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ABSTRACT 
 
Free radicals from one-electron oxidation of the antimalarial drug pyronaridine have 
been studied by pulse radiolysis. The results show that pyronaridine is readily 
oxidised to an intermediate semiiminoquine radical by inorganic and organic free 
radicals, including those derived from tryptophan and acetaminophen. The 
pyronaridine radical is rapidly reduced by both ascorbate and caffeic acid. The results 
indicate that the one-electron reduction potential of the pyronaridine radical at neutral 
pH lies between those of acetaminophen (707 mV) and caffeic acid (534 mV). The 
pyronaridine radical decays by a second order process which DFT calculations 
(UB3LYP/6-31+G* ) suggest is a disproportionation reaction. Important calculated 
dimensions of pyronaridine, its phenoxyl and aminyl radical as well as the 
iminoquinone are presented.  
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INTRODUCTION 
 
The massive problem of endemic and drug-resistant malaria in tropical countries, 
especially that due to potentially fatal infections with Plasmodium falciparum, has led 
to the development of a wide range of antimalarial drugs [1]. Pyronaridine (Figure 1) 
was introduced as an antimalarial agent in the 1970’s as a development of the existing 
antimalarial drug amodiaquine [2,3]. Although an effective antimalarial agent, 
amodiaquine has the potential to induce potentially fatal hepatotoxicity [4] and has 
now been withdrawn from use, except in the treatment of acute and resistant 
infections. Toxicity of amodiaquine results from oxidation of the aminophenol 
function, probably through the intermediate formation of the semiiminoquinone 
radical [5], and formation of a reactive iminoquinone [6-9]. In comparison, 
pyronaridine shows less clinical toxicity but retains some of the biochemical 
properties associated with amodiaquine toxicity such as oxidation by peroxidases, 
iminoquinone formation, glutathione depletion and cytotoxicity [6]. These reactions 
of the aminophenol function in antimalarial drugs reflect the well known toxicity of 
the same group within acetaminophen (N-acetylaminophenol, APAP) [10]. The 
pyronaridine molecule is normally formulated for clinical use as the tetraphosphate 
and Figure 1 indicates the pKa values for proton loss at the various sites in the 
molecule [11]. Pyronaridine is of particular interest since it has been reported to be 
active against multidrug-resistant strains of Plasmodium [12], inhibits Plasmodium 
falciparum topoisomerase II [13] and is being evaluated for world wide prophylactic 
use against all strains (drug resistant and sensitive) of  malaria [1]. 
 
{FIGURE 1} 
 
The propensity for oxidation of the aminophenol function in both amodiaquine and 
pyronaridine is involved not only in toxic side effects but may also be involved in 
their modes of antimalarial action. In the intra-erythrocytic stage the malaria parasite 
degrades haemoglobin and utilises the released amino acids for its own catabolism 
[14]. The heme that is simultaneously released is potentially toxic to the parasite 
through reactions that induce oxidative stress and contribute to the pathophysiology of 
fatal cerebral malaria [15]. Biocrystallization of the free heme, which may be a 
spontaneous or enzymically promoted process [16], produces redox inactive β-
hematin, also known as hemozoin or malaria pigment [17]. This eliminates oxidative 
stress due to free heme and allows the parasite to survive. Compounds that inhibit 
heme biocrystallization also possess antimalarial activity [18]. Recent results indicate 
that pyronaridine forms a complex with hematin that inhibits further biocrystallization 
[19]. This is now considered to be the mode of action rather than inhibition of parasite 
topoisomerase [13]. Such interactions appear to depend on a slipped offset interaction 
[3, 18] rather than the previously assumed π−π interactions between drug and 
hematin, with the drug acting as a partial electron donor. 
 
Pulse radiolysis studies have previously been used to study the redox behaviour of 
phenols and aminophenols and the properties of the phenoxyl and 
semi(imino)quinone radicals formed by one-electron oxidation [20,21]. Pulse 
radiolysis studies of both APAP [22] and amodiaquine [23] have been reported. The 
present pulse radiolysis study has been undertaken to assess the reactivity and 
reduction potential of the intermediate free radical formed by one-electron oxidation 
of pyronaridine.  
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MATERIALS AND METHODS 
Pyronaridine tetraphosphate was a gift from Professor D Warhurst (London School of 
Hygiene and Tropical Medicine). The model compound N-(4-hydroxy-3,5-
bis(pyrrolidin-1-ylmethyl)phenyl)acetamide, SA48, was prepared by a published 
procedure [24]. Other chemicals used were of Analar grade and solutions were 
prepared in water obtained from a Millipore Milli Q unit or equivalent.  
 
Pulse radiolysis was undertaken using the Daresbury linear accelerator with pulses of 
12 MeV electrons [25]. The radiation dose was approximately 6 Gy per pulse with a 
pulse length of 200 ns. The solution was irradiated in a quartz capillary cell with an 
optical pathlength of 2.5 cm and dosimetry was performed with an air saturated 
solution of KSCN (10 mmol dm-3). 
 
