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Abstract 

 

Atmospheric turbulence is an important factor that limits the amount of attenuation a barrier 

can provide in the outdoor environment. It is therefore important to develop a reliable method 

to predict its effect on barrier performance. The boundary element method (BEM) has been 

shown to be a very effective technique for predicting barrier insertion loss in the absence of 

turbulence. This paper develops a simple and efficient modification of the BEM formulation 

to predict the insertion loss of a barrier in the presence of atmospheric turbulence. The 

modification is based on two alternative methods: 1) random realisations of log-amplitude and 

phase fluctuations of boundary sources; and 2) de-correlation of source coherence using the 

mutual coherence function (MCF). An investigation into the behaviours of these two methods 

is carried out and simplified forms of the methods developed. Some systematic differences 

between the predictions from the methods are found. When incorporated into the BEM 

formulation, the method of random realisations using only phase fluctuations and the method 

of MCF de-correlation provides predictions that agree well with predictions by the Parabolic 

Equation method and by the Scattering Cross-Section method on a variety of thin barrier 

configurations. Surprisingly the turbulence effect predicted by random realisations of both 

log-amplitude and phase fluctuations are found to be significantly stronger than those 
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predicted by other methods even for cases well within the saturation limit of the amplitude 

fluctuation. 

 

I. Introduction 

Atmospheric turbulence is an important factor in outdoor sound propagation. It is particularly 

important for noise barriers since it can substantially reduce the insertion loss provided by a 

barrier [1]. Nowadays it is usual practice to place a limit on the maximum insertion loss of a 

single barrier to allow for possible turbulence effects. However the calculation of the exact 

effect of turbulence remains difficult. This is partly due to the difficulty in characterising 

atmospheric turbulence for acoustic propagation calculation as well as due to the lack of good 

prediction models that properly account for turbulence effect. Recently, with increased 

understanding of atmospheric physics and its influence on acoustic propagation, several 

efforts have been made to develop prediction models for turbulence affected barrier insertion 

loss. With a suitable turbulence model, the method of scattering cross-section (SCS) provides 

the most straightforward calculation [1,2]. Alternatively, the Parabolic Equation (PE) method, 

which is well developed for sound propagation in an inhomogeneous atmosphere, can be used 

for thin barriers by approximating the sound pressure on the barrier surface in the shadow side 

with zero sound pressure [3,4]. More recently, a substituted-source model (SSM) [5,6] has 

been proposed. In this model Rayleigh’s integral is applied to replace the propagating wave-

front above the barrier with a plane of point sources. Turbulence effect is then incorporated by 

the degradation of coherence between the sources using a mutual coherence function (MCF) 

[7,8]. With the exception of Reference [9], most of these efforts have been applied to thin 

barriers. 
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In noise barrier design, it is known that the insertion loss of a wide barrier can be significantly 

higher than that of a thin barrier of the same height. There have been extensive works [10] on 

the optimisation of barrier insertion loss using different shapes. In these works, the boundary 

element method (BEM) [11] has been shown to be highly effective and accurate for predicting 

the insertion loss of barriers of complex shapes. BEM schemes that use special formulations 

of the Green’s function to take into account of atmospheric refraction on sound propagation 

over a barrier have been proposed [12,13]. However almost all studies on complex shaped 

barriers do not consider the effect of turbulence. It remains uncertain as to how much of the 

theoretical improvements in the insertion loss of complex barrier can be translated into 

performance improvements in real outdoor environments. The problem is two fold. Firstly the 

presence of the barrier, especially one with a complex shape, can significantly alter the 

turbulence structure in the neighbourhood of the barrier. The prediction of this change would 

require numerical simulations using sophisticated techniques in computational fluid 

dynamics. Even if one can predict the changes, it would still be a difficult task to incorporate 

the changes into the isotropic, homogeneous turbulence model that is used in acoustics 

propagation calculations. It is of interest to note that the linearized Eulerian sound 

propagation model proposed recently by Blumrich and Heimann [14] can calculate the 

changes in the mean flow field due to an obstacle in the calculation of sound propagation, and 

may also offer a method for calculating the effect of a complex turbulence field in the 

formulation. The second problem is that there is little work looking at how to propagate the 

sound field from an arbitrary, complex barrier through a turbulence atmosphere. In theory the 

substitute-source model can be adapted for wide barriers by incorporating the no-turbulence 

diffraction of the wide barrier into the source strength distribution of the substituted sources 

on the source plane. The effect of the thickness of a barrier can also be accounted for in the 

scattering cross-section model by virtue of the limiting angles of the cross-section. However, 
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since the boundary element method is such an effective method for the no-turbulence 

insertion loss of a complex shaped barrier, it would be very useful and convenient to be able 

to incorporate turbulence effects directly into the boundary element method. 

 

Theoretically, turbulence effects can be accounted for in the BEM by deriving a Green’s 

function that includes perturbations due to turbulence. Unfortunately a direct formulation of 

such a Green’s function usually requires an integral over a suitable representation of the 

perturbed region and the resulting model would be computationally intensive. In this paper we 

investigate an approximate method that will allow turbulence effects to be included in the 

BEM without a substantial increase in computation time. The method is based on a concept 

similar to the substitute-source model, in that the effect of turbulence can be represented by a 

degradation of coherence between sources, or by random fluctuations of the logarithmic 

amplitudes and phases of the sources. However, instead of creating an artificial source plane 

as in the substitute-source model, the boundary sources inherent in the BEM will be used. 

