
 

Time domain modelling offers many advantages for room acoustics investigations. It directly generates the 

room’s impulse response which is an important piece of information for acoustic quality assessment. It is 

efficient for broadband calculations over a short time duration. The most common room acoustics modelling 

method is currently based on geometrical room acoustics in the time domain. It is efficient and provides practical 

approximations. However, its accuracy is ultimately limited by its approximation of wave behaviours. Wave 

based models, which are more accurate but expensive, have been gaining interests due to more efficient 

numerical schemes. One example is the finite difference time domain method. This paper gives some examples 

of developments in this method for room acoustics. Another example is the time domain boundary element 

method. Although it is harder to implement, it has an advantage that a change in source or room does not require 
complete recalculation of the interaction matrix. This is useful for time variant simulation or auralisation. Here 

we also introduces the concept of ‘wave matching’, and see if it has the potential to be developed into a new, 

efficient time domain wave based modelling method. 

1 Introduction 

Sound naturally occurs in the time domain. In room 

acoustics the key feature that determines the acoustic 

quality is the room impulse response, which is a time 

domain feature. Time domain modelling should therefore 

be a more logical way to study room acoustics than 

conventional frequency domain methods. The room 

impulse response is also the pre-requisite for post-

processing such as auralisation, which has become a 

common tool for architectural acoustics design in practice. 
Compared with frequency domain method, time domain 

modelling allows a one-pass broadband calculation. It can 

be said that time domain methods offer a distinct advantage 

in room acoustics design, and in fact in many other areas 

that involve interaction of waves with objects. Current 

commercial room acoustic simulation software almost 

exclusively approximates the propagation of sound 

geometrically - early reflections are typically evaluated 

deterministically using a variant of the ray tracing/image 

source method, which operates in the time domain. It is 

however somewhat ironic that results from these models are 
often presented in the frequency domain, in terms of room 

acoustic parameters in difference octave frequency bands. 

Part of the reason is that these models mostly trace the 

energy arrivals at the receiver, thus creating a histogram of 

reflections, rather than the true impulse response. Ignoring 

wave effects allows efficient computation algorithms at the 

expense of accuracy. 

The application of energy-based geometric modelling to 

large space acoustics is well established nowadays. Its 

accuracy has been tested through a series of international 

round robin tests, e.g. [1, 2], and it has been accepted by 

many architectural consultants as a design tool. Over the 
last 2 decades, many improvements have been made to 

allow it to handle certain wave effects. Scattering 

coefficients and diffuse reflection algorithms were 

introduced to approximate non-specular reflections [3].  

Diffraction can also be supported by implementing wedge 

diffraction formula [e.g. 4] or stochastic scattering of rays 

next to diffraction edges [5], although these often result in a 

substantial increase in computation costs as multiple order 

of diffraction are simulated. It is also possible to include 

phase information in the ray tracing processing or in the 

image method [6] to allow for wave interference effect to 
be modelled, but the extent that this can approximate 

complex boundary conditions is still not tested in realistic 

room conditions. 

Methods that directly model wave effects, such as 

boundary element and finite element methods, offer better 

accuracy, especially at lower frequencies or in smaller 

rooms, at the expense of computational cost. These 

methods are traditionally applied in the frequency domain. 

One key reason for this is that the problem is much easier to 

formulate by breaking down the sound field and the 

boundary condition into their frequency components. The 
frequency domain boundary condition in particular is much 

more established than its time domain equivalent. It could 

be argued that a time domain solution is only an inverse 

Fourier Transform away from a frequency domain solution. 

However this will not be an efficient process if only the 

early part of the impulse response is needed. In such cases a 

direct time domain solution will be desirable. This paper 

will look at some of the popular time domain modelling 

methods, namely the finite difference time domain method 

and the time domain boundary element method, and 

introduces the new concept of ‘wave matching’, which aims 
to bridge the gap between wave and geometric models. 

