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ABSTRACT 

In this paper, generalised estimators are proposed to estimate seasonal indices for 

certain forms of additive and mixed seasonality. The estimators combine one of two 

group seasonal indices methods, Dalhart’s group method and Withycombe’s group 

method, with a shrinkage method in different ways. Optimal shrinkage parameters are 

derived to maximise the performance of the estimators. Then, the generalised 

estimators, with the optimal shrinkage parameters, are evaluated based on forecasting 

accuracy. Moreover, the effects of three factors are examined, namely, the length of 

data history, variance of random components and the number of series. Finally, a 

simulation experiment is conducted to support the evaluation. 
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1. Introduction 

Forecasting is an integral part of supply chain management. Accuracy of forecasts 

influences business decision-making at many levels including, for example, strategic 

planning, budgeting, resource allocation, production and inventory control. Since the 

demand of many products exhibits a seasonal pattern, accurate seasonal forecasting at 

the Stock-Keeping Unit (SKU) level plays an important role in many organisations. 
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The common approach for seasonal forecasting is to use the individual item’s data 

history to forecast seasonal demand. This is called the Individual Seasonal Indices 

(ISI) method or classical decomposition, i.e., 'deseasonalise' the data, forecast the 

deseasonalised data, and then reseasonalise the forecast. However, the ISI method is 

not always satisfactory if the data are noisy and the length of data is short. An 

alternative approach to estimating seasonality is from a product group or the same 

SKU across depot locations. Dalhart (1974) and Withycombe (1989) proposed two 

different group seasonality estimation methods. Dalhart's Group Seasonal Index 

(DGSI) is a simple average of iIndividual sSeasonal Indices (Dalhart, 1974), while 

Withycombe's Seasonal Index (WGSI) is calculated by totalling all the series in the 

group and then estimating the seasonal indices from this single time series 

(Withycombe, 1989). Dalhart (1974) compared the performance of DGSI and ISI by 

simulating 100 series with 24 periods of monthly demand data. The results showed 

that the average absolute error of the 100 forecasts was lower by using the DGSI 

method. Withycombe (1989) applied the WGSI method to real data for 29 individual 

products, representing 6 product lines from 3 different companies. 17 out of 29 

products showed a decrease in Mean Square Error (MSE) and the total MSE for each 

product line is lower for all 6 product lines. Bunn and Vassilopoulos (1993) provided 

an empirical comparison of DGSI, WGSI and ISI. They used 54 weekly series from 5 

product groups with 42 observations in each series. Their investigation revealed that 

the DGSI and WGSI outperformed the ISI and that WGSI is better than DGSI. 

However, no reasons were given why this was the case and no theoretical analysis 

was presented to evaluate under what conditions one method was better than another. 

Chen and Boylan (2007) conducted a comparison between the individual seasonal 

indices method and two group seasonal indices (GSI) methods and discovered the 

conditions under which one method outperforms the others established theoretical 

rules to choose the best method. 

Another approach to improving seasonal forecasting is to dampen or shrink 

seasonal indices. Bunn and Vassilpoulos (1999) applied shrinkage seasonal indices 

(SSI) estimator - James-Stein estimator to shrink the ISI towards DGSI or WGSI in 

multi-item short-term forecasting. Their empirical investigation indicated that the 

application offered the highest improvement in forecast performance SSI methods 
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made a uniform improvement on forecasting accuracy over ISI  and were generally 

better than the grouping methods (Bunn & Vassilopoulos, 1999). Also, Miller and 

Williams (2003) attempted to improve the accuracy of the ISI method through the 

shrinkage methods. The shrinkage methods adjusted the ISI towards one in a  for 

multiplicative model or zero in an additive model seasonality. Their findings revealed 

that shrinkage methods are generally more accurate than individual seasonal 

estimation and their performance depends on characteristics of the time series (Miller 

& Williams, 2003). Furthermore, Miller and Williams (2004) investigated the 

potential of the shrinkage methods for improving X-12-ARIMA and concluded that 

forecasting accuracy improved when seasonal damping was used in the seasonal 

adjustment (Miller & Williams, 2004). This investigation inspired discussions on the 

topic of shrinking seasonal factor in a special issue of the International Journal of 

Forecasting (Amstrong, 2004; Findley, Wills, & Monsell, 2004; Koehler, 2004; Miller 

& Williams, 2004; Ord, 2004). Following the discussions, Chen and Boylan (2008) 

undertook an empirical comparison between the ISI, the GSI and the SSI. They found 

that both grouping methods and shrinkage methods improve forecasting accuracy over 

the ISI method, particularly when the data history is short and the data are noisy. 

However, no previous studies have examined theoretically how forecasting 

accuracy can be further improved by bringing the grouping and shrinkage approaches 

together. Therefore, this paper proposes generalised estimators that combine one of 

the two grouping approaches with a generalised shrinkage approach aiming at further 

improvements  in forecasting performance. The generalised estimators are presented 

in Section 2. Since the shrinkage parameter plays a key role in the performance of the 

generalised estimator, Section 3 focuses on discussion of the optimal shrinkage 

parameter which minimises the Mean-Square-Error (MSE) of the corresponding 

estimatorforecast. Given the optimal parameters, we compare different estimators 

theoretically in Section 4. Section 5 contains an analysis of the effect of three factors 

on the MSE, namely the length of data history, variance of random components and 

the number of series. In section 6, a simulation experiment is designed to compare the 

performance of the estimators and to examine the factors that have an important effect 

on forecasting accuracy. The final section contains a summary of the paper and an 

outlook on future work. 
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2. Generalised estimators 

2.1 Models and assumptions 

A forecasting method is a procedure for computing forecasts from present and past 

values (Chatfield, 2001), while a model is an equation or set of equations representing 

the stochastic structure of the time series (Meade, 2000). This paper uses two models 

previously analysed by Chen and Boylan (2007, 2008): 

Mixed model:                       ith i h ithY Sµ ε= +                                                          (1) 

Additive model:                   ith i h ithY Sµ ε= + +                                                       (2) 

where suffix i  represents the SKU and 1,...,i m=  where m is the number of series; 

suffix t  represents the year and 1,2...,t r=  where r  is the number of years' data 

history; suffix h  represents the seasonal period and 1,...,h q=  where q  is the length 

of the seasonal cycle; Y represents demand; iµ  represents the underlying mean for the 

i th SKU; hS  represents a seasonal index at seasonal period h ; and ithε  represents a 

random disturbance term for the i th SKU at the t th year and h th period. 

