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Abstract. The behaviour of optical solitons at planar nonlinear boundaries is a

problem rich in intrinsically nonparaxial regimes that cannot be fully addressed by

theories based on the nonlinear Schrödinger equation. For instance, large propagation

angles are typically involved in external refraction at interfaces. Using a recently

proposed generalised Snell’s law for Helmholtz solitons, we analyse two such effects:

nonlinear external refraction and total internal reflection at interfaces where internal

and external refraction, respectively, would be found in the absence of nonlinearity.

The solutions obtained from the full numerical integration of the nonlinear Helmholtz

equation show excellent agreement with the theoretical predictions.

PACS numbers: 42.65.Tg, 42.81.Dp
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1. Introduction

Interfaces have played a crucial role within electromagnetic theory, since they constitute

one of the most common problems in the description of propagation phenomena. The

field of nonlinear optics is not an exception and during the last few decades there have

been various contributions to the understanding of the evolution of wave packets or

beams at a planar boundary separating nonlinear media. The first studies of nonlinear

interfaces are dated between the late 70’s and the early 80’s and were restricted to

Gaussian beams at the boundary between a linear and a nonlinear (Kerr-type) medium

[1, 2, 3, 4]. In the transition from the 80’s to the 90’s, a second approach focused

on interfaces between two Kerr-type nonlinear media [5, 6, 7, 8, 9, 10]. The particle-

like model [6, 7, 8, 9] was then introduced, where a soliton is represented as a quasi-

particle which evolves according a potential defined by the nature of the nonlinear

interface. Soliton characteristics, such as transverse velocity and amplitude, were related

to interface parameters to establish criteria for soliton evolution at the interface. In the

middle 90s, an alternative approach to the problem was introduced in the form of an

adiabatic theory [11, 12]. This was applied to the study of the boundary between

two media of quite dissimilar properties, such as linear/nonlinear interfaces. In recent

years, other types of nonlinear interfaces such as in photorefractive crystals [13] and in

quadratic media [14] have also been analysed.

All these earlier works have in common the description of the evolution of optical

beams in terms of the Nonlinear Schrodinger (NLS) equation, where the slowly varying

envelope approximation (SVEA) is assumed [15]. Nevertheless, the behaviour of solitons

at nonlinear interfaces may lie beyond the limits of the paraxial approximation, for

instance, when external refraction occurs at the interface. In such scenarios, a full

nonparaxial analysis is needed to retain the full angular extent of the problem and thus

overcome the limitations of paraxial analyses. Nonparaxiality is often a misunderstood

term, because it can refer to different contexts of distinct nonparaxial character: high-

intensity and, separately, large angles of propagation.

The first type of nonparaxiality arises in the evolution of ultra-narrow beams in

nonlinear media. The suitability of the NLS for describing the evolution of such beams

was questioned by Akhmediev et al. [16], who uncovered limitations of the NLS in

scenarios of strong focusing. For ultra-narrow beams, a full vectorial analysis starting

from the Maxwell equations can also be necessary [17, 18, 19] to include the tensorial

refractive index dependence. Solutions to these equations in the form of bright [20] and

dark [21, 22] nonparaxial solitons have been reported and analysed.

The second type of nonparaxiality occurs in the rapid evolution of the field envelope

of a broad (when compared to the wavelength) beam propagating at a large angle to

the longitudinal axis. This nonparaxiality is well described by the scalar nonlinear

Helmholtz (NLH) equation [23, 24] which has been proposed to overcome the limitations

of the NLS, for instance, by arresting soliton collapse in a focusing Kerr-type medium [23]

and for which exact analytical soliton solutions have been found [24, 25, 26]. Substantial



Nonlinear interfaces: intrinsically nonparaxial regimes and effects 3

differences with paraxial theory are not only revealed by the exact bright Kerr soliton

solutions of the NLH equation but are also found in dark Kerr [27], two-component [28],

boundary [29] and bistable [30] Helmholtz soliton solutions. When the full Helmholtz

approach is used, significant differences with the predictions of NLS theory are also

found at a fundamental level, for example, when analysing soliton collisions [31].

