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ABSTRACT
We present a data mining system, EasyMiner  which has been developed for interactive mining
of interesting patterns in time-oriented  databases. This system implements a wide spectrum of
data mining functions, including generalisation,  characterisation, classification, association and
relevant analysis. By enhancing several interesting data mining techniques, including attribute
induction and association rule mining to handle time-oriented data the system provide a user
friendly, interactive data mining environment with good performance. These algorithms were
tested on time-oriented medical data and experimental results show that the algorithms are
efficient and effective for discovery of pattern in databases.

INTRODUCTION
Knowledge Discovery in Databases (KDD) is the effort to understand, analyse, and eventually
make use of the huge volume of data available. According to Fayyad et al. [1]  KDD is  the non
trivial process of identifying valid, novel, potentially useful, and ultimately understandable
patterns  in data. In their opinion, there are usually many steps in a KDD process including
selection, pre-processing, transformation, data mining, and interpretation/ evaluation of the
results as shown in Figure 1. As seen in the Figure data mining is only one step of the process,
involving the application of discovery tools to find interesting patterns from targeted data, but in
the research community most often the term data mining and KDD have been used
interchangeably.

Finding patterns in databases is the fundamental operation behind several common data mining
tasks, including association rule [2] and sequential pattern mining[3]. Data mining is the process
of applying machine learning and other techniques to classical databases in order to extract
implicit, previously unknown and potential useful patterns from database [4]. Time is an
important aspect of all real-world phenomena. Conventional databases model an enterprise as it
changes dynamically by a snapshot at a particular point in time. As information is updated in a
conventional database, its old, out-of-date data is discarded forever, its changes over time are
thus lost.



But in many situations, this snapshot-type of database is inadequate. They cannot handle queries
related to any historical data. For many applications such as accounting, banking,  GIS systems
and medical data the changes made their databases over time are a valuable source of
information which can direct their future operation. The pattern discovered from conventional
databases has limited value since the temporal nature of data is not taken into account but only
the current or latest snapshot.

In the rest of the paper the data mining techniques used by Easy Miner for discovering
interesting patterns from time-oriented database are described.  In section 2  relevance analysis
method is  presented with examples from medical domain.  In section 3  association rules mining
technique is presented  and section 4 describes  Easy Miner approach to pattern discovery by
mining classification rules.  Section 5 concludes with a summary of the paper and outline of  the
future work.

Figure 1. The knowledge discovery  process

1 Relevance Analysis
As we know from real life, several facts are relevant with each other and there is a strong
dependence between them, for example Age is relevant to Date of Birth, Title(Mr, Mrs, Miss) is
relevant to Sex and Marital Status. This kind of knowledge is qualitative and it is quite useful to
mine it from large databases that hold information about many objects(fields).  For example a
bank could look in its data and identify which are the factors that it should take in mind in order
to give a Credit Limit to a customer. As we found by using EasyMiner Credit Limit is relevant to
Account Status, Monthly Expenses, Marital Status, Monthly Income, Sex and etc.

A number of statistical and machine learning techniques for relevance analysis have been
proposed until now. The most popular and acceptable approach in the data mining community, is
the method of measuring the uncertainty coefficient[4].

Let us suppose that the generated set from the collection of task relevant data is a set P of p data
records. Suppose also, that the interesting attribute has m distinct values defining by this way m
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discrete classes Pi (i=1,…, m). If P contains pi records for each Pi, then a random selected record
belongs to class Pi with probability pi/p. The expected information needed to classify a given
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So, the information gained by partitioning on attribute A is: gain A I p p p E Am( ) ( , ,..., ) ( )= −1 2

The uncertainty coefficient U(A) for attribute A is obtained by normalising the information gain
of A so that U(A) ranges from 0 to 1. The value 0 means that there is significant independence
between the A and the interesting attribute, and 1 means that there is strong relevance between
the two attributes. The normalisation of U(A) is achieved by the following equation:
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It is upon the user to keep the n most relevant attributes, or all the attributes that have value of
uncertainty coefficient greater than a pre-specified minimum threshold[4].