This allows a convenient integration of the calculation of diffraction and turbulence effects. 

Since the boundary in a BEM is always finite, this method also avoids the truncation of an 

infinite plane as is necessary in the substitute-source model. Another significant difference is 

that the boundary sources involved in a BEM model include both point and dipole sources. 

 

To facilitate the development of this method, the first part of this paper will present an 

analysis of the effect of turbulence on multiple source radiation. An approximate solution that 

allows a quick estimation of highly uncorrelated turbulence fluctuations will be derived. It 

will also identify analytical and simulated differences between turbulence effect calculations 

using logarithmic amplitude and phase fluctuations and the mutual coherence function. The 



 - 5 - 

second part of the paper will then look at boundary sources on realistic thin barrier 

configurations and comparisons with results published in the literature. 

 

II. Turbulence Effect on Multiple Source Radiation 

 

Random Realisations 

 

One way of representing the effect of turbulence on the total sound energy at a receiver 

radiated from multiple sources is to use the correlation function of the turbulence structure to 

generate random realisations of the log-amplitude and phase fluctuations of the source 

contributions. Averaging over a large number of these realisations will then give the expected 

value of the turbulence affected sound pressure at the receiver. Under this model the 

fluctuations of the contribution from a source to the receiver are given by a multiplication 

factor βα je + , where α and β are assumed to be Gaussian variables representing the fluctuations 

from the no-turbulence value of the log-amplitude and phase. Using a Gaussian turbulence 

model [15,16], the correlation functions for the log-amplitude and phase fluctuations can be 

written as: 

)()()( ρααρα += rrB  

and 

)()()( ρββρβ += rrB  

where <> means expected value, r  the coordinate vector and ρ  the transverse separation 

vector with magnitude ρ from the coordinate r . For a Gaussian turbulence model the 

correlation functions are given by, 
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and k is the wavenumber of the non-perturbed medium, μo and ℓ are the standard deviation of 

the fluctuating part of the index of refraction and the correlation length of the Gaussian 

spectrum, L is the longitudinal distance between the sources and the receiver, and the function 
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Using the above correlation function, realisations of α and β for each source can be obtained 

using the filtering procedure described in Reference [17]. Once obtained, the randomly 

realised log-amplitude and phase fluctuations for source i can be written as: 

( ) oii bj
i ee −+=+ βαυ1           (2) 

where υi represents the linear fractional complex variation for source i from the mean value, 

and the term obe−  on the right hand side is a normalisation factor necessary to compensate for 

the change in the sound power due to the introduction of amplitude fluctuation [17]. Note that 

there is a typographical error in Reference [17] where obe 2−  was mistakenly quoted as the 

normalisation factor.  

 

With this notation, the turbulence affected sound pressure at the receiver from all the sources 

is then, 
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where n is the total number of sources, and Qi is the sound pressure contribution at the 

receiver from source i in the absence of turbulence. The expected mean-square sound pressure 

2p  over a large number of realisations is then 
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The expected mean-square sound pressure can be determined directly by numerical 

simulation. Here we wish to determine an estimate of 2p  for a limiting case. 

 

Since Qi are contributions without turbulence, and are therefore independent of the 

realisations, we can write, 
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If the turbulence fluctuations are small, i.e. αi <<1 and βi <<1 which is true when bo << 1, 

then the exponential terms on the right hand side of Equation (2) can be approximated to give, 

ioii jb βαυ +−+≅+ 11          (6) 

Using this approximation, the terms in the first summation of Equation (5) can be written as 

( ) ( )2222222 2)1(211 ioioioiioii bbbQbQ βααβα +++−−+=+−+  

Since the Gaussian random variable αi have zero mean, and the variance 2
iα  and 2

iβ  are 

both equal to bo, the terms can be reduced to, 

( )22 1 oi bQ +  

The terms in the double summation in Equation (5) can be reduced in a similar way.  

( ) ( ))1(Re)1)(1(Re ****
jijijijiji QQQQ υυυυυυ +++=++  

Using the approximation of Equation (6), and making use of the fact that the Gaussian 

random variables has zero means, this can be reduced to, 
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The expected values of the cross coupling terms jiαα  and jiββ  will be zero if the 

variables are totally uncorrelated between sources i and j. This is approximately true if the 

separation between the sources, ρij is much larger that the turbulence correlation length ℓ. The 

validity of this assumption will be examined later using numerical simulations. 

