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Summary 

This paper presents an algorithm which couples the time domain Boundary Element Method 

(BEM) with a digital filter surface model.  This aims to achieve the same for transient sounds as is 

possible for time-harmonic excitation using surface impedance and the frequency domain BEM.  

Accurate representation of surface properties is crucial in obtaining realistic simulations, and the 

obstacles and boundaries typically encountered in real-world scenarios exhibit frequency-

dependent surface impedance.  In the time domain such frequency-dependency can be modelled 

using digital filters, and by this approach surface-impedance has been successfully incorporated 

into some recent Finite Difference Time Domain (FDTD) models, but the best way of achieving 

this for time domain BEM is currently unresolved.  The surface model used herein uses a digital 

filter to implement the surface reflection coefficient – the accuracy of this approach for non-

normal incidence plane waves has previously been questioned in the FDTD literature, so this 

scenario is specifically investigated and accuracy is evaluated by comparison with the analytical 

plane wave pressure reflection coefficient.  Computational cost and effect on algorithm stability 

are also considered. 

 

PACS no. 43.20.Fn, 43.20.Px 

 
1. Introduction

1
 

The Boundary Element Method (BEM) has been 

shown to be an excellent choice for simulation in 

Room Acoustics, particularly when the priority is 

to predict scattering from small objects extremely 

accurately [1].  BEM requires that only the 

boundaries between obstacles and air are modelled 

as it is known how sound travels unobstructed. 

This produces smaller, simpler meshes compared 

to volumetric methods, such as finite element 

method and Finite Difference Time Domain 

(FDTD), and permits an unbounded volume of air 

to be modelled, making it ideal for free-field 

scattering scenarios.  Most BEMs assume time-

harmonic excitation so the unknowns are time 

invariant and complex. Whilst this frequency 

domain analysis is a useful tool, the transient 

behaviour witnessed in the real world may only be 

recovered by solving many frequency domain 

models and then applying an inverse discrete 

Fourier transform.  Applications such as 

auralisation have thus driven an interest in time 
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domain modelling and many geometric 

algorithms, and more recently FDTD, have been 

published in pursuit of this.  The time harmonic 

assumption may also be dropped from the BEM 

formulation, leading to the time domain BEM 

studied here.  This approach was first published by 

Friedman and Shaw in 1962 [2], however 

computational cost and stability issues have 

plagued the method and commercial implement-

ations have appeared only very recently [3].  

 

To achieve realistic simulations, obtaining 

accurate representation of surface properties is 

crucial.  The obstacles and boundaries typically 

encountered in real-world scenarios are non-rigid 

and exhibit frequency-dependent behaviour.  

Surface impedance is typically used to 

characterise this for time-harmonic excitation and 

is ideally suited to use with the frequency domain 

BEM; an equivalent time domain model is sought.  

Differential boundary conditions may be used to 

model simple compliant materials such as 

frequency-invariant absorption [4,5] and limp 

membranes [6], but finding such models from 

arbitrary surface impedance data is more 

complicated [7].  Instead, various researchers 
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tackling this challenge for FDTD have turned to 

digital filter representations [8,9,10] and this paper 

investigates whether the same approach will work 

with time domain BEM. 

 

2. Boundary Integral Formulation 

A BEM to model scattering of sound from an 

object has three distinct phases: first the sound 

incident on the object is calculated, then the total 

sound at the surface of the object is solved for by 

considering the mutual interactions between parts 

of the surface S, and finally the scattered sound is 

calculated from this total surface sound.  The 

scattered sound arising as a consequence of total 

sound on a surface is described by the Kirchhoff 

Integral Equation (KIE); this is the foundation of 

the time domain BEM: 
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x and y are 3D Cartesian vectors defining the 

observation and radiation points respectively and 

R = |x – y| is the distance between them.  φ 

represents velocity potential, a non-physical 

quantity from which pressure and velocity may be 

derived according to equations 2 and 3, where ρ0 

and c are the density of and speed of sound in air 

respectively.  A dot above a quantity represents 

temporal differentiation and temporal convolution 

is represented by  .  φs is the scattered sound and 

φt 
is the total sound. 𝐧 y is the surface normal 

vector at y and g(R,t) is the time domain Green’s 

function which describes how sound travels from a 

point source to an observer, which intuitively 

comprises a delay term as a numerator (δ(…) is 

the dirac delta function) and a reduction in 

magnitude with distance as the denominator: 
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If the limit is taken as x approaches S from the 

inside of the scatterer then a solution for total 

surface sound φt may be found which eliminates 

the incident field.  However, rather than use this 

scheme directly it has been shown [11,12] that 

stability may be improved by using a variant 

called the Combined Field Integral Equation 

(CFIE): 

