that are conducted inside these ele

ments can be controlled and adapted by using different parameters that can be set

through the OpenGL API. One 'could think of OpenGL as a sequence of operations

that occurred on geometry or image data as it was sent through the graphics hardware

to be displayed on screen. Various parameters of these pipeline stages could be al

tered to select variations on the processing that occurred for that pipeline stage. But

neither the fundamental operation of the OpenGL graphics pipeline nor the order of

operations could be changed through the OpenGL API'. (Rost et al., 2006)

By using the functions and parameters provided by OpenGL a certain degree of control

over the actual process can be achieved. However, for many applications this is not

sufficient. Looking at the method for filling the null-texture in this work, this concept

needs much more flexibility as it needs to implement a new algorithm that needs to be

processed on the graphics hardware.

Since OpenGL 2.0 the rendering pipeline provides programmable processors for ver

tices and fragments, which can execute so called 'shader programmes' or 'shaders'.

Figure 5.2 'shows the OpenGL processing pipeline when programmable processors

are active. In this case, the fixed functionality vertex and fragment processors are

replaced by programmable vertex and fragment processors. ...All other parts of the

OpenGL processing pipeline remain the same' (Rost et al., 2006).

121

5. PROOF OF CONCEPT

(Geometry)

App
Memory

(Piiefsl

i """LJ

^ j Vtnvt JFwi Primitive 1 ^ Proiecl
Xrrotessor { '• Assembly '! Viewpo

f .> ><•- I.....J I"1
Unpack ...J Transfet

^_ J Pixel j -

———— ̂ Vertices

err

rt

Itti

"

...

ory

**

*

»...f

•
•
•

./

. —— *

j.

(Geometry)| ™

Rasterue ,

(Pueh) -

Textures •

frame
Buffer

= Programmable Processor

Figure 5.2: OpenGL Programmable Processors - OpenGL logical diagram showing the
programmable processors for vertex and fragment shaders rather than fixed functionality
(Post et al., 2006)

As this work will primarily use the capabilities of the fragment processor, the pro

grammable vertex element will not be discussed here. In this research work a pro

gram for the fragment processor is developed that implements the logic and algorithm

of filling the null-texture and constructing the requested fagade representation. The

fragment processor as a unit in the rendering pipeline 'performs traditional graphics

operations such as the following:

• Operations on interpolated values

• Texture access

• Texture application

• Fog

• Color sum

A wide variety of other computations can be performed on this processor' (Post et al.,

2006). However, the fragment shader programmes need to be written in a way, which

performs computations only for a single fragment at a time. As fragment processing

122

5. PROOF OF CONCEPT

can be highly parallelized on hardware the fragment processor does not know anything

about neighbouring fragments and only works on a single fragment at once. The inputs

and outputs of the fragment processor are depicted in figure 5.3.

Built-in
varying

variables

Special
input

variables

User-defined
varying
variables

gl_Color
gl_SecondaryColor
gl_Te«CooidIO..n)
gl_FogFrag(ooid

gl_FiagCoord
gl_FrontFacmg

Normal
ModelCooid

Refract lonlndex
Density

etc
1

gl_FragColor
gl_Frag Depth

gl_FiagData[n]

User-defined uniform variables

ModelScaleFactor, EyePos, Epsilon,
LightPosrtion.Weightmgfactorl.etc.

Built-in unifoim variables !
......——....——..*

gl_ModelViewMatrrx,gl_FiontMatenal,
gl_LightSouice[0..n], gl_Fog,etc.

[| Piovided diieclly by application
"i Provided indnectly by application

Produced by rasterization
Pioctuced by the fragment processor

Figure 5.3: Fragment processor inputs and outputs - OpenGL inputs and outputs for
the programmable fragment processor (Post et al. (2006))

As one can see the fragment processor is responsible for texture access and for apply

ing the texture information to fragments. Therefore it is the suitable place for working

on the construction of the requested fagade texture representation. The fragment pro

cessor also has access to texture maps (texture objects), can read information from

them and incorporate this information into the fragment computations.

As we will learn in subsequent sections the prototype uses textures to transfer required

information for the construction of the fagade texture (tiles and description) instead of

using uniform variables. One reason for this is that the fragment processor is the ded-

123

5. PROOF OF CONCEPT

icated element to process texture maps and incorporate them into fragment calcula

tions. The second reason is that through textures more information can be transported

than by uniform variables (depending on the hardware). The third reason is that tex

tures might be easier to transmit by standard data formats, like for example VRML.

These formats normally know how to handle a texture or a multi-texture. So if the

construction information for filling the null-texture can be encoded into textures, it is

easier to integrate them into external data formats for transmission in a client-server

environment than a relatively big set of integer or double values.

However, the description of the zones and layers and the structure of the fagade will

certainly not be stored in a database or in the file system in form of textures. In

stead, one could think of an extension to the CityGML standard in order to describe the

zone/layer-based texture content or a special database schema. The prototype specific

encoding of this type of information into textures needs to be generated beforehand, in

order to be used directly on the graphics hardware. Therefore, encoding the informa

tion into a texture needs to be done in a pre-processing step before the fagade content

can be generated directly during the rendering process.

5.3 Data Management and 3D Viewer Integration

As pointed out in the previous section the information that needs to be transmitted to

the fragment processor in order to construct the visual fagade representation has to be

transformed into a texture, which can be accessed by the fragment shader program.

The description and the texture tile information are not in this form on the application

side and therefore needs to be pre-processed. The presented prototype is a Java ap

plication that uses the Standard Widget Toolkit (SWT) and JOGL in order to implement

a 3D Viewer that is capable of handling the developed fagade texture description and to

visualize it. The 3D city model as such, as well as the information needed for the new

texture content approach, is modelled as Java classes. The geometrical and semantic

124

5. PROOF OF CONCEPT

model, as it is described in chapter 2.2.3, for type-6 city models as well as the standard

texturing approach, is included in the internal data model of CAT3D. This framework

was developed in order to manage, to process and to provide 3D city models (see

Bogdahn (2006)). The general architecture of the framework is depicted in fig. 5.4.

VRML
Creator

KML
Creator

cityGML
Creator

Feature-/Geometry Classes (Data Mapping) Utilities

Figure 5.4: The CAT3D Architecture - CAT3D framework - components diagram (own
depiction)

Briefly recapitulating what was already described in chapter 2.2.3 this framework is

modelled by three layers: the data-access layer, the internal data layer (mapping layer)

and the format-creator-layer (output layer). By using specific components of the frame

work one can generate a work-flow for a particular scenario that the system should

realize. For example, a web-service implementation could use a database access mod

ule to read data from a spatial database and convert it into the internal representation.

Utilities could be used to transform the spatial reference system into the one that was

requested by the user. The appropriate format-creator would transform the data from

the internal data representation into the requested output format. As the single mod

ules can be combined relatively independently it is rather easy to change the output

that the web-service produces. The module for data output can be exchanged without

the need to change the rest of the process (data access and coordinate transformation)

because other format-creator modules also work on the internal data representation.

125

5. PROOF OF CONCEPT

The only part of the process that changes is the translation from the data mapping

layer into the new output format.

The presented prototype uses only parts of the framework and integrates it into the 3D

viewer application on the data mapping layer. The data-access-layer and the internal

data layer are used to access a 3D city model in an external format (e.g. a CityGML-file

or a VRML file). The external format is then translated into the internal representation

(fig 5.5). As the prototype application has now access to the model data (vertices,

polygons, textures, etc.) and access to the OpenGL API through JOGL the model

information can be translated into rendering instructions for the graphics hardware.

In this scenario no format-creator modules are needed, because the output that the

application needs is the rendering command that it sends to the graphics card.

1
Multi-

Geometry

extends

references

Figure 5.5: The CAT3D Data Model - Internal data representation of the CAT3D Frame
work (Bogdahn, 2006)

The CAT3D framework, however, only modelled standard rendering approaches, there

fore only the standard texturing concept as well. One can see in figure 5.5 the texture

126

5. PROOF OF CONCEPT

object that is linked to a FaceSet is a reference to an image file and a set of texture
coordinates. Therefore the texture model needs to be extended in order to hold the
zone/layer/tile information for a fagade texture. The diagram for the part of the ex
tended texture model including pulse-functions, layers, etc. can be found in figure 5.6.

Geo-Texture

Geometry
Texture,

Procedural
tt-i-^JBiilSiSBS^ra-t.^ _.

Tile Pulselayer Pulse
Function

TileAtUs <)r>d DdtdTexture to hold
the result of the pre processing
step

Figure 5.6: The Extended Texture Model - Extensions made to the existing texture model
of CAT3D in order to represent the new texturing approach

The new texture element is actually an implementation of the existing Java interface
(Texture) that is already present in the CAT3D framework. Hence, a model can either
have a standard image texture that is handled in the traditional texture mapping way or
it can have a texture that has layer-based content (Procedural Texture). In that way it is
not necessary for a city model designer to provide the new texture content type for each
building in the model. The flexible content can just be provided for buildings where it is
necessary (e.g. landmarks) and other buildings can be textured in the traditional way,

if required in the specific use-case.

In chapter 4.8 the different stages at which the fagade texture can be constructed
was discussed in detail. At this point one can see that the construction of the texture

127

5. PROOF OF CONCEPT

by analysing the zones, layer, etc. could be done on 'Java-side' (by the application)

and a complete texture could be provided for the rendering process. Nevertheless,

the implemented prototype intends to show that the reconstruction can also be done

directly on the graphics hardware. In order to do this, the Java-based representation of

the pulses, layers and tiles needs to be transformed into a form that can be accessed

by the programmable fragment processor in the rendering pipeline. This conversion is

going to be described in the next section.

5.4 The Pre-Processing Step implemented as

Utility Functions

The CAT3D framework provides another element in its architecture that is not part of

the three aforementioned layers of the system architecture. The Utility-classes allow

specifying worker-classes, which perform specific tasks on the internal data represen

tation inside the framework. These Utility-classes implement things like: extrusion of

footprints to build block models, perform a Delaunay Triangulation on a set of terrain

points or, as mentioned in the previous section, calculate a coordinate transformation

from one spatial reference system into another. The Utility-classes and their functions

can be used independently of the input format because they work only on the internal

data representation.

One function that is added into the utility set of the framework generates a texture

that holds the description of the visual fagade content. This function encodes the layer

information and the zones, respectively the pulse functions that describe the zones, into

this texture. The particular encoding into the texels will be described in the next section.

The tiles that are used as the visual representation of a specific fagade element and

are applied to the appropriate zones are managed in a different way. As they can

hardly be transmitted to the graphics hardware and used by the fragment processor

128

5. PROOF OF CONCEPT

as separate texture objects, they are packed into a texture atlas, or in this case: a tile

atlas. The principal functionality of a texture atlas is introduced in chapter 4 and the

implementation used for the prototype is described in the following sections.

5.5 Data Texture

One of the aforementioned utility functions implements the pre-processing by encoding

the fagade description into a texture, which will be called data texture throughout the

remaining part of the thesis. As the fagade description includes a significant amount

of information that needs to be transferred to and managed by the graphics hardware,

a texture is regarded to be the best way to handle this. The data texture is a 32-bit

floating point texture, which means it can store 4 floating point values per pixel in its

RGBA-channels. In the remaining section the special structure of the data texture will

be presented showing where and how the fagade structure information is stored.

The main element of the data texture is the layer covering three rows of the texture.

The z-order priority of the layer is reflected by the order of the layers inside the texture.

Here the first layer is the topmost, the second layer is one level below, and so on (see

fig. 5.7). The utility function performing the pre-processing actually orders the layers

based on their priority attribute on Java side before generating the texture.

Arranging the layers in their final z-order inside the data texture also supports the recon

struction process in the fragment processor. When the corresponding zone is looked

up for the currently processed fragment it is not necessary to go through the entire

layer list. If one layer is identified as the one with the valid zone it is irrelevant if there is

a zone in another layer containing the same fragment, because the second layer would

be behind the first one.

129

5. PROOF OF CONCEPT

v-Function

Layerl uu-Function

Tiles Info

Layer2 u-Function

Tiles Info

Figure 5.7: Layer encoding into Data Texture - Layer structure in the data texture. Each
colour represents one layer (red/blue).

A layer itself is again subdivided into three rows, each row holding specific information

about this layer.

• Row 1: the v-Function

• Row 2: the u-Function

• Row 3: the texture tile information (sequence)

Arranging the three rows in this way (v, u, tiles) has also to do with the search strategy

for the zone for a specific fragment. Having the u- and v-function and allowing the pro

gramme to iterate through all rows of data texture sequentially it would always analyse

the v-pulses first. If it finds a v-pulse that is valid it would look for a u-pulse to validate

that the fragment is inside a zone. Assuming that there are more buildings having more

window/element rows than number of floors, it is more efficient to check the v-pulses

first. If there is no match the numerous u-pulses do not need to be checked at all.

This assumption is especially true for windows but might also be valid for other fagade

elements having more horizontal structures than vertical repetitions. As windows are

likely to be the most frequent elements in number, this search strategy is appears most

130

5. PROOF OF CONCEPT

effective for this element type. To flip u- and v-functions for other elements appear

ing fewer times should have no negative effect on the search result in their cases and

therefore the concept can be very effective for the overall reconstruction process. Ad

ditional search strategies and details on the reconstruction process can be found in a

later section in this chapter.

The rows for u- and v-functions are structured differently than the tile information. The

function rows start with an info-section: Pixels 0 and 1 holding information about the

layer as well as some implementation specific values:

• Pixel 0:

- Red: combine this function with function in row number X - in this implemen
tation the row is always combined with the function in current row + 1.

- Green: length of this function row

- Blue: layer active (0/1 ->• false/true)

- Alpha: LoR value of this layer

• Pixel 1:

- Red: layer ID

- Green: wrapping type for tiles to zone mapping for all zones in the layer

- Blue: layer operation (not used in this implementation)

- Alpha:intoBackground (true/false -» 1/0), should this layer be in the back
ground texture when the real-time layer is active

The second section (pixel 4-6) stores the 'fences' of the pulse function. This is imple

mentation specific information that supports the search strategy of the reconstruction

process. In order to find the zone for a given fragment in the final texture the process

needs to check all the pulses in u- and v-direction. To minimize the search effort the

fences are stored. If the current fragment's u-position is 0.365 in the null-texture, con

sequently, only the pulses between 0.3 and 0.4 need to be checked. The fence infor

mation pixels in the data texture store the pixel positions where the pulses for the range

131

5. PROOF OF CONCEPT

0.3 to 0.4 can be found. With this information from pre-processing the reconstruction

programme does not need to check all pulses of a function but only the pulses for the

given range. If there are no fences for this range the process can skip this layer, as

there are no pulses for the given fragment, and go on with the next layer. Between the

info pixels and the fences there is the sequence information for this layer (pixel 3). In

this part of the function rows the index of the associated tiles is stored. In this way a

layer can be linked to a list of texture tiles and the sequence describes in which way

the texture tiles will be applied to the zones of the layer. A sequence of 1, 2, 3 defines

that tile 1 is applied to first zone in the content description, tile 2 to the second and tile

3 to the third zone. This pattern is repeated for subsequent zones of the layer. In pixel

2 the layer bounding box is stored, which will be explained later.

Layerl

v-Function

u-Function

Tiles Info

InfoPixel (e.g. ID_pulse_layer,
active(y/n), LoR)

Info2 (e.g. background layer
(y/n), etc.)

Tile sequences and peak
fences (blue)

Figure 5.8: Pulse Rows in DataTexture - The structure of the pulse function rows in the
DataTexture encoding

After the sequence information there is an arbitrary number of pixels holding pulse

information for the specific pulse function (starting with pixel 7). Each pixel can store

the start and the end values for two pulses:

132

5. PROOF OF CONCEPT

• Pixel Pulse:

- Red: start of pulse 1

- Green: stop of pulse 1

- Blue: start of pulse 2

- Alpha: stop of pulse 2

This information is actually the 'body' of the pulse function row.

The third row of each layer section is the texture tile information. Each tile is encoded

into two pixels:

• Pixel 0:

- Red: void not in use at the moment

- Green: ID of texture unit of the tile atlas (not in use in this prototype).