 

Under these assumptions Equation (5) can now be written as, 
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Note that the square bracket in the first term on the right hand side is in fact the mean-square 

pressure in the absence of turbulence, 2
ntp , 
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and the summation in the second term on the right hand side is the incoherently summed 

mean square pressure, 2
incohp , 

∑
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The turbulence affected mean square sound pressure can then be written as, 

( ) 2222 221 incohontoo pbpbbp ++−=        (9) 

This formula can be easily evaluated since both 2
ntp and 2

incohp are independent of 

turbulence and bo is a constant that can be calculated readily from Equation (1a). 
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The influence of turbulence can be more conveniently examined by subtracting 2
ntp  from 

Equation (9) to give the expected net mean square sound pressure difference caused by 

turbulence, )( 2
turbpd , 

( ) 222222 22)( incohontoontturb pbpbbpppd ++−=−=     (10) 

A typical case of interest is that the amplitudes of the sources are of similar order of 

magnitude so that no one source dominates all others. In this case when the source 

contributions are largely in phase (i.e. 2
ntp >> 2

incohp ), and bo is small, then the difference 

)( 2
turbpd  caused by turbulence is negative, meaning a reduction in sound pressure level as 

expected. The equation predicts the reduction to be mostly linearly proportional to bo. On the 

other hand, when the source contributions are largely out of phase, then the difference is 

positive, meaning an increase in sound pressure level, again as expected. The increase is also 

predicted to be linearly proportional to bo.  

 

The accuracy of Equation (10) for sources with randomly generated phases was investigated 

by comparing its prediction of )( 2
turbpd  with that predicted by direct random realisations 

using Equation (4). 100 random realisations were used in each case to generate the expected 

value. The source separations were set to 1/5 of a wavelength (λ). Two frequencies, 500Hz 

and 1000Hz were used in the simulation. The separations were about 1/8 to 1/16 of the typical 

turbulence correlation length ℓ=1.1m [16] of the Gaussian turbulence model used.  This 

choice of source separations was made to test the error caused by assuming totally 

uncorrelated log-amplitude and phase fluctuations between sources in the derivation of 

Equation (10) in cases where the separation is much less than ℓ. Furthermore λ /5 is a 

commonly adopted criterion for discretisation in acoustic numerical methods such as the 
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BEM. The turbulence strength was set to a typical value of μo =3x10-6 [16]. The number of 

sources used ranges from 256 to 2048, which corresponds to physical sizes between 

approximately 35m to 278m. The range of bo realised was between 0.0025 to 0.25 so that the 

small bo assumption of Equation (6) was satisfied. To condense the results, the calculated 

values of )( 2
turbpd  were normalised by the factor 2

incoho pb and plotted in Figure 1. A linear 

regression of the scattered data is also shown in the Figure together with the ideal match line 

(i.e. the line for y=x). 

 

Figure 1 shows that the trend followed by the randomly realised expected values is close to 

that predicted by the approximate formula of Equation (10), i.e. the linear regression line is 

close to the ideal match line. The scatter in the data is partly caused by the random nature of 

the realisations, and partly by the omission in Equation (10) of the correlation between the 

log-amplitude and phase fluctuations between nearby sources - the latter being more 

significant with smaller numbers of sources. An extreme example of the correlation effect can 

be seen by considering the case when source contributions from adjacent sources are 

completely out of phase. In this case cancellation occurs between each pair of adjacent 

sources. If the separation between adjacent sources is much smaller than the turbulence 

correlation length then the cancellation will not be significantly affected by turbulence. 

However since Equation (10) inherently assumes uncorrelated turbulence induced 

fluctuations, it will still predict a significant increase in sound level due to turbulence. Even 

with this possible error in mind, Equation (10) provides a good estimate of the turbulence 

effect over a large range of randomly generated phase patterns, as shown in Figure 1. 

 

Mutual Coherence Function (MCF) 
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Although random realisations can simulate the turbulence effect directly, it requires a large 

number of realisations to minimise the random variation of the averaged value. An alternative 

and popular method to calculate the effect of turbulence on multiple source radiation is the 

use of a MCF to reduce coherence between each pair of sources. For a Gaussian turbulence 

model, the MCF is given by [7,8], 
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where the symbols are as defined above. 

 

The mean square sound pressure at the receiver is then calculated from, 
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where θij is the phase difference between Qi and Qj, and the MCF Гij is calculated from 

Equation (11) with ρij being the transverse separation between sources i and j. Since the MCF 

is defined by Equation (11), the sound pressure level calculated from Equation (12) is 

deterministic. 

 

Equation (12) can be simplified by making an assumption similar to that used to derive 

Equation (10). If we assume that all the MCF Гij in Equation (12) can be approximated by the 

limiting value of the MCF when ρ >> ℓ, then ob
ij e 2−

∞ =Γ=Γ  becomes a constant. This is 

similar to the assumption that the fluctuations between sources are uncorrelated.  Again 

assuming that bo << 1, then ob21−≅Γ∞
, and Equation (12) can be simplified to, 
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The net mean square sound pressure difference caused by turbulence, )( 2
turbpd , can be 

calculated by subtracting 2
ntp  (Equation (7)) from Equation (12) or Equation (13)).  

 

Equation (13) can be compared directly against Equation (9) in two simple cases. The first 

case is when the receiver is at a point of destructive interference at which 2
ntp =0. In this case 

the double summation in the last term of Equation (13) is equal in magnitude but opposite in 

sign to the incoherent sum 2
incohp = ∑

=

n

i
iQ

1

2 , and Equation (13) reduces to 22 2 incoho pbp =  

at a destructive interference point. This is identical to that predicted by Equation (10) (or 

Equation (9)). The random realisation and MCF methods are compatible in this case. 

