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A generic nonparaxial model for pulse envelopes is presented. Classic Schrödinger-type descriptions of

wave propagation have their origins in slowly-varying envelopes combined with a Galilean boost to the

local time frame. By abandoning these two simplifications, a picture of pulse evolution emerges in which

frame-of-reference considerations and space-time transformations take center stage. A wide range of

effects, analogous to those in special relativity, then follows for both linear and nonlinear systems. Explicit

demonstration is presented through exact bright and dark soliton pulse solutions.
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The slowly-varying envelope approximation (SVEA) is
universal in the treatment of wave phenomena [1]. It is
routinely deployed across a diverse range of contexts, from
photonics and quantum mechanics, to hydrodynamics and
plasma physics. One is often concerned with describing the
envelope modulating a physical wavelike quantity (such as
electric field, fluid velocity, or ion density) with an under-
lying rapidly oscillating carrier component. The SVEA
(which assumes that the longitudinal modulation is slow
compared to the scale-length of the carrier oscillation)
tends to go hand-in-hand with a Galilean boost to a refer-
ence frame moving at some characteristic speed. Together,
the SVEA and subsequent Galilean boost constitute a
mathematical device that has been applied with great suc-
cess over many decades. An obvious question to pose is:
what happens if this device is omitted?

In this Letter, we provide some surprising answers to
that seemingly straightforward question. For clarity, a sim-
ple nonlinear system, applicable in a wide range of physi-
cal contexts, is chosen for analysis. We find that merely
accommodating second-order temporal dispersion without
the SVEA introduces unexpected features; a study of the
generic interplay between spatiotemporal dispersion and
nonlinearity uncovers aspects expected to have general
implications for pulse characteristics in linear and non-
linear systems. Such a nonparaxial model is derived for a
particular context of optical pulses in nonlinear wave-
guides. Analysis includes Helmholtz soliton theory in the
time-domain, where the governing equation differs struc-
turally from those describing Helmholtz soliton beams [2].

Results furnish a mathematical framework beyond that
of conventional models and which is rich in spatiotemporal
considerations. When spatial and temporal dispersive ef-
fects are both at second order, the structure of the model

allows many of its predictions to be interpreted within a
framework that is closely akin to Einstein’s special theory
of relativity (pulse propagation problems are rooted in
notions of observers and frames of reference). At the heart
of our analysis lies a set of space-time operations related to
the Lorentz coordinate transformation [3]. Derivation of
the optical model involves some well-known steps (e.g.,
introduction of wave envelopes and Fourier decomposi-
tion of the temporal dispersion operator). However,
the ‘‘SVEAþ Galilean boost’’ device is abandoned and
we instead remain in the laboratory frame. Such a choice
is clearly allowed physically; it is, after all, the frame
in which experiments are typically performed and mea-
surements made [4]. This is a fundamental feature
that distinguishes our analysis from many standard
treatments [5–8].
For few-picosecond pulses at communication wave-

lengths in single-mode silica fibres, it is reasonable to
assume the SVEA [9]. The same cannot necessar-
ily be said for light in some semiconductors (e.g.,
ZnCdSe=ZnSe superlattices) with spatial material disper-
sion (an effect allied to dynamics of polaritons in the
medium). The seminal analysis of Biancalana and
Creatore [10] probed the role of spatial material dispersion
in scalar nonlinear pulse physics by deriving a single
leading-order contribution term that can describe its effects
in certain parameter regimes. This term, proportional to a
second-order longitudinal derivative, can combine with the
corresponding generic Laplacian term in wave descriptions
(that the SVEA discards). A Galilean boost applied to the
resulting Helmholtz-type model can be followed by ne-
glecting a cross-derivative term [10] to render analysis
similar to that of nonlinear beams [2]. Here, we examine
a more general and exact governing equation that captures
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second-order spatiotemporal dispersion without either
approximation.