The two models are stationary. We assume that there is no trend in the models in 

order to concentrate on the seasonal component alone. The underlying mean is 

assumed to be constant over time but different for different SKUs. Also, we assume 

that seasonality is fixed from year to year and is the same for all SKUs. The sum of 

seasonal indices in the additive model is zero, i.e. 
1

0
q

h
h

S
=

=∑  and the average of the 

seasonal indices in the mixed model is one, i.e. 
1

1 1
q

h
h

S
q =

=∑ . The random disturbance 

term is assumed to be normally distributed with mean zero and constant  variance 2
iσ . 

There are no auto-correlations within individual series and no cross-correlations at 

different time periods. There are only non-zero cross-correlations ijρ  between ithε  and 

jthε  at the same time period (same cycle, same season). 

2.2 Generalised estimators for the additive model 

In order to achieve further improvements in forecasting accuracy, we propose to 

combine one of the two group seasonal indices methods (DGSI and WGSI) with a 
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shrinkage seasonal indices method (SSI) to form generalised estimators for the 

additive and mixed seasonal models. 

Since the DGSI and WGSI estimators for the additive model yield the same result, 

we use GSI instead of DGSI and WGSI for the additive model. Expressions of ISI and 

GSI estimators for the additive model were given by Chen and Boylan (2007): 

ISI

1 1 1

ˆ 1 1 qr r

iH itH ith
t t h

S Y Y
r qr= = =

= −∑ ∑∑                                                                                  (3) 

ISI

1GSI

1 1 1 1 1

ˆ
ˆ 1 1

m

jH qm r m r
j

H jtH jth
j t j t h

S
S Y Y

m mr mqr
=

= = = = =

= = −
∑

∑∑ ∑∑∑                                                  (4) 

where ISIŜiH  represents the estimated seasonal indices of the ith series at the Hth season 

period by using the ISI estimator; GSIŜH  represents the estimated seasonal indices at the 

Hth season period by using the GSI estimator. 

Moreover, a shrinkage seasonal index (SSI) for the additive model is formed by 

adding a shrinkage parameter to the ISI: 

SSI ISI

1 1 1

ˆ ˆ 1 1 qr r

iH i iH i itH ith
t t h

S S Y Y
r qr

λ λ
= = =


= = − 

 
∑ ∑∑                                                              (5) 

where iλ  is the shrinkage parameter of the SSI for the additive model. 

Based on the above three estimators, two generalised estimators which include 

shrinkage and grouping methods for the additive model, can be produced. They are 

Shrinkage Group Seasonal Indices (SGSI) estimator produced by shrinking first and 

then grouping and Group Shrinkage Seasonal Indices (GSSI) estimator produced by 

grouping first and then shrinking. 

Shrinkage Group Seasonal Indices (SGSI) 

SGSI ISI

1 1 1 1 1

1 1 1 1ˆ ˆ  
qm m r r

H j jH j jtH jth
j j t t h

S S Y Y
m m r qr

λ λ
= = = = =

 
= = − 

 
∑ ∑ ∑ ∑∑                                       (6) 

where 1,..., mλ λ  are the shrinkage parameters and 0jλ ≥  for 1,...,j m= . 

Group Shrinkage Seasonal Indices (GSSI) 
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GSSI GSI

1 1 1 1 1

ˆ ˆ 1 1 qm r m r

H H jtH jth
j t j t h

S S Y Y
mr mqr

λ λ
= = = = =


= = − 

 
∑∑ ∑∑∑                                             (7) 

where λ  is the shrinkage parameter of the GSSI and 0λ ≥ . 

ISI, SSI, GSI and GSSI are special cases of SGSI: 

• ISI: 1m =  and 1iλ = ; 

• SSI: 1m =  and 1iλ ≠ ; 

• GSI: 2m ≥  and 1 ... 1mλ λ= = = . 

• GSSI: 2m ≥  and 1 ... mλ λ λ= = =  

ISI is the same as SGSI when there is only one sample and it does not shrink. SSI is 

the same as SGSI when there is only one sample but it shrinks. GSI is the same as 

SGSI when there is more than one series and it does not shrink. GSSI is the same as 

SGSI when there is more than one series and it shrinks with the same shrinkage 

parameters for all series. 

2.3 Generalised estimators for the mixed model 

Expressions of ISI, DGSI, WGSI and SSI estimators for the mixed model are 

described as follows: 

ISI 1 1

1 1

ˆ

r r

itH itH
t t

iH qr
i

ith
t h

S
Y q Y

r Yµ
= =

= =

= =
∑ ∑

∑∑
                                                                                       (8) 

ISI

1DGSI 1

1

1 1

ˆ
ˆ

m r

iH jtHm
j t

iH qr
j

jth
t h

S
S

Y
q

m m Y

= =

=

= =

 
 
 = =
 
 
 

∑ ∑
∑

∑∑
                                                                       (9) 

1 1WGSI

1 1 1

ˆ

m r

jtH
j t

iH qm r

jth
j t h

S
q Y

Y

= =

= = =

=
∑∑

∑∑∑
                                                                                             (10) 

SSI ISI 1

1 1

ˆ ˆ

r

itH
t

iH i iH i qr

ith
t h

S S
q Y

Y
λ λ =

= =

= =
∑

∑∑
                                                                                     (11) 
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where iλ  is the shrinkage parameter of the SSI for the mixed model. 

Similar to the generalised estimators used for the additive model, three generalised 

estimators for the mixed seasonal model can be produced by shrinking first and then 

grouping or by grouping first and then shrinking. Since DGSI is different from WGSI 

in the mixed model, two generalised estimators are formed based on DGSI and one 

based on WGSI. They are Shrinkage Dalhart Group Seasonal Indices (SDGSI) 

estimator produced by shrinking first and then grouping by using DGSI, Dalhart 

Group Shrinkage Seasonal Indices (DGSSI) estimator produced by grouping by using 

DGSI first and then shrinking, and Withycombe Group Shrinkage Seasonal Indices 

(WGSSI) estimator produced by grouping by using WGSI first and then shrinking. 

