Black and gray Helmholtz Kerr soliton refraction
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Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is
analyzed within a Helmholtz framework. A universal nonlinear Snell’s law is derived that describes
gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at
interfaces. Key regimes, defined by beam and interface characteristics, are identified and predictions
are verified by full numerical simulations. The existence of a unique total non-refraction angle for
gray solitons is reported; both internal and external refraction at a single interface is shown possible
(dependent only on incidence angle). This, in turn, leads to the proposal of positive or negative
lensing operations on soliton arrays at planar boundaries.

PACS numbers: 42.65.Tg, 42.25.Gy

I. INTRODUCTION

Nonlinear interfaces constitute one of the most appeal-
ing fundamental research topics in nonlinear optics. Two
reasons contribute substantially to interest. First, non-
linear interfaces exhibit a good number of nonlinear wave
phenomena, like the excitation of nonlinear surface waves
(NSW) or soliton breakup. Second, nonlinear interfaces
are a core element in proposed all-optical devices, such
as optical switches or all-optical gates. The late 70s and
early 80s witnessed pioneering works on nonlinear inter-
faces [1-7]. NSWs were first described in 1980 [4], when
a linear/Kerr-type nonlinear interface was found to ac-
commodate localized solutions, that preserve their shape
while travelling along the planar boundary. NSWs have
since been reported in contexts involving a great variety
of media, such as linear/diffusing Kerr-type [8, 9], two
Kerr-type [10-13], saturable [14] and defocusing thermal
media [15]. The stability [16] and excitation [9, 17] of
NSWs have been commonly studied in both single inter-
face and nonlinear waveguide contexts. Soliton breakup
at nonlinear interfaces was predicted in numeric simu-
lations of Rozanov [3]. Studying linear/Kerr-type in-
terfaces, he described how the field entering the second
medium is perturbed by the interface, and subsequently
breaks up into multiple soliton-like beams. Several in-
vestigations revisited this effect, for the same type of in-
terfaces [7, 18, 19] and for those involving two focusing
Kerr-type media [12] too. Multi-solution bound states
[19] and vector solitons [20] have also been found to
breakup at interfaces, whereby their fundamental compo-
nents evolve independently as single soliton-like beams.
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Of particular interest has been the giant Goos-Hanchen
Shift (GHS). This is an enhanced version of the GHS at
the planar boundary separating two linear dielectric me-
dia [21, 22] when, instead, different types of nonlinear
interfaces [5, 7, 12, 19, 23] are considered.

To detail potential applications of nonlinear interfaces
in designs of all-optical devices, one must consider non-
linear waveguides. These structures were a focus of at-
tention during the 80s and the discovery of many inter-
faces properties originated from study of such wavegui-
des. A range of both linear and nonlinear materials were
proposed as waveguide layers, leading to a great vari-
ety of configurations [24-28]. The review of Mihalache
et al. [29] summarizes early studies and proposes fur-
ther applications, such as directional couplers [13, 30, 31].
Nonlinear interfaces have inherent switching behaviour;
combinations of high- and low-intensity beams can be
used to modify angles of propagation, which in turn may
switch a soliton from refraction to reflection at an inter-
face. Linear/nonlinear interfaces with a diffusive Kerr-
type medium [32], and interfaces separating two photore-
fractive media [33], have been proposed to support such
switching behaviour. All-optical gates, facilitated by the
superposition of different Kerr-type materials, were also
suggested [34-36]. In this case, a control soliton may
modify interface properties, such that a signal soliton ex-
periences either reflection or refraction, and constitute a
basis for design of AND and OR gates.

Experimental work on nonlinear interfaces has mostly
been concerned with verification of theoretical predic-
tions. The pioneering experiments of Smith et al. in-
volved optical bistability [37] and the switching response
of a linear/nonlinear interface [6, 38]. It was later
shown [39] that such interfaces tend to exhibit single-
step, rather than multiple-threshold, response (partic-



