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We report the visible and UV activity of thin silver films. The films are grown using a CVD process employing aqueous-based silver
precursors, flame-assisted chemical vapour deposition. This approach overcomes many of the previously encountered limitations
to silver deposition by employing an atmospheric pressure process, low-cost and low-toxicity precursors. The resultant films are
assessed for activity using stearic acid destruction as a model compound. We also report on the addition of titania to these silver
films to increase the potential functionality. This activity is also demonstrated, where the films appear largely transparent to the
eye, further widening the potential application of this work. It is speculated that the nanoparticulate nature, of the CVD silver, is
crucial in determining photoactivity.
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1. INTRODUCTION

In recent years, photoactive films have attracted increasing
attention, particularly based on titania. Significant efforts
have been directed at developing the photoactivity of titania
into the visible. Methods have included use of other photoac-
tive materials in conjunction with TiO2 including WO3 [1]
and PdO [2], or by doping with anionic [3, 4], or cationic
[5] species. To date, the results have been mixed. In many
cases, the doping itself leads to a reduction in photoactivity,
often attributed to disruption of the crystal structure [6]
and/or the introduction of compensation centres [7]. Some
papers do claim visible activity [8], although the form
and mechanism of how the photoactivity works is often in
dispute [9].

The combination of Ag and TiO2 produced mainly by
sol-gel techniques has been shown to improve TiO2 UV
photoactivity, under the correct conditions. In some cases,
this has been shown to relate to the modification of the
sample morphology by the Ag with, for example, a change in
crystallite size [10] or rutile/anatase [11]. The addition of Ag
is considered to promote charge separation of the electron-
hole pairs from TiO2 after photon absorption by acting as an
electron sink.

Research literature of the behaviour of just Ag under
illuminated light relates mainly to its own transition rather
than its effect on other chemical compounds. The reduction

of Ag+ ions to Ag metal is well documented, and use of UV to
form the metal from ions is common practice. Commercial
uses of the reduction of Ag+ ions include photography [12]
and photochromic glass [13]. Films of AgCl were found to
be photocatalytic for the oxidation of water, but only in the
presence of excess Ag+. This activity expanding from the UV
to visible due to self-sensitisation [14].

Other research relating to use of Ag in catalysis is usually
in conjunction with zeolites, where the presence of Ag+

clusters increases the photodecomposition rate of specific
organics by acting as active sites, or electron trapping sites
[15], or decomposition of inorganics such as NO and H2O
[16]. In these cases, the zeolite is needed to isolate and
stabilize the Ag+ ions (and their clusters). The zeolite itself is
playing a role in the photoactivity of the catalyst, for example,
the increased efficiency of the N2O decomposition reaction
with ZSM-5 opposed to zeolite Y [17]. There is only very
limited literature available on the photoactivity of thin Ag
films with organic materials. Research by Guo et al. [18]
states that there is a possible photocatalyic reaction under
laser excitation.

A wide range of techniques have been used to deposit thin
film silver including electroless deposition [19], electrostatic
deposition [20], and PVD processes (e.g., evaporation
and sputtering) [21]. Previous studies on silver thin film
structure have shown that continuous sheets of silver can be
produced easily by PVD [22], and a granular structure can
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be produced by MOCVD [23, 24]. Although these processes
are effective at producing thin films, the degree of silver
nanostructure control is typically limited.

In this paper, we report the use of flame-assisted
chemical vapour deposition (FACVD) to produce silver
nanostructured layers and coatings. The process can use
aqueous precursors, which are in many cases very soluble,
and of relatively low toxicity. Growth rates are also rapid
in comparison to previous APCVD reports, and a high
degree of nanostructure control can be achieved with
this approach. Indeed, the nanostructured silver deposition
control arising from our described approach appears to give
an enhancement to photoactivity and also to the bioactivity
of the various film structures, as previously shown [25]. We
will report on the photoactivity of Ag films in both the visible
and the UV, along with examples of Ag/TiO2 films. The
added attraction of the TiO2/Ag combination is the increased
durability of the samples, over that of Ag which is relatively
soft and the additional high photoactivity expected of the
TiO2 under UV.