2 Finite Difference Time Domain 

Method 

In recent years, the finite difference time domain 
(FDTD) method has become a popular wave based time 

domain method in room acoustics. A significant advantage 

of the method is that the basic FDTD equations for 

acoustics, whether they are based on the first order Euler 

and continuity equations or the single second order wave 

equation, are fairly straightforward and easy to implement, 

and therefore allow a model to be quickly established. The 

calculation can also be easily accelerated via parallelization 

such as through the use of GPGPU. However, there are 

several aspects that required improvements for the method 

to become practical for room acoustic simulation. The 

modelling of frequency dependent boundary conditions, the 
control of dispersion errors, and the implementation of 

sources are among the main issues of concern in the current 

development of the FDTD method in the acoustic field. The 

dispersion error, which appears as the spherical wave is 

propagated through a rectangular grid, needs to be 

suppressed by either a very fine mesh, with tens of 

sampling points per wavelength (e.g. 20 per λ) at the 

highest frequency of interest, or by a high order 

interpolation scheme.  This raises the computation cost, 

although this can be somewhat offset by GPGPU 



 

acceleration. Among the other issues, the ability to handle 

frequency dependent boundary impedance on irregular 

boundary geometry is fundamental to room acoustics 

applications. Also, the problem of source excitation has not 

received much attention compared to others, although the 

implementation of the source has a significant impact on 

the time response produced by the simulation particularly in 

room acoustics. In here, we will look at some recent 

developments in these two areas. 

2.1 Simple transparent source 

In FDTD simulation, being in the time domain, an 

excitation pulse can simply be assigned to a pressure node 

where the source should be. In terms of implementation, 

there are different implementation methods that are referred 
to by terms that are also frequently used in electromagnetic 

field - “hard”, “soft” and “transparent” sources. In 

particular, a “transparent” source is seen as the best option 

for determining the system response to a pre-defined 

excitation without suffering from numerical artefacts 

created by other source types. However, a transparent 

source implementation requires knowledge of the grid 

impulse response, which has to be pre-calculated. In a room 

with boundaries, the grid response requires a very large 

computational domain to avoid reflections from the 

boundaries from interfering with the source node. It is 
therefore rather impractical due to the long calculation time 

required. 

In a soft source implementation, the driving function is 

simply superimposed on the source node's normal response 

due to the FDTD update equations. However, the added 

changes give rise to a pressure function at the source node 

that is different from the intended excitation. It is therefore 

necessary in such an implementation to 'measure' the 

response at the source node, and use that to normalise the 

results at other nodes. This may be why soft source 

excitation has not seen much use in existing acoustics 

literature. 

 

Figure 1 Time response in a rectangular room calculated by 

FDTD method using a Gaussian pulse with different pulse 

widths and a hard source implementation. 

The simplest way to excite a FDTD grid is to impose a 

prescribed driving function on the source node. This source 

implementation is known as the hard source 

implementation, as the source node is not affected by the 

surrounding fluid (or nodes). Unfortunately, when the 
source is implemented in this way, an abrupt change is 

created between the update equations used by the source 

node and the surrounding nodes that could give rise to 

massive artifacts in the numerical results [7]. Fig.1 shows 

an example of such an artifact created by a hard source. The 

low frequency modulation seen in the time response is 

caused by holding the source node at zero after the initial 

Gaussian pulse, which caused in a build up of net 

overpressure that oscillates within the grid. 

Obviously, it will be desirable to construct a source 

implementation that has the characteristic of a transparent 

source but has the simplicity of a hard or soft source. In 

Ref.[7], it was shown that such a construction is possible by 

a suitable choice of the source pulse, and allow the source 
node to revert from a hard source node to a soft source node 

after the main pulse has ended. 

Since the occurrence of the low frequency modulation is 

linked to the lack of rarefaction at the end of the Gaussian 

pulse, the first logical step to take to eliminate the problem 

is to use a more realistic pulse shape. In this context a sine 

modulated Gaussian pulse, gs(t), is a suitable choice. 

gs 𝑡 = −𝐴𝑒
−
 𝑡−𝑡0 

2

2𝜎2 ∙ sin 𝜔0 𝑡 − 𝑡0   
 

Using this pulse in a hard source implementation 

eliminates a large part of the low frequency modulation 

seen in Fig.1. However, some errors still persists, because 

the source node is still held at zero after the main pulse has 
ended, rather than following the normal FDTD update wave 

equations as in the surrounding nodes. A further step to 

remedy this is therefore taken to allow the source node to 

follow the update equation a short time after the main pulse, 

essentially reseting the source from a hard source to a soft 

source. This is termed a “time limited sine modulated 

Gauusian hard source” (TLSGH) in Ref.[7]. As long as the 

time limit is set after the main pulse has ended, the transit 

does not cause significant errors and the source appears as a 

true transparent source. Fig.2 shows the frequency response 

corresponding to Fig.1 but with this TLSGH 
implementation, with the time limit set at times when the 

pulse has decayed to less than 0.03% of its peak value. The 

FDTD results are compared with that calculated by the 

frequency domain boundary element method, which does 

not have the source implementation problem. Clearly the 

low frequency error has completely disappeared. In another 

word, the pulse response and frequency spectrum produced 

by the TLSGH are exactly those created by a true 

transparent source with the same pulse shape. At the same 

time, the TLSGH has the same computation efficiency as 

simple hard and soft source implementations. 

