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Abstract 

The forecasting needs for inventory control purposes are hierarchical.  For SKUs in 

a product family or a SKU stored across different depot locations, forecasts can be 

made from the individual series’ history or derived top-down.  Many discussions 

have been found in the literature, but it is not clear under what conditions one 

approach is better than the other.  Correlation between demands has been identified 

as a very important factor to affect the performance of the two approaches, but there 

has been much confusion on whether positive or negative correlation.  This paper 

summarises the conflicting discussions in the literature, argues that it is negative 

correlation that benefits the top-down or grouping approach, and quantifies the effect 

of correlation through simulation experiments.   

 

Introduction 

Many organisations operate in a multi-item, multi-level environment.  In general, 

they have to “cope with well over 100 time series with numbers over 10,000 being 

quite common” (Fildes and Beard, 1992).  These time-series are often related. For 

example, a company may group similar products in product families according to 

specifications, colours, sizes etc.  Alternatively, in a multi-echelon inventory system, 

a stock-keeping unit’s sales may be recorded in many different locations at varying 

levels of aggregation.  Therefore, in such cases, the data available and the need for 

forecasts are hierarchical.   

 

A substantial part of the forecasting literature has been devoted to models and 
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methods for single time series.  However, as indicated above, the short-term 

forecasting need for production and inventory control purposes is to address a large 

amount of series simultaneously.  Duncan et al. (1993) argued that, “forecasting for 

a particular observational unit should be more accurate if effective use is made of 

information, not only from a time series on that observational unit, but also from time 

series on similar observational units”. 

 

There have been many discussions on group forecasting in the literature.  However, 

no clear conclusions have been reached on the conditions under which the grouping 

approach is better than the individual approach.  Correlation between demands has 

been identified as a very important factor, but there has been much confusion about 

whether positive or negative correlation would benefit grouping.  This paper is 

presented as follows: we will discuss contrasting arguments in the next section; then 

present our findings on the role of correlation from simulation experiments; and, 

finally, summarise our conclusions.  The overall purpose of this paper is to dispel 

some of the confusion in the literature on how correlation affects the grouping 

approach. 

 

Debates and confusion in the literature 

It is well recognised that in order to obtain better forecasts, one should make better 

use of available forecasting series.  Some practitioners such as Muir (1983), 

McLeavy and Narasimhan (1985) and Fogarty and Hoffmann (1983) have argued that 

forecasting an aggregate and then allocating it to items is more accurate than 

generating individual forecasts.  Their argument was that the top-down approach 

resulted in more accurate predictions since aggregate data were more stable. 

 

Schwarzkopf et al., (1988) pointed out two problems of using the top-down approach: 

model incompleteness and positive correlation.  They argued that the aggregate 

model may not completely describe the processes in the individual series, i.e. there 

were model differences among the series.  When the total forecast was disaggregated 
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back to the item level, correlated errors were produced.  They commented that “this 

modelling error can be quite large and may override the more precise potential of 

top-down forecasts” (Schwarzkopf et al., 1988).  The same point was also made by 

Shlifer and Wolff (1979).  The second problem was that if there was a strong positive 

correlation in demand for items in a group, the variance for the aggregate was 

increased by the amount of the covariance term.  Schwarzkopf et al., (1988) 

advanced our understanding of some of the reasons why the top-down approach does 

not always lead to a more accurate subaggregate forecast. 

 

Top-down forecasts have to be treated with caution.  If the individual series follow 

different demand generating processes, then the aggregate model does not reflect any 

of those individual processes.  Although the aggregate data are less noisy, it does not 

always result in more accurate subaggregate forecasts.  Even when the modelling 

difference is not an issue, there is an additional problem of the disaggregation 

mechanism to be applied.   

 

One way to get around these problems is to group seasonal homogeneous series.  