2 Classification
Classification is an essential issue in data mining. Classification partitions massive quantities of
data into sets of common characteristics and properties[5],[6]. This procedure can be described
as follows.

We are given a large population database that contains information about population instances.
The population is known to comprise of m groups (classes), but the population instances are not
labelled with the group identification. In addition, a population sample is given (much smaller
than the population but representative of it) called training set. In this training set, each tuple is
assumed to belong to a predefined class, as determined by one of its attributes, called class label.
Figure 2 shows a part from a sample training set  of the medical database, where each record
represents a patient. The purpose of classification is to discover and analyse the rules that govern
the training set, in order to apply them into the whole population of database and get the class
label of every instance of it.

….. Sex Date of Birth Date of Stroke Lived …..
... Male 9/21/1924 9/23/94 Died ...
... Female 5/8/1921 12/10/94 Died ...
... Male 1/18/34 2/7/94 Survived ...
... Male 9/26/1925 11/13/94 Survived ...
... Female 3/28/51 12/9/94 Died ...
... Male 1/19/34 2/7/94 Survived ...

Figure 2: Sample Training Set



The classification technique that we have developed in Easy Miner is based on the decision tree
structure. A decision tree is a flow chart structure consisting of internal nodes, leaf nodes and
branches. Each internal node represents a test on an attribute and each branch represents the
result of that test. Each leaf node represents a class (and in some cases classes).

By using a decision tree, untagged data sample can be classified. This can be done by testing the
attribute values of the sample data against the decision tree. A path is produced from the root to a
leaf node, which has the class identification of the sample.

2.2 Decision Tree Classifier
A decision tree is a class discriminator that recursively partitions the training set until each
partition consists entirely or dominantly of examples from one class. Each non-leaf node of the
tree contains a split point, which is a test on one or more attributes and determines how the data
is partitioned. Figure 3 shows a sample decision-tree classifier based on the training set shown in
Figure 2. This decision tree can be used in order to discriminate future patients that had stroke
into Lived or Died categories.

Figure 3: Decision Tree

2.2.1 Characteristics of a Decision Tree Classifier
There are several simple characteristics in a decision tree classifier:

1. If a node is an internal one, then the left child node will inherit form it the data that satisfies
the test of the node, and the right child node will inherit the data that does not satisfy the
splitting test.

2. As we go down in the tree and the depth increases, the size of the data in nodes is decreasing
and the probability that this data belongs to only one class increases.

3. Each node can have two or none children nodes. For this reason, it is obvious that the
decision tree is a binary tree.

4. Because the decision tree is a binary tree, the number of internal nodes is (n-1)/2 and the
number of leafs is (n+1)/2, where n is the total number of leafs in the decision tree.

5. Each path from the root to as leaf can be easily translated into IF-THEN rules

Lived

Died

Date of Birth <1/1/1925

………

Date of Birth <1/5/1967



2.2.2 Collection of Training Set
In order to construct a decision tree classifier, the first step is to retrieve the classification task
relevant data and store them in a relation (table). This is an ease task that executing a usual query
can perform it.
The second step after collecting the classification task relevant data is to examine the generated
training set with the purpose to “purify” it and make it suitable for input to the classification
process. Including irrelevant attributes in the training set would slow down and possibly confuse
the classification process. So the removal of them improves the classification efficiency and
enhances the scalability of classification procedures by eliminating useless information and
reducing the amount of data that is input to the classification stage. Therefore, relevance analysis
is performed to the data set and then only the most n-relevant attributes are kept.

2.2.3 Construction of a Decision Tree Classifier
The algorithm that we are going to use for tree building is, in general, the following:

MakeTree(Tiraining Data T)
if  (all points in S are in the same class) then

return
EvaluateSplits( )
if (T can not be further partition) then

Evaluate Each Class Probability(S)
return

Use best split found to partition S into S1 and S2
Delete(S)
MakeTree(S1)
MakeTree(S2)

The main points in this tree building algorithm are:

2.2.3.1 Data Structures
For each attribute of the training data a separate list is created. An entry of the attribute list has
the following fields: (i) attribute value, (ii) class label, (iii) index of the record (id) from which
these value has been taken. Initial lists for numeric attributes are sorted when first created.