 

Figure 2 Frequency response at receiver of Fig.1 but 
calculated by the TLSGH source technique in FDTD, 

compared with BEM. 
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2.2 Frequency dependent boundary 

condition on irregular surfaces 

The modelling of the interaction of sound wave with a 

boundary is a more challenging subject in the time domain 

than in the frequency domain. To implement proper 

boundary conditions in a time domain method, we first 

require a representation of the acoustical property of 
common wall surfaces, which is commonly defined in 

terms of impedance, reflection coefficient or absorption 

coefficient. Since most of these quantities are defined or 

measured in the frequency domain, we will need to 

determine how to transform these data into the time 

domain. This needs to be done carefully, since it has been 

shown that not all frequency domain surface impedance 

models are causal. In theory, the boundary condition can be 

presented as an impulse response to be convoluted with the 

FDTD update equations. Unfortunately, this is a rather time 

consuming process, especially so considering the large 
number of reflections involved in room acoustics.  

There are various approximations [8-10] that can be 

used to speed up the calculation. For frequency dependent 

boundary condition, the impedance ZB, as a function of the 

angular frequency ω, needs to be represented by a suitable 

rational function to ensure causality and stability. A 

convenient means of achieving this is to derive an 

approximation using a multi-degree-of-freedom (DOF) 

mechanical system representation. For low to mid 

frequency calculations, up to about 500Hz, a 2 DOF system 

proves to be effective for common fibrous type materials. 

Once approximated, the impedance condition equation can 
be transformed into the Z-domain using bilinear transform, 

and then incorporated into the FDTD scheme.  

While the implementation of frequency dependent 

boundary conditions has received much attention in FDTD 

modeling, the problem of irregular boundary geometry has 

not received as much attention. If the boundary geometry 

does not fit into the regular mesh grid used for the FDTD 

calculation, a straightforward standard approach is to 

approximate the boundary using stepwise, stair-step type 

edges/patches that fit the mesh grid. For boundary 

conditions that are hard, the error appears to decrease 
significantly when nominally 40 points per wavelength is 

used [11]. However, for absorptive conditions that have 

large phase changes, the error in stair-step approximation 

could remain significant even at high grid resolutions. In 

addition, the existence of multiple reflections off the 

surface in a room acoustics setting may also compound the 

error. There is, however, no published work analyzing the 

accuracy of this stair-step approach for room acoustic 

simulations.  

A more accurate means of dealing with arbitrary 

geometry is to use a conformal algorithm. A locally 
conformal technique that was used for electromagnetic 

FDTD modelling has been adopted for rigid surfaces in 

acoustics FDTD simulation [11]. Here, this approach is 

extended to include frequency dependent impedance 

surface, and will be used to analyze the error due to a stair-

step approximation in a room acoustics setting. 

The basic conformal formulation can be developed from 

an integral equation formulation. By integrating the 

acoustics governing differential equation over a volume V, 

which is bounded by a surface S, and then using the 

divergence theorem, one obtains, 

∂

∂𝑡
 𝑝𝑑𝑉

𝑉

= −𝜌0𝑐
2  ∇ ∙ 𝐯𝑑𝑉

𝑉

= −𝜌0𝑐
2  𝐯 ∙ 𝑛𝑑𝑆

𝑆

 

 
The integration can be applied to a cell in the FDTD 

that is intersected by an arbitrary boundary. Fig.3 shows a 

nominal intersected cell. It is assumed that the pressure 

node at (i,j,k) in the figure is located at the centre of the 

undistorted cell, and the pressure is constant over the entire 

volume of the cell, regardless of whether the centre is inside 

or outside the intersecting boundary. 

 

Figure 3 A nominal rectangular FDTD grid cell intersected 

by an arbitrary boundary. 

