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Abstract 
 

The association gene mapping methods based on the 
haplotype clustering analysis are vastly used to localize a 
mutation in a gene sequence. These methods employ the 
concept of “linkage disequilibrium” (LD). In many cases 
the locations that are found based on these methods have 
large errors. In this paper, we present a novel technique to 
decrease the mean error of the association gene mapping 
in the haplotype clustering analysis. In our technique, we 
utilize the information gain to select a set of important 
features (i.e., markers) that are used in the clustering 
process. In other words, each marker is assigned a rank 
and then the high ranked markers are fed into the 
HapMiner algorithm for localizing the disease. Therefore, 
we limit the HapMiner algorithm to search on a set of 
dominant features which are selected by the information 
gain. We have tested the performance of our technique on 
a set of simulated dataset. Our experiments show a 
significant reduction in the mean error of the gene 
mapping. 
 
1. Introduction 
 

A genetic disease is a disease caused by abnormal 
expression of one or more genes in a person, causing a 
clinical phenotype. The goal of the study which usually 
called disease susceptibility loci (DSL) is to locate these 
genes, so that one can detect, avoid or develop treatment 
for these diseases. This process is also called gene 
mapping. Many of the gene mapping techniques utilizes 
the haplotype analysis method. Most of the haplotype 
analysis methods employ the concept of “linkage 
disequilibrium” (LD), which refers to the tendency for 
alleles at closely linked loci to be associated with each 
other across unrelated individuals in a population. These 
gene mapping methods, that utilize the LD concept, are 
called association gene mapping. In this paper, we call the 
association gene mapping as gene mapping. By using LD, 
one can localize a disease-causing variant along a 
chromosome by detecting patterns of marker values that 
exist at a putative location at a higher frequency among 
diseased individuals than among healthy individuals. 
Haplotypes associated with disease are expected to look 

similar to one another around the location of the disease-
causing mutation; if the functional mutation has occurred 
only once, they share a common ancestry at that point.  
Although haplotype-based methods utilize more 
information, they may lose power as a result of over 
parameterization, given a large number of haplotypes 
possible over even a few loci. Recently, new methods 
have been developed that cluster haplotypes with similar 
structure in the hope that this reflects shared genealogical 
ancestry. In the following paragraph, we review some of 
these clustering-based methods. 

Molitor et al. [1] perform fine mapping by spatial 
clustering of haplotypes based on a similarity metric that 
measures the length of the shared region and by 
estimating the risk that each haplotype ‘cluster’ has for 
the trait. The authors in [2] propose an algorithm which 
its base is on [1] by modifying similarity measure and 
using Markov-chain Monte Carlo algorithm. There are 
also other methods based on clustering haplotypes 
including the work by Li et al. [3] that is based on 
density clustering. Igo et al. [4] have modified a 
generalized linear model approach for association 
analysis by incorporating algorithm [3] to reduce the 
number of coefficients in the model. Durrant et al. [5] use 
hierarchical clustering to produce approximations of 
genealogical trees and map genes based on these trees. 

There are also other gene mapping methods which are 
not based on clustering technique. For example, [6] 
haplotype pattern mining (HPM) is such method. The 
algorithm finds all haplotype fragments (patterns) of 
arbitrary length that show statistical association with the 
disease. In [7], tree pattern mining for gene mapping 
(TreeDT) has been presented. At each locus, trees that 
approximate the genealogy of the haplotypes at that locus 
are constructed. After that a disequilibrium test is 
performed on each of trees to test if there is a small set of 
subtrees with relatively high proportions of disease-
associated chromosomes, suggesting shared genetic 
history for those and a likely disease-gene location. In [8] 
disease-susceptibility genes can be localized directly by 
measuring the statistical significance of haplotype 
similarity in the cases without explicit clustering or 
goodness of fit tests, such as x2.  
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The gene mapping methods search through all the 
markers to find the gene that causes a disease. They do 
not utilize the general knowledge that which markers 
have the most effect on the condition of a disease. In this 
study, we find the markers that have the most effects on 
the haplotype status, i.e., case-control, by utilizing a 
feature selection technique where features are the 
markers. Therefore, the process of finding the location of 
a gene is only limited to analyzing the markers that have 
been selected by the feature selector. 

Feature selection (also known as subset selection) is a 
process commonly used in machine learning, wherein a 
subset of the features available from the data is selected 
for application of a learning algorithm. The best subset 
contains the least number of dimensions that most 
contribute to accuracy; we discard the remaining, 
unimportant dimensions. This is an important stage of 
preprocessing and is one of two ways of avoiding the 
curse of dimensionality. We combine the feature selection 
approach of [9] with gene mapping density-based 
clustering algorithm of Li and Jiang [3] for association 
mapping. 

