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Switching dynamics of spatial solitary wave pixels
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Separatrices and scaling laws in the switching dynamics of spatial solitary wave pixels are investigated. We
show that the dynamics in the full model are similar to those in the plane-wave limit. Switching features may
be indicated and explained by the motion of the (complex) solitary wave amplitude in the phase plane. We re-
port generalization, into the domain of transverse effects, of the pulse area theorem for the switch-
ing process and a logarithmic law for the transient dynamics. We also consider, for what is the first time to our
knowledge, phase-encoded address of solitary pixels and find that a near-square-wave temporal switching pat-
tern is permitted without (transverse) cross switching.

INTRODUCTION

Transverse effects in nonlinear optics is a field of both
technological and fundamental interest.' The challenge
of understanding and controlling spatiotemporal complex-
ity may be reduced when spatially coherent attractors
such as solitary waves dominate the transverse patterns.
While propagation of solitary wave beams has been real-
ized experimentally with a variety of nonlinear mate-
rials,2 4 both numerical simulation and analysis predict
that spatial solitary waves can also be manifest in the
field circulating in nonlinear ring cavities.5 In such a
configuration they have been proposed as pixels for an op-
tical memory device.6'7 Recent experimental realization
of binary soliton memory arrays has been achieved in the
domain of temporal solitons and with optical fiber loops.8 9

Temporal dynamics of bistable devices has already been
intensively studied under plane-wave approximations.
This paper extends that work and is concerned with the
dynamics of spatial solitary wave pixels.

The model is that of an externally pumped passive
nonlinear ring resonator in which spatial patterns are re-
stricted to one transverse dimension (Fig. 1). The evolu-
tion of the complex field, G,(x, z), during the nth circuit of
the resonator can be described by5

2i n + -a2n + f(IGnl2)Gn = 0, (1)
az p aX'

with the boundary condition

Gn+l(x,0) = A(x) + R exp(i(Do)Gn(x,p). (2)

The medium nonlinearity is saturable, purely dispersive,
and focusing, f(IGn12) = -1/(1 + 2IGn12), and beam evolu-
tion is parameterized byp = aoL /A, an effective medium
length, and y = ln 2/(4wrF), where F is the (beam) Fresnel
number. (DO, A, and ao are the cavity mistuning, pump
detuning, and medium linear absorption coefficient, re-
spectively. p = 2 and (D0 = 0.4 imply a well-developed
bistable characteristic and are fixed throughout the simu-
lations. A modulation of the pump field A(x) defines pixel
sites on the circulating beam:

A(x) = Ao(l + M cos kmx)exp(-x2). (3)

For a short period in time (T cavity transits), narrow ad-
dress beams are superimposed upon the pump field given
by Eq. (3). These beams are spatially Gaussian and tem-
porally square.6'7 A spatially uniform array of address
beams used to switch solitary waves on a host Gaussian
beam implies a range of dynamic and stationary responses
over the utilized band of the bistable characteristic. Here
we quantify the response of the system during and after
address beams and some static characteristics, considering
nearly the whole region, in A, where there is bistability.

One of the more widely studied transient phenomena in
optical bistability is that of critical slowing.0- 4 Pertur-
bation analysis predicts that when an external parame-
ter q (say, incident intensity or cavity length) crosses
its critical value q,, then switching time diverges as
(q - q)-"'. 5 Such a scaling is widely applicable to many
systems that exhibit a first-order phase transition. In our
system this slowing effect presents a lower bound on ad-
dress amplitude for fast switching of a single pixel, while
for arrays it creates an upper bound on the hold amplitude
(or. alternatively a limitation to packing density 6 ) when
independent switching is to be confidently concluded.

For address pulses a pulse area scaling law was discov-
ered in numerical studies of absorptive bistability.12 In
Ref. 12 the bias point (background input level) was close
to the upswitching threshold. It was found that for a
pulse area (temporal duration times amplitude) sufficient
to overcome critical slowing, this area alone was the deter-
mining factor causing a switch to the upper branch. The
law was then extended to a wider class of bistable systems
that can be described by simple nonlinear differential
equations and whose hysteresis loops are well devel-
oped.7"8 More recently the subject of noncritical slow-
ing'7 -