Here, it is worth noting that only the WGSSI estimator can be produced by grouping 

by using WGSI first and then shrinking. It is impossible to obtain an estimator by 

shrinking first then grouping by using WGSI. This is because WGSI is calculated by 

aggregating all series first before working out the seasonal indices. Therefore, 

shrinkage can only apply after grouping. 

Shrinkage Dalhart Group Seasonal Indices (SDGSI) 

SDGSI ISI 1

1 1

1 1

1 1ˆ ˆ

r

jtHm m
t

H j jH j qr
j j

jth
t h

q Y
S S

m m Y
λ λ =

= =

= =

 
 
 = =
 
 
 

∑
∑ ∑

∑∑
                                                          (12) 

where 1,..., mλ λ  are the shrinkage parameters and 0iλ ≥  for 1,...,i m= . 

Dalhart Group Shrinkage Seasonal Indices (DGSSI) 

1DGSSI DGSI 1

1

1 1

ˆ ˆ

m r

jH jtHm
j t

H H qr
j

jth
t h

ISI Y
qS S

m m Y
λ λ λ= =

=

= =

 
 
 = = =
 
 
 

∑ ∑
∑

∑∑
                                              (13) 

where λ  is the shrinkage parameter. 

Withycombe Group Shrinkage Seasonal Indices (WGSSI) 

1 1WGSSI WGSI

1 1 1

ˆ ˆ

m r

jtH
j t

H H qm r

jth
j t h

q Y
S S

Y
λ λ = =

= = =

= =
∑∑

∑∑∑
                                                                          (14) 
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where λ  is the shrinkage parameter. 

As before, we can see that ISI, SSI, DGSI and DGSSI are special cases of SDGSI. 

The interpretation of the estimators is very similar to the additive model. 

3. Optimal shrinkage parameters for generalised estimators 

The shrinkage parameter plays an important role in the forecasting performance of 

the corresponding generalised (or shrinkage only) estimator. Therefore, optimal 

shrinkage parameters which minimise the MSE of the generalised (or shrinkage only) 

estimators are derived in this section. 

Since ISI, SSI, GSI and GSSI are all special cases of SGSI in the additive model, 

the following only takes the SGSI as an example to show how the optimal shrinkage 

parameter is calculated. The optimal shrinkage parameters for other shrinkage only or 

generalised estimators can be obtained in a similar way. The MSE calculation of the 

shrinkage only or generalised estimators in the additive model and mixed model are 

described in Appendixces A and Appendix B respectively. The calculation of the 

optimal shrinkage parameters are presented in Appendixces C and Appendix D 

respectively. 

The MSE of the SGSI can be calculated as (see Appendix A for details): 

( )
2

1
SGSI 2 2 2

2
1 1 1 1

11 1MSE 1 2 1
m m m m

i j j j l jl i j j H
j j l j j

q
S

qr m qr m
σ λ σ λ λ ρ σ σ λ

−

= = = + =

   −
= + + + + −  

       
∑ ∑ ∑ ∑  

                                                                                                                               (15) 

where jλ  ( 1,...,j m= ) is a shrinkage parameter for the j th series and 0jλ ≥ . 

A set of optimal shrinkage parameters can be obtained by differentiating the MSE 

of the SGSI with respect to any shrinkage parameter kλ  ( 1,...,k m= ): 

2

1, 1,

2 2

1

1

m m

j H j jk j k
j j k j j k

k

H k

qm S
qr

qS
qr

λ λ ρ σ σ
λ

σ

= ≠ = ≠

   −
− −   

  =
 −

+  
 

∑ ∑
                                                 (16) 

Equation (16) is a set of m simultaneous equations in m unknowns. The shrinkage 

parameters 1λ , 2λ ,..., mλ  can be obtained by solving the simultaneous equations. 
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4. Comparisons of the estimators 

Chen and Boylan (2007) carried out a comparison between individual seasonal 

indices method (ISI) and group seasonal indices method (GSI) ISI and GSI. In this 

section, we will extend the comparison to other estimators which include the 

shrinkage-only method (SSI), the grouping and then shrinking method (GSSI) and the 

shrinking and then grouping method (SGSI). Although the following will only take 

the estimators for the additive model as an example, similar conclusions can be 

reached for the mixed model. In addition, the additive model does not differentiate the 

DGSSI from the WGSSI, but they are different in the mixed model. Thus, a 

comparison between the DGSSI and the WGSSI for the mixed model is added in the 

last subsection. 

4.1 ISI and SSI 

This subsection will compare the SSI to the ISI, aiming to examine if the 

performance of the original individual estimator can be improved through shrinking. 

The MSE expressions of ISI for the additive model was given in (Chen & Boylan, 

2007). 

ISI 21MSE 1 ir
σ = + 

 
                                                                                                 (17) 

The MSE of the optimal SSI for the additive model can be calculated by inserting 

the corresponding optimal shrinkage parameter 
2

2 21
H

i

H i

S
qS
qr

λ
σ

=
 −

+  
 

 shown in 

Appendix C in its MSE expressions shown in Appendix A. 

2 2

SSI 2
min

2 2

1
1MSE 1

1

H i

i

H i

q S
qr

qr qS
qr

σ
σ

σ

 −
    = + +   −  +  

 

                                                               (18) 

The difference in MSE between the ISI and the optimal SSI can thus be calculated 

as: 
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2
4

ISI SSI
min

2 2

1

MSE MSE 0
1

i

H i

q
qr

qS
qr

σ

σ

 −
 
 − = >

 −
+  
 

                                                               (19) 

Equation (19) shows that in the additive model the SSI is less than the ISI in MSE 

when the SSI is optimal, i.e., when its MSE is minimum. Actually, the optimal 

estimator produced by shrinking is better than the basic individual estimator whether 

in the additive model or in the mixed model. 

4.2 GSI and GSSI 

Similar to the comparison between the ISI and the SSI, this subsection devotes to 

examining if the performance of a group estimator will be improved through further 

shrinking. 

