

Mining XML Data: A Clustering Approach

Abstract
XML data has become very popular to represent semi
structured data. This has resulted in a growing amount
of XML data on the web. This raises a need for
languages and tools to manage collections of XML
documents as well as to mine interesting information
from them. Several attempts at developing XML mining
techniques have been proposed. However the topic of
mining XML data has received little attention as the
data mining community has focused on the
development of techniques for extracting common
structure from heterogeneous XML data. This project
aims to data mine XML data using the XML Query
language XQuery. The data mining technique used is
the clustering technique of the Nearest Neighbour
Algorithm.
This algorithm will be incorporated into XQuery
expression which, when implemented using an XQuery
implementation tool, will cluster distance based data
within the XML document into groups, where the
distance between the data is set by a given threshold.
The implementation of the Nearest Neighbour
algorithm hopes to be generic and implement a user
interface which allows the user to load a XML
document for its data to be clustered, choose the data
to be clustered within that document, input the
threshold and receive the clustered result in an output
file. This work would allow XML distance data to be
clustered with the Nearest Neighbour algorithm using
XQuery, therefore providing a needed data mining
implementation on XML data.

Keywords
XML, Data Mining, Nearest Neighbour, XQuery

1.0 Introduction
It has been increasingly important to be able to mine
XML as it has become very popular as a standard to
represent semi structured data. XML has also received
a lot of attention from the database community and
there has been a huge amount of work aimed at coping
with XML data. An example of this work would be work
on storing XML data, indexing and querying XML
content [2,3]updating XML data [4] and benchmarking
XML applications[5]. But little attention has been made
to mining the actual data within XML. The data mining
community has concentrated more on the development

of techniques for extracting common structures from
the XML data.
It was thought that in order to mine XML data it would
first need to be pre or post processed from an XML
format to a relational format. A lot of research has gone
into data mining XML documents after the format has
been changed from XML format to a relational format.
Little has been done on directly mining the xml data
and integrating SQL, without this post processing the
XML data.

At first the focus was to store XML data. Today the
focus is more on creating powerful query and retrieval
methods. This has led to the new XML Query
language, XQuery[10]. XQuery is the first language to
receive industry-wide attention and support. It is
currently being developed by the W3C XML Query
Working Group. Industry experts expected XQuery to
do for XML and XML databases what SQL did for
relational data and relational database systems:
provide a vendor independent, powerful and easy-to-
use method for query and retrieval of XML data

It makes sense to try and use this valuable tool to
implement a data mining algorithm to mine XML data.
XML data is different from relational data in several
important respects that influence the design of a query
language. Relational data tends to have a regular
structure, which allows the descriptive meta-data for
this data to be stored in a separate catalogue. XML
data in contrast is often quite heterogeneous and
distributes the meta data throughout the document.
XML documents may contain many levels of nested
elements, whereas relational data is flat. XML
documents have an intrinsic order whereas relational
data is unordered.

XQuery operates on the abstract, logical structure of
an XML document, rather than its surface syntax. This
logical structure is known as the data model. XQuery
Version 1.0 is an extension of XPath Version 2.0. The
data model that XQuery uses is based on that of XPath
and defines each XML document as a tree of nodes.
The data model is not only capable of handling
documents but is also designed to work on well-formed
document parts (a.k.a. "fragments"), collections of
documents, or collections of fragments.

Joanna Moaiad Aljibouri
The University of Salford
Salford, Greater
Manchester
M5 4WT

Mohamad Saraee
The University of Salford
Salford, Greater Manchester
M5 4WT

XQuery is a functional language where each query is
an expression. There are 7 types of expressions in
XQuery: path expressions, element constructors,
FLWR expressions, expressions involving operators
and functions, conditional expressions, quantified
expressions and expressions that test or modify data
types. The various expressions can be used together
both sequentially and nested.
The main contributions of this paper are as follows:
• Develop an implementation of a data mining

technique to perform mining on XML data. This is
needed as there has been little work done on
mining this large data source