2' has attracted attention. In this case a slowing in
the dynamical evolution occurs far from the (critical)
switch points. Analyses were performed that approxi-
mate the stationary characteristic to a parabola, and so-
lutions show an approximate logarithmic divergence
of lethargy time as pulse width approaches a critical
value.2 '2 ' In the intermediate region, between the linear
scaling of the pulse area theorem and the quadratic scal-
ing of critical slowing, a smooth continuity was found for a
wide range of (plane-wave) bistable systems.24 Noncritical
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In Fig. 2a the three sets of output amplitude are plotted
(as points) against A, and also each data set has a best-fit
curve. This indentifies the static separatrix as the me-
dian branch. For the same numerical experiments the
switch amplitudes are plotted in Fig. 2b. A switching

R pulse creates a time-dependent process for which the
static separatrix is not a convenient representation and
where such a dynamic separatrix needs to be determined.
This latter characteristic depends strongly on our address

1 00% parameters, though the choice of the simplest (square)
address shape removes the need to consider some further
dependencies.

M 3,

Fig. 1. Schematic of the ring cavity partially filled with a non-
linear medium, L1 = 0.3(L1 + L2 ). Mirrors M1 and M2, the input
and output couplers, respectively, have a finite intensity reflec-
tivity R = 0.9.

slowing was a natural candidate for quantitative examina-
tion in our system, since it was seen to have a strong effect
on switching times even while relatively crude parameter
scans in address pulse amplitude were performed.

It is generally thought that fixed scaling laws may domi-
nate the dynamics of optical bistability and transcend the
particular physics of any one system. In purely absorp-
tive bistability the phase of the complex field remains con-
stant, removing a degree of freedom that is present in a
dispersive system. In this sense we expect less straight-
forward dynamical scaling dependencies on the fixed
points that cannot be considered to be constrained to the
real axis. In our system accommodation of transverse
effects is an additional issue. We have already demon-
strated independent operation of many solitary pixels6'7

and thus concentrate here mainly on the study of the dy-
namics of a single transverse solitary wave pixel.

STATIC AND DYNAMIC SEPARATRICES

The use of temporally square address pulses provides a
simple and definitive, local and overall switch character,
whereas local hold beam amplitude A gives a clear indica-
tion of bias point. Previous plane-wave studies centered
on critical pulse duration T*, a parameter that in mapping
terms is discrete and experimentally may be ambiguous
and difficult to measure. Continuity throughout the
whole possible working range of A is a necessary consider-
ation in determination of the applicability of any scaling
law. In addition to switch size As we choose the output
solitary pixel amplitude to parameterize our system.
This is done in the belief that self-focusing contains the
transient spatial structures, during the switching process,
in a consistent manner. It is in this sense that we use
the term solitary wave in the context of transient solitary
amplitudes. We do so in hindsight and shall make fur-
ther justification of its usage. Certain nominal system
parameters will remain fixed and, unless otherwise
stated, results pertain to F = 800, T = 5, M = 0.05, and
km = 67.32.7

To establish the origin of much of the slowing observed
in the dynamics of our model, the solitary amplitude dur-
ing noncritical slowing has been compared with the upper-
and lower-branch outputs for a range of working points.

PLANE-WAVE LIMIT

For insight into the complexity of switching dynamics in a
dispersive device we digress in this section to examine the
more tractable and computationally accessible problem of
our system in the plane-wave limit. The cavity boundary
condition relating the complex intracavity field g, on con-
secutive transits is in this case0

gn+1 = a + R exp{i[(Do + N(gng,*)(p/2)]}gn

= a + R exp(ir)gn. (4)
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Fig. 2. Separatrices in terms of electric field amplitudes.
a, The static separatrix. Output amplitudes when noncritical
slowing occurs is compared with those of the lower- and upper-
branch fixed points. b, A dynamic separatrix. Variation across
the bias range of the required switch amplitude As for noncriti-
cal slowing.
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Fig. 3. Samples of the dynamic flow (arrows) and the stable
and unstable manifolds (dotted curves) in the plane of the com-
plex electric field. a, -2 5 Re[g] 5 2; b, -15 Re[g] 5 1;
c, -0.5 5 Re[g] 5 0.5.