- Blue: type: 0 tile, 1 bump map, 2 shadow map, etc. (not in use in this
prototype)

- Alpha: rotated tile

• Pixel 1:

- Red: x-coordinate of upper left corner

- Green: y-coordinate of upper left corner

- Blue: x-coordinate of lower right corner

- Alpha: y-coordinate of lower right corner

In this row the index of the tile in the list of texture tiles is referenced by the tile sequence

in the two function rows. Hence it is possible to reference the according tile in the

texture atlas (see next section).

The data texture is one result of the pre-processing step implemented for the presented

prototype for layer/zone-based fagade texturing. It is a specialized output in terms of

the data structure including additional information supporting the search strategy. And

it is also in a special format, generated as a texture, in order to transport a large data

set onto the specific platform (the GPU in this scenario).

133

5. PROOF OF CONCEPT

5.6 The Texture Atlas

The second output of the pre-processing step is a texture atlas combining all tiles of a

zone/layer-based texture or the tiles for all textures for one building, depending on the

structure of the building's geometrical and semantic model. A building having several

wall geometries, linking a separate layer/zone-based texture for each wall, can have

one texture atlas per wall. If the GL.MAX TEXTURE_SIZE 1 of the graphics hardware

makes it possible, the tiles for all walls/all textures in one building can be combined into

one atlas.

As presented in chapter 4 the mapping of the single elements of a texture atlas onto

the geometry is achieved by transforming the original texture coordinates to the posi

tion in the texture atlas. Texture coordinates normally define how a texture (coordinate

range [0, 1] in x and y) is stretched onto the geometry. In an atlas the original texture

is a sub-part of the atlas texture and the texture coordinates need to be transformed

to match the [0, 1] range of the texture atlas. As the atlas coordinates are stored in

the data texture for each tile, it is possible to find the tile in the atlas and retrieve the

texel colour for the specific zone in order to fill the null-texture. The detailed description

for the rendering process can be found in the next section of this chapter. The con

struction of the texture atlas is done using a standard data structure: a Binary Space

Partitioning Tree (BSPTree)2 . This tree structure divides space in half spaces in order

to place elements and find the next available half space to add additional objects (see

chapter 4).

In the implementation for the presented prototype the tiles are ordered according to

their size and added into an approximately estimated initial size atlas. Tiles can also

be rotated by 90 ° to fit into an area before searching further into the tree to find a

suitable space. Rotated tiles are marked with a flag in order to indicate how the tile

1 OpenGL parameter GL_MAX-TEXTURE_SIZE returns the maximum data size for a texture for the
specific hardware

2 see http://www.blackpawn.com/texts/lightmaps/default.html

134

5. PROOF OF CONCEPT

needs to be read from the atlas to provide the correct colour value for the particular

texel. In the rare case the initial size of the atlas is too small the atlas will grow in both

dimensions and the BSPTree is generated again.

There are well known issues about texture atlases in computer graphics, e.g. 'colour

bleeding'. These artefacts mainly result from filtering operations during texture look

ups for a specific texel and mipmap generation. Because tiles in a texture atlas are

normally positioned next to each other texture look-ups on the edge of a tile can be

influenced by neighbouring sub-textures. This can lead to artefacts in the final fagade

texture. There are ways to avoid this behaviour, like one pixel buffers around each tile

or by choosing a specific structure to arrange tiles inside the atlas, so that filtering for

mipmaps is not a problem. The texture atlas generation for the presented prototype

does not support concepts in order to prevent artefacts resulting from colour bleeding

and other effects, as the atlas is only one part of the proof-of-concept for flexible textur-

ing of 3D city models. Nevertheless, findings in other disciplines in terms of optimizing

texture atlas utilization can be included into the pre-processing step in future work.

Investigating optimization of the texture atlas concept, however, is not part of this work.

5.7 The Rendering Concept

In the two previous sections the input data for the fragment shader programme is de

scribed. The necessary information about the pulse functions, the layers as well as

the texture tiles is present and accessible for the fragment processor. As can be seen

in figure 5.3 there is also the possibility to set user-defined 'uniform variables'. These

variables can be set directly by the application to be used as input for the shader pro

gramme. Uniform variables in the presented prototype are used as parameters for the

fagade texture construction process. In this way the application, hence the user, can

control the construction, and thereby the content of the texture. One uniform variable

that is implemented is the LoR, described earlier in the chapter on the texturing con-

135

5. PROOF OF CONCEPT

cept. By setting the appropriate LoR value for this uniform variable, it can be influenced

which layers are turned on/off.

At this point we have all the necessary information at hand inside the fragment proces

sor (data texture and tile atlas) and control over the construction process by using the

provided uniform variables. In the following part the rendering process as such will be

explained in detail.

5.7.1 The Construction of Fagade Texture Content

The presented texture approach in this work is based on the null-texture that is applied

to the associated wall geometry, if the building is constructed of semantically classified

sub-geometries, or the whole building geometry, when the model is generated by in

dividual buildings having a single overall geometry. The concept works with an empty

texture (the null-texture) applied to the geometry by using texture coordinates, which

would also be present when using the standard texturing concept. This empty tex

ture matrix is filled by the developed fragment shader programme implementing the

reconstruction process for the fagade content.

As we learned at the beginning of this chapter each fragment has interpolated texture

coordinates generated during the rasterization process. The pulse-functions and the

thereby defined zones are also based on texture coordinates. The task for the frag

ment shader programme is now to analyse the texture coordinates for the currently

processed fragment (its position in the null-texture) and to find the associated pulses

(the zone) in which the fragment is located. If the zone is found the appropriate ac

tion needs to be triggered. In most cases a texture look-up in the linked texture tile is

necessary, but other actions are also possible.

On order to find the zone the 'reconstruction shader' iterates through all rows of the data

texture. It starts with the v-function of the first/topmost layer. Firstly the programme

needs to find out if the layer is active and belongs to the currently set LoR. If the laye r

136

5. PROOF OF CONCEPT

does not match the current settings it can be skipped. One implementation-specific

piece of information that is also added to the description during the pre-processing is

the minimum bounding rectangle (bbox) of the layer content. The bbox contains the

minimum and maximum coordinates of all zones in a layer (fig. 5.9).

Zones

BBox

Facade-Texture

Figure 5.9: Bounding Box for Zones in one Layer - The Bbox for all zones in a layer is
stored in order to determine if a specific texel is probably inside a zone

The bounding box speeds up the search process by excluding layers from the further

look-up process. When a fragment is located outside of the bbox of the checked layer

this layer is skipped consequently and the further steps described below do not have

to be performed.

When the fragment is situated inside the layer bbox the next available information is

read: the fences (see section 5.5). This information is used to determine the pixels in

the row, which have to be checked for the currently processed fragment. If the fragment

position is larger than 0.3 and the fence information tells the programme that pulses

larger than 0.3 start with pixel 13 in the data texture, for example, the shader starts

searching for the matching pulse at that pixel, saving the effort for looking up the pulse

137

5. PROOF OF CONCEPT

information in previous pixels. Having found a pulse containing the current fragment

the shader does the same for the u-function.

If the layer in which the identified zone is situated defines a colour look-up in the as

sociated texture tile the fragment shader needs to read the texture atlas coordinates

(the tile bbox) and look-up the colour inside the tile. By using the information in the

sequence pixels the index of the texture tile is determined. At the moment of writing

the prototype only uses the first tile associated with the layer, hence only sequences

with a single entry can be used and therefore only one tile can be associated per layer.

By defining appropriate look-up concepts it can be defined if the tile is going to be

stretched to fit the pulse, or if it should be repeated in x- and/or y-direction until the

zone is filled. This behaviour can be controlled by setting the description's wrapping-

parameter accordingly.

As the look-up process is rather computationally expensive, because it includes nu

merous texture look-ups into the data texture to read the description, as well as various

if-else branches, which is an issue on some of today's graphics hardware, it cannot be

performed for each and every frame of the rendering process. However, reconstruct

ing the texture each frame would be meaningless because the content of the fagade

texture would not change in every frame. If performed for each frame the frame rate

would drop unnecessarily although the reconstruction would produce identical results

for the majority of the rendered frames. Therefore the actual rendering process is

split into two parts. For each part of the process there is a separate fragment shader

programme. One shader is implementing the standard texturing, which uses the fi

nal texture produced by the second shader, the reconstruction shader. That means, if

there is no reconstructed fagade content present for a null-texture, the reconstruction

shader is called to produce it according to the description in the data texture and the

settings for LoR, etc. The reconstruction shader actually renders the final texture into

a Frame Buffer Object (FBO). This technology is provided by newer graphics hardware

and offers additional frame buffers to which the graphics pipeline can render. These

138

5. PROOF OF CONCEPT

additional buffers are different to the screen buffer and therefore the rendered content

cannot be seen on screen. This process runs in the background. The frame buffer to

which the reconstruction buffer is rendering to is linked to a texture object. Hereby the

result of the reconstruction process is stored in a texture object in graphics memory

and this texture object can be used by the 'standard' fragment shader and be applied

to the geometry in the standard way.

The reconstruction shader is only called when the content of the fagade needs to

change. A change of content is triggered by:

• Layer(s) change(s) z-order

• Layers are switched on/off

• Change of set LoR

• Change of layer set

• etc.

In these cases the existing texture object is deleted and the reconstruction shader

generates a new representation for the fagade according to the new settings made by

the user or events generated by the application.

By using the 'general' texturing approach for the majority of the frames the workload

and rendering time per frame is in the range of 'normally' rendered 3D city models.

Strategies for performance optimization, like distance dependant details or concepts

for loading/streaming new content into the scene can be applied as for 'standard' 3D

city models. One example is the use of Quad-Trees for loading detailed terrain ob

jects near the viewpoint and less detailed terrain that is located in greater distance

(Kersting, 2002). The reconstruction process needs much more 'computations' and

the frame time for this part is subsequently higher, therefore it is consequent to avoid

this computation and only trigger it when necessary. As content can also change for

139

5. PROOF OF CONCEPT

Objects come into sight or
change content of facade

Texture-Objects

Shader1:

Render the
procedural texture
into texture object

Objects are in field of view

Shader 2:

Render the
scene/building
with 'normal'

texture mapping

Texture Atlas

1011010011
1010110101
1001010001

Data Texture
(encoded description)

Figure 5.10: Two level rendering - The 2 level rendering process.

objects that are in sight of the user the reconstruction cannot always be done 'in the

background' or when the building is outside the view volume. The reconstruction for

nearby objects in sight should be done first. The normal strategy for the reconstruction

would be to create the fagade texture when the object is just about to come into sight

but is still not visible to the user. As the content of the fagade does not have to stay

constant in the presented approach changes can happen any time and for any building

as they are also triggered by the user. Therefore the user would want reconstruction to

happen relatively fast after the change was requested. Prioritization of the reconstruc

tion for nearby objects needs to be realized so the user can actually see them almost

instantly whereas changes to objects in the background are allowed to take longer.

This concept still needs to be implemented for the presented prototype but is regarded

as very useful for visualizing very large 3D city models to optimize the user experience.

Additional issues on performance and scalability will be discussed at the end of the

chapter.

140

5. PROOF OF CONCEPT

5.7.2 The Real-Time Content

In chapter 4 an additional layer for real-time content was introduced. This layer allows

changing the real-time content inside a texture independently from the fagade con

tent. The concept is based on two null-textures that hold the fagade elements for the

foreground and the background of the real-time layer.

The content for the real-time layer needs to be provided as a 2D digital image in order to

be incorporated into the fagade texture. In order to manage this data that is part of the

fagade texture content a new interface is introduced in the Java class hierarchy. Each

layer/zone-based texture can have one real-time layer. The RealTimeLayer-lnterface

defines how real-time content can be accessed.

The interface defines the following functions, which need to be implemented by classes

that provide real time data:

• getFrame()/isFrameUpdated(): the getFrame()-function returns the generated

image/frame that can be converted and load as a texture to the graphics hard

ware. The isFramellpdated()-function returns a Boolean value. It indicates if a

new frame is available or not. The 3D viewer checks this flag in each rendering

cycle and it only loads the new frame to graphics memory when the content has

changed, respectively the player has created a new frame.

• start()/stop(): these two functions start/stop the player. These commands are

very obvious for a video, but in general the two functions start or stop the process

of producing new frames that are going to be visualized in the real-time layer.

Therefore they are not exactly the implementation of a video player start/stop

function in a strict sense.

• activate()/isActive(): the activate function actually tells the rendering process

if the real-time layer should be used and if a background null-texture is part of

the rendering process. This state is independent from the start/stop functionality,

141

5. PROOF OF CONCEPT

because a video for example can be stopped (paused) and started again, while

the real-time layer is still active during the pause phase. The function isActive()

can be used to check the current state of the layer.

• getWidth()/getHeight(): returns the width/height of the frame that the player pro

duces. Different players can generate differently sized output frames. Using the

two functions the dimensions of the output frame can be requested.

• getPulsesQ: as it will be described in one of the next sections the real-time

content does not necessarily need to cover the whole fagade texture area. It can

be reduced to a certain part of the final fagade texture. The (real-time) pulses

define a box within the null-texture where the real-time content should be applied.

All implementations of the RealTimeLayer-lnterface need to implement the logic of

transforming a data stream of arbitrary type into a 2D image because this is the only

way that is available at the moment to integrate the real-time data. The implementa

tions that are realized up to this moment are called 'Player'. Two of these players are

presented at this point: The VideoPlayer and the Pachube2LineChartPlayer.

5.7.3 Video

Video in this scenario does not involve much transformation. As described in chapter 4

videos can be regarded as a sequence of images arranged on a time axis. The task is

to access each single frame, convert it into a texture and apply it to the real-time layer.

However, video can be regarded as an 'acid test', because the content changes at a

very high frequency.

The developed VideoPlayer class implements the RealTimeLayer interface (fig. 5.11).

It uses components of the Java Media Framework 1 (JMF) in order to play the video

1 http://www.oracle.com/technetwork/java/javase/tech/index-jsp-140239.html (accessed 13.06.2011)

142

5. PROOF OF CONCEPT

and access the video frames that need to be loaded as an OpenGL texture into the

graphics memory.

«lnterface»

RealTimeLayer

JMF.Processor

«lnterface»

• implements

own implementation

Java Media Framework

VideoPlayer

«lnterface»

JMF.TrackContol

«lnterface»

JMF.Renderer

OpenGLRenderer

Figure 5.11: Video-Player implementation - Video-Player implementation for the real-
time layer

Within the JMF there is a processor defined that can load a video file and play it.

By assigning specific renderers to the video and/or audio track the content can be

processed in particular ways. In the presented prototype the audio track is processed

with a standard renderer so it can be heard when the video is visualized inside the

fagade texture. For the video track a custom renderer is implemented that renders each

frame into a Bufferedlmage. The Bufferedlmage is then provided to the 3D viewer by

the getFrameO function of the RealTimeLayer interface. The custom renderer instantly

produces a power-of-two texture and flips the image vertically, so it can be directly

loaded as a texture by OpenGL.

As the JMF processor runs in a separate thread it produces new real-time data frames

independently of the rendering cycles of the 3D scene. The independence of the two

143

5. PROOF OF CONCEPT

tasks is achieved by the JMF processor. For other players an additional thread needs

to be implemented and controlled separately. The JMF video processor is started by

the start/stop functions defined in the RealTimeLayer interface, which forwards the

commands to the JMF processor.

5.7.4 Metering Data

For providing an example for real-time metering data the prototype implements the

class PatchubeToLineChartPlayer. This player requests metering data from the pachube

website 1 . This platform enables the publication of own metering data on the web. The

data streams can be accessed via a specific URL and can be requested in different

formats. The player implementation reads the data from the specific URL for XML out

put (e.g. http://api.pachube.com/v2/feeds/XXXX.xml2). The metering data is returned

as an XML document and the measured values and the according time stamp can be

extracted.

The extracted information is stored in the PachubeSet class, which models a container

for the information that is provided by the pachube data feed. Further data is requested

in predefined time steps and added to the list of received PachubeSets. With this in

formation a chart can be generated, e.g. a line chart visualizing the last 10 received

metering data sets. The chart is generated by using the free library JFreeChart. The

result of the chart rendering process that is performed by the library is a Bufferedlm-

age that holds the chart image. This image is returned as the current frame for the

getFrameQ function of the RealTimeLayer interface that the Player implements. The

refresh rate of the frame in this case depends on the frequency in which the sensor

provides new values or in which frequency the pachube platform updates the informa

tion. The refresh rate can vary quite significantly for different data feeds.