 
RESULTS 
 
1. Oxidation of pyronaridine by inorganic radicals 
 
The oxidizing inorganic radicals N3

• (Eo’ 1.33 V [26]) and Br2
-• (Eo’ 1.66 V [26]) 

were produced by pulse radiolysis of N2O-saturated solutions containing the 
corresponding salt:- 
 

H2O               •OH, eaq
-,  H• 

eaq
- + N2O  •OH + N2 + OH- 

•OH + N3
-  N3

• + OH- 
•OH + 2Br-  Br2

-• + OH- 

 
In addition, the oxidizing trichloromethylperoxyl radical, CCl3O2

• (Eo’ 1.3 V [26]), 
was produced in solutions saturated with N2O/O2 (4:1 v/v) containing acetone, 
propan-2-ol and CCl4 :- 
 

eaq
- + H+ + (CH3)2CO  (CH3)2

•COH 
•OH + (CH3)2CHOH  (CH3)2

•COH + H2O 
(CH3)2

•COH + CCl4 
  (CH3)2CO + CCl3

•  + Cl- + H+ 
CCl3

• + O2  CCl3O2
• 

 
At pH < 7, both azidyl radical and dibromide radical anion reacted with pyronaridine 
to produce a product radical with absorption maxima in the measured difference 
spectrum at 540 and 630 nm (Figures 2A and 2B). The difference spectra also 
displayed bleaching in the region of the long wavelength absorption maximum of 
pyronaridine at 430 nm (Figure 2B). As the pH was increased the transient absorption 
spectrum resulting from oxidation by azidyl radicals (Figure 2A) was transformed to 
one with absorption maxima at 490 and 600 nm, with isobestic points at ca 555 and 
630 nm. The transient spectra obtained by oxidation of pyronaridine by the 
trichloromethylperoxyl radical at pH 7.7 (Figure 2B) was very similar to that formed 
by reaction of azidyl radical at the same pH value. The similarity in transient 
absorption spectra at a particular pH value produced by the different oxidizing free 
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radicals indicates that reaction occurs by simple one-electron oxidation and that the 
shift in the spectrum with pH results from deprotonation of the radical. 
 
{FIGURE 2} 
 
For comparison, the transient absorption spectra obtained by one-electron oxidation of 
the model compound 4-amino-2,6-bis(1-pyrrolidinylmethyl)-phenol (SA48, Figure 1) 
are shown in Figure 3. The transient spectra show maxima at 450 nm at pH 6.8 and 
500 nm at pH 12.8, very similar to those observed previously for APAP [22] with the 
change resulting from deprotonation of the phenoxyl radical at the nitrogen atom with 
a pKa of 11.1. Second order rate constants for reaction of oxidizing free radicals with 
pyronaridine and related compounds are shown in Table 1. Azidyl radicals were 
found to react with pyronaridine, amodiaquine, APAP and SA48 at neutral pH with 
rate constants in excess of 109 dm3 mol-1 s-1, close to the diffusion controlled limit and 
consistent with the high reduction potential for N3

•. In alkaline solution, the rate 
constants all increase due to deprotonation of the phenolic group (pKa ca 10). 
However, measurements with pyronaridine were limited by it being virtually 
insoluble at pH >10.  Deprotonation of the pyrrolidine groups in pyronaridine and 
SA28 appear to have little effect on the rate of oxidation by the azidyl radical. At 
neutral pH, the second order rate constant for reaction of dibromide radical anion 
decreases by two orders of magnitude in the order pyronaridine > amodiaquine > 
APAP and is taken to reflect the both influence of the positively charged pyrrolidine 
groups and the lower reduction potentials for amodiaquine and pyronaridine 
compared with APAP (see below). The electrophilic trichloromethylperoxyl radical 
(CCl3O2

•) was also found oxidize pyronaridine very rapidly with a second order rate 
constant of 1.8 x 109 dm3 mol-1 s-1. These results suggest that the aminophenol moiety 
of pyronaridine is the principle site for reaction with oxidizing free radicals. 
 
{FIGURE 3} 
{TABLE 1} 
 
 
 
2. Free radical interactions between pyronaridine and organic compounds 
 
In aqueous solution at neutral pH, tryptophan was oxidised to the neutral indolyl 
radical (λmax 520 nm) by azidyl radicals. The indolyl radical from tryptophan is 
relatively oxidising (Eo’ 1.015 V [27]) and in the presence of pyronaridine was found 
to react, as shown by the formation of the characteristic 640 nm absorption of the 
pyronaridine radical at neutral pH as illustrated in Figure 4. 
 

N3
• + TrpH  Trp•  + N3

- + H+ 

Trp• + Pyronaridine-H  TrpH + [Pyronaridine]• 

 

The second order rate constant for oxidation of pyronaridine by tryptophanyl radicals 
was found to be (8.0 ± 0.4) x 107 dm3 mol-1 s-1 from the second order plot in the inset 
to Figure 4. The lower rate constant by over an order of magnitude compared with 
that determined with the inorganic radicals described above is due to the 
comparatively lower reduction potential of the tryptophanyl radical. The 
semiiminoquinone free radical from APAP (Eo’ 707 mV [22]) was also found to 
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oxidise pyronaridine to the free radical with an apparent second order rate constant of 
~ 108 dm3 mol-1 s-1 as illustrated in Figure 5. 
 
{FIGURE 4} 
{FIGURE 5} 
 
Ascorbate is highly reducing with Eo’ (Asc•-, H+/AscH-) 300 mV [20]. Accordingly in 
solutions containing pyronaridine and lower concentrations of ascorbate, the 
absorption at 640 nm of the pyronaridine radical formed by oxidation with azidyl 
radical at neutral pH was found to decay exponentially with first order rates 
increasing with ascorbate concentration as illustrated in Figure 6. The inset to Figure 
6 shows the second order plot giving a second order rate constant of (1.4 ± 0.1) x 107 
dm3 mol-1 s-1. Caffeic acid (Eo’  534 mV [28]) was similarly found to reduce the 
pyronaridine radical with a second order rate constant of (5.6 ± 0.4) x 106 dm3 mol-1 
s-1. 
 