ularly for saturable nonlinear media). The existence
of critical angles at nonlinear interfaces was verified by
Alvarado-Mendez et al. [40], where a nonlinear/linear
interface (composed of a photorefractive crystal and air)
was studied. Not only Kerr-type, but also quadratically
nonlinear media have been also analyzed [41, 42], where it
was shown that experimental results were in good agree-
mentent with those from full numerical integration of the
coupled scalar wave equations for the fundamental and
second harmonic fields. Recently, experiments on nonlin-
ear interfaces have focused on nematicons [43-46] whose
reorientational dielectric response to an external voltage
is the basis for inducing refractive index changes in a non-
linear material. Solitons undergoing tunable reflection
or refraction [47], total internal reflection [47], nonspecu-
lar total reflection [48], or nonlinear Goos-Hénchen shifts
along the planar boundary [49] have been engineered at
nonlinear interfaces provided adequate electric fields are
applied. The ability of controlling soliton paths in a great
variety of scenarios [50-52] turn them into excellent can-
didates to lie in the core of all-optical processing devices
[53-56].

The successful particle-like approach developed by
Aceves et al. [10-13] made a major impact on theoret-
ical descriptions. A simple Newtonian model was found
to capture complicated beam evolution at nonlinear in-
terfaces. In this model, a soliton is represented by a
quasi-particle that evolves in a potential defined by the
interface. While initially describing Kerr interfaces, the
theory was later developed to describe diffusive Kerr-type
[8, 57] and saturable Kerr [14] media. Further general-
izations were made to analyze solitons at non-Kerr in-
terfaces, such as those involving quadratic [58] and pho-
torefractive [59] media. However, this equivalent-particle
approach is based on the Nonlinear Schrédinger (NLS)
equation, for which the paraxial approximation is as-
sumed and limits the validity of analysis to vanishingly-
small angles of incidence [60, 61].

Soliton behaviour at nonlinear interfaces has, instead,
an inherently nonparaxial character that can arise in two
distinct scenarios. Firstly, significant off-axis nonparax-
tality arises whenever a soliton is either incident or re-
fracted at a significant angle to the interface. Even for
low incidence angles, interfaces can result in a large an-
gle of refraction. For example, a larger linear index of
refraction in the second medium can produce this ef-
fect, and demand a theoretical framework able to acco-
mmodate arbitrary angles of propagation. Secondly, a
completely different type of nonparaxiality can appear
at nonlinear interfaces that is related to strong focus-
ing [62]. For example, if the strength of nonlinearity
in the second medium is much larger than in the first
medium, ultra-narrow beams can originate from the in-
terface. This would demand a vector analysis [63-65] to
study properly the propagation of the emergent beams.

Our work only deals only with the first type of angu-
lar (Helmholtz) nonparaxiality. Large angles of propa-
gation are perfectly described within the framework of

Helmbholtz theory [66, 67] where, unlike paraxial theory,
solutions are rotationally invariant. The model equa-
tion is the full Nonlinear Helmholtz (NLH) equation
[62, 66] without any further approximation. Not only
bright Kerr, but also dark Kerr [68], two-component [69],
boundary [70], bistable [71] and algebraic [72] Helmholtz
solitons have been found to display non-trivial Helmholtz
corrections. This latter framework has permitted, for in-
stance, description of collisions of Kerr bright solitons
at arbitrary angles [73]. The reflection and refraction
properties of bright solitons [74, 75] at the interface sep-
arating two focusing Kerr media have also been revisited
within the framework of Helmholtz theory. A key result
is a compact generalized Snell’s law that relates soliton
angles of incidence and refraction and which is valid for
arbitrary angles.

Recently, the Helmholtz-Snell’s law for bright solitons
was generalized to describe black soliton refraction [76].
In contrast to the vast literature dealing with bright soli-
tons at nonlinear interfaces, only a few works have consid-
ered interfaces separating defocusing media. Moreover,
those studies were restricted to phenomena taking place
in the vicinity of the interface. The formation of NSWs
at interfaces, where at least one medium has a defocusing
Kerr-type nonlinearity [77, 78], or the generation of kink
solitons at the surface of an optical lattice imprinted in
defocusing media [79] represent two such examples. Un-
like these works, developed within the framework of the
NLS equation, Ref. [76] addresses for the first time the
evolution of a dark soliton far away from the interface as
the result of a refraction by a nonlinear interface separat-
ing two defocusing Kerr media. Black soliton refraction
is fully characterized by the generalized Snell’s law. A
more in-depth analysis of gray soliton refraction was be-
yond the scope of Letter [76] and is, instead, presented
in this Article.

