# Case-control study of stroke and the quality of hypertension control in north west England 

Xianglin Du, Kennedy Cruickshank, Roseanne McNamee, Mohamad Saraee, Joan Sourbutts, Alison Summers, Nick Roberts, Elizabeth Walton, Stephen Holmes

School of
Epidemiology and Health Sciences,
University of Manchester Medical School, Manchester M13 9PT
Xianglin Du, research fellow in clinical epidemiology Kennedy
Cruickshank, senior lecturer in clinical epidemiology
Roseanne
McNamee, senior lecturer in medical statistics Joan Sourbutts, research nurse, clinical epidemiology unit

Department of Computation, University of Manchester, Institute of Sciences and Technology, Manchester M60 1QD Mohamad Saraee, research fellow

Department of Public Health, East Lancashire Health Authority, Nelson, Lancashire BB9 5SZ
Alison Summers, consultant in public health medicine Elizabeth Walton, public health intelligence officer

Department of Medicine for the Elderly, Queen's Park Hospital Blackburn, Lancashire BB2 3HH
Nick Roberts, consultant physician

BMJ 1997;314:272-6
continued over


#### Abstract

Objective: To examine the risk of stroke in relation to quality of hypertension control in routine general practice across an entire health district. Design: Population based matched case-control study. Setting: East Lancashire Health District with a participating population of 388821 aged $\leq 80$. Subjects: Cases were patients under 80 with their first stroke identified from a population based stroke register between 1 July 1994 and 30 June 1995. For each case two controls matched with the case for age and sex were selected from the same practice register. Hypertension was defined as systolic blood pressure $\geq 160 \mathrm{~mm} \mathrm{Hg}$ or diastolic blood pressure $\geq 95 \mathrm{~mm} \mathrm{Hg}$, or both, on at least two occasions within any three month period or any history of treatment with antihypertensive drugs. Main outcome measures: Prevalence of hypertension and quality of control of hypertension (assessed by using the mean blood pressure recorded before stroke) and odds ratios of stroke (derived from conditional logistic regression). Results: Records of 267 cases and 534 controls were examined; $61 \%$ and $42 \%$ of these subjects respectively were hypertensive. Compared with non-hypertensive subjects hypertensive patients receiving treatment whose average pre-event systolic blood pressure was controlled to $<140 \mathrm{~mm} \mathrm{Hg}$ had an adjusted odds ratio for stroke of $1.3(95 \%$ confidence interval 0.6 to 2.7). Those fairly well controlled ( $140-149 \mathrm{~mm} \mathrm{Hg}$ ), moderately controlled ( $150-159 \mathrm{~mm} \mathrm{Hg}$ ), or poorly controlled ( $\geq 160 \mathrm{~mm} \mathrm{Hg}$ ) or untreated had progressively raised odds ratios of $1.6,2.2,3.2$, and 3.5 respectively. Results for diastolic pressure were similar; both were independent of initial pressures before treatment. Around $21 \%$ of strokes were thus attributable to inadequate control with treatment, or 46 first events yearly per 100000 population aged 40-79. Conclusions: Risk of stroke was clearly related to quality of control of blood pressure with treatment. In routine practice consistent control of blood pressure to below $150 / 90 \mathrm{~mm} \mathrm{Hg}$ seems to be required for optimal stroke prevention.


## Introduction

The continuous relation between the blood pressure level and risk of subsequent stroke provides much of the impetus for measuring blood pressure in primary care. ${ }^{1-5}$ Similarly, the benefit in reducing stroke in trials of treatment is that predicted from observational studies. ${ }^{6}$ However, to what extent that potential benefit is realised in routine clinical practice is much less clear. In hospital attenders blood pressure achieved with treatment rather than the initial blood pressure determined the risk of stroke. ${ }^{78}$ Few studies in routine primary care have examined either the question of what constitutes "hypertension" in relation to stroke or the quality of control of previously treated blood pressure in stroke cases. ${ }^{9.13}$ Both factors are likely to account for much of the population stroke risk that should be preventable on current evidence. Using a population based stroke register maintained fully for one calendar year, we tried to determine the relation between the risk of stroke and the quality of control of hypertension in routine general practice across an entire health district. The study setting in the community also allowed those stroke patients not admitted nor ever seen at a hospital to be included, so providing a representative sample in which to examine the link between stroke and blood pressure.

