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Glossary 
 
Econometrics: a statistical approach to economic modelling in which all the 
parameters in the structural equations are estimated according to a ‘best fit’ to 
historical data.  
 
Maximum likelihood: a statistical concept which underpins calibration optimisation 
and which generates the most likely parameter values; it is equivalent to the parameter 
set which minimises the chi-square value. 
 
Objective function: see Payoff below 
 
Optimisation: the process of improving a model’s results in terms of either an aspect 
of its performance or by calibrating it to fit reported time series data. 
 
Payoff: a formula which expresses the objective, say, maximisation of profits, 
minimisation of costs or minimisation of the differences between a model variable 
and historical data on that variable. 
 
Zero-one parameter: a parameter which is used as a multiplier in a policy equation 
and serves the effect of bringing in or removing a particular influence in determining 
the optimal policy. 
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1. Definition of the Subject and Its Importance 
 
The term ‘optimisation’ when related to system dynamics (SD) models has a special 
significance. It relates to the mechanism used to improve the model vis-à-vis a 
criterion. This collapses into two fundamentally different intentions. Firstly one may 
wish to improve the model in terms of its performance. For instance, it may be desired 
to minimise overall costs of inventory whilst still offering a satisfactory level of 
service to the downstream customer. So the criterion here is cost and this would be 
minimised after searching the parameter space related to service level. The direction 
of need may be reversed and maximisation may be desired as, for instance, if one had 
a model of a firm and wished to maximise profit subject to an acceptable level of 
payroll and advertising costs. Here the parameter space being explored would involve 
both payroll and advertising parameters. This type of optimisation might be described 
generically as policy optimisation. 
 
Optimisation of performance is also the raison d’etre of other management science 
tools, most notably mathematical programming. But such tools are usually static: they 
offer the ‘optimum’ resource allocation given a set of constraints and a performance 
function to either maximise or minimise. These models normally relate to a single 
time point and may then need to be re-run on a weekly or monthly basis to determine 
a new optimal resource allocation. In addition, these models are often linear (certainly 
so in the case of linear programming) whereas SD models are usually non-linear. So 
the essential differences are that SD model optimisation for performance involves 
both a dynamic and a non-linear model. 
 
A separate improvement to the model may be sought where it is required to fit the 
model to past time series data. Optimisation here involves minimising a statistical 
function which expresses how well the model fits a time-series of data pertaining to 
an important model variable. In other words a vector of parameters are explored with 
a view to determining the particular parameter combination which offers the best fit 
between the chosen important model variable and a past time series dataset of this 
variable. This type of optimisation might be generically termed model calibration. If 
all the parameters in the SD model are determined in this fashion then the process is 
equivalent to the technique of econometric modelling. A good comparison between 
system dynamics and econometric modelling can be found in Meadows and Robinson 
(1985). 
 
 
2.  Optimisation as calibration 
 
In these circumstances we wish to determine optimal parameters, those which, 
following a search of the parameter space, offer the best fit of a particular model 
variable to a time series dataset on that variable taken from real world reporting. 
 
As an example consider a variation of the one of the epidemic models which are made 
available with the Vensim™ software. The stock-flow diagram is presented as figure 
1. 
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Figure 1:  Stock-flow diagram for a simple epidemic model 
 
In this epidemiological system members of a susceptible population become infected 
and join the infected population. Epidemiologists call this an S-I model. It is a simpler 
variation of the S-I-R model which includes recovered (R) individuals. 
 
Suppose some data on new infections (at intervals of five days) is available covering 
25 days of a real-world epidemic. The model is set with a time horizon of 50 days 
which is consistent with, say, a flu epidemic or an infectious outbreak of dysentery in 
a closed population such as a cruise ship. The ‘current’ run of the model is shown in 
figure 2, with the real-world data included for comparison. 
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Figure 2: Current (Base) run of the model and reported data on infections 
 
 
 
Clearly there is not a very good correspondence between the actual data and the 
model variable for the infection rate (infections). We wish to achieve a better 
calibration and so there is a need to select relevant parameters through which the 
calibration optimisation can be performed over. Referring back to figure 1 we can see 
that the fraction infected from contact and the rate that people contact other people 
are two possible parameters to consider. The initial infected and initial susceptible are 
also parameters of the model in the strict sense of the term, but we will ignore them 
on this occasion. In this model the initial infected is 10 persons and initial 
susceptibles number 750,000 persons. 
 