In the beginning, all the entries of the attribute lists are associated with the root of the tree. As
the tree grows and nodes are split to create new ones, the attribute lists of each node are
partitioned and associated with the children. When this happens, the order of the records in the
list is preserved, so resorting is unnecessary and not required.

Other data structures that are used are histograms. These histograms are used to capture the class
distribution of the attribute records at a given node. So, for numeric attributes, two histograms
are associated with each decision-tree node that is under consideration for splitting Cabove and
Cbelow. Cbelow contains the distribution of attributes that have been already processed, and Cabove

contains it for those that are not. Categorical attributes also have also a histogram associated with



a node an is called count matrix. So, for a numeric attribute the histogram is a list of pairs of the
form <class, frequency> and for a categorical attribute, the histogram is a list of triples of the
form <attribute value, class, frequency>.

2.2.3.2 Evaluation of splits for each attribute
For the evaluation of alternative splits are used splitting indexes. Several splitting indexes are
used for this purpose. Two of the most popular and acceptable indexes are the gini index and the
entropy index. Assuming that we have a data set T which contains examples from n classes and
where pj is the frequency of class j in data set T then gini(T) is:
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The advantage of these indexes is that their calculation requires only the distribution of the class
values in each of the partitions.

To find the best split point for a node, we scan each of the attributes lists and evaluate splits
based on that attribute. The attribute containing the split point with the lowest value for the split
index (gini or entropy) is then used to split the node.

There are two kinds of attributes that we can perform a split:
•  Numeric attributes. If we have a numeric attribute A, a binary split A<u is performed to the

set of data that it belongs. The candidate-split points are midpoints between every two
successive attribute values in the training data. In order to find the split for an attribute on a
node, the histogram Cbelow is initialised to zeros whereas Cabove is initialised with the class
distribution, for all the records for the node. For the root node, this distribution is obtained at
the time of sorting. For the other nodes, this distribution is obtained when the node is created.
Attribute records are read one at a time and Cbelow and Cabove are updated for each record read.
After each record is read, a split between values we have and we have not yet seen is
evaluated. Cbelow and Cabove have all the information to compute the gini or Entropy index.
Since the lists for numeric attributes are kept in sorted order, each of the candidate split points
for an attribute is evaluated in a simple scan of the associative attribute list. If a successful
point is found, we save it and we de-allocate the Cbelow and Cabove histograms before we
continue on the next attribute

•  Categorical Attributes. If S(A) is the set of possible values of a categorical attribute A, then
the split test is of the form A S∈ ′ , where ′ ⊂S S . A single scan is made through the attribute
list collecting counts in the count matrix for each combination of class label and attribute
value found in the data. Once we have finished, we consider all subsets of the attribute values
as possible split points and compute the corresponding index. The information that is needed
for computing the index is available in the count matrix.

 
 



2.2.3.3 Implementation of the split
 When we have found the best split point for a node, a split is performed by creating two child
nodes and dividing the attribute records between them. The partition of the attribute list of the
splitting attribute is straightforward. We simply scan the list, apply the split test and move the
records to the two attribute lists of the children nodes. As we partition the list of the splitting
attribute, we insert the ids of each record to a hash table, reporting to which child the record was
moved. Once all the ids have been collected, we scan the lists of the remaining attributes and
examine the hash table with the id of each record. So by following this procedure, we know in
which child to place the record. During the splitting operation, class histograms are built for each
new leaf.
 
 
2.2.3.4 Case of impossible partition
 There are some cases that a data set can not be further partitioned. To understand this fact, let us
consider the example of  Figure 5.

….. Sex Date of Birth Date of Stroke Lived …..
... Female 5/8/1921 12/10/94 Lived ...
... Female 5/8/1921 12/10/94 Died ...
... Male 1/18/34 2/7/94 Survived ...
... Female 3/28/51 12/9/94 Died ...