## Subjects and methods

The study was in east Lancashire, a health district including the towns of Blackburn and Burnley, with a total population of 534287 in the 1995 general practice register. Stroke cases were identified from a district wide, population based stroke register between 1 July 1994 and 30 June 1995 with 103 of 118 general practices participating. Cases from a further $10(8 \%)$ practices were inconsistently notified or verified, so the total practice inclusion rate was $79 \%$ ( 93 practices). These practices served a population of 405272 , of whom 388821 were under 80 years of age (161978 aged 40-79 years), the denominator for the study.

A case-control design was used, restricted to patients aged under 80 with their first ever strokes because strokes below this age can be regarded as preventable. ${ }^{145}$ The main hypothesis was that there was a difference in risk of stroke between hypertensive patients who were treated but not well controlled and
those well controlled as well as subjects who were nonhypertensive. We used an arbitrary definition of hypertension ( $\geq 160 / 95 \mathrm{~mm} \mathrm{Hg})^{16}$ likely to be in routine use before the study and assumed the prevalence of treated hypertensive patients who were not well controlled ( $\geq 150 / 90 \mathrm{~mm} \mathrm{Hg}$ ) to be $14 \%$ of the population aged under 80. Applying these variables showed that 220 cases and 440 controls were required to detect an odds ratio of 2 compared with non-hypertensive subjects with $80 \%$ power when using a two sided $\alpha$ level of $5 \%$. For each case two controls matched with the case for sex and age (within two years) and without a history of stroke were selected from the same practice register.

All blood pressure readings with the dates and drug treatment before the index date of stroke were recorded from the notes or the practice computer. The classification of who met definitions of "hypertension" was conducted on computer blind to case or control status. Each set of notes was also systematically searched for other known prespecified risk factors.

Hypertension was defined as above blood pressure levels on two or more occasions within any three month period or a history of antihypertensive treatment at any time. Baseline blood pressure was either the average of these two readings if they met the criteria for hypertension or the blood pressure immediately before treatment first started if the criteria had not been met at that time. The quality of hypertension control was assessed by using the mean blood pressure recorded in the last one, three, and five years before the
index date. Treated hypertension was defined from the documented use (prescription) of drugs appropriate for hypertension.

Analysis-Matched case-control analysis was by conditional logistic regression, ${ }^{17}$ odds ratios being used to determine associations. Population attributable risk was calculated as the difference between overall risk in the population and the population risk that might be achieved if blood pressure were maintained at the "well controlled" level, divided by overall risk in the population. This was calculated in the population aged over 40 years because strokes are rare in people under 40.

## Results

Stroke register-Of 1233 notifications from multiple sources, 932 were confirmed strokes. Of these, 642 were first ever strokes, 363 occurring in people under 80 (355 aged 40-79 years). Only the first 267 (74\%) of the 363 formed the cases, as this number met power requirements and resources did not allow collection of two controls for the remaining 96 cases. However, these 96 cases were similar to the cases included: case fatality at 28 days was $25.1 \%$ for the 267 cases compared with $25.3 \%$ for the 363 ; age and sex distribution was also similar.

Prevalence-Comparing the characteristics of cases and controls showed a significantly higher prevalence of smoking, transient ischaemic attack, atrial fibrillation, and diabetes in cases (table 1). Occasional

Table 1 Characteristics of cases and controls. Except where stated otherwise figures are numbers (percentages) of subjects

