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1. INTRODUCTION

Investigations of the propagation of optical beams in
Kerr-type media are usually based on the nonlinear
Schrodinger equation (NSE), which is particularly ap-
pealing because of its analytical properties. The main
drawback of this approach comes from the limitations im-
posed by the paraxial approximation that is implicit in
the NSE. To overcome these difficulties we developed
techniques based on a nonparaxial NSE (NNSE) that is
derived without the use of the paraxial approximation;
exact analytical solutions were derived for bright two-
dimensional solitons, and their properties were thor-
oughly analyzed.! Further results were presented in re-
cent publications®® and have been widely disseminated at
conferences.*™’

In a recent paper,® analytical solutions that correspond
to soliton solutions of the nonlinear Helmholtz equation
were presented. The bright and dark solutions for
N + 1 dimensions were reported as new, and the authors
then concentrated attention on the highly physical two-
dimensional solutions. In this Communication we ad-
dress key questions that were not fully answered in Ref.
8.

2. RESULTS

The two-dimensional nonlinear Helmholtz equation,
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where E(x, z) is the electric field, £ = ngw/c, and vy
= 2ngnqw?/c?, is transformed into the NNSE:
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when it is written in terms of the field envelope
A(x, z), where E(x, z) = A(x, z)exp(jkz) and the nor-

malizations (¢ = z/Lp, ¢= \/Ex/wo, and u(¢, 0)
= (knyLp/ng)Y?A(¢, ) have been employed. w, is a

reference beam width, L, = kw02/2 is the corresponding
diffraction length, and « = 1/(kw,)? is a measure of the
degree to which an input beam that propagates along the
{ axis deviates from being paraxial. In the paraxial
limit, when the first term in Eq. (2) is neglected the NSE
is recovered. A detailed account of the physical proper-
ties of the NNSE and its solutions can be found in Refs.
1-7. In what follows, we focus only on those results that
are relevant to the study presented in Ref. 8.

The fundamental bright-soliton solution of the nonlin-
ear Helmholtz equation, in terms of the normalizations of
the NNSE, can be written as a lucid generalization of a
paraxial soliton:
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where 7, V, and « are the amplitude, transverse velocity,
and nonparaxial parameters, respectively. When non-
paraxial effects are negligible, i.e., when « — 0, k7’
— 0, and kV? — 0, one recovers the well-known paraxial
soliton solution. The width of the nonparaxial soliton is
given by & = (1 + 2«V®) Y%/ 5. The soliton’s area is
thus proportional to &7 = (1 + 2xV?)V2 and depends on
both the transverse velocity and the actual size of the
beam (through «). The latter property reflects the fact
that the solutions of the NNSE are invariant under trans-
formations
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from which the well-known Galilean transformation in-
variance of the NSE is recovered in the appropriate
paraxial limit. The transformations of Eqs. (4) and (5)
correspond to a rotation of the solution in the original (un-
scaled) coordinate system by an angle 6, given by sec
= (1 + 2«V»)Y2 (Refs. 1 and 2); this allows the analysis to
be extended to common nonparaxial situations in which
off-axis soliton beams are considered. It has further been
shown? that these transformations can be used to predict
the long-term evolution of nonparaxial solitons when they
are used in conjunction with analytical paraxial
techniques.’

With respect to the conservation properties of the
NNSE, we have generalized the first conserved quantity
of the NSE, [Z|u(&, {)|?dé = C, where C is a constant,
to the framework of the NNSE. This quantity has a cor-
respondence to the conservation of an energy flow that is
given by

Vol. 19, No. 5/May 2002/dJ. Opt. Soc. Am. B 1217

+o0
jﬂc 2k 4

where C' is another constant. This exact result general-
izes a previously published (approximate) expression for
which only fast on-axis phase variations were taken into
account.!®!! The NSE conservation law is recovered
from Eq. (6) in the paraxial limit.

Considering the effect that exact solutions of the NSE
have had on a wide range of physical systems in which
solitonlike solutions exert a dominant influence, the re-
sults given above, along with those of Refs. 1-8, are likely
to underpin a broad class of exciting new research topics
in nonlinear optics in which higher-order effects and re-
lated geometries are considered.
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