The rest of this paper is organized as follows. In 
Section 2, our approach for computing the Information 
Gain and gene mapping with haplotype clustering is 
presented. Section 3 describes the dataset and the results 
of the proposed approach on this dataset. Conclusions and 
future research work are given in Section 4. 
 
2. Methodology 
 

 Figure 1 shows the general methodology of our 
approach. As shown in the figure, we first use information 
gain as the feature selection method to weight markers in 
haplotypes. We then select the markers with the highest 
weights for input to gene mapping that utilizes the 
HapMiner technique. In other words, in the HapMiner 
technique rather than sliding a window on all haplotype, 
we insert window around markers that information gain 
has assigned them a high weight. 

 

  
 

                            Figure 1. General framework. 
 

2.1. Computation of Information Gain 
 

[9] proposed a classification algorithm called ID3, 
which introduces the concept of information gain. In [10], 
they use information theory that underpins the criterion to 
construct the best decision tree for classifying as follows:  
“The information conveyed by a message depends on its 
probability and can measure bits as minus the logarithm 
to base 2 of that probability.” 
Let S be the set of n instances and let C be the set of k 
classes. Let P(Ci,S) be the fraction of the example in S 
that have class Ci . Then, the expected information from 
this class membership is as follows: 
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If particular, attribute A has v distinct values, the 
expected information required for the decision tree with A 
as the root is the weighted sum of expected information 
of the subsets of assorting to distinct valued. Let Si be the 
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Then, the difference between info(S) and infoA(s) 
gives the information gained by partitioning S according 
to testing A. 
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2.2 Gene Mapping with Haplotype Clustering 
 

For fine mapping, we use HapMiner algorithm which 
designed in [3]. In order to keep the paper self-contained, 
we briefly introduce the HapMiner algorithm. This 
method directly explores the sharing of haplotype 
segments in affected individuals that are rarely present in 
normal individuals. The measure of sharing between two 
haplotypes is defined by a similarity metric that combines 
the length of the shared segments and the number of 
common alleles around any marker position of the 
haplotypes, which is robust against recent 
mutations/genotype errors and recombination events. For 
a pair of haplotypes hi ,hj, [3] define the similarity 
measure as: 
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You can find more explanation about this similarity 
measure in [3]. This algorithm scans each marker one by 
one. For each marker position, a haplotype segment with 
certain length centered at the position will be considered. 
Clusters are formed in regions of high density. A haplotype 
is designated a "core" haplotype if enough density, 
determined by the density threshold MinPts, is located within 
a given distance ε from it. Haplotypes within this ε 

Dataset 
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(Feature Selector) 
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(Gene Mapping) 

Haplotype 

Percent of high weight Markers 
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neighborhood are clustered together.  A score for each 
marker will be calculated as follows. We measure the 
degree of association between a haplotype cluster and the 
disease of interest using the Z-score. In other words, the 
marker with the highest Z-score will be predicted as 
disease susceptibility loci. Let m’ and n’ denote the 
numbers of case and control haplotypes in a cluster, 
respectively. A 2× 2 contingency table can be constructed 
and the Z-score of the cluster is defined as: 
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3. Experiments and Results 
3.1 Data 
 

We use a simulated dataset which was generated by 
Toivonen [6] to test our technique for gene mapping. The 
simulated dataset corresponds to a recently founded, 
relatively isolated founder subpopulation that grew from 
the initial size of 300 to about 100,000 individuals in 500 
years. The considered region is at the chromosome level 
with genetic length of 100 cM. Both microsatellite 
markers and SNP markers are simulated. Markers are 
evenly spaced along the chromosome with interval 
lengths of 1 cM and 1/3 cM for microsatellite markers 
and SNP markers, respectively. A dominant disease is 
modeled, with a large number of phenocopies. The 
proportion of mutation carrying chromosomes from all 
the case chromosomes, denoted by A, is either 2.5%, 
5.0%, 7.5%, or 10.0%, corresponding to overall relative 
risks  = 1.2, 1.7, 2.7, 4.1, respectively. SNP data has 301 
markers and microsatellite data has 101 markers. 
 