 

The second case is when the receiver is at a point of complete constructive interference. 

Assuming that all the Qi has equal magnitude and phase, i.e. Qi= Q and θij=0, then the double 

summation in the last term of Equation (13) reduces to 22222
incohnt ppQnQn −=−  and 

Equation (13) itself reduces to ( ) 222 221 incohonto pbpbp +−=  at a constructive interference 

point. This only differs from that derived from random fluctuations (Equation (9)) by a 

bo
2|pnt|2 term. Since it has been assumed in the derivation that bo << 1, this difference should 

not be significant. 

 

The above comparisons are based on simplified versions of the random realisation and MCF 

methods. Figure 1 has already shown that the simplified Equation (10) has good agreement 

with direct realisations. The agreement between the simplified MCF prediction, Equation 

(13), and the full MCF method, Equation (12), is even better, as can be seen in Figure 2, 

which uses the same simulation cases of Figure 1. The scatter of data is much less in Figure 2 
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because of the deterministic nature of the MCF calculations. Remarkably, the assumption of 

Г∞, even when the actual separations between adjacent sources are less than 1/8 of the 

turbulence correlation length, produces very good agreement with that using the actual MCF. 

One should however remember that the phase distributions between sources in these 

simulated cases are randomly generated. As mentioned earlier under the discussion of Figure 

1, a regular phase pattern may produce bigger discrepancies. 

 

The above analysis has shown that the MCF method is compatible with the random realisation 

method in the two extreme cases where the contributions are either largely out-of-phase or in-

phase. The result for other phase distributions is shown in Figure 3 where the predictions from 

full random realisations are plotted together with those from the full MCF method against the 

ratio of 2
ntp / 2

incohp .  The trends of the two sets of data are almost inseparable. This 

confirms that the MCF formulation is indeed compatible with the method of random 

realisations.. 

 

III. Boundary Sources from Barrier Diffraction 

 

Barrier Boundary Source Patterns 

 

The above analysis was carried out to examine the generic behaviour of the calculation 

models for turbulence effect. It was also an attempt to derive a simple model for quick 

estimation of the effect. To a large extent Equation (10) and Equation (13) are such models. 

Both can be calculated easily from the source description and both have been shown to agree 

very well with their corresponding full calculation methods over a large set of randomly 

simulated cases. Unfortunately the application of these simplified models to the calculation of 
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turbulence affected barrier attenuation is limited due to two significant factors. First the 

barrier size is generally not very much larger than typical values of the Gaussian turbulence 

correlation length. This could limit the validity of the assumption of uncorrelated log-

amplitude and phase fluctuations between sources that are used in the derivation of Equation 

(10) and (13). It should however be noted that the typical values of Gaussian turbulence 

correlation length given in the literature are based on free field measurements and predictions 

within the boundary layer of the atmosphere near the ground. The presence of a complex 

barrier will change the turbulence structure and could potentially generate a wide spectrum of 

turbulence in which the equivalent value of ℓ could be significantly smaller than the free field 

values. Experimental data on this is still rare and should be a subject of further investigation. 

Secondly the boundary sources on the barrier surface are created by the incident sound 

pressure. Their magnitude and phase follows a regular pattern determined by the source-

barrier configuration and the correlation between sources is expected to play a larger part in 

such situations. In order to determine the effect of regular source patterns on the 

approximations, numerical simulations were performed with the source contributions Qi 

calculated from real, 2-dimensional barrier configurations. The boundary sources on a thin 

barrier placed on a hard ground were calculated for a point source 100m away and at ground 

level. The boundary sources were discretised using again the criterion of λ/5 for source 

separation. The contributions from these boundary sources to receivers at the same height as 

the barrier top and along a horizontal range of 10m to 1000m from the barrier were calculated 

to give the Qi. 

 

Figure 4 shows the result for a 20m high barrier at 50Hz. The x-axis shows the values of bo at 

different horizontal distances. In this case λ/5 is larger (about 1.24 times) than the turbulence 

correlation length ℓ. The assumption of uncorrelated turbulence fluctuations between sources 
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is met and the approximated models, Equations (10) and (13), agree closely with the 

corresponding full realisation and MCF models. The differences between the randomly 

realised and the MCF calculated values are small, as demonstrated earlier in Figures 3. The 

results from the two approximated models are indistinguishable within the thickness of the 

lines. 

 

When the frequency is increased to 500Hz, the source separation (λ/5) becomes much smaller 

than the turbulence correlation length ℓ. In this case large discrepancies appear between the 

approximate models and the full models, as shown in Figure 5 for the 20m barrier. 

Interestingly the approximate models still follow closely the trend of the variation as a 

function of bo, although the magnitudes of the predicted differences are significantly different. 