2. EXPERIMENTAL

2.1. Growth

All films were grown on commercially supplied silica-coated
barrier glass substrates. The barrier is a thin (60 nm),
amorphous film of SiO2 to prevent diffusion of impurity ions
within the float glass. These would all cause a reduction in the
quality and photoactivity of the films.

All silver films were produced by flame-assisted chemical
vapour deposition (FACVD). The FACVD reactor used is of
in-house construction. Basically, it consists of a burner head
which allows gas mixing, a translational substrate stage and a
precursor delivery system (electronic mass-flow controllers
and a nebuliser). A schematic of the system is shown in
Figure 1. The substrate stage is made up of a carbon block
which can be translated beneath the flame at a rate of
3.6 cm/s. The number of passes under the burner head is
related to the sample thickness. The carbon block was held at
300◦C for optimum growth. The nebuliser is a commercially
available ultrasonic system (ultra-neb2000 Devilbiss 200HS-
042), with water used as the transmission medium. The
precursor solution sits within a cup that in turn is in
contact with the water in the nebuliser, such that ultrasonic
waves are passed through to the precursor solution, hence
producing droplets of precursor solution. Nitrogen carrier
gas then passes through the nebuliser, collecting solution
droplets, which are then transported to the flame. Fuelling
the burner is a mixture of propane and oxygen gases, flowing
at 0.99 L min−1 and 3.65 L min−1, respectively, generating a
flame output power of 1.50 kW. The precursor is carried in
1.70 L min−1 of nitrogen. These gases are also mixed with
13.90 L min−1 of make-up nitrogen for flame control. The
precursor reagent used was silver nitrate supplied by Aldrich,
with a purity of 99.99% dissolved in deionised water to the
required concentration.

Electroplated silver was also deposited as a comparison
to the FACVD films. These films were deposited using

Oxygen

Propane

Nitrogen

MFC

MFC

MFC

MFC

Nebuliser

MFC Mass-flow-meter

7 micron filter

Solenoid

Non-return valve

Figure 1: Schematic of the FACVD system.

0.15 M silver nitrate in deionised water (solution A), 0.8 M
potassium hydroxide in deionised water (solution B), and a
0.49 M glucose solution (solution C). The glucose solution
was made up of 88% deionised water, 11% ethanol, and 1%
concentrated nitric acid. The solutions were mixed in the
ratio 16 : 8 : 1 of A : B : C, respectively, and deionised water
was added to control the speed of the reaction. Concentrated
ammonia was used to react with any oxide precipitation.

Titania films were grown using an atmospheric pres-
sure CVD coater. The precursors used were titanium
tetrachloride (4.9×10−4 mol min−1) and ethyl acetate (3.65×
10−3 mol min−1) (Aldrich), which were transported through
the reactor by a carrier gas of nitrogen. The substrate
temperature was 650◦C. Silver was deposited both under and
over these films by FACVD.

2.2. Characterisation

X-ray diffraction (Siemens D5000) was used to confirm
the sample crystallinity. The morphology assessed by SEM
(Philips XL30). Film thickness (for titania) was estimated
by relating the reflected colour to a calibrated chart for
thickness versus refractive index. Film thickness for the Ag
was determined by cross-sectional SEM and the use of a
surface profiler (Dektak 3ST) on an etched edge. X-ray pho-
toelectron spectroscopy, XPS, (Kratos AXIS Ultra) with an Al
(monochromated) Kα radiation source was used to check the
surface composition and stoichiometry of the films.