| Characteristic | $\begin{aligned} & \text { Cases } \\ & (\mathrm{n}=267) \end{aligned}$ | $\begin{aligned} & \text { Controls } \\ & \text { ( } \mathrm{n}=534 \text { ) } \end{aligned}$ | Crude odds ratio (95\% confidence interval) | Adjusted odds ratio (95\% confidence interval) $\dagger$ |
| :---: | :---: | :---: | :---: | :---: |
| Mean (SD), median age (years) | $\begin{gathered} 67 \text { (9.9), } \\ 69.0 \end{gathered}$ | $\begin{gathered} 67 \text { (9.9), } \\ 69.5 \end{gathered}$ |  |  |
| Mean (SD), median systolic/diastolic blood pressure in last five years ( mm Hg ) | $\begin{gathered} 151.0(19.4), \\ 151.0 / 85.1(9.4), \\ 85.0 \end{gathered}$ | $\begin{gathered} 145.6(17.5), \\ 144.5 / 82.6 \text { (8.0), } \\ 82.5 \end{gathered}$ |  |  |
| Non-smokers | 72 (36.4) | 203 (53.7) | 1 | 1 |
| Former smokers | 48 (24.2) | 79 (20.9) | 1.7 (1.1 to 2.7) | 1.5 (0.9 to 2.6) |
| Current smokers: |  |  |  |  |
| <20 cigarettes/day | 46 (23.2) | 56 (14.8) | 2.4 (1.5 to 3.9) | 2.7 (1.5 to 4.9)** |
| $\geq 20$ cigarettes/day | 22 (11.1) | 23 (6.1) | 2.7 (1.4 to 5.3) | 2.9 (1.4 to 6.3)** |
| Amount unknown | 10 (5.1) | 17 (4.5) | 1.6 (0.7 to 3.7) | 1.4 (0.5 to 3.9) |
| Missing data on smoking | 69 (25.8) | 156 (29.2) | 1.2 (0.8 to 1.9) | 1.4 (0.8 to 2.5) |
| Non-drinkers | 52 (44.5) | 71 (22.8) | 1 | 1 |
| Occasional drinkers | 30 (19.4) | 96 (30.8) | 0.4 (0.2 to 0.7) | 0.3 (0.2 to 0.6)** |
| Regular drinkers: |  |  |  |  |
| <20 U/week | 39 (25.2) | 108 (34.6) | 0.5 (0.3 to 0.8) | 0.4 (0.2 to 0.7)** |
| 20-29 U/week | 14 (9.0) | 19 (6.1) | 1.0 (0.5 to 2.2) | 0.9 (0.4 to 2.2) |
| $\geq 30 \mathrm{U} /$ week | 11 (7.1) | 8 (2.6) | 2.0 (0.7 to 5.2) | 1.9 (0.6 to 5.8) |
| Amount unknown | 9 (5.8) | 10 (3.2) | 1.2 (0.5 to 3.3) | 1.4 (0.4 to 4.1) |
| Missing data on alcohol intake | 112 (41.9) | 222 (41.6) | 0.7 (0.4 to 1.5) | 0.8 (0.4 to 1.5) |
| Past medical history of: |  |  |  |  |
| Transient ischaemic attack | 29 (10.9) | 14 (2.6) | 4.6 (2.3 to 9.1) | 4.1 (1.9 to 8.7)** |
| Myocardial infarction | 28 (10.5) | 32 (6.0) | 1.9 (1.1 to 3.2) | 1.3 (0.6 to 2.7) |
| Atrial fibrillation | 32 (12.0) | 12 (2.2) | 6.6 (3.2 to 14.0) | 5.4 (2.3 to 12.5)** |
| Diabetes | 44 (16.5) | 37 (6.9) | 2.4 (1.6 to 3.8) | 2.0 (1.2 to 3.4)** |
| Angina | 53 (19.9) | 73 (13.7) | 1.6 (1.1 to 2.4) | 0.9 (0.5 to 1.5) |
| Obesity | 31 (11.6) | 31 (5.8) | 2.2 (1.3 to 3.8) | 1.4 (0.7 to 2.6) |
| Migraine | 23 (8.6) | 32 (6.0) | 1.5 (0.8 to 2.6) | 1.2 (0.6 to 2.4) |
| Family history of stroke | 18 (6.7) | 44 (8.2) | 0.8 (0.5 to 1.4) | 0.9 (0.4 to 1.8) |
| Family history of myocardial infarction | 27 (10.1) | 47 (8.8) | 1.2 (0.7 to 1.9) | 1.2 (0.7 to 2.2) |

$\dagger$ Odds ratios were adjusted for smoking, alcohol intake, past medical history of transient ischaemic attack, myocardial infarction, atrial fibrillation, diabetes, angina,
obesity, migraine, family history of stroke, and family history of myocardial infarction.
** $\mathrm{P}<0.05$.


Fig 1 Odds ratios for stroke in relation to average diastolic blood pressures achieved with treatment in last five years before stroke (bars are 95\% confidence intervals)
drinking and regular light drinking had protective effects. There was no significant impact of other recorded factors. Sixty one per cent (157/258) of stroke cases were hypertensive compared with $42 \%$ (212/499) of controls. The adjusted odds ratio for stroke due to hypertension was 2.5 ( $95 \%$ confidence interval 1.7 to 3.9 ). The prevalence of hypertension increased with age and was higher in women.