Also, the MSE of the optimal GSSI can be calculated by inserting the 

corresponding optimal shrinkage parameter: 

( ) 2 2
GSSI 2
min 22

2
2

11MSE 1
1

H A
i

A
H

q S
qr qr mqS

qr m

σσ
σ

− 
= + +   −  +  

 

                                            (20) 

where 
1

2 2

1 1 1
2

m m m

A j jl j l
j j l j

σ σ ρ σ σ
−

= = = +

= +∑ ∑ ∑  is the variance of the deseasonalised aggregate 

demand. 

The difference in MSE between the GSI and the optimal GSSI is: 

( )

( )

2

22
GSI GSSI

min 22
2

2

1
1MSE MSE 0

1

A

A

A
H

q
q qr m

qqr mS
qr m

σ
σ

σ

− 
  −  − = >  −   + 
 

                                       (21) 

Equation (21) shows that the GSSI is less than the GSI in MSE when the GSSI is 

optimal, i.e., the group shrinkage method is better than group-only method. With the 

result of the previous subsection, it is concluded that the performance of estimators 

(whether individual one or group-only one) can be improved through further shrinking 

for both models.  The empirical results in Bunn and Vassilopoulos (1999) are 

consistent with this finding.  Moreover, the difference between GSI and GSSI will 



11 

 

approach zero when the number of series ( m ) goes infinity, i.e., the group-only 

estimator and the group shrinkage estimator will be the same in terms of forecasting 

accuracy when the number of serious  series are large enough. 

4.3 SSI and GSI 

This subsection will compare the shrinkage-only method to group-only method, 

aiming to discover which method is better or under what conditions a method is better 

than the other. 

The difference in MSE between the optimal SSI and the GSI can be calculated as: 

( )
2 2 2

SSI GSI 2 2
min 2 2

2 2

1 1MSE MSE
1

H A A
i i i

H i

Sq q
qqr m qr mS
qr

σ σσ λσ
σ

 
      − − − = − = −    −     + 
 

    (22) 

where 
2

2 21
H

i

H i

S
qS
qr

λ
σ

=
 −

+  
 

 is the optimal shrinkage parameter. 

Thus, SSI GSIMSE MSE>  if and only if 
2

2
2
A

i i m
σλσ >                                                                                                              (23) 

That means that in the additive model the GSI is better than the optimal SSI if and 

only if the 'shrunk' individual series' variance ( 2
i iλσ ) is greater than the 'average' 

variance of the group (
2

2
A

m
σ ), otherwise, the optimal SSI is better. 

Similarly, in the mixed model the DGSI is better than the optimal SSI if and only if 
22

2 2
Ai

i
i m

µσσλ
µ

 
> 

 
( where 

2 1
2

2
1 1 1

12
m m m

j
A jl j l

j j l jj j l
µ

σ
σ ρ σ σ

µ µ µ

−

= = = +

 
= +   

 
∑ ∑ ∑ ) ) and the WGSI is 

better if 
2 2

2 2
i A

i
i A

σ σλ
µ µ

 
> 

 
 (where 

1
2 2

1 1 1

2
m m m

A i jl j l
i j l j

σ σ ρ σ σ
−

= = = +

= +∑ ∑ ∑  and 

1 2 ...A mµ µ µ µ= + + + ). Conceptually, the three conditions are the same. The 

difference lies in the expression of noisiness of individual series and the 'average' of 

the group. In the additive model, noisiness is measured by variance ( 2
iσ ). In the 
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mixed model, it is measured by the square of coefficient of variation (
2

2
i

i

σ
µ

). The GSI 

and the DGSI use the average of individual noisiness (
2

2
A

m
σ  or 

2

2
A

m
µσ ), while the WGSI 

uses the noisiness of aggregate series (
2

2
A

A

σ
µ

).  These findings agree with Chen and 

Boylan (2008) that the grouping and shrinkage approaches are competitive with each 

other.  Here the theoretical conditions are established to understand when one is better 

than the other. 

4.4 GSSI and SGSI 

Having known that both grouping and shrinking have effects on the performance of 

the estimator, we now wish to discover which is better way to combine them together, 

shrinking first and then grouping or grouping first and then shrinking. Since the 

optimal shrinkage parameters of SGSI have to be calculated by solving simultaneous 

equations (16), an MSE expression of the optimal SGSI cannot be obtained directly in 

a similar way to the optimal SSI in equation (18) or the optimal GSSI in equation 

(20). Therefore, a direct comparison between the optimal SGSI and other estimators is 

intractable. Here, a general discussion on the SGSI and the GSSI is given, which can 

be applied to the comparison between any estimators. 

The difference between the GSSI and the SGSI can be calculated by using their 

MSE expressions presented in Appendix A: 

( ) ( )
2

22 2
2GSSI SGSI

2 2
1

1 1MSE MSE  
m

AA
H j H H H

j

q
S S S S

qr m m m
λσλ σ λ λ

=

   −    − = − − − − −           
∑  

                                                                                                                               (24) 

where jλ  ( 1,...,j m= ) is the shrinkage parameters of the SGSI and λ  is the shrinkage 

parameter of the GSSI; 
1

2 2 2

1 1 1
2

m m m

A j j j l jl i j
j j l j

λσ λ σ λ λ ρ σ σ
−

= = = +

= +∑ ∑ ∑ is the aggregate of 

shrunk variances and 
1

2 2

1 1 1
2

m m m

A j jl j l
j j l j

σ σ ρ σ σ
−

= = = +

= +∑ ∑ ∑  is the aggregate variance. 

Thus, GSSI SGSIMSE MSE>  if and only if 



13 

 

( ) ( )
2

22 2
2

2 2
1

1 1 m
AA

H j H H H
j

q
S S S S

qr m m m
λσλ σ λ λ

=

   −    − > − − −           
∑                          (25) 

From equation (25), it is found that 
2 2

2
A

m
λ σ  is the 'shrunk average of aggregate 

variance' with the GSSI, 
2

2
A

m
λσ is the 'average of shrunk aggregate variances' with the 

SGSI, ( )H HS Sλ−  is the bias of shrunk seasonal index with the GSSI and 

1

1 m

H j H
j

S S
m

λ
=

  
−     

∑  is the bias of average shrunk seasonal index with the SGSI. The 

comparison of the two estimators is actually a comparison between the difference of 

'two generalised average variances' and the difference of 'the squared bias of the two 

generalised seasonal indices'. When the difference in the 'variances' multiplied by a 

coefficient ( )1q
qr
−

 is greater than the difference of 'the squared bias of the two 

generalised seasonal indices', shrinking before grouping is better than grouping first, 

i.e., applying multiple shrinkage parameters is better than a universal one. 