From a classical decomposition point of view, demand consists of level, trend, 

seasonality and noise.  In a group of items, levels can be varying.  Trends can be 

upwards or downwards and can have various degrees.  However, seasonality is often 

more stable as it is affected by weather and customs.  Chatfield (2004) pointed out 

that seasonal indices are usually assumed to change slowly through time so 

that qtt SS −≈ , where q is the seasonal cycle.  It makes more sense to use the 

grouping approach to estimate seasonality than to estimate level and trend as there is 

an issue of modelling difference.  The problem of an appropriate disaggregation 

mechanism can also be avoided.  For multiplicative seasonality, no disaggregation 

mechanism is needed as seasonality is relative to the mean.  For an additive model 

with common seasonal components across the group, a simple average can be used as 

the disaggregation method.  Although it is difficult to apply the grouping approach in 
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general, we found it helpful in seasonal demand forecasting, i.e. estimating level 

and/or trend individually but seasonality from the group. 

 

Correlation has been identified as a very important factor to affect the grouping and 

individual approaches, but there has been some confusion about whether positive or 

negative correlation benefits grouping.  Duncan et al. (1998) argued for positive 

correlation. They claimed that analogous series should correlate positively (co-vary) 

over time.  Then the covariation would be able to “add precision to model estimates 

and to adapt quickly to time-series pattern changes”.  However, Schwarzkopf et al. 

(1988) supported negative correlation as the covariance term was increased by 

positive correlation.  The confusion lies in the distinction between a common model 

and varied models. Given the same model, it is negative correlation between series 

that reduces variability of the total and favours the top-down approach.  However, 

the more consistent the model forms are, the more this favours the grouping approach; 

and consistency of model forms is associated with positive correlations between 

series, not negative correlations.  Duncan et al. (1998) also identified the association 

between consistency of model forms and positive correlations.  However, positive 

correlations should not be used to identify whether different series follow the same 

model, as sometimes the positive correlations may be incurred by a trend component 

rather than the model form.  Therefore, checks should be made on the consistency of 

models using other diagnostics, before employing correlation analysis to establish 

whether a grouped or individual approach is preferable. 

 

Simulation experiments 

We used simulation experiments to examine the effect of correlation between 

demands on forecasting performance of the grouping and individual approaches.  We 

have argued that it is negative correlation that will benefit the grouping approach 

when a common model is assumed; the main purpose of the simulation experiments is 

to quantify the effect. 
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Two simple models are assumed to generate demand: 

thihithi SY ,, εµ +=                                    (1)                                                                        

thihithi SY ,, εµ ++=                                                   (2)                                                                                                 

where i is a suffix representing the SKU or the location 

     suffix t represents the year and t=1,2,…r (where r is the number of years’ data 

history) 

     suffix h represents the seasonal period and h=1,2,…q (where q is the length of 

the seasonal cycle) 

Y represents demand 

iµ  represents the underlying mean for the ith SKU or location and is assumed 

to be constant over time but different for different SKUs or locations 

hS  represents a seasonal index at seasonal period h; it is unchanging from year 

to year and the same for all SKUs or locations under consideration 

thi,ε  is a random disturbance term for the ith SKU / location at the tth year and 

hth period; it is assumed to be normally distributed with mean zero and constant 

variance 2
iσ .  There are correlations ijρ between thi,ε  and thj ,ε  at the same 

time period.  Auto-correlations and correlations at different time periods are 

assumed to be zero. 

 

Model (1) has multiplicative seasonality and model (2) has additive seasonality.  It is 

assumed there is no trend so that we may focus on the seasonality.  The underlying 

mean is assumed to be stationary.  Seasonality is also assumed to be stationary and 

the same within the group. 

 

Trend components are not considered in the current models to avoid the complexity of 

different degrees of trend when aggregating, and thus focus mainly to gain insights 
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into the effect of correlation from simple models.   

 

The estimator for the underlying mean is 
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The individual seasonal indices (ISI) estimator for the mixed model (Equation (1)) is: 
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The individual seasonal indices (ISI) estimator for the additive model (Equation (2)) 

is: 
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Two group seasonal indices (GSI) methods have been proposed from the literature. 

Dalhart (1974) proposed a method which was a simple average of the ISI.                                                                               
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Withycombe (1989) suggested aggregating all the individual series first and then 

estimating seasonal indices from the aggregate series: 
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Both DGSI and WGSI were proposed to multiplicative seasonality.  When 
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seasonality is additive, the two methods are the same and we call it GSI.   
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We have developed rules to choose the best method between the ISI and GSI methods.  

Interested readers can refer to Chen and Boylan (2007).   

