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Several approximate extensions of the semi-empirical De Jong model �De Jong et al., J. Sound and
Vib. 86, 23–46 �1983�� are considered for the prediction of sound propagation over multiple
impedance discontinuities. A limitation in the original formulation of the De Jong model is
highlighted and a modified form that overcomes this limitation is derived based on reciprocity. This
leads to the development of a model for multiple impedance discontinuities that can be used for the
investigation of sound-wave propagation above a mixed, striped soft ground that is created by either
porous absorbent strips, embedded grooves, or wells with different depths. The accuracy of the
model is validated against the boundary element method. It is then used to evaluate the importance
of the imaginary part of the admittance of the ground strips on sound attenuation along welled
surface. It is shown that the attenuation performance of a surface with multiple impedance
discontinuities is high when the imaginary part of the average admittance is large and negative �with
an −i�t convention�, but the magnitudes of the attenuation peaks are also substantially affected by
diffraction from the impedance discontinuities. © 2006 Acoustical Society of America.
�DOI: 10.1121/1.2216905�
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I. INTRODUCTION

Sound-wave propagation above a surface with multiple
impedance discontinuities has been a subject of continuing
interest, particularly due to the possibility of enhancing
ground attenuation through diffraction at the discontinuities.
A practical application of this problem is in the prediction of
traffic noise, for example, which is usually produced above
hard ground �e.g., asphalt or concrete�, and crosses a discon-
tinuity as it propagates over to a softer ground �e.g., grass or
snow�. Another example of this problem is in the study of
wave propagation over a series of ribs or grooves, which can
provide extra attenuation of environmental noise. van Der
Heijden and Marten1 measured the sound attenuation by a set
of parallel wells on the ground, and van Tol and Holties2

investigated low, close to track barriers and absorptive layers
on a slab track. A further possibility of using such an imped-
ance surface is in novel reactive barrier designs. Fujiwara et
al.3 predicted the performance of a series of wells on the top
surface of a T-shaped barrier. Recently, the authors showed
that adding a Schroeder-type diffuser surface on top of a
T-shaped barrier can provide substantial improvement on the
barrier’s insertion loss.4

It should also be noted that the ability of an impedance
discontinuity to generate surface waves can also be used to
enhance instead of attenuate sound propagation. Zhu et al.5

have demonstrated such a possibility by means of an imped-
ance strip with finite width. However, the focus of this paper
is attenuation rather than amplification of sound propagating
along impedance surfaces. In particular, the possibility of
using impedance discontinuities to enhance attenuation is

considered.
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Many different methods of solution for the case of a
two-impedance, single-discontinuity bounsdary have been
presented in the literature. Enflo and Enflo6 derived a solu-
tion in the form of a triple integral. Simpler asymptotic ap-
proximations can be obtained when the source and receiver
are far from the impedance discontinuity and are both on the
ground, and when the distance from the source to the discon-
tinuity is much less than that from the source to the receiver.
Rasmussen7 also provides an approximate solution for the
propagation over an impedance discontinuity. Zhu et al.5

showed that this approximation has good agreement with a
boundary element method prediction over a simple imped-
ance jump that generates a surface wave.

Unfortunately, the above methods for a single-
impedance discontinuity are not easily amendable to the
more complex case of multiple impedance discontinuities
that are not necessarily far from each other. Numerical meth-
ods of calculations such as parabolic equation8 and boundary
integral equation9 can provide accurate prediction, but they
are generally expensive in terms of computation resources
and do not always give an insight into the physical mecha-
nisms of the sound attenuation.

The method presented by De Jong et al.10 and Koers11

can be considered as a different class of solution that uses
semiempirical modifications of analytical expressions for
diffraction by a rigid half-plane, which is used to represent
an admittance step from a hard surface to air. This method
has been shown to produce good predictions under a variety
of conditions, although Daigle et al.12 and Hothersall et al.13

found that it has serious limitations in certain geometries
involving near-grazing angles and at low frequencies. It was
suggested that more accurate results can be obtained at

greater source and receiver heights and shorter source to re-
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ceiver distances. Hothersall et al.13 also presented an exten-
sion of the De Jong model to the case of one impedance strip
�two impedance discontinuities� and found good agreement
with predictions by the numerical boundary element method.
However, as pointed out by Boulanger et al.,14 their exten-
sion has an inconsistency with the original De Jong model.
Boulanger et al.14 examined the De Jong method at short
distances and close to the ground. Very good agreement with
measurements was reported for a single discontinuity. How-
ever, their extension of the method, which is similar to that
given by Bassiouni et al.15 and is corrected for the inconsis-
tency noted in the equation of Hothersall et al.,13 to a surface
with periodic multiple impedance strips was found to pro-
duce clear discrepancies when compared with measurements.

Nyberg 16 introduced a solution of the Helmholtz equa-
tion for a mixed ground using a Fourier transform technique.
He showed that this problem under certain conditions may be
estimated by using area-averaged admittance. Although it
seems to give a good approximation for a periodic mixed
impedance ground in a limited range of frequency, it cannot
distinguish the situations where one strip or another is at the
specular reflection point for a given percentage of hard sur-
faces.

The purpose of this paper is to examine the attenuation
of sound propagation over a ground with multiple impedance
discontinuities that are created by a series of rigid wells with
different depths. The width of the wells in the direction of
the propagation is generally smaller or comparable to the
acoustic wavelength such that the discontinuities cannot be
considered to be far from each other. The impedances of
these wells can have large variations in values due to well
resonances. We wish to derive an approximate analytical so-
lution for this problem to provide some insight into the at-
tenuation mechanism that will allow us to obtain guidelines
for design optimization. Of the methods identified from the
literature, the approximation method by De Jong is chosen as
the basis for further development. First, we examine the De
Jong model and explain the apparent inconsistence in the
extension13 for one impedance strip and the failure of the
existing extension14,15 for multiple strips. A new extension of
the method for multi-impedance ground will then be intro-
duced, and the accuracy of the new model on grounds with
single and multiabsorbent strips will be examined. The nu-
merical boundary element method �BEM�, which has been
shown to be very accurate and reliable in previous
studies,9,14 will be used as a basis for comparisons and vali-
dation. Finally, the model will be applied to multiwelled sur-
faces with various depth sequences to examine the factors

TABLE I. Choice of QG and �/� sign inside the righ
Eq. �1�.

Z1 on sourc
�e.g., Fig.

Specular reflection point
G on impedance Z1

QG=Q
� sign inside the s

�Q2−Q1� in front of
Specular reflection point

G on impedance Z2

QG=Q
� sign inside the s
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that influence the excess attenuation, with the view of under-
standing how such surfaces can affect the performance of a
T-shaped barrier.