A scalar electric field travelling down the longitudinal
axis z of a waveguide can be represented by Eðt; zÞ ¼
Aðt; zÞ exp½iðk0z�!0tÞ� þ c:c:, where Aðt; zÞ is the enve-
lope, t is time, and c.c. denotes complex conjugate. The
optical carrier frequency and wave number are !0 and
k0 ¼ n0!0=c, respectively, where n0 is linear refractive
index at frequency !0, and c is the vacuum speed of light.
The Fourier transform of the pulse envelope satisfies

½@2=@z2 þ i2k0@=@z þ k2ð!Þ � k20� ~Að! � !0; zÞ ¼ 0,
where the propagation constant kð!Þ depends implicitly on
the temporal dispersive properties of the waveguide [9,11].

Anticipating ~A to remain localized near !0, one has
k2ð!�!0Þ�k20’2k0½kð!�!0Þ�k0� and kð!�!0Þ�
k0’k1ð!�!0Þþðk2=2Þð!�!0Þ2, where kj � ð@jk=
@!jÞ!¼!0

for j ¼ 0� 2. For a Kerr-type nonlinearity,

the dimensionless envelope u satisfies

�
@2u

@�2
þ i

�
@u

@�
þ �

@u

@�

�
þ s

2

@2u

@�2
þ juj2u ¼ 0: (1)

Normalized space and time coordinates are � ¼ z=L and
� ¼ t=tp, respectively, where tp is a reference pulse dura-

tion and L ¼ t2p=jk2j. The sign of group velocity dispersion
(GVD) is flagged by s ¼ �sgnðk2Þ ¼ �1 (þ 1 for anoma-
lous; �1 for normal), and � � k1tp=jk2j. The spatial dis-

persion coefficient � ¼ �0 þD has two contributions:
�0 � 1=2k0L is an inherent wave feature, while D is a
medium component that can be negative [10]. Finally,

u ¼ A=A0 where A0 � ðn0=n2k0LÞ1=2 and n2 is the Kerr
coefficient.

In conventional pulse physics [1,4–9,11], one assumes
an envelope slowly varying in � then neglects the first term
in Eq. (1). The linear wave operator may be simplified
further by introducing a set of local time coordinates,
�loc � �� �� and �loc � � . The governing equation
then reduces to the canonical nonlinear Schrödinger
(NLS) class, namely ½i@=@�loc þ ðs=2Þ@2=@�2loc þ juj2�
uð�loc; �locÞ ¼ 0, whose solutions describe waves in a
frame moving at speed 1=� along the � axis.
Conventionally, the term i�@u=@� is thus transformed
away by the Galilean boost. In contrast, our analysis shows
that the interplay of this contribution with other terms in
Eq. (1) can be of fundamental significance.

When implementing the Galilean boost without making
the SVEA, one obtains

�
@2u

@�2loc
þ i

@u

@�loc
þ 1

2
ðsþ 2��2Þ @

2u

@�2loc

� 2��
@2u

@�loc@�loc
þ juj2u ¼ 0: (2)

The cross-derivative term @2u=@�loc@�loc is particularly
troublesome, defying straightforward interpretation
and being awkward computationally. One could perhaps

restrict attention to solutions with �� � Oð1Þ and ��2 �
Oð1Þ, with terms at @2u=@�2loc and @

2u=@�loc@�loc assumed

to be both Oð1Þ. These solutions satisfy ½�@2=
@�2loc þ i@=@�loc þ ðs=2Þ@2=@�2loc þ juj2�uð�loc; �locÞ ¼ 0,
which is identical in structure to the spatial Helmholtz
equation [2]. However, such a level of approximation is
not in the spirit of this analysis. Since the Galilean boost
serves no useful purpose, we dispense with it and deal
directly with Eq. (1) instead.
The characteristics of Eq. (1), which are determined by

the interplay between spatial and temporal dispersion, may
be classified as relativistic [hyperbolic when sgnðs�Þ ¼
�1] or pseudorelativistic [elliptic when sgnðs�Þ ¼ þ1].
With these distinctions in mind, it is instructive to consider
transformations in the (�, �) plane. Under the coordinate
change

