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Summary 

 

We report on fresh developments in the field of spatiotemporal optical solitons. A 
host of new analytical and numerical predictions for light pulses in nonlinear 
waveguides will be detailed, which have a simple physical interpretation.  Tantalizing 
connections to Einstein’s special relativity theory have also been uncovered. 
 
Introduction 
 

   It can be safely said that optical soliton pulses are one of the most thoroughly 
investigated phenomena in nonlinear photonics. Since the seminal works of 
Hasegawa and Tappert [1,2], the cornerstone of many investigations has been the 
slowly-varying envelope approximation (SVEA). In combination with a subsequent 
Galilean boost to a local time frame, the SVEA provides a mathematical device 
commonly used to reduce the complexity of the longitudinal (spatial) part of the wave 
operator. While this approach has some clear-cut advantages [e.g. by replacing the 
elliptic (or hyperbolic) governing equation with a parabolic one], there are some 
physical effects that fall outside its remit. One such effect is spatial dispersion, 
recently discussed by Biancalana and Creatore in the context of pulse envelope 
equations in some semiconductor (e.g., ZnCdSe / ZnSe superlattice) waveguides [3]. 
 
A new spatiotemporal model 
 

   Here, we report on our new approach to nonlinear pulse modelling, where the 
classic “SVEA + Galilean boost” device is omitted. Mathematical and computational 
methods may be deployed that are similar to those used over the past 12 years to 
analyze nonlinear beams [4,5].  Of interest is the normalized scalar pulse equation [6] 
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where u is the envelope, (, ) denote time and (longitudinal) space coordinates, 
respectively,  is a ratio of group speeds, s = ±1 flags the sign of the temporal 
dispersion (+1 for anomalous, 1 for normal),  is a small parameter [that can 
assume either sign but has magnitude << O(1)] capturing spatial dispersion [3,6], and 
 quantifies the strength of the quintic nonlinearity relative to the Kerr (cubic) effect. 
 

   The precedent for using models such as Eq. (1) was set more than 30 years ago 
[7], but the approach seems to have received little subsequent attention [6]. Full 
convergence to conventional pulse theory is uncovered in a simultaneous multiple 
limit. One of the key results, and also one of the most interesting, is the velocity 
combination rule for spatiotemporal solitons. This law, which is geometric in nature 



Fig 1. Spontaneous growth and development (in 
frequency space) of modulational instability in a 
continuous-wave solution of Eq. (1).  The most 
unstable frequency is denoted by p0. 

Fig 2. Self-reshaping of a perturbed bright pulse 
towards a stationary state (i.e., an exact soliton) 
of Eq. (1). 

and independent of system nonlinearity, is strongly reminiscent of the way velocities 
add together in relativistic kinematics. In fact, when sgn(s) = +1, there is a one-to-
one mapping with special relativity theory. Deeper insight can be gained by 
considering the transformation laws for Eq. (1), which show that the velocity 
combination rule is an intrinsic property of the model itself, rather than a property of 
particular (e.g., soliton) solutions. 
 
Solitons and stability 
 

   We will give an overview of our 
investigations into Eq. (1) and related 
models (where the nonlinearity is 
generalized to dual power-law form with 
rationally-related exponents). The fully- 
second order modulational instability 
problem for continuous-wave solutions 
can be solved exactly, and numerical 
computations have confirmed the 
validity of predictions made by linear 
analysis (see Fig. 1). 
 

   A range of exact analytical solitons 
will be reported, including: bright-
hyperbolic [8], bright-[8] and dark-[9] 
algebraic, and boundary [10] solutions. 
Their space-time geometry will be 
considered in detail. New parameter 
regimes (including a type of intrinsic 
bistability) that have no counterpart in 
the spatial domain [4,5] (namely, 
regimes where  < 0) will be given, and 
a wide range of generic features 
identified. Crucially, the properties of 
spatiotemporal solitons are found to 
depend on the sign of the product s, 
rather than sgn(s) or sgn() separately. 
Extensive simulations also examine 
their role as robust attractors in the 
system dynamics (see Fig. 2). 
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