II. DIFFRACTION MODELS FOR WAVE PROPAGATION
OVER MIXED IMPEDANCE GROUND

A. Original De Jong model

De Jong et al.10 introduced a solution by comparing the
case of an admittance step at a transition between a hard to a
soft ground with the case of a semi-infinite screen. It was
suggested that the solution for the diffraction by the latter
can be used to represent the diffraction by an admittance step
from an acoustically hard surface to the atmosphere. Using
e−i�t to represent the time dependence, the De Jong equation
for the relative pressure above a plane containing a single-
impedance discontinuity can be written as

p

p1
= 1 +

r1

r2
QGeik�r2−r1� + �Q2 − Q1�e−i�/4 1

��

r1

s1

��F2��k�s1 − r1�� ± F2��k�s1 − r2��eik�r2−r1�� . �1�

The different path lengths including r1, r2, and s1 are shown
in Fig. 1. The total pressure at the receiver point is p, and p1

is the free-field pressure. Q1 and Q2 are the spherical wave
reflection coefficients calculated for an infinite ground of
impedance Z1 and Z2, respectively, and are calculated at the
specular reflection point G. Table I summarizes the choices
of QG and the ± sign inside the right-hand-side square
bracket in Eq. �1�.

FIG. 1. Definition of the different paths for a single impedance discontinu-
ity. G is the specular reflection point. �a� is an example with the specular
reflection point on the source side of the discontinuity and �b� is the recip-
rocal case of �a�.

d side square bracket in the original De Jong model,

Z2 on source side
�e.g., Fig. 1�b��

bracket
e bracket

QG=Q1

� sign inside the square bracket
�Q1−Q2� in front of square bracket

bracket
e bracket

QG=Q2

� sign inside the square bracket
�Q1−Q2� in front of square bracket
t-han

e side
1�a��
1

quare
squar

2

quare
squar
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The third term on the right-hand side of the equation can
be seen as the contribution from the diffraction by the im-
pedance discontinuity, and is equal to a correction term
�Q2−Q1� times the approximate diffracted field from a hard
half-plane. The term �Q2−Q1� corrects for the surfaces hav-
ing finite impedance Z1 and Z2. It is empirically constructed
by physical arguments to give the correct prediction when
Q1=1 �acoustically hard� and Q2=0 �air�, and when Z1 ap-
proaches Z2. Because of the empirical nature of this correc-
tion, its limitations are not mathematically explicit. Daigle et
al.12 conducted a thorough study on the behavior of the De
Jong model. They found that the model has difficulties deal-
ing with situations when the grazing angles are small, but
they were not able to formulate firm criteria for the use of the
model.

Of the diffraction terms inside the square bracket in Eq.
�1�, F2�x� is the integral

F2�x� = �
x

�

e�iw2�dw . �2�

The first F2 term inside the square bracket can be considered
as the diffraction contribution associated with the direct
source, while the second F2 term is that associated with the
image source. The sign change for the second term is there-
fore understandable as the reflected path r2 moves from the
source side to the receiver side of the discontinuity. Note that
the diffraction terms used here are derived with an assump-
tion that k s1�1. Daigle et al.12 found that the differences
between the use of this approximation and an exact formu-
lation of the diffracted field in the De Jong model are not
significant in the cases that they studied. The observed errors
of the model at small grazing angles are not caused by the
approximation of the hard half-plane diffracted field, but
rather by the empirical correction for the finite impedances.

The spherical reflection coefficient can be calculated by
the Weyl–van der Pol approximation,17

Q = RP + �1 − RP�F�z� , �3�

where Rp is the plane-wave reflection coefficient,

Rp =
cos � − 	

cos � + 	
. �4�

In this paper the normalized surface admittance 	 for absorp-
tive fibrous material is calculated by the empirical equations
of Delany and Bazely.18 For narrow wells, the model de-
scribed by Eq. �8� of Wu et al.19 is used to compute 	.
Briefly, the model assumes plane-wave propagation in the
well but adjusted to incorporate the effects of thermal wave
and shear wave in the boundary layers. Full details can be
found in Sec. I A of Ref. 19.

The argument z in the function F�z� is called the numeri-
cal distance. To help the discussion in later sections, the fol-
lowing equations, which are well documented in the

20–22
literature, are given:
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z = +
1 + i

2
�kr2�	 + cos �� . �5�

The function F�z�, which describes the interaction between
the spherical wavefront with the impedance boundary, is ap-
proximated by

F�z� = 1 + iz��cerfe�z� , �6�

where cerfe�z� is the scaled complemented error function.
In the range of �	�2kr2�1, the absolute value of the nu-
merical distance is much bigger than unity. The error
function complement can then be approximated by an
asymptotic expansion, and the boundary factor F�z� for
large �z� may be written as

F�z� = 2i��zH�− Im�z��e−z2
− � 1

2z2 +
3

4z4 + ¯ 	 , �7�

where H is the Heaviside step function—it is unity when its
argument is positive, and zero when its argument is negative.

The excess attenuation can now be calculated as

EA = − 20 log
 p

p1
�dB. �8�

B. Modified De Jong model

The original De Jong model is derived for the case of an
impedance step from a harder ground to a softer ground
�Z1�Z2 in Fig. 1�. The model has been shown by De Jong et
al. and others10,13,14 to have good accuracy under a variety of
conditions for a single-impedance jump from hard to soft
ground, which satisfy De Jong’s assumption of hard to soft
transition in his derivation of the model. Unfortunately, this
assumption has been overlooked in other studies and caused
some confusion when the model is extended to cover mul-
tiple impedance discontinuities. The implication of this as-
sumption of hard to soft transition can be clearly seen by
considering Eq. �1� under reciprocal conditions. An example
is shown in Fig. 1, where Fig. 1�b� is the reciprocal case of
Fig. 1�a�. Applying the original De Jong model, i.e., Eq. �1�,
to Fig. 1�a�, gives the total pressure pa as

pa

p1
= 1 +

r1

r2
Q1eik�r2−r1� + �Q2 − Q1�e−i�/4 1

��

r1

s1

��F2��k�s1 − r1�� + F2��k�s1 − r2��eik�r2−r1�� . �9�

On the other hand, applying the model to the reciprocal case
of Fig. 1�b� gives the total pressure pb as

pb

p1
= 1 +

r1

r2
Q1eik�r2−r1� + �Q2 − Q1�e−i�/4 1

��

r1

s1

��− F2��k�s1 − r1�� + F2��k�s1 − r2��eik�r2−r1�� .