The input level is denoted a, and we define F to be the sum
of the linear and the nonlinear cavity mistunings. Our
reference plane, here, is just after the input mirror, Mi.
Linearizing this map around the fixed point g, one finds
that the calculated eigenvalues on the upper and the lower
branches are conjugate pairs, implying a spiraling dynamic
trajectory (stable spiral nodes).25'26 However, each point

of the median branch is a saddle point. In the neighbor-
hood of each saddle point the stable (Ws) and unstable (WU)
manifolds intersect. These manifolds extend out into the
(complex field) phase plane and are fundamental to the
transient dynamics. Ws and WU have been numerically
generated for a range of input amplitudes for which bi-
stability exists. Calculation of W1 is relatively straight-
forward; one considers a cluster of initial conditions around
the saddle point. For Ws one recognizes that when time is
reversed this becomes the unstable manifold, and thus one
can use the inverse map.25'26 Results for a = 0.12 are
shown as dotted curves in Fig. 3. Since the forward map

is dissipative and the dynamic flow is tangential to these
manifolds, one can deduce that dynamic trajectories will
never cross these lines if the lower- and the upper-branch
fixed points (L and U respectively) are stable.25 Thus all
initial conditions in the complex plane lying within the
lobe of the Ws spiral remain within this lobe and ulti-
mately end up at L (switch off). Conversely, initial condi-
tions outside the lobe are attracted to U and thus effect a
switch to the on state (the upper branch).

As the median point M approaches L in the complex
plane (increasing a and moving closer to the upswitching
point), the set of initial conditions that lead to an off state
shrink, while as M approaches U the Ws lobe opens and a
spiral arm sweeps around to consume the plane. We are
now in a position to appreciate that, when one is consider-
ing dispersive bistability, it is not sufficient to have knowl-
edge only of the static separatrix such as is shown in
Fig. 2a. This curve is merely a projection of the complete
picture. For each value of input amplitude it is the curves
Ws and W that actually define whether switching takes
place. While these manifolds are instructive, they are
asymptotic in nature and do not yield much detail concern-
ing transiency. We may probe deeper into the dynamical
effects through consideration of further sets of initial con-
ditions. For each considered window on the complex plane
a uniform grid of starting values was defined and used for
a single iteration of the map. The results provide a set of
dynamic vectors in the plane (direction and amplitude)
that furnishes a discrete sampling of the full dynamic flow.
These dynamic vectors are also shown in Fig. 3 and not
only verify the static nature of Ws and W but also convey
information on switching speed. In addition, such figures
can explain observed dynamical effects, which are other-
wise anomalous, since they account for both the amplitude
and phase of the intracavity field.

THE SWITCHING PROCESS

In the context of a bistable system, switching is, most sim-
ply, changing input amplitude sufficiently to create an ini-
tial condition far from the (sole) stable equilibrium point.
Dynamic evolution in the switching of solitary pixels from
the lower branch is shown for a wide range of address am-
plitudes in Fig. 4. The first 30 transits correspond to bias
beam initialization, after which the pixel site at the center
of the beam is addressed with a pulse with a duration of
5 transits.7 Many such parameter sweeps have been per-
formed, covering the range of A for which it may be fea-
sible to operate a bistable device (A 0.095 <" 0.1425).
Even with such an abrupt address, noncritical slowing
may occur over a time scale of many hundreds of cavity
transits (metastable trajectories have been seen to persist
for longer than 600 transits). What may, initially, seem
surprising is that just after the address pulse there exist
small relaxation oscillations around the median solution.
Oscillation is more pronounced at lower bias points, where
larger address beams are used, and is a transverse effect.
A (spatially) local injection raises the peak amplitude, but
the pixel subsequently expands to the solitary width, lead-
ing to relaxation oscillations. As one can see, this trans-
verse variation is transient and small. In addition to the
demonstration of significant noncritical slowing in the
switching of solitary pixels, Fig. 4 indicates that simple
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parameterization of the switching process by using only
the solitary amplitude may be possible.

Concentrating on the transient response during the
switch, we seek a scaling with respect to As for each value
of A. To a reasonable approximation, we treat the tempo-
ral response as linear.2 0 Linear-fit gradient as a function
of As for three representative bias points is shown in
Fig. 5. Response is mostly linear with As and does not
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0

Fig. 4. Temporal evolution of peak
N is the number of cavity transits.
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vary greatly over the utilized band in A. During a large
switch the topology is that of a distant fixed point U. The
energy balance associated with this fixed point is greatly
upset, and regions of temporal linearity reflect local uni-
formity of the dynamic flow sufficiently far from U. Con-
sidering curves 1 to 3, we are moving the bias point along
the lower branch and toward the critical point. The clus-
ter of data points on each curve acted as a reference as
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Fig. 5. Rate of increase of the peak output amplitude (with respect to N) during a switch of amplitude As. Data for three representative
bias levels are marked with dots, while the best-fit curve type denotes different values of A. Curves 1, 2, and 3 represent A = 0.095, 0.12,
and 0.1425, respectively.
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more simulations were performed for values of As that re-
sulted in noncritical slowing. As one expects, closer to
the critical point, reaching the median branch requires
relatively smaller values of As. Conversely, as the bias
point is moved away from the critical point larger values
of As are needed to overcome critical slowing. In the lat-
ter regime, when the total input level during the switch is
close to that corresponding to the critical point one ex-
pects a slower response of the system. This effect can be
clearly seen in curve 1, where the gradient increases with
a more parabolic dependence on As for small switch
amplitudes.

