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Abstract: The behaviour of a scalar optical beam at the boundary 
between two dissimilar nonlinear media is of fundamental interest 
in nonlinear photonics.  Here, we report the first systematic 
generalization of our Kerr analyses to a wider class of power-law 
materials.  Universal refraction laws will be given, and theory-
simulation agreement demonstrated.  
 

I.  INTRODUCTION 
 

A light beams impinging on the interface between two 
dissimilar dielectric materials is a fundamental optical 
geometry.  After all, the single-interface configuration is a key 
“building block” structure that facilitates more sophisticated 
device designs and architectures for a diverse range of 
applications.  The seminal papers of Aceves, Moloney and 
Newell [1,2] considered perhaps the simplest scenario, where a 
spatial soliton was incident on the boundary between two 
different Kerr-type materials.  Their intuitive approach reduced 
the full complexity of the electromagnetic interface problem to 
something far more tractable – namely, the solution a scalar 
equation of the inhomogeneous nonlinear Schrödinger (NLS) 
type.  Over the past two decades, investigations of single and 
double-layer interface geometries have paved the way to 
deeper understandings of how light behaves inside patterned 
nonlinear structures such as coupled waveguide arrays and 
photonics crystals. 

It is true to say that the analyses of Aceves and coworkers 
have provided an enormous level of insight into soliton 
behavior at interfaces [1–4], and that they have heralded new 
research fields in nonlinear photonics.  However, there is an 
intrinsic limitation in the use of paraxial (i.e., NLS-based) 
models to describe geometries that are, by their very nature, 
highly nonparaxial.  For instance, the paraxial approximation 
restricts their domain of validity to regimes were the angles of 
incidence, reflection and refraction are negligibly small.  
Hence, there is an obvious gap that needs to be filled – it is 
desirable to be able to describe angles of any size (see Fig. 1), 
while keeping an intuitive scalar model. 

Since the “interface” class of problem is intrinsically 
nonparaxial – for instance, impinging beams can be arbitrarily 
oblique with respect to the interface – the limitations of 
conventional (paraxial) theory must be observed with care.  
Recently, we proposed the first Helmholtz model of Kerr 
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spatial soliton refraction that is valid across the entire range of 
incidence, reflection and refraction angles.  Analyses have 
considered the refraction of spatial solitons incident on the 
boundary between dissimilar Kerr-type materials at arbitrary 
angles [5–7].  By deploying the formalism of Helmholtz 
soliton theory, the angular limitation of paraxial models was 
lifted, and a manageable envelope equation emerged (by 
retaining the full generality of the in-plane Laplacian).  
Applying appropriate field continuity conditions at the 
interface led to a Snell’s law for Kerr spatial solitons.  At first 
glance, this new law strongly resembles the classic refraction 
rule for plane waves at the interface between linear media.  
However, there appears a universal factor (denoted by ) that 
captures the general interplay between finite-beam effects and 
(linear and nonlinear) medium discontinuities. 

In this presentation, we report the first steps toward 
extending our Kerr analyses to regimes involving wider classes 
of materials.  In our systematic approach, we first consider 
media whose nonlinear refractive index nNL has a generic 
power law-type dependence on the electric field amplitude E, 
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where  is a (small) positive coefficient, n0 is the linear index, 
and the exponent q > 0.  The single power-law model (1) is 
perhaps the simplest non-Kerr nonlinearity one might care to 
consider [8,9].  Materials that fall within this category include 
some semiconductors (e.g., InSb and GaAs / GaAlAs), doped 
filter glasses (e.g., CsSxSex-2) and liquid crystals.  Non-Kerr 
regimes (i.e., where q deviates from the value of 2) have been 
 

 
 

Fig. 1. Arbitrary-angle spatial soliton refraction.  The refraction 
process here is external (t > i; see text in Sec. III). 



found to give rise to a diverse range of new qualitative 
phenomena.  

 
II.  POWER-LAW INTERFACES MODEL 

 

We consider the TE-polarized continuous-wave scalar electric 
field 
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where x and z are the spatial coordinates in the medium, t is the 
time coordinate and  is the angular frequency.  This 
representation makes sure that the field remains real, as should 
be the case.  If the spatial part of the field varies slowly (in the 
transverse direction) on the scale of the free-space optical 
wavelength , then E(x,z) satisfies a nonlinear Helmholtz 
equation on each side of the material boundary: 
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where j = 1, 2 denotes the medium and c is the vacuum speed 
of light.  The total refractive index nj is routinely taken to be 
the sum of two terms: nj = n0j + nNLj(|E|), where n0j is the linear 
index of medium j (= 1, 2) at frequency , and nNLj(|E|) is a 
small field-dependent correction.  Since Eq. (3) is quadratic in 
nj, one may make the approximation nj