 Figure 5: Case of Impossible Partition

 In this case, it is obvious that is impossible for a classifier to split the first two records into two
separate data sets. This is because there are identical in all the attributes, except the classifying
attribute Lived. In large databases this is not an unusual fact. Especially in temporal databases,
the stable data during the time appears to have the same values in different time-points.
 
 In this case, we consider the node with that data set as a leaf of the decision tree with more than
one class label.. A record of the data set of such a leaf belongs to a class j with probability rj /r,
where rj is the number of tuples of each class j in that data set and r  is the total number of the
records of this data set. When an unclassified data set is given as input to the classifier it is
possible that some of its records satisfy the classification rule that corresponds to the path from
the root to such a leaf. Then these records belong to a class j of that leaf with probability: rj /r.
 
 
2.3 Example of using Classification
 We used Easy Miner to classify records of patients that had heart attack based on the values of
attribute Lived. By using a relatively small training set, we built a classifier for attribute Lived
and after that we used that classifier to classify all the records in the medical database. A part of
the results of the classification process is shown in Figure 2. The attribute Predicted Lived
contains the prediction/classification for attribute Lived.

…
..

Sex Date of Birth Date of Stroke Lived Predicted Lived …..
…
..

Male 9/26/1925 11/13/94 Lived Lived (Probability = 100%) …..
...
.

Male 9/21/1924 9/23/94 Died Died (Probability = 100%) ....
...
.

Male 11/1/1921 9/23/94 Un-Known Lived (Probability = 100%) ....
...
.

Male 10/7/1921 9/23/94 Un-Known Died (Probability = 100%) ....
...
.

Female 3/28/51 12/9/94 Died Died (Probability = 100%) ....



...
.

Female 3/28/51 12/9/94 Un-Known Died (Probability = 100%) ....
...
.

Female 4/24/51 12/9/94 Un-Known Lived (Probability = 100%) ....
...
.

Female 5/8/1921 12/10/94 Died Died (Probability = 100%) ....
...
.

Female 10/7/1921 12/10/94 Un-Known Lived (Probability = 100%) ....
...
.

Female 12/8/1921 12/10/94 Un-Known Lived (Probability = 100%) ....
...
.

Male 1/18/34 2/7/94 Lived Lived (Probability = 100%) ....

Figure 2: Classified Medical Data

 

3 Association Rules
With the wide applications of computers and automated data collection tools in business
transactions processing, massive amounts of transaction data have been collected and stored in
databases. Discovery of interesting association or sequential patterns among those huge amounts
of data is an area in which the recent research of data mining is focused. Association rules
describe how often two facts happen together. For instance some association rules that could
exist in a supermarket database are: “most customers with children buy a particular brand of
cereal if it includes baseball cards”, “most customers who buy beer, buy also chips”.

3.2 Definition and properties of  Association Rules
An association rule is a rule, which implies certain association relationships among a set of
objects in a database. The formal definition of such kind of rules is the following[7].

Let I={i1, i2,.....,im} be a set of items. Let DB be a database of transactions, where each
transaction T consists of a set of items such that T I⊆ . Given an itemset X I⊆ , a transaction
T contains X only and only if X T⊆ . An association rule is an implication of the form X Y⇒ ,
where X I⊆ , Y I⊆ and X Y∩ = ∅ . The association rule X Y⇒  holds in DB with confidence
c if the probability of a transaction in DB which contains X also contains Y is c. The association
rule X Y⇒  has support s in DB if the probability of a transaction in DB contains both X and Y
is s. The task of mining association rules is to find all the association rules whose support is
larger than a minimum support threshold 

l
′ and whose confidence is larger than a minimum

confidence threshold 
l
′ .