� ¼ �0 � V� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2s�V2

p (3a)

and

� ¼ 2s�V�0 þ � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2s�V2

p ; (3b)

which is parameterized by velocity V, the covariance of
Eq. (1) is guaranteed so long as u transforms according to

uð�;�Þ¼ exp

�
�i

sV�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2s�V2

p þ i

2�

�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2s�V2
p

�
� 0
�

�exp

�
�is�

�0 �V� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2s�V2

p þ is��0
�
u0ð�0;� 0Þ: (3c)

One then encounters the first notion of connections to
special relativity—the coordinate transformation is close
to the two-dimensional Lorentz form [3], but where � plays
the role of ‘‘space’’ and � is the analogue of ‘‘time.’’ The
correspondence is essentially exact when sgnðs�Þ ¼ �1,
in which case Eqs. (3a) and (3b) describe a skew [or a
rotation when sgnðs�Þ ¼ þ1], as shown in Fig. 1.
By considering coordinate differences �� � �2 � �1

and �� � �2 � �1, it can be shown that ��2 � ��2=
2s�þ��2 is the invariant interval between points 1 and

FIG. 1 (color online). Illustration of the relationship between
pulse durations in the laboratory frame (�, �) and the rest frame
(�0, �0). The two distinct spatiotemporal regimes are:
(a) sgnðs�Þ ¼ þ1; and (b) sgnðs�Þ ¼ �1.
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2 in the (�, �) plane. When sgnðs�Þ ¼ þ1, rotation (3)
preserves a quantity ��2 that is essentially the geometric
distance between the points (a signature of Euclidean
spaces). Conversely, when sgnðs�Þ ¼ �1, skew (3) does
not preserve ‘‘geometric distances.’’ In such a regime, the
(�, �) plane behaves more like a Riemanian space [12].

Two successive applications of transformation (3), pa-
rameterized by V0 and V, respectively, uncover the velocity
combination rule for solutions of Eq. (1):

W ¼ V þ V0

1� 2s�VV0

: (4)

This rule bears striking similarity to the addition law for
particle and wave packet (group) velocities in special
relativity (though one must be mindful that V0, V, and W
are strictly related to inverse velocities in unscaled units).
There are two other crucial points to note about Eq. (4).
Firstly, it has been derived independently of any particular
solution; secondly, it is independent of the Kerr effect. It
thus applies to a wide range of uniform nonlinearities and,
equally well, to linear systems [13].

Having considered the space-time geometry of
Eq. (1), we turn attention to exact analytical solutions.
For a lucid description of the consequences of spatiotem-
poral dispersion, we will consider only unidirectional so-
lutions. The simplest solutions are continuous wave (cw)

fields uð�; �Þ ¼ �1=2
0 exp½ið��� þ K�Þ� expð�i�=2�Þ.

Here, �0 is light intensity, � measures the deviation of
the envelope from the carrier frequency, and K is a propa-
gation constant. The dispersion relation �K2 � 1=4��
�ð�� s�=2Þ � �0 ¼ 0 prescribes families of ellipses or
hyperbole in the (�, K) plane; its two solution branches

are K ¼ �ð2�Þ�1½1þ 4��0 þ 4��ð�� s�=2Þ�1=2. The
quadratic character of the wave equation supports evolu-
tion in both forward (þ ) and backward (� ) longitudinal
senses, as model (1) recognizes the physical equivalence of
the þz and �z directions [2].