The nonlinear Snell’s law is briefly revisited in Section
II. This is the theoretical basis of our analysis. We then
present a further generalized version that describes re-
fraction of, not only black and bright solitons [74, 76] but
also, gray solitons. In Section III, consideration of the pa-
rameter defining the grayness of a dark soliton is shown
to lead to refraction properties. Linear step interfaces
(those with identical defocusing Kerr nonlinearities) are
analyzed in Section IV. Section V introduces the total
non-refraction angle, which we prove is the unique angle
of incidence for a gray soliton to be transmitted with an
undeviated trajectory. It is shown to be an inherently
nonparaxial quantity. We find that, in contrast to bright
or black soliton refraction, gray solitons can undergo both
internal and external refraction (dictated solely by the
angle of incidence). This leads to proposal of novel lens-
ing properties of planar interfaces, that have potential
in manipulation of soliton arrays. Analytical expressions
for non-refraction angles are presented and predicted be-
haviour is verified by numerical simulations. Finally, a
discussion of the numerical techniques employed is given
in Section VL



II. GENERALIZED SNELL’S LAW FOR GRAY
SOLITONS

Analysis is based on the two-dimensional scalar
Helmholtz equation
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describing propagation of a TE polarized monochromatic
optical beam in a nonlinear medium with refractive index
n(x, z;|E|). For the two Kerr media (i=1,2) considered
in this work n = ng; £ «; |E|2, where «; > 0 are the Kerr
coeflicients, and =+ corresponds to either a focusing or a
defocusing Kerr nonlinearity, respectively. E(z, z) is the
time-independent complex field envelope of the optical
beam with intensity I = |E|>. When the longitudinal
and transverse coordinates are scaled as ( = z/Lp and
£=2Y 22 Jwo, respectively, and one adopts a forward z-
propagating phase reference E(x,z) = A(z, z)e’**, Eq.
(1) can be rewritten as
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wp is a transverse scale parameter equal to the waist of
a reference Gaussian beam with diffraction length Lp =
kw?/2, k = noiw/c represents the wave number and ng;
is the linear refractive index of medium 1 (which we have
used as a reference medium). In Eq. (2), x = 1/k*w}
is a nonparaxiality parameter [62, 66] that relates the
full width 2wq of the reference beam to the optical wave-
length in a vacuum. The only approximation made in
this analysis is that, in each medium, ngy; < ai\E|2. Un-
der such conditions, one obtains n? ~ n3, + 2ng;a;|E|?.
For propagation in medium 2, that has n =
no2 £ az|E|?, and using the normalization A(£,() =
(no1?/kan Lpng)Y/?u(€,¢), Eq. (2) transforms to
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The interface parameters, relating the linear and non-
linear refractive indices of the adjoining media,
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allow us to rewrite Eqgs. (2) and (3) in a compact form
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X (&, €) identifies the two media separated by the planar
boundary taking values 0 or 1 when (&, ¢) is in medium 1
or medium 2, respectively. In the particular case that the
boundary is situated at £ = 0, one has x(&,¢) = H(E),
the Heaviside function. The NLH equation (5) is fully

equivalent to Eq. (1), since no further approximation
has been made in its derivation.

Matching the phase of bright and black soliton solu-
tions, for focusing [66, 67, 80] and defocusing [68] Kerr
media respectively, at each side of the discontinuity yields
the nonlinear Snell’s law [74-76]

Y4101 cos(f;) = nga cos(6y), (6)

that dictates refraction of both bright and black solitons.
0; and 6; are the angles of incidence and refraction, re-
spectively, and
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is a nonlinear correction term [76]. In Eq. (7), B+ = n3/2
and 3_ = —u for bright and black solitons, respectively,
and 7y and ug are the amplitudes of the incident bright
soliton and the background plane wave supporting the
black soliton, respectively.

