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Abstract: A generic criterion for the generation of spontaneous fractal patterns is proposed, which has 
independence with respect to system nonlinearity.  We also report the first transverse spatial optical fractals 
found in dispersive and absorptive ring cavities, and our analysis is fully confirmed by numerical simulations. 
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1. Introduction 
 
Complexity focuses on commonality across subject areas and forms a natural platform for multidisciplinary 
activities.  Typical generic signatures of complexity include: (i) spontaneous occurrence of simple patterns (e.g. 
stripes, squares, hexagons) emerging as dominant nonlinear modes [1], and (ii) the formation of a highly complex 
pattern in the form of a fractal (with comparable levels of detail spanning decades of scale).  Recently, a firm 
connection was established between these two signatures, and a generic mechanism was proposed for predicting the 
fractal generating capacity of any nonlinear system [2]. 

The mechanism for fractal formation is of a very general nature: any system whose Turing threshold curves 
exhibit a large number of comparable spatial-frequency instability minima are potentially capable of generating 
fractal patterns.  Spontaneous spatial fractals were first reported for a very simple nonlinear system: the diffusive 
Kerr slice with a single feedback mirror [3].  These Kerr-slice fractals are distinct from both the transverse fractal 
eigenmodes of unstable-cavity lasers [4], and also from the fractals found in optical soliton-supporting systems 
[5,6].  On the one hand, unstable-cavity fractals may be regarded as a linear superposition of diffraction patterns 
with different scale lengths, each of which arises from successive round-trip magnifications of an initial diffractive 
seed.  On the other hand, fractals formed in the Kerr slice result entirely from intrinsic nonlinear dynamics (i.e. 
light-matter coupling leading to harmonic generation and/or four-wave mixing cascades).  These processes conspire 
to generate new spatial frequencies that, in turn, can produce optical structure on smaller and smaller scales, down to 
the order of the optical wavelength. 

Here we report the first predictions of spontaneous fractal patterns inside driven damped ring cavities containing 
a thin slice of nonlinear material.  Both dispersive (i.e. diffusive-relaxing Kerr [3]) and absorptive (i.e. Maxwell-
Bloch saturable absorber [7]) are considered.  New linear analyses have shown that the transverse instability spectra 
of these two cavity systems possess the requisite comparable minima that predict the capacity for the spontaneous 
generation of fractal patterns.  Extensive numerical simulations, in both one and two transverse dimensions, have 
verified that both the dispersive and absorptive cavities do indeed give rise to nonlinear optical fractals in the 
transverse plane.  Our results confirm that the mechanism for fractal formation has independence with respect to the 
details of the nonlinearity. 
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Fig. 1. (a) Schematic diagram of a ring cavity with a thin slice of nonlinear medium and a spatial filter F(K2,KC
2).  Typical Turing instability 

threshold curves for (b) diffusive-relaxing Kerr, and (b) Maxwell-Bloch saturable absorber cavities. 



2. Optical feedback & cavity boundary condition 
 
An essential ingredient for the generation of fractals is the presence of a feedback mechanism [2].  Feedback drives 
the cascade process that is responsible for the creation of higher spatial wavenumbers, and which ultimately leads to 
the “structure across decades of scale” character of the fractal pattern.  Cavity geometries [see Fig. 1(a)] are 
therefore ideal candidates as potential optical fractal generators.  In the free-space path, the electric field undergoes 
Helmholtz diffraction so that in Fourier space, the ring cavity boundary condition can be written as 
 

           2 2 2
0,0, exp , exp , ,C RE t a R i F K K i K E l t t       K K K ,  (1) 

 
where F(K2,KC

2) is a spatial filter (parameterized by a cut-off wavenumber KC) that controls the maximum allowed 
transverse wavenumber in the cavity, and θ(K2) = σ2K2/[1+(1 – K2/k0

2)1/2] is the Helmholtz diffraction operator.  The 
out-coupling mirror has an intensity reflectivity R, tR is the cavity transit time, φ0 is the linear mistuning, and the 
slice has a (negligible) thickness l.  Also, σ ≡ L/2k0, k0 is the free space longitudinal wave number, a is the amplitude 
of the plane-wave pump field, and δ(K) is the Dirac delta function.  By setting k0 → ∞, the paraxial propagation 
factor θ(K2) ~ σK2 can be recovered, and when the spatial filter is removed (i.e. by setting F = 1), the paraxial cavity 
boundary condition is obtained. 
 