It is helpful to assess the stability of (� ¼ 0) cw solu-
tions against small-amplitude modulations. Considering a
Fourier mode with temporal frequency �p and complex

wave number Kp (whose imaginary part allows growth of

this perturbation), linear stability analysis [14] reveals that
Kp satisfies

�2K4
p � ð1þ 6��0 � s��2

pÞK2
p þ 2��p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4��0

p
Kp

þ 1
2�

2
p½12�2

p � 2ð�2 þ s�0Þ� ¼ 0: (5)

Equation (5) predicts a (� independent) long-wave modu-
lational instability for s ¼ þ1 but not for s ¼ �1, as one
might expect. Short-wave instabilities are more involved
[and depend upon sgnðs�Þ], but they do not affect physi-
cally meaningful solutions [14].

Of more interest than cw solutions are solitons. These
self-localizing and self-stabilizing pulses play a pivotal
role in the understanding of waves in nonlinear systems.

The soliton solutions vividly demonstrate some key char-
acteristics that arise from the linear wave operator in-
volved. The governing equation admits two distinct
families of exact analytical solitons. Bright families exist
in the anomalous GVD regime (s ¼ þ1) and are given by

uð�; �Þ ¼ �1=2
0 sech

�
�1=2
0

��W�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�W2

p
�
expði��Þ

� exp

�
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4��� 4��

�
�þ�

2

�s
�

2�

�

� exp

�
�i

�

2�

�
; (6a)

where �0 is peak intensity and � � �0=2. The upper
(lower) signs correspond to pulses travelling in the forward
(backward) longitudinal direction. Dark families arise in
the normal GVD regime (s ¼ �1). They comprise a (mod-
ulationally stable) cw background that supports a phase-
topological ‘‘dip’’ [2,6,10]. For brevity, we present only the
black solution here:

uð�; �Þ ¼ �1=2
0 tanh

�
�1=2
0

��W�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�W2

p
�
expð�i��Þ

� exp

�
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4��þ 4��

�
�þ�

2

�s
�

2�

�

� exp

�
�i

�

2�

�
; (6b)

where � � �0. For solitons (6a) and (6b), the net velocity
W is given by

W ¼ �þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4��� 4s��ð�þ 1

2�Þ
q : (7)

Pulses with �< 0 travel faster than those with �> 0,
while the subset of solutions that evolve forward in time are
those with �>�� (which ensures that W > 0).
When � ¼ 0, so that the pulse envelope is centered on

the carrier frequency, the intrinsic velocity is found to be

V0 ¼ �ð1þ 4��Þ�1=2. An application of combination
rule (4) then yields V ¼ ðW � V0Þð1þ 2s�WV0Þ�1,
whereupon substituting for W [from Eq. (7)] and V0, one
finds that

Vð�Þ

¼ð�þ�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4���4s��ð�þ1

2�Þ
q

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4��

p

1þ4���2s�ð�þ�Þ2 :

(8)

One can always boost to the rest frame of the solitons by
deploying transformation (3) with the velocity parameter
selected to be W [as given in Eq. (7)]. In that frame, the

pulse duration is ��0 � 2=�1=2
0 while in the laboratory

frame it is �� ¼ ð1þ 2s�W2Þ1=2��0, or equivalently,
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��

��0
¼

�
1þ 4��þ 2s��2

1þ 4��� 4s��ð�þ 1
2�Þ

�
1=2

: (9)

Hence, measured pulse duration depends explicitly upon
both system and solution parameters: ��0 is dilated to
(contracted to)��when sgnðs�Þ ¼ þ1 (� 1), as in Fig. 1.