4.5 DGSSI and WGSSI 

Although DGSI and WGSI or DGSSI and WGSSI are the same in the additive 

model, they are different in the mixed model. Thus, a comparison between the DGSSI 

and WGSSI for the mixed model are  is added here. 

The difference between the optimal DGSSI and the optimal WGSSI is: 
2 2

4
2 22

DGSSI WGSSI
min min 2 2

2 2
2 2

MSE  MSE  

A A
H

Ai

A A
H H

A

S
m

r
S S

rm r

µ

µ

σ σ
µµ

σ σ
µ

  
−     − =     + +       

                                                 (26) 

Thus, DGSSI WGSSI
min minMSE  MSE>  if and only if 

2 2

2 2
A A

Am
µσ σ

µ
>                                                                                                               (27) 
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where 
2 1

2
2

1 1 1

12
m m m

j
A jl j l

j j l jj j l
µ

σ
σ ρ σ σ

µ µ µ

−

= = = +

 
= +   

 
∑ ∑ ∑  is the aggregate of squared coefficient 

of variation. 

The condition (equation (27)) is the same as the rule of comparing the DGSI and 

WGSI which was derived by Chen and Boylan (2007). That means that the 

relationship in forecasting performance between the DGSSI and the WGSSI is similar 

to the DGSI and the WGSI. 

In summary, the optimal shrinkage estimator is better than individual seasonal 

indices method and the group shrinkage method is better than the corresponding 

group only method. The comparison between the group method and shrinkage 

method, or between the group shrinkage method and shrinkage group method, or 

between two group shrinkage methods depends on conditions that have been specified 

in this section of the paper. 

5. Effect of three factors on MSE 

The differences between different estimators were discussed in the last  previous 

section. This section will be devoted to an evaluation of the effect of three factors 

which are included in the MSE expressions. They are: the length of data history used 

for estimation of seasonal indices, the variances of random components and the 

number of series. From the evaluation, the similarities of different estimators can be 

detected. The following will take the SGSI as an example to discuss the effect of the 

three factors on MSE. There are similar effects on other estimators for both the 

additive model and the mixed model. 

5.1 Length of data history 

Assume that all the series are independent, i.e., 0jlρ = , differentiate the MSE of 

SGSI calculated in equation (15) with respect to the length of data history r : 

( ) ( )SGSI
2 2 2

2 2 2
1

MSE 11 0
m

i j j
j

q
r qr m qr

σ λ σ
=

∂  − − −
= + <  ∂    

∑                                                     (28) 

The differentiation of the MSE is less than zero, which means that the MSE of 

SGSI will decrease as the length of data history increases if all the series are 
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independent. The conclusion can be applied to all estimators: the longer the data 

history, the higher the estimation accuracy. 

5.2 Variances 

Assume that all the series are independent, i.e., 0jlρ = , differentiate the MSE of 

SGSI calculated in equation (15) with respect to the variances 2
kσ  ( 1,...,k m= ): 

( )
( )

( )

2 2 2
2SGSI

2
2 2 2

2

111 0 ( )
MSE

1
0 ( )

m

i j j
j i

m
k

k j j
j i

q
k i

qr m qr

q
k i

m qr

λ λ σ

σ
λ λ σ

≠

≠

  − 
+ + + > =   ∂    = ∂  − + > ≠ 

 

∑

∑

 

                                                                                                                               (29) 

The differentiation of the MSE is greater than zero whether differentiating with 

respect to the variance of the estimated item ( k i= ) or not ( k i≠ ), which shows that 

the MSE of SGSI will increase as the variance increases if all the series are 

independent. The conclusion can be applied to all estimators: the higher noisiness will 

lead to the lower estimation accuracy. 

5.3 Number of series 

Assume that all the series are independent, i.e., 0jlρ = , and the number of series 

m  goes to infinity, MSE of the SGSI can be calculated by inserting the optimal 

shrinkage parameters shown in equation (16): 

( )

SGSI

m

2

2 2 2
2m 1 1

2

lim MSE

11 1lim 1 1

11

m m

i j j j H
j j

i

q
S

qr m qr m

qr

σ λ σ λ

σ

→∞

→∞
= =

     −  = + + + −              
 

= + 
 

∑ ∑  

                                                                                                                               (30) 

That means that if all the series are independent, i.e., 0jlρ = , then the MSE of 

SGSI will approach a constant 211 iqr
σ

 
+ 

 
 when m  goes to infinity. Also, the MSEs 
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of GSI and GSSI for the additive model will approach a constant 211 iqr
σ

 
+ 

 
 under 

the same condition. A similar calculation can be performed on the MSEs of all 

grouping-related methods (DGSI, WGSI, SDGSI, DGSSI and WGSSI) for the mixed 

model. It is found that all the MSEs will approach a constant 2
iσ  when m  goes to 

infinity. 

Furthermore, by comparing equation (18) with equation (30), it is found that the 

MSE of the optimal SSI is greater than all the grouping-related methods (GSI, SGSI 

and GSSI) for the additive model when all the series are independent and the number 

of series goes to infinity. Also, the optimal SSI for the mixed model is worse than all 

grouping-related methods (DGSI, WGSI, SDGSI, DGSSI and WGSSI) in the same 

situation. 

6. Simulation experiment 

6.1 Design of simulation experiment 

The previous two sections presented the theoretical evaluations of different 

estimators. However, the shrinkage parameters of the SGSI are not easily determined 

theoretically due to the difficulty in solving simultaneous equations, which prevents 

the comparison between the estimator and others. In this study, a simulation 

experiment is designed to compare the performance of the estimators and examine the 

crucial factors which affect forecasting accuracy. The examination focuses on the 

effect of three factors mentioned in Section 5. Here, the optimal shrinkage parameters 

which minimise the MSE of corresponding generalised estimators are applied to the 

corresponding estimators. Since this study is a further exploration of previous 

research, the reasons for the choice of the parameters in the experiment can be found 

in (Chen & Boylan, 2007). These parameters include: 

• Seasonal profiles 

Three seasonal profiles are used for quarterly seasonality forecasting in each of 

models, which include: WS (weak seasonality), LLLH (low values for three quarters 

and high for one) and LHLH (low values for two quarters and high for the other two). 