One generally expects a trade-off to exist between switch
power and system bandwidth. Here the lack of any visible
saturation effects as As increases seems to imply that
lower switching times may be prescribed. This conjec-
ture has been tested down to T = 1, whereby solitary wave
pixels were addressed in a single-cavity transit.6 We con-
clude that response for short, high-amplitude pulses is, to

a good approximation, linear in pulse area even in our dis-
persive system and with transverse effects.

RELAXATION AFTER ADDRESS PULSES

To investigate the role of switch amplitude in determining
the dynamics of a solitary pixel after an address pulse, we
denote the output solitary amplitude y(t), where t is a dis-
crete variable in units of cavity transit time. For any one
bias point A that implies bistability we define (Y1, Yu, Y2)
as the values of y corresponding to the lower-, middle-, and
upper-branch solutions, respectively. In studies of non-
critical slowing it is common to define a lethargy time.
For this purpose we assign the variable T' to the time
taken for the metastable trajectory to cross the halfway
point between y,, and either yl or Y2. To distinguish up-
switching or downswitching, we clarify the dynamics by
defining a new variable 'r = ±r t , respectively. In Fig. 6a
the logarithmic dependency of this lethargy time on the

O- -to I
-

U , I

G. S. McDonald and W J. Firth

A\

so.

A

I



1086 J. Opt. Soc. Am. B/Vol. 10, No. 6/June 1993

PHASE-ENCODED ADDRESS

A. Plane-Wave Limit
We may generalize our input field by incorporating a defi-
nite phase A. Considering first the plane-wave limit, we

Re [G1 write g = glexp(i0) and a = alexp(ii) and obtain, under
stationary conditions,

0'.30 Ja1
2

= gJ2[1 + R2 - 2R cos(F)], (5)

tan(0) = sin(qf) + R sin(F - yf)
cos(i) - R cos(F - q1) 

- .45J

Fig. 7. Evolution of the output field in the complex plane
(A = 0.12). a, Developments during a range of switch phases,
pi E [0,2vr). b, Trajectories during and after switching when
Ai= 0. r/16, 7r/8.

deviation of switch amplitude from its critical value As* is
investigated for three widely separated bias points. We
determined the values for As* previously from an intensive
sequence of interpolative simulations for each A. The
data show a good logarithmic dependency on As - As*I
and equal gradients for the two signs of for A = 0.12.

When As departs sufficiently from As*, then our defini-
tion of lethargy time fails. The constraint that defines a
meaningful lethargy time requires A < - as the critical
points are approached, and, indeed, curve 1 shows a devia-
tion from the scaling law when A is relatively large. One
expects critical slowing to dominate the dynamics close
to the critical points. Unfortunately, the precision and
length of computations required for this transition region
to be mapped out fully renders a study of this aspect out-
side the scope of this work.

In Fig. 6b, data for intermediate bias points are given,
reaffirming the logarithmic dependency and equal gradi-
ents for upswitching and downswitching. Variation of
gradients across the bias range is wide and varies approxi-
mately as 1/(y2 - Yu), though we find that other, more
symmetric, dependencies such as (u - Y)/(Y2 - Yu)
permit data fits that are just as good.20'26 One implica-
tion from these gradients is that the required resolution
JAs - As*I for a specific lethargy becomes greatly relaxed
as we approach the downswitching bias point. This is re-
lated to a decrease in the eigenvalue corresponding to Wu
as A tends to the critical downswitch value.