The chosen value for the fraction infected from contact is 0.1 while that for the rate 
that people contact other people is 5.0. The former is a dimensionless number while 
the latter is measured as a fraction per day (1/day). This is obtained from 
consideration of the rate of potential infectious contacts (persons/day) as a proportion 
of the susceptible population (persons). 
 
The optimisation process for calibration involves reading into the model the time 
series data, in this case on new infections, and, secondly, determining the range for 
the search in parameter space. There is usually some basic background knowledge 
which allows a sensible range to be entered. For instance, a probability can only be 
specified between 0 and 1.0. In this case we have chosen to specify the ranges as 
follows: 
 
                    0.03 <= fraction infected from contact <= 0.7 
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                     2   <=  rate that people contact other people <= 10  
 
A word of warning is necessary in respect of optimising delay parameters. Because 
there is a risk of mathematical instability in the model if the value of DT (the TIME 
STEP) is too large relative to the smallest first-order delay constant, it is important to 
ensure the TIME STEP employed in the model is sufficiently small to cope with delay 
constant values which may be reached during the search of the delay parameter space. 
In other words ensure the minimum number for the search range on the delay 
parameter is at least double the value of the TIME STEP. 
 
Maximum likelihood estimation and the payoff function 
The optimisation process involves a determination of what are termed statistically as 
maximum likelihood estimates. In Vensim™ this is achieved by maximising a payoff 
function. Initially this is negative and the optimisation process should ensure this 
becomes less negative. An ideal payoff value, after optimisation, would be zero. A 
weighting is needed in the payoff function too but for calibration optimisation this is 
normally 1.0. Driving the payoff value to be larger by making it less negative has 
parallels with the operation with the Simplex algorithm common in linear 
programming. This algorithm was conceived initially for problems where the 
objective function was to be minimised. Its use on maximisation problems is achieved 
by minimising the negative of the objective function. 
 
During the calibration search, Vensim™ takes the difference between the model 
variable and the data value, multiplies it by the weight, squares it and adds it to the 
error sum. This error sum is minimised. Usually data points will not exist at every 
time point in the model. Here the model TIME STEP is 0.125 (1/8th) but let us assume 
that reported data on new infections have been made available only at  times t= 
5,10,15,20 and 25 so the sum of squares operation is performed only at these five time 
points. 
 
The data is shown as Table 1 
 
                      Table 1: Data used for calibration experiment 
 
Time 5 10 15 20 25 
Infections 30 230 1400 9500 51400 
 
 
The recording point for reported data 
 
System dynamics models differentiate between stock and flow variables and the 
software used for simulating such models advances by a small constant TIME STEP 
(also known as DT). This has implications for the task of fitting real-world reported 
data to each type of system dynamics model variable. The issue is: at what point in a 
continuum of time steps should the reported data be recorded at?  This is important 
because the reported data has to be read into the model to be compared with the 
simulated data. The answer will be different for stock and flow variables. 
 
Where the reported data relate to a stock variable the appropriate time point for 
recording will be known. If it is recorded at the end of the day (say a closing bank 
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balance) then the appropriate point for data entry in the model will be the beginning 
of the next day. Thus the first data point above is at time t= 5 (5.00) and would, if it 
were a stock, correspond to a record taken at the very end of time period 4.  
 
However, if the data relate to a flow variable, as in the case of new infections here, the 
number is the total new infections which have occurred over the entire time unit (day, 
week, month etc.) and so there is a decision to be reached as to which time point the 
data are entered at. This is because the TIME STEP (DT) is hardly ever as large as  
the basic time unit which the model is calibrated in. The use of 5 (10, 15 etc) above 
implies that the data on new infections over the period of time t= 0 to t= 5 is 
compared with the corresponding model variable at time 5+1*DT (and the new 
infections over the period t=5 to t= 10 at time 10+1*DT etc). A more appropriate 
selection might be towards the end of the 5-day time period. Following the  
example above using a TIME STEP= 0.125, this might be at time 4+7*DT (that is at 
4.875). 
 
 
Calibration optimisation results 
Based upon the data on new infections shown above and the chosen ranges for the 
parameter search the following output is obtained (Table 2) After 114 simulations the 
optimised values for our two parameters are shown to be 0.08 and 5.12 and the payoff 
is over 2500 times larger (less negative). Replacing the original parameters with the 
optimised values reveals the result shown in figure 3. To take things further we may 
wish to put confidence intervals on the estimated parameters. One way of 
accomplishing this is by profiling the likelihood and is described in Dangerfield and 
Roberts (1996a). 
 