2   n0j
2 + 2n0jnNLj(|E|) = 

n0j
2 + j|E|q.  The carrier wave component of E can be factored 

out according to E(x,z) = E0u(x,z)exp(ik1z), so that z and x are 
the longitudinal and transverse coordinates, respectively.   
Here, E0 = (n0/1kLD)1/q is a (real) constant, k1 = (/c)n01, and 
u(x,z) is the dimensionless complex envelope.  Arbitrarily, the 
carrier wave in medium 1 has been factored out of E [equally, 
one could have factored out the complex-exponential factor 
exp(ik2z)].  After substitution into Eq. (3), it can be shown that 
u satisfies the dimensionless inhomogeneous equation, 
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(4) 
The longitudinal and transverse coordinates are  = z/LD1 and  
= 21/2x/w0, where LD1 = k1w0

2/2 and w0 are the diffraction length 
and waist of a reference Gaussian beam.  The nonparaxial 
parameter  = 1/(k1w0)2 = 2/42n01

2 quantifies the (inverse) 
beam width.  The validity of the Helmholtz modelling 
approach requires  ≡ /w0 << O(1), so that beam waists are 
much larger than the free-space light wavelength.  Hence,  is 
always taken to be a small parameter throughout:  << O(1).  
The Heaviside unit function H() is defined so that H( < 0) = 
0 and H( > 0) = +1 (see Fig. 1 – in this configuration, the 
interface is aligned along the z axis).  Equation (4) contains the 
interface parameters that describe the mismatch between the 
linear and nonlinear characteristics of the two media: 
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From these relations, three distinct scenarios emerge: (i) linear 
interfaces (defined by  = 1 so that there is no mismatch in the 
nonlinear coefficients), (ii) nonlinear interfaces (defined by  = 
0, so the two media have the same linear index), (iii) mixed 
interfaces (with arbitrary choices of  and ). 

Model (4) in medium 1 is just the conventional power-law 
Helmholtz equation, for which the exact analytical bright 
soliton solutions are now known [10].  The forward-
propagating solutions have a sech2/q profile,  
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where 0 is the peak amplitude and V is the conventional 
transverse velocity.  Here, V is related to the propagation angle 
 in the laboratory (x,z) frame (measured with respect to the 
longitudinal, i.e., z, axis) through the relation, 
 

           tan 2 V  .              (7) 
 
Propagation angles are thus bounded by 90     90  , and 
they may be arbitrarily large.  The additional parameters in 
solution (6) are    20

q/(2 + q) and a   q[0
q/(2 + q)]1/2.     

 
III.  UNIVERSAL HELMHOLTZ-SNELL LAW 

 

  By deploying the power-law Helmholtz solitons [10] in 
tandem with the Helmholtz interfaces formalism developed in 
Refs. [5–7], one can arrive at the following universal 
Helmholtz-Snell law predicting soliton refraction: 
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Here, i and t are the angles of incidence and transmission, 
respectively (see Fig. 1).  The factor  is a universal function 
that allows for the interplay between finite-width optical 
beams, system nonlinearity, and mismatched medium 
properties. 

The critical angle C is defined to be the value of i at which 
t = 0 (i.e., where the refracted beam, in principle, travels along 
the material boundary).  From Eq. (6), this condition leads to 
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The critical angle clearly depends upon the interplay between 
the mismatch parameters (both  and ), the nonparaxial 
parameter , and (through ) the peak amplitude and the 
exponent q. 

When analyzing refraction phenomena, it is convenient to 
introduce the dimensionless parameter  through [5–7] 
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Refraction thus tends to fall into two regimes: it may be either 
external (where  < 0, which implies t > i) or internal (where 
 > 0, which implies t < i).  The boundary between these two 
regimes is determined by  = 0, in which case t = i and the 
incident beam passes undeviated across the interface.  Thus,  
= 0 defines the transparency condition, in which linear and 
nonlinear mismatches in refractive index exactly cancel each 
other.  One can also note that the “no interface” scenario, 
where  = 0 and  = 1, satisfies the transparency condition, as 
one would expect intuitively. 
 

IV. SIMULATIONS 
 

Extensive simulations have been used to test the analytical 
predictions of the Helmholtz-Snell law (6) for q = 1, 2 and 3 
against direct numerical integration of Eq. (4) [11].  The Kerr 
case of q = 2 is “sandwiched” between two regimes where the 
focusing properties of the two media are weaker and stronger 
than the Kerr type (q = 1 and 3, respectively).  Various sets of 
simulations have considered linear interfaces (defined by  = 
1), nonlinear interfaces (defined by  = 0), and mixed 
interfaces (with arbitrary values of  and ).  Computations 
have considered arbitrary incidence angles and regimes where 
 < 0, neither of which are accessible to paraxial theory [1–4].  
A full account of new phenomena in various parameter regimes 
(see Fig. 2) will be presented. 
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