As regards numerical investigations, novel methods have been developed to

understand nonlinear phenomena governed by the NLH equation, where backscattered

waves can accompany a forward propagating beam. Leaving aside the general framework

proposed by Ferrando et al. [32] for studying the propagation of electromagnetic fields

with backscattered components, two different numerical strategies for treating backward

waves arising in the NLH are proposed. Fibich and Tsynkov have introduced a two-

way arbitrary boundary conditions model [33, 34] that can suppress the reflection

of backscattered waves without affecting the propagation conditions for the forward

propagating beam. With this method, the arrest of soliton collapse for the (2+1)D NLH

and the formation of nonparaxial solitons for the (1+1)D NLH have been numerically

demonstrated [35]. A different numerical approach to solving the NLH is the nonparaxial

beam propagation method (NBPM) [36], which combines both finite difference and

spectral methods. Backscattered waves are filtered out, thus avoiding an evanescent

backward field, that can appear to grow in the forward direction and hence masks the

contribution of the forward propagating field. This scheme has been applied to the

phenomena studied in [27, 28, 29, 30, 31].

In this paper, the NBPM is used to study the behaviour of Helmholtz solitons at

nonlinear interfaces. In a previous work [37] a generalised Snell’s law was introduced

and its validity was assessed for interfaces exhibiting linear internal refraction, where

beams crossing an interface undergo small angular deviations. The results presented

in this paper extend the analysis of this generalised Snell’s law (Section 2). Moreover,

we also explore highly nonparaxial contexts, not previously addressed in [37] and found

at interfaces exhibiting nonlinear and linear external refraction. Nonlinear external

refraction is demonstrated to exist at interfaces where internal refraction would be found

for linear plane waves (Section 3). For the case of interfaces admitting linear external

refraction, we show that critical angles are also allowed according to the generalised

Snell’s law (Section 4).

2. Generalised Snell’s law for Helmholtz solitons

The time-independent complex field envelope E(x, z) of a continuous wave TE-polarised

beam evolves according to a two dimensional Helmholtz equation

∂2E

∂z2
+

∂2E

∂x2
+

ω2

c2
n2E = 0, (1)

where n is the nonlinear refractive index. If we consider a forward propagating beam

E(x, z) = A(x, z)ejkz and employ the normalisations ζ = z/LD and ξ = 21/2x/w0, w0
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being a transverse scale parameter equal to the waist of a reference Gaussian beam of

diffraction length LD = kw2

0
/2, (1) is transformed into

κ
∂2A

∂ζ2
+ j

∂A

∂ζ
+

1

2

∂2A

∂ξ2
−

1

4κ

(

1 −
n2

n2
01

)

A = 0. (2)

In (2), κ = 1/k2w2

0
is a nonparaxiality parameter [23, 24] and n01 is the linear refractive

index of a first Kerr-type nonlinear material whose total refractive index is n01 +α1|E|2

where α1 � n01. If we now include in our analysis a second Kerr-type medium with

n = n02 + α2|E|2 and consider the normalisation A(ξ, ζ) = (n01
2/kα1LDn02)

1/2u(ξ, ζ),

(2) can be rewritten as

κ
∂2u

∂ζ2
+ j

∂u

∂ζ
+

1

2

∂2u

∂ξ2
−
(

∆

4κ
− α |u|2

)

u = 0, (3)

where interface parameters relating the linear and nonlinear refractive indexes of the

adjoining media, separated by a planar boundary,

∆ ≡ 1 −
(

n02

n01

)2

(4)

and

α ≡
α2

α1

, (5)

respectively, have been introduced. In absence of discontinuity, ∆ = 0 and α = 1, one

recovers the NLH for a homogeneous medium [24] from (3), which can be written as [37]

κ
∂2u

∂ζ2
+ i

∂u

∂ζ
+

1

2

∂2u

∂ξ2
+ |u|2 u =

[

∆

4κ
+ (1 − α) |u|2

]

H(ξ)u, (6)

where the Heaviside function H(ξ), with H(ξ) = 0 for ξ < 0 and H(ξ) = 1 for ξ ≥ 0,

has been used to represent a planar boundary at ξ = 0.

By phase-matching of exact soliton solutions [26] for ξ < 0 and ξ ≥ 0, one obtains a

generalised Snell’s law [37] that governs the evolution of beams at boundary separating

two Kerr focusing media

γn01 cos(θi) = n02 cos(θt). (7)

θi and θt are the angles of incidence and refraction (between the beam and the interface),

respectively,

γ =

(

1 + 2κη2

0

1 + 2κη2
0α(1 − ∆)−1

)1/2

(8)

is a nonlinear correction term, and η0 is the incident soliton amplitude. Since γ

is responsible for all nonlinear beam corrections to the familiar linear plane-wave

relationship, one can analyse (8) in terms of constant γ lines, as shown in figure 1.