The agreement is improved for a bigger boundary, as can be seen in Figure 6 when the height 

of the barrier is increased to 100m. However such a large barrier is unrealistic in practice. So 

it seems that the approximate models, although having good accuracy for randomly phased 

sources, only give good estimate of the turbulence effect on barriers when the discretised 

boundary sources are further apart than the turbulence correlation length ℓ (i.e. at low 

frequencies), or when the size of the barrier is much larger than ℓ. In our simulations using a 

criterion of λ/5, the former condition corresponds to frequencies below roughly 50Hz. At 

higher frequencies the approximate models can be used to provide a quick estimation of the 

upper limit of the effect of turbulence on barrier attenuation. For more accurate barrier 

calculations, either the full random realisation method or the full MCF method should be 

used. 

 

Formulation of Turbulence Effect in BEM 
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The validity of applying the random realisation method or the MCF method to a boundary 

element model is, unfortunately, not certain. The MCF, Equation (11), and the correlation 

function, Equation (1), that are used to generate the random realisations are both derived for 

point sources, while in a BEM formulation, the boundary has both point and dipole sources. 

On a hard barrier, the surface velocity is zero and the radiation is purely from dipole sources 

in a boundary integral formulation (see Equation (14) below). Whether Equations (1) and (11) 

can be applied to these cases is not clear. 

 

Another question concerning the application of the turbulence calculation methods to BEM is 

related to the formulation of the BEM itself. The formulation of the BEM for an exterior 

diffraction problem is written as a sum of the scattered pressure and the incident pressure. If 

one were to use an approximation (described later in more detail) of calculating the boundary 

sources, which give rise to the scattered pressure, by ignoring turbulence and then proceed to 

calculate the total pressure at the receiver as a sum of the scattered and incident pressure, then 

a question arises as to whether one should introduce turbulence fluctuations in both the 

incident and scattered pressures or just in the scattered pressure. This question is illustrated 

more clearly by the following consideration. If one considers the physical noise source as one 

source and the boundary of the barrier as just another source, then the attenuation behind the 

barrier is caused by the destructive interference of the contributions from these two sources. A 

large attenuation corresponds to the case when the contribution from the barrier source is of 

similar magnitude but opposite in phase to the incident sound pressure. If we apply the 

simplified models, either Equation (10) or Equation (13), which should be valid if the noise 

source is far (relative to ℓ) from the barrier, then the expected increase in the mean square 

sound pressure caused by turbulence is of the order of 2bo times 2 times the square of the 

magnitude of the incident pressure ( 2
incohp  being the incoherent sum of that of the incident 
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and the scattered pressure, with both having similar magnitude). This would reduce the 

insertion loss to 0dB even with a bo of 0.25 (about 250m behind the barrier at 1KHz, with μo 

=3x10-6), which seems unrealistic. One will therefore need to consider carefully how to 

incorporate the turbulence calculation methods into the BEM. 

 

The basic BEM formulation for an exterior diffraction problem in a stationary atmosphere 

without turbulence may be written as [11]: 
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where ps is the scattered pressure component and G is the Green’s function for the free space 

problem. r and ro are coordinate vectors where the subscript o indicates a position on the 

surface of the barrier S. no is the outward normal at ro. The constant ε takes the values of 1, ½, 

and 0 if r is respectively in the exterior region V, on the boundary S, or in the interior of the 

barrier Vin. 

 

Equation (14) gives the scattered pressure ps. The total pressure pnt at r is calculated from,  

)()()( rprprp incsnt +=          (15) 

where pinc is the incidence pressure from the source. Since most physical problems are defined 

with boundary conditions specified for the total rather then the scattered pressure, Equation 

(14) needs to be modified. Firstly, one notes that, 
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Adding Equations (14), (15) and (16) together results in the more common formulation for the 

total pressure pnt in V, 
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An exact solution of the BEM can be obtained if one can determine a Green’s function for the 

turbulent medium, say for example by solving an integral over the turbulent domain. However 

this is likely to be rather computationally expensive. 

 

The terms inside the integral may be considered as representing a distribution of point sources 

(involving G) and dipole sources (involving ∂G). Hence the simple concept of source de-

correlation by turbulence could be applied to these sources. As a first approximation, the 

strength of these boundary sources may be determined by solving the integral equation 

(Equation(17) with r on the boundary S) for a stationary, non-turbulent medium. This is 

similar to the approximation used for the determination of the source strength in the 

substitute-source model of Reference [5], and should be acceptable if the actual source is 

close to the barrier so that the source-to-barrier propagation is not much affected by the 

turbulence. 

 

Once the boundary sources are determined, the random realisation method can be used to 

generate log-amplitude and phase fluctuations on the sources, or MCF can be applied to de-

correlate the source contributions. Representing the contribution from each of these sources 

by Qi, then Equation (4) or Equation (12) can be used to determine the turbulence affected 

mean-square scattered pressure, from which the mean square sound pressure difference 

caused by turbulence, )( 2
turbpd , can be calculated.  