Thus the magnitude and, indeed, the existence of the
fixed points depend only on the amplitude of the driving
field. Finite qi causes only a rotation of the plane. A sud-
den change in address phase, say a = al lalexp(iqi), is
thus equivalent to changing only the initial condition. Al-
ternatively, we can envisage a fixed initial condition and a
rotation of the stable manifold to cause a switch. Early
studies of transient phenomena that are due to rapidly
changing driving fields in dispersive optical bistability ap-
preciated the complexity of motion in the phase plane.27 28

Figure 3 shows that switching purely by a sudden
change in input phase is possible. To see this, one con-
structs circles around the origin whose radii are given by
the magnitudes of the position vectors of the stable fixed
points. The bands of parameter space where such switch-
ing is possible are delimited by the tangency of these
circles with Ws.

B. Solitary Wave Pixels
We now permit our switch amplitude to become complex in
the full transverse mapping, As "( As exp(iqi), and explore
how a combined change in both the amplitude and the
phase of the local input field affects the on and off pixel
sites. Immediately we can infer that during address
there is a rotation and deformation of the appropriate
manifolds with respect to the initial conditions.

At each bias point we have performed a range of switch-
ing simulations, each uniformly covering q E [0, 27r).
Using the ( = 0) critical switch amplitude As* permits
discrimination between address phases through the non-
critical slowing phenomenon. In this context we find that
qf = 0 is not necessarily optimal, as a slightly positive
value may cause switching. During address with qi or
the phase evolutions show apparently anomalous jumps.
Generally, by examining only the output phase during
such numerical experiments one can also clearly see the
noncritical slowing effect. However, monitoring of just
the phase or intensity often shows curious relaxations and
sudden jumps for a wide range of parameters. Address
constitutes an energy injection that is not necessarily of
the correct amplitude or phase for the target fixed point,
and associated effects are more pronounced when large
injections are considered. Relaxations and apparently
anomalous jumps in amplitude or phase may be easily
interpreted when the complex nature of the field is taken
into account.

In Fig. 7a evolution of the solitary amplitude for a set of
address pulses, for which Asl = As*, is shown in the com-
plex field plane. In this representation a clear continuity
between different address phases can be seen. The conti-
nuity within each trajectory is also clear, and we can sim-
ply interpret both the amplitude and the phase changes
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Fig. 8. Transverse profiles during a switch cycle of two address
a, Isometric plot; N is in multiples of 10, while IGI is in units of 0.1.

that occur. Figure 7b shows trajectories both during and
after the switch for qi = nir/16 (where n = 0,1, 2). The
effect of address phase is to separate these three solutions
and prepare the system, after address, on either side and
close to W'. Consistent with the plane-wave dynamics,
the trajectories then move approximately tangent to Ws
until W' is close. After this the 4i = 0.0 solution remains
near M (noncritical slowing), while the other solutions de-
part toward their respective fixed points. The latter two
trajectories are clearly indicative of a single curve, that of
WU. The phase of the field is seen to undergo rapid
changes when a trajectory passes close to the origin. In
Fig. 3 the intracavity plane-wave field was plotted, but
here output solitary amplitude is shown. The former re-
quires, at least, a rotation and dilation in the phase plane
before quantitative correspondence can be established. A
fuller examination of the dynamics reveals the stable fixed

Z AXIS w10I
Y AXIS E10

0.00 0.50
X1 0-1

X
pulses, the second having an overall phase encoded (A = 0.095).
b, Overlay of transverse profiles during solitary pixel reset.

points to be spiral nodes, the degree of development of each
spiral depending on relative distance between the bias
point and each critical point.

For a wide range of bias points we have performed full
clock cycles on the solitary pixels in which the pixels are
first switched on and then off. For this operation it is
possible to keep the amplitude of the address pulse fixed
and simply vary i to change its role. Choosing an ampli-
tude for a ai = 0 switch-on pulse to give fast clean switch-
ing and a bias point close to the lower limit of the bistable
range (A = 0.095), we find a = 2.75 optimal for the reset
pulse. This value leads to a smooth and fast annihilation
of the solitary pixel. When ap = r is implemented, the
trajectory drawn out by the solitary amplitude executes a
relatively large spiral around the lower-branch point be-
fore coming to rest. At the upper end of the bias range,
shrinking of the WS lobe places greater constraints on the
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site that is due to these large address pulses (at neighbor-
ing sites) is a small perturbation of the field. Notice also,
in both the upswitching and downswitching processes,
how close the system response is to linear. This smooth
and controllable switching pattern can be compared with
the more exponentially decaying (temporal) profiles that
arise when beam interrupt is implemented for pixel reset.

