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The refraction of dark solitons at a planar boundary separating two defocusing
Kerr media is simulated and analyzed, for the first time. Analysis is based on
the nonlinear Helmholtz equation, and is thus valid for any angle of incidence.
A new law, governing refraction of black solitons, is combined with one describ-
ing bright soliton refraction, to yield a generalized Snell’s law whose validity is
verified numerically. The complexity of gray soliton refraction is also analyzed,
and illustrated by a change from external to internal refraction on varying the
soliton contrast parameter.
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Solitons are universal nonlinear waves and material in-
terfaces play a fundamental role as boundary conditions.
In particular, spatial solitons are predicted to become key
elements of emerging photonic technologies [1, 2]. The
behaviour of soliton beams at nonlinear interfaces has
been extensively treated in the literature, where Kerr-
type, and also saturable-Kerr [3], photorefractive [4], and
quadratic soliton [5, 6] refraction properties have been re-
viewed and proposed for the design of all-optical devices
[7–10]. Most previous works on nonlinear interfaces have
two features in common. First, analysis has been per-
formed assuming the paraxial approximation, and using
the nonlinear Schrödinger (NLS) equation as the soliton
propagation model [11]. Second, previous studies only
analyzed refraction properties of bright spatial solitons.
In fact, only a few investigations have studied the be-
haviour of dark solitons at nonlinear interfaces in a parax-
ial context, where attention was restricted to nonlinear
surface waves at Kerr-type media [12, 13] or to kink soli-
tons arising at surfaces of optical lattices imprinted in
defocusing media [14]. To the authors’ knowledge, the
refraction of dark solitons at nonlinear interfaces has not
previously been studied.

Nonparaxial theory based on the nonlinear Helmholtz
(NLH) equation [15, 16] permits one to overcome in-
trinsic angular limitations of NLS descriptions. In con-
trast to other nonparaxial regimes [17, 18], where effects
have their origin in the strong focusing of high-intensity
beams, we consider broad (compared to the optical wave-
length) beams of moderate power. Nonparaxiality then
arises solely from angular effects. Exact analytical solu-
tions of NLH equations have been found in the form of
bright Kerr [16], dark Kerr [19], two-component [20], and
bistable [21] Helmholtz solitons, and have allowed exten-
sion of paraxial soliton theory to arbitrary-angle regimes.
Soliton refraction effects have a strong inherent angular
character and constitute an excellent testbed for non-

paraxial Helmholtz theory [22, 23].

Spatial dark solitons present localized intensity dips
on modulationally-stable plane waves [24]. In the physi-
cal realization of such nonlinear waves, the infinite back-
ground is replaced with a beam [25–27]. As with their
bright counterparts, dark solitons have also been pro-
posed for all-optical signal processing devices [27, 28].

In this Letter, the laws governing the refraction of
Helmholtz dark solitons [19] at interfaces separating two
defocusing Kerr media are presented. Figure 1(a) illus-
trates the geometry of soliton refraction, where a black
soliton is incident at angle θi on an interface separating
two defocusing Kerr media, and refracts at angle θt. The
total refractive index of medium i is n0i − αiI, where
αi > 0 is the Kerr coefficient and I the optical intensity.
Assuming a relatively low value of αi, the approximation
n2 ≈ n2

0i − 2n0iαiI is used.

For a TE optical field, the complex envelope u of a
forward propagating beam evolves according to
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A derivation from the Helmholtz equation is detailed in
[23]. Here, the focusing Kerr nonlinearity is replaced
by a defocusing one. H(ξ) is the Heaviside function,
ξ = 21/2x/w0 and ζ = z/LD are the normalized trans-
verse and longitudinal coordinates, respectively, and w0

is the waist of a reference Gaussian beam with diffraction
length LD = kw2

0/2. κ = 1/k2w2
0 is a nonparaxiality pa-

rameter, while ∆ = 1 − n2
02/n2

01 and α = α2/α1 account
for the linear and nonlinear refractive index mismatch at
the interface, respectively.

The general Helmholtz dark soliton in the second
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medium is [19]
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where

Θ =
u0Aα1/2 (ξ + W ζ)√

1 + 2κW 2
and W =

V − V0

1 + 2κVV0

. (3)

V is a transverse velocity arising from an arbitrary
rotation angle θ of the laboratory coordinates, V =
tan(θ)(2κ)−1/2 [15], and W is the net transverse velocity
of the dark soliton resulting from the combination of V
and the intrinsic transverse velocity

V0 = u0Fα1/2
[

1 − ∆ −
(

2 + F 2
)

2κu2
0α

]−1/2
. (4)

F = (1−A2)1/2 is the soliton grayness/contrast parame-
ter and u0 is the background amplitude. The dark soliton
solution in medium 1 [19] is recovered from Eqs. (2)-(4)
by setting α = 1 and ∆ = 0. Our study only addresses
dark soliton refraction, since significant reflection of the
supporting beam may destroy the plane background re-
quired for stable dark soliton propagation. Our analy-
sis is, thus, necessarily restricted to cases with negligible
beam reflection at the interface.