Effects of blood pressure control-Compared with nonhypertensive subjects, hypertensive patients whose average systolic blood pressure in the last five years before the index date was well controlled to below 140 mm Hg or fairly well controlled to $140-149 \mathrm{~mm} \mathrm{Hg}$ had insignificantly raised odds ratios (table 2). Hypertensive patients whose systolic blood pressure was moderately controlled ( $150-159 \mathrm{~mm} \mathrm{Hg}$ ) or poorly controlled ( $\geq 160 \mathrm{~mm} \mathrm{Hg}$ ) or untreated had progressively raised risks. Odds ratios for well controlled diastolic pressure ( $<85 \mathrm{~mm} \mathrm{Hg}$ ), fairly well controlled diastolic pressure ( $85-89 \mathrm{~mm} \mathrm{Hg}$ ), moderately controlled diastolic pressure ( $90-94 \mathrm{~mm} \mathrm{Hg}$ ), and poorly controlled ( $\geq 95 \mathrm{~mm} \mathrm{Hg}$ ) and untreated diastolic pressure were generally similar to those for systolic pressure in size and trend (fig 1). Risk was also similar for blood pressure levels achieved in the last one and three years before the index date (data not shown) but was strongest and most consistent in the last five years. Patients with no blood pressure readings recorded in the last five years had over five times the risk for stroke with wide confidence intervals. Systolic and diastolic blood pressures were highly correlated. After adjusting each for the effect of the other adjusted odds ratios for systolic pressures of $150-159 \mathrm{~mm} \mathrm{Hg}$ and $\geq 160 \mathrm{~mm} \mathrm{Hg}$ were significantly raised at 1.7 and 2.0 compared with non-hypertensive subjects and for diastolic pressures $\geq 95 \mathrm{~mm} \mathrm{Hg}$ were 5.4.

Baseline blood pressure-The risk of stroke with achieved blood pressure was also examined in relation to baseline pressure before treatment (table 3). This showed a trend of increasing risk with poor control (that is, a trend across rows) in almost all groups

Table 2 Relation between risk of stroke and blood pressure control in last five years before stroke

| Category of systolic blood pressure | Mean (SD) systolic pressure in last five years ( mm Hg ) | No of cases $(\mathrm{n}=267)$ | No of controls ( $\mathrm{n}=534$ ) | Crude odds ratio (95\% confidence interval) | Adjusted odds ratio $\dagger$ (95\% confidence interval) | $P$ value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Not hypertensive | 140.0 (17.1) | 101 | 287 | 1 | 1 |  |
| Treated hypertensive patients' blood pressure in last five years before index date ( mm Hg ): |  |  |  |  |  |  |
| <140 | 131.4 (7.7) | 23 | 43 | 1.7 (0.9 to 3.1) | 1.3 (0.6 to 2.7) | 0.559 |
| 140-149 | 144.3 (2.8) | 22 | 41 | 1.9 (1.0 to 3.5) | 1.6 (0.7 to 3.3) | 0.251 |
| 150-159 | 154.5 (2.7) | 31 | 38 | 2.7 (1.6 to 4.7) | 2.2 (1.1 to 4.4) | 0.023 |
| $\geq 160$ | 164.3 (2.8) | 49 | 55 | 3.0 (1.8 to 4.9) | 3.2 (1.8 to 5.6) | <0.001 |
| Hypertensive but untreated | 178.8 (9.1) | 28 | 32 | 2.9 (1.6 to 5.3) | 3.5 (1.8 to 6.9) | <0.001 |
| No blood pressure readings in period |  | 4 | 3 | 4.0 (0.9 to 19.0) | 5.6 (1.1 to 28.2) | 0.036 |
| No blood pressure record at all |  | 9 | 35 | 0.7 (0.3 to 1.6) | 0.9 (0.4 to 2.1) | 0.771 |

$\dagger$ Adjusted as in table 1. Significance of trend in odds ratios for systolic blood pressure $\mathrm{P}<0.01$.