 

     tctp tt ,ˆ,1 0 xvnx x  . (5) 

 

where α typically equals ½.  This is equivalent to 

the frequency domain Burton and Miller method 

[13] when an imaginary coupling parameter is 

used and can be shown to eliminate cavity 

resonances by permitting any wave emanating 

from inside the obstacle to pass without reflection. 

 
3. Surface Reflectance Model 

In time harmonic models the concept of surface 

impedance conveniently abstracts the behaviour of 

the material into a frequency dependent complex 

scalar, defined at the ratio of total pressure to the 

inward component of total particle velocity at any 

point on the surface: 

 

𝑍 𝜔 = 𝑃𝑡 𝐱,𝜔 𝑉𝑡,𝑖𝑛  𝐱, 𝜔   (6) 

 

The same relationship may be stated in the time 

domain as 𝑝𝑡 𝐱, 𝑡 = 𝑣𝑡,𝑖𝑛  𝐱, 𝑡 ∗ 𝑧 𝑡 . However, 

due to the aggregation of cause and effect in the 

quantities 𝑝𝑡  and 𝑣𝑡,𝑖𝑛 , an impedance kernel 𝑧 𝑡 , 

found by inverse discrete Fourier transform of 

𝑍 𝜔 , is typically non-compact in time and 

requires future values of 𝑣𝑡,𝑖𝑛  𝐱, 𝑡 .  This issue can 

be avoided by including convolutions on both 

sides of the boundary condition equation: 

 

𝑝𝑡 𝐱, 𝑡 ∗ 𝑏𝑍 𝑡 = 𝑣𝑡,𝑖𝑛  𝐱, 𝑡 ∗ 𝑎𝑍 𝑡  (7) 

 

This amounts to splitting the surface impedance 

into the quotient of two functions, which can be 

chosen so that they are bounded and transform to 

temporally compact convolution kernels.  

However it is still non-trivial to establish whether 

these frequency domain functions describe a 

casual and passive (energy absorbing) reflection 

process, and it has been suggested that a 

convolution between waves travelling 

perpendicularly into and out of the body may be a 

more robust approach [14].  The author has 

previously implemented this concept for time 

domain BEM for the special case of obstacles with 

wells that are narrow with respect to wavelength 

[15].  This boundary condition may be written in 

the time domain as: 

 

𝜑𝑜𝑢𝑡  𝐱, 𝑡 = 𝜑𝑖𝑛  𝐱, 𝑡 ∗ 𝑤 𝑡  (8) 

 



FORUM ACUSTICUM 2011 Hargreaves, Jonathan: Transient scattering with surface impedance 

27. June - 1. July, Aalborg 

 

Here 𝑤 𝑡  will be referred to as the surface 

reflection kernel, and its equivalent frequency 

quantity 𝑊 𝜔  the surface reflection coefficient: 

 

Φ𝑜𝑢𝑡  𝐱, 𝜔 = Φ𝑖𝑛  𝐱, 𝜔 𝑊 𝜔  (9) 

 

Causality and passivity of the reflection process 

may be readily verified by respectively ensuring 

that 𝑤 𝑡 = 0 for 𝑡 < 0 and  𝑊 𝜔  ≤ 1 for all 𝜔. 

The term “surface” and the notation 𝑊 𝜔  have 

been used here to differentiate this quantity from 

the widely used plane wave pressure reflection 

coefficient 𝑅 𝜃, 𝜔 , which is angle of incidence 𝜃 

dependent.  The two quantities are related to 

impedance as follows, and coincide at normal 

incidence (𝜃 = 0): 

 
1+𝑅 𝜃 ,𝜔 

1−𝑅 𝜃 ,𝜔 
=

1+𝑊 𝜔 

1−𝑊 𝜔 
cosθ =

𝑍 𝜔 

ρc
cos θ  (10) 

 

In the previously studied special case of a well, the 

surface reflection kernel could be analytically 

identified as a delayed delta function and readily 

incorporated into the integration kernels.  