3.2. Results 
 

We use Information Gain feature selection provided in 
Weka package [11] to rank the markers of haplotypes. 
This selection process is based on cross-validation 
technique by folding 10. In the HapMiner algorithm, we 
select a window of 9 markers for the microsattelite and a 
window of 21 markers for the SNP. The weights for 
calculating the similarity between the haplotypes are 
w1=w2=1-0.05×d and w1=w2=1-0.1×d for the SNP and 
the microsattellite, respectively. The MinPts is set to 25% 
and the ε is set to 0.2. We executed various experiments 
by choosing 30, 50, 100, 150, 200, 250 or 300 high 
ranked markers for the HapMiner algorithm.  

The results of gene mapping for various experiments 
are presented in term of the root mean square (rms) error 
between the actual location of the genes and the predicted 
location on simulated SNP data by our technique in Table 
1. The first row of the table shows the rms of the errors 
by utilizing the HapMiner technique without ranking the 

markers and the other rows show the rms errors for 
various numbers of high ranked markers fed into the 
HapMiner algorithm. The columns show the effect of 
different values of As on the error. As the table shows, 
ranking the markers provides a lower rms error rate than 
the using the markers without ranking. Even in the case 
that all the ranked markers are used by the HapMiner, the 
rms error is less than the time that the markers are not 
ranked. This clearly illustrates the advantage of feature 
selection on the process of gene mapping in the haplotype 
clustering approach. 

Figures 2(a-c) illustrate the results of gene mapping 
for SNP and microsatellite data in terms of cumulated 
prediction error. In these figures, the x coordinate 
represents the distance from the true gene position and the 
y coordinate represents the average fraction (power) of 
the predictions that were within the distance on 100 genes 
in the dataset. As the figure shows, our approach 
outperforms the HapMiner technique alone without 
ranking the markers. 

In addition, we have found that for the microsatellite 
data, the mean square error rates for different number of 
selected high ranked markers and the without rank are the 
same. The results of simulated microsatellite data are 
presented in Table 2. However, for the SNP data, feature 
selection has a great impact on reducing the error rate, 
because information gain is more useful for features that 
have binary value. With the advance of genotyping 
technology, more SNP markers will be available for 
whole-genome association studies of common diseases 
using case-control data in the near future. Therefore, for 
any gene mapping method, it is desirable to see that the 
performance of the method improve with denser markers. 
Indeed, our approach has performed better on SNP 
markers than on microsatellite markers. 
 

Table 1. Comparisons of our approach with HapMiner in terms of the 
root mean square error rate for different As on SNP simulated dataset. 

HapMiner A=10% A=7.5% A=5% A=2.5% 
All markers without ranking 28.35 51.89 66.60 126.07 

30 high rank markers  23.58 38.79 66.42 121.78 
50 high rank markers  14.61 42.28 59.95 117.78 
100 high rank markers  17.71 44.87 58.10 122.42 
150 high rank markers  17.74 44.87 60.93 122.45 
200 high rank markers 17.67 46.41 63.41 123.75 
250 high rank markers 17.63 46.22 63.40 121.78 

All markers with ranking 17.70 46.25 63.21 122.61 

 
Table 2. Comparisons of our approach with HapMiner in terms of the 
root mean square error rate for different As on Microsaltellite simulated 
dataset. 
 A=10% A=7.5

% A=5% A=2.5
% 

All markers without ranking 8.28 16.83 30.5 44.79 
30 high rank markers 8.24 17.82 31.50 42.80 
50 high rank markers 8.75 17.52 31.50 42.80 
All markers with ranking 8.77 16.66 27.22 43.68 

 

(5) 
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Figure 2. The results on simulated SNP and microsattelite datasets. Comparison between the HapMiner with and without 
selecting a portion of high rank marker for a sample size of 200 case and 200 controls. SNP data: (a) and (b) A=10%; (c) and (d) 
A=7.5%; Microsatteliate data: (e) A=10% and (f) A=7.5%. 
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4. Conclusion 
 

In this paper, we have investigated the effect of 
information gain of the attributes as the feature weights 
on the accuracy of gene mapping.  Information gain was 
calculated by standard formula in [9] for the nominal 
attributes. In the gene mapping with haplotype clustering, 
by assigning weights to the features, we have 
significantly improved the accuracy of gene mapping on 
SNP simulated dataset by mean square root error rate 
criterion. However, for the microsatellite simulated 
dataset, root mean square error rate with and without 
ranking of the markers had the same performance. In 
other words, our approach performed better on SNP 
markers than on the microsatellite markers. This is due to 
the fact the Information Gain functions performs better 
for the binary attributes. In the future, we will also test the 
performance of our technique on a real dataset. We will 
also apply our approach on datasets with different 
markers to evaluate the effect of the number of the 
markers in gain information efficiency. 
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