CONCLUSIONS

Dynamical scalings and phased-encoded address beams in
.20. spatial solitary wave switching have been considered. The

.1- -J e effect of noncritical slowing is found to be fundamental to
.10. transient dynamics, playing a major role in both upswitch-

.00 ing and downswitching times of solitary pixels in a system
0 30 go 90 i20 1S50 in which, implicitly, transverse effects are central. Static

N and dynamic separatrices for the switching process have
Two solitary pixels, each adjacent to the central pixel been determined. For transient dynamics after the ad-

*e switched on and then off by use of address beams with dress of a pixel we found a logarithmic scaling in terms of
.3166 and T = 6. Switch-on is performed with a real A*(hc a rdce npaewv oes ob ai
s pulse ( = 0), whereas the reset pulse has = 3.53. As* (which was predicted in plane-wave models) to be valid
are the peak amplitudes at beam center (dashed curve) over nearly the whole bias range.
one of the switched sites (bold curve). In the most relevant situation of short, high-amplitude

address pulses, we found system response not only tempo-
of i that can effect a reset. However, even here, rally linear but also linear in pulse area (consistent across
ve phases for the switch-off pulse still lie within the the bias range). This generalization of the (plane-wave)
band that can be used when A = 0.095. pulse area theorem to a domain with significant trans-

verse effects is both remarkable and useful. The relation
AMICS OF THE TRANSVERSE PROFILE was used, though not stated, in a previous paper6 to deter-

mine parameters such that solitary wave switching in the
this point we have displayed only the dynamics of the duration of a single-cavity transit could be attained.
y amplitude. We now show some of the accompany- Manifolds and dynamic flow vectors of the plane-wave
ansverse profiles during phase-encoded address. map have been calculated and have been used to explain
8a shows a complete switch cycle when the reset switching features of the full transverse switching scheme.

has L/ = 2.75. Inspection of just the solitary ampli- Smoothness of the transient transverse structures and the
Ed to the deduction that this phase would be optimal. constrained motion of the pixel amplitude in the phase
y constructive interference results when if = 0.0 plane indicate large-scale simplication of the possible com-
12, while a rapid destruction of the whole pixel can plex dynamics.
a to occur here and also results from qi = r. In this We determined bands of address phase for solitary wave
Lse the spiraling of the solitary trajectory leads to pixel destruction for a situation in which on and off pulses
s oscillatory motion, which seems to drive a diffrac- have equal magnitude. The allowable band of phase
diation spillage out of the pixel slot and across the shrinks at higher bias levels but still permits single values

The dynamics of the solitary amplitude is thus a to be applicable to nonuniform arrays. Cross-talk-induced
adicator not only of switching speed but also of how switching has been tested for, in likely configurations, and
r the pixel is switched off. In Fig. 8b, transverse results show that this unwanted switching is avoidable.
s during pixel reset with qi = 2.75 are shown and While for many materials finite medium response time
a spectacularly clean switch-off. Here the soli- may limit switching speed and introduce new effects, we

mplitude is switched to a point close to the lower- have focused here on a purely dispersive system and the
node and subsequently remains in its vicinity. accommodation of transverse effects. In earlier studies5

xtend transverse considerations further, we dem- it was proved that spatial solitary waves dominate the
te the use of a background beam with A = 0.1425 asymptotic stationary output patterns that arise from a
.ch a ... 0010100... pattern is destructively reset to transverse modulational instability of the circulating light
0000.... Here we are working at the top of the beam. Here we have presented evidence that strongly
ble bias range, and, since we are also resetting two suggests that the same spatially coherent attractors domi-
adjacent to the central site, one expects a high nate the switching dynamics of the system. The case
Dod that resulting radiation may activate switching for reduction of the spatiotemporal complexity through
central slot through trapping of diffractive waves.2 6 particlelike solitary wave characteristics has been sup-
calculations have been performed at optimal qi for ported by demonstration of noncritical slowing, general-
alue of A, and no such cross switching has been ob- ization of the logarithmic scaling law, demonstration of
. The quoted exmple of a host beam close to the the validity of the pulse area theorem and the continuity
up point is shown in Fig. 9. Here the output ampli- into the domain of critical slowing, a direct comparison of
f one of the switched pixels is plotted (solid curve) the complex phase dynamics in the plane-wave limit and
with the field at the center of the beam (dashed those of the complex solitary amplitudes, and finally an

The only effect at the central (unaddressed) pixel application of these results in which the spatial structures
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can be controlled to the extent that they are individually
switched on or off according to the phase of an external
clock pulse.
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