To test the photocatalytic behaviour under UV (365 nm),
the degradation of stearic acid was followed by FTIR (Bruker,
Vector 22). The software allows integration of the area
under the peaks over a range of 2800–3000 cm−1. A typical
stearic acid layer would have an integrated absorbance over
this range of 1.0 cm−1 corresponding to ca. 3.13 × 1015
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Figure 2: SEM images of (a) Ag 2 passes, (b) Ag 30 passes, (c) Ag 100 passes, (d) electroplate Ag.

molecules cm−2 [26]. The stearic acid (100 μl of 10 mmoL
in methanol) was spun coated onto the sample. After drying
in an oven, the sample was exposed to UV light with
an intensity of 3 mW/cm2. For visible light measurements,
a high-intensity tungsten/halogen lamp (300 W) with a
400 nm cut-off filter was used.

3. RESULTS AND DISCUSSION

In order to understand the influence of the various layer
structures, both silver (by FACVD) and titania (by thermal
CVD) were grown. The silver films were analysed, and both
the silver and titania films were tested for photoactivity in the
visible and the UV regions.

3.1. Visual

The Ag films were produced with a range of thickness
(60–250 nm), by increasing the number of passes of the
moving substrate under the flame. The comparison TiO2

films were all transparent (80 nm) with a brown tinge due to
interference colouration. Visually, all the Ag films were highly
reflective, with a pale pink tinge which darkens to purple for
thicker coatings. The films could withstand gentle rubbing or
sonification. Those with an upper layer of TiO2 were slightly
more robust.

3.2. X-ray diffraction

All Ag films (FACVD and electroplated) were crystalline
showing metallic cubic Ag only (JCPDS 04-0783). That
of the titania was anatase (JCPDS 21-1272) when grown
directly on a glass substrate (or under Ag film), while it
contained some rutile (calculated at 33 wt%) when grown
on top of the Ag film. Use of Scherrers formula [27] allows
calculation of crystallite size (Table 1). The calculation is
ideally for a powder not a thin film, so will contain line width
broadening from strain as well as crystallite size. Despite

Table 1: Number of passes, thickness, and crystallite size.

Deposition time
(number of
passes)

Thickness, nm Crystallite size, nm

2 60 11

4 61 12

30 93 20

100 250 38

Electroplate 104 33

these reservations, the values obtained will give an idea of
the changes occurring.

3.3. Chemical composition

Confirmation that the Ag films consisted of metallic Ag,
not oxides (or sulphides) came from the XPS. The high-
resolution scan only showed the 3d signals at 3d5/2 =
368.7 eV and 3d3/2 = 374.7 eV with a splitting of 6 eV which
are characteristic of metallic Ag. From the wide scan, a small
amount of Si was detected, which almost certainly comes
from the glass substrate. The O 1s signal consisted only of
a single peak at 532.7 eV relating to absorbed water on the
surface. No O 1s or Ag 3d signal was present for an oxide.

Both TiO2 deposited over Ag and the inverse (Ag over
TiO2) established that there was both TiO2 and Ag on the
surface. Obviously, in the case of Ag over TiO2 the intensity
of the Ag signal was greater. The high-resolution scan showed
Ti 2p signals at 2p1/2 = 464.7 eV and 2p3/2 = 459.0 eV, with a
splitting of 5.7 eV, characteristic of TiO2. This was confirmed
by the O 1s signal at 530.2 eV.

3.4. Morphology

From the SEM can be seen (Figure 2) that in the early stages
of thin film growth the Ag deposits as particles rather than
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Figure 3: UV photoactivity for Ag films of differing thickness (2, 4,
30, and 100 passes). Also included are the results for the electroplate
silver ( ) and an 80 nm thick film of titania ( ).

a continuous film. The exact size and spacing depend on
the growth conditions [28]. It is also important to note
that the sample thickness is more correctly the height of the
individual islands. As the number of passes is increased the
particles gradually coalesce and form a continuous sheet.
As can be seen in Figure 2(d), the electroplate Ag forms a
continuous film with a granular surface.

