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Abstract: We present the first detailed account of modelling pulses in Helmholtz-type nonlinear systems 
with both temporal and spatial dispersion.  Exact analytical solitons will be reported, and their stability 
examined through mathematical analysis and computer simulations. 
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1. Introduction 
 
We propose, for the first time to our knowledge, a new generic model for describing the evolution of scalar optical 
pulses in Kerr-type waveguides.  The (normalized) wave envelope u satisfies a governing equation that is of the 
nonlinear Helmholtz type, namely 
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where the space and time coordinates are denoted by ζ and τ, respectively, α is related to the group velocity, and s = 
±1 flags the anomalous/normal temporal dispersion regime.  The first term in Eq. (1) embodies spatial dispersion, 
of which there are two main sources in semiconductor waveguides: the propagation contribution (inherent to any 
propagating electromagnetic mode) and a recently-proposed material contribution that arises from field-exciton 
coupling [1].  We will show how much headway can be made when abandoning the universal slowly-varying 
envelope approximation, and the subsequent Galilean boost to a local time frame.  Together, these two 
simplifications lead to a theory of optical pulses based on the nonlinear Schrödinger (NLS) equation, with all its 
advantages and disadvantages.  Here, we develop a more general Helmholtz formalism and uncover a broad range of 
new physical predictions. 
 

 
Fig. 1.  Left: evolution of an exact bright soliton of model (1) in the (τ,ζ) plane.  Right: Pulse broadening phenomenon when κ > 0. 

 
Model (1) is a temporal analogue of the spatial nonlinear Helmholtz equation [2].  Hence, one may deploy 

mathematical and computational techniques that are similar to those used over recent years to analyse broad scalar 
nonlinear beams (see Fig. 1).  We have derived exact analytical bright and dark solitons of Eq. (1).  The geometry of 
these new pulse solutions, which complement their spatial counterparts [3], has been explored in detail.  They 
exhibit generic features (for instance, one encounters both forward- and backward-propagating solution families), 
and map directly onto a Lorentz-type transformation.  More specifically, we have discovered that the velocity 
combination rule for Helmholtz soliton pulses is strongly reminiscent of that encountered in relativistic particle 



mechanics.  Further analytical work has led to the derivation of new invariance laws and conserved quantities.  
Importantly, the predictions of conventional pulse theory can be recovered in an appropriate simultaneous multiple 
limit. 

Recent computations, in conjunction with linear analysis and nonlinear stability criteria, have predicted that the 
soliton pulses of Eq. (1) tend to be robust against perturbations to their temporal shape.  This key result provides 
compelling evidence for the stability of Helmholtz pulses in generic dispersive nonlinear systems. 
 
2. Soliton stability 
 
In conventional modelling, the well-known Vakhitov-Kolokolov (VK) integral criterion is routinely applied when 
investigating the stability of bright pulses in NLS-type systems.  If P(β) is the integrated light intensity and β 
denotes the nonlinear phase shift, one expects the pulse to be stable against small perturbations if the inequality 
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is satisfied.  By combining the VK criterion with the space-time geometry of the Helmholtz pulses, we have found 
that Eq. (2) can also be used to predict the stability of the bright-pulse solutions of Eq. (1).  This result is physically 
intuitive – stability properties must be insensitive to the frame of reference from which one observes the pulse, either 
the laboratory frame (the Helmholtz model) or a local time frame (conventional models).  Previously, we have used 
similar methods and symmetry arguments to predict the stability of Helmholtz spatial soliton [4]. 

Computational analyses [5] have shown that conventional pulses of the form u(τ,0) = ηsech(ητ)exp(iΩτ) 
launched into the spatially-dispersive system evolve into exact solitons of Eq. (1).  The evolving pulse undergoes 
self-reshaping oscillations – in the amplitude, width and area – that vanish as ζ → ∞ to leave a stationary Helmholtz 
pulse (see Fig. 2).  In this way, Helmholtz solutions may be characterized as robust attractors of the system. 
 

 
Fig. 2.  Evolution of a perturbed input pulse toward a stationary (i.e., exact) Helmholtz soliton as it travels along the ζ axis of the waveguide. 

Blue line: weak perturbation; red line: moderate perturbation; black line: strong perturbation. 
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