1 www.patchube.com (accessed 13.06.2011)
2The XXXX stands for the ID of the specific sensor feed that is published on the platform

144

5. PROOF OF CONCEPT

«lnterface»

RealTimeLayer

T
PachubeToLineChart

Player
V J

———————
•v

uses

DataGrabber PachubeSet

(Access to the web platform - Holds the received metering
Implemented as separate thread) data

«p«»^ implements

I I own implementation

^^H JFreeChart Framework
Produced Chart

Figure 5.12: Pachube-Player implementation - Real-Time Layer content player for ac
cessing metering data on the Internet

As the platform also enables requesting metering histories, e.g. values from the last

24 hours, it would be possible to integrate much more information and probably a kind

of 'metering information window' into the fagade textures of 3D buildings.

5.7.5 Rendering Real-Time Data embedded in the Fagade Texture

The construction shader in this case actually has to fill two null-textures in order to

produce foreground and background content for the real-time layer. The changes in or

der to implement the concept can be integrated into the former 'construction' fragment

shader. Uniform variables are used to indicate that a background null-texture is present

and the shader needs to decide which content to write to the front- and which to the

back texture. The use of the FBO makes this process rather easy. The FBO enables

the attachment of more than one render target and rendering into them simultaneously.

In this case two texture objects are attached to the FBO as rendering targets, one for

145

5. PROOF OF CONCEPT

the foreground and one for the background content. The two texture targets can be

accessed inside the fragment shader by using the command glFragData[x], where x

is the index of the attached render target. Fragment colour values can be assigned to

both render targets separately by using this built in function of the fragment processor.

Inside the construction shader the algorithm decides if a fragment is situated in a zone

of the foreground layers, according to its texture coordinates. If it is located inside a

zone the normal colour is applied and the fragment in the back texture is set to black. If

the fragment is in none of the foreground layer zones the fragment in the front texture

is set to transparent and the colour for the back texture is looked up in the background

layers. If it is inside a background-layer zone the appropriate colour is set, otherwise

the background-colour is set for the texel in the back texture. This procedure generates

a front texture with transparent areas, where the real-time content and the back-texture

can be seen. The matching content for these void areas are covered by the background

content. The combination of the two would produce the 'normal' fagade representation.

The only difference is, that the real-time content can be put between them.

The 'standard' texturing is replaced in case the real-time layer is active. The texturing in

the real-time layer mode does not only map one texture onto to the geometry but three

textures need to be applied and mixed (multi-texturing). The textures that need to be

mixed correspond to the information containers that are defined in case the real-time

content is active:

• The front texture - the filled foreground null-texture

• The real-time texture the real-time layer content

• The back texture - the filled background null-texture

Actually the fragment shader programme for the 'standard' rendering process, which is

used for rendering the 3D scene when there is a filled null-texture, is a multi-texturing

shader. It solely uses the front-texture when only one image needs to be applied to

146

5. PROOF OF CONCEPT

geometry. This is the case when the geometry is linked to a digital image, which is

used as a standard texture. This is also the case when no real-time layer is active and

there is only one layer/zone based texture. In the latter case one null-texture is filled

and applied to geometry. This single filled null-texture is passed to the front-texture

object and applied to geometry. In case the real-time layer is active there are the three

aforementioned textures (front, real-time and back). In this case the shader programme

will mix them in order to integrate the real-time content with the fagade content. Uniform

variables are used as flags to tell the shader programme whether a real-time layer is

active or not and if the back-texture needs to be used as well.

Facade elements behind of
real time data

Real-Time Layer with
'video-box', defined
by single pulses

Facade elements in
' front of real time data
- Rest is transparent

Background Facade Layers

Real Time Data Layer

Foreground Facade Layers

Figure 5.13: Real-Time Layer Rendering - The integration of real-time content into the
rendering process

When the three textures are 'active' then the current fragment is filled with the front-

texture colour unless it is completely transparent. Texels in the front texture are nor

mally set transparent by the construction shader when the fragment is not part of a

zone. In this case it is intended that the real-time content or the background 'shines'

147

5. PROOF OF CONCEPT

through the front texture. In case the front texture texel is transparent the shader would

check if the fragment is in the real-time layer box. As depicted in figure 5.13 the real-

time content does not necessarily cover the whole fagade area. The concept of the

real-time layer includes a bounding-box rectangle for the real-time content defined by

two pulses (see fig. 5.13). In this way the real-time texture can be mapped to a specific

part of the fagade texture without the need to produce a texture with transparent areas.

If the real-time texture would be applied to the whole null-texture as it is provided by

the player (no transparencies) the back-texture would always be covered completely,

hence it would be rendered useless. In case the fragment is inside the real-time layer

bounding box the fragment will receive the corresponding colour of the video frame

pixel. When the processed fragment is not in the real-time box then the colour from the

background texture is applied.

Using three different textures makes it obvious why the content for the real-time data

(e.g. video) can change independently from the fagade elements. The null-textures

for front- and back texture are only refilled when a change for the layers is requested

(e.g. z-order, LoR, etc.). The video (real-time) texture can change independently at the

frame-rate of the video.

5.8 Summary

In this chapter the implemented prototype was presented that uses the programmable

part of the rendering pipeline of modern graphics hardware. It implements the concepts

that are presented in the previous chapter and shows the feasibility of the suggested

approach for flexible fagade texture content. The presented approach for flexible texture

generation is based on a two-step process using separate shader programmes for

constructing the fagade texture and for mapping the generated texture to geometry. As

the 'standard' texturing shader is performing the normal task of texturing, the underlying

process is relatively simple and well defined. The larger potential for performance

148

5. PROOF OF CONCEPT

optimization, by achieving fast content changes, lies in the reconstruction process. The

two areas for optimization, which influence each other, are the reconstruction shader

itself and the description. The description needs to be designed in a way the shader

can optimally benefit from, hence a compact and efficient structure.

5.8.1 Performance

The rendering process for the layer/zone-based texture is rather complex and involves

a quite significant set of input information. The presented prototype shows the feasi

bility of the GPU-based approach and handles content changes of the test buildings'

fagades in quite reasonable time. By measuring the frame time 1 it was possible to find

out that loading the atlas- and data texture consumes a lot of time in comparison to the

actual reconstruction process.

ms |

15 j_

10 -~

J/WJU^uTV^JLU*

I 51 101 151 201 21 301 351
frame

J51 501 551 601 651 701

Figure 5.14: Prototype Rendering Performance Measurement - frame time measure
ment: at each content change a '-1' was added into the measurement set at each re-
rendering of the layer/zone-texture

1 The time that is needed to render one frame of the 3D scene

149

5. PROOF OF CONCEPT

This problem is solved by a variable management of the two texture objects for the

layer/zone-based textures in the 3D scene. Normally the atlas texture, as well as the

data texture, is not needed anymore once the fagade representation is generated. The

two texture objects can be deleted because it is not known if and when the content

of the fagade is going to change again. The current representation is stored in a tex

ture object that is used by the 'standard' shader for texture mapping. When a content

change is triggered the two information textures need to be loaded again for the con

struction of the new content. As loading of textures consumes a lot of time it is better

to hold the atlas- and data texture in graphics memory to be used for further content

changes. In that way three textures would be stored for each layer/zone-based texture:

the current reconstructed fagade texture and the two information textures. A clean-up

process could then operate a kind of garbage control that starts if the information tex

tures' 1 data size reaches a certain threshold. Above this threshold the system starts

deleting the two information textures for objects that are out of sight or very distant,

in order to free memory. Only when objects come closer or return into sight and a

content-change occurs, the information textures need to be reloaded.

But the information textures' load process is not the only issue in terms of performance.

As the description and the reconstruction process are relatively complex there are two

points that can influence performance. Texture look-ups (retrieving a colour value

based on given coordinates) are regarded as relatively time consuming and should

be minimized, especially on older hardware or on mobile platforms. As the description

is encoded into a texture the reconstruction programme needs to perform a number of

texture look-ups to read it. Inside the data texture there is information encoded in order

to help minimizing texture look-ups (fences, see section 5.5). However, when measur

ing the time for one frame during the reconstruction process, the difference between

using fences or not is relatively small. On other hardware this might be an issue (and

also in significantly large city models), but this has not been tested yet. Note that the

1 the data texture and the tile atlas

150

5. PROOF OF CONCEPT

reconstruction process is spread over several frames and is not done in a single frame,

which might also add to a relatively constant frame time. A further way to speed up

texture look-ups might be the use of TextureBuffer-Objects (TBO). These buffers work

like 1D textures and are more efficient in terms of look-ups than 2D textures. However,

a new encoding strategy needs to be found for the 1D texture buffer. As this feature

is relatively new, not all platforms support this concept at the moment and can only be

realized for certain hardware environments.

An additional issue on GPUs are conditional if-else branching structures. As the recon

struction process depends on some conditional decisions (e.g. layer switched on/off)

the use of if-else-branches is hardly avoidable. On some GPUs the branching can be

a bottleneck in some situations, because the hardware is made for highly parallel com

putations but not for conditional branches, although they are defined by the OpenGL

Shading Language (GLSL).

Especially the matters of performance in terms of the proof-of-concept using the GPU

involve in depth knowledge of computer graphics principles and specific know-how

about GPU hardware. The prototype implementation shows that the concept is fea

sible but has potential for optimization. However, the optimization of rendering is on

the one hand hardware specific and needs to be solved for specific real world projects

on particular hardware. On the other hand it is a sub-problem of the presented textur-

ing/visualization concept and there cannot be a final optimized solution provided in this

PhD thesis. This issue can definitely be regarded as a research question for related

disciplines and is certainly subject for future research.

5.8.2 Scalability

In terms of scalability and the possibility to use the presented concept on different plat

forms and for differently sized 3D city models in diverse scenarios a few thoughts will

be discussed at this point. As demonstrated throughout this and the previous chapter

151

5. PROOF OF CONCEPT

the concept of layered content supports the flexibility of appearance and texture con

tent and therefore significantly contributes to information visualization and knowledge

construction. However, there is also a recognizable benefit in a technical sense when

using categorized, layered texture content in terms of scalability and adapting the data

size to different use cases and system environments.

For example, if the bandwidth or the client capabilities are restricted in a client-server

scenario, only specific content needs to be transferred to the client for visualization.

The layers on the server can be categorized according to their importance for the ap

pearance in the given use-case. One example of categorization is the aforementioned

LoR concept. When restrictions exist in a given hardware/system scenario (e.g. mobile

client), the server can just send a low LoR texture representation to the client, hence

a small portion of the overall texture data. This would allow a 'rough' representation

of the 3D urban scene. By using an intelligent streaming mechanism additional layers

can be added to the fagades to increase the LoR step by step and fitting available re

sources. As layers can also stay in off-mode even though they are loaded, it would be

possible to load additional content in the background and the user can then decide if

he or she wants to include this information by activating the layer. For very large 3D city

models the streaming/loading of specific fagade layers can be prioritized according to

the distance of objects to the actual viewpoint. One possible solution might be to load

LoR1 for all fagades in sight, but then load LoR2 and LoR3 for the closest buildings first,

before streaming these levels for objects farther in the back. In today's models and sys

tems scalability in terms of texture data size is achieved mainly by different resolutions

for the same image texture, streaming low resolutions first before adding higher reso

lutions for nearby buildings. By using layered content the density of elements can be

adapted due to lower or higher number of fagade elements. However the actual portion

of the content, with lower number of elements, can be observed at full resolution. This

is especially true for nearby objects, when the full texture would still be too large to be

loaded at once in a reasonable time. When tiles are loaded, concepts like mipmapping

152

5. PROOF OF CONCEPT

can still be applied during the rendering process to increase performance by reducing

resolution for objects at greater distance. The initial load process and the transmission

of content can yet be scaled down by reducing the content (number of elements in the

texture) rather than scaling down the resolution of one complete fagade texture.

As well as automatic adaption of the layer content in terms of scalability for various

platforms, the user can also define the density of content and the combination of differ

ent information through appropriate (web-) service interfaces. This aspect is discussed

in chapter 4.8.

5.8.3 Real-Time Content

Finally, the real-time content is integrated into the fagade representation according to

the texture content model presented in chapter 4. The additional real-time layer can

change its content independently from the fagade content. The resulting textures for

foreground, real-time and background content produced by the construction shader are

rendered on top of each other by the texture-mapping fragment shader. This concept

makes it possible to integrate content that changes at a very high frequency and keep

the rendering effort to a minimum (fagade null-textures only need to be filled when

content changes). It would also be worthwhile to investigate if it is possible to integrate

video or other real time content to a zone in a layer rather than to the additional real-

time layer. On the one hand this would allow adding more than one real-time stream.

On the other hand issues about defining which zones are feed from the tile atlas and

which zones read their content from other sources would have to be addressed. These

investigations, as already mentioned, can be considered as future work.

153

Chapter 6

Pedestrian Navigation using 3D City

Models - a Case-Study

In the previous chapters a layer-based model for fagade texture content was intro

duced and a prototype was presented in order to show the technical feasibility of the

suggested approach. The use of latest computer graphics capabilities and methods

was described in order to achieve a technical solution that provides good performance

and great flexibility for fagade visualization, which can be changed in real-time during

the rendering process. Chapter 2.2 also described (technical) aspects about the en

vironment in which type-6 city models normally exist and how they are integrated into

SDIs. The concept for fagade content also needs to be able to integrate into this en

vironment (chapter 4.8). It needs to be possible to support workflows and processes

that are realized by SDIs in order to introduce the new fagade texture concept into the

wider context in which 3D city models are used. Otherwise, if the concept would not

integrate into the idea of SDIs it would be rather difficult, if not impossible, to establish

the new texture content approach for digital 3D urban models.

After presenting the new content model and showing its technical feasibility this chapter

is going to discuss the actual impact and effects of the new approach in a use-case

scenario in order to provide an example for its qualities in task-driven 3D scenarios.

This case-study is going to show the conceptual benefits of the presented approach,

rather than the technical aspects, for a specific scenario in which 3D city models are

currently introduced. The discussed use-case is just one example for many possible

scenarios a multipurpose 3D city model might need to serve and many other tasks can

154

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

be solved with the help of the same model. That is why a multipurpose model needs

to provide a high degree of flexibility in terms of visual content and visualization styles.

The case-study presented in this chapter is going to show how flexible visualization is

used to serve a specific scenario.

The use-case, which was chosen for this work is pedestrian navigation. The author of

this PhD thesis participated in the 'MoNaSD' project, which investigated the use of 3D

city models for mobile pedestrian navigation. As this project provided a scenario where

the 3D city model is an integral part of the solution to the given task, this scenario was

selected as the case-study for this work.

In this chapter the differences between car navigation and pedestrian navigation will

be described in order to define the actual task that needs to be solved. Pedestrians

navigate in a different way to car drivers and therefore other requirements exist. The

use of 3D models and their benefits in the selected scenario are discussed, especially

in regards to landmarks. The chapter also presents details about the MoNaSD project.

Part of the technical and conceptual requirements, against which the texture model

were tested, are taken from this project. The infrastructure that was defined for the en

visioned navigation system as well as the implemented smartphone prototype are also

presented. The remaining chapter looks at requirements for pedestrian-navigation and

suitable visualization, which were defined in the MoNaSD project and retrieved from

relevant literature. It presents possible solutions using the zone/layer-based texturing

approach. Looking at these solutions the chapter tries to assess the performance of

the texture content model in a real-world scenario and the general benefits for 3D city

model visualization.

155

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

6.1 Concepts of Navigation - Cars compared to Pedes

trians

Navigation in general is a very complex task that involves two phases: route finding

and the actual process of navigating from A to B. The most well-known tool for way-

finding nowadays is the GPS-supported car navigation system. It makes us almost

forget that there were paper maps in the past. Car navigation systems support drivers

in both of the aforementioned phases: it determines the shortest/fastest route from the

starting point to the destination point and directs the driver by appropriately provided

commands through the road-network in order to reach the final destination.