{FIGURE 6} 
 
These free radical interactions between species with the know reduction potentials 
demonstrate that the one electron reduction potential of the pyronaridine radical at 
neutral pH lies between that of APAP (707 mV) and caffeic acid (534 mV). It was not 
possible to undertake the usual experiments to determine transient equilibria with 
redox standards at high pH (>12) [20] due to the insolubility of pyronaridine under 
these conditions. 
 
 
3. Decay of the pyronaridine radical 
 
The radical described above formed from the one-electron oxidation of pyronaridine 
was unstable and decayed on a millisecond timescale. The decay of the difference 
spectrum at pH 6.7 is illustrated in Figure 7. The radical peaks at 540 and 640 nm 
decay and are replaced by a much less intense residual absorbance peaking in the 
region of 550 – 600 nm. At all wavelengths the decay could be fitted to a second order 
process plus a residual product absorbance. The decay at 640 nm is shown in the inset 
to Figure 7 and gave a second order rate constant for decay (2k2) of (45.2 ± 0.1) x 108 
dm3 mol-1 s-1. This value is based an on an extinction coefficient of of 4,700 dm3 mol-1 
cm-1 at 640 nm, assuming quantitative oxidation of pyronaridine by azidyl radical. 
The observed second order decay could be explained by either a radical termination 
(i.e. dimerization) or a disproportionation reaction. The second possibility appears to 
be more consistent with steric hinderance imposed by two methylene pyrrolidinyl 
groups occupying both ortho-phenolic positions and with the residual absorption 
found during pulse radiolysis. In this case the product spectrum at 550 – 600 ns 
belongs to the iminoquinone that has been previously discussed in relation to the toxic 
side effects of this drug [6]. Preliminary mass spectral investigations of the products 
from radiolysis of a nitrous oxide saturated solution of pyronaridine containing 
sodium azide have revealed the formation of the quinone 3a (Figure 8).  
 
 
{FIGURE 7} 
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The structural details of pyronaridine and the one- and two-electron oxidised products 
were studied using density functional theory (DFT) methodology with the Gaussian03 
program [29] to ascertain which route was thermodynamically favoured since most 
investigators have assumed that disproportionation is the favoured decay mode 
[Figure 8]. Similar combined pulse radiolytic – DFT approaches have proved 
successful in explaining the decay of ortho-substituted transient semi-iminoquinones 
involved in pheomelanogenesis [30]. 
 
{FIGURE 8} 
 
For the DFT study, the input model for pyronaridine (1) was built in two parts. First 
the moiety based on the 7-chloro-2-methoxybenzo[b][1,5]naphthyridine heterocyclic 
system was attached via an NH substituent to a phenyl ring. There are only two 
variables, namely the C1-C2-N1-C3 and C2-N1-C3-C4 torsion angles between the 
aromatic rings (see Figure 9 for atom identification), and optimum values were 
obtained from previous calculations [31]. The second variable involves the 
orientations of the 4-amino-2,6-bis(pyrrolidin-1-ylmethyl)phenol fragment and we 
used experimental data from the CCDC [32]) in particular DUTTUH, DUTVAP, 
SOPBEE and VIMYEV which had very similar conformations. The resulting 
complete structural model was then fully optimised; subsequently, starting models for 
2a, 2b and 3a were built by removing the appropriate hydrogen atom(s) from the 
optimised 1 and then fully optimised using the UB3LYP/6-31+G* methodology..  
 
The enthalpies of the reactions 1 - H• = 2a and 1 – H•  = 2b were then studied. 
All entities were geometry optimised and the enthalpies of reaction were calculated as 
87.1 and 87.6 kcal mol-1 respectively. Therefore, there is little significant difference 
between the energies of the phenoxyl and aminyl radicals. These values compare 
favourably with the free energy (76.7 kcal mol-1) for the found in the related molecule 
4,6-di-tert-butyl-2-tert-butylimino-semiquinone in which the phenoxyl group is also 
sterically hindered [33].  
 
{FIGURE 9} 
 
In contrast, the enthalpy of the reaction 1 - 2H• =   3a was calculated as 154.97 kcal 
mol-1. This can be compared favourably with the enthalpies for the formation of 2a + 
2b, or indeed 2*2a or 2*2b which would have a combined enthalpy of ca 175 kcal 
mol-1. Thus the disproportionation reaction of radicals 2a and 2b to form 3a is  
favoured by ca 20 kcal mol-1. The structures of 1, 2a, 2b and 3a are shown in Figure 9 
with important dimensions compared in Table 2. 
 
 
{TABLE 2} 
 
 
It will be noted that there is, as expected, a significant change in geometry when the 
hydrogen on N1 is removed in 3a. The main change is a decrease in the N1-C3 bond 
length by 0.136 Ǻ which is accompanied by a change in conformation as the C2-N1-
C3-C4 torsion angle changes from 139.4o to -173.6o so that the arrangement around 
the C3-N1 double bond is approximately planar. This increase in conjugation will 
cause a corresponding shift in the product absorption maximum as observed 
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experimentally for the iminoquinone product in Figure 7. By contrast the C1-C2-N1-
C3 torsion angle changes from 145.3o in 1 to 62.5o in 3a twisting further away from 
planarity and concomitant with a slight increase in the C2-N1 bond length which has 
less double bond character increasing slightly from 1.375 to 1.385 Ǻ.   The structures 
of the radicals 2a and 2b show some variations. In 2a the C-O7 bond length is 1.257 
Ǻ, close to that for a double bond; the C-C bonds in the six-membered ring starting 
adjacent to the carbonyl are 1.469, 1.376,1.418, 1.421, 1.373, 1.466 Ǻ showing that 
the ring loses some of its aromatic character but not all. Thus the comparable 
distances in the iminoquinone 3a are 1.492, 1.349, 1.464, 1.466, 1.349, 1.493 Ǻ. The 
N1-C3 in 2a bond has slightly more double bond character than in 1 and the C2-N1-
C3-C4 torsion angle increases to 172.2o. By contrast the torsion angles in 2b are 
almost exactly the same as in 3a. The N1-C3 bond length at 1.343 Ǻ retains some 
double bond character but is still significantly longer than the 1.296 Ǻ found in 3a. 
 