The details of parameters are given in Table 2 and Table 3 of Chen & Boylan (2007). 
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• Number of series 

Six groups of data are used with the following number of series: 4, 8, 16, 32, 64, 

and 128. In this experiment, the number of series made little difference on MSE when 

the number of series was increased to 128. Therefore, a further examination of higher 

volume of series werea further examination of higher volume of series was not 

conducted. 

• Underlying mean 

Underlying mean value is generated by assuming its distribution is lognormal 

distribution with mean 4 and standard ratio 0.69. 

• Variance 

Variance of the random noise is generated by using universal power law of the 

form 2
i i

βσ αµ=  where 2
iσ  is the variance, iµ  is the underlying mean and α  and β  

are constants (Brown, 1959). Here we choose α  to be 0.5 , β  to be 1.2, 1.4, 1.6 or 

1.8. 

• Cross correlation coefficient 

The correlation coefficients are assumed to be zero ( 0ijρ = ) in this experiment, i.e., 

there is no cross correlation between different series at the same time period. In the 

theoretical analysis in Section 5, the correlation coefficients are assumed to be zero in 

order to focus on the discussion of effect of three main factors. Since the experiment 

aims at a further examination of the theoretical research, it is designed to follow the 

same condition. 

• Data history 

3, 4 or 5 years' data are generated and the last year’s observations are used as the 

holdout sample. So the data history used for estimation are 2, 3 or 4 years. 

• Replications 

For each parameter setting, 1000 replication were run to reduce sampling errors. 

6.2 Experiment on length of data history 
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In order to present the effect of data history, the MSE results shown in Fig. 1 were 

obtained based on the average of data from three kinds of seasonal patterns (WS, 

LLLH and LHLH), 4 kinds of variances ( 1.2,1.4,1.6,1.8β = ) and 6 groups of series 

( 4,8,16,32,64,128m = ). It was found that the performance of all estimators was 

closely related to the length of data history. The MSE decreased as the length of data 

history increased from 2 years to 4 years. The effect was obvious especially when 

using ISI and SSI. However, the MSE of grouping-related estimators decreased less. 

This effect was caused by the grouping methods involved in the grouping-related 

estimators. The grouping methods helped the noisier data to borrow strength from less 

noisy data in the group, which reduced the sensitivity of data to the length of data 

history. 

Although the effects of data history on the estimation accuracy were similar for all 

estimators, the difference between different estimators apparently existed. With the 

same data history, the ISI delivered the worst forecasting accuracy. The SSI is better 

than the ISI but worse than all grouping-related methods. Since the MSE results of 

different grouping-related methods are very close, it is difficult to detect their 

differences by visually examining the two figures. However, the differences can be 

found in Table 1: the group shrinkage method (DGSSI and WGSSI) and shrinkage 

group method (SDGSI) are better than the group-only method. Moreover, the SDGSI 

is a bit slightly better than DGSSI, and WGSSI is a bit slightly better than DGSSI. 

Another notable finding from the two figures is that the difference in MSE between 

different estimators decreased as the length of data increased, as expected from the 

theoretical analysis. 

6.3 Experiment on variances 

The MSE results regarding the effect of variance (See Fig. 2) were obtained based 

on the average of data from three kinds of seasonal patterns (WS, LLLH and LHLH), 

3 kinds of history data ( 2,3, 4r = ) and 6 groups of series ( 4,8,16,32,64,128m = ). 

Two figures showed the effect of variances which were generated by using universal 

power law of the form 2 0.5i i
βσ µ= . It is found the variances caused significant 

increase in MSEs of all estimators. As the β  constant in the universal power law 
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increased from 1.2 to 1.8, the MSEs increased by around 15 times or more for all 

methods in both mixed and additive models. 

The difference between different estimators was evident, especially when the 

variance was big, for example, when 1.8β =  (See Table 2). The results are very 

similar to the last previous subsection: the ISI is the worst; the SSI is better than the 

ISI but worse than group method; the group shrinkage method is better than the 

corresponding group method but worse than shrinkage group method. However, the 

comparison between two different group methods (DGSI and WGSI) or group 

shrinkage methods (DGSSI and WGSSI) in the mixed model depends greatly on the 

variance. The WGSI is better than the DGSI when the variance is small, for example, 

when 1.2β = , while the DGSI is better than the WGSI when the variance is big, for 

example, when 1.8β = .  These are consistent with the findings in Chen and Boylan 

(2007). 

6.4 Experiment on number of series 

The MSE results regarding number of series were obtained based on the average of 

data from three kinds of seasonal patterns (WS, LLLH and LHLH), 4 kinds of 

variances ( 1.2,1.4,1.6,1.8β = ) and 3 kinds of history data ( 2,3, 4r = ). As shown in 

Fig. 3, the number of series had no great effect on MSE. However, a small change 

happened on the estimators which involve grouping methods. For example, MSE of 

the GSI for the additive model reduced from 0.8515 to 0.8018 as the number of series 

increased from 4 to 128 (see Table 3).. Although the change is small, it showed a 

benefit from the number of series. The more the number of series were, the better 

these grouping-related methods performed. Moreover, the MSE ratios of the 

grouping-related methods to the ISI approached to 0.802 in the additive model or 

0.818 in the mixed model when the number of series was increased to 128. That 

means that MSEs of all grouping-related methods are nearly the same when the 

number of series are big enough. The theoretical analyses in last section showed that 

MSE of all grouping-related methods will approach to a constant 211 iqr
σ

 
+ 

 
 in the 
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additive model or 2
iσ  in the mixed model when m  goes to infinity and 0jlρ = . 

Hence, the experimental results proved theoretical predictions. 

Another notable fact is that MSE of the ISI is greater than the SSI and the SSI is 

greater than the grouping-related methods whatever the number of series is. The 

results are also consistent with the theory. 