Solid lines represent combinations of ∆ and α which preserve γ constant. The ∆ − α

plane has been divided into four regions by means of two perpendicular dashed lines,

∆ = 0 and α = 1, corresponding to the absence of discontinuity in the linear and

nonlinear refractive indexes, respectively.
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Figure 1. γ-constant curves as a function of ∆ and α for (a) κ = 10−4 and (a)

κ = 2.5 × 10−3. In both cases, η0 = 1.

Two completely different scenarios are found as κ changes from 10−4 to 2.5× 10−3.

In the first case, figure 1(a), significant nonlinear correction appear only at ∆ ∼ η0, since

the constant γ lines are concentrated in the ∆ → 1 region. This condition is equivalent

to the one obtained in previous paraxial analysis based on the NLS [6], where nonlinear

corrections arose when the soliton amplitude was of the same order as ∆. In contrat to

this, for κ = 2.5 × 10−3 and figure 1(b), constant γ lines are widespread over the entire

∆ − α plane and nonlinear corrections affect all kinds of interfaces.

From (7) and (8) one obtains an expression for the critical angle, θc, defined as

the smallest angle of incidence for which a transmitted soliton is found in the second

medium. Setting θt = 0 in (7), one obtains

tan(θc) =

(

∆ + 2κη2

0
(1 − α)

1 − ∆ + 2κη2
0α

)1/2

. (9)

Figure 2(a) displays the angle of refraction of a Helmholtz soliton transmitted

through a nonlinear interface with ∆ = 0.005 and α = 2. When ∆ � 2κη2

0
, θt (solid line)

has a value very close to that expected for a plane wave in the absence of nonlinearity

(dashed-dotted line). As 2κη2

0
∼ ∆, the nonlinear contribution to the refractive index

produces a significant modification to the angle of refraction and the generalised Snell’s

law predicts that nonlinear external reflection can be found even when ∆ > 0. This

effect will be analysed in detail in Section 3.

The nonlinear correction can also strongly affect the size of the critical angle. When

∆ � 2κη2

0
, (9) gives tan(θc) ≈ (∆/(1 − ∆))1/2, which is the value corresponding to a

linear plane wave at the interface. This is plotted with a dash-dotted line in figure 2(b)

that lies very close to the results for optical solitons in the ∆ � 2κη2

0
regime (solid

line). Nevertheless, as ∆ ∼ 2κη2

0
, θc undergoes large changes, as is shown by the dashed

line of figure 2(b). The generalised Snell’s law predicts that interfaces showing linear

external refraction (∆ < 0) can also exhibit total internal reflection. This phenomenon

is studied in Section 4.
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Figure 2. (a) Generalised Snell’s law, and (b) critical angle, for different values of κ

and η0 = 1.

Parameters in figures 2(a) and (b) are chosen to illustrate the Helmholtz type

of nonparaxiality we are addressing in this work. Thus, we restrict our analyses to

broad beams of low or moderate intensity κη2

0
� 1 and values of ∆ ∼ 2κη2

0
for which

nonlinearity significantly affects soliton refraction. Even though results shown in figures

2(a) and (b) are restricted to angles smaller than 20o, for which the values of ∆ used

introduce relevant changes, the validity of the generalised Snell’s law extends to arbitrary

angles.

3. Nonlinear external refraction

We have seen how the refraction of optical solitons at an interface can be substantially

affected by the nonlinear terms in the refractive indexes. These effects can be quantified

by a mismatch parameter

δ = ∆ + 2κη2

0
(1 − α), (10)

which captures both the linear and nonlinear contributions to the refractive index step

across the boundary. Parameter δ alone can be used to predict how the soliton refracts

at the interface: θt > θi (external refraction) for δ < 0, θt < θi (internal refraction)

for δ > 0 and θt = θi for δ = 0. This last case is a total transparency condition [37],

obtained when the linear and nonlinear refractive index mismatches cancel each other.

Under this condition, the soliton crosses the interface at a constant angle.