Car navigation systems work based on a line graph, which represents the street net

work. This line graph is used for route finding utilizing algorithms like Dijkstra (Dijkstra,

1959) or A* (Hart et al., 1968). For route guidance the systems basically work with

instructions providing the distance to the next decision point (node in the graph) and

which action to perform at this point (e.g. 'turn left'). Additional information like the

name of the street that the driver needs to take or a 2D map that provides the spatial

context, on which the route is superimposed, helps the driver to take appropriate action

and ensures the driver being on the right way. For car-based navigation, this informa

tion is basically sufficient and adequate as cars move only on streets, respectively on

an edge of the line graph that represents the street network. A car can only move along

this edge, forward or backwards, therefore the orientation of the car is given. Instruc

tions like: 'turn left into Baker street', show only little ambiguities because the car is

aligned to the road and it is well defined what 'left' means. We will learn later in this

chapter that this is rarely true for pedestrian navigation. Pictograms and arrows are

also provided to support the driver to choose the correct road when there is more than

one possible road in the same direction (see figure 6.1).

Distances are a little more complicated because it is quite hard to estimate a spe

cific distance ('in 200 m .. .turn left') and this is especially true if one is moving and not

156

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

Figure 6.1: Example for decision support in car navigation systems - Car navigation
systems very often provide an additional graphical representation of junctions to support
the driver in choosing the correct road (own depiction))

standing still because the relative speed has to be taken into account, which influences

the time that is left until the decision point is reached. This estimation is very compli

cated and requires quite a bit of training. Car navigation systems normally support the

driver by repeating spoken instructions at specific points before reaching the decision

point (in 250m ... in 100m ... in 50m).

As we can see, car navigation works based on certain assumptions that are specific

for driving a vehicle (move on streets, etc.). Using these assumptions, and the 'car-

concept' as such, for pedestrians can also guide users to their destination. However,

the user experience might be unsatisfactory, because pedestrians tend to navigate

differently.

People who walk through the urban environment are not necessarily bound to streets,

respectively edges of a graph. Pedestrians have a larger degree of freedom and do

seldom align themselves along a street axis naturally. They can also turn their head

and look around in contrast to a driver who is mostly looking into the direction in which

the car is moving as this is inherent to the process of (safe) driving. Pedestrians nor

mally navigate more or less freely in open spaces like pedestrian zones, squares and

junctions (which can be crossed in multiple ways), etc. Restricting pedestrians to a car

157

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

based navigation concept leads to some unpleasant effects. Users who are walking

would need to align themselves to the street axis in order to understand 'turn left'- and

'turn right'- instructions. They might also need to cross open areas like squares in de

tours because current graph based systems approximate open areas by lines connect

ing one or more 'centre points' with the adjacent streets. Following these pre-defined

paths might lead to confusion and inconvenient navigation instructions (figure 6.2).

Figure 6.2: Lines to Approximate Square - A square that is approximated by lines,
which does not cover all pedestrian options to pass through this area (Bogdahn and Coors,
2009t>); Screenshot from Google Maps

Bogdahn and Coors (2009fc>) suggested that pedestrians navigate in zones of different

accessibility. Gaisbauer and Frank (2008) also suggest widening decision points into

'decision scenes' covering the user's vista space. These scenes can be entered and

left through portals to other scenes. These concepts, as well as others that can be

found in literature, suggest that pedestrians have a different way of navigating urban

space. A zone- or scene-based approach better reflects the degree of freedom pedes

trians have to navigate. Although a graph based structure can still be the basis for

158

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

route finding (although concepts for zone based way-finding do exist (Funnel algorithm

(Chazelle, 1982), (Kallmann, 2005)), the guidance instructions certainly have to be dif

ferent to the ones in car navigation systems. In fact, they can also be more complex.

Pedestrians travel at a different pace and the cognitive load is much smaller compared

to driving a car. More cognitive resources can be used to understand and decode nav

igation instructions and transfer them to the own situation. Pedestrians actually have

the time and the possibility to stop, analyse their spatial surrounding, relate it to their

own position and the provided navigation instruction and take the appropriate actions.

That means pedestrians have the time to analyse the current 'decision scene' and

compensate inaccuracy of system sensors by their own senses. The important aspect

is that the spatial context of the 'decision scene' is provided in an intuitive, task-driven

manner. In this way the user can match objects in his vista space and the provided spa

tial context representation and decode the related navigation instruction. Digital urban

3D models are an interesting medium to provide the spatial context as they transport a

perspective view of the surrounding in the same dimensionality. However, purely photo

realistic 3D models might be counter-productive in this scenario as well, because when

there is a complicated navigation/decision situation in the real world and this situation

is visualized photo-realistically by the system in order to provide the spatial context for

the decision, the situation is also visually complicated in the 3D model. Therefore a

task-driven visualization, which is abstracted and enriched by appropriate information,

is important for this use-case. The related visualization aspects will be discussed in

a later section of this chapter. At this point another interesting aspect of pedestrian

navigation is discussed first, as it can also be related to the use of 3D city models.

Several sources in literature suggest that pedestrians make strong use of landmarks

when navigating urban space or when describing routes to others. Street names and

distances play a minor role, which is also a big difference to car navigation systems.

For pedestrians landmarks are an integral part of the actual navigation instructions.

Schroder et al. (2011) conducted an experiment that 'explored how route directions

159

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

were formed as the participants traversed the route. In particular, this experiment

sought to identify those features used in the descriptions and where and when they

were used in relation to the route... exploring factors governing choice, how and why

they were referred to within route directions. From this, a classification schema of these

features was formed... it was found that the majority of the references were related to

features of interest (70%) rather than to streets (30%)'. Similar test done by Elias and

Paelke (2008) revealed that it is very likely that most of these 'features of interest' are

buildings.

'Despite the fact that the routes differ significantly in their environment (Route 2

leads through the shopping area in the pedestrian zone, Route 1 leads through a

typical residential area and the university campus), in both routes about 50 % of the

referenced objects are buildings. The proportions of the other groups vary slightly.

It should be kept in mind that these are only preliminary observations, since only

two different routes described by twenty people were examined so no statistically

significant statement is possible.' (Elias and Paelke, 2008).

These studies show that the urban surrounding (especially buildings) is both, a part

of the actual problem but also an essential part of the solution of the navigation task.

Therefore 3D city models are a useful tool for supporting pedestrian navigation as they

model urban space and can be adapted to the user's task through scenario dependent

visualization. In the pedestrian navigation scenario the emphasis is clearly on land

marks (focusing on building landmarks in this work), hence at this point the work will

describe what landmarks actually are and which properties they have in comparison to

other buildings.

160

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

6.2 Landmarks

Landmarks in general are objects that stand out of their surrounding comparing a spe

cific property or a set of properties. These objects show a certain saliency compared

to the environment in which they are located. Landmarks can be strong or weak de

pending on the degree of saliency, hence how much they differ from their neighbouring

buildings. Furthermore landmarks are categorized into distant (or 'global') and local

landmarks (Lynch, 1960) depending on the spatial extent within the city for which they

are valid. For example, Edinburgh Castle can be regarded as a global landmark for

the city as it is a very prominent site, which can be seen from many places within the

city. Hence, it can be a landmark for many different 'decision scenes' although it is

maybe far away. The Eiffel Tower in Paris is also a good example for a global land

mark. However, landmarks are not necessarily landmarks because of their height or

exposed position. Other attributes can also add to their saliency. Their colour, shape,

texture/material and other properties can make them more prominent than their neigh

bours. When there is a street with red brick buildings, a building painted in blue clearly

stands out and can act as a landmark. Another example would be a building with a

glass fagade in a square where all other buildings have stone or concrete walls.

Besides the visual attributes that are described above, there are also non-visual prop

erties that make buildings or objects salient in comparison to their surroundings. In

some cases the function of a building creates saliency. This is sometimes accompa

nied by visual saliency but in some cases it is complicated to recognize the functional

difference of a particular building. In case of a post-office, for example, the saliency is

given by the function, because it is likely that the surrounding buildings are not post-

offices. As post-offices have a certain corporate identity (signs, colours, etc.) a visual

saliency within the decision scene is very likely and these landmarks are rather easy to

recognize. Elias and Paelke (2008) found in their study that for downtown area scenar

ios shops and shop signs are very often used as landmarks as the brands and signs

can be easily related to the verbal description/their names (e.g. 'turn left at Macy's').

161

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

Figure 6.3: Kunstmuseum Stuttgart - The Museum of Arts in Stuttgart is a strong
landmark due to its form and its glass facade (Foto: Gonzalez, copyright Kunstmuseum
Stuttgart))

Nevertheless, there are other examples where the visual saliency is not supporting the

difference in function. For the museum of art in Stuttgart (fig. 6.3) the function is unique

in the proximate surrounding. A navigation instruction might integrate it like 'turn right

at the museum' and use its function property to explain it to the user. However, if the

user does not know that the gallery looks like a glass cube it would be hard to recognize

the landmark as a hint for the navigation decision. The information about the form and

other visual attributes of the landmark must either be incorporated into the guidance

instruction (text, speech, etc.) or as a part of the visual aid that provides the spatial

context to the user (pictogram on 2D map, 3D model highlighted, photo image, etc.).

Elias and Paelke (2008) investigated different ways how to visualize landmarks appro

priately in 2D maps. This research work suggests using a 3D city model to provide

162

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

the spatial context for the navigation process. Therefore this chapter is going to look at

the visualization issues for buildings and landmarks in 3D city models with regards to

pedestrian navigation.

Landmarks as an important aspect of pedestrian navigation are one part of the MoNaSD

project, which acts as the case-study scenario. In the MoNaSD project 3D city models

were investigated in regards to the pedestrian navigation concept that is described in

the previous sections of this chapter. The project takes these aspects into account

and envisions a pedestrian navigation system that bases its navigation instructions on

landmarks that guide the user through the urban environment. This scenario is actually

making use of urban characteristics and the urban environment itself to solve a prob

lem. Therefore it is beneficial to use 3D city models to provide the spatial context for the

pedestrian navigation scenario and use the presented texture content approach (see

chapter 4) to achieve the required and suitable visual appearance. This work therefore

also uses requirements defined in the MoNaSD project to conduct this case-study and

to test the texture concept. The MoNaSD project is presented in the next section in

more detail.

6.3 The MoNa3D Project

The project 'Mobile Navigation with 3D City Models' (MoNaSD), in which the author

of this work participated, investigated the aforementioned aspects of mobile pedes

trian navigation. Two universities of applied sciences participated in this project as

well as several industrial partners from the navigation industry. Pedestrian navigation

was identified as a potential new market for this industry sector, not only on dedi

cated devices (like most car systems), but also on personal digital assistants (PDA)

and especially on smartphones. However, the project did especially investigate 3D city

models and their potential use for pedestrian navigation, integrating 3D-landmarks into

'semantic route descriptions'.

163

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

Coors and Zipf (2007) define:

'The aim of the project ...is to assess and develop the infrastructure, tools and meth

ods for developing a mobile navigation system that enables the user to navigate in

a 3D urban environment on mobile device (smartphone, PDA etc.). It provides nav

igation support through semantic route descriptions, using 3D landmarks. In order

to achieve sustainable project outcomes, 3D city models for navigation support have

to be available within a functioning 3D spatial data infrastructure (http://www.3d-

gdi.de). Further techniques need to be developed for creating storage efficient syn

thetic textures for 3D city models optimized for mobile devices. Thus the two main

goals of the project are:

• To provide a cognitive semantic route description by using landmarks in 3D, which

allow context dependent personalized navigation support

• To develop an approach to create suitable non-photorealistic building textures us

ing image processing methods and synthetic textures along with a corresponding

compression system for an efficient storage and transfer of 3D building models.'

In this definition we can find several requirements of the project related to the texturing

of the model, which can be linked back to points that were discussed in this thesis as

well.

First of all the envisioned navigation system should be based on 3D city models, 'which

have to be available within a functioning 3D spatial data infrastructure' (Coors and Zipf,

2007). This requirement links back to the aspects and investigations in chapter 4.8 and

shows that in this particular scenario the 3D model needs to be flexibly accessed and

is also part of the SDI process. This demonstrates its character of being a part of the

problem solving process rather than a fixed, pre-defined visual background for other

information.

164

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

6.3.1 The MoNaSD Spatial Data Infrastructure

The envisioned server-side infrastructure of the system is based on several OGC con

form web-services and additional custom services, which interact in order to provide

route instructions and the appropriately styled city model to support users during navi

gation. The structure of the system architecture is depicted in figure 6.4.

Mobile Client 4 ———— *• Mediator-Service

WebSD

Texture

CS-W

UserMS

Semantic
Navigation

OpenLS

Tele Atlas

Figure 6.4: MoNaSD Architecture - The schema of services and components in the
MoNaSD project

The back-end of the system has two major tasks to fulfil: 1) Calculating the route and

find local and global landmarks that are an adequate support for the particular route

and which can be incorporated into the navigation instructions. 2) Produce an ad

equate 3D model with appropriately visualized and information-enriched landmarks,

hence a suitably styled 3D model supporting the user in the way-finding task. The ac-

165

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

tual server side process is coordinated by the so called 'Mediator Service', which links

the mobile client to the 3D-SDI on server side. The foremost task of the Mediator is to

implement the logic of the server side process, querying specific information from one

service that is needed as input for another service. The second task of the Mediator

is to finally translate the 3D city model and the resulting route instructions into a for

mat that is required by the particular mobile device. This transformation is necessary

because in 3D-SDIs often XML formats and VRML/X3D is used, whereas on mobile

devices very often formats like MPEG4 and others are in use. To provide the resulting

information of the server side process in an adequate form to the mobile clients is the

task of the Mediator. Another reason for the Mediator Service is to provide one contact

point to the SDI for mobile clients, as the workload for the client itself, accessing the

separate SDI services and buffering their results in order to send them to the next ser

vice, would be too high. This task is delegated to the Mediator. The actual process to

generate 3D-navigation output for a requested route is structured as follows:

• the OpenLS service is queried by the Mediator for the route from A to B and

receives a route in the classical sense, a polyline and textual route instructions.

• this route description is sent to the Semantic Navigation service, which trans

forms the instructions and adds information. It retrieves suitable landmarks (from

a repository of local and global landmarks) and extends the route instructions

accordingly.

• as the Mediator has the semantic route description at hand (IDs of landmark, in

structions and route polyline) it uses the W3DS interface to query the 3D model

for the relevant area around the route and uses the IDs of the landmarks to accen

tuate the 3D model using layer/zone-based textures. As the service is aware of

buildings that were identified as landmarks (the IDs are provided by the Semanti-

cRouteService) these buildings can be visualized in a special way to support the

user in identifying them in the real world and relate them to the navigation instruc-

166

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

tions. The W3DS and the Texture'-component in the MoNa3D architecture (see

fig. 6.4) can be realized in the same 3D management system.

• The 3D model (which now has the suitable appearance) and the route instructions

need to be transmitted to the client. Optionally this information is transformed into

a suitable client format by the Mediator and/or compressed for efficient transmis

sion.

As one can see the 3D city model is embedded into a quite complex infrastructure

in this scenario and needs to be able to provide information in a suitable visual ap

pearance and for the required spatial extent. These aspects and requirements reflect

issues discussed in chapter 4.8, especially when it comes to appropriate interfaces.

In this scenario landmarks and the surrounding buildings need to be visualized in a

different way, according to the IDs provided by the Semantic Navigation Service. This

requires a certain level of flexibility when setting the appearance of the objects, which

can be achieved by zone/layer-based textures. However, it also requires having appro

priate interfaces for the W3DS service to style particular building objects in a specific

way, not to mention that this is only possible when objects are identifiable as separate

entities. Hence, this is only feasible with type-6 or type-3 models and certainly not with

type-1 (see chapter 2.2.1).

6.3.2 Storage Efficient Synthetic Textures

Another requirement defined by Coors and Zipf (2007) for the project is the creation

of storage efficient synthetic textures. These textures should be optimized for mobile

devices and efficient in terms of transfer of 3D city models as well.

This requirement can be met by the presented texture content model, because zones

can be filled by texture tiles. These tiles are just small portions of the overall fagade tex

ture representing the visual content for a specific fagade element. This texture portion

167

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

can be reused for all zones representing this particular element. Therefore the overall

amount of texture data is smaller than a normal image texture of the fagade. This is

beneficial in terms of storage, as tiles might be also shared among many fagades, if

necessary. In chapter 4.8 several scenarios were discussed, with different points for

the texture content reconstruction to happen. In certain scenarios the tile-based ap

proach is also helpful in terms of data transmission. When the reconstruction process

is actually conducted on the client only the texture tiles need to be transmitted, not

complete textures. This is much more efficient.