Carrying out this integration within the cell results in an 

appropriate equation in FDTD format. The area Ab and the 

normal velocity υb are associated with the boundary 

impedance. For frequency dependent boundaries, υb can be 

calculated with the impedance formulated as a Z-domain 

filter. 

 

Figure 4 FDTD predictions against analytical solution of 
pulse reflection from a single inclined plane with constant 

admittance of 0.03. 

The case of reflection from a simple inclined plane 

surface is used to test the accuracy of the conformal 

mapping method against the standard stair-step 

approximation. The inclination is about 26° from the 

horizontal. The source and receiver are arranged to give an 

incident angle of about 50°. The rectangular FDTD grid is 

deliberately aligned with the horizontal and the vertical, so 

that the inclined surface is approximated by either stair-

steps or conformal mapping. About 34 points per 
wavelength at the upper  frequency limit of 500 Hz is used 

in the stair-step approximation, which has been found to be 

sufficient for rigid surfaces in published literature. The 

surface impedance is assumed to be frequency independent, 

so that the analytical solution from Ref.[12] can be used to 

test the accuracy of the FDTD calculations. The first case 
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uses a reflective condition, with the surface admittance 

equals to 0.03. The result is shown in Fig.4. As expected, 

both FDTD approximations give good agreement with the 

analytical solution. 

 

Figure 5 FDTD predictions against analytical solution of 

pulse reflection from a single inclined plane with constant 

admittance of 0.5. 

A second test is done with a soft surface condition, with 

the admittance raised to 0.5. The result is shown in Fig.5. 

With a soft surface, the error of the stair-step approximation 

becomes apparent, while the conformal mapping maintains 

excellent agreement with the analytical solution. Further 

testing suggests that the error from the stair-step 

approximation tends to increase with softer surface, and at 
larger (more near glazing) incident angles.  

 

Figure 6 Test room with a tilted boundary that has a 

frequency dependent impedance. 

In order to analyze the effect of the stair-step 
approximation in modeling room acoustics, a simple room 

with a tilted boundary is used, see Fig.6. The spatial 

resolution again gives about 34 points per wavelength at 

500Hz. The TLSGH source implemented was used for the 

calculations. To simplify the comparison of the results, only 

the tilted boundary had a frequency dependent impedance. 

All other wall surfaces were fairly hard, with a constant 

admittance of 0.004. The frequency dependent impedance 

on the tilted boundary was simulated as rigidly backed 

fibrous material. The flow resistivity, σ, and the depth of 

the material were varied to give different absorptive 

properties. Figure 6 shows the calculated results for a fairly 
soft setting, with σ=32k Pa/m2 and depth=100mm. The 

magnitude of the reflection coefficient from this boundary 

drops slowly to about 0.5 at the highest frequency tested, 

500Hz, with the phase change remains within about 20°. 

The legend ‘NI-2DOF-I’ corresponds to the 2DOF 

formulation for the impedance, while ‘NRC-MP-I’ 

corresponds to an approximate impedance obtained from 

augmenting an equivalent absorption coefficient with a 

minimum phase to simulate practical cases where only 

absorption coefficient rather than impedance is known. The 

text ‘standard’ refers to calculation using standard stair-step 

approximation. All are compared with the result from a 

boundary element calculation. Even with just one 

absorptive surface in the room, the stair-step approximation 

shows significant errors throughout the entire frequency 

range. 

 

Figure 7 Comparison of FDTD calculated frequency 

responses with an absorptive titled boundary against BEM. 

These test cases clearly show that using conformal 

mapping for complex boundary conditions in FDTD 

modelling has very good accuracy – comparable to that 

produced by the BEM. It is far more accurate than the stair-

step approximations, which becomes more inaccurate when 
the boundary becomes more absorptive. 

For FDTD calculations, we have shown that a simple 

formulation, namely the TLSGH, can be used to produce 

transparent source characteristics, and that stair-step 

approximation should not be used to model absorptive 

irregular boundaries. Instead a conformal mapping method 

shows excellent accuracy in all test cases. The combination 

of TLSGH and conformal mapping should make FDTD a 

lot more applicable to room acoustics calculations. 

However, FDTD calculation remains time consuming 

because of the high grid and time step resolution required to 

suppress dispersion errors. GPGPU acceleration would help 
to reduce computational cost, but it would still be very 

expensive relative to standard geometrical models. The 

conformal mapping approach also requires intrigue 

handling of geometry. Hence it is still necessary to look at 

alternative time domain modelling techniques. 