7. Conclusions 

This paper presented several generalised estimators used to estimate seasonal 

indices for both additive and mixed models. The estimators were formed by 

combining one of two group seasonal indices methods - Dalhart Group Seasonal 

Indices estimator (DGSI) or Withycombe Group Seasonal Indices estimator (WGSI) 

with a shrinkage approach in different ways. Including the basic ISI, GSI and SSI 

methods, a total of seven estimators are obtained in the mixed model and five 

estimators in the additive model. With the help of the optimal shrinkage parameters, 

the emphasis of this paper is placed on theoretical comparison of all estimators. The 

comparisons are then enhanced through a further discussion about the effect of three 

factors on forecasting accuracy. Finally, a simulation experiment is designed to 

support these theoretical analyses. It is found that the simulation results are consistent 

with the theoretical analyses. 

Through the theoretical and empirical simulation comparisons, the following 

conclusions are made: 

• The optimal SSI is better than the ISI and the optimal group shrinkage method 

(DGSSI or WGSSI) is better than the corresponding group-only method (DGSI or 

WGSI). 

• The group-only method is better than the optimal shrinkage method if and 

only if the 'shrunk variance' with the optimal shrinkage method is greater the 'average' 

variance with the group-only method. The GSI is better than the optimal SSI only if 
2

2
2
A

i i m
σλσ >  in the additive model. The DGSI is better than the optimal SSI only if 

22

2 2
Ai

i
i m

µσσλ
µ

 
> 

 
 and the WGSI is better only if 

2 2

2 2
i A

i
i A

σ σλ
µ µ

 
> 

 
 in the mixed model. 
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• The shrinkage group method (SGSI for the additive model or SDGSI for the 

mixed model) is better than the optimal shrinkage-only method (SSI) when all the 

series are independent and the number of series goes to infinity. 

• The optimal SSI is worse than all grouping-related methods (GSI, SGSI and 

GSSI for additive model; DGSI, WGSI, SDGSI, DGSSI and WGSSI for the mixed 

model) when m  goes to infinity. 

• The theoretical comparisons between the optimal shrinkage group method and 

the optimal group shrinkage method is not easy to be articulated. Only general 

conclusions can be made: which estimator is better depends on the difference of 

'generalised variances' and the difference of 'squared bias of seasonal indices' between 

two compared estimators. However, the simulation experiment contributed to a fact 

that the optimal shrinkage group method is better than  made a small improvement 

over the optimal group shrinkage method. 

• Two different group methods (DGSI and WGSI) or group shrinkage methods 

(DGSSI and WGSSI) in the mixed model depend greatly on the 'variance'. The WGSI 

is better than the DGSI or the WGSSI is better than the DGSSI when the variance is 

small, and vice versa. 

• The length of data history has an effect on the relative forecasting performance 

of the estimators. The longer data history, the higher the forecasting accuracy. 

Moreover, the difference in MSE between different estimators decreased as the length 

of data increased. 

• The effect of variance is obvious for all the estimators. The greater variance 

caused an obvious reduction in forecast accuracy. 

• The number of series has no significant effect on forecasting performance. 

Especially when the number of series is large enough, the MSE of all grouping-related 

methods approached to a constant if all the series are independent. 

For future work, we intend to establish the link between these generalised 

estimators and James-Stein type of shrinkage estimator. The latter was applied by 

Bunn and Vassilpoulos (1999) and Miller and Williams (2003), which showed 

promising results. Once such theoretical understanding is achieved, we will test these 

estimators on large scale real data. 



22 

 

Acknowledgements 

We are deeply grateful to the editor for all his helpful advice and great 

encouragement. This research was supported  is funded by the UK Engineering and 

Physical Science Research Council (EPSRC) funds (EP/G003858/1). 

References 

Amstrong, J. S. (2004). Damped Seasonality Factors: Introduction. International 

Journal of Forecasting, 20(4), 525-527.  

Brown, R. G. (1959). Statistical forecasting for inventory control. New York: 

McGraw-Hill. 

Bunn, D. W., & Vassilopoulos, A. I. (1993). Using Group Seasonal Indices in Multi-

item Short-term Forecasting. International Journal of Forecasting, 9, 517-526.  

Bunn, D. W., & Vassilopoulos, A. I. (1999). Comparison of seasonal estimation 

methods in multi-item short-term forecasting. International Journal of 

Forecasting, 15(4), 431-443.  

Chatfield, C. (2001). Time-series Forecasting. Boca Raton: Chapman & Hall/CRC 

Press. 

Chen, H., & Boylan, J. E. (2007). Use of Individual and Group Seasonal Indices in 

Subaggregate Demand Forecasting. Journal of the Operational Research 

Society, 58, 1660-1671.  

Chen, H., & Boylan, J. E. (2008). Empirical Evidence on Individual, Group and 

Shrinkage Seasonal Indices. International Journal of Forecasting, 24, 525-

534.  

Dalhart, G. (1974). Class Seasonality - A New Approach. Paper presented at the 

American Production and Inventory Control Society Conference Proceedings. 

Findley, D. F., Wills, K. C., & Monsell, B. C. (2004). Seasonal adjustment 

perspectives on "Damping seasonal factors: shrinkage estimators for the X-12-

ARIMA program". International Journal of Forecasting, 20(4), 551-556.  

Koehler, A. B. (2004). Comments on Damped Seasonal Factors and Decisions by 

Potential Users. International Journal of Forecasting, 20(4), 565-566.  

Meade, N. (2000). Evidence for the selection of forecasting methods. Journal of 

Forecasting, 19(6), 515 - 535.  



23 

 

Miller, D. M., & Williams, D. (2003). Shrinkage estimators of time series seasonal 

factors and their effect on forecasting accuracy. International Journal of 

Forecasting, 19, 669-684.  

Miller, D. M., & Williams, D. (2004). Damping seasonal factors: Shrinkage 

estimators for the X-12-ARIMA program. International Journal of 

Forecasting, 20(4), 529-549.  

Ord, J. K. (2004). Shrinking: When and How? International Journal of Forecasting, 

20(4), 567-568.  

Withycombe, R. (1989). Forecasting with Combined Seasonal Indices. International 

Journal of Forecasting, 5, 547-552.  