 

Since the barrier attenuation is caused by destructive interference of the incident and the 

scattered sound pressure, a change in the scattered pressure will generally reduce the 
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interference and hence the attenuation. Here we take the magnitude of the mean square 

difference, )( 2
turbpd , to represent the amount of energy scattered by turbulence, such that the 

mean-square total pressure with turbulence is calculated from, 

( )222
turbnt pdpp +=          (18) 

where 2
ntp  is calculated from Equation (17) and )( 2

turbpd  is calculated separately from the 

boundary sources only. The reason for not applying the turbulence de-correlation directly to 

Equation (17) for the total pressure is that, in the current formulation, it is not appropriate to 

apply the turbulence effect to the direct incident pressure term, i.e. the pinc term in Equation 

(17). Physically there is no direct incident wave reaching a receiver in the shadow zone of a 

barrier, only diffracted wave reaches the shadow zone. The term is only an artefact of the 

BEM formulation – the physical sound pressure is calculated from the sum of the no-barrier 

incident wave and the radiation from the barrier boundary sources. The initial calculation of 

the boundary source distribution uses the no-turbulence formulation of Equation (17), i.e. the 

boundary sources are calculated from the no-turbulence incident pressure. The introduction of 

turbulence fluctuations in the incident pressure after the calculation of the boundary pressure 

will cause inconsistence in the BEM formulation. Since the calculation of the total pressure in 

the shadow zone in a BEM depends critically on the cancellation of the incident and the 

barrier scattered pressure, this inconsistence could result in an over-estimation of the 

turbulence effect. This inconsistence can be illustrated by considering a case deep in the 

shadow zone. Without turbulence the total pressure is small because of the barrier. In the 

BEM formulation the scattered pressure from the boundary sources is nearly the same 

amplitude but of opposite phase to the incidence pressure. The two pressure waves thus 

cancel out each other to leave a small total pressure. With very strong turbulence and large 

source/barrier separation, the phase coherence will be greatly reduced. If we apply the 



 - 20 - 

turbulence de-correlation to the incident wave as well as to the boundary sources then the two 

pressure waves will become incoherent. The resulting total sound energy will come from the 

sum of two equal amplitude but incoherent waves and will therefore be higher than the no-

barrier incident energy, which is physically not feasible. 

 

Note also that the absolute magnitude of )( 2
turbpd  is used in Equation (18). This assumes 

that the turbulence affected sound level will be higher than the no-turbulence level, and is 

therefore strictly speaking applicable to the shadow zone only.  

 

The advantage of this approximate BEM formulation is that the calculation of the boundary 

surface pressure, which is usually the most time consuming part of the computation, is 

separated from the calculation of the turbulence effect. Furthermore, calculation of the 

contributions Qi needs to be done only once from the boundary integral for each receiver. 

Hence it is very efficient even for a large number of random realisations. 

 

IV. Application to Thin Barriers in a Turbulent Atmosphere 

 

The above BEM formulation was applied to several of the 2-dimensional thin barrier 

configurations used in References [4], in which barriers of heights 10 and 20m were used and 

the source was placed 100m away from the barrier. These were chosen so that the BEM 

predicted results can be compared with published predictions using the scattering cross-

section method (SCS), the Parabolic Equation (PE) and by inference the substitute-source 

method (the SSM has been shown to agree closely with the PE in these cases [5]). In these 

configurations the barriers are all placed on an infinite hard ground. A Gaussian turbulence 
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model is assumed with the parameters μo =3x10-6 and ℓ=1.1m. 100 realisations were used for 

all cases in the BEM with random realisations. 

 

Placing the barrier on a hard ground presents another problem for the BEM/boundary source 

formulation. In a normal BEM calculation, the effect of the hard ground is modelled by 

generating mirror images of the source and the barrier. The mirror images are by nature 

perfectly correlated with the originals. When turbulence is introduced, the log-amplitude and 

phase fluctuations will also be mirrored by the hard ground. In the MCF formulation, the 

separation ρ needs to be calculated from the physical reflected path rather than from the 

mirrored path. Generally this is not a problem but in cases where the source and/or receiver 

are also on the ground, both the geometry and the turbulence structure in the model become 

highly symmetrical and unexpected errors may occur, as can be seen in some of the Figures 

later on.  

 

Figure 7 shows comparisons for a 10m high barrier at 500Hz. The source is located on the 

ground at a horizontal distance of 100m from the barrier. The Figure shows the sound 

pressure level relative to that in the absence of the barrier (labelled “Relative SPL” in Figure 7 

and subsequent figures) at the height of the barrier along a horizontal range up to 1000m. The 

BEM predictions using different turbulence effect calculation methods are plotted together 

with the PE and scattering cross-section (SCS) predictions, from Reference [4]. The BEM 

with MCF prediction agrees fairly well with the PE and SCS predictions up to about 600m. At 

around 800m there is an unexpected drop in the BEM with MCF predicted SPL before it 

recovers. This is due to the ground mirroring effect discussed above. To support this 

argument, additional calculations were performed for the same barrier configuration with the 

source height elevated to 0.5m and 1m. The results are shown in Figure 8. The elevation of 
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the source from the ground to 1m reduces the symmetry in the turbulence induced MCF 

pattern and the unexpected drop in the BEM with MCF calculated SPL at 800m is completely 

eliminated. 

 

In Figure 7, the BEM prediction using random realisations of both log-amplitude and phase 

fluctuations is similar to that by the MCF method over much of the lower frequency range. 