�10�

Note that in Eq. �10� we have already adjusted for the rever-
sal of the �Q1-Q2� term and the change of sign of the second
F2 term inside the square bracket for the reciprocal case. It
can be clearly seen that Eq. �10� differs from Eq. �9� by the

negative sign in front of the first F2 term inside the square
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bracket. Consequently pa�pb, which violates the reciprocity
condition. Due to this difference the original model, i.e., Eq.
�1�, does not satisfy acoustic reciprocity and is therefore in-
valid for a soft to hard transition.

In order for the model to satisfy the reciprocity condi-
tion, we can impose a further condition on the sign of the
first F2 term. By comparing Eqs. �9� and �10�, and knowing
that Eq. �1� works for hard to soft transition, we modified the
De Jong model into the following equation:

p

p1
= 1 +

r1

r2
QGeik�r2−r1� + �Q2 − Q1�e−i�/4 1

��

r1

s1

��
F2��k�s1 − r1�� + �F2��k�s1 − r2��eik�r2−r1�� , �11�

where, as before, �=1 for Do�D1 and =−1 for Do
D1. The
new parameter 
 is introduced to account for the reciprocity
requirement such that 
=1 when the admittance 	2
	1,
and =−1 for 	2�	1. Equation �11� will be referred to as the
modified De Jong model.

C. Extension to multiple impedance discontinuities

Due to the assumption of hard to soft transition in the
original De Jong model, any extension of this model to mul-
tiple impedance discontinuities that involves transitions to a
harder ground is bound to be in error. Bassiouni et al.15 ex-
tended the De Jong method for the sound propagation over a
ground surface containing any finite number of impedance
discontinuities. Their equation is a straightforward applica-
tion of the original De Jong model to each of the impedance
discontinuities in turn. As such, it will not work if any of the
consecutive impedance changes is from a softer to a harder
ground. Unfortunately, Bassiouni et al.15 does not contain
any data to support its claim of the model’s accuracy.

Boulanger et al.14 used the same approach to extend the
original De Jong model to calculate sound propagation over
a ground with periodic impedance changes. Equation �18� of
Boulanger et al.14 is essentially the same as Bassiouni’s
equation, but simplified to periodic changes between two im-
pedances. This periodic impedance changes clearly violate
the assumption of only hard to soft transition in the original
De Jong model. Therefore, it is not surprising that the ex-
tended model shows clear discrepancies when compared
with measured data �see Fig. 12 of Boulanger et al.14�.

In another study, Hothersall et al.13 presented an exten-
sion of the De Jong model to one strip of impedance change,
i.e., two impedance discontinuities. In their description of the
De Jong model, they have in fact correctly stated that the
choice of Z2 and Z1 in Eq. �1� should be such that Z1 is the
more rigid of the two. In their extension of the De Jong
model to two discontinuities, there is a sign change in the
Fresnel integral that corresponds to the F2��k�s1−r1�� term
�see Eqs. �10�–�12� in Hothersall et al.13� that accounts for
the diffraction from the second discontinuity �transition from
softer to harder impedance�. Unfortunately, they did not give
any description or justification for the change. Indeed, they
suggested that their equations follow Bassiouni’s approach15

and did not point out the differences. Consequently, there is
14
confusion in later literature that claims that their equations
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were inconsistent with De Jong’s model, and it was
suggested14 that a−1 should be multiplied to the Fresnel
integral in question. It is now clear that that suggestion is
incorrect and should not be carried out.

D. The new Multi-impedance Discontinuities Model
„nMID…

The above observations clearly show that the original
De Jong model �Eq. �1�� cannot be extended to cases with
multiple impedance discontinuities without incorporating the
modifications suggested here in Eq. �11� to deal with the case
of an impedance transition from softer to harder ground.
Based on reciprocity requirement, it has been shown earlier
that a sign change in the diffraction term associated with the
direct path is necessary to account for the soft to hard tran-
sition. Based on this modification, we can now extend the
modified De Jong model to multiple impedance ground by
applying Eq. �11� to each of the discontinuities in turn. For a
ground with n impedance sections, and hence �n−1� imped-
ance discontinuities, the total pressure p is approximately
given by

p

p1
= 1 +

r1

r2
QGeik�r2−r1� + 


j=1

n−1

�Qj+1 − Qj�
e−i�/4

��

r1

sj

��
 jF2��k�sj − r1�� + � jF2��k�sj − r2��eik�r2−r1�� , �12�

where � j =1 for Do�Dj and =−1 for Do
Dj, and 
 j =1
when the admittance 	 j+1
	 j and =−1 for 	 j+1�	 j. The
geometry and the definition of the paths and symbols are as
shown in Fig. 2.

Obviously this straightforward application of the single-
discontinuity diffraction formula, Eq. �11�, to multiple dis-
continuities will inherit the limitation of the base formula,
i.e., that the accuracy decreases with larger reflection angles
�nearer grazing�. Furthermore, such a simple combination
does not consider possible interactions between the disconti-
nuities, and is therefore expected to work best when the dis-
continuities are far apart relative to the acoustic wavelength.
Note that when there is only one impedance strip, i.e., n=3
with Z3=Z1, Eq. �12� reduces to the same Eqs. �10�–�12� of
Hothersall et al.13

Also, for a ground with a periodic arrangement of iden-
tical strips of impedance Z2 embedded in a ground of imped-
ance Z1, such as the case considered in Boulanger et al.,14 the
equation can be rewritten in terms of the diffraction terms

FIG. 2. Definition of the different paths for multiple impedance discontinui-
ties. G is the specular reflection point.
from the two edges of each strip as
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p

p1
= 1 +

r1

r2
QGeik�r2−r1� + �Q2 − Q1�

e−i�/4

��

�

k=1

m � r1

s2k−1
�F2��k�s2k−1 − r1�� + �2k−1

�F2��k�s2k−1 − r2��eik�r2−r1�� +
r1

s2k

��F2��k�s2k − r1�� − �2kF2��k�s2k − r2��eik�r2−r1��� ,

�13�

where m is the total number of strips.

E. The significance of the modification

In Sec. II B we have shown mathematically that the
original De Jong model does not satisfy reciprocity require-
ment. The consequence of this in application to a simple case
of a single-impedance strip �two impedance discontinuities�
is shown in Fig. 3. The impedance strip is placed perpendicu-
lar to the source to receiver direction and has a width of
12 cm. This width is much narrower, compared with acoustic
wavelength, than those used in a previous study.13 The rea-
son for choosing such a narrow width is that our eventual
purpose is to use the model to investigate the excess attenu-
ation created by embedded wells that have widths that are
less than the acoustic wavelength. In Fig. 3 the strip has a
porous-type flow resistivity �200 000 N s m−4� that is typical
of grassland. The source to receiver distance is 1 m, and the
strip is placed on a rigid ground midway between the source
and the receiver. Calculations are first made for a source
height of 0.1 m and a receiver height of 0.4 m, and then for
the corresponding reciprocal situation. The differences in the
excess attenuation between the two cases are shown in Fig.
3. The result from the extension by Bassiouni et al., which is
based on the original De Jong model, is labeled as
“Bassiouni.”