3 The Boundary Element Method 

The Boundary Element Method (BEM) has been studied 
in detail by the acoustics research group at Salford for 

nearly twenty years.  It has the advantage of requiring fewer 

degrees of freedom than volumetric methods such as 

FDTD, since it only requires the boundary between the air 

and obstacle to be modelled, and this reduced 

dimensionality has the potential to provide substantial cost 

savings for large and/or high frequency problems.  Schemes 

for efficiently representing and evaluating these highly 

oscillatory problems are attracting substantial research 

interest [13] and the dense interaction matrices may be 

compressed using the Fast Multipole Method. 
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Most BEMs assume time-harmonic excitation but this 

assumption may be dropped leading to the time domain 

BEM.  This approach was first published in 1962 but 

computational cost and stability issues plagued the method 

and only in the last decade or so has the rate of progress 

increased and commercial implementations appeared.  In 

particular the following have been implemented: the 

Combined Field Integral Equation (CFIE) [14], being the 

time domain equivalent of the Burton and Miller 

formulation to addresses the non-uniqueness of the 
complementary interior problem; Fast Multipole style 

acceleration [15]; Galerkin schemes, which have been 

proven to have unconditional stability [16,17]; Convolution 

Quadrature method [18], which offers both a rigorous 

mathematical analysis and excellent computational cost 

scaling.  At Salford we have focussed upon the more 

practical aspects of transferring some of our frequency 

domain models of acoustic treatments to the time domain. 

This has required development of representations of: bodies 

with welled sections, using a delayed reflection boundary 

condition [19]; bodies which comprise both thick sections 
and thin fins [20]; bodies with arbitrary frequency 

dependent surface impedance, using digital reflectance 

filters [21]. 

In summary it can be seen that although FDTD is 

currently the dominant time domain wave method in use in 

computational room acoustics, BEM research is very active 

and the advances being made, particularly in the applied 

maths field, may well allow the time domain BEM to 

finally mature and become widely used in acoustic 

simulation. 

4 Introducing ‘Wave Matching’ 

This section of the paper describes a prototype time 

domain BEM formulation which we are calling ‘Wave 

Matching’.  In essence this aims to reflect how we think of 

acoustic scattering; as a sum of geometrically reflected and 

diffracted components with the former being dominant at 

high frequencies.  We believe time domain BEM a good 

place to start in a search to unify wave and geometric 

approaches since both classes of algorithm work with 
surface geometry and analytically compute how elementary 

sound sources propagate through the media unobstructed, 

so the problem is one of computing the reflections and 

scattering from obstacles. The main difference between the 

algorithms is that BEM attacks the problem by numerical 

discretisation of the total field whereas geometric methods 

trace reflections individually according to a high-frequency 

asymptotic approximation.   

Ideally we would like to retain the positive 

characteristics of both algorithms.  Geometric methods are 

efficient because they trace a relatively small number of 
sound propagation paths; this is equivalent to seeking great 

sparsity in BEM interaction matrices.  However they offer 

no way to re-unite sound energy arriving at a surface from 

different propagation paths, so suffer from an exponential 

increase in the number of propagation paths with each order 

of reflection; this is particularly severe when edge 

diffraction terms are included [4]. Time domain BEM in 

contrast uses a constant number of degrees of freedom 

versus time and any sound wave arriving at the surface is 

mapped onto a weighted sum of interpolating functions. 

 

In the following sections we will show that, given 

appropriate interpolation functions, the scattering integral 

over a surface which is large with respect to wavelength 

may be stated as a geometric term plus a diffracted term 

involving only a 1D edge integral.  Then we will examine a 

Gallerkin testing integral, discuss its motivation, 

interpretation and how it might be evaluated efficiently 

with the proposed interpolation scheme, and finally show 

results that suggest that doing so produces interaction 

matrices with a very small number of significant 
coefficients.  Despite the fact that this paper concerns 

developments in time domain modelling many of the 

statements which follow will be given in the frequency 

domain.  This is because the frequency domain BEM 

formulation is more succinct and familiar to a wider 

audience, plus the numerical test case was implemented 

using harmonic functions.  How the algorithm might be 

implemented in the time domain is outlined alongside. 