Table 3 Effect of achieved blood pressure in treated hypertensive patients in last five years before stroke and baseline blood pressure. Results expressed as odds ratios ( $95 \%$ confidence intervals) adjusted as in table 1 (numbers of cases, controls). Non-hypertensive subjects served as reference

| Baseline systolic blood pressure ( mm Hg ) | Systolic blood pressure in last five years ( mm Hg ) |  |  | Baseline diastolic blood pressure (mm Hg) | Diastolic blood pressure in last five years ( mm Hg ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $<150$ | 150-159 | $\geq 160$ |  | < 85 | 85-89 | $\geq 90$ |
| <160 | $\begin{gathered} \hline 1.5(0.7 \text { to } 3.3) \\ (20,32) \end{gathered}$ | $\begin{gathered} 1.4(2.2 \text { to } 8.3) \\ (3,6) \end{gathered}$ | $\begin{gathered} 3.1(0.5 \text { to } 21.3) \\ (3,4) \end{gathered}$ | <95 | $\begin{gathered} 2.0(1.0 \text { to } 4.1) \\ (31,40) \end{gathered}$ | $\begin{gathered} 2.1(0.9 \text { to } 5.1) \\ (19,18) \end{gathered}$ | $\begin{gathered} 3.4(0.7 \text { to } 17.5) \\ (4,6) \end{gathered}$ |
| 160-169 | $\begin{gathered} \hline 1.0(0.4 \text { to } 2.6) \\ (11,28) \\ \hline \end{gathered}$ | $\begin{gathered} 2.0(0.5 \text { to } 7.0) \\ (6,10) \end{gathered}$ | $\begin{gathered} 4.8(1.4 \text { to } 16.4) \\ (7,7) \\ \hline \end{gathered}$ | 95-99 | $\begin{gathered} 2.2(0.7 \text { to } 7.4) \\ (8,11) \\ \hline \end{gathered}$ | $\begin{gathered} 0.8(0.2 \text { to } 2.9) \\ (5,13) \\ \hline \end{gathered}$ | $\begin{gathered} 1.1(0.2 \text { to } 4.8) \\ (3,12) \end{gathered}$ |
| 170-179 | $\begin{gathered} 1.3(0.4 \text { to } 4.3) \\ (8,14) \end{gathered}$ | $\begin{gathered} 3.0(1.0 \text { to } 8.7) \\ (12,10) \end{gathered}$ | $\begin{gathered} 6.7(2.5 \text { to } 17.9) \\ (18,11) \end{gathered}$ | 100-104 | $\begin{gathered} 0.8(0.2 \text { to } 3.0) \\ (5,18) \end{gathered}$ | $\begin{gathered} 2.0(0.6 \text { to } 7.1) \\ (7,9) \end{gathered}$ | $\begin{gathered} 8.9(1.5 \text { to } 51.1) \\ (7,5) \end{gathered}$ |
| $\geq 180$ | $\begin{gathered} 1.5(0.4 \text { to } 6.1) \\ (6,10) \end{gathered}$ | $\begin{gathered} 1.6(0.5 \text { to } 4.7) \\ (10,12) \end{gathered}$ | $\begin{gathered} 1.7(0.8 \text { to } 3.7) \\ (21,33) \end{gathered}$ | $\geq 105$ | $\begin{gathered} 0.6(0.2 \text { to } 2.0) \\ (7,21) \end{gathered}$ | $\begin{gathered} 2.1(0.6 \text { to } 7.0) \\ (7,10) \end{gathered}$ | $\begin{gathered} 5.5(2.3 \text { to } 13.2) \\ (22,14) \end{gathered}$ |

Odds ratios for 60 subjects with untreated blood pressure and 51 with no readings (including seven without blood pressure readings in last five years) were 3.4 (1.7 to 6.7) and 1.3 ( 0.6 to 2.7 ) for systolic blood pressure, and 3.2 ( 1.6 to 6.2 ) and 1.2 ( 0.6 to 2.5 ) for diastolic blood pressure respectively.
defined by their baseline pressure. However, there was no consistent trend from low to high baseline pressures (that is, down columns), suggesting that after treatment baseline pressures no longer influenced the risk of stroke. To test this proposition more formally models which included achieved and baseline blood pressures were fitted. Adding the achieved pressure variable to a model including baseline significantly improved the fit ( $\mathrm{P}=0.04$ for systolic; $\mathrm{P}<0.001$ for diastolic) whereas adding the baseline pressure variable to a model including achieved pressure did not ( $\mathrm{P}=0.192 ; \mathrm{P}=0.388$ ). We also considered whether the effect of achieved blood pressure varied with the baseline pressure by fitting an interaction variable to the model; this was not significant $(\mathrm{P}=0.282 ; \mathrm{P}=0.146)$.

