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Introduction: Boundary Element Models 
 
Boundary Element Models are used to model 
scattering from diffusers[1]. This reduces 
prototyping costs as an anechoic e
is required for measurement. 

nvironment 

 
In a BEM only the surface of an object is 
modelled as it is known how sound travels 
through air unobstructed.  This produces 
smaller, simpler meshes compared to 
volumetric methods such as Finite Element 
Modelling. 
 
 
 

Measuring Scattering from Diffusers 

It is a Physical method, meaning it models 
the wave nature of sound.  It is also 
ideally suited to free field scattering as 
rather than modelling a large expanse of 
air one can simply have no outer 
boundary. 
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Most widely used BEM software models 
single frequency sound.  If a broadband 
response is required, many frequencies 
must be modelled separately. 
 

Equivalent BEM Mesh 

 
 



FBEM vs. TBEM (rigid surface) 
 
The following figure and table compares a rigid surface frequency domain (single 
frequency) BEM with its time domain (transient) equivalent.  The quantity φ is known 
as velocity potential and in the frequency domain it is proportional to pressure, but the 
relationship in the time domain is more complicated and mentioned later. 
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Frequency Domain Time Domain 
Multiplication Convolution 

Periodic Aperiodic 
Phase Delay 

Complex numbers Real numbers 
Invariant w.r.t. time Varies w.r.t. time 

 

Boundary Conditions 
 

The above integral equation calculates listener sound from surface sound, but first the 
surface sound must be calculated from the source sound.  The same equation can be 
used but a relationship between source & scattered sound at the surface is needed.  
This is referred to as a “Boundary Condition”. 

Integral 
over surface

Sound radiated by 
point on surface 
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Pressure Boundary Condition 
Pressure inside the surface should be zero; hence scattered pressure must cancel 
incident pressure. 
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These relationships are substituted into the integral equation: 
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Velocity Boundary Condition 
Air cannot move through a rigid surface so the normal component of surface velocity 
is zero; hence scattered velocity must cancel incident velocity 
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These relationships are substituted into the integral equation: 
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Combined Boundary Condition 
This is a summation of the pressure and velocity boundary conditions. 
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Substituting into the integral equation yields: 
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Ergin et al[2] showed that this is more stable than either the pressure or velocity 
boundary condition alone for closed surfaces.  The following discretisation scheme 
and matrix equation is also as described in their work. 
 



Discretisation 
The surface velocity potential must be discretised so that it can be represented by a set 
of scalar coefficients φi,n that may be solved numerically.  To achieve this it is 
assumed that it may be approximated as a weighted sum of basis functions 
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The surface is divided into 
elements and velocity potential is 
assumed to be equal over an 
element.  Time is divided into 
time-steps (similar to samples) 
called ∆t.  Between these samples 
velocity potential follows a 
piecewise polynomial in time.  
This has the advantage that 
derivatives may be found 
analytically rather than by using a 
finite difference approach. 
 
 
 
 
 
 
 

Matrix Equation 
 
The discretisation equation is substituted into the boundary integral equation. 
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The summation is then moved outside the integral giving an equation where the 
integrals are no longer a function of surface velocity potential, but simply describe the 
interaction between a pair of elements.  If this is evaluated for all elements at time j∆t 
then it may be described by the following matrix equation. 
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This integral equation is still describing the boundary condition at time j∆t.  To form 
an iterative scheme with current surface velocity potential as the unknown the scheme 
must be rearranged and a few extra properties incorporated: 
 

• Causality defines that future sound cannot affect current sound hence . ji ≤

• It is defined that the system is silent before time = 0, hence . 0≥i
 
It is convenient to introduce retardation index l = j – i, incorporating these properties 
yields: 
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This is then reorganised to get current surface sound on its own, producing the 
Marching On in Time (MOT) equation: 
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Unlike many transient boundary element formulations this 
allows the system to be implicit, meaning the time-step 
may be long enough so that sound from other elements 
contributes to the current interaction matrix Z0.  In an 
explicit system Z0 is diagonal and Φj is found to maintain 
the boundary condition at each element individually.  In an 
implicit system Z0 contains off-diagonal terms so Φj is 
solved for to maintain the boundary condition at all 
elements collectively.  There is an overhead in performing 
this solution but it is small as Z0 is still sparse and an 
iterative solver may be used with the previous iteration’s 
results as a seed. 

Explicit 

Implicit 

 



An implicit scheme has a number of benefits: 
• Time-step and element size are independent 
• Longer time-steps may be used for lower frequencies on the same mesh 
• Time-step is not defined by the smallest surface detail. 
• Bluck and Walker[3] suggest implicit schemes are more stable. 

 

Integrating Element Interaction 
 
The elements of the interaction matrices must be evaluated using 
numerical integration.  The simplest numerical integration 
scheme is Gauss-Legendre, a weighted sum of the integrand 
value at points, suitable for smooth polynomial integrands 
 
 
Unfortunately these integrands are not.  They are singular, 
hence require an adaptive scheme, and contain discontinuities 
that must be handled carefully.  The method used 
subsequently converts the surface integral to a contour 
integral around edge, and adaptive line integration is used on 
each contour.  This is the same approach used by Kawai & 
Terai[4].  However there is novelty: because this integrand is 
discontinuous each smooth area of the integrand is evaluated 
separately.  It is also used on used on all integrands whereas 
Kawai and Terai only used it for the velocity boundary 
condition. 
 

Example - Step Diffuser 
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The following example is a five by six 
well primitive root step diffuser meshed 
using 266 elements.  There is an 
abundance of adjacent perpendicular 
elements which are the most difficult to 
integrate.  The source was a pure tone. 
 
The Gaussian integration scheme was 
unstable for most ∆t investigated.  
However, the contour integration 
scheme was stable for all ∆t 
investigated with typically 0.1% 
accuracy relative to a previously 
verified FBEM. 
 
 
 
 



Mixed Surfaces 
 

 
 
 
A thin surface is formed by letting the two sides of a thick surface converge together.  
The integral equation is now on velocity jump potential, the difference between 
velocity potential on each side of the surface.  Pressure is unknown on both sides so 
only the velocity boundary condition can be used: 
 
 
 
Each surface element creates a row of the matrix equation, so some rows may be thick 
and others thin.  I hypothesise that this has stability benefits relative to all-thin model 
as the combined boundary condition may be used on closed surface sections. 

Example – Quadratic Residue D
 

he following

iffuser 

 example is a seven well Quadratic 
he 

ity resonances as the frequency content of the all-

 

T
Residue Diffuser modelled with 1800 elements.  T
source was a swept sine wave between 100Hz and 
200Hz intended to excite any cavity resonances.  The 
mixed model is stable, decaying after the source 
becomes silent, whereas the all-thin model is 
unstable and continues to resonate. 
 
 suspect this instability is due to cavI

thin surface shows two large peaks at approximately 130Hz and 170Hz. 
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Summary 
 
A Transient Boundary Element Model has been described.  These are efficient when a 
broadband result is required, but are iterative so can be unstable.  The combined field 
boundary condition improves stability for closed surfaces compared to the pressure or 
velocity boundary conditions used alone. 
 
A high accuracy numerical integration scheme has been outlined and a numerical 
example given to justify its use for complex surfaces. 
 
The scheme has been extended to model mixed surfaces.  This utilises the combined 
field boundary condition on closed surface segments and the velocity boundary 
condition on thin surface segments.  Preliminary results suggest that this is more 
stable than an all-thin model. 
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