There is an additional change in that in 1, there is an intermolecular hydrogen bond 
between O7-H and N5 with an O7...N5 distance of 2.718Ǻ. This is maintained in 2b 
with a distance of 2.686 Ǻ but with the removal of the hydrogen atom on O7, as in 2a 
or 3a, this distance increases to 3.361 and 3.338Ǻ respectively. These results are 
consistent with conclusions drawn in Section 1 that the aminophenol moiety is the 
reaction site with oxidizing free radicals. Radicals such as 2a and/or 2b could arise 
through interaction of oxidizable groups with free heme(II) released during the 
parasite mediated catabolism of haemoglobin [34], and could contribute, in part, to 
the antimalarial action of compounds containing the para-amino phenol moiety [3]. 
 
 
CONCLUSIONS 
 
Pyronaridine is readily oxidized to the radical species with a one-electron reduction 
potential at pH 7 for the radical species between ca 530 and 700 mV as defined by 
observed reactions with caffeic acid and the acetaminophen semiiminoquinone radical 
respectively. The result shows that pyronaridine is more readily oxidised than 
acetaminophen and accounts for the ease with which the drug is metabolised to toxic 
intermediates. The radical decays by a second order process which is suggested on the 
basis of spectral evidence and calculation to be a disproportionation resulting in 
formation of the iminoquinone that is responsible for reaction with thiols and protein 
conjugation in vivo. 
 
 
 SUPPLEMENTARY MATERIAL  
 
Coordinates of the optimised structures of 1, 2a, 2b, 3a may be found in the 
Supplementary Material 
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Table 1 – Second order rate constants (units, dm3 mol-1 s-1) for reaction at neutral pH 
(unless otherwise indicated) of some inorganic radicals with pyronaridine and related 
compounds. 1From reference [23]. 2From reference [22]. 
 
 
 

Radical species Pyronaridine Amodiaquine1 APAP2 SA48 
N3

• 3.5 x 109 (pH 6.8) 
5.2 x 109 (pH 9.2) 

1.2 x 109 3.8 x 109 (pH 7.1) 
5.8 x 109 (pH 11.1) 

2.4 x 109 (pH 6.8) 
3.2 x 109 (pH 12.8) 

Br2
-• 3.0 x 109 (pH 6.8) 2.1 x 108 2.5 x 107 ---- 

CCl3O2
• 1.8 x 109 (pH 7.7) ---- ---- ---- 

 
 
 
 
 
 
Table 2 -  Dimensions in 1, 2a, 2b  and 3a, distances, Ǻ; torsion angles, o. 

 
 
 1 2a 2b 3a 
C2-N1 1.375 1.388 1.401 1.385 
N1-C3 1.432 1.393 1.343 1.296 
C1-C2-N1-C3 145.3 135.5 63.4 62.5 
C2-N1-C3-C4 139.4 172.2 -170.9 -173.6 
O7…N5 2.718 3.361 2.686 3.338 
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FIGURE LEGENDS 
 
FIGURE 1 Structures of the antimalarial drugs pyronaridine (malaridine; Drug 

7351 or 4-[(7-chloro-2-methoxybenzo[b]-1,5-naphthyridin-10-
yl)amino]-2,6-bis(1-pyrrolidinylmethyl)- phenol ) and amodiaquine (4-
(7-chloroquinolin-4-ylamino)-2-((diethylamino)methyl)phenol), 
together with that of the model compound SA48 (N-(4-hydroxy-3,5-
bis(pyrrolidin-1-ylmethyl)phenyl)acetamide). The table indicates the 
pKa values and sites of ionization in the pyronaridine molecule (from 
reference [11]). 

 
FIGURE 2 A: Transient spectra formed by oxidation of pyronaridine by azidyl 

radical in N2O-saturated solutions containing pyronaridine (50 µmol 
dm-3) and sodium azide (0.1 mol dm-3) at pH 5.4 40 µs after the pulse 
(●), pH 6.7 40 µs after the pulse (○), pH 7.6 20 µs after the pulse (■) 
and pH 8.8 20 µs after the pulse (▲). B:- Transient spectra from 
oxidation of pyronaridine (50 µmol dm-3) by Br2

-•  in N2O-saturated 
solution containing KBr (0.1 mol dm-3) at pH 6.8 40 µs after the pulse 
(), and by trichloromethylperoxyl radical at pH 7.7 50 µs after the 
pulse (♦) in a solution saturated with N2O/O2 (4:1 v/v) and containing 
propan-2-ol (3.3 mol dm-3), acetone (1.4 mol dm-3) and carbon 
tetrachloride (12 mmol dm-3). Dose = 9 Gy per pulse. The absorption 
spectrum of unirradiated pyronaridine (50 µmol dm-3) at pH 8.8 is 
shown for comparison (solid line). 

 
FIGURE 3 Transient absorption spectra form one-electron oxidation of SA48 by 

azidyl radicals at pH 6.8 (♦) and at pH 12.8 (□). 
 
FIGURE 4 Oxidation pyronaridine by tryptophan radicals demonstrated by 

formation of the pyronaridine radical transient absorption at 640 nm in 
N2O-saturated solutions at pH 7 containing NaN3 (0.1 mol dm-3) and 
tryptophan (2.5 mmol dm-3) (a); and together with pyronaridine at 
concentrations of 50 (b); 100 (c ); 150 (d) and 200 (e) µmol dm-3. 
INSET: effect of tryptophan concentration on the first order rate for 
formation of the transient absorbance at 640 nm fir the above solutions. 