First, we consider black solitons. The law governing
their refraction is derived from ensuring continuity of the
phase of the supporting beam across the interface. Us-
ing Eq. (2), and tan2(θ) = 2κV 2, we find a generalized
Snell’s law for black and bright [22, 23] soliton refraction

γ±n01 cos(θi) = n02 cos(θt) (5)

where γ± = (1 + 4κβ±)
1/2

[

1 + 4κβ±α(1 − ∆)−1
]−1/2

is
a nonlinear correction term. The subscript identifies the
result for bright (+) and black (−) Helmholtz solitons.
In the case of bright solitons, one has [22, 23] β+ = η2

0/2
whereas for black solitons β− = −u2

0; the nonlinear role
played by bright soliton amplitude (η0) is thus replaced
by the amplitude of the black soliton background. In
physical terms, bright solitons are perfectly collimated
nonlinear beams and behave at interfaces in a fashion
similar to plane waves, but it is the nonlinear plane wave
that determines the refraction of black solitons (which
are linear at their core).

The value of γ− is real, from an assumed condition of
Helmholtz type of nonparaxiality: 4κu2

0 ≪ 1, which in
turn implies that ∆ + 4κu2

0α < 1. While the former con-
dition establishes the physical restriction that the total
refractive index in the first medium must remain positive
[19], 2|α1|E2

0 < n01, the latter determines an analogous
restriction for the second medium, 2|α2|E2

0 < n02.
The total (linear plus nonlinear) refractive index mis-

match across the interface is given by δ± = ∆+4κβ±(1−

α). In the same way that δ+ determines how bright soli-
tons refract [23], δ− can be used to interpret Snell’s law
for black soliton refraction at self-defocusing interfaces.
In Fig. 1, three different cases of a black soliton im-
pinging on an interface at 25o are studied. Figure 1(b)
shows how a black soliton undergoes internal refraction
for an interface with discontinuity only in the linear re-
fractive index (∆ = 0.0024 and δ− > 0). The case of
an interface with exclusively nonlinear index mismatch,
where one expects external refraction, is illustrated in
Fig. 1(d) (α = 0.4 and δ− < 0). With both mismatch
contributions present, they may cancel when the trans-
parency/nonrefracting condition (δ− = 0) is met. This
is verified in Fig. 1(c), where the dip position does not
deviate from the initial propagation direction.
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Fig. 1. (a) Refraction geometry. A black soliton experi-
encing: (b) internal refraction, (c) transparency, and (d)
external refraction. Here, u0 = 1 and κ = 10−3, giving
θt = 24.851o, 25o and 25.147o, respectively. In scaled
units, one obtains W = 10.356, 10.427 and 10.497.

The value of α not only affects the soliton angle of
refraction but can also induce significant change in soli-
ton width. The input field distribution for the sec-
ond medium generally presents a perturbed-soliton ini-
tial condition [19, 29]. After crossing the interface, the
soliton narrows (α > 1) or broadens (α < 1), and the
emission of 2N0 gray solitons is expected, where N0 is
the largest integer satisfying N0 <

√
α [19, 29].

Attention is now turned to the refraction of gray soli-
tons. As for black (F = 0) solitons, the phase slope
of the background beam associated with its transverse
velocity V must be continuous across the interface. In
the gray (F 6= 0) case, an additional independent con-
dition arises from assuring the continuity of the phase
structure of the supporting beam: the intrinsic phase
jump of the gray soliton which, from Eq. (2), amounts
to −2 tan−1 (F/A) must be the same on both sides of the
interface. It depends solely on the grayness parameter F ,
and its preservation upon refraction implies the conserva-
tion of F . Black (gray) solitons impinging the nonlinear
interface are thus refracted as black (gray) solitons in the
second medium.
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Refraction properties of gray solitons are also depen-
dent on the value of F . This effect is shown in Fig.
2, where two solitons with different values of F en-
counter the same interface (∆ = −0.016 and α = 3) with
the same angle of incidence for the background beam
θi = 30o. The left picture of Fig. 2 shows a gray soliton
with F = 0.05 undergoing external refraction. However,
internal refraction is experienced by the gray soliton with
F = 0.6, as demonstrated in the right side of Fig. 2.
Larger F entails a larger intrinsic velocity component,
Eq. (4), and a smaller net transverse velocity, W . This
reduces the angle of refraction until it is less than the
angle of incidence. Refraction properties of gray solitons
thus present novel features (not found in bright or black
soliton refraction).
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Fig. 2. External (left) and internal (right) refraction.

In this work, simulations have employed a nonparax-
ial beam propagation method [30] for the numerical in-
tegration of the NLH equation. Rotational symmetry
[15] allowed us to consider solitons traveling with zero
transverse velocity encountering an obliquely-orientated
interface. The background beam, supporting the soli-
tons, was a raised cosine h(ξ) = cos2[π/rL(|ξ| − L1)]
if L1 < |ξ| < L2, h(ξ) = 1 if |ξ| ≤ L1 and h(ξ) = 0 if
|ξ| ≥ L2, with roll-off factor r = 0.5, grid length L = 160,
L1 = (1 − r)L/4 and L2 = (1 + r)L/4.