Because the two cases are the reciprocal of each other,

FIG. 3. Error in applying the original De Jong model to reciprocal cases of
propagation over a hard ground with a 0.12-m absorbent strip placed at the
midpoint between source and receiver. Distance from source to receiver is
1 m.
we expect the difference between the calculated excess at-
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tenuation to be exactly zero. This is indeed the case with the
nMID model. On the other hand the extension �Bassiouni�
based on the unmodified De Jong model produces differ-
ences of up to 8 dB, proving that it does not satisfy the
reciprocity requirement.

Another way to look at the significance of the modifica-
tion is to examine the differences between the equations rep-
resenting the two models. The only difference between the
modified model, Eq. �11�, and the original De Jong model,
Eq. �1�, is the reversal of the sign of the F2��k�s1−r1�� term
when the transition is from a softer impedance to a harder
impedance, i.e., the introduction of the parameter 
 in Eq.
�11�. Hence, the significance of the modification can be seen
by examining the behavior of this F2 term. Figure 4 shows
the absolute value of this term as a function of its argument
x, which is given by �k�s1−r1�. As can be seen from the
figure, the value of F2 increases as its argument gets smaller.
Therefore, it is expected that the effect of the modification,
or in other words the error in any extensions to multiple
impedance strips that are based on the original formulation,
will be greater when �k�s1−r1� is smaller. This occurs at
lower frequencies and, from the geometry of Figs. 1 and 2,
when the source and receiver heights are low and the propa-
gation is close to grazing. Generally the nMID model pro-
vides more significant improvements over the incorrect
model at lower frequencies and at smaller grazing angles.
Note that this only applies to soft to hard impedance transi-
tions, but in the case of multiple impedance strips such tran-
sitions will inevitably occur. To demonstrate this, Fig. 5 com-
pares the result of predictions using the nMID model and
Bassiouni’s equation on the single-impedance strip configu-
ration of Fig. 10�a� of Hothersall et al.13 The source and
receiver heights are both at 4 m. The distance between them
is 20 m. The strip width is 5 m. The position of the strip is
changed from below the source to below the receiver. The
excess attenuation is plotted against the horizontal distance
from the source to the center of the strip in Fig. 5 for the
frequency of 500 Hz. The flow resistivity of the strip is taken
to be 200 000 N s m−4 as in Hothersall et al.,13 but the depth
of the absorbent is taken to be 0.032 m. The source and
receiver geometry is symmetrical. Therefore, we expect the
results to be symmetrical about the center point �when the

FIG. 4. The absolute value of the Fresnel integral F2�x�.
distance from the source to the center of the strip is 10 m�. In
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this configuration the nMID is the same as Eqs. �10�–�12� of
Hothersall et al.13 Indeed, the nMID model shows good
agreement with BEM that is similar to that found in Hother-
sall et al.13 On the other hand, the incorrect Bassiouni model
shows an asymmetric result in Fig. 5 because of the lack of
reciprocity in its formulation.

One particular case where extensions based on the origi-
nal De Jong model will always fail to predict the correct
attenuation occurs when the specular reflection point is out-
side but close to either side of a narrow impedance strip. This
can be seen by examining the nMID model for a single im-
pedance strip �i.e., m=1 in Eq. �13��, and with the reflection
point at the source side of the strip. Under this condition the
incorrect extension based on the original De Jong equation
�e.g., Bassiouni et al.15 and Boulanger et al.14� is similar to
the nMID model but has a −1 sign in front of the third
Fresnel integral inside the square bracket �i.e., the
F2��k�s2−r1�� term�. If the strip is narrow such that the dif-
ference between s1 and s2 is small, then the F2 terms inside
the square bracket in this incorrect extension will largely
cancel. This will then leave only the first two terms �repre-
senting spherical reflection from an infinite ground� in the
equation, even though the discontinuities are close to the
specular reflection point. On the other hand, the nMID model
will have correctly a significant diffraction contribution from
the addition of the two F2 terms associated with r1. The
difference is large especially when the difference between
the two impedances is large such that �Q2−Q1� returns a
large value. One such example is when the impedance strip
is created by a well that has a large swing of extreme imped-
ance values due to resonances in the well at different fre-
quencies. Figure 6 shows the result of such a case. The strip
is a narrow well of depth 0.3 m and a width �in the source to
receiver direction� of 0.12 m. It is placed on a rigid ground
midway between the source and the receiver. The source
height is 0.1 m and the receiver height is 0.2 m. The source
to receiver distance is 1 m. The reflection point is on the
source side of the strip. The figure shows clearly the failure
of the incorrect extension �labeled “Bassiouni” in the figure�
to predict the diffraction effect from the strip. In comparison,
the nMID prediction clearly shows strong attenuation pat-

FIG. 5. Comparison between calculations of propagation over an absorbent
strip of width 5 m. Source and receiver heights are both 4 m. Distance from
source to receiver is 20 m. The source frequency is 500 Hz.
terns created by the embedded well.
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III. PROPAGATION OVER MIXED POROUS
IMPEDANCE SURFACES

Although there have been previous studies13–15 in the
literature on the application of De Jong’s model to mixed
impedance grounds, not all the results are positive due to the
incorrect application of the original De Jong model and the
confusion over the apparent inconsistence14 of Hothersall et
al.’s equations13 with the De Jong equation. Hothersall et
al.13 studied single-impedance strip configurations with
strips that were 5 to 10 m wide at frequencies not lower than
500 Hz. Good accuracy was found except at close to grazing
propagation. Because of our eventual goal of using the nMID
model for wells that are narrower than a wavelength, we
wish to conduct further investigations on propagation over
narrow impedance strips. In all our tests, the strips are all
0.12 m wide, and the source to receiver distance is always
1 m. The source and receiver heights are in the range from
close to the ground to 0.4 m. In other words the effect of
mixed impedance boundaries that are close to each other is
considered in situations where source and receiver are close
to the surface and separated by a short distance. The short
separation of the source and receiver provides a reflection
angle � that is largely different from grazing �about 60° to
70° from the normal of the reflecting surface in most cases�
for most of the source and receiver heights of interest. With
this arrangement the path lengths sj �see Fig. 2� are of the
order of 1 m. The assumption of ksj �1 that is inherent to
the diffraction approximation used in the nMID model
should therefore be satisfied at frequencies above 300 Hz
when ksj 
5.

