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Giant Goos-Hänchen shifts and radiation-induced trapping are studied at the planar boundary separating two

focusing Kerr media within the framework of Helmholtz theory. The analysis, valid for all angles of incidence,

reveals that interfaces exhibiting linear external refraction can also accommodate both phenomena. Numerical

evidence of these effects is provided, based on analytical predictions derived from a generalized Snell’s law. c©
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The evolution of optical beams at nonlinear interfaces
involves a large variety of nonlinear phenomena which
can not be described by the classical linear laws of re-
flection and refraction. Two such effects are the giant
Goos-Hänchen shift (GHS) [1] and the capture or trap-
ping of solitons at a nonlinear interface. The GHS, ini-
tially reported for optical beams at planar boundaries
between two different linear media, has been quantified
both theoretically [2–4] and experimentally [5, 6] using
different approaches and techniques. The magnification
of this effect, denoted as the nonlinear or giant GHS, was
demonstrated in seminal works on nonlinear interfaces at
boundaries separating linear and Kerr-type media [7,8].
Two nonlinear media were also found to accommodate
giant GHS, as was shown in the context of particle-like
theory for Kerr [9] and quadratic [10] media. In experi-
ments, the giant GHS has been measured for linear-Kerr
defocusing [11], linear-photorefractive [12] media and,
more recently, for nematicons [13].
Nonlinear interfaces can also trap solitons impinging

on the planar boundary at certain angles of incidence,
so that they travel along the interface preserving their
shape as localized nonlinear surface waves (NSW’s).
Since the works of Akhmediev [14], several studies have
investigated excitation and stability of NSW’s for a great
variety of materials: two focusing Kerr [9,15], saturable-
Kerr [16], diffusive-Kerr [17, 18], quadratic [10], defo-
cusing Kerr [19] or thermal [20], and single or multi-
layered [21] configurations. Unlike these works, where
radiative effects at the interface were negligible, radia-
tion losses can play a central role in soliton trapping,
and its subsequent propagation along the interface as
a NSW [22]. Radiation-induced trapping has been re-
ported for Kerr media embedded in nonlinear waveg-
uides [23] and in structures with a periodic transverse
modulation of the refractive index [24].
Most theoretical works devoted to either nonlinear

GHS or radiation-induced trapping have been based on

the Nonlinear Schrödinger (NLS) equation, thus restrict-
ing their validity to vanishingly small angles of incidence.
Under such conditions, interfaces exhibiting linear inter-
nal refraction have traditionally been proposed for ac-
commodating such effects. In this Letter, however, we
show that both phenomena can also take place at in-
terfaces with linear external refraction, whose inherent
nonparaxial character can be properly captured within
the context of an appropriate framework. Helmholtz the-
ory [25, 26] overcomes the angular limitations of parax-
ial analyses, thus allowing study the evolution of broad
beams (when compared to the wavelength) propagating
at arbitrary angles. The theory is also valid for nonlin-
ear interfaces [27, 28], and uncovers numerical evidence
of external GHS and radiation-induced trapping.
Figure 1 (a) illustrates the giant GHS ζ0 experienced

by a Helmholtz bright soliton incident at angle θi on an
interface separating two focusing Kerr media. The total
refractive index of medium i is n = n0i + αiI, n0i is the
linear refractive index, αi > 0 the Kerr coefficient and
I the optical intensity. Soliton evolutions in Fig. 1 are
obtained as solutions of the Nonlinear Helmholtz (NLH)
equation [25,29]
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which has allowed us to quantify bright soliton reflec-
tion and refraction at interfaces separating two Kerr
media [27, 28]. Its derivation from the scalar Helmholtz
equation is detailed in [28]. Here, u is the complex enve-
lope of a forward propagating beam associated with a TE
optical field, ξ = 21/2x/w0 and ζ = z/LD are the nor-
malized transverse and longitudinal coordinates, respec-
tively, and w0 is the waist of a reference Gaussian beam
with diffraction length LD = kw2

0
/2. H(ξ) is the Heavi-
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side function that represents the planar boundary, while
interface parameters ∆ = 1 − n2

02
/n2

01
and α = α2/α1

account for the linear and nonlinear refractive index mis-
match, respectively. κ = 1/k2w2

0
is a nonparaxiality pa-

rameter and k = 2π/λ is the wavenumber in vacuum.
The GHS is linked to the existence of the critical angle

for reflection, which within the Helmholtz framework for
interfaces separating two focusing Kerr media is [27]

tan θc =
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∆+ 2κη2
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where η0 is the amplitude of the incident soliton. Predici-
tons of Eq. (2) in Fig. 1 (b) show that critical angles can
exist at interfaces exhibiting both linear internal (∆ > 0)
and external (∆ < 0) refraction. One thus suspect that
external GHS may also occur at interfaces exhibiting lin-
ear external refraction.
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Fig. 1. (a) GHS for Helmholtz solitons. (b) Critical angle
for diffrent nonlinear interfaces. (c) GHS found at linear-
step interfaces depending on the beam size. (d) Giant
GHS at nonlinear interfaces with ∆ > 0 and ∆ < 0.