In summary, dark soliton refraction at interfaces sepa-
rating two defocusing Kerr media has been analyzed for
the first time. Analysis has been undertaken within the
framework of Helmholtz theory, which yields valid results
for beams propagating at arbitrary angles. We have pro-
vided a unified theory in which a compact generalised
Snell’s law describes the refraction of both bright and
black solitons. Numerical results show excellent agree-
ment with analytical predictions. Analysis of gray soli-
ton refraction revealed a richer complexity that was ex-
plained in terms of the properties of the exact solutions.
One key finding is that soliton grayness is conserved dur-
ing refraction.

This work has been supported by the Spanish Minis-
terio de Educación y Ciencia and Fondo Europeo de De-
sarrollo Regional, project TEC2007-67429-C02-01, and
Junta de Castilla y León, project VA001A08.

References

1. G.I. Stegeman and M. Segev, Science 286, 1518
(1999).

2. S. Trillo and W. Torruellas, Spatial solitons

(Springer Verlag, Berlin, 2000).

3. P.J. Bradley and C. De Angelis, Opt. Commun.
130, 205 (1996).

4. A.D. Boardman, P. Bontemps, W. Ilecki, and A.A.
Zharov, J. Mod. Opt. 47, 1941 (2000).

5. I.V. Shadrivov and A.A. Zharov, J. Opt. Soc. Am.
B 19, 596 (2002).

6. I.V. Shadrivov and A.A. Zharov, Opt. Commun.
216, 47 (2003).

7. D. Mihalache, M. Bertolotti, and C. Sibilia, Progr.
Optics 27, 227 (1989).

8. A.B. Aceves, J.V. Moloney, and A.C. Newell, Phys.
Rev. A 39, 1828 (1989).

9. J. Scheuer and M. Orenstein, J. Opt. Soc. Am. B
22, 1260 (2005).

10. G. Cancellieri, F. Chiaraluce, E. Gambi, and
P. Pierleoni, J. Opt. Soc. Am. B 12, 1300 (1995).

11. A.B. Aceves, J.V. Moloney, and A.C. Newell, Phys.
Rev. A 39, 1809 (1989).

12. S.R. Skinner and D.R. Andersen, J. Opt. Soc. Am.
B 8, 759 (1991).

13. Y. Chen, Phys. Rev. A 45, 4974 (1992).
14. Y.V. Kartashov, V.A. Vysloukh, and L. Torner,

Opt. Express. 14, 12365 (2006).
15. P. Chamorro-Posada, G.S. McDonald, and G.H.C.

New, J. Mod. Opt. 45, 1111 (1998).
16. P. Chamorro-Posada, G.S. McDonald, and G.H.C.

New, J. Opt. Soc. Am. B 19, 1216 (2002).
17. G. Fibich, Phys. Rev. Lett. 76, 4356 (1996).
18. A. Ciattoni, B. Crosignani, S. Mookherjea, and

A. Yariv, Opt. Lett. 30, 516 (2005).
19. P. Chamorro-Posada and G.S. McDonald, Opt.

Lett. 28, 825 (2003).
20. J.M. Christian, G.S. McDonald, and P. Chamorro-

Posada, Phys. Rev. E 74, 066612 (2006).
21. J.M. Christian, G.S. McDonald, and P. Chamorro-

Posada, Phys. Rev. A 76, 033833 (2007).
22. J. Sánchez-Curto, P. Chamorro-Posada, and G.S.

McDonald, Opt. Lett. 32, 1126 (2007).
23. J. Sánchez-Curto, P. Chamorro-Posada, and G.S.

McDonald, J. Opt. A: Pure Appl. Opt. 11, 054015
(2009).

24. Yu.S. Kivshar and B. Luther-Davies, Phys. Rep.
298, 81 (1998).

25. D.R. Andersen, D.E. Hooton, G.A. Swartzlander,
Jr., and A.E. Kaplan, Opt. Lett. 15, 783 (1990).

26. G.A. Swartzlander, Jr., D.R. Andersen, J.J. Regan,
H. Yin, and A.E. Kaplan, Phys. Rev. Lett. 66, 1583
(1991).

27. M.D. Iturbe-Castillo, J.J. Sánchez-Mondragón, S.I.
Stepanov, M.B. Klein, and B.A. Wechsler, Opt.
Commun. 118, 515 (1995).

28. B. Luther-Davies and Y. Xiaoping, Opt. Lett. 17,
496 (1992).

29. Yu.S. Kivshar, IEEE J. Quantum Electron. 29, 250
(1993).

30. P. Chamorro-Posada, G.S. McDonald, and G.H.C.
New, Opt. Commun. 192, 1 (2001).