• Use the XML query language XQuery to implement
the technique, which is a relatively new query
language

This would contribute greatly to the area of data mining
XML data as there is lots of XML data. By providing a
implementation of a data mining technique this will help
to facilitate the possible patterns not yet discovered in
XML data

2 Problem statement
The problem is to implement a Data mining technique
in XQuery to be used on XML data.
This paper is concerned with the clustering technique
of the Nearest Neighbour algorithm.
Clustering is the process of grouping physical or
abstract objects into classes of similar objects. It is an
example of unsupervised learning.
Clustering examples are:
• Identifying similar web usage pattern from web

usage logs
• Grouping houses into a town into neighbourhoods

based on similar features.

Data clustering identifies clusters or densely populated
regions according to some distant measurement in a
large data set. Clustering identifies the sparse and
crowded places and discovers the overall distribution
patterns of a data set. Using a distance based
approach, means that for each clustering decision all
data points are inspected equally and use global
measurements within requires scaling all data points or
all currently existing clusters.

The Nearest Neighbour algorithm employs distance
functions to determine the closeness between data
entities. It is assumed that points in space that are
close together have similar properties. So for new data,
computes its point in space based on some predefined
computation, then find out how close it is to known
data points and then determine it properties. Items are
iteratively merged into existing clusters that are close.
This technique uses a threshold t, to determine if items
are added to existing clusters or a new cluster is
created. It is incremental and uses a time of o(n2) and
space of 0(n2).The algorithm itself can be seen below:

Nearest Neighbour Algorithm
Input:
D = {t1, t2, ..., tn} // Set of elements
A //adjacency matrix showing distance between
elements
Output:
K // Set of clusters.
Nearest Neighbour Algorithm:
K l ={t1);
K = {K 1 } ;
k =1;
for i = 1 to n do
find the tm in some cluster Km in K such that dis
(ti, tm) is the smallest;

 if dis (ti,tm) ≤ t then
Km=Km U ti
Else
k=k+1;
Kk = {ti};

2.1 Related Work
Data mining XML data has received little attention. As
previously mentioned the data mining community has
focused on other areas such as XML storage and its
structure [6].This paper involved trying to classify XML
data using a rule based classifier called XRules. When
this classifier was compared to a association based
classifier CBA [7] and an index rule IR classifier, it out
performed both of them. They concluded that since the
XRules performed better than the CBA classifier this
indicated that the system relied on the classification
information hidden in the structures for an effective rule
generation process. They also stated that it
outperformed the IR based method in spite of the
greater amount of input used by this method. Their
results showed that structural mining can provide new
insights into the process of XML
Other work has concentrated on extracting association
rules from XML data such as in [1, 8] both using
XQuery.
Braga et al [8] presented a XMINE operator
a tool they developed to extract XML association rules
for XML documents. XMINE was based on XPath and
inspired by the syntax of XQuery, which allowed them
to express complex mining tasks, compactly and
intuitively. They thought that XMINE could be used to
specify indifferently (and simultaneously) mining tasks
both on the content and on the structure of the data.
They found that their research provided a good starting
point it left many open issues for further research
which need to be addressed to have a fully functional
and efficient implementation
of the XMINE operator. It was pointed out the one of
the most important open issues was that of support
evaluation as There are currently no XQuery
interpreters to be used in filtering XML fragments and

although XPath processors are quite advanced, they
do not yet provide all the required functionalities either.
They suggested that this extra functionality should be
included in the new XPath 2.0.
Wan and Dobbie [1] have shown that it is possible to
extract association rules (data mining technique) from
XML documents without any need for pre or post
processing by using XQuery to implement the well
known Apriori algorithm. Their ideas was that XML
data can be mined using XQuery and then integrate
the data mining technique of association rule mining,
into XML native databases. Association rule mining is a
popular data mining technique with uses
implementation of the Apriori algorithm. This algorithm
finds associations between items in a database. They
concluded that XQuery implementation of the Apriori
algorithm was not efficient in comparison to a C++
implementation.