4.1 Choice of interpolating functions 

A BEM to model scattering of sound by an obstacle has 

three distinct phases depicted in Figure 8.  First the incident 

sound    arriving the obstacle from the sources is 

calculated, then the total sound    at the surface of the 

object is solved for by considering the mutual interactions 
between parts of the obstacle, and finally the scattered 

sound    at any receivers is calculated from this total 

surface sound.  The total sound on the surface is 

approximated by a weighted sum of a set of interpolation 

functions       and the primary objective is to solve for 

the set of weights   : 

 

              

 

 

 

In most BEM formulations the surface is partitioned 

into elements which are small with respect to wavelength 

and only a small number of interpolation functions will be 
non-zero on each element.  Each interpolation function has 

an associated testing function   
     used to evaluate what 

component of the incoming sound should be mapped onto 

its coefficient; in a Galerkin scheme these are typically the 

adjoints of the interpolation functions and in a collocation 

scheme they are delta functions located at the collocation 

points.  In both cases the objective is to achieve a scheme 

where the function pairs are orthogonal over the surface 𝑆: 
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Figure 8 Solution process in a BEM model 
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There are however other families of orthogonal 

functions which could satisfy this criteria.  One option 

which has attracted attention for the frequency domain 

BEM is the use of oscillatory interpolation functions 

[22,23], since these might be able to capture some of the 

behaviour of the solution allowing larger elements for the 

same accuracy.  However because the oscillatory functions 

are multiplied by polynomial interpolators it is unclear how 

the integral transform described in the next section might be 

applied, so in this test case we instead apply a 2D Fourier 
series decomposition to the sound on each face of the 

obstacle.  The interpolation functions are easiest to state if 

four summation indices are used: 
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Here the   refers to the  th face 𝑆 , defined by a corner 

vertex 𝐯  and two perpendicular edge vectors      and     .  

  and 𝑛 are the indices of the Fourier Series on the surface, 

so may take any integer value, and     .  The surface 

normal unit vector     is uniform over 𝑆  and points into the 

medium.  The wave direction vectors          are given by: 
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The first two terms of the wave vectors define the 

Fourier series decomposition over 𝑆 .  The right-most term 

is zero on 𝑆  (since   − 𝐯  ∙            𝑆 ) and exists 
for the purpose of making the interpolation function satisfy 

the wave equation; the motivation for this will become 

apparent in the next section.  The wave vectors therefore 

define a family of propagating plane waves in the medium, 

commonly known as a wavenumber spectrum, and the 

interpolation functions are 

snapshots through them on the 

surface hence can capture 

oscillations at wavelengths 

which at first do not appear to 
match the wavelength in air 

(see inset).  The term   is 

necessary to distinguish 

between the two possible waves which may cause the same 

surface pressure; one with     travelling out of the 

obstacle and one with   −  travelling in to the obstacle.  

It is worth noting that for large magnitudes of   and 𝑛 the 

term inside the square root may become negative and the 

surface normal component of    become imaginary; these 
are evanescent wave terms and valid parts of the solution. 

The physical interpretation of the above scheme as a 

family of travelling plane waves makes it easy to imagine a 

time domain equivalent, where the variation of the waves 

with time and/or propagation direction is no longer strictly 

harmonic and phase lag manifests as delay hence 

𝑒    𝐯  ∙         is replaced by   𝑡 −   − 𝐯  ∙         𝑐  , 

where   is some arbitrary interpolating function in time.  

The Fourier series decomposition over the surface works 

neatly because the frequency domain formulation implies 

that a Fourier decomposition has already been applied in 

time.  To create a transient version of the scheme we would 

therefore look to a system of non-periodic orthogonal basis, 

such as wavelets, and apply those to both space and time in 

an equivalent manner. 

4.2 Efficient computation of scattering 

The scattering integral evaluates the scattered sound    

at location   due to the total sound distribution    on 𝑆 and 

is used to evaluate the sound scattered from the obstacle 

both to receivers and back to the obstacle itself.  It is given 

here in the frequency domain but the time domain statement 

is identical except that    and   are time variant and the 
multiplications between them are replaced by convolutions: 
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        is the free space Green’s function which 

describes how sound travels from a point source at   to an 

observer at   and intuitively comprises a propagation delay 

and a reduction in magnitude with distance     −   .  In 

the frequency domain this is written as a phase lag, so 

       𝑒       , where we’ve assumed all quantities 

vary with 𝑒    ,  and in the time domain it appears as a 

retarded delta function so          𝑡 −  𝑐      .  