The accuracy of the nMID model is first examined on a
single absorbent strip, and then on a mixed impedance sur-
faces in which seven different admittance strips in a rigid
ground are used. As in Hothersall et al.,13 the boundary ele-
ment method, which has been shown to have good agree-
ment with measured data in previous works on mixed imped-

9,14

FIG. 6. Predicted attenuation over a rigid ground with a well of width
0.12 m and depth 0.3 m located midway between source and receiver. Dis-
tance from source to receiver is 10 m and source and receiver heights are
0.1 and 0.2 m, respectively.
ance plans, is used to provide data for the validation of
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the nMID model. Full details of the boundary element
method �BEM� used in this investigation can be found in
Monazzam and Lam.4

A. One absorbent strip

Figure 7 shows the prediction of the excess attenuation
for wave propagation over a narrow strip of porous material
�flow resistivity �=20 000 N s m−4�. The source and receiver
heights are 0.1 and 0.4 m, respectively. It can be seen that
the nMID model has good agreement with the BEM predic-
tion except for the attenuation peak at around 2.5 kHz. The
reflection angle � is 63.4° and should be far enough from
grazing for the nMID model to work. On the other hand, the
width of the strip, 12 cm, is less than an acoustic wavelength
at frequencies below about 2.8 kHz. The discrepancy in the
attenuation peak is therefore likely to be caused by the inter-
actions between the two discontinuities due to their small
separation �less than a wavelength below 2.8 kHz�. In this
case the BEM prediction, which takes into account the inter-
actions, has a significantly lower peak magnitude. However,
the interactions do not always result in a reduction in peak
magnitude, as it can be seen in the example in the next sec-
tion where the magnitude predicted by the BEM can be
smaller than that predicted by the nMID model. Overall
though the main features of the attenuation variation with
frequency are well predicted. The nMID model appears to
provide a reasonably good prediction of the attenuation even
when the two impedance discontinuities are closer than a
wavelength to each other.

B. Multiabsorbent strips

A mixed surface with seven absorbent strips placed back
to back to each other and located perpendicularly to the di-
rection from source to receiver on a rigid ground is used for
this investigation. The predictions by the nMID and by the
BEM are shown in Fig. 8. The surface in Fig. 8 has an
arbitrary arrangement of absorbent strips. The flow resisitivi-
ties of the absorbents, which are stated in the figure, are
chosen to be typical of soft to grass-covered grounds. The

FIG. 7. Propagation over one porous absorbent strip. Source and receiver
heights are 0.1 and 0.4 m, respectively, the strip is located at midpoint
between source and receiver. The flow resistivity �=20 000 N s m−4.
strips are all given a fixed depth of 0.1 m for the simulation.
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Reasonable agreement is seen between the nMID model
and the boundary element method in Fig. 8�a� when the
source and receiver are high above the surface �0.4 and
0.2 m high, respectively, with a separation of 1 m�. The
closeness of the discontinuities once again created shifts in
the frequency and the magnitude of the attenuation peaks
that are similar to that seen in Fig. 7, which has similar
source and receiver heights. Again, the overall trend of the
attenuation is well predicted. As the source and receiver are
moved close to the ground �both are 0.01 m above ground
and the reflection angle becomes �=88.9°� in Fig. 8�b�, a
consistent error relative to the BEM prediction is seen over
most of the frequency range shown in the figure. This con-
sistent error seems to be a result of the limited accuracy of
the De Jong model when the propagation is close to grazing.
Apart from the constant shift in magnitude, the nMID still
matches the trend of the attenuation increase with frequency
that is predicted by the BEM. It seems that the nMID model
can provide a good indication of the essential features of the
attenuation.

IV. PROPAGATION OVER WELLED SURFACES

A. Effect of imaginary part of admittance
for welled surface

The use of wells of different depths to create a mixed
impedance surface is of particular interest here. This is the
base design for the well-known Schroeder-type diffusers. It

FIG. 8. Wave propagation over a mixed impedance surface containing seven
strips placed on a rigid ground midway between the source and receiver. The
flow resistivity of the strips from source to receiver are 250 000, 200 000,
20 000, 300 000,120 000,180 000, and 350 000 N s m−4. Source and re-
ceiver heights are �a� 0.4 and 0.2 m; �b� 0.01 and 0.01 m, respectively.
has been shown by numerical simulation that putting such a
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surface on top of a T-shaped barrier can substantially in-
crease the insert loss of the barrier.4 However, modeling such
welled surfaces in the analytical multiple impedance discon-
tinuities model presents more difficulties than modeling po-
rous absorbent strips. With a porous strip, the surface admit-
tance �the inverse of impedance� varies smoothly with
frequency. The real part, which corresponds to resistive loss,
is generally significant. When the strip is created by a well,
the admittance at the entrance to the well can vary widely
due to resonances. For example, for a rigid well that is nar-
row enough such that plane wave propagation can be as-
sumed, the value of the normalized input admittance 	
changes from negative infinity to positive infinity when pass-
ing through a resonance.
of 3� /4 when the imaginary part of 	 is large and posi-
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The behavior of the spherical wave boundary factor
F�z�, Eq. �6�, has been studied extensively in the past.23 It is
known that the approximation is only valid when the value
of 	 satisfies certain conditions. Additionally, the attenuation
effect represented by the boundary factor F�z� is likely to
change considerably due to the extreme variation of the 	
value with frequency for welled surfaces. Hence, it is neces-
sary to examine the effect of 	 on the spherical reflection
coefficient for propagation over a boundary with embedded
rigid wells.

The boundary factor F�z� can be approximated by Eq.
�7� for large values of the numerical distance �z�. However,
Eq. �7� is only bounded for certain range of the argument of
z. The suggested substitution by Stinson23 for Eq. �7� is
�F�z� = 2i��zH�− Im�z��e−z2
− � 1

2z2 +
3

4z4 + ¯ 	 ,
− �

4
� arg z �

3�

4

F�z� = 0 otherwise
� . �14�
From Eq. �5� the real and imaginary part of the numerical
distance z are given by

real�z� =
�kr2

2
�a − b + cos ��, and

�15�

imag�z� =
�kr2

2
�a + b + cos �� ,

arg�z� = arctan
a + b + cos �

a − b + cos �
� , �16�

where a and b are the real and imaginary parts of the admit-
tance 	, respectively. The real part of the numerical distance
z is negative if the imaginary part of the admittance 	 is
positive and bigger than the sum of the cosine of the reflec-
tion angle and the real part of the admittance. At the entrance
to a rigid well, the real part of the admittance is positive but
very small ��0�, but the imaginary part is very large, par-
ticularly around resonant frequencies. When the reflection
angle � is large and therefore cos � is small, arg�z� is deter-
mined mainly by b, the imaginary part of 	. From Eq.
�15�, a large and positive imaginary part of the admittance
	 �i.e., masslike reactance� will result in the real part of
numerical distance z being negative and the imaginary
part of z being positive. When the imaginary part of 	 is
large and negative �i.e., springlike reactance�, the real part
of the numerical distance z is positive and the imaginary
part of z is negative. In both cases, since the real part of 	
is positive and small for a rigid well, we have �a�� �b� and
the value of arg�z� is always within the valid range
�−� /4�argz�3� /4�. Therefore, Eq. �7� is valid for the
welled surface. However, arg�z� will be close to the limit
tive, and close to −� /4 when the imaginary part of 	 is
large and negative.