However the strong dip in the attenuation calculated by the MCF method at about 800m is not 

seen in the result by random realisations. Instead a smaller dip is observed in the latter at 

around 600m. Overall it has better agreement with the PE and SCS predictions. This suggests 

that the random realisation method is less affected by ground symmetry than the MCF 

method, which relies on accurate calculation of the lateral path separations between sources. 

However in practical calculations, since the MCF calculation is deterministic and does not 

require averaging over a large number of realisations, it is a faster and more convenient 

method to use.  

 

Also shown in the figure is the resulted calculated using the approximate MCF. The result for 

the approximate formula (Equation (9)) is not shown since it is almost identical to that of 

using the approximate MCF. Since the approximate MCF is not calculated from the actual 

path difference the result does not exhibit the dip at 800m shown in the full MCF result. 

However the overall effect of turbulence is over-predicted by about 5 dB at range above about 

200m. It confirms that for a non-random phase distribution among the boundary sources, the 

approximate methods should only be considered as providing an upper limit estimate of the 

turbulence effect. 
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Figure 9 shows the result for the same barrier and frequency but with the source 200m away. 

With the source further away one may expect larger errors due to the assumption of no-

turbulence in the calculation of the boundary sources in the BEM formulation. Interestingly 

this is not the case. The BEM prediction, using either MCF or random realisations with log-

amplitude and phase fluctuations, agrees extremely well with the SCS and PE predictions. 

The results are similar when the barrier height is increased to 20m, as can be seen in Figure 

10. In this case the BEM with MCF prediction has a stronger interference pattern than 

expected. Again this is thought to be caused by mirroring effect with the source on the 

ground.  

 

Finally Figure 11 shows the result for the same configuration as Figure 7 but at a higher 

frequency of 1kHz. At this frequency the value of bo approaches 1 at 1km range. Even with 

this high value of bo the BEM prediction still works well. The BEM predictions have fairly 

close agreement with the PE and SCS predictions, but with a stronger interference pattern. 

The BEM with both the approximated MCF predicts a very strong turbulence effect that 

reduces the relative sound pressure level to 0dB at range greater than 600m. 

 

Overall the comparisons show that the BEM with log-amplitude and phase fluctuations gives 

the best and most consistent agreement with predictions by SCS and PE. The BEM with MCF 

prediction has good agreement with the other methods overall but seems to be more strongly 

affected by the ground mirroring effect when the source is on the ground. These good 

agreements suggest that application of the turbulence correlation function (Equation (1)) and 

the MCF (Equation (11)) to dipole boundary sources is acceptable. It also shows that the 

method of random realisations and the method of MCF are indeed compatible in barrier 

calculations.  
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The results presented here are mainly comparisons against other theoretical/numerical 

models. The validity of the methods will need to be checked against experimental results. 

This work is currently continuing and the findings will be presented in a later paper. 

 

V. Conclusions 

 

The methods of calculating turbulence effect by random realisations of log-amplitude and 

phase fluctuations and by mutual coherence function de-correlation were investigated. A 

simplified model based on the assumption of uncorrelated turbulence fluctuations between 

sources was developed for each of these methods. The two simplified models were shown to 

agree very well with their corresponding full models for radiations from multiple sources that 

have randomly generated phase distributions. When applied to barrier configurations where 

the boundary sources on the barrier have more regular amplitude and phase patterns, the 

simplified models were found to work well when the separation between the discretised 

sources (usually λ/5) is equal to or larger than the Gaussian turbulence correlation length ℓ, or 

when the boundary surface is very large compared to ℓ. When these conditions are not met, 

the simplified models over-predict the turbulence effect and can only provide an upper limit 

estimation of the effect. 

 

The analysis has also shown that the random realisation and the MCF methods of predicting 

turbulence effect are compatible when applied to the boundary source formulation.  

 

The methods of random realisations and MCF de-correlations were applied to the boundary 

sources created by a BEM discretisation to develop a BEM formulation for the calculation of 
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turbulence effect on the insertion loss of a barrier. Predictions from this BEM formulation 

were compared with published results predicted by the Parabolic Equation method and the 

Scattering Cross-section method on several thin barrier configurations. The BEM formulation 

with random realisations of log-amplitude and phase fluctuations was found to have good 

agreement with the other prediction methods. The BEM formulation with MCF de-correlation 

was also found to agree well with other methods but suffered more strongly from ground 

mirroring effect when the source is on the ground plane of a hard ground. These good 

agreements justify the application of the turbulence correlation function and the mutual 

coherence function that were derived for point sources to the boundary dipole sources in a 

BEM model. Further work will be required to check this finding against experimental results. 

 

The developments presented in this paper are based on the Gaussian turbulence model. It is 

known that the Gaussian model is a simple but crude approximation of the turbulence 

spectrum and there are better representations such as the von Karman model and the 

Kolmogorov model [see for example References 6-8].  The MCF for a Kolmogorov model is 

known and can be applied instead of the Gaussian model MCF in the BEM formulation. 

Further work will be required to see if this can provide a better prediction in practice. 