Sound is given as velocity potential  , a non-physical 

quantity but one which is useful as pressure and particle 

velocity may be found from it by 𝑝  −𝜌   and 𝐯  ∇ . 

The operator   𝑛      ∙ ∇  denotes the component of 

the gradient in the direction of the surface normal vector at 

  and is often called the surface normal derivative. 

It is well know that when using planar elements and 

piece-wise constant spatial interpolation functions the 

scattering integral may be transformed to a contour integral 

around the edge of each element plus a singularity term 
[24-26] allowing efficient evaluation. It appears to be less 

well known that this is just the   𝑛    term in the 

interpolation scheme above and every term in the scheme 

may be integrated in this way [27]: 
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Here    −   and                 
      if a line 

starting from the observation point   and pointing in the 

direction −         passes through 𝑆 , otherwise it is zero; 

this describes the geometric propagation zone of         .  

The contour integrand contains the interpolation function, 

the Green’s function to the receiver and a term which may 
be thought of as an ‘edge-directivity’ and describes the 

diffracted wave.  Once again the time domain statement is 

identical except that the plane wave term and Green’s 

function are replaced by their time domain equivalents and 

multiplication becomes convolution.  The integration 

process is efficient, particularly for high frequency waves, 

compared to 2D surface integration since the geometric 

term can be evaluated analytically and the diffracted term 

requires only a 1D edge integral to be evaluated. 

λsurface 

λair 



 

As is often the case, visualisation in the time domain 

makes the process easier to understand so this is depicted in 

Figure 9 for scattering by a thin square plate.  First the 

incident wave (b) is mapped onto an incoming wave and it 

scatters into the medium behind the surface section causing 

the necessary shadow effect (c,d).  The incoming wave term 

is then coupled to a matching outgoing term (e,f) by a 

frequency and angle dependent reflectance function (as in 

[21]) giving a reflected wave whose spectral content has 

been modified according to the surface impedance of the 

scattering object.  The next challenge is to efficiently match 

an arbitrary incident wave onto a family of interpolation 
wave functions; this will be discussed in the next section. 

4.3 The ‘wave matching’ testing integral 

Because the interpolating functions overlap with one 

another collocation testing is not appropriate and Galerkin 
testing integrals must be evaluated over the entire surface 

section.  Here we follow the ideas presented in 16 and 17. 

The instantaneous energy of an acoustic wave is: 
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Because our test case uses complex-valued harmonic 

functions we must be careful to respect the modulus 

operators and use complex conjugates: 
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Acoustic power flux is more commonly known as 

acoustic intensity: 

  𝑝𝐯  −
𝜌

 
   ∇    ∇   

Since   and   satisfy the wave equation they are related 

by the Energy flux relation    −∇ ∙   so the divergence 
theorem may be applied: 
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Ultimately the aim is to integrate this with respect to 

time and define an energy norm over 𝑉 (as is done in 16 

and 17), but since our test case is in the frequency domain 

we may simply use the fact that energy is constant versus 

time hence      and by substitution: 
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Noting that   has 𝑒     time dependence whereas   has 

𝑒    so we have: 
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The similarity of this statement to the scattering integral 

is quite striking; if   is replaced by   then the integrals are 

identical.  The suggests an interesting interpretation of the 

scattering integral, that instead of representing a sum of 

monopole and dipole sources on 𝑆 it is instead measuring 

the common energy between the wave   and a convergent 

spherical wave 𝑒         which coalesces at  .        

‘pops out’ because the divergence theorem cannot be 

applied at   since   is singular when    .  Crucially this 

similarity also suggests that it might also be possible to 

evaluate the testing integral using Stokes theorem, since the 

primary requirement for it to be applied was that the waves 

involved both satisfy the wave equation, which   and   do.  
This would mean that the testing integral could also be 

evaluated as a 1D contour around the edge of the testing 

face, greatly reducing integration cost particularly for 

oscillatory integrands.  It is also interesting to note that a 

boundary condition equivalent to the CFIE [14] arises if   

is replaced by 𝑒     ∙ , being the conjugate of a plane wave 

travelling into the obstacle. 
To form a BEM scheme we will substitute each of the 

testing functions         
  (which are the conjugates of the 

interpolation functions) into   and use        , where 

   will be computed using the scattering integral.  This 

result is the numerical scheme which may be readily solved 

by collapsing the indexes into a matrix equation: 
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(a) (b) (c) (d) (e) (f) 

Figure 9: First order scattering by a square plate illuminated by a plane wave at 45°: a) Total; b) Incident;  

c) Shadow (geometric); d) Shadow (diffraction); e) Reflection (geometric); f) Reflection (diffraction). 