 

Simulation findings 

The simulation results quantify the effect of correlation on the forecasting 

performance of the individual and grouping approaches.  We use mean square error 

(MSE) as the error measure and report the percentage best (PB) results. 

 

Results for the additive model are presented first, followed by results for the mixed 

model.  Detailed simulation designs are presented in Appendix 1. 

Table 1: Effect of correlation on the percentage of series 

for which ISI or GSI is the best (additive model) 

 

Table 1 shows that negative correlation favours GSI.  As the correlation coefficient 

changes from highly negative to highly positive, the number of series for which GSI 

is the best decreases.  This is consistent with the theory that as correlation changes 

from highly negative to highly positive, ISI will be the best for more series.  When 

the correlation coefficient is 0.6 or 0.9, ISI and GSI are equally good. 

 

Correlation -0.9 -0.6 -0.3 0 0.3 0.6 0.9
ISI 40.00% 41.43% 43.84% 45.63% 48.57% 50.00% 50.00%
GSI 60.00% 58.57% 56.16% 54.38% 51.43% 50.00% 50.00%
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Table 2: Effect of correlation on the percentage of series  
for which ISI or GSI is the best (mixed model) 

 

The above table shows that for the mixed model, ISI is never the best when 

correlation is negative.  DGSI is the best when correlation is highly negative 

(between -0.9 and –0.6), and the number of series for which DGSI is the best 

decreases when correlation increases.  The number of series for which WGSI is the 

best increases as correlation increases.  But for a very high positive correlation 

coefficient of 0.9, ISI becomes the best method.  Simulation results clearly show that 

GSI is better than ISI for the majority of possible correlations within the range.   

 

The case of two series is simplistic, although it provides useful insight into the effect 

of correlation.  In reality, the number of items in a group can be as large as hundreds 

or even thousands.  To cover more realistic situations, we now proceed to simulate 

groups of more than two series (detailed design can be found in the Appendix 1). 

 

The group size has to be determined somewhat arbitrarily.  In this simulation, we 

define the group size to be n2 (n=1, 2, 3, …,6).  So the group sizes are 2, 4, 8, 16, 32 

and 64.  The group size increases with an unequal and growing increment because 

when the group size is smaller, we want to examine the effect at a finer level.  When 

the size is larger, it is increasingly difficult to do so.  The maximum group size is 64 

because of the time and complexity of computing. 

 

Correlation coefficients cannot be decided arbitrarily as in the case of a group of two 

series, nor can the correlation matrix be generated randomly.  A feasible correlation 

matrix must be positive semi-definite, i.e. all the eigenvalues must be non-negative 

Correlation -0.9 -0.6 -0.3 0 0.3 0.6 0.9
ISI 0.00% 0.00% 0.00% 1.13% 13.96% 29.55% 48.78%

DGSI 64.11% 52.92% 46.67% 40.65% 27.35% 11.16% 5.71%
WGSI 35.89% 47.08% 53.33% 58.21% 58.69% 59.29% 45.51%



 9 

(see, for example, Xu and Evers (2003)).  Therefore, we followed the algorithm 

suggested by Lin and Bendel (1985) to generate feasible matrices with specified 

eigenvalues. 

 

Ideally we would like to cover a comprehensive set of correlation matrices, but the 

number of possible combinations of feasible matrices makes this impossible.  Instead, 

we will look at a number of feasible correlation matrices covering a range as large as 

possible. 

 

Correlation does not affect the ISI method.  For DGSI, it is ljjl
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 that involves the correlation coefficients (Chen and 

Boylan, 2007).  However, for both DGSI and WGSI, it is not straightforward from 

the theoretical expressions how correlation affects the rules.  The standard deviations 

(coefficients of variation in DGSI) are interacting with the correlation coefficients and 

cannot be separated.  What we want to see is what structure of correlation matrix 

affects the rules and we will do this by calculating the lower and upper bounds of the 

cross terms (details can be found in Appendix 2). 