However for an arbitrary material this is not the 

case so an alternate strategy is required.  Digital 

filtering of the surface sound discretisation 

coefficients offers a general purpose framework to 

implement arbitrary surface reflection processes, 

and is akin to the techniques used in recent FDTD 

algorithms [8,9,10].  Direct implementation of the 

convolution in equation 8 as a Finite Impulse 

Response FIR filter is computationally expensive, 

but use of a recursive Infinite Impulse Response 

(IIR) filter is an attractive option: 

 

𝜑𝑜𝑢𝑡  𝐱, 𝑡 ∗ 𝑎𝑊 𝑡 = 𝜑𝑖𝑛  𝐱, 𝑡 ∗ 𝑏𝑊 𝑡  (11) 

 

The frequency domain surface reflection 

coefficient is a quotient of these two new 

functions and standard digital filter design 

techniques, such as the Impulse Invariant Method 

(IIM), may be used to find the digital filter tap 

values from Laplace domain material models: 

 

𝑊 𝑠 = 𝐵𝑊 𝑠 𝐴𝑊 𝑠   (12) 

 

4. Discretisation Scheme and Solver 

In order to solve for the surface quantities 

numerically a discrete representation is required.  

The discretisation scheme uses a weighted sum of 

basis functions where the boundary is partitioned 

into planar elements over which pressure and 

particle velocity are considered spatially uniform 

within an instant and interpolated by a piecewise 

cubic polynomial in time [11,15].  Spatial 

resolution is defined by element size and temporal 

resolution by the time-step duration Δt.  The 

incoming and outgoing waves are discretised 

separately, giving two sets of discretisation 

weights 𝛗𝑗
𝑖𝑛  and 𝛗𝑗

𝑜𝑢𝑡 .  This is in essence an 

indirect formulation and doubles storage and 

computation requirements, but the scaling of these 

costs with number of elements is unchanged.  

 

In the Marching On in Time (MOT) solver, the 

discretisation weights are moved outside the 

integral of the KIE, creating a weighted sum of 

integrals that are dependent only on the surface 

geometry and independent of system excitation 

and boundary conditions. Upon evaluation these 

integrals become interaction coefficient matrices 

𝐙𝑙
𝑖𝑛  and 𝐙𝑙

𝑜𝑢𝑡  that express scattered sound just 

from the discretisation weights, creating a matrix 

equation that is solved from known initial 

conditions.  Causality dictates that past surface 

sound cannot be changed and future sound is 

irrelevant, hence at each time-step tj = jΔt the 

algorithm is only solving for the current unknown 

weights.  Because the surface model involves 

incoming and outgoing waves, each term appears 

twice (except the excitation vector ej): 

 

𝐙0
𝑖𝑛𝛗𝑗

𝑖𝑛 + 𝐙0
𝑜𝑢𝑡 𝛗𝑗

out  (13) 

= 𝐞𝑗 −   𝐙𝑙
𝑖𝑛𝛗𝑗−𝑙

𝑖𝑛 + 𝐙𝑙
𝑜𝑢𝑡 𝛗𝑗−𝑙

out  𝑁𝑙
𝑙=1   

 

This matrix equation has twice as many unknowns 

as rows and hence cannot be solved on its own and 

the surface reflectance relationship must also be 

utilized.  Accordingly, equation 11 is re-written 

with the convolutions replaced by discrete 

expressions involving the element under 

consideration’s discretisation weights: 

 

 𝑎𝑙𝜑𝑗−𝑙
𝑜𝑢𝑡𝑁𝑎

𝑙=0 =  𝑏𝑙𝜑𝑗−𝑙
𝑖𝑛𝑁𝑏

𝑙=0   (14) 