A closer look at the equations for the spherical reflection
coefficient can also reveal the behavior of the apparent sound
attenuation over a welled surface at resonant frequencies
where large values of admittance 	 occur. From Eq. �4� it
can be seen that the plane-wave reflection coefficient ap-
proaches −1 when 	 is much larger than cos �, where � is the
reflection angle from the surface normal. The numerical dis-
tance z is large when 	 is large. For large values of z, the
boundary factor F�z�, from Eq. �7�, will approach zero.
Hence, the spherical reflection coefficient, Eq. �3�, will ap-
proach −1 when 	 is large at resonance. For a surface with a
uniform admittance and without discontinuities, the sound
propagation is given by Eq. �1� without the diffraction terms
�the third term on the right-hand side of Eq. �1��, and with
QG calculated from the admittance of the well. When QG

approaches −1, the reflected pressure largely cancels the in-
cident pressure to give large ground attenuation. The ampli-
tude factor �r1 /r2� and the phase factor eik�r2−r1� will modify
the exact frequency at which the attenuation peak occurs, but
it will be close to the resonant frequencies of the well, espe-
cially at lower frequencies. This is what one would expect
since physically the sound energy will be trapped by the
resonating well. Therefore, we can expect the imaginary part
of the admittance 	 of rigid wells to have a significant cor-
relation with the attenuation of sound propagation over a
surface embedded with such rigid wells.

When there is an impedance discontinuity nearby, the
reflected pressure is modified by the diffraction terms in Eq.
�1�, even if the reflection point is still on the surface of the
well. To see how the discontinuity modifies the attenuation,
we can make further approximations to simplify Eq. �1�.

Since the integral F2 decays rapidly with its argument �Fig.
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4�, one may ignore the first F2 term that involves the bigger
argument �k�s1−r1� when the source and receiver are not
close to the ground, and write

p

p1
� 1 +

r1

r2
eik�r2−r1�� , �17�

where

� = �Q2 − �Q2 − Q1�
�1 − i�
�2�

F2�x��, with x = �k�s1 − r2� .

�18�

If the ground reflection point is close to the discontinuity,
then x is small and a crude approximation of the F2 integral
based on a simple step approximation of the integration is

F2�x� � 
��

8
− x� + i��

8
, �19�

and � is then

� = �Q2 − �Q2 − Q1��
1

2
−

x
�2�

� + i
x

�2�
	� . �20�

We can see that, because of the imaginary part in Eq. �20�, �
will not be exactly −1. Therefore, the attenuation peak will
be greatly reduced due to the presence of the diffraction from
the discontinuity. Moreover, at resonance, Q2�−1 and Q1

=1 if the other side of the discontinuity is a hard ground.
Then, � is approximately ��2/��x�1+ i�, which approaches
zero rather than −1 when x is small. Hence, large cancel-
lation will not occur at resonance. The attenuation peak
will be shifted away significantly from the resonant fre-
quency. To see whether the shift is to a lower or higher
frequency, we can examine the behavior of the Qs to find
the condition under which � may regain a value of −1.
When x�1 and ignoring the imaginary part, Eq. �20�,
with Q1=1 being a hard surface, becomes

� �
Q2 + 1

2
. �21�

For � to approach −1 for maximum attenuation, Q2 needs to
have a largely real and negative value close to −3.

Close to resonance, the admittance is large. For a large
admittance 	=a+ ib, with a small and negligible, the nu-
merical distance z is approximately

z �
− �1 − i�

2
�kr2b, and z2 = − kr2�a + cos ��b − i

kr2b2

2
.

�22�

Note that we have retained the small �a+cos �� term in the
expression for z2 to show the decay factor in the exponen-
tial term in F�z�. If b is positive and large �just above a
resonance�, then the Heaviside factor in Eq. �7� is zero

and the boundary factor F�z� is again small,
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F�z� � −
1

2z2 �
1

kr2�2�a + cos ��b + ib2�
�

− i

kr2b2 . �23�

In this case the real value of Q2 above resonance does not
change much from the value of −1 given by Rp. Hence, the
attenuation peak frequency is not shifted towards higher fre-
quencies. Indeed, the increasing value of the imaginary part
in Eq. �23� as b becomes smaller �moving away from reso-
nance� means that the attenuation at frequencies just above
resonance should decrease.

At frequencies just below resonance, b is negative and
large. The Heaviside function is 1 and F�z� has an additional
term,

F�z� � 2i��ze−z2
− i

1

kr2b2 . �24�

At resonance b is very large and the real part of z2 in Eq. �22�
gives rise to a large decay factor in e−z2

. F�z� is again very
small, providing continuity in F�z� between Eqs. �23� and
�24� when b changes from large negative values to large
positive values. However, when b becomes smaller �but still

1 and �a+cos ��� moving away from resonance to lower
frequencies, z2 will be dominated by the imaginary term
and e−z2

becomes a largely oscillating phase factor. In this
case the first term in Eq. �24� for F�z� can produce rea-
sonably large, negative real values for Q2 to come close to
−3, and hence for � to approach −1 for maximum cancel-
lation and attenuation. Therefore, it is likely that the at-
tenuation peak will shift to lower frequencies in the pres-
ence of a discontinuity.

Although the above analysis is based on just one discon-
tinuity, it is expected that the general behavior should be
similar when there are multiple discontinuities. However, the
specific values of the attenuation will change according to
specific configurations. This will be confirmed in the follow-
ing sections with simulations on a variety of surfaces embed-
ded with wells.