We now consider the particular case of ∆ > 0. For linear interfaces, one would

find internally refracting plane waves. If the nonlinear correction is such that δ < 0,

nonlinear external refraction of optical solitons is found, as shown by the results for

κ = 0.005 in figure 2(a). Figure 3 illustrates this effect. In figure 3(a), lines correspond

to the predictions from the generalised Snell’s law (7) and points are from the numerical

integration of the NLH equation [31]. For κ = 10−4, one obtains δ ∼ ∆ and the angle

of refraction (solid line) remains close to that expected for linear interfaces. However,
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as the nonparaxiality parameter is increased to κ = 2.5 × 10−3 (giving δ = −0.003),

nonlinear external reflection is found (dashed line). In both cases, numerical results

show very good agreement with the predictions of the generalised Snell’s law.
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Figure 3. (a) Nonlinear external refraction (δ = −0.003) for ∆ > 0 interfaces.

(b) A Helmholtz soliton undergoes nonlinear external reflection at the same interface

described in (a) when δ = −0.003.

The NBPM [31] has been used to obtain the intensity plot of figure 3(b) which

displays the evolution of a Helmholtz soliton impinging on the interface described in

figure 3(a) when δ = −3 × 10−3. After entering the second medium, the angle of

refraction exceeds the angle of incidence since the conditions for nonlinear external

refraction are satisfied. The soliton width decreases when entering the second medium

due to the larger Kerr nonlinearity.

4. Total internal reflection for ∆ < 0 interfaces

Interfaces exhibiting linear external refraction, ∆ < 0, are most likely to pose

intrinsically nonparaxial regimes due to the large angles of refraction typically found.

Not surprisingly, previous NLS analyses have avoided this type of nonlinear boundary.

The nonlinear Helmholtz generalisation of Snell’s law predicts the new effect of total

internal reflection for ∆ < 0 interfaces.

The condition for total internal reflection at interfaces exhibiting linear external

refraction requires that α < 1. This relationship between the Kerr coefficients of two

adjoining media can inhibit soliton formation in the second medium if beam diffraction

is not fully compensated by self focusing. In that case, the beam in the second medium

undergoes diffractive spreading. Nonlinear-linear interfaces characterised by α = 0,

constitute an extreme limit of α < 1 and are the most suitable to exhibit total internal
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reflection whenever ∆ < 0. For these cases,

tan(θc)|α=0 =

(

∆ + 2κη2

0

1 − ∆

)1/2

. (11)
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Figure 4. (a) Critical angle for ∆ < 0 interfaces. Evolution of a Helmholtz soliton

(η0 = 2) at a nonllinear-linear interface (∆ = −0.005) for: (b) θi > θc, and (c) θi < θc.

In figure 4(a), the critical angle is shown for two different values of 2κη2

0
. The

dashed line represents θc when 2κη2

0
= 2×10−2, showing that critical angles are obtained

whenever the nonlinear index mismatch prevails over ∆. In that case, the minimum value

of ∆ accommodating total internal reflection is ∆min = −2κη2

0
. When κ = 2×10−4, the

nonlinearity barely compensates the negative value of ∆ (solid line) and the existence

region for the critical angle is greatly reduced.

The two points marked as (b) and (c) in figure 4(a) correspond to the two surface

plots on the right. These plots have been obtained from the numerical integration of

the NLH [31] and show the behaviour of a soliton with 2κη2

0
= 2 × 10−2 impinging on

a nonlinear-linear interface with ∆ = −0.005. As predicted in figure 4(b), a soliton

propagating with an angle θi > θc experiences diffractive spreading when it crosses

the interface and enters the linear medium. On the other hand, for θi < θc the soliton

undergoes total internal reflection at the interface and is directed back into the nonlinear

medium, as is shown in figure 4(c).

5. Conclusions

We have presented a study of nonlinear interfaces, separating two Kerr focusing media,

based on the NLH equation. Our analyses preserve the full angular content of the

problem, and hence overcome the limitations embedded in the paraxial approximation.

Two effects taking place within intrinsically nonparaxial regimes have been reported

and analysed. These are nonlinear external refraction and total internal reflection

for interfaces exhibiting linear internal and external refraction, respectively. Both
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effects have been predicted using a generalised Snell’s law for Helmholtz solitons and

numerically investigated by full integration of the NLH equation. Excellent agreement

has been found between analytical predictions and numerical results.
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