 
This is combined into the MOT solver matrix in 

equation 15 below, where the matrices 𝐀𝑙  and 𝐁𝑙  

contain the filter tap values (equation 14) for all 

the elements along their diagonals.  Unlike the 
case of coupling IIR boundary filters to FDTD 

where extra code and memory is required to 

 
𝐙0

𝑖𝑛 𝐙0
𝑜𝑢𝑡

−𝐁0 𝐀0
  

𝛗𝑗
𝑖𝑛

𝛗𝑗
𝑜𝑢𝑡

 =  
𝐞𝑗

𝟎
 −   

𝐙𝑙
𝑖𝑛 𝐙𝑙

𝑜𝑢𝑡

−𝐁𝑙 𝐀𝑙
  

𝛗𝑗−𝑙
𝑖𝑛

𝛗𝑗−𝑙
𝑜𝑢𝑡

 𝑁𝑙
𝑙=1         (15) 
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handle them as a special case, here the digital 

filtering has been incorporated directly into the 

standard BEM solution framework, with no solver 

modifications necessary.  If desired the system 
may be readily recast to solve for pressure and 

normal velocity as discretised unknowns, just by 

applying a simple matrix transformation to the 
interaction matrices, in which case impedance 

boundary conditions in the form of equation 7 may 

be implemented directly.  As this amounts to just 
scaling and addition of rows, identical numerical 

results are produced with no change to the 

condition number of the matrices or stability of the 

time-marching system.  This result is in stark 
disagreement to some of the FDTD literature, 

where surface impedance and surface reflectance 

based boundary conditions are believed to be 
based on fundamentally different assumptions, and 

the latter only ever accurate for certain angles of 

incidence [10]. 
 

It is also interesting to note that, while this is 

currently a locally reacting surface model, it 

should be possibly to incorporate extended 

reaction just by including off-diagonal terms in 𝐀𝑙  

and 𝐁𝑙; for example these could be replaced by 

stiffness matrices to couple to a simple FEM 
model of membrane motion [9]. 

 

5. Results 

The test geometry studied aimed to replicate the 

scenarios used to test the performance of digital 

filter boundary conditions in the FDTD literature 

(specifically the work published by the Sonic Arts 

Research Centre, Belfast [8]), where the pressure 

reflection coefficient is calculated for plane waves 

incident from various angles onto a homogenous 

planar sample of the material under study.  Ideally 

the sample would be of infinite extent to remove 

edge diffraction, but that is not tractable so instead 

a finite sample is simulated and the late arriving 

effects of the truncation are time-windowed out.  

The model differs from those used in FDTD in the 

following ways: 

 Only the surface need be modelled, so 

treatments to deal with finite simulation 

volumes are not needed. 

 Incident and scattered pressure are calculated 

separately at points in the volume, so 

subtraction of multiple simulations is not 

necessary. 

 True plane-wave sources are possible, so 

approximation by a distant point source is not 

necessary. 

Because diffraction from the surface edge will 

travel tangentially along the surface, it is 

necessary to model a greater area in the direction 

the plane wave originated from as excitation 
arrives there earlier.  The zone contributing within 

a given time was found to always be an ellipse 

(figure 1), but this differed for every incidence 
angle so the mesh was made to be a simple 

bounding rectangle.  A 4m by 8.8m plane gave a 

5.8ms analysis window (58 samples at ∆𝑡=0.1ms) 
for incident angles up to 45° and required 8775 

0.1m×0.1m surface elements (with symmetry).  

More tangential angles were not modelled due to 

an increased element count beyond the available 
hardware capabilities.  The two receivers (●) were 

located 0.1m from either side of the surface.  The 

source signal was a Gaussian pulse in velocity 
potential (so a Ricker wavelet in pressure) with its 

standard deviation set to 2∆𝑡 ; this contained 

significant energy up to 2.5kHz. 

 
Figure 2 shows compares the pressure reflection 

coefficient for the rigid boundary condition 

𝑤 𝑡 = 𝛿 𝑡  calculated analytically (equation 10) 

and numerically using time domain BEM.  Note 

that in the rigid case the analytical results are 

identical for all angles so are superimposed.  

These results were numerically identical to those 

achieved using a rigid-surface variant of the BEM 

code, so do not include any error arising from the 

boundary condition model and may be considered 

as a benchmark for comparison with the following 

results.  The error between the curves fits with the 

expected trend, being very small at low 

frequencies and becoming more significant at 

higher frequencies.  The time-step was chosen to 

be slightly explicit, to achieve the best ratio of 

time window length to surface element count, and 

the “8 elements per wavelength” rule is satisfied 

up to 428Hz or 1250Hz by considering element 

size or time-step duration respectively. 