 
FIGURE 5 The transient absorption change in an N2O-saturated solution at pH 7 

containing APAP (4 mmol dm-3) and pyronaridine (1 mmol dm-3) 
recorded at 640 nm. 

 
FIGURE 6 Reduction of the pyronaridine radical recorded at 640 nm by pulse 

radiolysis of N2O-saturated solutions of pyronaridine (1 mmol dm-3) 
and NaN3 (0.1 mol dm-3) at pH 6.8 alone and with increasing 
concentrations of ascorbate (90, 180, 300 and 500 µmol dm-3). 
INSET:- Second order plots for the reduction of pyronaridine radical 
absorption at 640 nm and pH 6.8 by ascorbate () and caffeic acid (). 

 
FIGURE 7 Decay of the transient difference spectra on a millisecond timescale 

following pulse radiolysis of an N2O-saturated solution of pyronaridine 
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(50 µmol dm-3) containing sodium azide (0.1 mol dm-3) and phosphate 
buffer (20 mmol dm-3) at pH 6.7. Spectra are shown at delays after the 
pulse of 50 µs (■), 200 µs (□), 500 µs (♦), 1.5 ms (○) and 8 ms (*). 
Inset: decay of the transient absorption at 640 nm. 

 
FIGURE 8  Disproportionation of Pyronaridine radicals. 1: pyronaridine); 2a: 

phenoxyl radical; 2b: aminyl radical; 3a Pyronaridine quinone: 4-(7-
chloro-2-methoxybenzo[b][1,5]naphthyridin-10-ylimino)-2,6-
bis(pyrrolidin-1-ylmethyl)cyclohexa-2,5-dienone. 

 
FIGURE 9 Structure of pyronaridine 1, the two radicals 2a and 2b, and the 

iminoquinone 3a. 
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A PULSE RADIOLYSIS STUDY OF FREE RADICALS FORMED BY ONE 
ELECTRON OXIDATION OF THE ANTIMALARIAL DRUG 
PYRONARIDINE. 
 
F.M.D.Ismail, M.G.B.Drew, S.Navaratnam and  R.H.Bisby 

 

 
SUPPLEMENTARY MATERIAL 

A – RESULTS FROM DFT CALCULATIONS 

B – DATA FROM ELECTROSPRAY MASS SPECTROMETRY 

 

 

A --  RESULTS FROM DFT CALCULATIONS 

 

1: pyronaridine [malaridine, Drug 7351 or Pyronaridine (4-[(7-chloro-2-
methoxybenzo[b]-1,5-naphthyridin-10-yl)amino]-2,6-bis(1-pyrrolidinylmethyl)- 
phenol); 2a: phenoxyl radical; 2b: aminyl radical; 3a Pyronaridine quinone: 4-(6-
chloro-2-methoxyacridin-9-ylimino)-2,6-bis(pyrrolidin-1-ylmethyl)cyclohexa-2,5-
dienone. 
 

==========================================================  

STRUCTURE OF 1 

 SCF Done:  E(RB+HF-LYP) =  -2008.82200761     A.U. after   19 cycles 

                          Standard orientation:                          

 --------------------------------------------------------------------- 

 Center     Atomic     Atomic              Coordinates (Angstroms) 