 
                           Table 2: Results from the calibration optimisation 
 
Initial point of search. 
  fraction infected from contact = 0.1. 
  rate that people contact other people = 5. 
Simulations = 1. 
Pass = 0. 
Payoff = -2.67655e+009. 
---------------------------------. 
Maximum payoff found at:. 
  fraction infected from contact = 0.0794332. 
 *rate that people contact other people = 5.11568. 
Simulations = 114. 
Pass = 6. 
Payoff = -1.06161e+006. 
---------------------------------. 
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Figure 3:  Reported data on infections and optimised (calibrated) model; the 
base case (current) is reproduced for reference 
 
 
Avoid cumulated data 
There might be a temptation to optimise parameters against cumulated data when the 
data is reported essentially as a flow, as is the case here. Were the data to be 
cumulated we would obtain as shown in Table 3.  
 
 
 
            Table 3: Cumulated reported data for the Infected Population  
 
Time  5 10 15 20 25 
Infected 
population 

30 260 1660 11160 62560 

 
 
 
 
The results from this optimisation are shown in Table 4. The ranges for the parameter 
space search are kept the same but the payoff function now involves a comparison of 
the model variable infected population with the corresponding cumulated data. Figure 
4 shows the resultant fit to infected population is good but that is manifestly not borne 
out when we consider the plot of infections obtained from the same optimisation run 
(figure 5).  
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The reason for this is rooted in statistics. The maximum likelihood estimator is 
equivalent to the chi-squared statistic. This is turn assumes that each expected data 
value is independent. A cumulated data series would not exhibit this property of 
independence. 
 
 
    Table 4:  Results from the calibration using cumulated data 
 
Initial point of search 
  fraction infected from contact = 0.1 
  rate that people contact other people = 5 
Simulations = 1 
Pass = 0 
Payoff = -2.48206e+011 
--------------------------------- 
Maximum payoff found at: 
  fraction infected from contact = 0.0726811 
 *rate that people contact other people = 4.96546 
Simulations = 145 
Pass = 6 
Payoff = -212645 
--------------------------------- 
The final payoff is -212645 
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Figure 4: The cumulative model variable (infected population) together with 
reported data 
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                          Figure 5: The corresponding fit to Infections is poor 
 
 
 
As an aside it is worth pointing out that this model, with suitable changes to the  
variable names and the time constants involved, could equally represent the diffusion 
of a new product into a virgin market. In systems terms the structures are equivalent. 
The fraction infected from contact is the same as, say, the fraction reached by word of 
mouth or advertising and the rate that people contact other people is a measure of the 
potential interactions at which new products might be mentioned amongst the 
members of the relevant market segment. Infected population is equivalent to 
customer base, the number of adopters of the relevant product. So it is possible to 
shed light on important real-world marketing parameters through a calibration 
optimisation of models of this general structure. 
 
 
 
3. Optimisation of performance (policy optimisation) 
 
An example model is to be used to illustrate the process of optimisation to improve 
the performance of the system and this is illustrated in figure 6. It concerns the service 
requirements which can arise following the sale of a durable good. These items are 
typically sold with a 12-month warranty and during this time the vendor is obliged to 
offer service if a customer calls for it. In this particular case the vendor is not being 
responsive in terms of staffing the service section. The result is that as sales grow the 
increasing number of service requests is putting pressure on the service personnel. 
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The delay in responding to service calls also increases and the effect of this is that 
future sales are depressed because of the vendor’s acquired reputation for poor service 
response. The basic behaviour mode is overshoot and collapse. 
 
In the model depicted in figure 6, the growth process is achieved by a RAMP function 
which causes sales of the good to increase linearly by 20 units per month from a base 
of 500 units per month.  
 
The payoff function is restricted to the variable Sales. However, this need not be the 
case. Where a number of variables might be options in a payoff function, it is possible 
to assign weights to each such that the sum of the weights is 1.0 (or 100). The 
optimisation process will then proceed with the software accumulating a weighted 
payoff which it will attempt to maximise. Weights are positive when more is better 
and negative when less is better. 

 
 
 
 

 
 
 
Figure 6:  Model of service delays for durable goods under warranty 
 
 
Policy experiment No. 1 
Here it is decided to try to improve the productivity of the service staff. Currently they 
manage, on average, to respond to 120 calls per operative per month. It may be an option to 
improve their productivity by, say, providing them with hand-held devices which direct each 
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operative from one call to the next – calls which may have arisen since setting out from their 
base. In this way their call routing is improved. 
 