Let =+P ∑∑
−

= +=

+
1

1 1

m
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ijρ  and =−P ∑∑

−
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−
1

1 1
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m

ij
ijρ ; for simulation purposes, we can experiment 

with different values of +P  and −P  to evaluate the effect of correlation.  With the 

bounds, the iσ  terms are separated from the correlation coefficients.  However, in 

reality the cross term is not a simple function of the correlation coefficients but the 

interaction of correlation coefficients and the standard deviation terms.  For given 

iσ  terms, the cancellation depends not only on the values of +P  and −P  but also 
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on the positions of the positive and negative coefficients.  From a simulation 

perspective, it is difficult to experiment with both sign and position of each 

correlation coefficient.  Therefore, we bring the problem down to the two 

dimensions of +P  and −P . 

 

We will generate 1000 different feasible correlation matrices for each group size n.  

It is a very small proportion of all possible combinations of feasible correlation 

matrices.  We cannot use all of these feasible correlation matrices in our simulation 

to examine the effect of correlation along with other parameters.  Just as we vary all 

the other parameters that affect the rules, we will vary +P  and −P  too.  Out of the 

1000 feasible correlation matrices we generate, we will calculate −

+

P
P  and then 

choose the minimum, the first quartile, the second quartile (median), the third quartile 

and the maximum.  This covers the whole range of the correlation matrices we 

generated.  Then these 5 matrices are used in the simulations and their interactions 

with other parameters can be assessed.  The following table shows the range of −

+

P
P  

for each group size. 

 

Table 3:Range of ratios of positive and negative correlation coefficients 

When the additive model is assumed, GSI outperformed ISI universally.  Therefore, 

we cannot analyse the effect of the different correlation matrices on ISI and GSI.  

However, the effect is analysed for the mixed model in the following table. 

Group size 4 8 16 32 64
Minimum 0.0000 0.0847 0.2313 0.4436 0.6497

Lower Quartile 0.1674 0.4142 0.5719 0.6851 0.7592
Median 0.3500 0.5715 0.6919 0.7637 0.8260

Upper Quartile 0.6267 0.7639 0.8287 0.8678 0.9031
Maximum 2.7847 1.4352 1.0817 1.0217 0.9975
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Table 4:Effect of correlation matrix on the percentage of series 

for which DGSI or WGSI is the best 

For each group size, five different correlation matrices are chosen in our simulation 

experiments according to different ratios of −

+

P
P .  Matrix 1 has the lowest −

+

P
P  

and matrix 5 has the highest −

+

P
P .  ISI is never the best.  When −

+

P
P  increases, 

the percentage of series for which DGSI is the best decreases and the percentage of 

series for which WGSI is the best increases.  This is what we expected.  Simulation 

results from group of two series show that DGSI was the best when correlation was 

between –0.9 to –0.6, WGSI was the best when correlation was between –0.3 to 0.6 

and beyond that ISI became the best.  Therefore, the greater the sum of all negative 

correlation coefficients, the more series for which DGSI would be expected to be the 

best. 

 

Previous research on the issue of grouping has consistently suggested correlation as 

the most important factor to decide whether a direct forecast or a derived (top-down) 

forecast should be used.  However, there have been arguments on whether series 

with positive or negative correlation favours the derived approach.  Our simulation 

results reveal that for a wide range of positive correlation values GSI methods are still 

better than the ISI method but the gain of using the GSI methods is greater when 

series are negatively correlated.   

 

Our simulation of two series in a group is much more specific than previous research: 

it does not only show the range of correlation that a GSI method outperforms the ISI 

method, but also it shows the range of correlation for which one GSI method 

Correlation matrix 1 2 3 4 5
DGSI 76.05% 52.90% 50.99% 45.48% 41.97%
WGSI 23.95% 47.10% 49.01% 54.52% 58.03%
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outperforms the other.  Within the former range (-0.9 to 0.6 in our simulation), DGSI 

outperforms WGSI when correlation is between –0.9 and –0.6 and WGSI is better 

when correlation is between –0.3 to 0.6.  It is not until correlation is almost as high 

as 0.9 that ISI becomes the best performing method. 

 

When there are more than two series in the group, it is more difficult to find a clear 

cut how correlation affects the individual and grouping approaches.  Our simulations 

of up to 64 items in a group and five different correlation matrices show that ISI is 

never better than the grouping approach.  Moreover, we found that DGSI is better for 

lower −

+

P
P  and WGSI is better for higher −

+

P
P .  This is consistent with the findings 

in the case of two series. 

 

Extension to models with trend 

The current models we assume are simple ones without a trend component.   A key 

finding is that correlation between demands is induced only by correlation between 

the error terms in the model.  