Importantly, the refraction of gray solitons differs fun-
damentally from that associated with bright or black soli-
tons. We find that the soliton grayness parameter signif-
icantly affects the net angle of propagation, which, in
turn, alters the laws governing gray soliton refraction at
nonlinear interfaces. Angular corrections in Eq. (6) are
thus needed in order to capture such grayness depen-

dency.
The Helmholtz dark soliton is [68, 76]
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A = 0 and a = 1 correspond to the propagation in
medium 1. W is the net transverse velocity, V =
(2k)Y/?tan(@) is the transverse velocity of the back-
ground beam associated with an arbitrary propagation
angle 6 relative to the reference z axis [66] and
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is the intrinsic transverse velocity of a gray soliton in
medium 2. In Eq. (8), ug is the amplitude of the soliton
background and F' = (1 — A?)'/2 is the grayness param-
eter (F' = 0 for black solitons and 0 < |F| < 1 for gray
solitons) [68].

During refraction, the value of F' is conserved [76].
This condition arises from the continuity of the phase



at across the interface which, in turn, requires the total
intrinsic phase jump of a Helmholtz gray soliton [68, 76]

to be the same in both media. Black (gray) solitons
impinging on a nonlinear interface are thus refracted as
black (gray) solitons in the second medium.

Taking into account the relationship linking transverse
velocities (in normalised units) and angles (in the un-
scaled laboratory frame) [66, 67], one obtains from Eq.

(9)

Ap = —2tan~* (

On; =0; — 0y, and 0, =60, — Oy, (12)

which are the angular relationships describing, respec-
tively, the incident and refracted soliton. In Eq. (12),
the subscripts ¢ and ¢ refer to the incident and transmit-
ted (refracted) gray solitons found at each side of the in-
terface, while 6,,, 0 and 6, are the angles corresponding
to W, V and Vj, respectively. 6y, and 6y; are the in-
trinsic angles of the gray solitons related to the incident
and transmitted gray solitons, respectively. The angu-
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FIG. 1. (Color online) Angles of incidence and refraction
for both black and gray solitons in relation to the nonlinear
interface.

lar relationships in Eq. (12) are shown in Fig. 1 where
the interface, represented by a solid white line, has been
rotated in relation to the reference axes. The white ar-
row represents the propagation of the background plane
wave, or the corresponding black soliton, incident on the
interface at an angle #; and refracted at an angle 6;,. Un-
der the same conditions, a gray soliton represented by a
dashed line impinges on the interface at a net angle of
0n; < 0; due to the intrinsic angle of the incident soli-
ton 0p;. The corresponding intrinsic component for the
refracted soliton 6y; makes the net angle of refraction of
the gray soliton 6,,; differ from 6;.

From the above arguments, Eq. (6) can now be rewrit-
ten as

Y+N01 cos(&m —+ 907) = N2 COS(amg =+ 90,5). (13)

Equation (13) is supplemented with the condition of con-
servation of soliton grayness during refraction, which al-
lows one to obtain the value of 6y; from that of 0y;. We
have thus derived a generalized Snell’s law that is also
valid for gray solitons. The law is expressed in terms of
both net propagation angles and intrinsic angular com-
ponents of the gray soliton dips. When 6y; = 6y = 0,
this generalized Snells law (13) returns the previously
reported results [74, 76] for bright (v4) and black (v_)
solitons.
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FIG. 2. (Color online) Generalized Snell’s law for bright
(dashed red), black (solid black) and gray (dotted blue) soli-
tons. (a) Kk =10"* and (b) K = 2.5 x 1073,

Bright, black and gray soliton refractions are illus-
trated in Fig. 2 for a nonlinear interface (A = —0.026
and o = 3) and two values of . Assuming canonical
bright (no = 1) and dark (ug = 1) solitons, two different
scenarios are found that are distinguished by the size of k.
For k = 10~% one obtains |A| > 4ku3 and |A| > 2kn3,
so that soliton refraction characteristics are governed by
A. This is demonstrated in Fig. 2(a), where all soli-
ton types undergo external refraction with comparable
angles of refraction. The scenario changes completely
when x = 2.5 x 1073, as is shown in Fig. 2(b). Here,
one has |A| ~ 4ku? and |A| ~ 2kn32, so that nonlinear
terms may induce different angular corrections in each
case, thus leading to more distinct angles of refraction
for each soliton type. While bright and black solitons
undergo external refraction (6,,; > 6,,;), the gray soliton
experiences internal refraction (6,,; < 0,;).

