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Abstract
Temporal solitons are robust self-localizing pulses that

play a pivotal role in modern understandings of nonlinear
wave phenomena. Here, we propose a new approach for
describing pulses in dispersive nonlinear systems. By re-
taining the fuller generality of the underlying Helmholtz
formulation, one may go beyond conventional modelling
(which anticipates slowly-varying field envelopes) to cap-
ture novel and potentially exploitable physical effects.
While specific attention is paid to guided-wave optics, we
believe these results are universal in nature and can be
applied in a wide range of contexts, such as plasmas and
water waves.

Several distinct classes of exact solution family (con-
tinuous waves, solitons, cnoidal waves) are derived. The
stability of these solutions is then investigated with ana-
lytical and semi-analytical methods, and one can some-
times deploy inverse-scattering theory. The fully second-
order governing equation may be integrated using fast
computational techniques, and extensive numerical anal-
ysis is used to test theoretical predictions.

Conventional theory of pulses
It can be safely said that optical soliton pulses are one

of the most thoroughly investigated phenomena in non-
linear photonics. Since the seminal works of Hasegawa
and Tappert [1,2], the cornerstone of many investiga-
tions has been the slowly-varying envelope approxima-
tion (SVEA). In combination with a subsequent Galilean
boost to a local time frame, the SVEA provides a mathe-
matical device commonly used to reduce the complexity
of the longitudinal (spatial) part of wave operator. While
this approach has some clear-cut advantages [e.g. by re-
placing the elliptic (or hyperbolic) governing equation
with a parabolic one], there are some physical effects that
fall outside its remit. One such effect is spatial dispersion,
recently discussed by Biancalana and Creatore in the con-
text of pulse envelope equations in semiconductor planar
waveguides [3].

Conventional pulse theory has enjoyed unbridled
longevity in the literature over the past forty years for two
main reasons. Firstly, it often provide an adequate de-
scription of the phenomena being observed. Secondly, a

large body of knowledge exists on how to solve the resul-
tant parabolic governing equations.

Helmholtz theory of pulses
Here, we report on our new Helmholtz approach to

nonlinear pulse modelling, whereby the classic “SVEA
+ Galilean boost” is omitted. Mathematical [4] and com-
putational [5] methods are deployed that are similar to
these used over the past 12 years to analyze nonlinear
beams. Our results have a simple physical interpretation,
and some tantalizing connections to Einstein’s special rel-
ativity theory have been uncovered.

We begin by considering a scalar electric field
E(t, z) = E0u(t, z) exp[i(k0z − ω0t)] + c.c. that is trav-
elling down the longitudinal axisz of a Kerr waveguide,
and wheret is the time coordinate. Here,u(t, z) is the di-
mensionless envelope that modulates a carrier wave with
amplitudeE0, centre frequencyω0 and propagation con-
stantk0 = n0ω0/c, wheren0 is the linear refractive index
of the core medium atω0 andc is the vacuum speed of
light. The transverse spatial variation of the electric field
is controlled by the structure of the waveguide itself. Us-
ing standard Fourier decomposition techniques, one can
show that the normalized wave envelope satisfies [6]
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The space and time coordinates areζ = z/L and τ =
t/tp, respectively, wheretp is the duration of a reference
pulse andL = t2

p
/|k2|, wherek2 is the group-velocity dis-

pertion (GVD) coefficient. The sign of GVD is flagged by
s = ±1 = sgn(−k2) (+1 for anomalous;−1 for normal)
andα ≡ k1tp/|k2|, where1/k1 is the group speed. The
small parameterκ = κ0 +D encapsulates two contribu-
tions: κ0 ≡ 1/2k0L > 0 is inherent to any electromag-
netic mode, whileD (which may assume either sign) is a
medium contribution from spatial dispersion [3]. This lat-
ter effect appears in some semiconductors, and its origin
lies in field-exciton coupling.

When considering pulse propagation problems, one
typically follows a well-prescribed route to go from the
nonlinear Helmholtz equation (1) to the more straightfor-
ward nonlinear Schrödinger model. Firstly, one typically



Figure 1: Self-reshaping of (a) bright and (b) dark
solitons under small, medium, and large perturbations to
the local pulse shape. Horizontal bars denote predictions

of inverse-scattering theory [7].

invokes the SVEA by arguing that|κ∂2u/∂ζ2| is small. A
Galilean boost to a frame moving at the group speed1/α
is then implemented by defining coordinatesτloc = τ−αζ
andζloc = ζ.

The precedent for using models such as Eq. (1) was
set more than 30 years ago [6], but the approach seems
to have received little subsequent attention. A huge
amount of progress can actually be made with Eq. (1),
which contains just one extra term compared to the spatial
Helmholtz equation [4,5]. Full convergence to conven-
tional pulse theory is uncovered in a simultaneous multi-
ple limit. One of the key results and also one of the most
interesting is the velocity combination rule for Helmholtz
solitons. This law, which is geometric in nature andinde-
pendent of system nonlinearity, is strongly reminiscent of
the way velocities add together in relativistic kinematics.
In fact, when sgn(sκ) = +1, there is a one-to-one map-
ping with special relativity theory. Deeper insight can be
gained by considering the transformation laws for Eq. (1),

which show that the velocity combination rule is an intrin-
sic property of the model itself, rather than a property of
particular (e.g., soliton) solutions.

Solitons and stability
We will give an overview of our investigations into Eq.

(1) and related models with more general nonlinearities
(e.g., cubic-quintic and saturable). Exact analytical bright
and dark solitons will be reported, and their space-time
geometry considered in detail. New parameter regimes
will be considered that have no counterpart in the spatial
domain namely,κ < 0 (in the spatial domain,κ must
remain positive [4,5]), and a wide range of generic fea-
tures will also be identified. Crucially, the properties of
Helmholtz temporal solitons are found to depend on the
sign of the productsκ, rather than sgn(s) or sgn(κ) sepa-
rately. Extensive computations also examine their role as
robust attractors in the system dynamics.
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