3.5. Photoactivity

The photoactivity was assessed by use of stearic acid as
a model system, as stearic acid simulates a typical type
of solid organic film that deposits on glass and ceramic
surfaces. However, it is important to note that if a material
is highly photoactive with one model compound, it does not
necessarily mean that it is as active with another, or even that
the same relative rates of activity can be determined. This has
been previously clearly shown with titania [29, 30].

3.5.1. Photoactivity under UV radiation

The rate at which the stearic acid was decomposed is shown
by the integrated area under the IR signals from the stearic
acid (2957.5, 2922.8, and 2853.4 cm−1), which are directly
proportional to the concentration. For a period of up to 70
minutes, the FACVD Ag films showed signs of photoactivity,
which then levelled out, as seen below in Figure 3. This
is particularly obvious for the thinnest sample of 2 passes
(60 nm). This behaviour does not occur for the thickest
FACVD film of 100 passes (250 nm) or the electroplate film
(104 nm).

There is an increased scatter in some of the measure-
ments (enhanced by the normalisation). This is particularly
obvious for the thickest film (100 passes) due to increased
roughness and haziness. The hazy appearance of the thick

samples is due to increased crystalline disorder and increased
crystallite size (i.e., above a critical particles size a film is
perceived as hazy as more light is scattered).

That these decay curves for silver are real and not an
artefact of the experimental set up (or instrument fault), a
film of TiO2 was run over the same experimental period,
showing the expected zero-order curve as the stearic acid
decomposes, (as seen in Figure 3). This is of a similar
order to the initial rate of reaction (0–70 minutes) of the
thinnest Ag layer (60 nm). A linear fit giving 0.0026 ±
0.0002 cm−1 min−1 (8.13 × 1012 molecules cm−2 min−1) for
the TiO2 film and 0.0025 ± 0.0002 cm−1 min−1(7.81 × 1012

molecules cm−2 min−1) for the initial rate of the Ag layer (2
passes). Most of the curves shown are obviously not linear,
so have been fitted by a sigmoidal fit.

The lack of activity for the thick films may relate
to differences in the morphology (continuous rather than
island formation) and the crystallite size. As previously noted
the thinner films have much smaller crystallite sizes (11–
20 nm) than that for the thicker films (33–38 nm). This
change in crystallite size relates to the extent of deposition.
Also, the smaller the nanoparticles, the greater the surface
area and hence increased rate of photoactivity.

From Figure 3, in particularly those for 4 and 2 passes, it
can be seen that a point is reached at which no more stearic
acid is decomposed. These coatings are noncontinuous,
but previous research has shown that a pollutant can be
removed from incomplete coatings of TiO2 due to the mobile
electron/hole during the photoactive process [31]. This is
not occurring here, suggesting that the mechanism for TiO2

photoactivity is different to that of the Ag.

3.5.2. Photoactivity under visible radiation

Before running the experiments, the emission of the “visible”
lamp with and without the 400 nm cut-off filter was checked.
This confirmed that no obvious emission below 398 nm was
detected with the filter in place.

Considering the UV experiments, a sharp reduction of
the stearic acid is followed by a point of no change for the
thinner samples (Figure 4), while the thicker samples do not
show this behaviour, and confirming lack of photoactivity.
For reference, a film of TiO2 (which is not expected to show
any visible activity) has been added. This can be seen to show
a slight reduction in values with time (10−4 cm−1 min−1,
3.12 × 1012 molecules cm−2 min−1), relating to stearic acid
changes due to temperature fluctuations and possibly UV
undetected by the emission spectra. This trend is in line
with that seen for the thicker samples (100 pass FACVD and
electroless plate). The thinner samples show a much more
pronounced change.

As before, it is proposed that the initial activity seen
relates to the formation of nanoparticles in the FACVD
which do not occur in the electroplate silver, along with the
difference in the morphology. As noted earlier, the thinner
FACVD films exist as islands of Ag, rather than continuous
film (100 pass and electroplate). Calzaferri et al. [14] suggest
that Ag clusters on the surface sensitise the photocatalytic
process. These clusters lead to the formation of empty Ag
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Figure 4: Visible photoactivity for Ag films of differing thickness
(2, 4, 30, and 100 passes). Also included are the results for the
electroplate silver ( ) and an 80 nm thick film of titania ( ).
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Figure 5: Repeated addition of stearic acid on a single Ag sample (2
passes). First stearic acid run , additional stearic acid added, and
the experiment repeated once , twice .

energy levels lower than those in the bulk metal, and so
enable a new transition, extending the process from the UV
into the visible.