Numerical evidence of the validity of Eq. (13) for de-
scribing bright [74, 75] and black [76] soliton refraction
has been already demonstrated. The qualitative behavior
dictated by Eq. (13) for bright, black and gray soliton re-
fraction is illustrated in Fig. 3. Theoretical results shown
in Fig. 3(a), for « = 3 and A = —0.016, predicting either
internal or external refraction agree well with numerical
simulations undertaken for (b) bright , (c¢) black, and (d)
gray solitons impinging on the interface at 6,,; = 25°. As
the inset of Fig. 3(a) shows, only the gray soliton under-
goes internal refraction. Even when additional solitons
appear, Snell’s law predicts accurately the refraction of
the primary black or gray soliton. Conditions for multi-
ple soliton generation during refraction of black solitons
are the subject of a forthcoming paper, where both bright
and black soliton breakup at nonlinear interfaces is stud-
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FIG. 3. (Color online) (a) Generalized Snell’s law for bright,
black and gray solitons, when k = 1073, ug = 1 and no = 1.
Full simulation of: (b) bright, (¢) black, and (d) gray soliton
refractions when 0,,; = 25°.

ied within the framework of Helmholtz theory.

III. ROLE OF THE GRAYNESS PARAMETER

Analysis of gray soliton refraction clearly must focus
on the role of the intrinsic angular terms associated with
the soliton grayness parameter, i.e. 6y and 6y;. For the
sake of simplicity we will assume that F' > 0, so that
both 6y and 6y; are positive. Within the framework of
Helmholtz theory, analysis of broad beams (when com-
pared to the wavelength) of moderate intensity implies
that k£ = 1/(kwy)? < 1 and 4ku3 < 1. Then, consid-
ering a regime in which both linear and nonlinear terms
are of the same order of magnitude, i.e. A ~ 4xuZ, one
obtains from Eq. (9) and Eq. (10)

tan Op; ~ V2kFug [1+ (2 + F?)kud] (14)

and
A 2 2
tan 90t ~ \/%FUO 1 + 5 + Oé(2 + F )KUO ’ (15)

respectively. Eq. (15) reveals that 6y; depends strongly
on /2. This is shown in Fig. 4(a), where the difference
Oor — Oo; is plotted as a function of a for two values of
F. One can then identify three distinct regimes of gray
soliton refraction, that are distinguished solely by the
value of . These are illustrated in Figs. 4 (b), (¢) and
(d).

Firstly, for linear step interfaces (o« = 1), one finds
that 6o, ~ 6p;. The predictions of Eq. (13) are plotted
in Fig. 4(b) for different values of F' in this regime. It
is revealed that gray solitons propagating at significant
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FIG. 4. (Color online) (a) The difference 0ot —0o; as a function
of a. Generalized Snell’s law for dark solitons at interfaces
with: (b) @ =1, (c¢) @ > 1, and (d), @ < 1. In all cases,
k=25x10"% and up = 1

angles refract in a manner that closely matches black
soliton refraction. Secondly, for interfaces with a larger
Kerr coefficient in the second medium (« > 1), one ob-
tains 0, > 0p;. A larger value for 0y, entails a reduction
in the net angle of refraction 0,,;, as dictated by Eqgs. (7)
and (13). Such dependency is mapped out in Fig. 4(c),
for the same values of F as part (b), and shows the trend
of decreasing 6,,; with increasing F'. Part (c) also reveals
a further feature that has not previously been reported
(in accounts of either bright or black soliton refraction).
It is found that a gray soliton may undergo either exter-
nal or internal refraction, depending solely on the angle
of incidence and provided that both interface and soli-
ton grayness parameters are properly chosen. Finally, a
different trend with respect to F' variation is obtained in
the third regime, where o < 1. Predictions are shown in
Fig. 4(d). Here, nonparaxial net angles of refraction are
found to increase with increasing F', which is consistent
with 0g; < 0g; as shown in part (a). In this case, angular
corrections are not as large as those shown in Fig. 4(c),
due to the a'/? dependency of Eq. (15).

IV. LINEAR STEP INTERFACES

Theoretical predictions for the various parameter
regimes have been tested against an extensive series of
simulations involving full numerical integration of the
NLH equation. Our account of this comparison starts
with analysis of linear step interfaces.