 

Figure 3 presents the same quantities for a “welled 

surface” boundary condition as studied in [15].  In 

this case the well depth was chosen to be half the  

0° 
15° 30° 45° 

4m 
8.8m 

Figure 1. Geometry of the planar sample, including 

plane wave arrival directions & contributing zones  
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Figure 2. Pressure reflection coefficient for a rigid 

boundary (analytical ▬  numerical ▪▪▪) 

 

 

 

Figure 3. Pressure reflection coefficient for a welled 

boundary (analytical ▬  numerical ▪▪▪) 

 

 

 

Figure 4. Pressure reflection coefficient for a low-pass 

reflectance boundary (analytical ▬  numerical ▪▪▪) 

distance sound travelled in a time-step, so 

𝑤 𝑡 = 𝛿 ∆𝑡 .  The delay causes a linear-phase 

trend with some incidence angle dependence but 

no magnitude change.  The error between this and 

the numerical result differs little from that seen in 

figure 2, so may be attributed to factors other than 

the boundary condition implementation. 

 

Figure 4 shows results from modelling the low-

pass reflectance boundary studied in [8].  Such a 

boundary condition may seem unrealistic, but in 

fact this is the general trend seen for many 

common acoustic treatments such as porous 

absorbent.  The exact definition is a single pole 

recursive filter defined by 𝑊 𝑠 = 𝑔𝛼  𝑠 + 𝛼  , 

where s has been normalised to the sampling 

frequency and g and α equal 0.85 and 0.4 

respectively.  Error here follows the same trends, 

except that there is an additional slight 

discrepancy in magnitude at 0Hz.  This is due to 

the time-window slightly truncating the impulse 

response of the boundary filter, and becomes more 

significant for higher-order filters with lower cut-

offs which have correspondingly longer impulse 

responses.  However this is an error due to 

limitations of the comparison scheme and the 

boundary implementation still appears to be 

working well. 

 

Figure 5 shows results from modelling the 

mechanical boundary studied in [8].  This is a 

mass-spring-damper system and may be 

considered as an idealised model of membrane 

motion in panels or Helmholtz absorbers.  The 

reflectance filter was defined by its impedance 

𝑍 𝑠 = 𝜌𝑐 𝑀𝑠2 + 𝑅𝑠 + 𝐾 𝑠 , where 𝑀 = 6∆𝑡 , 

𝑅 = 2 and 𝐾 = 2 ∆𝑡 .  This was mapped to the 

digital domain specification using the IIM on 

specific surface admittance (the reciprocal of 

impedance normalised by 𝜌𝑐) and implemented 

using the form of equation 7, with surface pressure 

and particle velocity as the solver unknowns. 

 

A resonance exists just below 1kHz and this 

causes increased absorption as sound energy is 

lost by coupling into the mechanical resistance.  

This appears as a dip in reflection magnitude and 

associated change in phase.  In addition to the 

error effects described previously it seems that this 

dip is less emphasised in the numerical model than 

the analytical result suggest it should be.  This 

could again be due to the time-window truncating 

the slowly decaying part of the impulse response 

that oscillates at this frequency, the frequency 

domain counterpart of which would be spectral 
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smearing of neighbouring frequencies into the 

attenuation band.  The error is more significant at 

larger angles, which suggests that spatial 

resolution could also be a compromising factor.  

Further experimentation is required to confirm that 

these artefacts are due to the verification process 

and that the boundary condition model operates 

correctly. 

   

 

Figure 5. Pressure reflection coefficient for a 

mechanical boundary (analytical ▬  numerical ▪▪▪) 

 

6. Conclusions 

This paper aimed to propose a boundary condition 

model for the time domain Boundary Element 

Method which would achieve the same extent of 

applicability and accuracy as surface impedance 

does for the frequency domain BEM.  A digital 

filter based scheme was devised which allows 

either surface reflectance or surface impedance to 

be implemented directly with exact numerical 

equivalence.  This contradicts opinion stated in 

some  of the FDTD literature, where it is reported 

that  surface reflectance based boundary 

conditions are  only ever accurate for certain 

angles of incidence. 

 

Results were presented for four different boundary 

conditions applied to a flat homogeneous plane 

designed to mimic the test scenarios used for this 

purpose in the FDTD literature.  Some error was 

observed, but this seemed attributable either to the 

discretisation error in the time domain BEM 

algorithm or windowing error in the verification 

process.  The boundary condition model did not 

appear to be a source of additional error and 

produced trends matching the analytical reflection 

coefficient at a variety of angles. 
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