Interestingly, it was possible to repeat this behaviour
on addition of more stearic acid, as shown in Figure 5
using the thinnest Ag layer (2 passes). After the standard
stearic acid test had been carried out, more stearic acid
was spun coated onto the sample and the test repeated. As
can be seen the same trend occurs. The initial rate of the
reaction (gradient) showed no significant change at 0.0033±
0.0004 cm−1 min−1(1.25 × 1013 molecules cm−2 min−1). In
fact, this value is compatible to the UV activity of a TiO2 film
(80 nm).

A possible explanation for this behaviour is that the
stearic acid would react with the Ag at the islands, but no
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Figure 6: SEM image of an Ag sample (2 pass) after stearic acid
decomposition has stopped.

reaction would occur between them (being on glass not Ag).
When all the stearic acid on the island was used up, no
more reaction would occur. On addition of more stearic acid,
the process would begin again. This would seem to be in
agreement with the SEM (Figure 6) taken after the reaction
had finished, showing a patchy coating of stearic acid rather
than a film.

As in the case of UV photoactivity, the presence of smaller
nanoparticles will increase the surface area available and so
increase any reaction between the stearic acid and the film.

As standard practice, the samples were exposed to UV
light for 4 hours before the visible experiment as previous
work had shown that this gave improved visible photoac-
tivity of sol-gel produced, Ag-doped TiO2 samples [32, 33].
This is considered due to the UV partially reducing the TiO2

and favouring the electron transfer to Ag [34]. However, the
above experiment with repeated layers of stearic acid showed
that this was not necessary for just Ag films (opposed to
TiO2-Ag). Exposing the sample to UV light should reduce
any Ag+ ions to Ag metal, as is common practice for the
formation of Ag/TiO2 from TiO2/AgNO3 for sol-gel films
[35].

It has previously been mentioned that under UV light
any Ag+ would be reduced to Ag metal. However, under
visible light in the presence of O2 this process can be reversed
with O2 acting as an electron acceptor for the photoexcited
Ag. This was shown to be a reversible sequence (between
UV/visible) by Ohko et al. [36]. Films of AgCl were found to
be photocatalytic for the oxidation of water, but only in the
presence of excess Ag+. This photoactivity expanding from
the UV to visible due to self-sensitisation [14]. The presence
of the excess Ag+ was considered to be responsible for the
self-sensitisation with the band gap of AgCl being decreased
due to these Ag ion 5s states. For our experiments, there is no
initial high concentration of Ag+ ions, as no other chemical
species than Ag metal were detectable by the limits of XRD
or XPS.

Similar experiments were done using multilayers of TiO2

and Ag. As previously mentioned, if TiO2 was deposited
on top of Ag, anatase with a small amount of rutile was
produced. Also, the layer was not continuous, so both Ag and
TiO2 were present on the top surface.

This again (Figure 7) shows the trend seen with the
Ag films, along with the ability to repeat the experiment
on adding more stearic acid on completion of the first
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Figure 7: Visible stearic acid tests for TiO2 over Ag (2 passes). First
stearic acid run , additional stearic acid and experiment repeated
, titania film .

experiment. The TiO2 film is also plotted, so the contrast
between no activity (TiO2) and activity (TiO2 on Ag) can be
more clearly seen.