3.3 A method for Mining Association Rules
When we examined classification, we saw that a decision tree classifier is a collection of IF-
THEN rules that are expressed by its individual paths. This is a semantic characteristic of
decision trees and we are taking advantage of it in order to develop a method for finding
association rules from a database. The rules that our method discovers have the form: X Y⇒ ,
where X is a set of conditions upon the values of several attributes and Y a specific value of one
attribute. This attribute Y is called interesting attribute.
The method that we are going to discuss has three simple steps:
1. Data Preparation
2. Generation of rules
3. Selection of strong rules



3.3.1 Data Preparation
In this stage, the data set in which there is interest on finding association rules, is prepared for
applying the method that is going to be presented. In order to do that, and convert the examined
data set into our method required format, the next steps must be followed.

1. The interesting attribute, in which there is interest on finding association rules, must be
selected and discriminated from the others. In case that there is interest on more than one
attribute, then the interesting attribute can be constructed from the join of these attributes.

2. Generalisation induction is performed on the interesting attribute by using, the relative with
that attribute, concept hierarchies. In case that the interesting attribute is of numeric type, then
its values are being separated into a number of ranges. Then each value of the numeric
attribute is replaced by the range that it belongs. So, by this method the initially numeric
attribute has been converted into a categorical one with only a few values of higher level.
Another result of the generalisation induction on the interesting attribute, is that the
discovered rulesX Y⇒  will have higher confidence because Y will have also higher
support.

3. If among the data set there are categorical attributes (except the interesting one) that have a
large number of distinct values, then the attribute-oriented induction should be performed on
them as well. This results in viewing the data in abstractions that are more useful and in
generating candidate data sets for finding association rules, that have quite significant support.

3.3.2 Generation of Rules
After the stage of preparation of data, the interesting attribute can be considered as the class
label of the whole set of data. Hence, a decision tree classifier can be constructed, based on that
classifying attribute. Each path of this decision tree represents one or more rules of the form:

IF  (sequence of intermediate conditions) THEN  (classifying attribute value)

The confidence of each generated rule from such a path is rj /r, where rj is the number of tuples
of each class j that has records in the data set of that leaf, and r is the total number of the records
of that data set.

3.3.3 Selection of Strong Rules
After extracting all the rules from the built decision tree, we select only those that are strong. As
strong rules have been defined the rules A B ⇒ that the support of A and B are above the
minimum support threshold, and their confidence is greater than the minimum confidence
threshold.

In the following table there rules that were discovered by using this technique of Easy Miner are
presented. These rules concern the Credit database.

Rule’s Body Support Confidence
IF ( (Marital_Status IN {Single}) ) THEN (Home = Rent) 16.22% 65.15%
IF ( (Marital_Status NOT_IN {Single}) (Account_Status IN {60 days late}) (1 <
Nbr_Children) (Savings_Account IN {Yes}) (1187< Mo_Income) ) THEN (Home = Own)

12.29% 66.00%



IF ( (Marital_Status NOT_IN {Single}) (Account_Status IN {Balanced}) (1611.50 <
Mo_Income <= 2918.50) (Checking_Account IN {No}) ) THEN (Home = Own)

14.99% 100.00%

IF ( (Marital_Status NOT_IN {Single}) (Account_Status IN {Balanced}) (3047.50 <
Mo_Income <= 3633) (Nbr_Children < 3) ) THEN (Home = Own)

10.57% 100.00%

IF ( (Marital_Status NOT_IN {Single}) (Account_Status IN {Balanced}) (3633.50 <
Mo_Income) (Nbr_Children < 3) ) THEN (Home = Own)

10.57% 93.02%

Summary
In this paper, our approaches for the discovery of patterns in time-oriented data are introduced.
We also presented Easy Miner, our mining tool  designed and developed at UMIST. Major
components of Easy Miner including association rules, classification rules and relevance analysis
are described in details with examples.

We think the first consideration for constructing an effective pattern discovery system should be
given to testing the appropriateness and applicability of the framework. We have started in this
direction by experimenting with a large stroke and quality of hypertension control dataset.

In summary, the work reported in this paper focuses on two areas and their integration. On one
side, data mining  as a technique for discovery of interesting patterns from database and on the
other side time-oriented  data  as a  rich and valuable source of data. We believe that their
integration will lead to even higher quality data and discovered patterns.
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