3 Methodology
The XML clustering software using XQuery takes an
Object Oriented Programming approach. It is
implemented in Java. This uses a open source XQuery
implementation tool called Qexo [9]. The software is
divided up into the following classes Start, GUI,
ExpressionBuilder, XQueryExec and XMLTreeBuilder.
How these classes work together can be summarized
as follows:
1) The start class initiates the start of the program. It
creates an instance of the GUI class. This provides a
GUI interface that allows the user to load a XML
Document they wish to be clustered.
2) This document is then parsed using a SAX API. This
deals with the document sequentially and builds a Tree
model from the elements nodes as it goes through the
document. As it does this it also inputs the element
nodes into an array. The nodes are tested for whether
they contain numerical or textual data. If the data is
textual it is put into an array which contains nodes that
contain textual data. These elements will not be input
into the XQuery expression but will be used purely for
display purposes. If the data is numeric then, the
element will be put in a separate array. This distinction
needs to occur to prevent elements with textual data
being input into the Nearest Neighbour algorithm which
only works on numerical data.
3) Both of these arrays are then displayed in the Gui as
a list of tick boxes with labels. If the data is from the
numeric array then a threshold box will appear giving
the user an area to input a threshold. If from the textual
array a threshold box will not be displayed. This allows
the user to choose which elements in the document to
cluster together and also to display other attributes to
make it easier to make sense of the results.
4) The user will also be asked for a path to the output
file for the results to be sent to.
5) From the user’s options, the path for the chosen
elements and the chosen elements will be incorporated
into the XQuery expression. The expression will be
built suing the XQueryBuilder class.

6) This will result in the full expression being evaluated
in the XQueryExec class. It does this by using the
runXQuery().
7) The output results will be sent to the output path
specified in the form of a HTML page with an
embedded table of clustered results.
8) On completion the display will inform the user it has
completed, it will display the output path and give the
user the option to exit or to cluster again.

4 Experimental Setup
This software was developed and tested using an iris
data set. Here is a sample of the data:

<?xml version="1.0" encoding="UTF-8" ?>

- <irisdata>
 -<Iris>
 <sepal_length>5.10</sepal_length>
 <sepal_width>3.50</sepal_width>
 <petal_length>1.40</petal_length>
 <petal_width>0.20</petal_width>
 <class>Iris-setosa</class>

 </Iris>

As it can be seen the element values consist of both
numerical data, i.e. that is contained in the element
<petal_width>, and textual data e.g. the data within the
<class> element.
The software works out the time taken to cluster the
results. A n experiment was conducted that wanted to
show how the software processing time altered when
the number of variables clustered increased. It entailed
requesting that one variable i.e. petal_width was
clustered with a threshold of <0.1,the time taken and
this repeated 5 times to get a number of results. This
was then repeated for 2,3 & 4 variables with different
thresholds. The Iris document contained 152 <iris>
nodes which means that the algorithm (whose
performance is based on O(n^2). Regardless of the
number of variables clustered the algorithm reads the
document 152^2 times. However, the work done
increases, as the number of variables to cluster,
increases.

4 Experimental Results
As previously mentioned the results will be in the form
of a HTML page with an embedded table of clustered
results. The headers of the table will be taken from the
element name within an array.
A sample of the output of clustering 2 elements and
displaying the class is as follows:

Nearest Neighbour clustered results
This data is your clustered results from the XML
Document you have chosen. The chosen elements and
thresholds were:

Element : petal_length
Threshold : 0.2
Element : petal_width
Threshold : 0.5

These have been put through the XQuery Nearest
Neighbour algorithm and produced these results.