 



 

4.4 Interactions Coefficients 

In what follows we consider evaluation of the   
coefficients for a test case scheme which uses planar 

rectangular surface sections.  We are interested in whether 

the wave matching method will start to behave like a 

geometric method as the frequency is increased. Because 

the interpolation functions form a spatial Fourier series over 

the surface sections the double surface integral may be 

quickly evaluated using a four-dimensional FFT.  We may 

also substitute the following relations where the scalar 

product terms are constant over the surface sections and 

may be brought outside the integrals: 
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 𝑛 

 −    ∙                 
  

 

Our test case is to evaluate the interactions between the 
interpolation functions on two 1m squared planar surface 

sections spaced 1m apart (see Figure 10).  Their interaction 

was evaluated using both conventional piecewise-constant 

elements and the plane wave interpolation functions 

described above so that comparisons might be made.  In 

both cases 32 elements or FFT nodes were used in each 

direction giving 32 × 32 × 2 = 2,048 degrees of freedom on 

each panel (the 2 is to account for the upward and 

downward wave directions) and 2,0482 = 4,194,304 

interactions between them. 

The histogram below shows the magnitudes of the 

interaction coefficients computed using elements (red) and 
the new wave matching scheme (green), each normalised in 

magnitude (horizontal axis) to their largest value, computed 

for     , so four oscillations in 1m.  The main result 

here is that the magnitudes of the element interactions are 

all bunched around a similar range, so almost all of them 

are required to give an accurate representation of the 

interaction from 𝑆 to 𝑆 , whereas the vast majority of the 

wave matching interaction coefficients are over 100 times 

smaller than the largest.  Figure 12 shows a zoomed in view 

of the bottom left of Figure 11 (without the element 

interactions) so the very small number of significant wave 

matching interactions can be seen.  Only 106 interactions 

are larger than one tenth of the largest, and only 5806 are 

larger than one hundredth. Compared to the total number of 

interactions in the matrix (4,194,304) these are very small 

numbers.  In contrast the element based discretisation has 

around 1,000,000 interactions larger than one tenth of the 

largest, and almost all are larger than one hundredth.   
 

 

Figure 12: Zoom in on bottom right of Figure 11. 
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Figure 11: Histogram of the magnitude of interaction coefficients normalised to their larges value. 
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Figure 10: Numerical test case.  Two 1m2 

parallel planar surface sections spaced 1m apart. 

 



 

This is very positive result for the wave matching 

scheme.  In addition the largest coefficients all satisfy 

  𝑝, 𝑛   , and        , so the scheme has 

correctly matched the components that have a strong 

geometric similarity (  and   must both be positive since 

the scheme is looking for waves travelling upwards from 

𝑆 to 𝑆 ).  Ideally this characteristic will also mean that the 
number of significant interactions rises slowly with 

frequency, as the number of waves with a strong geometric 

overlap will remain small.   

Figure 13 depicts this trend for the ‘one tenth of largest’ 

and ‘one hundredth of largest’ measures discussed above.  

It can be seen that the number of significant interactions 

does rise with frequency; a numerical fit shows this to be 

approximately with   .  This is perhaps unsurprising since 
the wavenumber spectrum will become more densely 

spaced in angle as   increases, meaning more interpolation 

modes will geometrically radiate onto the other surface 

section.  However it still performs vastly better than the 

standard    interactions trend that conventional surface 
elements dictate, suggesting it would be much more suited 

to simulating high frequency scattering than standard BEM 

methods are. 

 

 

Figure 13: Number of significant interactions versus 

frequency 

5 Conclusion 

Here we have given an overview of time domain 

modelling for Room Acoustics, including the Finite 

Difference Time Domain method and a new variant of the 

time domain Boundary Element Method called ‘Wave 

Matching’.  As computation power continues to increase 

these are likely to gain further popularity as acoustic 
prediction tools. 
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