It is essential that the predictions made by Eq. (1)
converge with conventional pulse theory. That is, one
must be able to recover asymptotic results pertaining to
the approximate equation

i

�
@u

@�
þ �

@u

@�

�
þ s

2

@2u

@�2
þ juj2u ’ 0: (10)

When �V2 ! 0, the coordinate change in Eqs. (3a) and
(3b) becomes � ’ �0 � V� 0 and � ’ � 0 while envelope
u transforms as uð�; �Þ ’ exp½�isV�0 þ isðV2=2þ
�VÞ� 0�u0ð�0; � 0Þ. Similarly, when �VV0 ! 0 the velocity
combination rule, Eq. (4), assumes Galilean form W ’
V þ V0. These results illustrate that convergence is a subtle
notion, in that �@2u=@�2 ! 0 involves more than just
simply � ’ 0 [2]. In fact, the SVEA corresponds to a
simultaneous multiple limit applied to Eq. (1) solutions.
When � ! 0, �� ! 0, and ��ð�þ�=2Þ ! 0, one
recovers

uð�; �Þ ’ �1=2
0 sech½�1=2

0 �ð�; �Þ�

� exp

�
i�ð�� ��Þ þ i

�
���2

2

�
�

�
(11a)

and

uð�; �Þ ’ �1=2
0 tanh½�1=2

0 �ð�; �Þ�

� exp

�
�i�ð�� ��Þ þ i

�
�þ�2

2

�
�

�
(11b)

for the forward solitons in Eqs. (6a) and (6b), where
�ð�; �Þ � ��W� ’ ð�� ��Þ ��� since W ’ �þ �.
The cw solutions, and predictions of their linear stability,
also reduce to the desired results [14,15]. Solitons (11a)
and (11b) are approximate solutions to Eq. (1) and exact
solutions to Eq. (10); when expressed in local coordinates
ð�loc; �locÞ ¼ ð�� ��; �Þ, they satisfy the canonical NLS
equation [5,6]. One can thus regard (�loc, �loc) as defining a
unique reference frame in which pulses with� ¼ 0 are ‘‘at
rest.’’ Importantly, no such local time frame exists for the
solutions of Eq. (1), because intrinsic velocity V0 depends
upon intensity �0.

Extensive computations, using developments of earlier
methods [16], reveal emergence of propagation-invariant
pulses when using conventional solutions as initial condi-
tions for Eq. (1) (see Fig. 2). These simulations, in combi-
nation with inverse scattering theory [17] and the
Vakhitov-Kolokolov integral criterion [18], provide strong
evidence that solitons (6a) and (6b) are robust entities with
wide basins of attraction.

In conclusion, we have analyzed a generic nonlinear
wave equation describing spatiotemporal dispersion. Its
mathematical structure permits one to draw parallels with
special relativity (distinct from a reintroduction of the
Lorentz covariance of Maxwell’s equations [3]). For
second-order spatiotemporal dispersion, any combination
of signs and sizes of dispersion coefficients leads to either
relativistic or pseudorelativistic characteristics of all sys-
tem solutions (and those of the corresponding linear prob-
lem). It is intriguing to note that conventional pulse theory
can be interpreted as the ‘‘low speed limit’’ of the more
general model (similar to Newton’s laws of motion emerg-
ing from relativistic mechanics).
Corrections to several conventional predictions of

wave characteristics (demonstrated by ��, ��2 and
�W2 terms in soliton solutions) may be experimentally
observable. Parameters � and � are independent and,
in distinct physical contexts, vary over orders of magni-
tude. For the optical context considered [10], � can
easily be Oðj�j�1Þ. In optics, higher-order temporal dis-
persion effects can also arise. Here, we accounted only
for leading terms of distinct type. This permitted explora-
tion of distinct interplays, and a focus on general contexts
and universal wave equations. We thus believe our
results will have application in the description of spatio-
temporal wave phenomena in other linear and nonlinear
contexts.

FIG. 2 (color online). Reshaping of perturbed (a) bright [with
� ¼ �10�3] and (b) dark with � ¼ þ10�3] pulses toward
asymptotic stationary states (horizontal bars denote theoretical
predictions) when � ¼ 1:0. Initial conditions are exact conven-
tional solitons with �0 ¼ 1:0.

PRL 108, 034101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

20 JANUARY 2012

034101-4



[1] Y. S. Kivshar and B.A. Malomed, Rev. Mod. Phys. 61, 763
(1989).