The optimisation parameter is Prod Serv Staff and we select an upper limit for  the search 
range of 240 calls per person per month. The chosen performance variable is Sales since we 
wish to maximise this – or at least not have it overly depressed by poor response times. The 
results are shown in Table 5. We see that the payoff is increased and that the optimum 
productivity is a modest increase of 2.6 requests per month, on average. This should be easily 
achievable and perhaps without expenditure on high-tech devices. The graphical output for 
sales is shown in figure 7.  
 
For comparison, the effect of increasing the productivity to as high as 150 calls per month, on 
average, is also shown. This would represent an increase of 25% and would be much more 
difficult to accomplish. Here the benefit of optimisation is highlighted. A modest increase in 
productivity returns a visibly improved sales performance (although the basic behaviour mode 
is unchanged), whilst a much greater productivity increase offers little extra benefit for the 
effort and cost involved in improving productivity. 
 
 
Table 5: Optimisation results for the productivity of the service staff 
 
Initial point of search. 
  Prod Serv Staff = 120. 
Simulations = 1. 
Pass = 0. 
Payoff = 27743.5. 
---------------------------------. 
Maximum payoff found at:. 
 *Prod Serv Staff = 122.647. 
Simulations = 27. 
Pass = 3. 
Payoff = 29915. 
---------------------------------. 
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Figure 7: Plots of sales achieved for differing productivities  
 
 
Policy experiment No. 2 
Another approach to policy optimisation involves the use of a zero-one parameter which has 
the effect of either including or excluding an influence on policy. Suppose it was thought that 
the quantity of product units in warranty should exert an influence on the numbers of service 
personnel hired (or fired). The equation for the desired number of service staff (Des Serv Staff) 
can be expressed as: 
 
Des Serv Staff= "Av #Serv Req Satis"/Prod Serv Staff* trigger+ ("Av #Serv Req Satis"/Prod 
Serv Staff)*(Units Warr/initial units in warranty)*(1-trigger) 
(Units: Persons) 
 
The trigger variable is initially set to 1.0 and so the more sophisticated policy is not active. 
The optimisation run results are shown in Table 6. Clearly there is benefit from including the 
more sophisticated policy which takes into account the current numbers of product units in 
warranty.  
 
 
Table 6: Optimisation results from selection of policy drivers 
 
Initial point of search. 
  trigger = 1. 
Simulations = 1. 
Pass = 0. 
Payoff = 27743.5. 
---------------------------------. 
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Maximum payoff found at:. 
 *trigger = 0. 
Simulations = 13. 
Pass = 3. 
Payoff = 47090.9. 
---------------------------------. 
 
 
The graphical output is unequivocal (figure 8). Sales are continuously increasing when the 
recruitment policy for service personnel takes into account the number of product units in 
warranty. The depressive effect on sales of poor service performance is non-existent.  
 
Whilst this might seem an obvious policy it is surprising how easily the naïve alternative might 
be accepted without question. The number of calls a typical operative can manage each month 
is well known along with the (historical) number of service requests satisfied. Hence, the 
desired number of staff is more or less fixed. This comes undone when there is a growth in the 
number of products sold. In this different environment such a simplistic policy can, as shown, 
lead to overshoot and collapse. Notice needs to be taken of the changing number of product 
units in warranty in order that a more effective system performance is achieved. 
 
The above experiments are illustrative only and there is no intention of over-working a simple 
teaching model in order to uncover an ideal policy. In the case of policy optimisation a wide 
range of possible alternatives exists. Indeed, a process of learning naturally arises through 
carrying out repeated optimisation experiments with the model (Coyle, 1996). 
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Figure 8: Comparison of sales from two different policy drivers 
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4. Examples of SD optimisation reported in the literature 
 
Amongst the earliest work in this area the writings of Keloharju are worthy of mention. He 
contributed a number of papers on the topic in the pages of Dynamica. See, for example, 
Keloharju (1977). His work brought the concept to prominence but he did not employ the 
method on anything other than problems described in text books or postulated by himself. For 
instance, an application of optimisation to the project model contained in Richardson and 
Pugh’s (1981) text is contained in Keloharju and Wolstenholme (1989). A statement of the 
method together with some textbook examples is also available (Keloharju and Wolstenholme, 
1988). Additionally, an overview of the methods and their deployment on textbook examples 
has been contributed by the current author (Dangerfield and Roberts, 1996a). Finally, there is 
an example of optimisation applied to defence analysis. Again though it is a standard defence 
model – the armoured advance model – rather than any real-world study (Wolstenholme and 
Al-Alusi, 1987) 
 
