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Abstract ular polygon [3]. The non-orthogonal edges of this ele-
Complexity draws on commonality of universal phe- Mmenthave a profound impact on the structure of the cavity

nomena and brings together research in fields that are tra-€igenmodes, which exhibit a striking level of complex-

ditionally quite disparate. A key thematic in the study ity and beauty. Most obviousIy\-sided regular-polygon

of complex systems is pattern emergence. Spatial pattern boundary conditions imposi-fold rotational symmetry

formation can often be categorized as eitlsmple(pos- on the intensity pattern. Transverse aperture symmetry
sessing a single dominant scale); fractal (possessing also has a}strong influence on the excess noise properties
proportional levels of detail across many scales). of the cavity [4].

Here, we present an overview of our research on the
fractal-generating properties of two distinct wave con-
texts: fractal eigenmodes of linear systems with inherent
magnification; and spontaneous spatial fractals in non-
linear systems. Our latest research focuses on: polygo-

nal (“kaleidoscope”) linear laser cavities; and nonlinear . : o
cavity and bulk media optical systems. Results for lin- analyses have been restricted to regimes where either:
Neq = O(1) (when conventional ABCD paraxial ma-

ear systems include the first systematic study of fully-2D " ) : L . .
transverse eigenmodes that possess significant levels ofmx modelling, in combination with Fast Fourier Tr_ans-
fractality. New system geometries and media types are forms, FFT, can be (_jeployed .[5]);. O¥eq > O(1) (in
considered for nonlinear fractal generation. We conclude which case asymptotic approximations may be used [6]).

with proposal and exploration of some potential applica- gur Epprlﬁa(\:? IS ?assed ona fﬁ”ﬁ'zf ger;erallzlgtlon of
tions of fractal waves. outhwell’'s Virtual Source method [7], and exploits ex-

act (Fresnel) mathematical descriptions of the constituen
_ o _ edge-wave patterns [8].

Spatial fractalsin linear optical systems One key advantage of our technique is that a single cal-
Unstable cavity lasers culation allows one to access entire families of modes (i.e.

Cavities that are geometrically unstable exhibit a broad lowest-loss and all higher-order modes); another is that
range of phenomena that have captivated researchers forany particular mode may be computed to any desired ac-
the past forty years. In particular, the intrinsic tendency curacy. We also quantify the convergence properties of
of such simple systems to generate complex multi-scale kaleidoscope laser modes (eigenvalue spectra and mode
light patterns continues to attract wide and sustained in- patterns themselves) in the limit that — oo, where the
terest. Within earlier collaborations [1,2], we discov- feedback mirror becomes circular.
ered that the linear eigenmodes of one-dimensional (1D) Virtual source theory unfolds an unstable cavity into
and two-dimensional (2D) unstable resonators are frac- an equivalent sequence &fs = log(250 Neq)/l0g(M )
tals. Fractality was initially explained on the basis of ge- virtual apertures. Any eigenmode can then be con-
ometrical optics and a careful reinterpretation of what the structed from a weighted superposition of the edge-waves
cavity eigenvalue problem represents physically. It was diffracted by each aperture, plus a plane-wave compo-
later shown that the origin of self-reproducing mode pro- nent. In scaled units, the mode patt&f(X) is given by
files is much more subtle, lying in the interplay between
round-trip magnification and periodic aperturing (diffrac
tion at the edge of the feedback mirror) [3].

Kaleidoscope lasers are an intuitive generalization of
classic unstable resonators to fully-2D transverse geome- whereX denotes an appropriate set of transverse coordi-
tries, where the defining aperture has the shape of a reg-nates,X ¢ is any point on the boundary of the feedback

Virtual source theory

Here, we present the first detailed analysis of kaleido-
scope lasers through accommodation of arbitrary equiva-
lent Fresnel numbeNgq (Which quantifies the cavity as-
pect ratio) and round-trip magnificatiavi. All previous
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Figure 1. Computations of the lowest-loss modes of
kaleidoscope lasers for a range of feedback-mirror
symmetries with cavity parametei&q = 30 and

M = 1.5. The lower row of panes shows a magnification
of the central region of the corresponding pattern.

mirror, and E,,,(X) is the composite edge-wave pattern
arising from them!" virtual aperture [8]. The weighting
factor « plays the role of the mode eigenvalue; it is ob-
tained by finding the roots of an associated polynomial
equation. Our virtual source modelling also allows one to
calculate a small portion of any particular eigenmode, in
contrast to FFT-based approached (see Figure 1).

The circular limit

When N — oo, the feedback mirror becomes circular
and the cavity essentially has only a single transverse di-
mension. This limit has been investigated by Berry under
the assumptioVeq > O(1), and only for the lowest-loss
mode [9]. For cavities with arbitrarWeq and M, this
type of fully-2D convergence phenomenon does not lend
itself to asymptotic analysis; indeed, it can only be truly
addressed via numerical computation. We will present,
what is to the best of our knowledge, the first in-depth
treatment of the circular limit of families of kaleidoscope
laser modes (see Figure 2). It was found that this is a far
more subtle problem than might first be imagined.

Spatial fractalsin nonlinear optical systems
Universal route to spontaneous fractality
Turing instability is the susceptibility of a uniform state

Figure 2: Computations showing the transition of the
lowest-loss mode pattern for a kaleidoscope laser with
Neq= 30 andM = 1.5. For these parameters, a
reasonable degree of convergence to circular symmetry
does not begin until one reaches regimes around
N = 40.

details of the dominant feedback loop. Such patterns can
be characterized asmpleif they are associated with a
singledominant length scale that corresponds to a single
minimum in the Turing instability threshold curve.