Appendix A. MSEs of estimators - SGSI, SSI and GSSI in the additive model 

MSE of SGSI 

ith i h ithY Sµ ε= + +  and  

SGSI ISI

1 1 1 1 1

1 1 1 1ˆ ˆ  
qm m r r

H j jH j jtH jth
j j t t h

S S Y Y
m m r qr

λ λ
= = = = =

 
= = − 

 
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The forecast for the i  th series, H th season, in year 1r +  using the SGSI is: 
SGSI SGSI
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Thus, MSE of the SGSI can be calculated: 
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MSE of SSI 

Since the SSI for the additive model is a special case of the SGSI when 1m =  and 

1iλ ≠ , the MSE is: 

( ) ( )2SSI 2 2 2 21 1MSE 1 1i i i i H
q S

qr qr
σ λ σ λ

   −
= + + + −   
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MSE of GSSI 

Since the GSSI for the additive model is a special case of the SGSI when 2m ≥  

and 1 ... mλ λ λ= = = , the MSE is: 

( ) ( )
2 1 2GSSI 2 2

2
1 1 1
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m m m
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Appendix B. MSEs of estimators - SDGSI, SSI, DGSSI and WGSSI in the mixed 

model 

MSE of SDGSI 
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The forecast for the i th series, H th season, in year 1r +  using the SDGSI 

is:
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Thus, MSE of SDGSI can be calculated: 
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MSE of SSI 

Since the SSI for the mixed model is a special case of the SDGSI when 1m =  and 

1iλ ≠ , the MSE is: 
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MSE of DGSSI 

Since the DGSSI for the mixed model is a special case of the SDGSI when 2m ≥  

and 1 ... mλ λ λ= = = , the MSE is: 

( )
22 2 1

2DGSSI 2 2 2
2 2

1 1 1

1MSE 1 2
m m m

ji
i H i jl j l

j j l jj j l

S
m r

σµ λλ µ σ ρ σ σ
µ µ µ

−

= = = +

  
= − + + +      

∑ ∑ ∑  

MSE of WGSSI 

Similar to the SDGSI, MSE of WGSSI can be calculated as follows: 
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= +∑ ∑ ∑  is the variance of deseasonlised aggregate 

demand and 1 2 ...A mµ µ µ µ= + + +  is the aggregate mean. 

 

Appendix C. Optimal shrinkage parameters of SGSI, SSI and GSSI in the 

additive model 

Optimal shrinkage parameters of SGSI 

The MSE of the SGSI is (see Appendix A): 
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where jλ  ( 1,...,j m= ) is a shrinkage parameter for the j th series and 0jλ ≥ . 

A set of optimal shrinkage parameters can be obtained by differentiating the MSE 

of the SGSI with respect to any shrinkage parameter kλ  ( 1,...,k m= ): 
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Optimal shrinkage parameters of SSI 
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Optimal shrinkage parameters of GSSI 
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Appendix D. Optimal shrinkage parameters of SDGSI, SSI, DGSSI and WGSSI 

in the mixed model 

Optimal shrinkage parameters of SDGSI 

The MSE of the SDGSI is (see Appendix B for details): 
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where jλ  ( 1,...,j m= ) is a shrinkage parameter for the j th series and 0jλ ≥ . 

A set of optimal shrinkage parameters can be found out by differentiating the MSE 

of the SDGSI with respect to any shrinkage parameter kλ  ( 1,...,k m= ): 
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Optimal shrinkage parameters of SSI 
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Optimal shrinkage parameters of DGSSI 
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Optimal shrinkage parameter in WGSSI 

Similar to the SDGSI, the optimal shrinkage parameters can be found out by 

differentiating the MSE of the WGSSI with respect to λ : 
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= +∑ ∑ ∑  is the variance of deseasonlised aggregate 

demand and 1 2 ...A mµ µ µ µ= + + +  is the aggregate mean. 
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Table 1 

The ratios of MSE of all estimators to MSE of the ISI when the length of data history 

is 2, 3, 4. 
 Years ISI DGSI WGSI SSI SDGSI DGSSI WGSSI 

Additive 

model 

2 1 0.7834*** 0.8419** 0.7622*** 0.7718*** 

3 1 0.8387*** 0.8940** 0.8240*** 0.8320*** 

4 1 0.8705*** 0.9206* 0.8585*** 0.8652*** 

Mixed 

model 

2 1 0.8107*** 0.8093*** 0.9673 0.8047*** 0.8078*** 0.8055*** 

3 1 0.8571*** 0.8569*** 0.9823 0.8534*** 0.8556*** 0.8549*** 

4 1 0.8863*** 0.8861*** 0.9897 0.8838*** 0.8856*** 0.8851*** 

Asterisks indicate p-value for one-tailed paired t-tests over 128 series: *p<0.1;**p<0.05; ***p<0.01. 

Table 2 

The ratios of MSEs of all estimators to MSE of the ISI when 1.2β =  and 1.8β = . 

 β  ISI DGSI WGSI SSI SDGSI DGSSI WGSSI 

Additive 

model 

1.2 1 0.8297*** 0.9624* 0.8206*** 0.8278*** 

1.8 1 0.8278*** 0.8647** 0.8102*** 0.8182*** 

Mixed 

model 

1.2 1 0.8603*** 0.8491*** 0.9973 0.8480*** 0.8600*** 0.8488*** 

1.8 1 0.8468*** 0.8479*** 0.9723 0.8434*** 0.8445*** 0.8448*** 

Asterisks indicate p-value for one-tailed paired t-tests over 128 series: *p<0.1;**p<0.05; ***p<0.01. 

Table 3 

The ratios of MSEs of all estimators to MSE of the ISI when 4m =  and 128m = . 
 m ISI DGSI WGSI SSI SDGSI DGSSI WGSSI 

Additive 

model 

4 1 0.8515 0.8818 0.8193 0.8359 

128 1 0.8018*** 0.8817** 0.8017*** 0.8018*** 

Mixed 

model 

4 1 0.8787 0.8786 0.9789 0.8688 0.8755 0.8739 

128 1 0.8185*** 0.8178*** 0.9790 0.8182*** 0.8185*** 0.8177*** 

Asterisks indicate p-value for one-tailed paired t-tests over 128 series: *p<0.1;**p<0.05; ***p<0.01. 
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(a) additive model                                      (b)mixed model 

Fig. 1. Effect of data history on the reduction in MSE 

 

          
(a) additive model                                      (b)mixed model 

Fig. 2. Effect of variance on the increase in MSE 

 

          
(a) additive model                                      (b)mixed model 

Fig. 3. Effect of number of series on MSE 
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