Retaining the emphasis on textbook problems for the moment, Duggan (2005) employs 
Coyle’s (1996) model of the Domestic Manufacturing Company to illustrate the methods of 
multi-objective optimisation – an advance over standard SD optimisation with its single 
objective function.  The concept of multiple objectives arises from multi-criteria decision-
making where a situation can be judged on more than one performance metric. While a multi-
objective payoff function can be formulated using a set of weights, it is argued that the 
selection of the weights is very individual-specific. The multi-objective approach – 
underpinned by the methods of genetic algorithms – rests upon determining a Pareto-optimal 
situation, defined as one where no improvement is possible without making some other aspect 
worse. In other words the method strives for an optimal solution which is not dominated by 
any other solution. The author demonstrates the approach combining two objectives in the 
model: one for the differences between desired stock and actual and another between desired 
backlog and actual. 
 
In terms of applications to real-world problems, the current author has also used the methods 
of optimisation in research conducted in connection with modelling the epidemiology of 
HIV/AIDS. Fitting a model of AIDS spread to data was carried out for a number of European 
countries (Dangerfield and Roberts, 1994; Dangerfield and Roberts, 1996b). The optimised 
parameters furnished support for some of the features of AIDS epidemiology which, at the 
time, were being uncovered by other branches of science. For example, the optimised output 
revealed that a U-shaped profile of infectiousness in a host was necessary in order to achieve a 
best fit to data on new AIDS cases. This infectiousness profile was also evidenced by 
virologists who had analysed patients’ blood and other secretions on a longitudinal basis. 
 
Within this strand of research a much more complex optimisation was performed using 
American data on transfusion-associated AIDS cases (Dangerfield and Roberts,1999). The 
purpose here was to estimate the parameters for a number of plausible statistical HIV 
incubation distributions. Given the nature of the data the point of infection could be quite 
accurately determined, but two difficulties were evident: the data were right-censored and the 
number receiving infected transfusions in each quarter was unknown. However, the SD 
optimisation could estimate this number as part of the process, in addition to estimating 
parameters of the incubation distribution. The best fit was found to be a three-stage distribution 
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similar to the gamma and one which accorded with the high-low-high U-shaped infectiousness 
profile which was receiving support from a number of sources. 
 
In the marketing domain Graham and Ariza (2003) carried out an optimisation on a system 
dynamics model which was designed to shed light on the allocations to make from a marketing 
budget in a high-tech client firm. Assuming the budget was fixed, the task was to optimise the 
allocations across more than 90 ‘buckets’ – combinations of product lines, marketing channels 
and types of marketing. However, these were not discrete: advertising on one product line 
might have crossover effects on another and the impacts could propagate over a period of time. 
One major conclusion for this firm was that the advertising allocation should be increased 
markedly. In general intuitive allocations were shown to fall short of the ideal: they were 
directionally correct but magnitudes fell short often by factors of three or four. 
 
 
5. Future directions in SD optimisation 
 
A primary aim must be to see more published work which describes optimisation studies 
carried out on real-world SD applications. There may be frequent use of optimisation in 
consulting assignments but such activities are rarely published. The references herein suggest 
that, thus far, outside of unpublished work, the number may be three at most. Whilst software 
requirements may have inhibited use of SD optimisation in the past, there are now no 
computational barriers to its use and it is to be hoped that in future this quite powerful 
analytical tool in SD will feature in more application studies. 
 
An advance in the methodology itself has been developed by Duggan (2008) and this is a 
promising pointer for the future. Based on genetic algorithms, it is best suited to the class of 
SD problems that are agent-based and this highlights a slight limitation. Traditional 
optimisation takes the policy equations as given and explores the parameter space to determine 
an optimal policy. Instead he has offered an approach which searches over both parameter 
space and policy (strategy). Theoretically there is no limit to the number of strategies which 
can be evaluated in this approach, although the user has to define a set in advance of the runs. 
Under a conventional optimisation approach a limited tilt at this is possible using the zero-one 
parameter method suggested above, although this would restrict the enumerated strategies to 
two only.  Duggan demonstrates the new approach using a classic SD problem: the four agent 
beer-game. We await its use in a real-world application. 
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