Population attributable risk-When moderately controlled, poorly controlled, or untreated hypertension was reduced to well controlled levels ( $<150 / 90 \mathrm{~mm} \mathrm{Hg}$ ) population attributable risk was $21 \%$ in the population aged 40-79 years after adjusting for the total age and sex specific population. Thus every year 75 ( $21 \%$ of 355 ) first strokes in a population of 161978 aged 40-79 years could have been prevented by good control, a rate of some 46 events per 100000 population aged 40-79 years. The number of poorly controlled and untreated hypertensive patients requiring good control to below $150 / 90 \mathrm{~mm} \mathrm{Hg}$ (that is, the "numbers needed to treat") to prevent one stroke was 86 for five years in the population aged 40-79 years.

## Discussion

This population based case-control study examined the relation between the risk of stroke and the quality of hypertension control in people aged under 80. To our knowledge this is the first study to do so after ascertaining all stroke events in routine care in a whole community rather than selected (hospital or volunteer) cases.

The study had potential limitations. Firstly, clinical diagnosis of stroke made by doctors was usually not confirmed by computed tomography. The clinical diagnosis of a stroke having occurred or not is reliable. ${ }^{18}$ As the diagnosis of stroke types without computed tomography is unreliable, ${ }^{19}$ all types of stroke were combined. Secondly, though hypertension data were missing in only $5 \%$ of notes, the proportion missing for smoking and alcohol consumption was large. However, we analysed the effect of these missing values, which illustrated their potential risks. Our results also showed an impact on stroke from other major risk factorstwofold for known diabetes and nearly threefold for smoking, similar to results of cohort studies. ${ }^{20} 21$

Though hypertension detection was much better than the rule of halves, achieving adequate control for patients so detected was not. The rule was operating in the United Kingdom in the 1980s ${ }^{11}{ }^{22}$ and continues in the most recent analyses in terms of control. ${ }^{23}{ }^{24}$ This is particularly important for communities at high cardiovascular risk with most to gain-for instance, older adults and particular ethnic groups. Trial results have shown unequivocal evidence in favour of hypertension treatment reducing all cardiovascular events, dating back to 1985 for older adults, ${ }^{25.30}$ illustrating the difficulty of convincing doctors and possibly patients that not just treatment but optimal control is what matters.

- A case-control study based on the community stroke register and practice records showed a prevalence of hypertension of $61 \%$ for stroke patients and $42 \%$ in controls
- Quality of control of blood pressure was clearly related to the risk of stroke, independent of baseline blood pressure
- Detection and treatment rates of hypertension were high but control of blood pressure to below $150 / 90 \mathrm{~mm} \mathrm{Hg}$ in treated hypertensive patients was only $33 \%$ in cases and $42 \%$ in controls
- When achieving optimal control of hypertension (to $<150 / 90 \mathrm{~mm} \mathrm{Hg}$ ) in the most at risk and treatable age range (40-79 years) 86 hypertensive patients currently not well controlled need to be treated over five years to prevent one stroke

Over half of the hypertensive stroke cases ( $51 \%$; 80/157) had either untreated or poorly controlled blood pressure in the last five years before the index date compared with $42 \%$ (88/212) of non-stroke hypertensive patients. The gap between routine practice and evidence from other studies may partly be due to the doctors' beliefs-for example, that these were research populations and therefore less relevant to their practice-or due to the slow acceptance of new knowledge. As our study was based on practitioners' own medical records in routine primary care the results would be highly relevant not only to them but also to health purchasers, as general practitioners are the gatekeepers of medical care in the NHS.

The most appropriate way of expressing these results for routine practice has been discussed. ${ }^{31}{ }^{32}$ For primary care teams and purchasers perhaps the most useful is in relation to the age group at high risk-say, 40-79 years. For those hypertensive patients in our study who were receiving treatment, achieving good control to below $150 / 90 \mathrm{~mm} \mathrm{Hg}$ reduced the risk of stroke by $53 \%$ with a continuing favourable trend below this level. Some 46 first strokes per 100000 population aged 40-79 years could be avoided yearly. Hence the number needed to treat was 86 such hypertensive patients required to have changed from poorly controlled to well controlled blood pressure levels (maintained at that average level over five years) to have prevented one stroke, and within this age range the older the patient the greater the absolute benefit.