B. Propagation over a rigid surface embedded
with one well

As discussed above, it is expected that the excess attenu-
ation over welled surfaces will have notable changes around
their resonant frequencies. This is investigated by using the
nMID model to calculate the excess attenuation of a ground
embedded with narrow wells. One case with a single well
embedded in a rigid ground is used as examples in Fig. 9.
The well has a width of 0.12 m and the well depth is
0.245 m. The excess attenuation over this surface, with
source and receiver heights at, respectively, 0.001 and
0.35 m, is shown in Fig. 9. As before, the horizontal source
to receiver distance is 1 m and the well is placed with its
width in the source to receiver direction and placed midway
between the source and receiver. The very small source
height used here is to simulate the propagation of sound over
the top surface of a T-shaped barrier where the source inci-
dence may be considered as mostly parallel to the top sur-
face. The small source height means that the ground reflec-

tion point is mostly on the hard portion of the ground at the
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source side before the start of the well. Figure 9 shows that
the nMID model has reasonable agreement with the refer-
ence BEM calculation, and predicted the main features, i.e.,
the peaks in the excess attenuation just before the resonant
frequencies of the wells. The discrepancies seen around the
peaks are similar to those found in the cases with absorbent
strips �Figs. 7 and 8� due to the closeness of the discontinui-
ties and the near-grazing propagation. However, in the
welled case the peaks are much sharper due to resonances
and small losses, and the discrepancies are more apparent.
The discrepancies also appear to be larger at lower frequen-
cies. Since ksj 
5 at frequencies above approximately
300 Hz, the assumption inherent to the hard half-plane dif-
fraction formulation used in the model should be satisfied at
frequencies above 300 Hz. The larger discrepancies at low
frequencies but above 300 Hz are more likely to be caused
by the empirical correction for the finite impedances in the
De Jong model and the interactions between the discontinui-
ties that are ignored in the nMID model.

The result in Fig. 9 shows that the excess attenuation is
indeed highly correlated with the resonances, at which the
imaginary part of the admittance crosses over from a large
negative value to a large positive value. The attenuation
peaks just before each resonant frequency, where Im�	� is
large and negative, then drops quickly to small values �nega-
tive attenuation� when Im�	� becomes large and positive.
This correlates very well with our predictions from Eq. �7�
on the dependence of the boundary factor F�z� on the imagi-
nary part of the admittance. Indeed, this can be seen clearly
by comparing the results with that calculated for a hypotheti-
cal surface that has a uniform admittance equals to that of the
well. Using this hypothetical surface, the attenuation, also
shown in Fig. 9, shows strong attenuation peaks at well reso-
nances. The peaks are much stronger than those of the BEM
and nMID calculations that also account for the effect of the
surrounding hard ground and the diffraction from the discon-
tinuities. This confirms that the imaginary part of the admit-
tance pays a crucial part in the attenuation of sound propa-
gation over a welled surface, but the effect of the impedance

FIG. 9. Excess attenuation of propagation over a 0.12-m-wide well embed-
ded in a rigid ground located midway between source and receiver that are
1 m apart. The well depth is 0.245 m. Source and receiver heights are 0.001
and 0.35 m, respectively.
discontinuities must be correctly accounted for also. The
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nMID model thus proves to be useful in providing some
insight into the main factors affecting the attenuation.

C. Propagation over multiple embedded wells

In order to see the effect on a multiwelled surface the
investigation was extended to a case with seven wells. The
wells all have the same width of 0.12 m but the well depths
are all different. The well depths from source to receiver are
arbitrarily chosen to be 0.25, 0.4, 0.35, 0.3, 0.45, 0.2, and
0.18 m. The source and receiver separation and their heights
are identical to the single-well case. The result of this calcu-
lation is shown in Fig. 10. With more well depths there are
more resonances within the frequency range. There are cor-
responding increases in the number of attenuation peaks in
the graph. Thus, the general relationship between attenuation
and well resonances is maintained even in the case of mul-
tiple wells. However, the magnitude and extent of these at-
tenuation peaks do vary. Some resonances do not produce
noticeable attenuation peaks at all. This is possibly caused by
the diffraction effect of multiple impedance discontinuities
that modifies the reflected wave. The trend of the attenuation
peaks is reasonably predicted by the nMID in comparison
with the BEM prediction. The nMID seems capable of ac-
counting for the diffraction from multiple impedance discon-
tinuities. There are however discrepancies in the positions
and absolute values of the peaks between the two methods,
similar to that observed earlier in Fig. 9, especially at low
frequencies. Considering the closeness of the discontinuities
�less than a wavelength at frequencies below 2.8 kHz� and
the closeness of the source to the ground �source height is
0.001 m�, both of which are limitations of the nMID model,
the nMID approximation is reasonably accurate in predicting
the trend of the attenuation changes and the influences of the
well resonances. Indeed, the accuracy of the nMID model
improves with frequency as the width of the wells becomes
comparable and eventually larger than the wavelength. The
agreement between nMID and BEM is noticeably better at

FIG. 10. Excess attenuation of propagation over seven 0.12-m-wide wells
embedded in a rigid ground located midway between source and receiver
that are 1 m apart. The well depths are 0.25, 0.4, 0.35, 0.3, 0.45, 0.2, and
0.18 m. Source and receiver heights are 0.001 and 0.35 m, respectively.
frequencies above 2 kHz.
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Our next test surface is a rigid surface embedded with
wells that corresponds to a quadratic residue diffuser �QRD�
design. The reason for choosing this surface is that previous
work4 has shown that the insertion loss of a T-shaped barrier
can be significantly improved by placing such a structure on
the top of the T-shape. It is therefore of interest to see if this
improvement in barrier performance is due to extra attenua-
tion of sound when it propagates over the QRD covered top
surface. The nMID model should be able to provide some
insight into the factors that create this extra attenuation if it
can correctly predict the attenuation. Again, the BEM is used
as a reference in this investigation.

A QRD surface is created by a sequence of wells that
have depths that are determined from a quadratic residue
sequence according to the formula

di =
c�i2 mod N�

N�2fr�
, �25�

where di is the depth of the ith well, N is the length of the
quadratic sequence, and fr is the design frequency of the
diffuser. Note that the design frequency is not the same as
the first resonant frequency of the well with the maximum
depth, which occurs at fo=c / �4*dmax�, where dmax is the
maximum depth. Full details on QRD design can be found
in the literature.24

The QRD surface used in this simulation has an N=7
design. The design frequency is 400 Hz. Due to the number-
ing sqeuence, there are only three distinct well depths and
one zero depth �rigid surface�. The well widths are fixed at
0.12 m as before. The results are shown in Fig. 11 for two
source heights. The propagation geometry in Fig. 11�a� is the
same as that of Fig. 10, while the source height is raised to
0.1 m in Fig. 11�b�. Because of the smaller number of dis-
tinct well depths there are less distinct resonant frequencies,
and Fig. 11 shows correspondingly less attenuation peaks
than Fig. 10, which has seven distinct wells. Note that once
again the nMID model provides reasonable prediction over
the trend of the attenuation despite noticeable errors in the
peak magnitudes. As the source height is raised in Fig. 11�b�,
the accuracy of nMID improves, as is expected from the
assumption of the nMID model.