In terms of client memory consumption the client side reconstruction creates complete

textures before rendering and memory consumption is comparable to normal texturing,

unless only textures of buildings in the view of the user are reconstructed and the rest of

the textures remain in tiled form. The same is true for the reconstruction of the texture

content during the rendering process when using shaders. The two level rendering

approach presented in chapter 5.7.1 creates normal texture objects in the graphics

memory, which consumes the same amount of memory as normal textures. This can

be handled by only reconstructing the textures of buildings that are in the current view

of the user. However, there are promising approaches presented by Haegler et al.

(2010) and Fabritius et al. (2008), which show that it is possible to generate textures

in real-time for each rendered frame. In this way the texture objects for the fagades

are not permanently present, because the content of the texture is generated for each

frame. This consumes less graphic memory. Investigating this issue and developing

the prototype presented in chapter 5 further into this direction would be very interesting

and a good point for future work.

168

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

6.3.3 The Smartphone Client Prototype

During the MoNaSD project a mobile navigation prototype on the basis of a smart-

phone was developed. At the time the project started no smartphones were on the

market providing a programmable rendering pipeline, thus the project team decided to

develop a scenario 2 solution (chapter 4.8.3), where Yaw' texture content information

(layers/zones/tiles) is sent to the client. The client constructs a complete fagade texture

(in the application) and uses them for 'normal' texture mapping, in absence of the pos

sibility to use shaders for reconstruction. The shader-based prototype was developed

in parallel on another hardware platform in order to assess the feasibility and the flex

ibility that can be achieved realizing the reconstruction in the programmable rendering

pipeline.

However, the realized smartphone prototype still uses local 3D models and local zone/layer

textures as the suitable service interfaces for the W3DS in order to expose the new

texture capabilities are not yet available. Locally the prototype could show that the lay

er/zone approach is feasible on a smartphone in terms of rendering and performance

and it also showed that existing 3D data sets (provided by an industry partner) that

are used by current navigation systems can be used for the zone/layer-texturing ap

proach. Although texture tiles are defined slightly different in those data sets and used

in order to reconstruct realistic representations of buildings. The smartphone prototype

also integrated navigation hints (explained in chapter 6.4.2) into the visualization of the

aforementioned data set for an exemplary pre-defined route to illustrate the landmark-

based navigation concept.

6.3.4 Summary

All in all the MoNaSD project showed that 3D-SDI integration of the new texture model

is crucial in this use-case in terms of flexibility and in terms of appropriately designed

interfaces, so that other systems can query the type of model they require. The project

169

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

scenario also demanded storage and transmission efficient texture information in terms

of data size, which can be achieved by the tile-based approach of the presented content

model (chapter 4). The implemented smartphone prototype showed the potential of

the scenario 2 solution (chapter 4.8.3) in a real world use-case and also provided initial

results for navigation hint integration (see chapter 6.4.2) on a mobile device.

6.4 Visualization of Buildings and Landmarks for Pedes

trian Navigation

After the overview of the MoNaSD project this chapter is going to discuss pedestrian

navigation specific requirements for 3D city model and landmark visualization in more

detail. The conditions that are under investigation in the following sections were speci

fied in the MoNaSD project but can also be found in relevant literature. Basically, looking

at the presented pedestrian navigation concept that is also described in relevant work

of other researchers (e.g. the use of landmarks, shop signs, etc.) one can deduce re

quirements that can be looked at in terms of zone/layer-based texture content. In later

sections several of these requirements are examined and it is assessed how the new

texture approach can address specific issues. At the end of the chapter the results are

analysed and an attempt is made to relate the findings to the wider field of 3D model

visualization.

6.4.1 Level of Realism

The complexity of certain 'decision scenes' especially in downtown areas can be very

high. In specific situations many buildings, shops, street signs, pedestrian lights, etc.

can be inside the vista space and make it rather difficult to recognize a specific land

mark or a specific exit of the decision scene. If there are also many people around and

170

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

a lot of traffic on the roads this might also influence the ability to identify a certain land

mark and to understand/decode the navigation instruction. One could think of a place

like Piccadilly Circus in London compared to a small junction in a suburban area where

the complexity is a lot smaller and navigation decisions would be easier to make. As

suming a situation like the one present at Piccadilly Circus, where many possible exits

and lots of shops, signs and other objects are present (e.g. the fountain in the middle

blocking parts of vista space and occluding possible exits), a 3D model can help to

understand the spatial context in which the user is situated. However, a photo-realistic

model cannot support the user appropriately because the visual complexity would be

at the same level as in the real world scene, without pedestrians and traffic, of course.

Superimposing a polyline representing the route, like in the car navigation approach,

might help but it can still be considered to be a complex and complicated situation,

because the spatial context in which the route is embedded is still as complex as the

real world scene. Furthermore, it was already discussed that guidance along polylines

results in various problems for pedestrians.

The ability to adapt the level-of-detail or more precisely, the level of realism, for the

3D spatial context is crucial in this situation. Reducing the visual complexity of the 3D

content in the representation of surrounding buildings can help to identify landmarks

by accentuating them. This effect can be achieved by using the LoR parameter of the

texture layer (chapter 4.6.2) in order to adjust the detail for fagade textures for specific

buildings or building groups. Visualizing landmarks with higher detail and surrounding

buildings with lower detail emphasizes the landmark but still provides the surrounding

to which it can be related. The change of detail (decreasing detail) in the 3D model

can also emphasize certain characteristics of landmarks and other buildings, e.g. their

form or the material of the walls, etc. By reducing the visual complexity the position of

landmarks can also be emphasized more, because users concentrate more on the spa

tial relation to neighbouring buildings and they might concentrate more on this spatial

aspect in the real world scene as well.

171

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

Kray et al. (2003) used different detail for their landmark visualization in a 3D city

model environment by visualizing landmarks with textures and other buildings as semi-

transparent blocks in order to highlight the objects that are relevant for navigation (fig

ure 6.5).

Figure 6.5: Emphasizing landmarks in 3D Scene - Navigational landmarks are visu
alized in detail with textured models to attract the user's focus while buildings with less
dominance are shows in grey-scale and semi- transparent rendering style (Kray et al.,
2003)

Using the layer-based approach defined in this work for fagade textures, it is possible to

adjust the appearance of the urban surrounding in a more fine-grained way (compare

figure 4.8). It is possible to adjust the number of elements and to add relevant content.

The landmark can also include a particular shop sign, for example. This sign can be

added to the fagade texture as a separate zone in a separate layer. Hereby the fagade

texture includes only one shop sign, the one that is mentioned in the verbal/textual in

struction, although the real world fagade might include many more signs or advertising

bills. The zone/layer-based approach allows including only relevant information into the

digital 3D representation and specifically omitting other content to support the user in

172

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

his task. This example shows that in the pedestrian navigation use-case one research

objective of this work plays a significant role: the adjustability of texture content. As the

photo-realistic model is too complex to support the user in the given spatial context,

the appearance of the model needs to be adjusted (decrease visual complexity), which

reflects the aforementioned research objective.

In terms of abstraction (a related aspect to level-of-realism) it is also possible to use

texture tiles with abstracted content for landmarks and context buildings. In case the

landmark's texture consists of material-, window and door layers, it would be possible

to use abstracted tiles for the windows and doors, hence further reducing the object

to its general properties and therefore reducing the scenes visual complexity. Dollner

and Buchholz (2005) investigated non-photorealistic visualization of 3D city models

and identified abstraction as a useful feature for building objects in 'map'- scenarios

(figure 6.6).

Figure 6.6: Sketch Rendering - Sketch-rendered buildings through Edge-Enhancement
approach (Dollner and Buchholz (2005))

173

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

This effect can be achieved with the layer/zone-based texture as well. As the zones

can be filled with any texture tile content they do not necessarily need to use realistic

'window'-tiles (how to fill zones; see chapter 4.6.4.1). Zones can also be filled with

sketch-like representations of the related fagade element and therefore generate a

different representation than the photo-realistic one. This is one property, besides the

layer capabilities, that adds to the flexibility of the new texture content concept. The

sketch rendered fagade can also be combined with relevant information (e.g. shop

signs, etc.) modelled in additional layers.

6.4.2 Navigation Hints

Navigation instructions or route descriptions of pedestrians for other persons are very

often based on landmarks rather than street names (Schroder et al., 2011). Guid

ance instructions are often linked to prominent buildings or objects. As Kray et al.

(2003) pointed out there are several elements of a navigation instruction that form the

'pre-verbal message'. This message can be turned into a verbal, textual or graphical

representation. In terms of a 3D city model and pedestrian navigation it would also

include landmarks (called 'anchorpoints' in Kray et al. (2003)) or their IDs.

This means that the 'pre-verbal message' can be turned into a spoken/written mes

sage, a 2D map with pictograms or images of landmarks, or it needs to be turned

into an appropriate 3D visualization. Assuming a message like 'Pass between the

two university towers', the 3D model representation should translate this message into

a suitable visual representation. Recently developed car navigation systems also in

clude 3D models of single buildings into the context visualization, however, the model

just acts as a kind of base map. Instructions still have the form Turn right into A street'.

The 3D model just delivers the three-dimensional spatial context for this instruction, but

is not part of it.

174

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

pvm
global-goal: (Jesuitenkirche)
start:
end:
two-point:
path:
turn:

(contact, Marktplatz, 1.0)
(behind, Heiliggeistkirche, 0.9)
(left-of, Heiliggeistkirche, 0.4)
(follow, Hauptstra&e, 0.8)
(0.0)

In order to get to
the Jesuitenkirche,

(a) _ locate the Marktplatz,
which is next to you.

Follow the Hauptstra&e
until the Heiliggeistkirchd

is behind you. |

Figure 6.7: The Pre-verbal Message - A pre-verbal message and four ways to present it
to the user.(Kray et al. (2003))

Looking at the pedestrian instruction beforehand, a movement instruction ('Pass be

tween') is linked directly to an object in the urban environment (The university towers').

Using the flexible content for textures this relation can also be represented in the 3D

visualization (fig. 6.8).

By adding additional layers with thematic information or with additional graphical ele

ments into the fagade textures it is possible to highlight landmark buildings as well as

integrating direction instructions directly into the relevant building's appearance. This

was also achieved on the mobile navigation smartphone prototype for an exemplary

route and showed the feasibility on mobile clients.

In figure 6.9a) a link between the landmark and the guidance instruction is only ex

pressed through the textual/written instruction. A graphical representation is not in

cluded into the landmark. The material property ('yellow house') needs to be used to

identify the building in the real world and to relate the guidance instruction to it. In fig

ure 6.9b) the red arrow is added into the layer-based fagade content dynamically after

route calculation.

175

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

v«w OpOom Help

Figure 6.8: Visual Hints for Landmarks - The University tower buildings are highlighted
as they act as landmarks for the particular route

In this case the landmark based instruction is provided by text and is also included into

the 3D visualization. But the navigation instruction is not only integrated 'somewhere'

in the 3D scene (the arrow could also be placed at the centre axis ot the road, etc.),

it is integrated into the related landmark that is part of the verbal/textual instruction.

With the integrated navigation hint the landmark is also highlighted, because other

less relevant buildings do not include hints, and therefore the landmark is easier to

recognize. Furthermore, the link between the navigation instruction and the landmark,

on which it is based, can be better represented in this way.

Besides the aspect that the connection between the instruction and the landmark can

be visually maintained by integrating the appropriate hint directly into the landmark

texture, there is also another benefit that should be taken into account. In the actual

pedestrian navigation process the guidance instruction should be based on landmarks.

The user would therefore look at the screen with the 3D representation and read the

176

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

CT IT* fff W ~

Turn left at the yellow building Turn left at the yellow building

Figure 6.9: Navigation Hints in Fagade - A building faade a) without navigation hint and
b) with a visual navigation hint

written instruction and look at the 3D model to find out how the landmark looks like and

where it is located. To determine the landmarks position the user needs the information

about the landmark itself (its shape, material, etc.) and its direct neighbours. The

neighbouring buildings, the landmarks spatial context, are used to verify one's match of

the digital model and the real world scene. Visualizing solely the landmark would not be

as efficient. In addition, the landmark's close spatial surrounding needs to be provided

to the user as he will base further locomotion on the visualization of the surrounding.

For example, if the instruction is: 'turn right at the yellow building', the area on the right

side of building should be visible in order to support the user in his navigation decisions.

In figure 6.10 it can be seen that there are visualization approaches that occlude parts

of the spatial context, which is counter-productive especially on small displays (e.g. of

mobile devices).

Integrating hints and additional information directly into the landmark's fagade texture,

or more generally into its visual representation, by an additional layer this effect can be

avoided. This aspect is very important for the pedestrian navigation scenario as the

spatial context plays a significant role in this case.

177

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

Figure 6.10: Bubbles for linking nav-instruction to landmark - Bubbles are used to
provide a link between landmark and instruction but they occlude parts of the spatial context

Another benefit of the presented texturing concept regarding navigation hints is the

ability to change content in real-time (in the suitable scenario (see chapter 4.8.4) when

the texture description is present on the client.

This is also beneficial for the navigation scenario and the related landmark visual

ization. When a route needs to be recalculated for some reason (e.g. change of

destination point), parts of the 3D model might need to be loaded in addition to the

model that is already present on the client. However, the part of the model that is al

ready present needs to change its appearance, because the route changed and other

buildings act as landmarks for the modified route. In case of flexible fagade textures

not the whole model needs to be reloaded, or new image textures need to be re

quested. In case of layer-based texture content it is just sufficient to switch relevant

layers off/on (e.g. decrease detail for non-landmark buildings) and to change naviga

tion hints by removing/adding 'hint' layers to the appropriate buildings. By designing

a smart update process only relevant parts of the model and the textures need to be

added/replaced, which increases response times of the client-server system and in

creases performance. By developing the concept further and by implementing smarter

178

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

update algorithms it might be possible to load single layers from the server and merge

them with the zones/layers in a texture content description that is already present on

the client. Hereby only relevant parts need to be queried from the server side.

6.4.3 Shop Signs

Elias and Paelke (2008) identified shops and brand names or logos as important land

marks in downtown areas, as they are well known and the logos are easily recognized

and related to the brand. Logos and pictograms are also a solution for landmark vi

sualization for digital 2D maps presented in Elias and Paelke (2008). This kind of

information, which appears to be very useful for pedestrian navigation, can also be

included into the 3D visualization of the spatial context. Using the presented texturing

approach also adds more flexibility in terms of adding and placing logos and signs.

The logo or a sign of a shop in current 3D city models are just a part of the texture,

the real world photo-image, that is applied to the wall geometry. The sign or logo is

represented by a number of unrelated pixels having the appropriate colour values to

represent the sign. However, the sign or logo as such is no separate entity and it

cannot be separated from the rest of the wall texture. Using the layer-based texture

concept the shop sign can be a separate zone in a separate layer, which can be used

independently from the rest of the content. As already mentioned in the section on

Level-of-Realism for landmarks, it is possible in this way to reduce the detail of the

fagade to a lower level (still enough detail to recognize the real world building) and still

use the logo or shop sign as a visual hint for the landmark. Another advantage of the

zone/layer approach is that the brand's logo can be put anywhere on the fagade by

changing the zones coordinates or place it on multiple fagades. In this way the 'shop'-

landmark can be recognized by the user from multiple directions, even though the sign

in the real world is not visible from the user's position. Using a 3D model with realistic

photo-textures this effect could not be achieved.

179

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

A further advantage of the zone/layer-approach in terms of signs and logos of shops

is not only beneficial for the pedestrian navigation scenario: The texture tile that repre

sents the logo of the shop can be updated independently from the rest of the facade.

The image information for the tile can be changed by replacing the old logo with the

new one, without the need to change the rest of the fagade content (e.g. taking a

new fagade picture). The other layers and tiles can stay the same as they represent

elements that have not changed. In case of normal fagade textures the image would

have to be edited manually or be replaced completely, which would make it necessary

to take a new picture of the building's fagade. For the tile-based approach it might not

even be necessary to take a new photo of the building. For very well-known brands

the logo could come from other sources, like the Internet, or the company's PR depart

ment. Another way would be to extract logos from pictures from a photo-website like

'flickr', etc. (complying with copyrights). As the texture tile information can come from

very different sources and does not necessarily require sending someone out to make

a picture of the relevant building, the update process for content that changes relatively

frequently is made easier and less complicated.