The nearest neighbours of the node(s):
petal_length

1.40

petal_width

0.20

Class

Iris-setosa

petal_length petal_width class

1.40 0.20 Iris-setosa

1.40 0.20 Iris-setosa

1.30 0.20 Iris-setosa

The output was configured to make it easy to read for
the user to analyse the results and thus easier to
identify possible patterns.
The speed in which the data is clustered depends on
many factors such as the size of the document, the
specification of the computer and what it has running at
the time and the number of variables that are input into
the XQuery Algorithm to cluster.
With the sample data, which contained 152 <iris>
nodes .The following graph can be displayed to show
time against work done. As the number of variables
clustered together increases so does how much work
the XQuery expression has to do. The time taken to
cluster the sample data document with 1-4 variables
was recorded 5 times for each variable. Then the
average and Standard Deviation was calculated. This
was repeated with increasing sample data sizes The
results can be displayed as follows:

A graph to show how the number of
variables within an XML documents affects

clustering time

0

50

100

150

200

250

300

350

1 2 3 4

Number of variables to be
clustered

Av
er

ag
e

Ti
m

e
(s

ec
s)

150 nodes

200 nodes

250 nodes

300 nodes

400 nodes

500 nodes

100 nodes

50 nodes

 Graph 1.Number of variables against time

The time was also measured with a differing number of
nodes within a XML document. They are displayed as
follows:

A graph to show how the number of nodes in a
XML document affects clustering time

0

50

100

150

200

250

300

350

0 200 400 600

Number of nodes in XML
document

A
ve

ra
ge

 T
im

e
(s

ec
s)

4 Variables

3 Variables

2 Variables

1 Variable

Graph 2 The number of nodes against time

4.2 Discussion
The results in graph 1 show that there is a linear
relationship between the time taken to cluster the data

and number of variables clustered. The algorithm
performs fairly constantly with little variation in
performance which is demonstrated by a very small
standard deviation (with a range of 0-1.3 for the whole
data set). As the number of nodes within the XML
document increases the gradient of the line becomes
greater. Graph 2 demonstrates that the nearest
neighbour algorithm works with a performance of
O(n^2).It is expected that the time taken to cluster the
data will increase exponentially as the number of
nodes increases.

5 Conclusions
This software provides a tool to mine XML data into
clusters of the data points nearest neighbours
according to a given threshold. It provides a GUI
interface which makes it much more adaptable for a
user. However it has been shown that clustering time
greatly increases as the number of nodes within an
XML document increases. This is the nature of the
nearest Neighbour algorithm implemented. Therefore
with larger data sets it will take a much longer time to
cluster, greatly increasing CPU usage and virtual
memory on the system running the software. The
bigger the data set to be clustered the more resources
are going to be needed.

6 References

[1] Wan, Jacky W.W . Dobbie, G. Mining Association
Rules from XML Data using XQuery,
http://crpit.com/confpapers/CRPITV32Wan.pdf
[2] Quanzhong Li and Bongki Moon. Indexing and
Querying XML Data for Regular Path Expressions. In
VLDB, 2001
[3] Ioana Manolescu, Daniela Florescu, and Donald
Kossmann. Answering XML Queries on
Heterogeneous Data Sources. In VLDB, 2001
[4] Yannid Papakonstantinou and Victor Vianu.
Incremental Validation of XML Documents. In ICDT,
2003

[5] The XML benchmark project. http://www.xml-
benchmark.org
[6]Zaki and Aggarwal,XRules:an effective structural
classifier for XML data,KDD 2003
[7] B. Liu, W. Hsu, Y. Ma. Integrating Classi_cation and
Association Rule Mining. SIGKDD, 1998.
[8] Daniele Braga_ , Alessandro Campi_ , Stefano
Ceri_ , Mika Klemettinen_ , Pier Luca Lanzi_,A Tool for
Extracting XML Association Rules from XML
Documents
[9] http://www.gnu.org/software/qexo/
[10] http://www.w3.org/TR/xquery/

http://crpit.com/confpapers/CRPITV32Wan.pdf�
http://www.gnu.org/software/qexo/�
http://www.w3.org/TR/xquery/�

	3 Methodology
	4 Experimental Setup
	4 Experimental Results
	5 Conclusions