We analyze first the GHS based on results obtained
from full numerical integration of the NLH equation us-
ing a nonparaxial beam propagation method [30]. It is a
difference-differential method which combines finite dif-
ference and spectral methods to compute the complex
envelope of the evolving field. Figures 1 (c) and (d) show
the magnitude of the linear and giant GHS obtained at
linear-step (α = 1) and nonlinear (α 6= 1) interfaces,
respectively. Backward reflected waves at the interfaces
are negligible in both cases. In order to highlight the
dependence on beam size, the GHS for a fundamental
soliton η0 = 1 at a linear-step interface with ∆ = 0.05
is calculated for four different beam sizes, containing
approximately 5, 7, 10 and 32 wavelengths in the full
width 2ω0 of a reference Gaussian beam (κ = 5× 10−3,
κ = 2.5 × 10−3, κ = 10−3 and κ = 10−4, respectively).

The behaviour at linear-step interfaces depends strongly
on beam size; the narrower the beam, the larger the dis-
placement [2, 3]. Negative values of ζ0 for small angles
of incidence can be explained in terms of the particle-
like model [9] developed within the framework of the
paraxial theory which predicts that an incident soliton
impinging the nonlinear interface at a very small angle
of incidence will be repelled as the beam approaches the
planar boundary. The role of κ is also manifest in the
analysis of the giant GHS shown in Fig. 1 (d). For a
broad beam with κ = 10−4, the linear behaviour of the
interface prevails as ∆ ≪ κη2

0
; no evidence of a giant

GHS is revealed by the green (diamonds) line. This sce-
nario changes completely when κ = 5×10−3 and the crit-
ical angle predicted by Eq. (2) becomes θc = 5.71o. The
red (squares) line shows that a giant GHS is obtained
as the soliton angle of incidence approaches θc. We also
report here, for the first time, external GHS occuring at
interfaces with linear external refraction. This is shown
by the blue (circles) line, where interface parameters and
κ have been chosen to give a different value of θc. The
small value of the angles in Fig.1 (d) is a result of the pa-
rameter set used in the simulations, considering that we
work within the limits of a Helmholtz framework (broad
beams when compared with the wavelength, i.e. κ ≪ 1)
and giant GHS arises at interfaces exhibiting a nonlinear
behavior 2κη2

0
(1−α) ∼ ∆. For different parameters, the

red curve of Fig.1 (d) can shift to much larger angles.
Unlike the usual giant GHS, external GHS demands

a second medium with a lower Kerr nonlinearity, i.e.
α < 1. Therefore, a bright soliton undergoing external
GHS broadens on entering the new nonlinear media, as
is shown in Fig. 2 (a). Just the opposite behaviour is
found for the usual GHS at ∆ > 0 interfaces in Fig. 2
(b), where the soliton narrows after entering a nonlinear
medium with a larger Kerr nonlinearity.
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Fig. 2. (a) External and (b) usual Goos-Hänchen shift.

Radiation induced trapping for ∆ < 0 is described by
the same framework. Unlike previous paraxial studies
where additional confinement mechanisms were needed
to induce soliton trapping at the interface [23, 24], we
show that, within the Helmholtz framework, this phe-
nomenon can arise at interfaces separating two Kerr-type
media without demanding any further conditions. This
is illustrated in Fig. 3 (a), where soliton trapping in-
duced by radiation losses arises as an equilibrium state
resulting from two simultaneous counteracting effects.
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Fig. 3. (a) A Helmholtz soliton trapped by a nonlinear
interface with ∆ < 0. (b) Phase plane representation.

On one hand, the soliton tends to be reflected back
into the first medium since interface parameters, κ and
angles of incidence, have been chosen in the vicinity of
the critical angle [28]. On the other hand, as α < 1,
the incoming soliton partially enters the new medium
and undergoes spreading. Specular soliton reflection is
thus avoided, and attempts to escape from the interface
are counteracted by the attractive force of the ∆ < 0
discontinuity. The effective soliton thus propagates for
large distances (ζ0 = 200) trapped by the interface. Such
capture is illustrated in the phase plane of Fig. 3(b) rep-
resenting the soliton position along the transverse coor-
dinate ξ and its velocity ξ̇. Here, radiation losses are
the result of a lower Kerr nonlinearity in the second
medium. This makes a significant difference with pre-
vious approaches [23, 24], where radiation was induced
by increasing the refractive index mismatch between ad-
jacent media.
An accurate description of soliton trapping evidently

also requires the full Helmholtz theory. If the numeri-
cal experiment shown in Fig. 3(a) is repeated with same
parameter values but κ is significatly reduced to 10−4,
the generalized Snell’s law reveals that critical angles are
not allowed and the linear behaviour of the interface pre-
vails. The incoming soliton thus enters the new medium
undergoing external refraction.
Giant GHS can be interpreted as a behaviour close

to the critical refraction at θc found within a geometri-
cal optics description. Optical solitons are perfectly col-
limated, localized solutions with a well-defined propaga-
tion direction. They thus fit into an approximate descrip-
tion of an optical ray better than any linear solution with
the same degree of localization in the transverse plane.
As regards soliton trapping at the interface, radiation
loss permits the adaptation of the refracted soliton to
an effective critical value close to the expected angle of
incidence.
This Letter has reported the formation of external

GHS and radiation-induced soliton trapping at interfaces
separting two focusing Kerr media, within the framework
of Helmholtz theory. We have given numerical evidence
of both phenomena taking place at interfaces exhibit-
ing linear external refraction, and based predictions on
analytical results of a generalized Snell’s law.
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