Net angles of incidence 6,,; and refraction 6, are dis-
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FIG. 5. (Color online) Dark soliton refraction for a linear step
interface (o = 1) with A = —0.015 and x = 1073, (a) Theory
(curves) and numerical data (diamonds, squares and circles).
Simulation snapshots for the same interface considered in part
(a), when 6,; = 40° and soliton grayness is: (b) F = 0, (c)
F =0.6, and (d) F =0.8.

played in Fig. 5(a), for a linear step interface with
A = —0.015 and for three different values of soliton gray-
ness. Lines are analytical predictions, while diamonds,
squares and circles represent results from numerical in-
tegration of the NLH equation for F' = 0, F' = 0.6, and
F = 0.8, respectively. The agreement found between the-
ory and numerics extends to all angles of incidence and
values of F' considered. The two insets of Fig. 5(a) high-
light results for low (left) and moderate (right) angles of
incidence. The predicted small differences (between black
and gray soliton refraction) at low angles are verified and
these differences are confirmed to decrease as the angle
of incidence grows, whereby all solitons undergo approx-
imately the same angle of refraction. The detail in the
right inset of Fig. 5(a) confirms this, showing diamonds,
squares and circles superimposed. Typical results from
full simulations are shown in Figs. 5(b), (¢) and (d).
Here, soliton refractions for /' =0, F = 0.6 and F' = 0.8,
respectively, and a net incidence angle of 6,,; = 40° are
shown. Hence, solitons in this regime mostly undergo
an angle of refraction that is independent of the precise
value of F.

V. TOTAL NON-REFRACTION ANGLE

Refraction properties of bright and black solitons at
nonlinear interfaces are determined by an overall mis-
match parameter involving both linear and nonlinear
contributions [76]

5:!: =A + 4I{ﬂi(1 - a). (16)

For bright and black solitons, it is only the sign of §4
that distinguishes three different scenarios: external re-
fraction (d+ < 0), internal refraction (4 > 0), and total
transparency (04 = 0) [75, 76]. In the case of gray soli-
tons, this criterion is no longer valid since intrinsic gray
velocity components also affect net angles of incidence
and refraction.

This feature is illustrated in Fig. 6(a), where interface
parameters « = 3 and A = —0.008 have been chosen
to provide total transparency for a black soliton. Here,
up = 1 and k = 1073, thus giving §_ = 0 in Eq. (16).
The dotted black straight line charts the refraction of
black solitons according to Eq. (13). The blue (black)
solid line displays gray soliton refraction for F' = 0.3,
while the case of F' = 0.8 is represented by the red (gray)
solid line. The results show that, for fixed F', gray soli-
tons incident under the total transparency condition, for
the corresponding black solitons, undergo the same an-
gular deflection (6,,; — 6,,;) regardless of the angle of in-
cidence. The magnitude of this deflection depends on F',
and can be either positive (o« < 1) or negative (o > 1).
Theoretical predictions show excellent agreement with
results extracted from full numerical simulations. Dia-
monds, squares and circles represent numerical data for
F =0, F=0.3and F = 0.8, respectively. The inset of
Fig. 6(a) highlights such agreement when larger net an-
gles of incidence are considered. For this interface, a > 1
and the net angle of refraction is reduced for gray soli-
tons; the extent of internal refraction becomes greater as
F increases. This trend is mapped out in Figs. 6(b), (¢)
and (d), where refractions of black and gray solitons are
illustrated for #,,; = 40°.

0 4 ( 8 12

()

FIG. 6. (Color online) (a) Black and gray soliton refrac-
tion characteristics when the total transparency condition
(60— = 0) is met. Simulation snapshots for the same interface
considered in part (a), when 6,; = 40° and soliton grayness
is: (b) F =0, (c) F=0.3, and (d) F =0.8.

To quantify gray soliton behaviour, instead of the for-



mer total transparency condition, we define a total non-
refraction angle. A substantial difference is, for exam-
ple, that total non-refraction (if possible) can only be
achieved for a single angle of incidence. This is shown in
Fig. 7(a), where the refraction of a gray soliton with
F = 0.7 is considered for two different nonlinear in-
terfaces. The intersection of Snell’s law curves and the
straight line 6,,; = 6,,; provides the total non-refraction
angle in each case.