Finally, other studies may have overestimated the role of diastolic pressure by not adjusting for the simultaneous systolic value ${ }^{1256}$ and smoking. ${ }^{5}$ In a recent large prospective study ${ }^{33}$ and an earlier study ${ }^{34}$ the impact of diastolic pressure on risk of stroke was much reduced when systolic pressure was taken into account. However, in our study the effect of one pressure when adjusted for the other was still impressive with the size of risk reduced only slightly. Thus in routine practice our data suggest that, independent of baseline level, blood pressure achieved with treatment in the few years before a stroke was the
important predicting factor. This has important implications for hypertension management policy, requiring patients with hypertension to have their blood pressure treated and maintained below the specified target levels rather than just being given treatment.

## Conclusion

The risk of stroke was clearly related to the quality of blood pressure control with treatment. In routine practice, together with detecting untreated subjects, consistent control to target levels below $150 / 90 \mathrm{~mm} \mathrm{Hg}$ rather than just starting treatment seems to be required for optimal stroke prevention.

We thank Dr A Hirst and Ms A Wilson, of East Lancashire Medical Audit Advisory Group; Dr B Theodoulidis; participating doctors, their teams, and community health service staff for their help; and Dr Phil Hannaford and Professors Stuart Donnan and Nicola Cherry for critically reviewing the manuscript.

Funding: The study was partially funded by East Lancashire Health Authority.

Conflict of interest: None.

1 MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J, et al. Blood pressure, stroke, and coronary heart disease. Part 1: Prolonged differences in blood pressure. Prospective observational studies corrected for the regression dilution bias. Lancet 1990;335:765-74.
2 Collins R, Peto R, MacMahon S, Hebert P, Fiebach NH, Eberlein KA, et al. Blood pressure, stroke, and coronary heart disease. Part 2: Short-term reductions in blood pressure. Overview of randomised drug trials in their epidemiological context. Lancet 1990;335:827-38.
3 Stamler J, Stamler R, Neaton JD. Blood pressure, systolic and diastolic, and cardiovascular risks. Arch Intern Med 1993;153:598-615.
4 Langer RD. The epidemiology of hypertension control in populations. Clin Exp Hypertens 1995;17:1127-44.
5 Prospective Studies Collaboration. Cholesterol, diastolic blood pressure, and stroke: 13000 strokes in 450000 people in 45 prospective cohorts. Lancet 1995;346:1647-53.
6 Collins R, MacMahon S. Blood pressure, antihypertensive drug treatment and the risks of stroke and of coronary heart disease. Br Med Bull 1994;50:272-98.
7 Isles CG, Walker LM, Beevers GD, Brown I, Cameron HL, Clarke J, et al. Mortality in patients of the Glasgow Blood Pressure Clinic. J Hypertens 1986;4:141-56.
8 Bulpitt CJ, Palmer AJ, Fletcher AE, Beevers DG, Coles EC, Ledingham JG, et al. Optimal blood pressure control in treated hypertensive patients. Report from the Department of Health Hypertension Care Computing Project (DHHCCP). Circulation 1994;90:225-33.
9 Heller RF, Rose G. Current management of hypertension in general practice. BMJ 1977;i:1442-4
10 Kurji KH, Haines AP. Detection and management of hypertension in general practices in north west London. BMJ 1984;288:903-6.
11 Smith WCS, Lee AJ, Crombie JK, Tunstall-Pedoe H. Control of blood pressure in Scotland: the rule of halves. BMJ 1990;300:981-3.