Experimental data on the turbulence structure near a barrier are also badly needed to facilitate 

further developments in this area. 
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Figure Captions: 

 

Figure 1. Correlation between turbulence effects calculated from full random realisations and 

from the approximate model of Equation (10). Randomly generated source phase patterns. bo 

up to 0.25. 

 

Figure 2. Correlation between turbulence effects calculated from the full MCF and from the 

simplified MCF. Randomly generated source phase patterns. bo up to 0.25. 

 

Figure 3. Comparison of turbulence effects calculated from random realisations (with both 

log-amplitude and phase fluctuations) and from MCF at difference settings of source patterns. 

 

Figure 4. Comparison of turbulence effect predictions by the full and simplified methods for 

a 20m high thin barrier at 50Hz. The separation between the discretised sources is 1.24 times 

the Gaussian turbulence correlation length. 

 

Figure 5. Comparison of turbulence effect predictions by the full and simplified methods for 

a 20m high thin barrier at 500Hz. The separation between the discretised sources is about 1/8 

of the Gaussian turbulence correlation length. 

 

Figure 6. Comparison of turbulence effect predictions by the full and simplified methods for 

a 100m high thin barrier at 500Hz. The barrier size is very large compared with the 

correlation length. 
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Figure 7. Calculated relative SPL at 500Hz as a function of horizontal range from a 10m high 

thin barrier on a hard ground. The source is on the ground 100m away from the barrier. The 

receiver height is the same as the barrier height. μo =3x10-6 and ℓ=1.1m. 

 

Figure 8. Effect of elevated source height on the BEM with MCF prediction of turbulence 

effect. Barrier configuration is the same as Figure 8. 

 

Figure 9. Calculated relative SPL at 500Hz as a function of horizontal range from a 10m high 

thin barrier on a hard ground. The source is on the ground 200m away from the barrier. The 

receiver height is the same as the barrier height. μo =3x10-6 and ℓ=1.1m. 

 

Figure 10. Calculated relative SPL at 500Hz as a function of horizontal range from a 20m 

high thin barrier on a hard ground. The source is on the ground 200m away from the barrier. 

The receiver height is the same as the barrier height. μo =3x10-6 and ℓ=1.1m. 

 

Figure 11. Calculated relative SPL at 1kHz as a function of horizontal range from a 10m high 

thin barrier on a hard ground. The source is on the ground 100m away from the barrier. The 

receiver height is the same as the barrier height. μo =3x10-6 and ℓ=1.1m. 
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Figure 1 Correlation between turbulence effects calculated from full random 
realisations and from the approximate model of Equation (10). Randomly generated 
source phase patterns. bo up to 0.25. 
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Figure 2 Correlation between turbulence effects calculated from the full MCF 
and from the simplified MCF. Randomly generated source phase patterns. bo 
up to 0.25. 
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Figure 3 Comparison of turbulence effects calculated from random realisations 
(with both log-amplitude and phase fluctuations) and from MCF at difference 
settings of source patterns. 
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Figure 4 Comparison of turbulence effect predictions by the full and simplified 
methods for a 20m high thin barrier at 50Hz. The separation between the 
discretised sources is 1.24 times the Gaussian turbulence correlation length. 
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Figure 5 Comparison of turbulence effect predictions by the full and simplified 
methods for a 20m high thin barrier at 500Hz. The separation between the 
discretised sources is about 1/8 of the Gaussian turbulence correlation length. 

bo

0.00 0.05 0.10 0.15 0.20 0.25

d(
|p

tu
rb

|2 )/(
b o|p

in
co

h|2 )

-30

-20

-10

0

10

20
Realised 
Approx. (Eqn.10)
MCF
Simplified MCF (Eqn.13)



 - 35 - 

 

Figure 6 Comparison of turbulence effect predictions by the full and simplified 
methods for a 100m high thin barrier at 500Hz. The barrier size is very large 
compared with the correlation length. 
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Figure 7 Calculated relative SPL at 500Hz as a function of horizontal range from a 10m 
high thin barrier on a hard ground. The source is on the ground 100m away from the 
barrier. The receiver height is the same as the barrier height. μo =3x10-6 and ℓ=1.1m. 
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Figure 8 Effect of elevated source height on the BEM with MCF prediction 
of turbulence effect. Barrier configuration is the same as Figure 8. 
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Figure 9 Calculated relative SPL at 500Hz as a function of horizontal range from a 10m 
high thin barrier on a hard ground. The source is on the ground 200m away from the 
barrier. The receiver height is the same as the barrier height. μo =3x10-6 and ℓ=1.1m. 
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Figure 10 Calculated relative SPL at 500Hz as a function of horizontal range from a 
20m high thin barrier on a hard ground. The source is on the ground 200m away from 
the barrier. The receiver height is the same as the barrier height. μo =3x10-6 and ℓ=1.1m. 
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Figure 11 Calculated relative SPL at 1kHz as a function of horizontal range from a 10m 
high thin barrier on a hard ground. The source is on the ground 100m away from the 
barrier. The receiver height is the same as the barrier height. μo =3x10-6 and ℓ=1.1m. 
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