When the source height is very close to the surface
�0.001 m�, which we used to approximate the incidence con-
dition over the top surface of a T-shaped noise barrier, the
results in Figs. 10 and 11 show that the nMID predictions
have tolerable agreement with the BEM predictions. There
are still noticeable discrepancies in the values of the peak
frequencies and magnitudes at low frequencies. However, the
general trends of the attenuation, and in particular the influ-
ence of the well resonances and the effect of multiple dif-
fractions, between the two predictions are in good agree-
ment. We believe that this shows that the nMID is
sufficiently accurate to explain the effect of a QRD surface
on the top of a T-shaped barrier, although it may not be
accurate enough to be used as a means to predict the absolute

magnitude of the barrier performance.
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D. Average admittance effect

Nyberg16 demonstrated that the Helmholtz equation with
the boundary condition for a point source above an infinite
plane surface with periodic impedance strips can be solved
by using a Fourier transform approach. The wave propaga-
tion over a two-valued, infinitely periodic striped impedance
can be approximated by employing the area-averaged admit-
tance in the calculation of the reflection coefficient,

	ave =
�w1	1 + w2	2�

�w1 + w2�
, �26�

where w1 and w2 are the widths of the two types of strips,
and 	1 and 	2 are the corresponding admittance values. The
assumption made is that �w1+w2� is much smaller than the
acoustic wavelength. In our case the width of each well
�strip� is smaller than a wavelength. However, since the
strips are not periodic, the total width of all the nonperiodic
strips added together is larger than or comparable to a wave-
length in most of the frequency range. Hence, Nyberg’s ap-
proximation cannot be applied directly here. In earlier sec-
tions we have seen that the admittance of the well plays a
deterministic role in the attenuation of sound propagation
over a surface with a single well. It is therefore of interest to

FIG. 11. Excess attenuation of propagation over N=7 QRD surfaces em-
bedded in a rigid ground located midway between source and receiver that
are 1 m apart. The well widths are fixed at 0.12 m. Source and receiver
heights are 0.001 and 0.35 m, respectively.
see if the area-averaged admittance over multiple wells also
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correlates with the attenuation phenomenon. At resonance
the average admittance is dominated by that of the well in
resonance and therefore the attenuation should be correlated
with the average admittance. In Fig. 11 the prediction using
the averaged admittance without the diffraction terms from
the discontinuities, i.e., on a hypothetical surface of uniform
admittance equals to the average admittance, is also shown.
Without accounting for the diffraction, the prediction shows
a strong attenuation peak at every resonant frequency. Al-
though some of these peaks do coincide with the attenuation
peaks predicted by the BEM and nMID models �especially at
frequencies below 1 kHz when the acoustic wavelength is
longer than the overall width of all the wells�, fewer peaks
appear in the more accurate predictions. This again shows
the importance of accounting for the diffraction from the
impedance discontinuities, and suggests that the effect of
the discontinuities actually reduces the attenuation peaks
both in number and in magnitude. However, there is also
evidence, most noticeably at frequencies below 1 kHz in
Fig. 11, that the diffraction terms also broaden the peaks
slightly and also do not allow the attenuation to drop to
large negative values immediately after each resonance. It
therefore appears that the imaginary part of the area-
averaged admittance can be used as a pointer for optimiz-
ing the attenuation provided by such surfaces, provided
that the effect of the diffraction from the discontinuities is
accounted for properly, by either the BEM or nMID to
obtain the correct attenuation levels.

V. CONCLUSIONS

The original De Jong model for the calculation of dif-
fraction from an impedance discontinuity has an inherent
assumption of transition from a hard to a softer impedance.
Unfortunately this assumption has been overlooked in many
of the subsequent works13,14 that attempted to extend the
model to cases with multiple impedance discontinuities. This
paper has shown that such extensions are invalid because of
this assumption of hard to soft transition. In one previous
work13 where the extension to one impedance strip �two im-
pedance discontinuities� did work, there was no clear expla-
nation as to the adjustment in the equations that were used.
Consequently, some confusion was found in later work
which considered the extension to be inconsistent and should
be corrected. In this paper we used the acoustic reciprocity
condition to derive a modified form of the De Jong equation
that does not have the restriction of hard to soft impedance
transition. This modification clarifies the previously unex-
plained adjustment made in the equations of Hothersall et
al.13 This modified equation was then used to obtain a new
multiple impedance discontinuities model, the nMID. It was
shown that this nMID model agrees well with the accurate
boundary element method when applied to single and mul-
tiple impedance strips that are made up of typical porous
surfaces. As expected, due to the inherent assumption of the
De Jong approximation and the disregard of intercoupling
effects between discontinuities, the accuracy decreases as the
source or receiver height decreases �nearer grazing inci-

dence� and when the width of the strips or the distance be-
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tween the discontinuities becomes shorter than the acoustic
wavelength. Nevertheless, the simulations presented in this
paper have shown that the nMID is still capable of predicting
the main features of the excess attenuation spectrum under
these unfavorable conditions.

One of the main objectives of this work is to investigate
the attenuation of sound propagation over multiple imped-
ance strips that are created by rigid wells of different depths.
The admittance of rigid wells has a different behavior from
that of porous surfaces. The extreme values created by well
resonances mean that the admittance value can be close to
the limits of the valid range of useful approximations that are
used to calculate the spherical reflection coefficient. It has
been shown, by examining the behavior of the spherical re-
flections coefficient at different values of admittance, that the
wells can have large effect on the sound propagation when
the imaginary part of the admittance is large and negative
�with a e−i�t convention�, which occurs just before a well
resonance. This correlation was confirmed by simulations on
surfaces with single and multiple wells. It was found that the
attenuation peaks at frequencies just below the resonant fre-
quencies, at which the imaginary part of the admittance be-
comes very large and negative. In case of multiple wells, the
area-average admittance gives a rough indication to this be-
havior and can be considered as a first approximation pointer
for quick optimization of the attenuation over such surfaces.
However, diffraction from the impedance discontinuities
modifies and substantially reduces the magnitudes of the at-
tenuation peaks, and therefore must be properly accounted
for. Overall, it was found that the nMID model is capable of
accounting for these effects, although discrepancies are more
noticeable at the sharp attenuation peaks at lower frequen-
cies.
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