6.4.4 Link to Indoor Navigation

A quite interesting aspect of pedestrian navigation that is a current topic in this field is

the link between indoor and outdoor navigation (Gartner (2004), Rehrl et al. (2005)).

For example, for large and complex buildings it is relevant to know, which entrance

needs to be used or on which floor and in which part of the building a certain company

or shop is located. Using the correct entrance can be relevant for the indoor navigation

because there might be no direct connection inside the building to reach the destination

when using the wrong entrance. In this case the indoor navigation would need to send

the user back onto the street to go to the correct entrance. Even in a scenario where

no indoor navigation in the destination building is provided it would be useful to have

some information about the destination building (in this case-study buildings are in

180

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

focus as destination objects) rather than the simple 'you have reached your destination'

output. For pedestrians the aforementioned aspects of choosing the correct entrance of

a building or to know on which floor a specific business is located are quite important.

Assuming that navigation data sets for pedestrian navigation systems will store this

kind of information in the future to link indoor and outdoor navigation or to provide

additional information for destination points, appropriate visualization methods for LoD2

building models need to be found.

Highlighting the correct entrance of a building or the floor of a building creates the

same effect as the navigation hints that are integrated into the fagade texture: they

represent the navigation instruction visually in direct relation to the building. Highlight

ing the appropriate elements in the fagade can only be achieved when these elements

are modelled as explicit objects in geometry, so that they are identifiable as separate

entities. This is not the case for 3D city models when they are modelled in LoD2, for

example. In this LoD buildings do not model windows, doors, or building floors geomet

rically and in a standard fagade texture these objects cannot be identified as separate

objects. Hence, it is not possible to identify and highlight them.

• I II
• I •»

Figure 6.11: Highlights for fagade elements - The doors are highlighted in different ways.
Left: Classical overlay with transparent box; Right: Box in separate layer with higher z-order
behind windows and door

181

(^PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

In the zone/layer-concept the window and door entities, besides other objects, are

modelled separately and managed in different layers. Using appropriate acquisition

methods in the pre-processing it is also possible to generate separate window rows for

1st-, 2nd-, 3rd-, etc. floor. This makes it possible to distinguish building floors. Infor

mation about certain shops or businesses, etc. can be linked by an ID to the according

'door'-zone of the fagade description. That would allow linking the final destination (in

side the building, e.g. a business) to the appropriate fagade element (an entrance). A

data set that stores on which floor a company or store is located, would allow relat

ing this information to the appropriate window layer. Having this information at hand it

would be possible to integrate additional coloured zones into the fagade texture con

tent by adding additional 'highlighting layers'. Highlighting can be done in different

ways knowing the position of the actual element that needs to be emphasized. Using a

traditional texture the 'box' to highlight the e.g. door would need to be overlaid onto the

standard texture and a certain transparency needs to be applied so the element can

shine through (see fig. 6.11, left). In a layer-based texture the 'box' can be added in

the suitable z-level, so the additional visual element is behind the windows and doors

(see fig. 6.11, right). This allows giving additional information the appropriate position

in the texture content. In figure 6.12 the use of these additional layers is depicted to

show the entrance and the first floor of building 1 of HFT Stuttgart (University of Applied

Sciences) where the student office is located.

6.5 Summary

This chapter described a case-study for the zone/layer-based texture approach pre

sented in chapter 4 for the field of mobile pedestrian navigation. Certain requirements

of the MoNaSD project, which investigated the use of 3D city models in this field, as

well as from literature, were investigated according to possible visualization solutions

using the new texture concept. The case-study also presented the integration into a

project specific 3D-SDI.
182

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

I III

Figure 6.12: Navigation hint for correct entrance and floor of a building - Appropriate
colour-coded elements in order to highlight entrances and building floors provide additional
information about the destination building, e.g. to find a specific office

The MoNaSD project defined two specific requirements in terms of textures that were

examined in this chapter. The first one was the development of storage and transmis

sion efficient synthetic textures for use on mobile devices. The second was the setup

of a flexible 3D-SDI, on which the pedestrian navigation system should be based and

in which the textures should be integrated. Both of these requirements were met by the

presented layer/zone-based textures. Storage and transmission efficiency is achieved

by the texture-tile approach reducing the texture data size significantly. The flexible in

tegration of the new texture concept and its use in several SDI client-server scenarios

were already discussed in chapter 4.8.

Several other scenario specific demands defined by the project and in literature were

discussed in terms of flexible texturing. These demands were also met by the texture

concept and can provide an adequate visualization in task-driven scenarios.

183

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

The chapter underlines three aspects of flexibility in terms of the new texture content

model:

• Flexible visualization in a scenario specific way - In the pedestrian navigation

scenario it is important to accentuate landmarks. This can be done by decreasing

detail of surrounding buildings and optionally highlighting the landmark itself. It

is also beneficial to visualize landmark-based navigation instructions. Adapting

detail and integrating additional information into textures (flexibility of content) is

one of the research objectives and also a requirement in the case-study, which

was achieved by the presented texturing approach.

• Flexibility in terms of SDI integration In the MoNaSD project (the case-study

scenario) a 3D-SDI was defined in order to be the server side back-end of the en

visioned pedestrian navigation system. The texture concept had to be integrated

into this SDI. As described before, there were no smartphones on the market at

the beginning of the project, which provided a programmable rendering pipeline.

At that point the texture concept showed its flexibility as the texture information

can be provided in different form (see chapter 4.8) and the reconstruction can

happen on different stages of the client-server process. This shows the flexibility

of the approach in terms of SDI environments and their processes under certain

prerequisites, e.g. different client capabilities.

• Flexibility in terms of data size As texture tiles are significantly smaller than

the complete fagade texture they are easier to store and it is much more efficient

to transmit them among systems. This was also a requirement of the MoNaSD

project. Especially, when providing several representations, e.g. photo-realistic

and sketch-rendered, only two tiles with different representation are needed, not

two complete fagade textures.

But also regarding texture content and data size, there is flexibility because of the

layer-based content for textures. When an application does not need a specific

184

6. PEDESTRIAN NAVIGATION USING 3D CITY MODELS - A CASE-STUDY

portion of the texture information, e.g. no shop signs or no additional thematic

texture layers, only the relevant data (texture layers) need to be added to the ser

vice output. There is no need to load all available texture layers for all scenarios.

Some might require only a subset of them and therefore data size can be kept to

a minimum in terms of data transmission.

These three aspects are not only beneficial for the pedestrian navigation scenario and

can certainly be helpful in other urban, task-driven scenarios, although one needs

to look at the specific prerequisites in each particular case to make the best use of

layer/zone-based textures.

185

Chapter 7

Conclusions & Future Work

This chapter concludes the thesis and sums up the results of the presented research.

The chapter revisits the objectives that were formulated in chapter 1 and discusses

outcomes in relation to these points. After looking at the single objectives a further

section tries to draw conclusions for the wider research field and to answer the research

question defined in chapter 1. In the second part of the chapter starting points for

future work are suggested and open issues about the texture model as well as the

implemented prototype are discussed. Future work on (3D-) SDI integration is also

suggested as well as work on data acquisition and pedestrian navigation.

7.1 Conclusions

7.1.1 Objective 1: Flexible Description

Find a way to describe the content of (fagade-) textures that allows the flexible

representation and combination of different content as well as the integration of

additional (non-photorealistic) information.

This objective is met by using the zone/layer-based texture content approach presented

in chapter 4. This concept is based on an empty texture, the null-texture (see chap

ter 4), that is already mapped onto geometry (by providing the suitable texture coor

dinates) and needs to be filled with the appropriate content. The appropriateness is

defined by the scenario in which the 3D model is used.

186

7. CONCLUSIONS & FUTURE WORK

This work defines a model for texture content that is layer-based. Hence, different

kinds of information can be managed and structured in separate layers. When fill

ing the null-texture specific layers can be included or excluded and therefore different

content for the null-texture can be produced. This concept provides a high flexibility

and allows mixing different information inside the texture. Switching between different

representations is also possible in this model.

The information inside a layer, however, needs to be defined as well. As a layer needs

to hold separate fagade entities (e.g. windows of a specific type), so they can be

added to the null-texture independently of the other fagade elements, the layer needs

an internal concept to describe separate fagade elements.

The independence among fagade elements and the ability to put them into separate

layers is achieved by the introduced zone approach. A zone is regarded as a box, in

which a specific area of the fagade is covered and arbitrary content for this box can

be defined. Hence, boxes with the same type of information can be grouped into a

layer. In order to describe these boxes this work adopts the pulse concept in Parish

and Muller (2001). This pulse concept is extended (especially in the aspect of layers).

In the work of Parish and Muller (2001) the pulse function approach is used to create

valid, realistically looking fagades for procedurally generated city models. In this thesis

the reconstruction of realistic fagades is not in focus, but aspects of information visu

alization, which made it necessary to extend the concept and add more semantics to

layers (e.g. LoR).

Generally the zone/layer-based approach actually decouples fagade elements inside

textures and groups them according to their type. The decoupling allows rearranging

content in new ways inside the texture. This is currently not possible or at least very

hard to achieve with the standard texturing approach for 3D city models. The new

texture content model tries to achieve a greater flexibility in term of information that can

be transported or visualized in (fagade-) textures. Especially for type-6 models, but for

other types as well, which include various additional information about urban objects

187

7. CONCLUSIONS & FUTURE WORK

on city scale. This new form of visualization capability is expected to be beneficial in

many scenarios.

7.1.2 Objective 2: Adjustability and additional Information

Define concepts in order to adjust the ratio of realism as well as the ratio between

realistic elements and the integrated additional information

Using layers as the basis of the presented texture concept allows mixing and merging

information in a flexible way when filling the null-texture. This also allows controlling

the ratio of realism and to add additional information into the fagade textures.

The user can certainly choose to add all the realistic content layers into the texture. In

this way he would retrieve a result that is very close to photo-realistic texturing. Another

representation that can be achieved by using the LoR concept (see section 2.3.4) is to

omit certain realistic elements of the fagade and adjust the realism of the building to the

given scenario (e.g. Landmarks in pedestrian navigation in chapter 6). However, the

layer/zone-based approach is not limited to modelling the realistic elements of a fagade,

also abstracted representation is possible. As zones, respective to their content, are

not limited to photo-realistic tiles of the real-world equivalent, it is also possible to use

standard textures from a texture database or a sketch like representation of elements.

The latter would enable visualizations similar to the ones presented in (Dollner and

Buchholz(2005),p.13).

Moving to an even more abstracted level, zones do not even have to represent fagade

elements, they can also model attribute information. When there are attributes avail

able for an object, which refer to a specific part of the building a zone in the fagade can

be defined (e.g. to cover the first floor) and be colour-coded to represent the attribute

value. This 'thematic layer' in which the attribute zone resides can also have a suitable

z-level, hence windows can still be in front of the additional information, whereas the

background material is behind it. This allows visualizing attributes by colour for a spe-

188

7. CONCLUSIONS & FUTURE WORK

cific part of the building, even though this part is not modelled as a separate geometry,

because the information is included in the texture.

In terms of adjusting the ratio between realism and abstraction it is possible to reduce

the number of realistic elements in the fagade (e.g. no ledges, signs, etc.) when at

tribute representation is added. In this way it is possible for the system, into which

the 3D model is integrated, to accentuate the relevant information and make it more

prominent in contrast to the realistic fagade elements. This capability supports ideas

presented in Ferwerda (2003) on functional realism and aspects in the discussion pro

vided by Schirra and Scholz (1998) on 'Abstraction vs. Realism' (chapter 2.3.2).

A further solution for integration of additional information that is presented in this work

is the 'Real-Time Layer' (see section 4.6.3). This layer can integrate information into

the fagade content, which changes very frequently and independently from the rest of

the content. An example for this kind of information is a video stream that is integrated

into the fagade. A more detailed discussion on the real-time layer is provided in the

next section.

7.1.3 Objectives: Real-time Content Changes

Implement a suitable prototype in order to test the flexibility of (fagade-) texture

content and its appearance in regards to real-time contextual events.

Changing the texture content in real-time during visualization is also a research objec

tive in this work. This idea relates to the aspects of flexibility and adaptability of the

model appearance, which this work wants to achieve. Therefore, the null-texture con

tent does not only have to be filled at the time when the model is loaded (although this

would be a valid scenario) and remains constant during the visualization. For specific

scenarios like analysis, task-driven visualization, it is necessary that texture content

can change during visualization. These changes can be triggered by users as well as

the system itself.

189

7. CONCLUSIONS & FUTURE WORK

In the presented prototype in chapter 5 the texture reconstruction process is imple

mented directly by the programmable parts of the rendering pipeline on the graph

ics hardware. This allows changing the texture content very quickly and to react to

scenario-specific events or user interaction. Therefore textures can be part of the 'user

interface'. When the user requests certain information about buildings, it can be deliv

ered through the fagade texture. The implemented prototype shows that the texture can

lose its relatively static character and, in a sense, become an interactive information

display and part of 3D map-space.

The prototype in this work shows the capabilities of zone/layer-based textures only for

one test building at the moment. This is due to open issues in data acquisition (see

section 7.2.2). Nevertheless, the general approach to rebuild the fagade textures during

the rendering process directly on the graphics chip for entire city models is feasible.

This is underpinned by work of Haegler et al. (2010) and Krecklau and Kobbelt (2011).

Testing the zone/layer-based approach for larger parts of urban areas and for entire

cities is part of future work as soon as data acquisition methods are available and

connected with the presented ideas in order to model fagades in the presented way for

larger areas.

A further element that is implemented in the presented prototype, and refers to real-

time content changes, is the Real-time Layer (see section 4.6.3). In this layer it is

possible to integrate information that is frequently changing, whereas the rest of the

fagade content remains more or less unchanged. One example would be to integrate

a video into the fagade: here the video frames are changing very fast but at the same

time other layers and content seldom change. Therefore the real-time layer decouples

the real-time and the zone-based information, which makes a reconstruction of the

fagade for each video frame unnecessary. This aspect increases the efficiency of the

presented approach and achieves better (user-) interaction. Triggering the null-texture

reconstruction process for real-time information like a video, where content changes at

about 30-60 fps, is not feasible at the moment.

190

7. CONCLUSIONS & FUTURE WORK

Real-time content changes are an important aspect to be considered for analysis and

information visualization. As textures cover the whole object, especially important and

prominent surfaces like fagades, they are a very suitable channel for all kind of infor

mation. This is also presented by Lorenz and Dollner (2010) who investigated the ca

pabilities of the programmable rendering pipeline in order to visualize 'feature surface

properties' (see section 2.3.1 and 4.9.2). They also emphasize the possibility of real-

time interaction in order to change the visualized information for analysis purposes.

However, their prototype allows direct control of shader code to merge information and

alter the visualization. This thesis argues that a layer-based structure helps to orga

nize the content. Layers clarify possible combinations of content and aspects like the

z-order become more understandable, especially for non-expert users. Another aspect

is that Lorenz and Dollner (2010) do not describe how their analysis information can be

merged with realistic elements, an aspect this work achieves through the layer concept.

The relevance of window elements in combination with residential quality data in order

to relate this information to certain areas of the building was discussed in section 4.9.2.

Therefore an integration of their 'surface properties'-approach into the real-time layer

would be interesting to investigate in future work.

7.1.4 Objective 4: 3D-SDI Integration

Investigate how the new texture model can be integrated into 3D-SDIs and how

services can address the absence of certain client capabilities.

As 3D city models investigated in this work are mainly part of SDIs, where they can be

linked with other geo-data and services, it is crucial for the new texture concept to be

able to integrate into this environment (chapters 2.2.2 - 2.2.4).

The integration of the presented texture concept can be achieved at several stages

of the client server process and therefore services should be able to provide differ

ent outputs for different scenarios. In chapter 4.8 several scenarios with different

191

7. CONCLUSIONS & FUTURE WORK

client and server capabilities are discussed and the chapter presents solutions how

the zone/layer-based texture concept can be integrated into SDI environments.

In terms of client/server scenarios the presented approach appears to be sensible,

because the reconstruction of the texture can be performed either on server or on

client side, whichever component of the system has better capabilities to perform the

task and where it fits best into the overall process.