 Number     Number      Type              X           Y           Z 

 --------------------------------------------------------------------- 

    1          6             0       -1.509253   -1.872551   -0.558419 

    2          6             0       -0.387286   -1.283390    0.029153 

    3          7             0        0.914835   -1.648679   -0.444302 



    4          6             0        1.988642   -0.814107   -0.645392 

    5          6             0        3.280059   -1.347494   -0.377022 

    6          6             0        4.427375   -0.525192   -0.585063 

    7          7             0        4.378412    0.740434   -1.026829 

    8          6             0        3.162077    1.237601   -1.324834 

    9          6             0        1.924364    0.506009   -1.178837 

   10          6             0        0.719081    1.124493   -1.628784 

   11          6             0        0.711273    2.395977   -2.149540 

   12          6             0        1.929630    3.120193   -2.236021 

   13         17             0        1.884503    4.755687   -2.885470 

   14          6             0        3.119777    2.570448   -1.843117 

   15          1             0        4.057160    3.109081   -1.927109 

   16          1             0       -0.210974    2.849030   -2.498270 

   17          1             0       -0.213989    0.577550   -1.574192 

   18          6             0        5.701490   -1.113762   -0.284407 

   19          6             0        5.773835   -2.398709    0.166932 

   20          6             0        4.551169   -3.128729    0.335374 

   21          8             0        4.697204   -4.395912    0.787900 

   22          6             0        3.510022   -5.171168    0.981271 

   23          1             0        2.967218   -5.290155    0.037868 

   24          1             0        3.856499   -6.139216    1.346074 

   25          1             0        2.853090   -4.697314    1.717727 

   26          7             0        3.366223   -2.639167    0.085831 

   27          1             0        6.714506   -2.884784    0.404085 

   28          1             0        6.588938   -0.505479   -0.433022 



   29          1             0        1.229308   -2.571169   -0.151057 

   30          6             0       -0.557493   -0.399200    1.101605 

   31          6             0       -1.829722   -0.071387    1.572002 

   32          1             0       -4.850872   -0.681295    0.789554 

   33          6             0       -2.036363    0.867935    2.747469 

   34          7             0       -0.879055    1.697720    3.051599 

   35          6             0       -0.677640    2.835314    2.146325 

   36          6             0        0.382474    3.694993    2.861697 

   37          6             0        0.233787    3.319205    4.365832 

   38          6             0       -0.917350    2.297475    4.388387 

   39          1             0       -0.802536    1.525980    5.158366 

   40          1             0       -1.884573    2.811524    4.567973 

   41          1             0        1.155937    2.863912    4.741640 

   42          1             0        0.014402    4.186351    4.997518 

   43          1             0        1.386168    3.451529    2.499101 

   44          1             0        0.219525    4.761947    2.677598 

   45          1             0       -0.364990    2.499405    1.153143 

   46          1             0       -1.621817    3.406223    2.024751 

   47          1             0       -2.261844    0.264536    3.638035 

   48          1             0       -2.939148    1.481108    2.566324 

   49          1             0        0.304628    0.050717    1.584420 

   50          1             0       -1.373365   -2.555535   -1.394331 

   51          8             0       -4.186924   -0.370001    1.463737 

   52          6             0       -2.950788   -0.680004    0.973908 

   53          6             0       -2.796006   -1.598760   -0.084358 



   54          6             0       -3.998528   -2.331456   -0.647400 

   55          7             0       -5.171013   -1.463386   -0.822781 

   56          6             0       -5.058673   -0.480585   -1.914438 

   57          6             0       -6.491607    0.060770   -2.066830 

   58          6             0       -7.402070   -1.090764   -1.544789 

   59          6             0       -6.418435   -2.191709   -1.104712 

   60          1             0       -6.745240   -2.744898   -0.217730 

   61          1             0       -6.260661   -2.922802   -1.920245 

   62          1             0       -8.005743   -0.751735   -0.696820 

   63          1             0       -8.092900   -1.458577   -2.309900 

   64          1             0       -6.625897    0.962828   -1.461439 

   65          1             0       -6.707634    0.329520   -3.105528 

   66          1             0       -4.322192    0.289287   -1.666530 

   67          1             0       -4.725753   -0.981112   -2.843387 

   68          1             0       -3.727393   -2.827286   -1.597338 

   69          1             0       -4.297482   -3.125679    0.052042 

----------------------------------------------------------------------- 

STRUCTURE OF 3a 

 SCF Done:  E(RB+HF-LYP) =  -2007.57446479     A.U. after   18 cycles 

                         Standard orientation:                          

 --------------------------------------------------------------------- 

 Center     Atomic     Atomic              Coordinates (Angstroms) 