Growth Ag (2 passes) on top of TiO2 again led to a surface
containing Ag and TiO2 (anatase only). In this case, no sign
of activity was seen (Figure 8), with the multilayer giving the
same lack of activity as seen in the comparison TiO2 sample.
Both samples gave rates of 10−4 cm−1 min−1(3.12 × 1012

molecules cm−2 min−1), which are similar to that obtained
by uncoated float glass. The complete lack of any activity
due to the Ag is surprising given the previous results.
Possibly there is an advantage having a mixture of rutile
and anatase rather than just anatase as rutile absorbs a
higher wavelength of light than anatase, which may in some
way help the decomposition of stearic acid which occurs.
Also, the presence of rutile may favour the TiO2 over Ag
sample, as it was previously shown by Sclafani et al. [34]
that rutile, but not anatase improved the UV photoactivity of
sol-gel mixed TiO2/Ag samples. However, this cannot be the
full explanation, as the films of just Ag show photoactivity.
Alternatively, deposition of Ag on top of TiO2, rather than
directly on the barrier glass may alter either the amounts
or dispersion of Ag being deposited and hence may reduce
its effect on the stearic acid. If as earlier postulated the
structure of the Ag is of importance and then by growth on a
different effective substrate, this structure is changed, hence
curtailing the photoactivity. However, the Ag crystallite size
itself has not been altered whether grown on either material,
so indicating the FACVD deposition process was controlling
this property.

The mechanism by which Ag (under certain conditions)
removes stearic acid is not clear at this stage. We can
speculate on this, as to whether this is a photocatalytic
process or a photoactive reduction/oxidation reaction. In this
regard, some key points (noted in the above section) are as
follows:

(i) under both UV and visible light, stearic acid can be
decomposed;
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Figure 8: Visible activity of Ag on TiO2 compared to that of TiO2

.

(ii) such degradation only occurs for the thin films of Ag
and TiO2 over Ag (which actually consists of TiO2

interspersed with Ag clusters);

(iii) the reaction tails off before completion;

(iv) the behaviour can be repeated on the same sample;

(v) the (active) thin films consist of noncontinuous
island growth of small Ag clusters. Significantly, the
two films where no reaction occurred were for the
thick, continuous films of 100 passes FACVD, and the
electroplate film. Both also have the largest crystallite
sizes.

The decomposition of the stearic acid might initially sug-
gest a photocatalytic process particularly as the behaviour
seems to be repeatable on the same sample. However, the
reaction tails off implying that the active species may be
being depleted which would suggest a photoactive oxi-
dation/reduction process. It is possible that under more
extended testing, full depletion may be observable. However,
such a simple silver depletion driven reaction is hard to
rationalise with the observation that reaction does not occur
(or is substantially slower) in two types of silver films.
We could speculate that, in this instance, presence of the
nanoparticulate films consisting of isolated clusters, and
below a critical crystallite size, is of paramount importance
for these UV and visible activated decompositions of stearic
acid. Additional studies are planned to try to further
elucidate the mechanism involved.

4. SUMMARY

By use of FACVD, with aqueous precursors, it has been
shown possible to controllably deposit polycrystalline cubic
Ag films. The thickness of the film and morphology can
be controlled by the number of passes of the burner head
over the substrate. The comparison TiO2 is stoichiometric
anatase. The silver films deposited in an island formation
which gradually closed up becoming a continuous film by
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a thickness of 250 nm. This nanostructure could be varied
by controlling the growth conditions. These films were
compared with a continuous film of Ag produced by the
electroplate method. All the silver films which consisted of
the noncontinuous nanostructure demonstrated an initial
visible activity to stearic acid, which was shown to be
repeatable on the same sample, although they did not go to
completion. No activity was shown by the continuous films
of 100 passes or the electroplate samples for UV or visible,
suggesting that the nanostructure is a significant factor in the
photoactivity seen with stearic acid in the thinner films.

By use of multilayers of thin coatings of Ag under TiO2, it
is possible to combine the visible photoactivity of the Ag and
complement its UV activity with the excellent photoactivity
of TiO2. This has potential use in the commercial sector
due to the shown repeatable measurement, along with the
improved durability of the product over that of just Ag.
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