[2] P. Chamorro-Posada and G. S. McDonald, Opt. Lett.
28, 825 (2003); P. Chamorro-Posada, G. S. McDonald,
and G.H. C. New, J. Mod. Opt. 45, 1111 (1998).

[3] J. D. Jackson, Classical Electrodynamics (John Wiley,
New York, 1999), 3rd ed.

[4] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon,
Phys. Rev. Lett. 45, 1095 (1980); L. F. Mollenauer et al.,
Opt. Lett. 15, 1203 (1990).

[5] A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142
(1973); 23, 171 (1973).

[6] V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62
(1972); 37, 823 (1973).

[7] J. P. Gordon, Opt. Lett. 8, 596 (1983).
[8] Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron.

23, 510 (1987); Kh. I. Pushkarov, D. I. Pushkarov,
and I. V. Tomov, Opt. Quantum Electon. 11, 471 (1979).

[9] K. J. Blow and N. J. Doran, in Nonlinear Waves in Solid
State Physics, edited by A.D. Boardman (Plenum Press,
New York, 1990), p. 325.

[10] F. Biancalana and C. Creatore, Opt. Express 16, 14 882
(2008).

[11] R.W. Boyd, Nonlinear Optics (Academic Press, San
Diego, 2003), 2nd ed.

[12] H. Goldstein, Classical Mechanics (Addison-Wesley,
Philippines, 1980), 2nd ed.

[13] H. Hernandez-Figueroa et al., Localized Waves
(John Wiley and Sons, New York, 2008),
2nd ed.

[14] J.M. Christian, G. S. McDonald, and P. Chamorro-Posada,
J. Phys. A 40, 1545 (2007).

[15] Y. S. Kivshar, D. Anderson, and M. Lisak, Phys. Scr. 47,
679 (1993).

[16] P. Chamorro-Posada, G. S. McDonald, and G.H. C. New,
Opt. Commun. 192, 1 (2001).

[17] J. Satsuma and N. Yajima, Prog. Theor. Phys. Suppl. 55,
284 (1974).

[18] M.G. Vakhitov and A.A. Kolokolov, Radiophys.
Quantum Electron. 16, 783 (1973); J.M. Christian
et al., Phys. Rev. A 76, 033834 (2007).

PRL 108, 034101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

20 JANUARY 2012

034101-5

http://dx.doi.org/10.1103/RevModPhys.61.763
http://dx.doi.org/10.1103/RevModPhys.61.763
http://dx.doi.org/10.1364/OL.28.000825
http://dx.doi.org/10.1364/OL.28.000825
http://dx.doi.org/10.1080/09500349808230902
http://dx.doi.org/10.1103/PhysRevLett.45.1095
http://dx.doi.org/10.1364/OL.15.001203
http://dx.doi.org/10.1063/1.1654836
http://dx.doi.org/10.1063/1.1654836
http://dx.doi.org/10.1063/1.1654847
http://dx.doi.org/10.1364/OL.8.000596
http://dx.doi.org/10.1109/JQE.1987.1073392
http://dx.doi.org/10.1109/JQE.1987.1073392
http://dx.doi.org/10.1007/BF00620372
http://dx.doi.org/10.1364/OE.16.014882
http://dx.doi.org/10.1364/OE.16.014882
http://dx.doi.org/10.1088/1751-8113/40/7/008
http://dx.doi.org/10.1088/0031-8949/47/5/006
http://dx.doi.org/10.1088/0031-8949/47/5/006
http://dx.doi.org/10.1016/S0030-4018(01)01171-3
http://dx.doi.org/10.1143/PTPS.55.284
http://dx.doi.org/10.1143/PTPS.55.284
http://dx.doi.org/10.1007/BF01031343
http://dx.doi.org/10.1007/BF01031343
http://dx.doi.org/10.1103/PhysRevA.76.033834