Investigations of spontaneous pattern formation tend to
concentrate on regimes close to the instability minimum.
However, a wide range of wave-based reaction-diffusion
systems exhibit a hierarchy of comparable local Turing
minima. By operating far above the first threshold, one
can excite further unstable spatial frequencies. One can
then, in principle, enter a profoundly new regime of pat-
tern formation where intrinsic nonlinear dynamics (har-
monic generation, four-wave mixing, etc.) tend to create
new spatial length scales. We proposed that this multi-
Turing mode hierarchy could be a signature for a system’s
innate capacity to develop spontaneous spatial fractals,
i.e., patterns with proportional levels of detail recugrin
across decades of scale [12].

Complexity in a simple optical ring cavity

Over the last two decades, spontaneous spatial patterr
formation has blossomed into a huge field of research in
nonlinear photonics. However, the majority of theoretical
investigations have been rooted in the mean field approxi-
mation [13], where light propagation effects are averaged

(one that is homogeneous in space and stationary in time) out and the spatiotemporal complexity is consequently re-

to become spontaneously patterned [10,11]. Nonlinear-
ity couples the various components of a system in feed-
back loops that may be either very simple or enormously
complicated. When sufficiently stressedinner takes

all dynamics can drive the emergence of universal large-

duced. Such models tend to possess, at most, only a single
Turing minimum and hence are unlikely to predict multi-
scale spatial structures.

Here, we present the first evidence of spontaneous spa-
tial fractals in ring cavitiesbeyond mean field dynam-

amplitude patterns that are essentially determined by the ics, and for a range of nonlinear materials [14]. A clas-
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Figure 3: Spontaneous self-reorganization of a uniform
stationary state perturbed with a small level of noise.
The simple universal patterns that result here are; stripes
in the purely-dispersive cavity (top row); and, hexagons
in the purely-absorptive cavity (bottom row).

sic 2-level saturable absorber system is modelled in the
thin-slice regime (where the medium has near-negligible
thickness). The scalar electric fieldand population in-
versionw are then governed by

OF ag\ Fw
9z <7> 1+iA’ (2a)
TlE—ZDVJ_w—i—(l—i—w)— 1+A2‘E’ w. (2b)

Here, ¢, z) are time and the longitudinal coordinate
(along the cavity axis), respectively, aRg is the trans-
verse Laplacian. The relaxation times forand the po-
larization arel; andT, <« T1, respectively, andp is the
diffusion length of medium excitation. Optical absorp-
tion is set byag, while the pump detuning parametar
determines the level of dispersion [the system is purely
absorptive wherA = 0, and purely dispersive (Kerr-like)
when|A| > O(1)]. Periodic pumping and losses at the
outcoupling mirror are implemented in Fourier space via
a conventional ring-cavity boundary condition. A spatial
filter is also introduced into the free-space path to allow
control of pattern formation.

Simple and fractal patterns
Linear stability analysis has uncovered multi-Turing
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Figure 4: Transition from simple (single-scale) patterns
to scale-dependent fractal (multi-scale) patterns in
purely-dispersive (top row) and purely-absorptive

(bottom row) cavities. The transformation begins once
the spatial filter is removed.

N

around the cavity (waves outside this band are attenu-
ated). When the intensity of the stationary state exceeds
threshold, spontaneous self-organization (the feedback
between diffraction, diffusion, and nonlinearity) drives
the system toward a simple static pattern (see Figure 3).
Once the new stationary state is established, we re-
move the spatial filter and allow all spectral components
to propagate freely. One finds that the simple patterns
evolve into scale-dependent fractals (see Figure 4) whose
characteristics depend upon system parameters (e.g., dif-
fusion length, pump intensity, and mirror reflectivity).

New contexts and applications

We will also present a summary of further optical ge-
ometries with multi-Turing threshold that may be able
to support spatial fractals. One candid#ia-slice sys-
tem is the nonlinear Fabry-Perot cavity, which combines
counterpropagation effects with time-delayed feedback.
We have also been looking at the interaction of two
counterpropagating fields in a slab of instantaneous non-
diffusive Kerr material [15,16]. It will be shown, for the
first time, that this fundamental configuration can also
give rise to spontaneous fractal patterns (though some
constraints apply). While we focus here on optical con-
texts, the implications of our findings extend to wave in-

threshold minima that are precisely those proposed as teractions in other (e.g., fluid and plasma) systems that
necessary for spontaneous fractal generation [12]. We are governed by the same pair of universal coupled equa-

begin by demonstrating simple pattern formation through
numerical computations.

A small level of background noise is added to a
stationary-homogeneous solution of model (2), and the

tions. Combining bulk-medium and fractal-pattern con-
siderations into a single model requires one to go be-
yond the ubiquitous slowly-varying envelope approxima-
tion when dealing with light-matter interactions [17-19].

spatial filter is set so that only those spectral components To this end, we have also been pursuing nonparaxial anal-

within the first instability band may propagate freely

yses of Maxwell's equations as a means of describing the



optical wavelength-scale spatial structure.

Both linear and nonlinear fractal generators hold enor-

mous potential for inspiring novel laser designs and a
wide range of applications (e.g., more efficient probing,

scanning and ablation experiments). Moreover, the huge
spatial bandwidths associated with fractal sources may

have potential exploitation within distinct novel informa

tion contexts.

The generic characters of fractal linear

eigenmodes and multi-Turing instabilities in wave sys-

tems may even lead to analogous applications in non-

optical systems. We conclude with a brief account of
prospective new application technologies.
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