An analytical expression for the total non-refraction
angle 0, ,,, is thus obtained when the condition 6,,; = 0,
is met in Eq. (13),

Y-"o1 Cos(an,nr + 601) = No2 Cos(en,nr + 001‘/)3 (17)
which leads to

tan(0 ) _ n01n62177 COS(QOi) — COS(QOt) ) (18)
e no1Mgy Y- sin(fo;) — sin(fo;

Figure 7(b) plots Eq. (18) as a function of F' for the
same two nonlinear interfaces considered in part (a). As
F — 0, the gray soliton trajectories are seen to converge
to those of the reference black soliton at normal inci-
dence. Moreover, the inset of Fig. 7(b) also reveals that
for each nonlinear interface there is a total threshold an-
gle 6, 1, that presents a minimum angle of incidence nec-
essary to obtain this phenomenon. Any paraxial analysis,
with its validity restricted to vanishingly-small angles of
incidence, is thus not expected to accurately capture to-
tal non-refraction behavior.

(a) (b)
B — 20 10 ?096 — a=2x10", A=8x107
S 25— a4, £=-25x10" % — aed, pe25x10°2
.g 0 15|
g 20 § 60 ﬂn,m
f15 SO
210 230 7 10
& g
o
5O o e
Z innr  innr 2
0 10 15 20 25 30 0 2 4 6 8
Net angle of incidence (deg) F (x107")

FIG. 7. (Color online) (a) Determination of total non-
refraction angles, 0, nr, for two nonlinear interfaces. (b) Non-
refraction angles as a function of F', for the same interfaces
considered in part (a). £ =5 x 107* in both figures.

Numerical evidence of total non-refraction is shown
within the series of frames of Fig. 8. The behavior of
a gray soliton with F' = 0.4, impinging on a nonlinear in-
terface with a = 2 and A = —0.013, is examined. These
parameters give 6, ,, = 30.35°. The predictions of Eq.
(13) are plotted for three different ranges of angle of in-
cidence: 0p; < 0p.nr; Oni = Opnr; and 0y > 0y, . The
results are shown in Figs. 8(a), (b) and (c), where exter-
nal refraction, total non-refraction, and internal refrac-
tion are demonstrated, respectively (depending solely on
the angle of incidence). In all cases, there is excellent

agreement between numerical data (points) and analyti-
cal results (solid curves). In Fig. 8(b), both points and
solid lines are superimposed upon the dashed line repre-
senting the 6,,; = 6,,; condition. Individual simulations,
illustrating external refraction, total non-refraction, and
internal refraction, are presented in Figs. 8(d), (e), and
(), respectively.
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FIG. 8. (Color online) Gray soliton refraction for F' = 0.4,
a = 2, A = —0.013, and different ranges of net incidence
angle. (a) external refraction, (b) total non-refraction, and
(c) internal refraction, are obtained when 60,; < 0n nr, Oni =
On.nr and 6,; > Op nr, respectively. Simulation snapshots,
corresponding to these three scenarios, are presented in (d),
(e) and (f).

The total non-refraction angle can play an analogous
role to that of the critical angle in the context of bright
solitons. Nonlinear interfaces have been proposed as
switching elements, in which a bright soliton is either
reflected or transmitted depending on the angle of inci-
dence. For the case of gray solitons, nonlinear interfaces
can also be proposed as a basis for designing further non-
linear devices. Operational principles, in which an inter-
face can act as either a focusing or defocusing lens in the
manipulation of arrays of soliton beams, are sketched in
Fig. 9.

In Fig. 9(a), two arrows represent two gray solitons



& interface Moy~%, I

FIG. 9. (Color online) (a) Narrowing/focusing of soliton tra-
jectory angle range in the vicinity of 0, ,, for an @ > 1 and
A < 0 interface. (b) Broadening/divergence of the angular
range of soliton paths around 6, ,,, for an & < 1 and A > 0
interface.

incident at different angles to the interface. One soliton
has 0,; < 0, »r, and thus undergoes external refraction,
while the other soliton has 6,,; > 0,, .-, and hence expe-
riences internal refraction. The action of the interface is
thus quite similar to that of a converging (positive) lens,
in which dark soliton trajectories play the role of opti-
cal rays. For this type of interface, an array of soliton
beams that are diverging at an angle A¢; undergo an-
gles of refraction that tend to 6, .., so that the angular
spread of trajectories is reduced (A¢, < A¢;). The in-
terface thus gathers soliton paths to within the proximity
of 0, nr. The possibility of complementary (i.e. disper-
sive) operation is sketched in Fig. 9(b). For example,
this could correspond to the o = 0.2 interface charac-
terized in Fig. 7(a), for which external refraction occurs
when 6,; > 6, -, and vice versa. In this case, the in-
terface acts as the equivalent of a diverging (negative)
lens, as it increases the divergence of the soliton paths

(A¢O > Agbl) .