 Number     Number      Type              X           Y           Z 

 --------------------------------------------------------------------- 

    1          6             0       -2.004275    0.756707   -1.351592 



    2          6             0       -0.704737    0.305475   -0.843573 

    3          7             0        0.344849    0.900972   -1.317432 

    4          6             0        1.650443    0.523787   -1.051105 

    5          6             0        2.165471   -0.741911   -1.428215 

    6          6             0        3.568822   -0.982523   -1.221603 

    7          7             0        4.420109   -0.099137   -0.687605 

    8          6             0        3.932531    1.110980   -0.347591 

    9          6             0        2.555505    1.485855   -0.527869 

   10          6             0        2.145214    2.799104   -0.157125 

   11          6             0        3.038953    3.698044    0.372315 

   12          6             0        4.393277    3.308438    0.561270 

   13         17             0        5.506629    4.480690    1.252109 

   14          6             0        4.839813    2.059848    0.215752 

   15          1             0        5.873075    1.760499    0.352375 

   16          1             0        2.727312    4.700959    0.644889 

   17          1             0        1.109784    3.085366   -0.311151 

   18          6             0        4.068691   -2.271818   -1.612480 

   19          6             0        3.229069   -3.189956   -2.165014 

   20          6             0        1.849210   -2.827189   -2.339967 

   21          8             0        1.081569   -3.778939   -2.912444 

   22          6             0       -0.301247   -3.469465   -3.134945 

   23          1             0       -0.399966   -2.599602   -3.791172 

   24          1             0       -0.719075   -4.358960   -3.608243 

   25          1             0       -0.807001   -3.263018   -2.187295 

   26          7             0        1.336787   -1.678983   -1.992203 



   27          1             0        3.560326   -4.173103   -2.482870 

   28          1             0        5.124510   -2.473216   -1.457466 

   29          6             0       -0.693117   -0.726684    0.195588 

   30          6             0       -1.834567   -1.288714    0.646918 

   31          6             0       -1.867575   -2.364317    1.710536 

   32          7             0       -0.616082   -2.508966    2.436463 

   33          6             0       -0.398934   -1.518566    3.499361 

   34          6             0        0.800158   -2.077699    4.289868 

   35          6             0        0.776135   -3.607644    3.999976 

   36          6             0       -0.460403   -3.805361    3.105713 

   37          1             0       -0.341319   -4.605568    2.366663 

   38          1             0       -1.349180   -4.045585    3.724082 

   39          1             0        1.683351   -3.911995    3.468135 

   40          1             0        0.712675   -4.208379    4.913039 

   41          1             0        1.737353   -1.632171    3.941137 

   42          1             0        0.710180   -1.852283    5.357450 

   43          1             0       -0.216132   -0.523733    3.080518 

   44          1             0       -1.293469   -1.445572    4.150837 

   45          1             0       -2.098244   -3.317626    1.215569 

   46          1             0       -2.722153   -2.174520    2.386647 

   47          1             0        0.258758   -1.037241    0.613435 

   48          1             0       -1.976212    1.552111   -2.092979 

   49          8             0       -4.168205   -1.529925    0.331948 

   50          6             0       -3.145826   -0.909578    0.042702 

   51          6             0       -3.169478    0.211313   -0.943979 



   52          6             0       -4.518447    0.672822   -1.441030 

   53          7             0       -5.171478    1.548899   -0.474772 

   54          6             0       -4.666606    2.921932   -0.427164 

   55          6             0       -5.704559    3.665358    0.436709 

   56          6             0       -7.008690    2.826577    0.285736 

   57          6             0       -6.617940    1.682136   -0.666958 

   58          1             0       -7.119468    0.734819   -0.442506 

   59          1             0       -6.857661    1.954661   -1.716095 

   60          1             0       -7.321431    2.425265    1.254901 

   61          1             0       -7.842590    3.413893   -0.112384 

   62          1             0       -5.383895    3.694511    1.483011 

   63          1             0       -5.830277    4.700889    0.103886 

   64          1             0       -3.654526    2.954868   -0.010833 

   65          1             0       -4.624607    3.362350   -1.446270 

   66          1             0       -4.404528    1.166802   -2.426734 

   67          1             0       -5.155813   -0.206426   -1.577022 

 --------------------------------------------------------------------- 

 

STRUCTURE OF 2a 

SCF Done:  E(UB+HF-LYP) =  -2008.18201945     A.U. after   33 cycles 

                         Standard orientation:                          

 --------------------------------------------------------------------- 

 Center     Atomic     Atomic              Coordinates (Angstroms) 

 Number     Number      Type              X           Y           Z 

 --------------------------------------------------------------------- 



    1          6             0       -2.039188    1.479846   -0.038479 

    2          6             0       -0.765675    0.872080   -0.209479 

    3          7             0        0.333363    1.559932    0.299203 

    4          6             0        1.659961    1.167283    0.416881 

    5          6             0        2.642688    2.111483    0.032456 

    6          6             0        4.020757    1.740717    0.128985 

    7          7             0        4.446841    0.553607    0.580251 

    8          6             0        3.515470   -0.315939    1.018607 

    9          6             0        2.094813   -0.056772    0.989121 

   10          6             0        1.221891   -1.001424    1.605336 

   11          6             0        1.702966   -2.158036    2.167405 

   12          6             0        3.096946   -2.433530    2.123320 

   13         17             0        3.671327   -3.938291    2.823521 

   14          6             0        3.983966   -1.547851    1.572599 

   15          1             0        5.052038   -1.734530    1.561351 

   16          1             0        1.032235   -2.861092    2.650292 

   17          1             0        0.158391   -0.795683    1.649794 

   18          6             0        4.981582    2.716007   -0.302496 

   19          6             0        4.562099    3.931096   -0.755378 

   20          6             0        3.151226    4.196367   -0.790592 

   21          8             0        2.814103    5.421942   -1.240428 

   22          6             0        1.420531    5.748925   -1.313434 

   23          1             0        0.963987    5.712951   -0.319258 

   24          1             0        1.386426    6.763759   -1.711327 

   25          1             0        0.896335    5.056891   -1.979400 



   26          7             0        2.232515    3.339719   -0.425972 

   27          1             0        5.249004    4.702312   -1.087699 

   28          1             0        6.033786    2.453324   -0.247218 

   29          1             0        0.254093    2.572164    0.236418 

   30          6             0       -0.658849   -0.343470   -0.931757 

   31          6             0       -1.771485   -0.930056   -1.489833 

   32          6             0       -1.691732   -2.161284   -2.365889 

   33          7             0       -0.452725   -2.915744   -2.234482 

   34          6             0       -0.400668   -3.806150   -1.068290 

   35          6             0        0.828169   -4.696883   -1.333202 

   36          6             0        0.995178   -4.671513   -2.881458 

   37          6             0       -0.169203   -3.794073   -3.374823 

   38          1             0        0.076585   -3.200830   -4.262793 

   39          1             0       -1.048638   -4.423173   -3.622065 

   40          1             0        1.955293   -4.223027   -3.156986 

   41          1             0        0.960497   -5.671973   -3.325005 

   42          1             0        1.716398   -4.288163   -0.841077 

   43          1             0        0.677049   -5.709218   -0.944156 

   44          1             0       -0.326819   -3.231926   -0.139733 

   45          1             0       -1.321162   -4.422484   -1.008665 

   46          1             0       -1.785909   -1.829875   -3.409699 

   47          1             0       -2.581596   -2.790728   -2.181676 

   48          1             0        0.310464   -0.800412   -1.102849 

   49          1             0       -2.103713    2.398445    0.544251 

   50          8             0       -4.093568   -0.772588   -1.956631 



   51          6             0       -3.091739   -0.299322   -1.363779 

   52          6             0       -3.181289    0.922367   -0.558017 

   53          6             0       -4.545730    1.533738   -0.350549 

   54          7             0       -5.295008    0.876826    0.714026 

   55          6             0       -4.827865    1.141906    2.074884 

   56          6             0       -5.950722    0.572505    2.963382 

   57          6             0       -7.221090    0.628174    2.063932 

   58          6             0       -6.718406    1.214738    0.731002 

   59          1             0       -7.219101    0.794430   -0.147892 

   60          1             0       -6.868629    2.315351    0.712426 

   61          1             0       -7.629293   -0.375800    1.910857 

   62          1             0       -8.015312    1.244362    2.498078 

   63          1             0       -5.725547   -0.460187    3.248503 

   64          1             0       -6.063074    1.151499    3.885998 

   65          1             0       -3.854832    0.674345    2.253967 

   66          1             0       -4.713289    2.233846    2.250322 

   67          1             0       -4.445712    2.623767   -0.156597 

   68          1             0       -5.119321    1.411813   -1.275464 

 --------------------------------------------------------------------- 

STRUCTURE OF 2b 

 SCF Done:  E(UB+HF-LYP) =  -2008.18284432     A.U. after   27 cycles 

                         Standard orientation:                          