3. Dispersive nonlinearity 
 
The simplest dispersive nonlinearity is provided by the relaxing-diffusing Kerr effect.  The field E inside the slice 
and the photoexcitation density n are governed by 
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respectively.  χ parameterizes the Kerr nonlinearity (positive for self-focusing, negative for self-defocusing), and the 
coefficients τ and lD are the relaxation time and diffusion length, respectively, of n.  Equations (2) are supplemented 
by the boundary condition (1).  A linear stability analysis [2] of this system shows that the threshold condition for 
Turing instability is  
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The threshold curves [see Fig. 1(b)] possess the qualitative features necessary for the generation of spontaneous 
fractal patterns: successive and comparable spatial frequency minima. 

Rigorous simulations have shown that the Kerr cavity is indeed capable of generating fractal patterns.  In a single-
K configuration, where the filter attenuates all those spatial wavenumbers outside the first instability band, it is 
found that simple stripe patterns emerge.  Once this stationary pattern has been reached, the filter is removed to 
allow all waves to propagate.  Energy is transferred to higher spatial frequencies, and the simple strip pattern 
acquires successive level of fine detail at a rate that depends upon the system parameters. By analysing the power 
spectrum P(K) it can be seen that a fractal pattern emerges relatively rapidly (see Fig. 2).  Eventually, the system 
enters a dynamic equilibrium (within typically less than a hundred transits) where the average power spectrum 
remains unchanged even though the pattern continues to evolve in real space.  When this statistically invariant state 
 

 
Fig. 2.  Typical power spectrum evolution in time: (a) t = tR, (b) t =25tR, (c) t =100tR, (d) t =2500tR (τ = 0, lD = 0.4 and a = 2). 

 



is attained [see Fig. 2(c) and 2(d)], the pattern is referred to as a scale-dependent fractal.  An appreciable portion of 
the dynamic state is well described by a linear relationship ln P(K) = a + bK, where a and b are constants, and this 
type of behaviour is one of the characteristics of a fractal pattern [2]. 
 
4. Absorptive nonlinearity 
 
We have recently found that a thin-slice Maxwell-Bloch saturable absorber [7], can also generate fractal patterns.  
After adiabatic elimination, the model equations for the electric field E and population inversion w are 
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respectively. T1 and T2 are the decay times for the population inversion and polarization, respectively, Δ is the 
medium detuning parameter (a measure of the difference between pump and atomic-resonance frequencies) and α0 is 
the absorption coefficient.  Depending upon |Δ|, this system can be either purely absorptive (Δ = 0) or purely 
dispersive, (|Δ| >> 1).  A linear analysis of Eqs. (4), together with a generalized boundary condition (which allows 
for attenuation), yields the threshold condition for Turing instability, 
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Φ = ½αLΔ and α = α0/(1+Δ2).  For this system, one finds that the threshold spectrum comprises a series of adjacent 
instability islands [see Fig. 1(c)].  Simulations have revealed that the Maxwell-Bloch system (4) can also support 
fractals.  The single-K patterns turn out to be hexagonal arrays [see Fig. 3(a)], familiar from conventional pattern 
formation [1,3].  Once this state has been reached, the spatial filter is removed and one can observe a rapid transition 
toward a fractal pattern [Figs. 3(b-d)].  The qualitative behaviour of fractals patterns in both dispersive and 
absorptive systems are found to be the same, confirming the assertion of independence with respect to nonlinearity. 
 

 
Fig. 3.  Transverse intensity distribution showing the transition from a conventional (single-K) pattern – a hexagonal array – to a fractal mode in a 

thin-slice Maxwell-Bloch ring cavity.  Self-similarity persists down to spatial scales of the order of the optical wavelength. 
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