Take the additive model thihithi SY ,, εµ ++=  

The deseasonalised demand is: hthithi SYY ˆ
,

*
, −=  

Since hŜ  (Equation (5)) is an unbiased estimator, E( hŜ )= hS  
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               (9) 

Therefore, the only source of correlation between demands is from correlation 

between the random error terms. 
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We can extend the analysis to an additive trend and seasonal model. 

Assume thihiithi ShqtY ,, ])1[( εβµ +++−+=                            (10) 

where ihqt β])1[( +−  is the trend term and iβ  is the growth rate. 

Suppose we can find an estimator iβ̂  for iβ , then to detrend the model we have: 

thihiiiithi ShqthqtY ,, )ˆ]()1[(ˆ])1[( εββµβ ++−+−+=+−−                 (11) 

The detrended and deseasonalised demand is: 

hithithi ShqtYY −+−−= β̂])1[(,
*
,                                       (12) 

Therefore, assuming ii ββ ˆ−  is independent of jj ββ ˆ−  and ii ββ ˆ−  is independent 

of thj ,ε , 
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This result shows that correlation between the demands is induced only by correlation 

between the error terms in the model.  This is the same as equation (9); so the same 

result carries through from a non-trended model to a trended model. 

This same approach does not apply for the mixed model though.  It will require a 

different approach to investigate the effect of correlation assuming a multiplicative 

trend and seasonality model.  

Further research can also extend beyond stationary seasonality and consider 

time-varying Winters’ type models.  This line of research is undertaken by another 

group of researchers (Dekker et al, 2004; Ouwehand, 2006).  They derived a model 
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to underlie the multivariate version of the Holt-Winters’ method, i.e. estimating level 

and trend individually and seasonal indices from the group.  However, the effect of 

correlation has yet to be addressed. 

Conclusions 

This paper clarifies some of the confusion in the literature regarding how top-down 

forecasts might improve on individual forecasts, especially the effect of correlation on 

the top-down approach.  In the literature there were arguments about whether 

positive or negative correlation would benefit the top-down approach.  We 

conducted simulation experiments, assuming series share a common model and 

common seasonality within a group, to quantify the effect of correlation on the 

individual and grouping approaches in terms of forecasting accuracy.  Our 

simulation results reveal that, when there are two items in the group, the individual 

approach outperforms the grouping approach only when the correlation is very 

strongly positive.  The grouping approach is better than the individual approach most 

of the time, with the benefit greater when correlation is negative.  When there are 

more than two items in the group, the individual approach never outperforms the 

grouping approach in our simulations.  DGSI is better for lower −

+

P
P  and WGSI is 

better for higher −

+

P
P .   

 

Our current models do not take into account trend components.  However, we have 

demonstrated that, for the additive model, the correlation between demands comes 

from the random error terms, with or without trend. 

 

The conclusions from this paper are general.  Further research can build on the 

results and insights offered by this paper and investigate the effect of correlation 

between demands by examining different models and assumptions. 
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Appendix 1: Simulation designs 

Quarterly seasonality was assumed in the simulations with four different seasonal 

profiles as the following two tables show.   

Two series 

Table 1: Seasonal Profiles for the Additive Model 

 

Table 2: Seasonal Profiles for the Mixed Model 

 

The aim is not to attain comprehensiveness of seasonal profiles, but to choose a few 

commonly occurring profile shapes to check whether they affect the rules.  WS 

represents a weak seasonality.  LLLH represents a situation where there is a single 

very high season (e.g. in the final quarter of the year, with higher demand before 

Christmas).  LHLH represents alternative low and high seasons. 

 

The underlying mean for one item is fixed to be 50, and the mean of the other item in 

the group varies.  It can take a value of 50, 100, 200, 300, 400, 500, 5000 or 50000, 

representing a ratio of 1, 2, 4, 6, 8, 10, 100, or 1000. 