 --------------------------------------------------------------------- 

 Center     Atomic     Atomic              Coordinates (Angstroms) 

 Number     Number      Type              X           Y           Z 



 --------------------------------------------------------------------- 

    1          6             0        1.820453   -0.267508   -1.696406 

    2          6             0        0.561344   -0.017170   -1.049686 

    3          7             0       -0.552109   -0.337772   -1.728757 

    4          6             0       -1.819944    0.038382   -1.265541 

    5          6             0       -2.232396    1.380753   -1.130600 

    6          6             0       -3.602600    1.630727   -0.770318 

    7          7             0       -4.515329    0.677750   -0.538516 

    8          6             0       -4.116453   -0.603612   -0.663619 

    9          6             0       -2.778089   -0.977036   -1.034834 

   10          6             0       -2.441687   -2.358211   -1.131892 

   11          6             0       -3.376587   -3.332398   -0.880428 

   12          6             0       -4.697851   -2.951232   -0.515185 

   13         17             0       -5.869977   -4.225856   -0.198002 

   14          6             0       -5.070031   -1.636262   -0.404487 

   15          1             0       -6.075733   -1.343831   -0.124332 

   16          1             0       -3.125031   -4.385133   -0.958681 

   17          1             0       -1.429465   -2.627258   -1.422458 

   18          6             0       -3.998623    3.006885   -0.660792 

   19          6             0       -3.096829    3.999245   -0.899311 

   20          6             0       -1.757106    3.625769   -1.261955 

   21          8             0       -0.925153    4.668088   -1.495880 

   22          6             0        0.418600    4.360602   -1.888845 

   23          1             0        0.425528    3.775637   -2.814095 

   24          1             0        0.898550    5.328426   -2.039842 



   25          1             0        0.929488    3.793258   -1.104833 

   26          7             0       -1.336600    2.397819   -1.374374 

   27          1             0       -3.349809    5.052700   -0.838753 

   28          1             0       -5.030236    3.214451   -0.392639 

   29          6             0        0.616294    0.455891    0.305824 

   30          6             0        1.809012    0.642767    0.974658 

   31          1             0        4.894431    0.077710    0.409137 

   32          6             0        1.841581    1.109879    2.420051 

   33          7             0        0.610985    0.809781    3.138442 

   34          6             0        0.454515   -0.598046    3.517793 

   35          6             0       -0.729622   -0.586740    4.505471 

   36          6             0       -0.753952    0.866523    5.065369 

   37          6             0        0.449179    1.550421    4.392209 

   38          1             0        0.287730    2.615675    4.190601 

   39          1             0        1.352028    1.458735    5.031327 

   40          1             0       -1.684142    1.370898    4.784781 

   41          1             0       -0.677595    0.899495    6.157169 

   42          1             0       -1.666437   -0.821116    3.989715 

   43          1             0       -0.594950   -1.335133    5.293329 

   44          1             0        0.276647   -1.224680    2.637208 

   45          1             0        1.374263   -0.973588    4.013309 

   46          1             0        1.987308    2.199269    2.434242 

   47          1             0        2.724609    0.679241    2.926904 

   48          1             0       -0.308990    0.631276    0.845381 

   49          1             0        1.787167   -0.621862   -2.724518 



   50          8             0        4.193879    0.557517    0.949974 

   51          6             0        3.026061    0.392233    0.287650 

   52          6             0        3.025659   -0.048771   -1.064840 

   53          6             0        4.341852   -0.199293   -1.804824 

   54          7             0        5.363771   -0.878427   -0.995774 

   55          6             0        5.125686   -2.324578   -0.822313 

   56          6             0        6.453884   -2.852471   -0.250286 

   57          6             0        7.524712   -1.837102   -0.749394 

   58          6             0        6.724543   -0.793032   -1.551797 

   59          1             0        7.111364    0.226811   -1.455246 

   60          1             0        6.715061   -1.050369   -2.627049 

   61          1             0        8.038550   -1.367427    0.095301 

   62          1             0        8.289365   -2.310371   -1.373409 

   63          1             0        6.420676   -2.872568    0.843788 

   64          1             0        6.655114   -3.873600   -0.587739 

   65          1             0        4.262302   -2.503786   -0.175198 

   66          1             0        4.912056   -2.786241   -1.803867 

   67          1             0        4.178132   -0.731011   -2.758801 

   68          1             0        4.737177    0.795350   -2.054651 

 --------------------------------------------------------------------- 

 

 

 



B – DATA FROM ELECTROSPRAY MASS SPECTROMETRY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supp Figure 1: Positive ion high resolution electrospray mass spectrum of 
authentic protonated Pyronaridine (7-chloro-10-(4-hydroxy-3,5-
bis(pyrrolidin-1-ylmethyl)phenylamino)-2-methoxybenzo[b][1,5]naphthyridin-
5-ium). Note presence of peak with reduced intensity ascribed to 
spontaneous formation of iminoquinone during electrospray conditions.  

 

Supp Figure 2: Positive ion high resolution electrospray mass spectrum of 
authentic protonated iminoquinone (7-chloro-2-methoxy-10-(4-oxo-3,5-
bis(pyrrolidin-1-ylmethyl)cyclohexa-2,5dienylideneamino) benzo[b] [1,5]naphth-
yridin-5-ium)  



 

 

Supp Figure 3: Positive ion high resolution electrospray mass spectrum 
revealing presence of imnoquinone in pulse radiolysed sample. 

 


	bisby_revised
	Bisby_Figures_revised
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9

	Supplementary_Material