For example, when the reconstruction can be performed on client side there is an addi

tional benefit for the client/server system. In this case the texture content that needs to

be transmitted from server to client only consists of tiles and the description. Hence, a

smaller amount of data needs to be sent from server to client compared to a scenario

where complete fagade textures are exchanged. The smaller data size is especially

beneficial for use-cases with mobile clients. Here normally bandwidth is limited, as

well as available client memory. The tiles that need to be held in memory on the client

need much less memory than complete textures. The number of reconstructed tex

tures in graphics memory can be adapted to the capabilities of the graphics chip and

other system resources.

Generally the concept can be beneficial in terms of SDIs as it is flexible both in regards

to technical system capabilities as well as conceptual terms. Looking at the scenarios

in a technical way the concept can deliver texture data in different forms with regards

to client capabilities and resources. From a conceptual perspective 3D city models can

be requested in different representations and according to scenario needs. As SDIs

are designed to serve many different scenarios and to implement different workflows

and processes, the ability to query for specific texture content in this environment is

extremely beneficial. The zone/layer-based texture content appears to be a promising

extension for 3D-SDIs and future test-bed scenarios would be useful to validate the

performance of the new content model in SDI workflows.

192

7. CONCLUSIONS & FUTURE WORK

7.1.5 Objective 5: Evaluation of the presented Approach

Evaluate the capabilities of the new texture content model in a specific use-case.

The case-study on pedestrian navigation showed that 3D city models can be used as

an integral part of the problem-solving process in terms of pedestrian navigation and

that photo-realistic appearance is not the best type of visualization in this case.

The layer/zone-based texture allows adapting the degree of realism and in general the

appearance of the model according to the pedestrian navigation scenario. Integration

of additional information is easier, because elements of the fagade can be controlled

independently. Because fagade elements are separate entities they can be put into

specific z-levels and turned on/off independent from the other elements of the content.

Controlling the z-level in the pedestrian navigation scenario helps to integrate additional

information and put it into the foreground or background of the fagade representation.

Fagade elements can also be omitted completely if it is beneficial for the scenario, e.g.

shop signs and logos that are not part of the navigation instruction and would distract

the user from the relevant logo or aspect of a landmark. In general the possibility of

grouping and packing elements into layers makes it easier to add additional informa

tion, like navigation hints, into the fagade representation. This can be done by just

adding further layers to the fagade description. In this way the representation can be

extended by an arbitrary number of additional layers, if necessary.

The layer/zone-based approach also provides more flexibility when the content of the

texture needs to change. For example, when the route is recalculated the navigation

hints in the textures might need to change for specific buildings. In this case only

the layer with the additional hints needs to change and might require a reload of tiles.

However, the rest of the texture content can remain unchanged and does not need to

be reloaded. This capability provides more flexibility and efficiency in comparison to a

normal photo-texture, where different representations would need to be pre-processed

and the pre-processed textures would have to be loaded. In this case complete textures

193

7. CONCLUSIONS & FUTURE WORK

would have to be loaded and separate fagade textures for each navigation hint of the

particular fagade might need to be stored.

The flexibility of the layered texture concept can also be observed in terms of the level

of realism (chapter 2) with regards to the case-study. In the pedestrian navigation sce

nario the capability of adjusting the detail, also in terms of textures, is very important.

This capability helps to accentuate the model, to highlight landmarks in their spatial

context and to support the user in recognizing the landmark. This is important because

pedestrians navigate a lot more with the help of landmarks than car drivers. Highlight

ing specific buildings also works by adjusting the LoR (besides other measures). By

decreasing the detail for context buildings and increasing the detail for the landmark, it

stands out of the surrounding even more and can be recognized more easily.

7.1.6 Summary

Summarizing this work one can say that a flexible way was found to represent adapt

able texture content. The need for this new way of defining texture content is described

in chapter 2 where the possible extension of map-space to building surfaces is dis

cussed. As models can include a lot of additional information in form of attributes and

semantics (type-6) it becomes necessary in certain use-cases to visualize this addi

tional information. In '3D-maps' there needs to be some space where this information

about buildings and/or building parts can be placed. Inserting 3D building objects into

the map as icons can only help to a certain extent. Therefore, changing the idea of tex

ture content in order to represent map-space instead of containing static photo-images

can help to visualize city models in more ways than the photo-realistic one. This is

why the new idea of texture content presented in this work refers to concepts of (dig

ital) maps. Using layers as a concept to organize content and providing mechanisms

to adjust realism/abstraction can be found in similar ways in the world of cartography

and geovisualization. And as there is no single ultimate map illustration for all pur-

194

7. CONCLUSIONS & FUTURE WORK

poses, there should also be different combinations of texture content in 3D city models

in different scenarios.

In general this work widens the view on how textures can be used inside 3D city models.

Textures should not only be regarded as static pixel-matrices, which can hold photo-

image information to achieve a realistic digital representation of urban space. Textures

can be more than that and recent developments in computer graphics hardware and

algorithms make a different use possible. Information about urban objects should be

visualized appropriately and lead to a thematic appearance of models. This requires

learning from computer graphics and to use findings made in this field in combination

with concepts from cartography and geovisualization to achieve suitable and scenario-

dependent visualization of urban models. Textures in this regards can be used in a

much more flexible way and can turn from static containers for image data to flexible

information channels.

7.2 Future Work

7.2.1 Layer/Zone Model

It would be interesting to investigate the presented concept further in terms of inte

grating additional forms of information as input for zones and extend the concept in

this way. At the moment more or less texture input is generated for zones or single

colour values are applied. It would be interesting to design a concept where arbitrary

operations can be used to fill zones. Another interesting part regarding the concept

is to define further operations how different layers can be merged inside the null tex

ture. A simple case is currently implemented (Painter's Algorithm) but more complex

operations can be envisioned.

The implemented prototype could be used in future work to investigate the rendering

concept in shaders. The look-up of information for specific texels can be improved

195

7. CONCLUSIONS & FUTURE WORK

and search strategies can be optimized. Special knowledge of the rendering pipeline

concepts can lead to further performance gains and lead to a more satisfying user

experience. These investigations need to be seen in the context of integrating large

amounts of additional data and the aforementioned integration of new forms of zone

input. This might lead to additional workload that needs to be handled by the rendering

process to ensure the required performance for suitable visualization and interaction

results.

7.2.2 Data Acquisition

At the moment data acquisition for tiles (tile textures) and the description (pulse posi

tions) is done manually by digitizing the positions of the fagade elements and cutting

the relevant portions of the real-world image for the tiles' content. In the future an

automated process for generating zone/layer based input data would be desirable.

Concepts that can already be found in literature and recent research appear to be

promising candidates to be linked to the texture concept presented in this work. Al

gorithms and approaches for (semi-) automatic feature extraction from fagade images

can be found in Muller et al. (2007), Lee and Nevatia (2004) and others.

These concepts present ways to extract fagade elements like windows, doors, etc. The

provided information normally consists of the position of the element and the related

portion of the fagade image, which visually represents the particular element. Part

of future work would be to transfer the information that is produced by the feature

extraction process into the layer/tile representation. A piece of software, which can

perform this transfer automatically, would be desirable in order to process input data

for large city areas and high number of buildings.

196

7. CONCLUSIONS & FUTURE WORK

Figure 7.1: Window Extraction Example - Immediate results of extracting windows from
Lee and Nevatia (2004)

7.2.3 Real-Time Layer

Future work in regards to real-time information integration would also be to investigate

if there are alternatives to the real-time layer solution. The question would be if a

separate layer for real-time content is necessary, which is restricted to one single input

stream, or if it is possible to conceptually integrate real-time data as 'input' for specific

tiles in the fagade. If tiles' input/content would be allowed to change in real-time a

solution needs to be found in order to change the portion of the overall texture that is

represented by the tile in real-time. The benefit of integrating the real-time content as

tile input would be that the content model as a whole would be more homogeneous.

The real time data would be part of the zone/layer concept and would not be a separate

information channel (real-time layer).

197

7. CONCLUSIONS & FUTURE WORK

7.2.4 3D Spatial Data Infrastructures

Several possible ways to integrate the new texture content model into client-server

scenarios were discussed in this work (chapter 4.8). For future work in this regard it

would be necessary to identify the extensions that need to be made to relevant data

formats and interface standards in this field. Adapting these interfaces and data formats

is necessary to expose new capabilities of the presented texture content model to other

systems and client applications. Extensions to existing standards could be introduced

into the standardization processes of relevant institutions, e.g. of the OGC.

7.2.5 Pedestrian Navigation

In future work it would be interesting to see the presented approach for texture con

tent to be implemented inside a pedestrian navigation prototype. This would allow

conducting user tests in future work in order to investigate if pedestrians actually per

form better in way-finding when the visualization options suggested in chapter 6 are

used. These user tests would also need a cross-disciplinary approach with researchers

from Human-Computer-Interaction, human perception/psychology, pedestrian naviga

tion, etc. in order to find suitable ways of visualization using the presented texturing

approach. As this cross-disciplinary investigation was out of scope of this work it would

be interesting to see results for this specific case in the future.

198

References

Becker, S., Haala, N. and Fritsch, D. (2008), Combined knowledge propagation for fa
cade reconstruction, in 'ISPRS Congress Beijing 2008, Proceedings of Commission
V, p. 423 ff. 19

Bildstein, F. (2005), 3d city models for simulation & training requirements on next
generation 3d city models, in Groger and Kolbe, eds, 'Proceedings of ISPRS WG
III/4, Next Generation City Models, Bonn'. 15

Blinn, J. F. and Newell, M. E. (1976), Texture and reflection in computer generated
images', Commun. ACM 19, 542-547.
URL: http://doi.acm.org/10.1145/360349.360353 74, 76

Bogdahn, J. (2006), A Web3D Service for Public Participation in Urban Planning, Fac
ulty for Mathematics, Informatics and Surveying at Hochschule fiir Technik Stuttgart

University of Applied Sciences, Thesis (Dipl.). 120, 125, 126

Bogdahn, J. and Coors, V. (2009a), Procedural fagade textures for 3d city models,
in 'Proceedings of 27th Urban Data Management Symposium, Ljubljana, Slovenja',
pp. 3-15. 120

Bogdahn, J. and Coors, V. (2009b), Using 3d urban models for pederstrian navigation
support, in 'Proceedings of the ISPRS working group Ml/4, IV/8, IV/5, 'GeoWeb 2009
Academic Track Cityscapes', Vancouver, BC, Canada, 27-31 July'. 158

Bogdahn, J., Coors, V. and Sachdeva, V. (2007), A 3d tool for public participation in
urban planning, in 'Urban and Regional Data Management UDMS Annual 2007',
pp. 231-136. 120

Brenner, C. and Haala, N. (1998), Fast production of virtual reality city models, in
D. Fritsch, M. Sester and M. Englich, eds, 'Proceedings of the ISPRS Comission IV
Symposium on CIS Between Visions and Applications', Vol. 32/4 of International
Archives of Photogrammetry and Remote Sensing, ISPRS, pp. 77-84. 16

Brenner, C., Haala, N. and D.Fritsch (2001), Towards fully automated 3d city model
generation, in E. P. Baltsavias, A. Gruen and L. V. Gool, eds, 'Automatic Extraction
of Man-Made Objects from Aerial and Satellite Images III', Proceedings of an Inter
national Workshop, Ascona, June 2001 v. 3, Centro Stefano Franscini, Monte Verita,
Ascona, A. A. Balkema, Swets & Zeitlinger Publishers, p. 47 ff. 16

Buchholz, H. (2006), REAL-TIME VISUALIZATION OF 3D CITY MODELS, PhD thesis,
Mathematisch-Naturwissenschaftlichen Fakultat, Universitat Potsdam. 31, 79

Burger, W. and Burge, M. J. (2005), Digitate Bildverarbeitung: Eine Einfuhrung mil Java
und'lmageJ, Berlin ; Heidelberg ; New York : Springer. 71

199

REFERENCES

Chazelle, B. (1982), A theorem on polygon cutting with applications, in 'Foundations
of Computer Science, 1982. SFCS '08. 23rd Annual Symposium on', pp. 339 -349.
159

Checkland, P. and Holwell, S. (2007), Action research, /nN. Kock, ed., 'Information Sys
tems Action Research', Vol. 13 of Integrated Series in Information Systems, Springer
US, pp. 3-17. 54

Coelho, A., Bessa, M., Sousa, A. A. and Ferreira, F N. (2007), 'Expeditious modelling
of virtual urban environments with geospatial l-systems', Computer Graphics Forum
26(4), 769-782.
URL: http://dx.doi.0rg/10.1111/j.1467-8659.2007.01032.x 17

Coors, V. and Zipf, A. (2007), Mona 3d - mobile navigation using 3d city models, in 'Pro
ceedings of the 4th International Symposium on LBS & Telecartography, Hongkong'.
12, 163, 164, 167

Crnkovic, G. (2010), 'Constructive research and info-computational knowledge gener
ation', Model-Based Reasoning in Science and Technology pp. 359-380.
URL: http://www. springerlink. com/index/4665535318660J02.pdf 53

Czerwinski, A., Kolbe, T. H., Plumer, L. and Stocker-Meier, E. (2006), Spatial data in
frastructure techniques for flexible noise mapping strategies, in K. Tochtermann and
A. Scharl, eds, 'Proceedings of the 20th International Conference on Environmental
Informatics Managing Environmental Knowledge. Graz 2006', pp. 99-106. 13

Davis, A. (1992), 'Operational prototyping: a new development approach', Software,
IEEE 9(5), 70-78. 60,61

de Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf, O. (2000), Computa
tional Geometry, 2nd Edition, Springer. 92

Dijkstra, E. W. (1959), 'A note on two problems in connexion with graphs', Numerische
Mathematik-\, 269-271. 10.1007/BF01386390.
URL: http://dx.doi.org/10.1007/BF01386390 156

Dollner, J. and Buchholz, H. (2005), Non-photorealism in 3d geovirtual environments.,
in 'Proceedings of AutoCarto. Las Vegas, NV, USA', ACSM, pp. 1-14. 173, 188

Dykes, J., Andrienko, G., Andrienko, N., Paelke, V. and Schiewe, J. (2010), 'Editorial
geovisualization and the digital city', Computers, Environment and Urban Systems

34(6), 443 - 451. GeoVisualization and the Digital City - Special issue of the Inter
national Cartographic Association Commission on GeoVisualization.
URL: http://www. sciencedirect. com/science/article/pii/S0198971510000839 39

Dykes, J., MacEachren, A. and M.-J., K. (2005), Exploring Geovisualization, Elsevir,
chapter 1, pp. 3-19. 26,39

Elias, B. and Paelke, V. (2008), User-centered Design of Landmark Visualization,
Springer, chapter 3, pp. 33-56. 160, 161, 162, 179

200

REFERENCES

Fabritius, G., Krassnigg, J., Krecklau, L, Manthei, C., Hornung, A., Habbecke, M. and
Kobbelt, L. (2008), City virtualization, in M. Schumann and T. Kuhlen, eds, 'Virtuelle
und Erweiterte Realitat: 5. Workshop der GI-Fachgruppe VR/AR'. 15, 16, 168

Ferwerda, J. A. (2003), Three varieties of realism in computer graphics, in T. N. Ro-
gowitz, Bernice E.; Pappas, ed., 'Human Vision and Electronic Imaging VIII. Pro
ceedings of the SPIE', Vol. 5007, pp. 290-297. 37, 49, 189

Finkenzeller, D. (2008), Modellierung komplexer Gebaudefassaden in der Computer-
graphik, PhD thesis, Fakultat fur Informatik (Fak. f. Informatik), Institut fur Betriebs-
und Dialogsysteme (IBDS), Universitatsverlag Karlsruhe. 18

Finkenzeller, D. and Schmitt, A. (2006), Rapid modeling of complex building facades,
in D. Fellner and C. Hansen, eds, 'Short paper proceedings of Eurographics 2006',
pp. 95-98. 18

Frueh, C., Sammon, R. and Zakhor, A. (2004), 'Automated texture mapping of 3d city
models with oblique aerial imagery', 3D Data Processing Visualization and Trans
mission, International Symposium on 3D Data Processing, Visualization, and Trans
mission (3DPVT04) 0, 396-403.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber= 1335266 17, 77