 

Variances of the random error terms in the models are generated using power laws of 

the form βαµσ =2 , where µ  is the underlying mean, and α and β are constants 

(Brown, 1959).  Our preliminary results agreed with Shlifer and Wolff (1979) that 

the α parameter does not affect the rules because it appears on both sides of the rule 

Q1 Q2 Q3 Q4
No Seasonality (NS) 0 0 0 0

Weak Seasonality (WS) -5 -10 5 10
Low,Low,Low,High (LLLH) -20 -15 -15 50
Low,High,Low,High (LHLH) -25 25 -25 25

Q1 Q2 Q3 Q4
No Seasonality (NS) 1 1 1 1

Weak Seasonality (WS) 0.9 0.8 1.1 1.2
Low,Low,Low,High (LLLH) 0.6 0.7 0.7 2
Low,High,Low,High (LHLH) 0.5 1.5 0.5 1.5
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and can be cancelled out.  Therefore, only the β parameter is allowed to vary in 

these power laws.  We choose α  to be 0.5 and β to be 1.2, 1.4, 1.6 or 1.8.     

 

Variances of series of a group may follow power laws, but different series in a group 

may not follow the same power law.  Therefore, we also simulate situations in which 

non-universal power laws are applied on a group.  Series 1 in the group follows one 

law and series 2 follows the other law. 
 

Series 1: 5.12 5.075.0 ii µσ ×=      

Series 2: 5.12 5.025.1 ii µσ ×=                                                                                          

Alternatively, it may be assumed that the series follow no power laws.  In this case, 

various combinations of mean and variance values have been identified, somewhat 

arbitrarily, for experimentation, as shown in Table 3:     

 

 

Table 3: Arbitrary Variance Values 

 

Data history is set to be 3, 5 or 7 years with the last year’s observations used as the 

holdout sample.  So the estimation periods are 2, 4 or 6 years.   

 

50 50 50 50 50 50 50 50
50 100 200 300 400 500 5000 50000

low V1 100 100 100 100 100 100 100 100
low V2 100 225 1600 2500 3600 4900 62500 1562500
low V1 100 100 100 100 100 100 100 100
high V2 400 900 4900 8100 10000 22500 490000 49000000
high V1 400 400 400 400 400 400 400 400
low V2 100 225 1600 2500 3600 4900 62500 1562500
high V1 400 400 400 400 400 400 400 400
high V2 400 900 4900 8100 10000 22500 490000 49000000

No law

Mean1
Mean2
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The correlation coefficient is set to be –0.9, -0.6, -0.3, 0, 0.3, 0.6 and 0.9.  This 

covers a wide range of correlation coefficients from highly negative to highly positive.  

These are correlations between the random variables in the model; they are also 

correlations between deseasonalised demands. 

 

We assume that the underlying mean values in a group follow a lognormal 

distribution.  The details can be found in the following table: 

More than two series 

 

 

 

 

Table 4: Mean values of the lognormal distribution 

Each combination (2 means ×4 standard ratios) is replicated 50 times.  MSE values 

are averaged over the 50 replications and then the results are compared.  The 

purpose of replicating the lognormal distributions is to reduce randomness, especially 

when the group size is small (e.g. 4 items in the group) as the lognormal distribution 

may not be apparent.  Such replication of distributions can also reduce the risk of 

some unusual values distorting the simulation results.  For each replication of the 

lognormal distributions, 500 replications of the simulation are run.  So, for each 

parameter setting, a total of 25,000 replications are run: 50 to replicate the lognormal 

distribution and 500 to replicate the estimation and forecasting process to reduce 

randomness (for each of the 50 distribution replications). 

Variances are generated using only the universal power laws.  The β  parameter takes the 

values of 1.2, 1.4, 1.6 and 1.8.  Non-universal power laws or arbitrary variance values are not 

examined in this chapter, owing to the greatly increased complexity of specifying the values.   

 

Standard ratio standard deviation 4 6
2 0.69 69 513
6 1.79 272 2009
10 2.30 774 5716
30 3.40 17749 131147

mean of the logarithm
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Appendix 2: Simulating correlation matrices 
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where +
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By a similar argument, ∑∑∑∑
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minimum variance and 2
maxσ  is the maximum variance. 

 

Given all the σ values, it is clear that the sum of the positive correlation coefficients 

and the negative coefficients can be used to determine bounds on the cross-term 

corresponding to WGSI.   

The same argument applies for DGSI.  Let 
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where 2
minCV  is the minimum coefficient of variation squared and 2

maxCV is the 

maximum coefficient of variation squared.   

                                                   