12 al-Roomi KA, Heller RF, Wlodarczyk J. Hypertension control and the risk of myocardial infarction and stroke: a population-based study. Med J Aust 1990;153:595-9.
13 Hart JT, Edwards C, Hart M, Jones J, Jones M, Haines A, et al. Screen detected high blood pressure under 40: a general practice population followed up for 21 years. BMJ 1993;306:437-40.
14 Rose G. Strategy of prevention: lessons from cardiovascular disease. BMJ 1981;282:1847-51.
15 Payne JN, Milner PC, Saul C, Bowns IR, Hannay DR, Ramsay LE. Local confidential inquiry into avoidable factors in deaths from stroke and hypertensive disease. $B M J$ 1993;307:1027-30.
16 WHO Expert Committee. Arterial hypertension. World Health Organ Tech Rep Ser 1978; No 628.
17 Statistics and Epidemiology Research Corporation. Epidemiological graphics, estimation and testing (EGRET) package. Seattle, Washington: SERC, 1991.
18 Whisnant JP. The decline of stroke. Stroke 1984;15:161-8.
9 Sandercock P, Molyneux A, Warlow C. Value of computed tomography in patients with stroke: Oxfordshire community stroke project. BMJ 1985;290:193-7.
20 Tuomilehto J, Rastenyte D, Jousilahti P, Sarti C, Vartiainen E. Diabetes mellitus as a risk factor for death from stroke. Prospective study of the middle-aged Finnish population. Stroke 1996;27:210-5.
21 Shinton R, Beevers G. Meta-analysis of relation between cigarette smoking and stroke. BMJ 1989;298:789-94.
22 Hart JT. Hypertension: community control of high blood pressure. 3rd ed. Oxford: Radcliffe Medical Press, 1993.
23 Cruickshank JK, Riste L, Amica C, Griffiths S, Savage J, Greaves E, et al. Rule of halves in hypertension control: how efforts in primary care can produce better results in black than in white population samples. J Hypertens 1994;12:1315.
24 Colhoun HM, Dong W, Poulter NR. Hypertension management: is England sticking to the rule of halves? Results from the health survey for England 1994. J Hypertens 1996;14(suppl 1):289.
25 Amery A, Birkenhager W, Brixko P, Bulpitt C, Clement D, Deruyttere M, et al. Mortality and morbidity results from the European working party on high blood pressure in the elderly trial. Lancet 1985;i:1349-54.
26 SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension: final results of the systolic hypertension in the elderly program (SHEP). JAMA 1991;265:3255-64.
27 Dahlof B, Lindholm LH, Hansson L, Schersten B, Ekbom T, Wester P-O. Morbidity and mortality in the Swedish trial in old patients with hypertension (STOP-hypertension). Lancet 1991;338:1281-5.
28 MRC Working Party. Medical Research Council trial of treatment of hypertension in older adults: principal results. BMJ 1992;304:405-12.
29 Pearce KA, Furberg CD, Rushing J. Does antihypertensive treatment of the elderly prevent cardiovascular events or prolong life? A meta-analysis of hypertension treatment trials. Arch Fam Med 1995;4:943-9.
30 Arroll B. Antihypertensive drugs decrease mortality, coronary events, and stroke in elderly persons. Evidence-Based Med 1996;1:105.
31 Fahey TP, Peters TJ. What constitutes controlled hypertension? Patient based comparison of hypertension guidelines. BMJ 1996;313:93-6.
32 Jackson RT, Sackett DL. Guidelines for managing raised blood pressure: evidence based or evidence burdened? BMJ 1996;313:64-5.
33 Lindenstrom E, Boysen G, Nyboe J. Influence of systolic and diastolic blood pressure on stroke risk: a prospective observational study. Am J Epidemiol 1995;142:1279-90.
34 Rabkin SW, Mathewson FAL, Tate RB. Predicting risk of ischemic heart disease and cerebrovascular disease from systolic and diastolic blood pressures. Ann Intern Med 1978;88:342-5.
(Accepted 21 November 1996)

## ONE HUNDRED YEARS AGO

## The bicycle and the appendix

The bicycle is taking the place of the cigarette as a pathological scapegoat. When so heavy and so complex a burden of diseases has been laid upon it, one more might seem to be of little importance, were it not that this last straw is-appendicitis. Yet as everyone rides a bicycle nowadays, and as (if we may believe some modern authorities) nearly everyone has had or will have appendicitis, the wonder is that the connection between the two series of phenomena has not been perceived sooner. The discovery, it is scarcely necessary to say, comes from America, where there is, we are assured, a "boom" in appendicitis. The condition is caused, it is alleged, by the contractions, too frequent or too violent, of the psoas-iliacus which bicycling involves. Hence results contusion of the appendix, followed by the desquamation
of its mucous membrane; this makes a breach through which infective agents find their way into the walls of the appendix and set up inflammation. The straining caused by going uphill makes the danger all the greater. In persons who have already suffered from appendicitis, bicycling may easily lead to rupture of adhesions and to the development of an acute condition. Some little time ago an American practitioner was so impressed by the dangers to which the possession of a vermiform appendix exposed mankind that he suggested its systematic removal in childhood as a prophylactic measure. In these days, when bicycling is so fashionable, this proposal may perhaps have to be taken into serious consideration. (BMJ 1897;i:872.)