Gaisbauer, C. and Frank, A. U. (2008), Wayfinding model for pedestrian navigation, in
'Proceedings of the 11th AGILE International Conference on Geographic Information
Science', University of Girona, Spain. 158

Gartner, G. (2004), Location-based mobile pedestrian navigation services the role of
multimedia cartography, in 'International Joint Workshop on Ubiquitous, Pervasive
and Internet Mapping, Tokyo, Japan', ICA. 180

Gillham, B. (2000), Case Study Research Methods, London: Continuum. 63

Haegler, S., Wonka, P., Arisona, S. M., Van Gool, L. and Muller, P. (2010), 'Grammar-
based encoding of facades', Computer Graphics Forum 29(4), 1479-1487.
URL: http://dx.doi.0rg/10.1111/j.1467-8659.2010.01745.x 168, 190

Hamruni, A. M. (2010), The use of oblique and vertical images for 3D urban modelling,
PhD thesis, Faculty of Engineering, Departement of Civil Engineering, The University
of Notingham. 16

Hart, P., Nilsson, N. and Raphael, B. (1968), 'A formal basis for the heuristic determina
tion of minimum cost paths', Systems Science and Cybernetics, IEEE Transactions
on 4(2), 100-107. 156

Heckbert, P. (1986), 'Survey of texture mapping', IEEE Computer Graphics and Appli
cations 6, 56-67. x, 74, 75

Hu, J., You, S. and Neumann, U. (2003), 'Approaches to large-scale urban modeling 1 ,
Computer Graphics and Applications, IEEE 23(6), 62 - 69. 16

201

REFERENCES

Igarashi, T. and Cosgrove, D. (2001), Adaptive unwrapping for interactive texture paint
ing, in 'Proceedings of the 2001 symposium on Interactive 3D graphics', I3D '01,
ACM, New York, NY, USA, pp. 209-216.
URL: http://doi.acm.org/10.1145/364338.364404 79

J. Haist, V. C. (2005), The w3ds-iinterfaces of cityserverSd, in 'Proceedings of the 1st
International Workshop on Next Generation 3D City Models'. 24, 26

Kada, M. (2007), Zur maRstabsabhangigen Erzeugung von 3D-Stadtmodellen, PhD
thesis, Institut fur Photogrammetrie der Universitat Stuttgart. 47

Kada, M., Klinec, D. and Haala, N. (2005), Facade texturing for rendering 3d city mod
els, in 'ASPRS Conference 2005', pp. 78-85. 17, 77

Kallmann, M. (2005), Path planning in triangulations, in 'In Proceedings of the Work
shop on Reasoning, Representation, and Learning in Computer Games, Inter
national Joint Conference on Artificial Intelligence (IJCAI), Edinburgh, Scotland',
pp. 49-54. 159

Kasanen, E., Lukka, K. and Siitonen, A. (1993), The constructive approach in
management accounting research', Journal of Management Accounting Research
5(June 1991), 243-264.
URL: http://www. mendeley. com/research/constructive-approach-management-
accounting-research/ 53, 55

Kersting, O. (2002), Interaktive, dynamische 3D Karten zur Kommunikation raumbe-
zogener Informationen, PhD thesis, Mathematische-Naturwissenschaftliche Fakultat
der Universitat Potsdam. 139

Knapp, S., Bogdahn, J. and Coors, V. (2007), Improve public participation in planning
processes by using web-based 3d-models for communication platforms, in 'Proceed
ings of REAL CORP 2007'. 14, 22

Kokas, N. (2008), AN INVESTIGATION INTO SEMI-AUTOMATED 3D CITY MOD
ELLING, PhD thesis, University of Nottingham. 13, 14, 16

Kolbe, T. H. (2008), Geospatial Information Technology for Emergency Response (IS-
PRS Book Series), Taylor & Francis Group London, London, chapter CityGML 3D
city models and their potential for emergency response, pp. 257-274. 15

Kray, C., Elting, C., Laakso, K. and Coors, V. (2003), Presenting route instructions on
mobile devices, in 'Proceedings of the 8th international conference on Intelligent user
interfaces', IUI '03, ACM, New York, NY, USA, pp. 117-124.
URL: http://doi.acm.org/10.1145/604045.604066 171, 172, 174, 175

Krecklau, L. and Kobbelt, L. (2011), Realtime compositing of procedural facade tex
tures on the gpu, in 'Proceedings of the 4th ISPRS International Workshop 3D-ARCH
2011: "3D Virtual Reconstruction and Visualization of Complex Architectures'". 190

Lafarge, F, Descombes, X., Zerubia, J. and Pierrot-Deseilligny, M. (2007), 3d city mod
eling based on hidden markov model, in 'Image Processing, 2007. ICIP 2007. IEEE
International Conference on', Vol. 2, pp. II -521 -II -524. 16

202

REFERENCES

Laycock, R. and Day, A. (2006), 'Image registration in a coarse three-dimensional vir
tual environment', Computer Graphics Forum Volume 25(1), pp. 69-82. 16

Lee, S. C. and Nevatia, R. (2004), Extraction and integration of window in a 3d build
ing model from ground view images, in 'Computer Vision and Pattern Recognition,
2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference
on', Vol. 2, pp. 11-113-11-120 Vol.2. 19, 196, 197

Legakis, J., Dorsey, J. and Gortler, S. (2001), Feature-based cellular texturing for archi
tectural models, in 'Proceedings of the 28th annual conference on Computer graph
ics and interactive techniques', SIGGRAPH '01, ACM, New York, NY, USA, pp. 309-
316.
URL: http://doi.acm.org/10.1145/383259.383293 18

Lipp, M., Wonka, P. and Wimmer, M. (2008), Interactive visual editing of grammars for
procedural architecture, in 'ACM SIGGRAPH 2008 papers', SIGGRAPH '08, ACM,
New York, NY, USA, pp. 102:1-102:10.
URL: http://doi.acm.org/10.1145/1399504.1360701 18

Lorenz, H. and Dollner, J. (2006), Towards automating the generation of facade tex
tures of virtual city models. ISPRS Commission II, WG II/5 Workshop, Vienna. 16,
17

Lorenz, H. and Dollner, J. (2010), '3d feature surface properties and their application
in geovisualization', Computers, Environment and Urban Systems 34(6), 476 - 483.
GeoVisualization and the Digital City - Special issue of the International Cartographic
Association Commission on GeoVisualization.
URL: http://www.sciencedirect.com/science/article/pii/S0198971510000360 32, 33,
113, 114, 191

Loya, A., Adabala, N., Das, A. and Mishra, P. (2008), A practical approach to image-
guided building fagade abstraction, in 'Computer Graphics International Conference
(CGI) 2008'. 86

Lynch, K. (1960), The Image of the City, The MIT Press. 161

Maa(3, S. (2009), Techniken zur automatisierten Annotation interaktiver geovirtueller
3D-Umgebungen, PhD thesis, Mathematisch-Naturwissenschaftlichen Fakultat, Uni-
versitat Potsdam. 31

MacEachren, A. M. and Kraak, M.-J. (1997), 'Exploratory cartographic visualization:
advancing the agenda', Computers & Geosciences Special issue on exploratory
cartographic visualization 23, 335-343.
URL: http://dl.acm.org/citation.cfm?id=260786.260788 39, 114

MacMillan, R., Jones, R. and McNabb, D. H. (2004), 'Defining a hierarchy of spatial en
tities for environmental analysis and modeling using digital elevation models (dems)',
Computers, Environment and Urban Systems 28(3), 175 - 200.
URL: http://www.sciencedirect. com/science/article/pii/S019897150300019X 41

203

REFERENCES

Muller, P., Wonka, P., Haegler, S., Ulmer, A. and Van Gool, L. (2006), 'Procedural
modeling of buildings', ACM Trans. Graph. 25, 614-623.
URL: http://doi.acm.org/10.1145/1141911.1141931 18

Muller, P., Zeng, G., Wonka, P. and Van Gool, L. (2007), Image-based procedural
modeling of facades, in 'ACM SIGGRAPH 2007 papers', SIGGRAPH '07, ACM, New
York, NY, USA.
URL: http://doi.acm.org/10.1145/1275808.1276484 18, 19, 34, 196

Murray, N. and Hughes, G. (2008), Writing up your university assignments and re
search projects, Open University Press. 58

OGC (2008a), 'City geography markup language (citygml) encoding standard'. 20, 45,
46,84

OGC (2008b), 'Kml standard'. 43

OGC (201 Oa), 'Draft for candidate opengis web 3d service interface standard'. 104

OGC (20105), 'Opengis web feature service 2.0 interface standard'. 104

Ortin, D. and Remondino, F. (2005), Occlusion-free image generation for realistic tex
ture mapping, in 'Proceedings of the ISPRS WG V/4 "Virtual Reconstruction and
Visualization of Complex Architectures", Venice, Italy'. 16

Parish, Y. I. H. and Muller, P. (2001), Procedural modeling of cities, in 'Proceedings
of the 28th annual conference on Computer graphics and interactive techniques',
SIGGRAPH '01, ACM, New York, NY, USA, pp. 301-308.
URL: http://doi.acm.org/10.1145/383259.383292 18, 89, 90, 112, 113, 187

Poynton, C. (2003), Digital video and HDTV: algorithms and interfaces, Morgan Kauf-
mann. 70, 72, 73

Qiu, R, Zhao, Y, Fan, Z., Wei, X., Lorenz, H., Wang, J., Yoakum-Stover, S., Kaufman,
A. and Mueller, K. (2004), Dispersion simulation and visualization for urban security,
in 'Proceedings of the conference on Visualization '04', VIS '04, IEEE Computer
Society, Washington, DC, USA, pp. 553-560.
URL: http://dx.doi.org/10.1109/VISUAL.2004.24 15

Rehrl, K., G6II, N., Leitinger, S. and Bruntsch, S. (2005), Combined indoor/outdoor
smartphone navigation for public transport travellers, inG. Gartner, ed., 'Proceedings
of the 3rd Symposium on IBS & TeleCartography 2005', number 74 in 'Schriften-
reihe der Studienrichtung Vermessungswesen und Geoinformation an der TU Wien',
pp. 235-239. 180

Ricard, J., Royan, J. and Aubault, O. (2008), Visualization of real cities based on proce
dural modeling, in 'Proceedings of Workshop on Virtual Cityscapes: Key Research
Issues in Modeling Large-Scale Immersive Urban Environments, 2008 IEEE Virtual
Reality Conference'. 19, 110

204

REFERENCES

Ripperda, N. and Brenner, C. (2007), Data driven rule proposal for grammar based
facade reconstruction, in U. Stilla, H. Mayer, F. Rottensteiner, C. Heipke and S. Hinz,
eds, 'Proceedings of PIA07 - Photogrammetric Image Analysis', Vol. Volume 36, Part
3 / W49A of The International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Science, pp. 1-6. 19

Rost, R. J., Kessenich, J. M., Lichtenbelt, B., Malan, H. and Weiblen, M. (2006),
OpenGL Shading Language, Second Edition, Addison Wesley. 118, 119, 120, 121,
122, 123

Royan, J., Gioia, P., Cavagna, R. and Bouville, C. (2007), 'Network-based visualiza
tion of 3d landscapes and city models', Computer Graphics and Applications, IEEE
27(6), 70 -79. 87

Schirra, J. and Scholz, M. (1998), Computational Visualization Graphics, Abstrac
tion and Interactivity, Springer, chapter Abstraction versus Realism: Not the Real
Question, pp. 379-402. 35, 36, 48, 49, 189

Schmidt, U. (2009), Professionelle Videotechnik: Grundlagen, Filmtechnik, Fernse-
htechnik, Gerate- und Studiotechnik in SD, HD, Dl, 3D, Springer-Verlag Berlin Hei
delberg.
URL: http://dx.doi.org/10.1007/978-3-642-02507-5 73

Schmitz, A. and Kobbelt, L. (2006), Real-time visualization of wave propagation, in
O. Spaniol, ed., 'Proceedings of the First International Workshop on Mobile Services
and Personalized Environments', Vol. P-102 of Lecture Notes in Informatics (LNI)
Proceedings Series of the Gesellschaft fur Informatik (Gl), pp. 71-80. 15

Schroder, C. J., Mackaness, W. A. and Gittings, B. M. (2011), 'Giving the 'right' route
directions: The requirements for pedestrian navigation systems', Transactions in GIS
15(3), 419-438.
URL: http://dx.doi.0rg/10.1111/j.1467-9671.2011.01266.x 159, 174

Schulte, C. and Coors, V. (2008), Development of a citygml ade for dynamic 3d ood
information, in 'In Proceedings Joint ISCRAM-CHINA and GI4DM Conference on
Information Systems for Crisis Management, Harbin, China, 2008' 14

Schwalbe, E., Maas, H.-G. and Seidel, F (2005), 3d building model generation from air
borne laser scanner data using 2d gis data and orthogonal point cloud projections, in
'Proceedings of ISPRS WG Ml/3, HI/4, V/3 Workshop "Laser scanning 2005'", ISPRS.
16

Shiode, N. (2001), '3d urban models: Recent developments in the digital mod
elling of urban environments in three-dimensions', GeoJournal 52, 263-269.
10.1023/A:1014276309416.
URL: http://dx.doi.Org/10.1023/A:1014276309416 11,12

Stadler, A. and Kolbe, T. H. (2007), Spatio-semantic coherence in the integration of 3d
city models, in 'Proceedings of the 5th International ISPRS Symposium on Spatial
Data Quality ISSDQ, Enschede, The Netherlands'. 7, 19, 20, 21, 22, 23, 50

205

REFERENCES

Stappers, P. J., Gaver, W. and Overbeeke, K. (2003), Psychological Issues in the De
sign and Use of Virtual and Adaptive Environments, Lawrence Erlbaum Associates,
Inc., chapter Beyond The Limits Of Real-Time Realism: Moving From Stimulation
Correspondence To Information Correspondence, pp. 91-111. 35

Strzalka, A., Bogdahn, J. and Eicker, U. (2010), 3d city modeling for urban scale heat
ing energy demand forecasting, in 'IAQVEC 2010, 7th International Conference on
Indoor Air Quality, Ventilaton and Energy Conservation in Buildings, Syracuse, New
York, USA'. 13

Wang, H. (2007), DATA SERVICE FRAMEWORK FOR URBAN INFORMATION IN
TEGRATION, PhD thesis, School of the Built Environment, University of Salford,
Salford, UK. 56

Wang, X., Totaro, S., Taillandier, F, Hanson, A. R. and Teller, S. (2002), Recovering
facade texture and microstructure from real-world images, in 'Proc. 2nd International
Workshop on Texture Analysis and Synthesis, pp. 145-149, Copenhague, Denmark,
June 2002'. 19

Wang, Y, Schultz, S. and Giuffrida, F. (2008), Pictometry's proprietary airborne digital
imaging system and its application in 3d city modelling, in 'ISPRS Congress Beijing
2008, Proceedings of Commission I', Vol. 37 Part B1 of International Archives of
Photogrammetry and Remote Sensing, ISPRS, pp. 065-1069. 16

WebSD Consortium (2003), 'Iso/iec 14772-1:1997 and iso/iec 14772-2:2004 virtual
reality modeling language (vrml)', Website. 21, 26

Weber, B., Muller, P., Wonka, P. and Gross, M. (2009), 'Interactive geometric simulation
of 4d cities', Computer Graphics Forum 28(2), 481-492.
URL: http://dx.doi.0rg/10.1111/j.1467-8659.2009.01387.x 15

Wloka, M. (2005), ShaderXS, Charles River Media, chapter Improved Batching via
Texture Atlases, pp. pp. 155-167. 79, 80

Wonka, P., Wimmer, M., Sillion, F. and Ribarsky, W. (2003), Instant architecture,
in 'ACM SIGGRAPH 2003 Papers', SIGGRAPH '03, ACM, New York, NY, USA,
pp. 669-677.
URL: http://doi.acm.org/10.1145/1201775.882324 18

www.londonair.org.uk (2011), '3-d map of air pollution in london', website.
URL: http://www.londonair.org.uk/london/aspMrtualmaps.asp 14

Wytzisk, A. and Sliwinski, A. (2004), Quo vadis sdi?, in 'Proceedings of the 7th AGILE
Conference on Gl Science. Heraklion', pp. 43-49. 29

206