VI. NUMERICAL CONSIDERATIONS

An extensive series of large-scale numerical simulations
has played a fundamental role in this work, and has en-
abled a thorough investigation of analytical predictions.
Simulations employed a nonparaxial beam propagation
method [81], that has been crucial in the development
and validation of Helmholtz soliton theory [68-71, 74-76].
All of the numerical results presented have exploited the
rotational symmetry that a Helmholtz framework allows
[66]. Instead of propagating each soliton with a nonzero
transverse velocity towards an interface at £ = 0, the in-
terface was itself rotated. This scheme, which was used
for both black and gray soliton refraction studies, greatly
reduced computational requirements in terms of the need
to sample sufficiently (potentially, rapidly-varying) trans-
verse phase variations. Even with this computational
efficiency introduced, each simulation still involved a rel-
atively huge number of transverse points. Typically,
115200 = 22 x 152 sampling points were used, which facili-
tated parallel code implementation amongst 15 processor

cores [82].

The requirement of a very broad background beam, to
support the evolving solitons, dictated the need for such
large resources. The beam shape used was a raised cosine:
h(§) = cos?[m/rL(|¢] — L1)], if L1 < [§] < L2; h(§) =1,
if [¢] < Lyi; and k() = 0, if |£| > La, where roll-off
factor r = 0.5, grid length L = 160, L1 = (1 — r)L/4,
and Ly = (1 4+ r)L/4. Incident and refracted solitons
needed to evolve on a flat, but finite, central portion of
this background. This was assured by avoiding any role
of the progressive spreading and evolution of the edges
of the background field profile. To minimise evolution
of this supporting beam prior to soliton refraction, each
simulation was initiated at a point such that the back-
ground field encountered the interface in the early stages.

VII. CONCLUSIONS

In this work, we have presented analyses of dark soliton
refraction at planar boundaries that separate two defo-
cusing Kerr media. The study has been performed in the
framework of Helmholtz theory, which permits valid re-
sults for arbitrary angles of incidence. A key finding is
a generalized Snell’s law that describes, not only bright
and black soliton refraction but also, the complexities in-
volved in the refraction of gray solitons. The matching of
exact soliton solutions at each side of the interface also
yields expressions for the transverse velocities and com-
ponent angles of soliton trajectories, along with the gen-
eral result that soliton grayness is conserved during re-
fraction. Particular attention has been paid to parameter
regimes in which linear and nonlinear effects have compa-
rable magnitude. This allowed identification of distinct
scenarios and regimes of behavior, where either all beam
and interface effects come into play or when particular ef-
fects become dominant (such as in predominantly linear
step interfaces). This focus on the relative importance
of contributing effects should allow results to be applied
to wider parameter regimes that share the same balance,
or domination, of particular effects. All main theoretical
predictions for these regimes have been thoroughly tested
through comparison with full numerical solutions.

The refraction of gray solitons has been found to dif-
fer from bright or black soliton refraction at a funda-
mental level, since both external and internal refraction
can be obtained at a single nonlinear interface (depend-
ing solely on the angle of incidence). This result fol-
lowed from our introduction of the total non-refraction
angle (a unique angle of incidence under which a dark
soliton refracts without trajectory deviation). Analyti-
cal expressions for non-refraction angles have been pro-
vided and these show that nonlinear interfaces can ac-
commodate such phenomenon provided one works over a
certain (nonparaxial) angular threshold. Non-refraction
characteristics also led to a proposal that different types
of planar interfaces may be employed for converging or
diverging lens operations on dark soliton arrays.



Work is currently underway to analyze nonlinear sur-
face waves, soliton breakup and the Goos-Héanchen shift
for Kerr-focusing interfaces, and also to quantify vari-
ous generalisations of Helmholtz-nonparaxial soliton re-
fraction arising from considerations of different classes
of nonlinear materials. However, an account of these

extended considerations is deferred until future publica-
tions.
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